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quasi-classica

Linear form of Friedmann’s equations and quasi-classical

probability

Relatore Laureando

Prof. Marco Matone Michele Ligorio

Anno Accademico 2022/2023





Abstract

Following [1, 2], we formulate Friedmann’s equations as a pair of second-order linear dif-
ferential equations. This is done using techniques related to the Schwarzian derivative and its
symmetry under PSLp2,Cq. A particular linear combination of the two Friedmann’s equations
is proportional to the Schwarzian derivative tt� , tu, where t� :“ ≥t

0
dt

1
a

´2� and aptq is the scale
factor. Therefore General Relativity hides an underlying linearity at a cosmological level, where
symmetry requests lead to Friedmann-Lemâıtre-Robertson-Walker metric and consequently to
Friedmann’s equations. For a vanishing spatial curvature there exists an infinite number of
pairs of equivalent linear forms for Friedmann’s equations (one pair for each value of � P R).
For arbitrary curvature it turns out that Friedmann’s equations are equivalent to

O1{2 “ ⇤
12
 O1a “ ⇤

3
a

where O�p⇢, pq are Klein-Gordon space-independent operators depending only on energy den-
sity and pressure and ⇤ is the cosmological constant. The above pair of equations is the unique
possible linear form for arbitrary curvature and such a uniqueness selects the conformal time
⌘ ” t1{2 among all the t�s.

A generic solution for O1{2 “ ⇤
12 is  “ ?

a exp
´

˘i

?

2 ⌘ptq

¯
, with  the spatial curvature.

This is strongly reminiscent of WKB approximation in non-relativistic Quantum Mechanics.
We will heuristically derive the equation which leads to this approximation, solve it for some
simple expressions of aptq, find a wave function  ptq and discuss how  ptq ptq˚ can be related
to the evolution of the Universe. Although these simple expressions are not physically relevant,
we will use them as toy models to find exact solutions and to show how it is possible to elimi-
nate singularities in Universe’s evolution as given by  ptq ptq˚. The latter and other peculiar
behaviours suggest considering the existence of physical models manifesting quantum e↵ects
that are not expressed by Friedmann’s equations.

In questa tesi, seguendo [1, 2], riformuliamo le equazioni di Friedmann come una coppia di
equazioni di↵erenziali lineari al secon’ordine. Questo verrà fatto sfruttando tecniche associate
alla derivata Schwarziana e alla sua simmetria sotto PSLp2,Cq. Una speciale combinazione
lineare delle due equazioni di Friedmann è proporzionale alla derivata Schwarziana tt� , tu, dove
t� :“ ≥t

0
dt

1
a

´2� e aptq rappresenta il fattore di scala. Pertanto la Relatività Generale nasconde,
in un contesto cosmologico, una linearità sottostante, dove richieste di simmetria portano alla
metrica di Friedmann-Lemâıtre-Robertson-Walker e conseguentemente alle equazioni di Fried-
mann. Per una curvatura spaziale nulla, esiste un infinito numero di coppie di forme lineari
equivalenti delle equazioni di Friedmann (una coppia per ogni valore di � P R). Per una
curvatura arbitraria le equazioni di Friedmann sono equivalenti a

O1{2 “ ⇤
12
 O1a “ ⇤

3
a

dove gli O�p⇢, pq sono operatori di Klein-Gordon spazio-indipendenti che dipendono esclusiva-
mente dalla densità di energia e dalla pressione e ⇤ è la costante cosmologica. La coppia di
equazioni sopra riportata è l’unica forma lineare possibile nel caso di una curvatura arbitraria
e tale unicità selziona il tempo conforme ⌘ ” t1{2 tra tutti i t� .

Una generica soluzione di O1{2 “ ⇤
12 è  “ ?

a exp
´

˘i

?

2 ⌘ptq

¯
, con  la curvatura spaziale.

Questa soluzione ricorda fortemente l’approssimazione WKB in Meccanica Quantistica non
relativistica. Deriveremo euristicamente l’equazione da cui emerge tale approssimazione, ri-
solvendola per semplici espressioni di aptq, trovando una funzione d’onda  ptq e discutendo
come  ptq ptq˚ possa essere associata all’evoluzione dell’Universo. Nonostante queste semplici
espressioni non siano fisicamente rilevanti, le useremo come toy models per trovare soluzioni
esatte e per mostrare come sia possibile eliminare le singolarità nell’evoluzione dell’Universo
data da  ptq ptq˚. Quest’ultimo ed altri comportamenti peculiari suggeriscono di consid-
eare l’esistenza di modelli fisici manifestanti e↵etti quantistici, i quali non sono espressi dalle
equazioni di Friedmann.
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2 Friedmann-Lemâıtre-Robertson-Walker metric and derivation of Friedmann’s
equations 3
2.1 Energy-momentum tensor of a perfect fluid and cosmological constant . . . . . . . . 3
2.2 FLRW metric and Friedmann’s equations . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Red-shift relation and Conformal Time . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Linear form for Friedmann’s equations and Klein-Gordon space-independent
eigenvalues problems 13
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1 Introduction

Unlike other fundamental laws of nature, Einstein’s field equations [3]

Ricµ⌫ ´ 1

2
Rgµ⌫ ` ⇤gµ⌫ “ 8⇡GTµ⌫ (1.1)

are non linear. On the other hand, Quantum Mechanics (QM) is intrinsically linear. This innate di↵erence
makes General Relativity (GR) and QM hard to be described jointly by an unique theory. It is not certain
that gravity, as given by GR, should admit a quantum description at all. Nevertheless, we will focus on GR
when it is used to describe the observable Universe’s origin, its large-scale structures and dynamics. Some
intriguing similarities between QM and GR arise in fact at a cosmological level.

We will build a cosmological model which stands upon the cosmological principle, stating that the universe
must be spatially homogeneous and isotropic. We will not describe the Universe as maximally symmetric both
in space and time because it would be inconsistent with the presence of a non-vacuum energy source (section
2). Vacuum energy appears in (1.1) in the form of the cosmological constant ⇤, which plays a fundamental
role in this thesis. These symmetry requests lead to Friedmann-Lemâıtre-Robertson-Walker (FLRW) met-
ric, from which Friedmann’s equations emerge. In this cosmological context GR hides an underlying linearity.

Friedmann’s equations are a pair of ODEs for the scale factor aptq. One is linear (equation (2.39)) while the

other one is not (equation (2.36)), due to a term 

aptq2 and a term
´

9aptq
aptq

¯2
, where  P R is the spatial curvature.

We will firstly set  “ 0. In this special scenario, on account of the properties of the Schwarzian derivative
and its invariance under Möbius transformations (section 3.1), it turns out that Friedmann’s equations are
equivalent to an infinite number of Klein-Gordon space-independent eigenvalues problems [1]

ˆ
O� 0
0 O´�

˙
 �´� “ �2⇤

3
 �´� (1.2)

where � P R and O� is a Klein-Gordon space-independent operator (section 3.2). In fact, a special linear

combination of the two Friedmann’s equations is proportional to tt� , tu1, where t� :“ ≥
t

0 apt1q´2�dt1. If
one selects � “ 1

2 , they gets the conformal time ⌘ptq (section 2.3). In this case the curvature  ‰ 0 can be
absorbed by exponentiation (section 3.3). We will obtain then a unique linear form for arbitrary non-vanishing
curvature. Friedmann’s equations are then equivalent to [1]

O1{2 “ ⇤

12
 (1.3)

O1a “ ⇤

3
a (1.4)

These linear forms are analogous to a measurement problem, where the eigenvalue is the cosmological con-
stant. In the  Ñ 0 limit, we obtain (1.2) selecting � “ 1

2 . This shows that the � “ 1
2 case is a “privileged”

case and it surprisingly involves ⌘ptq among all the �-times.
A generic solution for (1.3) has the form [1]

 “ ?
a exp

ˆ
˘ i

2

?


ª
t

0

d⌧

ap⌧q

˙
(1.5)

1tfpzq, zu is the Schwarzian derivative of the holomorphic function f respect to the complex variable z (section 3.1).
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Using a „ 1
p
(valid for free-falling particles in a FLRW Universe, section 2.3) we get an expression analogous

to a QM WKB approximate wave function (section 4.1). We will find then the equation which leads to this
approximation [2] ˆ

d2

dt2
` 

4

1

a2

˙
 “ 0 (1.6)

We will discuss the meaning of  ptq ptq˚, showing its relation with Universe’s evolution, and solve (1.6) for
 , using two simple expressions for aptq. We will use them as toy models to obtain exact solutions for (1.6)
and discuss how singularities of the scale factor can be avoided if we express Universe’s evolution through
 ptq ptq˚. The latter and other peculiar behaviours suggest considering the existence of physical models
manifesting quantum e↵ects that are not expressed by Friedmann’s equations, which can be considered as
the quasi-classical limit of (1.6). Friedmann’s equations may be already characterized by quantum properties
due to their linear form and the analogy with quantum WKB.

Natural Units (NU) ~ “ c “ 1 are used throughout the whole article, except for section 4, where NU
are abandoned in those contexts where the dimensionality of c and/or ~ is needed. All the information
related to fundamental physical constants (such as ~ or c) has been taken from [4].
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2 Friedmann-Lemâıtre-Robertson-Walker metric and derivation of

Friedmann’s equations

In this first part of the thesis, we introduce Friedmann’s equations, their properties and the space-time metric
they are derived from, Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric (or simply Robertson-Walker
metric), referring to the procedure followed in [3], Chapter 8. We first need to build the energy-momentum
tensor of a perfect fluid to model an homogeneous and isotropic Universe (as it is done in [3], Chapters 1 and
4) and we need to justify the presence of the cosmological constant ⇤ in Einstein’s field equation ([3], Chapter
4). The cosmological constant will play a fundamental role later on. We will treat it as the eigenvalue of two
linear Klein-Gordon space-independent operators.

FLRW metric, from which Friedmann’s equations are derived, is deduced from the properties of homo-
geneity and isotropy and from the fact that the Universe has to be described as composed by matter, and not
only by vacuum energy. These symmetry requests lead to a cosmological model which hides a linear form,
despite the high non-linearity of Einstein’s field equation.

2.1 Energy-momentum tensor of a perfect fluid and cosmological constant

To derive Friedmann’s equations from Einstein’s field equations we need to use the expression of the energy-
momentum tensor of a perfect fluid. We want in fact to build a cosmological model relying on the cosmological
principle, stating that the Universe is homogeneous and isotropic. This is valid only for the spatial coordinates
though: we will see that the entire space-time cannot be described as perfectly symmetric. This request will
be then imposed only for the spatial part of the metric.
We treat the Universe as a perfect fluid described by two parameters, the rest-frame energy density ⇢ and the
isotropic rest-frame pressure p. Isotropy implies that Tµ⌫ is diagonal in the fluid’s rest-frame, furthermore
the three nonzero space-like components must all be equal. In addition, all the particles which compose the
fluid are at rest with respect to each other. Using these assumptions the energy-momentum tensor in the
fluid’s rest-frame is

Tµ⌫ “

¨

˚̊
˝

⇢ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

˛

‹‹‚ (2.1)

whose expression in an arbitrary frame is

Tµ⌫ “ p⇢` pqUµU⌫ ` pgµ⌫ (2.2)

where Uµ is the four-velocity of the fluid and g P T p0,2qM is the metric of the four-dimensional pseudo-
riemannian manifold M , which describes the space-time. We are using the convention in which the Lorenzian
metric gµ⌫ has signature p´ ` ``q.

Before deriving Friedmann’s equations we need to justify the presence of the cosmological constant ⇤ in
(1.1). Writing Einstein’s field equations as

Gµ⌫ “ Tµ⌫ (2.3)

one immediately sees a characteristic feature of General Relativity: the source for the curvature of space-
time is the entire energy-momentum tensor. This sounds unfamiliar if we think of classical or quantum
mechanics (or in general of non-gravitational physics), where only changes in energy from one configuration
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to another are measurable. This peculiar behaviour opens up the possibility of vacuum energy, a energy
density characteristic of empty space. One feature that the energy-momentum tensor associated to vacuum
energy needs to have is Lorentz invariance in locally inertial coordinates. When saying locally inertial
coordinates we rely on the following result ([3], Chapter 2).

Lemma 2.1. Let pM, gq be a pseudo-riemannian manifold. Then at any point p P M there exists a coordinate
system xµ̂ in which gµ̂⌫̂ takes its canonical form diagp´1,´1,´1, ...,`1,`1,`1, ...q and the first derivatives
B�̂gµ̂⌫̂ all vanish. Such coordinates are called locally inertial coordinates and the associated basis vectors!

B
Bx1̂ , ...,

B
Bxm̂

)
, where m “ dimM , constitute a local Lorentz frame.

It is also clear that if a metric takes a particular canonical form at a point p P M , this will be the canonical form
throughout the whole manifold. This is due to the non-degeneracy of the C8-bilinear map g : TM ˆTM Ñ R
associated to g P T p0,2qM2.
We know from special relativity that Minkowski metric ⌘µ̂⌫̂ “ diagp´1,`1,`1,`1q satisfies the following
relation

⇤µ̂

↵̂
⌘µ̂⌫̂⇤

⌫̂

�̂
“ ⌘

↵̂�̂
(2.4)

meaning Lorentz invariance in locally inertial coordinates of the metric tensor. Not only is ⌘µ̂⌫̂ Lorentz
invariant, but also it is the only p0, 2q tensor with this characteristic. We can thus deduce an expression for
the energy-momentum tensor associated to vacuum energy

T (vac)
µ̂⌫̂

“ ´⇢vac⌘µ̂⌫̂ (2.5)

This can be easily generalized from inertial coordinates to arbitrary coordinates as

T (vac)
µ⌫

“ ´⇢vacgµ⌫ (2.6)

T (vac)
µ⌫ is then proportional to the metric. Comparing this expression to the perfect-fluid energy-momentum

tensor (equation (2.2)), one deduces that the vacuum looks like a perfect fluid with an isotropic pressure
opposite in sign to the energy density (pvac “ ´⇢vac)3.
Decomposing the energy-momentum tensor that appears in (1.1) into the sum of a matter energy-momentum

tensor T pMq
µ⌫ and a vacuum energy-momentum tensor (equation (2.5)), Einstein’s field equations become

Ricµ⌫ ´ 1

2
Rgµ⌫ “ 8⇡G

´
T pMq
µ⌫

´ ⇢vacgµ⌫
¯

Ricµ⌫ ´ 1

2
Rgµ⌫ ` ⇤gµ⌫ “ 8⇡GT pMq

µ⌫
(2.7)

where ⇤ “ 8⇡G⇢vac is the cosmological constant. It is now clear the reason of the minus sign in the definition
of the energy-momentum tensor of vacuum energy (2.5). The terms “vacuum energy” and “cosmological
constant” are essentially interchangeable. Notice that the conservation of energy prµT qµ⌫ “ 0 is still valid.
To prove this we need to mention the second Bianchi identity ([5], Chapter 7), which can be written in
coordinates as

prRq⇠
�µ⌫

` pr⌫Rq⇠
�µ

` prµRq⇠
�⌫

“ 0 (2.8)

2
We are using that a tensor product vector space pV ˚qNb

is always homeomorphic to HompV Nb Ñ Rq. With V ˚
we intend

the dual vector space of V [5].
3
The vacuum energy density needs to be constant throughout spacetime.
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Using the relation prkRqµ
�µ⌫

“ prkRicq
�⌫
, one obtains the following identity by contracting the indices ⇠

and µ in (2.8)
prkRicq

�⌫
` prµRqµ

�⌫
´ pr⌫Ricq

�
“ 0 (2.9)

If the indices ⌫ and � are further contracted we have

rrµ pRId ´ 2Ricqsµ


“ 0 (2.10)

Raising the  index using the metric (remembering that r is the Levi-Civita connection, which means
rg “ 0), dividing both sides of equation (2.10) by two and rearranging the signs one gets

„
rµ

ˆ
Ric ´ 1

2
Rg

˙⇢µ⌫
“ 0 (2.11)

At the same time, since r is the Levi-Civita connection, prµgqµ⌫ “ 0. This implies

„
rµ

ˆ
Ric ´ 1

2
Rg ` ⇤g

˙⇢µ⌫
“ 0

The energy-momentum tensor is then automatically conserved, prµT qµ⌫ “ 0.

2.2 FLRW metric and Friedmann’s equations

In this section we build the metric we use to describe our cosmological model, from which we will derive the
equations which are the core of this article, Friedmann’s equations.
We will use the features we introduced before, like the energy momentum tensor Tµ⌫ of a perfect fluid and
the properties of homogeneity and isotropy. The formal definition of these concepts follows, together with
the definition of an isometry ([5], Chapter 7).

Definition 2.1. Let pM, gq be a pseudo-riemannian manifold. A di↵eomorphism � : M Ñ M is an isometry
if it preserves the metric

�˚g�ppq “ gp

in other words if
g�ppq p�˚X,�˚Y q “ gppX,Y q @X,Y P TpM, @p P M

Where �˚ : T p0,2q
�ppq M Ñ T p0,2q

p M is the pullback and �˚ : TpM Ñ T�ppqM is the pushforward. In coordinates:

By↵
Bxµ

By�
Bx⌫ g↵�p�ppqq “ gµ⌫ppq

where x, y are the coordinates of p and �ppq respectively.

Definition 2.2. A (pseudo-)riemannian manifold pM, gq is said to be isotropic in a neighborhood of p P M
if, for any two vectors X,Y P TpM , there exists an isometry � P Di↵pMq such that �˚pY q is parallel to Y .

Definition 2.3. A (pseudo-)riemannian manifold pM, gq is said to be homogeneous if, for any two points
p, q P M , there exists an isometry � P Di↵pMq that maps p into q.

We introduce the concept of Killing vector field, in order to define the idea of a maximally symmetric space-
time ([5], Chapter 7).
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Definition 2.4 (Killing vector field). Let pM, gq be a pseudo-riemannian manifold and X P XpMq. If a
displacement "X (" infinitesimal) generates an isometry, the vector field X is called a Killing vector field. If
f : xµ fiÑ xµ ` "Xµ is an isometry, it satisfies

B px ` "Xq
Bxµ

B
`
x� ` "X�

˘

Bx⌫ g� px ` "Xq “ gµ⌫pxq (2.12)

that is equivalent to the Killing equation

X⇠B⇠gµ⌫ ` BµXg⌫ ` B⌫X�gµ� “ 0 (2.13)

which can be written in a compact way using the Lie derivative of a p0, 2q tensor field

pLXgq
µ⌫

“ 0 (2.14)

Killing vector fields represent the direction of the symmetry of a manifold. In the m-dimensional Minkowski
space-time, there are m Killing vector fields generating translations, m´1 boosts and pm´1qpm´2q{2 space
rotations, for a total of mpm`1q{2. Such a space-time, with the maximum number of Killing vector fields, is
said to me maximally symmetric. Isotropy and homogeneity imply that a space-time is maximally symmetric.

We want to build a cosmological model which undergoes the cosmological principle, for which the Uni-
verse is homogeneous and isotropic. We will briefly analyze the case of a spacetime maximally symmetric
both in space and time, in order to introduce the more general case of a spacetime maximally symmetric
only in space, which is the physically relevant scenario.
It can be proved that the Riemann tensor for any maximally symmetric n-dimensional manifold can be
written, at any point, in any coordinate system, as ([3], Chapter 3)

R�⇠µ⌫ “  pg�µg⇠⌫ ´ g�⌫g⇠µq (2.15)

where

 “ R

npn ´ 1q (2.16)

The Ricci scalar R P C
8pMq will be a constant throughout the manifold, due to symmetry reasons. It is thus

clear that a maximally symmetric manifold is well characterized by the signature of the metric (in our case
p´ ` ``q) and by the value of , since the coordinates of the Riemann tensor are determined only by the
coordinates of the metric and by the Ricci scalar.
For  “ 0 we have the Minkowski space. The maximally symmetric space with positive curvature  ° 0
is called de Sitter space, whereas the maximally symmetric space with negative curvature  † 0 is called
anti-de Sitter space. The natural question is to verify if such a model can be a solution for Einstein’s field
equations. We start evaluating the Ricci tensor from (2.15).

Ricµ⌫ “ R↵
µ↵⌫

“ g↵�R�µ↵⌫ “ g↵� pg�↵gµ⌫ ´ g�⌫gµ↵q (2.17)

“ �↵
↵
gµ⌫ ´ �↵

⌫
gµ↵ “ 3gµ⌫

and the scalar curvature R “ 12. The Einstein tensor is then

Gµ⌫ “ Ricµ⌫ ´ 1

2
Rgµ⌫ “ ´3gµ⌫ (2.18)

6



This implies that the energy-momentum tensor needs to be proportional to the metric, which is the case of
vacuum energy-momentum tensor introduced in the previous section. Referring to equation (2.7) we deduce
the expression for the cosmological constant, assuming that a matter energy-momentum tensor cannot be

proportional to the metric (T pMq
µ⌫ needs to vanish)

⇤ “ 3 (2.19)

If ⇤ ° 0 we have de Sitter while if ⇤ † 0 we have anti-de Sitter. It is clear that a maximally symmetric
space-time cannot describe the real Universe, since we desire to take into account the presence of matter, in
particular we want to use the expression of the energy-momentum tensor of a perfect fluid. We will then
apply the cosmological principle only to spatial coordinates, assuming that the Universe is evolving in time.
Both de Sitter and anti-de Sitter spaces have the topology of RˆS3, where R represents the time coordinate.
We will therefore follow the same logic, considering the space-time to be R ˆ ⌃, where ⌃ is a homogeneous
and isotropic three-dimensional manifold. We can choose coordinates which make the metric diagonal

ds2 “ ´dt2 ` Rptq2d�2 (2.20)

where Rptq is known as scale factor, a function of time which represents the idea that the spatial part of the
metric (that is, at any time, maximally symmetric) is evolving. d�2 is the metric on ⌃ and we require it to
be maximally symmetric, and in particular spherically symmetric. We use the coordinates pu, ✓,�q, writing
a spherically symmetric three-dimensional metric in its most general form ([3], Chapter 5)

d�2 “ e2↵̄puqdu2 ` e2�̄puqu2
`
d✓2 ` sin2 ✓d�2

˘
(2.21)

where the exponentials e↵̄puq and e�̄puq have the function to preserve the signature of the metric, if we think
of d�2 as a generalization of the Euclidean metric, that is spherically symmetric. To simplify this expression,

we define a new radial coordinate r̄ “ e�̄puqu, so dr̄ “
´
1 ` ud�̄puq

du

¯
e�̄puqdu. Defining

e↵pr̄q “
ˆ
1 ` u

d�̄puq
du

˙
e↵̄puq´�̄puq (2.22)

(notice that u is a function of r̄) we can re-write d�2 as

d�2 “ e2↵pr̄qdr̄2 ` r̄2
`
d✓2 ` sin2 ✓d�2

˘
(2.23)

Computing the components of the Ricci tensor associated to the Levi-Civita connection of ⌃, one gets
p3qRic11 “ 2

r̄

B↵pr̄q
Br̄ , p3qRic22 “ e´2↵pr̄q

´
r̄ B↵pr̄q

Br̄ ´ 1
¯

` 1, p3qRic33 “
”
e´2↵pr̄q

´
r̄ B↵pr̄q

Br̄ ´ 1
¯

` 1
ı
sin2 ✓ and

p3qRicij “ 0 for i ‰ j. We put the superscript p3q to specify we are referring to the Ricci tensor associ-
ated to ⌃. Since we are assuming ⌃ to be maximally symmetric, its Riemann tensor satisfies relation (2.15).

We can easily compute the Ricci tensor p3qRicij “ 2kp3qgij , where k “ p3qR
3¨p3´1q “ p3qR

6 . We have

p3qg11 “ e2↵pr̄q

p3qRic11 “ 2kp3qg11

that is
2

r̄

B↵pr̄q
Br̄ “ 2ke2↵pr̄q (2.24)

7



Solving (2.24) for ↵pr̄q we get

↵pr̄q “ ´1

2
log

`
b ´ kr̄2

˘
(2.25)

where b is a real constant. We thus obtain

d�2 “ dr̄2

b ´ kr̄2
` r̄2

`
d✓2 ` sin2 ✓d�2

˘
(2.26)

For a flat space (k “ 0) we want to reproduce the Euclidean metric. We will then set b “ 1. The metric on
our space-time maximally symmetric in space but evolving in time can be written as

ds2 “ ´dt2 ` Rptq2
„

dr̄2

1 ´ kr̄2
` r̄2

`
d✓2 sin2 ✓d�2

˘⇢
(2.27)

that is the Robertson-Walker metric. It is common to normalize the curvature parameter so that k is either
+1, 0 and -1 for spatially closed, flat and open Universes, respectively. In this case the physical dimension of
ds2 is carried by the scale factor (rRptqs “ length) and the coordinate r̄ is dimensionless. We will work with
a dimensionless scale factor, dividing Rptq by the constant R0 ° 0

aptq :“ Rptq
R0

(2.28)

a coordinate with the dimensions of a distance

r :“ R0r̄ (2.29)

and a curvature parameter with the dimensions of lenght´2

 :“ k

R2
0

(2.30)

 can take any real value, it is only important to distinguish the cases of negative, positive and vanishing
curvature. In these new variables FLRW metric becomes

ds2 “ ´dt2 ` aptq2
„

dr2

1 ´ r2
` r2

`
d✓2 ` sin2 ✓d�2

˘⇢
(2.31)

Note that FLRW metric is invariant under the rescaling r fiÑ �r, aptq fiÑ aptq{� and  fiÑ {�2, with � P R a
positive dimensionless parameter. Let us compute the components of the Ricci tensor in these coordinates.
If M is the manifold decribing our spacetime and if rX : XpMq Ñ XpMq4 is the Levi-Civita connection of
M , Christo↵el symbols are ([5], Chapter 7)

�
µ⌫

“
"

µ⌫

*
“ 1

2
g� pBµg⌫� ` B⌫gµ� ´ B�gµ⌫q (2.32)

4XpMq is the set of all vector fields on M .
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They are determined only by the components of the metric. The non-zero Christo↵el symbols are

�011 “ a 9a
1 ´ r2

�111 “ r

1 ´ r2

�022 “ a 9ar2 �033 “ a 9ar2 sin2 ✓

�101 “ �202 “ �303 “ 9a
a

�122 “ ´rp1 ´ r2q �133 “ ´rp1 ´ r2q sin2 ✓

�212 “ �313 “ 1

r
�233 “ ´ sin ✓ cos ✓ �323 “ cot ✓

where px1, x2, x3, x4q “ pt, r, ✓,�q. The remaining Christo↵el symbols can be obtained from these by sym-
metry (since rX is torsionless, �

µ⌫
“ �

⌫µ
). We can deduce the components of the Riemann tensor ([5],

Chapter 7)
R

�µ⌫
“ Bµ�⌫� ´ B⌫�µ� ` �"

⌫�
�

µ"
´ �"

µ�
�
⌫"

(2.33)

and consequently the components of the Ricci tensor Ric�⌫ “ Rµ

�µ⌫
([5], Chapter 7), which, in these coordi-

nates, takes a diagonal form

Ric00 “ ´3:a
a

Ric11 “ a:a ` 2 9a2 ` 2

1 ´ r2

Ric22 “ r2pa:a ` 2 9a2 ` 2q
Ric33 “ r2pa:a ` 2 9a2 ` 2q sin2 ✓

The scalar curvature is therefore R “ Ricµ
µ

“ 6
”

:a
a

`
` 9a
a

˘2 ` 

a2

ı
.

We now use the form of the energy-momentum tensor of a perfect fluid built in the previous section. The
fluid is homogeneous and isotropic in its rest-frame. We expect that the fluid is at rest in the coordinates
in which the metric generated by it is spatially isotropic. Therefore, in the coordinates discussed above
Tµ⌫ “ diagp⇢, p, p, pq. We have, from Einstein’s field equations

Ric00 ´ 1

2
Rg00 ` ⇤g00 “ 8⇡GT00 “ 8⇡G⇢ (2.34)

Since g00 “ ´1, we obtain

´3:a
a

` 3

«
:a
a

`
ˆ

9a
a

˙2

` 

a2

�
´ ⇤ “ 8⇡G⇢ (2.35)

Rearranging it we deduce the expression for the first Friedmann’s equation
ˆ

9a
a

˙2

“ 1

3
p8⇡G⇢` ⇤q ´ 

a2
(2.36)

We now take the trace on both sides of Einstein’s field equations, using that gµ
µ

“ 4 and Tµ

µ
“ ´⇢` 3p

´R ` 2⇤ “ 4⇡Gp´⇢` 3pq (2.37)
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´6

«
:a
a

`
ˆ

9a
a

˙2

` 

a2

�
` 2⇤ “ 4⇡Gp´⇢` 3pq (2.38)

Substituting the term
` 9a
a

˘2 ` 

a2 using (2.36) we get the second Friedmann’s equation

:a
a

“ ´4⇡G

3
p⇢` 3pq ` ⇤

3
(2.39)

We obtained two ordinary di↵erential equations for the evolution of the dimensionless scale factor aptq.
Equation (2.39) is linear, whereas (2.36) is not. We will show in section 3 that Friedmann’s equations hide an
underlying linearity and can be formulated in the form of a pair of linear second-order di↵erential equations.

2.3 Red-shift relation and Conformal Time

Before analyzing the underlying linearity of Friedmann’s equations, we need to introduce some physical
consequences and properties of FLRW metric.
We will follow [6, 7, 8].
Let us begin with discussing the trajectory of a photon in General Relativity. Let xµpsq be the worldline of
a photon. The photon momentum is

Pµ “ dxµ

ds
(2.40)

Let us introduce the geodesic equation ([5], Chapter 7)

d2xµ

ds2
` �µ

↵�

dx↵

ds

dx�

ds
“ 0 (2.41)

or equivalently
dPµ

ds
“ ´�µ

↵�
P↵P � (2.42)

Photons travel along light-like geodesics, or null geodesics, such that

gµ⌫P
µP ⌫ “ 0 (2.43)

It is useful to consider a reparametrization of (2.31), using hyperspherical coordinates, as it is done in [7],
Chapter 27

ds2 “ ´dt2 ` aptq2
“
d�2 ` Sp�q2

`
d✓2 ` sin2 ✓d�2

˘‰
(2.44)

where � represent the new radial coordinate and Sp�q is such that

Sp�q “

$
’&

’%

?


´1
sin p�?

q  ° 0
�  “ 0a
||´1

sinh
´
�

a
||

¯
 † 0

(2.45)

Now imagine to be an observer at the origin (� “ 0) and to be looking in some direction p✓,�q at time t0. A
photon with energy Ei emitted somewhere in the Universe pti,�i, ✓,�q is travelling towards us. We want to

determine the energy E0 observed. Since the photon is moving radially, P ✓ “ P� “ 0, that is dP
✓

ds
“ dP

�

ds
“ 0.

The requirement for a null trajectory can be expressed as follows

´E2 ` a2 pP�q2 “ 0 (2.46)
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Using (2.41), we can find an expression for dE

ds
(imposing µ “ 0). Among �000, �

0
01 “ �010 (the Levi-Civita

connection is torsionless) and �011, the only non-zero Christo↵el symbol is �011 “ a 9a (referring to (2.44)).
We obtain

dE

ds
“ ´�011

ˆ
E

a

˙2

“ ´a 9a
ˆ
E

a

˙2

“ ´ 9a
a
E2 (2.47)

We also have
dE

ds
“ dE

dt

dt

ds
“ 9EP 0 “ E 9E (2.48)

that is
9E
E

“ ´ 9a
a

(2.49)

ñ d

dt
logpEq “ ´ d

dt
logpaq (2.50)

Solving this ODE we get

Eptq “ C

aptq (2.51)

where C P R. For massless particles E “ |~p|. We thus have p9 1
a
. Since the energy and the wavelength of a

photon are related according to the Planck relation E “ hc

�
, we have that, for every instant of time t, �9aptq.

This leads to the red-shift relation
�pt0q
apt0q “ �ptiq

aptiq
(2.52)

where �ptiq is the wavelength of the photon emitted and �pt0q is the wavelength of the photon observed. It
is conventional to define the red-shift z as

z :“ �pt0q ´ �ptiq
�ptiq

“ apt0q ´ aptiq
aptiq

(2.53)

If we normalize the “today” scale factor apt0q “ 1 we have

aptiq “ 1

1 ` z
(2.54)

The red-shift time relation zptq is simply another way to parameterize the expansion of the Universe. Red-
shift gives an experimental evidence of an expanding Universe. Furthermore, we can deduce p9a´1 from
FLRW metric and red-shift can be observed experimentally. This leads naturally to p9�´1. Planck relation
arises therefore also in a gravitational contest. It is immediate to generalize this result for massive particles,
as it is done in [8], Chapter 1. We will use the geodesic equation imposing µ “ 1. We get

d2�

ds2
“ ´�

ˆ
d�

ds

˙2

´ 2 9a
a

dt

ds

d�

ds
(2.55)

Without loss of generality, suppose we adopt a spatial coordinate system in which the particle position is
near the origin (� “ 0). Equation (2.55) becomes

d

dt

ˆ
d�

ds

˙
“ ´2 9a

a

d�

ds
(2.56)
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Which means dx
i

ds
9 1

aptq2 . Using the expression for the spatial momentum of a free-falling particle in General
Relativity

pm “ m

c
gij

dxi

ds

dxj

ds
(2.57)

we re-obtain pm9 1
aptq (we used g “ ´dt2 ` aptq2d�2, since we supposed � “ 0). By analogy we can asso-

ciate to a massive particle a wavelength which satisfies a red-shift relation, that is the de Broglie wavelength
�m “ h

pm
. Therefore, already in a gravitational context, without considering quantum aspects, even massive

particles are associated with a wavelength.

One more feature of FLRW metric is the relation between red-shift and distances. Let �i be the radial
coordinate of the photon when it was emitted. Since the photon trajectory is null, uµuµ “ 0, that is

´
`
u0

˘2 ` a2
`
u1

˘2 “ 0 (2.58)

We have uµ “ �
´
1, d�

dt
, 0, 0

¯
, which implies

d�

dt
“ u1

u0
“ ˘1

a
(2.59)

Since the photon is coming towards us we choose the minus solution. We thus have

�0 ´ �i “ ´
ª

t0

ti

dt

aptq (2.60)

We set �0 “ 0 since we are observing the incoming photon standing at the origin:

�i “
ª

t0

ti

dt

aptq (2.61)

The conformal time ⌘ptq is naturally defined as

⌘ptq :“
ª

t

0

dt1

apt1q (2.62)

where ti was set to 0 and t0 “ t. Equation (2.62) implies

9⌘ “ aptq´1 (2.63)

The conformal time plays a fundamental role in finding an unique equivalent linear expression for Friedmann’s
equations.
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3 Linear form for Friedmann’s equations and Klein-Gordon space-

independent eigenvalues problems

In this section we review the results in [1]. We rewrite (2.36) and (2.39) to obtain a second-order linear
di↵erential equation. We will firstly show that imposing a vanishing curvature leads to an infinite number of
equivalent linear forms for Friedmann’s equations. Secondly, we will show that for arbitrary non-vanishing
curvature, there exists a unique linear form, which involves the conformal time introduced in section 2.3. This
equivalent linear form is a space-independent Klein-Gordon eigenvalues problem and the relative eigenvalue
is the cosmological constant. Among all the infinite equivalent linear forms in the  “ 0 case, only one can
be interpreted as the  Ñ 0 limit of the unique linear form in the  ‰ 0 case. This means that among all the
equivalent linear forms, there is one that is “privileged” and it is peculiar how the conformal time is involved.
To begin we need to introduce some mathematical tools that are crucial to highlight the underlying linearity
of our cosmological model, such as the concepts of Schwarzian derivative and Möbius transformations, and
all the properties related to them. All the information regarding Möbius transformations is taken from [9].

3.1 Möbius transformations, PSLp2,Cq and Schwarzian derivative

We start this section introducing the concept of Möbius transformation.

Definition 3.1 (Möbius transformation). Let Ĉ “ C Y t8u. A Möbius transformation f : Ĉ Ñ Ĉ is a map

fpzq “ az ` b

cz ` d
(3.1)

where a, b, c, d P C and ac ´ bd ‰ 0.

The requirement for ad ´ bc ‰ 0 is to ensure all such transformations are invertible. If ad ´ bc was equal to
0, f would be the trivial map to a single point and it would not be injective. It is also clear that giving four
numbers a, b, c, d such that ad´ bc ‰ 0, we are not defining an unique Möbius transformation, since rescaling
them as pa, b, c, dq fiÑ �pa, b, c, dq, with � P C, would produce the same Möbius transformation. We can avoid
this non-uniqueness by requiring ad ´ bc “ 1. We define then the set MöbpĈq as

MöbpĈq “
!
f : Ĉ Ñ Ĉ|f is a Möbius transformation and ad ´ bc “ 1

)
(3.2)

We still have the ambiguity given by the choice of the sign (by mapping pa, b, c, dq fiÑ p´a,´b,´c,´dq we
obtain the same transformation).

A list of results regarding Möbius transformations follows.

Proposition 3.1. MöbpĈq forms a group under composition of functions.

This result highlights the analogy that stands between MöbpĈq and SLp2,Cq (the sub-group of GLp2,Cq such
that the determinant of its elements is 1). The composition between two elements of MöbpĈq is analogous
to matrix multiplication, the inverse element is associated to the inverse matrix (this is possible because
ad ´ bc ‰ 0) and the identity element is associated to diagp1, 1q. We in fact have the following result.

Theorem 3.2. � : SLp2,Cq Ñ MöbpĈq defined by

� :

ˆ
a b
c d

˙
Ñ f : z fiÑ az ` b

cz ` d
(3.3)
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is a group homomorphims.

We said that an element of MöbpĈq is not uniquely defined by four coe�cients a, b, c, d such that ad´ bc “ 1,
because we can map a, b, c, d to ´a,´b,´c,´d, obtaining the same transformation. It is natural then to
define the equivalence relation „ which identifies two elements of SLp2,Cq which di↵er by a minus sign. This
concept can be expressed through the following theorem.

Theorem 3.3. MöbpĈq – SLp2,Cq{ „
We define PSLp2,Cq :“ SLp2,Cq{ „, which stands for projective special linear group.
Next step is to define the Schwarzian derivative, making immediately clear the strong relation between the
latter and Möbius transformations [1].

Definition 3.2 (Schwarzian Derivative). Let f : C Ñ C be a holomorphic function such that f 1 does not
vanish identically. The Schwarzian derivative of f at z P C is defined as

Sfpzq “ tf, zu “ f3pzq
f 1pzq ´ 3

2

ˆ
f2pzq
f 1pzq

˙2

(3.4)

Proposition 3.4. Let f : C Ñ C be a holomorphic function and let f˚ its transformed via Möbius trans-
formation. Then

tf, zu “ tf˚, zu (3.5)

This means that the Schwarzian derivative is invariant under Möbius transformations.

The proof follows by direct computation of the first, second and third derivatives of f˚ “ af`b

cf`d
, together

with tf˚, zu.

We end this mathematics section by enunciating the chain rule for Schwarzian derivatives. This will be
useful to obtain a special unique linear form for Friedmann’s equations for  ‰ 0.

Proposition 3.5 (Chain rule). Let f : C Ñ C be a holomorphic function of y such that f 1 does not vanish
identically. Then the identity (3.6) follows

tf, xu “
ˆ By

Bx

˙2

tf, yu ` ty, xu (3.6)

where x P C is a complex variable.

The proof is trivial. One can use the chain rule for ordinary derivatives and compute directly tf, xu.

3.2 Friedmann’s equations and Schwarzian derivative: an infinite number of

equivalent eigenvalues problems for vanishing curvature

We use in this section the properties of the Schwarzian derivative and of PSLp2,Cq in order to obtain, impos-
ing  “ 0, an infinite number of space-independent Klein-Gordon eigenvalues problems, two for each value
of a real parameter we call �, completely equivalent to Friedmann’s equations, as it is discussed in [1].

Let us take the following linear combination of the left-hand side of the two Friedmann’s equations

X�paq :“ :a
a

` p� ´ 1q
ˆ

9a
a

˙2

(3.7)
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where � is a real parameter.
Our investigation naturally leads to introduce �-time as follows

9t� “ a
1

�p�q (3.8)

where �p�q is a function of �. t� is a generalization of the concept of conformal time. We are imposing
the time derivative of t� to be a power of the scale factor. This choice is justified by the fact that the time
derivative of ⌘ is in fact a power of the scale factor. Let us rewrite (3.7) in terms of t� . We have

9a “ �p�q
` 9t�

˘�p�q´1 :t�

and
:a “ �p�q

”
p�p�q ´ 1q

` 9t�
˘�p�q´2 :t2

�
`

` 9t�
˘�p�q´1 ;t�

ı

Dividing each expression by a “
` 9t�

˘�p�q
and plugging them into (3.7) we get

X� “ �p�q
«

;t�
9t�

`
ˆ :t�

9t�

˙2

p��p�q ´ 1q
�

Now note that by setting ��p�q´1 “ ´3
2 the expression in square brackets becomes the Schwarzian derivative

of t� respect to t. We thus have �p�q “ ´ 1
2� and we can write

X� “ ´ 1

2�
tt� , tu

that is
:a
a

` p� ´ 1q
ˆ

9a
a

˙2

“ ´ 1

2�
tt� , tu (3.9)

The relation between �-time and the scale factor becomes

9t� “ a´2� (3.10)

Let us now consider the expression

9t
1
2
�

d

dt
9t´1
�

d

dt

´
9t
1
2
�
��

¯
(3.11)

where �� is a smooth function of t. We have

9t
1
2
�

ˆ
´3

4
9t´ 5

2
�

:t2
�

` 1

2
9t´ 3

2
�

;t� ` 9t´ 1
2

�

d2

dt2

˙
�� “

˜
1

2

;t�
9t�

´ 3

4

ˆ :t�
9t�

˙2

` d2

dt2

¸
��

Equation (3.11) is then completely equivalent to
ˆ

d2

dt2
` 1

2
tt� , tu

˙
�� (3.12)

We define the linear operator A� :“
´

d
2

dt2
` 1

2tt� , tu
¯
. It is evident that, considering the vector space

A
 � , D

�

E
where  � “ 9t´ 1

2
�

“ a� and  D

�
“ 9t´ 1

2
�

t� “ a�t� , it is the kernel of the linear operator A�

(this directly follows from the equivalence between (3.11) and (3.12)). Therefore we have

kerA� “
@
 � , 

D

�

D
“

@
a� , a�t�

D
(3.13)
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Let us stress that solving Friedmann’s equations is equivalent to finding an expression for t� , since t� “≥
t

0 apt1q´2�dt1. Taking a look at (3.13) we find an immediate way to obtain t� from the two linearly independent
solutions of the problem A��� “ 0 (where �� P C

8pRq)

t� “  D

�

 �
“ a�t�

a�
(3.14)

We use a pair of generic linearly independent solutions of the problem A��� “ 0 in order to solve Friedmann’s
equations, and not necessarily  D

�
and  � . An arbitrary linear combination of  D

�
and  � is a solution of

A��� “ 0. Let us define  D
1

�
and  1

�
such that

ˆ
 D

1
�

 1
�

˙
“

ˆ
A B
C D

˙ ˆ
 D

�

 �

˙
(3.15)

assuming AD ´ BC ‰ 0 (we require  1
�
and  D

1
�

to be linearly independent). We now have

 D
1

�

 1
�

“ At� ` B

Ct� ` D
“ t1

�
(3.16)

which is the Möbius transformation of t� . By computing the ratio between two arbitrary linearly independent
solutions of A��� “ 0 one gets an expression that is the Möbius transformation of t� with some A,B,C,D
which we suppose to be real and require that AD ´ BC ‰ 0.
When we introduced the concept of Schwarzian derivative, we proved that it is invariant under Möbius
transformations. If we map t� fiÑ t1

�
via Möbius transformation, the time derivative of t1

�
is

9t1
�

“ A 9t�pCt� ` Dq ´ pAt� ` BqC 9t�
pCt� ` Dq2 “ pAD ´ BCq

9t�
pCt� ` Dq2 (3.17)

Since we supposed AD ´ BC ‰ 0, we can write the transformed scale factor as

a1 “
` 9t1
�

˘´ 1
2� “ pAD ´ BCqpCt� ` Dq 1

� a (3.18)

X� is proportional to the Schwarzian derivative of t� (X� “ ´ 1
2� tt� , tu) and the Schwarzian derivative is

invariant under Möbius transformations. We thus have

X�paq “ X�pa1q “ 4⇡G

3
p⇢` 3pq ` ⇤

3
` 1

3
p� ´ 1q p8⇡G⇢` ⇤q ´ 

a2
(3.19)

The last obstacle to obtain a linear form for the two Fridemann’s equations is the presence of the term ´ 

a2

in equation (3.19). We then impose a vanishing curvature,  “ 0. In this case, we would obtain an expression
for the scale factor directly by solving A��� “ 0, finding two arbitrary linearly independent solutions and
computing their ratio. This would lead to a generic Möbius transformation of t� , but since X� is invariant
under Möbius transformations and the right-hand side of equation (3.19) does not contain the scale factor
(because  “ 0), by computing

aptq “
«
d

dt

˜
 D

1
�

 
1
�

¸�´ 1
2�

(3.20)
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where  D
1

�
and  1

�
are two arbitrary linearly independent solutions for A��� “ 0, we would get an aptq

satisfying the two Friedmann’s equations.

Let us now rewrite more explicitly the reformulation of the problem in the linear form, remembering we
imposed a vanishing curvature.

A��� “ 0

ñ
ˆ

d2

dt2
` 1

2
tt� , tu

˙
�� “ 0

Since tt� , tu “ ´2�X� we have
ˆ

d2

dt2
´ �X�

˙
�� “

ˆ
d2

dt2
´ �

4⇡G

3
p⇢` 3pq ´ �

⇤

3
´ �

3
p� ´ 1q p8⇡G⇢` ⇤q

˙
�� “ 0

ñ
ˆ

d2

dt2
´ 4

3
⇡G�p⇢` 3pq ` 8

3
⇡�G⇢p1 ´ �q ´ �2

3
⇤

˙
�� “ 0 (3.21)

We want to group everything that contains the cosmological constant in the right-hand side the equation
(3.21). Defining

O� “ d2

dt2
´ 4

3
⇡G�p⇢` 3pq ` 8

3
⇡�G⇢p1 ´ �q (3.22)

which is a Klein-Gordon space-independent linear operator, we obtain the following eigenvalues problem,
analogous to the couple of Friedmann’s equations

O��� “ �2⇤

3
�� (3.23)

Let us now consider

 ↵� :“

¨

˚̊
˝

a↵

a↵t↵
a�

a�t�

˛

‹‹‚ (3.24)

with ↵ ‰ � ‰ 0. We said that the couple
 
a� , a�t�

(
consists of two linearly independent solutions of (3.23).

We can thus replace each couple of functions for both ↵ and � in  ↵� with an arbitrary linear combination
of the two. Because of this last idea, together with the fact that for every ↵,� (↵ ‰ � ‰ 0) X↵ and X� are
linearly independent, we can write a generic canonical linear form for Friedmann’s equations as

ˆ
O↵ 0
0 O�

˙
 ↵� “ ⇤

3

ˆ
↵2 0
0 �2

˙
 ↵� (3.25)

By taking a look at equation (3.23), we notice that for every �, there exists a solution �´� which has the
same eigenvalue (in fact, by mapping � fiÑ ´�, the term �2 ⇤

3 remains the same). We can thus group all the
set of canonical linear forms for Friedmann’s equations in the following eigenvalues problem

ˆ
O� 0
0 O´�

˙
 �´� “ �2⇤

3
 �´� (3.26)

The above shows that, in case of flat space, there exists an infinite number of equivalent linear forms for
Friedmann’s equations. Next step is to use the chain rule for the Schwarzian derivative and select a particular
value of � (selecting the conformal time) in order to absorb the curvature and find a linear form for any value
of  ‰ 0.
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3.3 Selecting the conformal time (� “ 1

2
) and unique linear form for Friedmann’s

equations for arbitrary curvature

The goal for this section is to find an unique linear form for Fridmann’s equations for arbitrary curvature, as
it is discussed in [1].
Let us start from a direct consequence of the chain rule for the Schwarzian derivative (equation (3.6)), which
involves the conformal time

⌘ptq ” t 1
2

“
ª

t

0
apt1q´1dt1

We in fact have5 !
e˘i

?
⌘, t

)
“ 9⌘2

!
e˘i

?
⌘, ⌘

)
` t⌘, tu “ 

2
9⌘2 ` t⌘, tu (3.27)

We proved in section 3.2 that X� “ ´ 1
2� tt� , tu. Setting � “ 1

2 one gets

X 1
2

“ :a
a

´ 1

2

ˆ
9a
a

˙2

“ ´t⌘, tu (3.28)

that is, using (2.36) and (2.39)

´4⇡G

3
p2⇢` 3pq ` ⇤

6
` 

2a2
“ ´t⌘, tu (3.29)

Note that a´2 “ 9⌘2. It is then possible to express the Schwarzian derivative of the conformal time as

t⌘, tu “ 4⇡G

3
p2⇢` 3pq ´ ⇤

6
´ 

2
9⌘2 (3.30)

We can plug this result into (3.27) obtaining

!
ei

?
⌘, t

)
“ 4⇡G

3
p2⇢` 3pq ´ ⇤

6
(3.31)

We want to find a solution for the Schwarzian equation (3.31) in order to get e˘i
?
⌘. To obtain the conformal

time we just need to take the natural logarithm of that solution. We find then an expression for the scale
factor by computing aptq “ 9⌘´1.
To solve the Schwarzian equation we will write an equivalent second-order eigenvalues problem, as we did in
the previous section. Instead of considering t� (or in this case ⌘), we will consider ⌘ fiÑ fp⌘q “ e˘i

?
⌘. Let

us examine the analogous of (3.11), for which there stands the following identity

9fp⌘q d

dt
9fp⌘q´1 d

dt

´
9fp⌘q 1

2�
¯

“
ˆ

d2

dt2
` 1

2
tfp⌘q, tu

˙
� (3.32)

where � is a smooth function of t. We showed in section 3.2 that a basis for the kernel of the operator

in round brackets is
 
 , D

(
“

!
9fp⌘q´ 1

2 , 9fp⌘q´ 1
2 fp⌘q

)
, and by computing the ratio  

D

 
(or, on account

of the invariance under Möbius transformations, the ratio between two arbitrary linear combinations of  
and  D that are linearly independent) one obtains fp⌘q “ e˘i

?
⌘ or an arbitrary Möbius transformation of

fp⌘q. Since the Schwarian derivative is invariant under Möbius transformations, if fp⌘q is a solution for the

5 d
d⌘ e

˘i
?
⌘ “ ˘i

?
e˘i

?
⌘

;
d2

d⌘2 e
˘i

?
⌘ “ ´e˘i

?
⌘

;
d3

d⌘3 e
˘i

?
⌘ “ ¯i

?
e˘i

?
⌘

; so

!
e˘i

?
⌘ , ⌘

)
“ 

2 .
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Schwarzian equation (3.31), also f 1p⌘q “ Afp⌘q`B

Cfp⌘q`D
is a solution.

The above analysis leads to the following equivalent linear form for Friedmann’s equation

„
d2

dt2
` 2⇡G

3
p2⇢` 3pq

⇢
� “ ⇤

12
� (3.33)

which is just the rewrite of (3.32). Equation (3.33) is a Klein-Gordon space-independent eigenvalues problem,
where � is the eigenvector and the cosmological constant ⇤ (which is a synonym for vacuum energy) is the
eigenvalue, with a geometric multiplicity equal to two (because (3.33) is a second order linear di↵erential
equation). There are two interesting consequences of (3.33). The first one is that, to absorb the curvature 
(which we had to impose equal to 0 to obtain a linear form for Friedmann’s equations for arbitrary �-time),
we needed to consider the conformal time, which is, among all �-times, the only one physically relevant.
We would not have obtained a linear form for arbitrary curvature by considering an arbitrary �-time. This
directly descends from the fact that a´1 “ 9⌘, implying that the Schwarzian derivative respect to time of fp⌘q
does not depend on the curvature. We thus obtained an unique linear form for Friedmann’s equations for
arbitrary non-vanishing curvature. It is peculiar that this unique linear form selects ⌘ among all the �-times.
The second interesting consequence is that solving Friedmann’s equations is completely equivalent to finding
the eigenvalue for (3.33), which is ⇤. Solving Friedmann’s equations is then basically the same as finding a
value for the vacuum energy of the Universe.

Let us now write an explicit form for  and  D, the two linearly independent solutions for (3.33).

 “ 9fp⌘q´ 1
2 “

“
´ 9⌘ exp

`
˘i

?
⌘

˘‰´ 1
2

 D “ 9fp⌘q´ 1
2 fp⌘q “

“
´ 9⌘ exp

`
˘i

?
⌘

˘‰´ 1
2 exp

`
˘i

?
⌘

˘

Dividing both  and  D by p´q´ 1
2 we get (since 9⌘ “ a´1)

 “ ?
a exp

ˆ
¯ i

2

?


ª
t

0

d⌧

ap⌧q

˙
(3.34)

 D “ ?
a exp

ˆ
˘ i

2

?


ª
t

0

d⌧

ap⌧q

˙
(3.35)

Let us now consider the wave function  “ ?
ae

i
2

?
⌘, that is a solution for (3.33). For  • 0, we have

a “ | |2.
Equation (2.39) is already written in a linear form, that is

„
d2

dt2
` 4⇡G

3
p⇢` 3pq

⇢
a “ ⇤

3
a (3.36)

Recalling the expression of the Klein-Gordon operator O� (equation (3.22)) we can finally deduce the wanted
unique linear form for Friedmann’s equations, writing a couple of Klein-Gordon space-independent eigenvalues
problems, which resemble of two measurement problems

O1{2 “ ⇤

12
 (3.37)
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O1a “ ⇤

3
a (3.38)

To conclude this section we take a look at the expression of the two linearly independent solutions for (3.33).
We said in the previous chapter, when we introduced the red-shift relation, that for a free falling particle
the momentum is inversely proportional to the scale factor. If we substitute a “ C

p
into equation (3.34) (or

equivalently (3.35)) we obtain, omitting multiplicative constants

 “ 1?
p
exp

ˆ
˘ i

2

?


ª
t

0
pp⌧qd⌧

˙
(3.39)

which is interestingly analogous to theWKB approximation of 1D solutions for the time-independent Schrödinger
equation. We will analyze deeply the WKB approximation in section 4, discussing this strong and interesting
analogy.

Let us discuss briefly the  Ñ 0 limit. We proved in the previous section that for vanishing curvature
Friedmann’s equations are equivalent to

O� � “ �2⇤

3
 � (3.40)

and two linearly independent solutions are  D

�
“ a�t� and  � “ a� . Imposing � “ 1

2 , one selects the
conformal time among all �-times and equation (3.40) becomes equation (3.37). Furthermore  1{2 “ ?

a and
 D

1{2 “ ?
a⌘.

Note that  and  D in the  ‰ 0 case (equations (3.34) and (3.35)) are not linearly independent in the  Ñ 0
limit, in fact

lim
Ñ0

 “ lim
Ñ0

 D “ ?
a

which is  1{2. Note that ⌘ may depend on . We supposed the exponent in (3.34) and (3.35) to be small
for small values of  (meaning that

?
⌘ becomes 0 in the  Ñ 0 limit). To get the expression of  D

1{2 we

proceed considering fp⌘q defined above. We know that  “ 9fp⌘q´ 1
2 and  D “ 9fp⌘q´ 1

2 fp⌘q. Expanding for
small exponents we obtain

 “ p´q´ 1
2

?
a ˘ i

⌘

2

?
a ` O

`?
⌘

˘

 D “ p´q´ 1
2

?
a ¯ i

⌘

2

?
a ` O

`?
⌘

˘

We can thus get  D

1{2 as follows

 D

1{2 “ lim
Ñ0

p´iq r ´  Ds “ ?
a⌘ (3.41)

The above shows that the linear form (3.37) is valid for arbitrary curvature (positive, negative or vanishing).
In fact, if one selects � “ 1

2 in the  “ 0 case, the latter can be seen as the  Ñ 0 limit of the  ‰ 0 case.
We can conclude that there is a particular linear form in the  “ 0 that is “privileged” and it involves the
conformal time.
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4 WKB approximation and Universe as a quantum state

We will introduce the WKB method in order to proceed discussing the analogy that stands between the two
linearly independent solutions of (3.37) and the semi-classical approximate solutions of the 1D stationary
Schrödinger equation, as discussed in [2]. We will firstly introduce the Old Quantum Theory, the Bohr-
Sommerfeld condition and the Maslov condition in order to justify the guess we will adopt for the approximate
semi-classical eigenstates for the Hamiltionian Ĥ. We will follow the procedure described in [10], Chapter 15,
except for the last part of section 4.1 (the WKB approximation around turning points), that is taken from
[11], Chapter VII.
Each of the two linearly independent solutions of (3.37) can be seen as approximate solutions. Following [2],
we will heuristically find the equation this approximation come from and solve it for some simple expressions
of the scale factor, finding a wave function  ptq and discussing how it can be related to Universe’s evolution.
aptq can be in fact seen as a semi-classical approximation for  ptq ptq˚. We will solve Friedmann’s equations in
some simple cases, finding aptq and then using it to determine  ptq, developing a recursive method. Although
these simple cases are not physically relevant, we are using them as toy models to find exact solutions and to
show how we can eliminate singularities in Universe’s evolution as given by  ptq ptq˚. The latter and other
peculiar behaviours suggest considering the existence of physical models manifesting quantum e↵ects that
are not expressed by Friedmann’s equations, which may be already characterized by quantum properties due
to their linear form and the analogy with quantum WKB.

4.1 The Old Quantum Theory and semi-classical approximation

Let us consider a particle in one-dimension (with one degree of freedom) and let C be a level set in phase
space of the classical Hamiltonian Hpx, pq P C

8pR2q

C “
 

px, pq P R2|Hpx, pq “ E
(

(4.1)

which we assume to be a closed curve. We imagine now to “draw” a wave on C. Following the de Broglie
hypothesis we postulate that the local frequency kpxq of the wave as a function of x is ppxq

~ . The wave itself
can be expressed as

cos

ˆ
1

~

ª
x

x0

pdx ´ �

˙
(4.2)

where x0 is an arbitrary starting point on the curve and � is an arbitrary phase. In the round brackets we
are integrating the 1-form 1

~pdx on the di↵erentiable manifold C. The Bohr-Sommerfeld condition is the
requirement that the wave is periodic on the curve, which can be expressed as

1

~

¿

C

pdx “ 2⇡n n P Z (4.3)

The energy levels in the old quantum theory were taken to be those real numbers E for which the corre-
sponding level curve C satisfies the Bohr-Sommerfeld condition. The Bohr-Sommerfeld quantization has the
success to predict the energy levels of the hydrogen atom, but it fails when we desire to predict the energy
levels of more complex systems. For systems with one degree of freedom we need to modify (4.3) introducing
the Maslov correction

1

~

¿

C

pdx “ 2⇡

ˆ
n ` 1

2

˙
n P Z (4.4)
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Maslov correction will be justified in a quasi-classical contest, in particular analyzing the semi-classical
approximation around the turning points. Referring to Green’s theorem
(
∂
C
pdx “ ≥

B

Bp
Bpdxdp “ ≥

B
dxdp, where BB “ C), we can rewrite (4.4) as

1

2⇡~S “ n ` 1

2
(4.5)

where S is the area enclosed by C. The Maslov condition does not (in most cases) give the exact energy levels,
but it predicts only the leading-order in quasi-classical approximations. Notice that S has the dimension of
an action (energyˆtime). What we are doing is quantizing the action of a particle moving along a closed curve.

We are interested in finding approximate solutions of the time-independent Schrödinger equation

´ ~2
2m

d2 

dx2
` pV pxq ´ Eq “ 0 (4.6)

for small values of ~. We analyze the behaviour of those approximate solutions in three di↵erent cases, the
classical allowed region (V pxq ° E), the classical forbidden region (V pxq † E) and the classical turning
points (when V pxq “ E).

Let us consider the classically allowed region. Given a potential V pxq and an energy level E we can solve for
the momentum as a function of x, arbitrarily choosing the plus sign

ppxq “
a
2mpE ´ V pxqq (4.7)

We are looking for approximate solutions of the form

 pxq “ Apxq exp
ˆ

˘i
Spxq
~

˙
(4.8)

where Apxq is a smooth function and Spxq :“ ≥
x

x0
ppyqdy, just like we did for the Old Quantum Theory. We

choose Apxq to be independent of ~. Our first result is to show that for any E P R for which there is a classical
allowed region and for any non-zero function Apxq P C

8pRq we can build an approximate eigenvector of the

Hamiltonian Ĥ “ ´ ~2

2m
d
2

dx2 ` V pxq.
Proposition 4.1. For any E1, E2 P R with E1 ° infxPR V pxq there exists a constant C and a non-zero
function A P C8pRq such that, for every E P rE1, E2s, the support of A is contained in the classically allowed
region at energy E and the function  given by

 pxq “ Apxq exp
ˆ

˘ i

~

ª
x

x0

ppyqdy
˙

(4.9)

satisfies
}Ĥ ´ E } § C~ } } (4.10)

Proof. For any E P rE1, E2s, the classically allowed region for E contains the classically allowed region for
E1. We choose then Apxq as a non-zero element of C8pRq with support in the classically allowed region for
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E1.
We compute Ĥ ´ E by direct calculation. We have

d 

dx
“

ˆ
A1pxq ˘ i

~ppxqApxq
˙
exp

ˆ
˘ i

~

ª
x

x0

ppyqdy
˙

d2 

dx2
“

ˆ
A2pxq ˘ 2i

~ ppxqA1pxq ˘ i

~p
1pxqApxq ´ 1

~2 ppxq2Apxq
˙
exp

ˆ
˘ i

~

ª
x

x0

ppyqdy
˙

Since ppxq2 “ 2mpV pxq ´ Eq, focusing on the term ´ 1
~2 ppxq2Apxq exp p. . . q , it cancels out with the term

pV pxq ´ Eq in the calculation of Ĥ ´ E , in fact

´ ~2
2m

ˆ
´ 1

~2

˙
ppxq2 pxq ´ V pxq pxq ` E pxq “ V pxq pxq ´ E pxq ´ V pxq pxq ` E pxq “ 0

We thus have

Ĥ ´ E “ ´ ~2
2m

ˆ
A2pxq ˘ 2i

~ ppxqA1pxq ˘ i

~p
1pxqApxq

˙
exp

ˆ
˘ i

~

ª
x

x0

ppyqdy
˙

(4.11)

Recalling the triangle inequality for the L2 norm } ¨ } we have

}Ĥ ´ E } § ~2
2m

}A2} ` ~
2m

}2A1p ` Ap1} (4.12)

Since } } is independent of ~, the right-hand side of (4.12) is of order ~. It is easy to check that }2A1p`Ap1}
is a bounded function of E in the interval rE1, E2s, so the result follows.

Using the result from proposition 4.1 it is immediate to prove that for any E P rE1, E2s there exists Ẽ element
of the spectrum of the Hamiltonian Ĥ such that

|E ´ Ẽ| § C~ (4.13)

If we assume V pxq Ñ `8 as x Ñ ˘8, Ĥ will have a discrete spectrum and Ẽ will be an eigenvalue of Ĥ.
The conclusion for such potentials is this: given any real number E P rE1, E2s, there is an eigenvalue of Ĥ
within C~ of E. This is a manifestation of the classical limit: the quantum energy spectrum is approximating
the classical energy spectrum as ~ goes to zero.

Let us now consider a potential V pxq with the properties described above. For any E P rE1, E2s there
are at least two points apEq, bpEq (apEq † bpEq) for which V paq “ V pbq “ E (we will also assume that the
derivative of V is nonzero at apEq and bpEq for all E P rE1, E2s). Let us consider apEq and bpEq to be such
that, for any cpEq which satisfies V pcpEqq “ E, cpEq R rapEq, bpEqs. We refer to apEq and bpEq as turning
points, since these are the points where a classical particle with energy E changes direction. We want to
build the function Apxq for both the classical allowed region and the classical forbidden region, giving it a
physical interpretation.

Let us start with analyzing the approximate solution in the classical allowed region. Since we want to
obtain a solution with an error smaller than ~, we require that the second and the third term in the round
brackets in (4.11) cancel. This means

2ppxqA1pxq “ ´p1pxqApxq (4.14)
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that is
Apxq “ C pppxqq´ 1

2 (4.15)

If Apxq satisfies (4.15) we have

Ĥ ´ E “ ´ ~2
2m

A2pxq
Apxq  pxq (4.16)

indicating that our error is of order ~2. This applies only for the classical allowed region. Moreover, the
classical momentum ppxq goes to zero as x Ñ a, b, which means that Apxq is unbounded around the classical
turning points. We will solve this complication later on. For now, we want to conclude with the following
physical analysis of the semi-classical approximate solution in the classical allowed region far from turning
points.
We said that this solution takes the form

 pxq “ Ca
ppxq exp

ˆ
˘ i

~

ª
x

x0

ppyqdy
˙

(4.17)

We will refer to (4.17) as oscillating WKB function or quasi-classical solution for Schrödinger equation. The
solution will be in general a linear combination of two exponentials, one with ` at the exponent and one
with ´. Referring to the Born postulate, the probability density function P related to the wave function  

is Ppxq “ | pxq|2
} pxq}2 . We have that Ppxq is such that

Ppxq9 1

ppxq (4.18)

or equivalently

Ppxq9 1

vpxq (4.19)

where vpxq is the classical velocity of the particle. Let us consider rc, ds Ä rapEq, bpEqs. The probability to
find the particle in rc, ds is proportional to the following integral

ª
d

c

dx

vpxq (4.20)

Let xptq be the classical trajectory of the particle. Let tc and td be such that xptcq “ c and xptdq “ d. We
can rewrite (4.20) as ª

td

tc

vpxptqq
vpxptqqdt “

ª
td

tc

dt “ td ´ tc “ �tcd (4.21)

The conclusion is that the probability of finding a particle described by the WKB approximation in the
interval rc, ds contained in the classical allowed region is proportional to the time that the particle spends in
rc, ds. We will refer to this concept as quasi-classical probability.

We will briefly discuss the case of the classical forbidden region. We expect that the solution will be damped
and asymptotically vanishing. Let us introduce the quantity

qpxq :“
a
2m pV pxq ´ Eq (4.22)
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We look then for an approximate solution of the time-independent 1D Schrödinger equation of the form

 pxq “ Apxq exp
ˆ

˘1

~

ª
x

x0

qpyqdy
˙

(4.23)

We obtain an expression that has to be satisfied by Apxq similarly to what we got for the classical allowed
region

Apxq “ C pqpxqq´ 1
2 (4.24)

We want a solution in L2pRq, so we choose the minus sign at the exponent for the solution in pb,`8q and
the plus sign for the solution in p´8, aq (we are again analyzing the solution far from turning points). We
have

 pxq “ C1a
qpxq exp

ˆ
´1

~

ª
a

x

qpyqdy
˙

x P p´8, aq (4.25)

 pxq “ C2a
qpxq exp

ˆ
´1

~

ª
x

b

qpyqdy
˙

x P pb,`8q (4.26)

We refer to (4.25) and (4.26) as exponential WKB functions.
We know from general theory of ODEs that any solution for Schrödinger equation with a smooth potential
is smooth, so the singularities at the turning points come from the artifact of our approximation. For small
values of ~, the exact solution will track the WKB approximation until x goes close to the turning points.
The exact solution will be large but finite at the turning points.

Our next goal is to discuss WKB approximation around turning points, following [11], Chapter VII. We
will consider bpEq, defined above, such that there exists " P R` which satisfies, for every x P pb, b ` "q and
y P pb, b ´ "q, V pxq ° E and V pyq † E. We showed that, at a su�cient distance from the turning point, our
approximation takes the form

 pxq “ ca
qpxq exp

ˆ
´1

~

ª
x

b

qpyqdy
˙

x ° b (4.27)

 pxq “ c1a
ppxq exp

ˆ
´ i

~

ª
x

x0

ppyqdy
˙

` c2a
ppxq exp

ˆ
` i

~

ª
x

x0

ppyqdy
˙

x † b (4.28)

It is convenient to set the starting point of the integration at the exponent of the oscillating WKB as x0 “ b.
Since Ĥ is self-adjoint, the real and the imaginary parts of any solution is again a solution. We will therefore
consider only real linear combinations, c1 “ c˚

2 .
To determine c1 and c2 we will follow how  pxq changes going from the classical forbidden region to the
classical allowed region. For small |x ´ b| we can linearize E ´ V pxq

E ´ V pxq “ ´dV

dx
|x“b px ´ bq ` O

`
px ´ bq2

˘
“ F0px ´ bq ` O

`
px ´ bq2

˘
(4.29)

Since bpEq is a right turning point with the properties described above, F0 :“ ´dV

dx
|x“b† 0. We can do

this approximation because we assumed that the motion is quasi-classical for the entire region except for the
singularities at the turning points. This means that |x ´ b| is su�ciently small.

Since our approximation fails at turning points, we will consider  pxq as a function of x P C, passing
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from x ´ b ° 0 to x ´ b † 0 going “around” the turning point bpEq along a semicircle of radius ⇢ in the
superior complex half-plane. At the end of this modified path the exponential WKB function will gain an
imaginary exponent, which has to match with the exponent of the oscillating WKB function. Using this
technique we can determine the coe�cients c1 and c2. We get [11]

c1 “ c

2
ei

⇡
4 (4.30)

c2 “ c

2
e´i

⇡
4 (4.31)

This leads to an expression for the WKB approximation in the left neighbourhood of bpEq

 pxq “ ca
ppxq cos

ˆ
1

~

ª
x

b

ppyqdy ´ ⇡

4

˙
(4.32)

From this last expression one can deduce the origin of the term 1
2 in the Maslov condition (4.4). The boundary

condition (4.32) needs to be valid both for apEq and bpEq. These two expressions need to coincide for the
entire classical allowed region, meaning the the sum of the phases (which is a constant) has to be equal to
n⇡ (n P Z).

1

~

ª
b

a

ppxqdx ´ ⇡

2
“ n⇡ (4.33)

1

2⇡~

¿
ppxqdx “ n ` 1

2
(4.34)

that is the Maslov condition (
∂
ppxqdx :“ 2

≥
b

a
ppxqdx).

To conclude this section, we stress the idea that from a WKB function we can determine the equation
which the approximate solution come from, determining at first the potential. This will be useful later on.
Let  “ 1?

p
e˘ i

~S be an oscillating WKB function. We have

1

2m | pxq|4
“ E ´ V pxq (4.35)

To get the Hamiltonian we just need the expression of the kinetic energy operator.

4.2 Quantum Friedmann’s equations and Universe’s evolution

Here, following [2], we analyze deeply the intriguing analogy between QM WKB and the solutions of the
linear form of Friedmann’s equations, as it was said in the introduction of this Chapter. We proved in section
3.3 that Friedmann’s equations admit an equivalent linear form

„
d2

dt2
` 2⇡G

3
p2⇢` 3pq

⇢
 “ ⇤

12
 (4.36)

for arbitrary curvature. Two linearly independent solutions for (4.36) are

 “ ?
a exp

ˆ
˘ i

2

?


ª
t

0

d⌧

ap⌧q

˙
(4.37)
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Using the relation that stands between the momentum of a free-falling particle and the scale factor p9a´1

in FLRW Universe (as seen in section 2.3) we get, omitting multiplicative coe�cients

 “ 1?
p
exp

ˆ
˘ i

2

?


ª
t

0
pp⌧qd⌧

˙
(4.38)

which is strongly reminiscent of a WKB function, where
?


2 plays the role of the inverse of ~. We can thus
see  as a WKB approximation. The obvious question is to find the equation whose WKB approximation
leads to (4.37).
We said in section 4.1 that we can get the potential from oscillating WKB functions by computing 1

| |4 “
2mpE ´ V q, if we choose one of the two linearly independent approximate solutions. The analogy between
quantumWKB and cosmological WKB suggests x fiÑ t, ~2 fiÑ 4


and 2mpE´V q fiÑ 1

a2 . Stationary Schrödinger

equation
”

d
2

dx2 ` 2m
~2 pE ´ V q

ı
 “ 0 becomes

ˆ
d2

dt2
` 

4

1

a2

˙
 “ 0 (4.39)

The cosmological WKB wave function is oscillating only for  ° 0. We assume (4.39) to be valid also for
negative curvature and for vanishing curvature. We are not analyzing the  “ 0 case for the sake of simplicity.
We will only see that for a special solution for Friedmann’s equations aptq depends on the curvature and
the ratio 

a2

in equation (4.39) is well defined (non-zero) in the  Ñ 0 limit.

Friedmann’s equations can be seen then as approximate equations and the scale factor aptq emerges quasi-
classically as aptq “ | WKB|2 if  ° 0.
For  ° 0 we have oscillating solutions and for  † 0 we have exponential solutions. Note that one can get
quasi-classical solutions for  “ 0 by imposing � “ 1

2 in (3.13), obtaining  D

1{2 “ ?
a⌘ and  1{2 “ ?

a as

discussed in section 3.27. The scale factor emerges as a “
ˇ̌
 1{2

ˇ̌2
.

We expect  to be related to the scale factor via | |2. The cosmological  WKB is an approximate solu-
tion for (4.39) and the error is of the order of 4


. We have

 “  WKB ` O

ˆ
4



˙
(4.40)

which implies, if  ° 0 and if we treat  WKB as one of the two linearly independent solutions in (4.37)

| |2 “ | WKB|2 ` O

ˆ
4



˙
“ aptq ` O

ˆ
4



˙
(4.41)

It seems that Friedmann’s equations emerge as an approximation for large values of the spatial curvature.
The spatial curvature is not a well defined physical observable though, since it depends on the choice of
the coordinates. We said in fact in section 2.2 that FLRW metric is invariant under the rescaling r fiÑ �r,
 fiÑ 

�2 , aptq fiÑ aptq
�

, where � P R`, and so are Friedmann’s equations. Note that measurable quantities, like
the Hubble parameter H :“ 9a

a
or the density parameter ⌦ :“ 8⇡G

3H2 ⇢ ([3], Chapter 8), are invariant under this
rescaling. The density parameter is such that ⌦´1 “ 

H2a2 . One can then deduce the sign of  by measuring
⌦.
The fact that one can choose a scale for  and a arbitrarily makes unclear the meaning of the error O

`
4


˘
.
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Furthermore, one could work adopting the convention of a dimensionless normalized curvature k P t0,˘1u
and a scale factor aptq with the dimensions of a length (see section 2.2). In this scenario it is not clear what
O

`
4
k

˘
means.

A natural consequence of the analogy between the linear form for Friedmann’s equations and QM WKB
approximation is to consider FLRW model at a quantum scale. For this reason we parametrize the curvature
(which we assumed to be positive) as

 “ µ2c2

~2 (4.42)

The choice of µ P R is arbitrary and sets the curvature. Note that µ has the dimensions of a mass. If one
calls µ ” m they gets m

2
c
2

~2 , which is analogous to the inverse squared of the reduced Compton wavelength.
Let us now consider a constant aptq, which can be a valid approximation for short periods of time (this means
we are expanding aptq at order zero). This is the analogous of a free particle in QM, since the scale factor
plays the role of the potential in (4.39). Let us set a “ 1

2 . Equation (4.39) becomes, if one restores the c
factor that was set to 1 because of NU

ˆ
d2

dt2
` m2c4

~2

˙
 “ 0 (4.43)

which resemble a Klein-Gordon equation for a free particle. This strong and intriguing analogy convinces us
that equation (4.39) is valid at all scales (microscopic and macroscopic) and it is characterized by quantum
properties. This analogy may lead to quantum behaviours that are not expressed by Friedmann’s equations.
Note that by this reparametrization ( “ m

2
c
2

~2 ) the exponent of (4.37) becomes

˘ i

2

mc

~

ª
t

0

d⌧

ap⌧q (4.44)

which is reminiscent of QM WKB approximation.

Following [13, 14, 15], we write a generic solution to the time-dependent 1D Schrödinger equation i~ B 
Bt “ Ĥ 

using the polar decomposition

 px, tq “ R exp

ˆ
i
Sq

~

˙
(4.45)

We put the subscript q to distinguish the “quantum action” from the classical action S, which appears in the
Hamilton-Jacobi equation and which can be seen as the classical limit of Sq. R and Sq are functions of x and
t and they satisfy the continuity equation

B⇢
Bt ` r ¨

´
⇢
pq
m

¯
“ 0 (4.46)

where ⇢ “ | |2 “ R2 is the probability density associated to the wave function  and pq :“ BSq

Bx . For

stationary states B⇢
Bt “ 0, then R “ 1?

S1
q

satisfies the continuity equation. One can write, omitting a potential

normalization coe�cient

 pxq “ 1b
S1
q
pxq

exp

ˆ
i
Sqpxq
~

˙
(4.47)
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which is an exact solution for the 1D Schrödinger equation. It looks like we replaced the classical momentum
ppxq that appears in the WKB function with the “quantum momentum” pqpxq “ S

1
q
pxq. Our investigation

leads to construct by analogy the cosmological wave function (solution of (4.39)) as

 ptq “
b
aqptq exp

ˆ
i

?


2

ª
t

0

d⌧

aqp⌧q

˙
(4.48)

It is manifestly clear how we may express Universe’s evolution by  ptq ptq˚. The scale factor emerges
quasi-classically through | WKB|2 and the “quantum scale factor” emerges as aqptq “ | |2. This means
that Friedmann’s equations can be seen as a quasi-classical approximation of (4.39). We will solve equation
(4.39) for two simple examples and show some peculiar behaviours of the squared module of the solution
 ptq, which may be imputed to quantum e↵ects that are not expressed by Friedmann’s equations. Note that
Friedmann’s equations may be already characterized by quantum properties due to their linear form, from
which “cosmological” WKB (equation (4.37)) emerges.

We will consider two examples of simple solutions for Friedmann’s equations in order to get an expres-
sion for aptq. We can consequently find an expression for  , solving (4.39). We are using a recursive method
to get, for each step, a more accurate result. The goal for this last part of the article is to show how this
recursive method works and how it could be useful to avoid singularities of the scale factor. We will use
simple examples as toy models to find exact solutions for (4.39). The recursive method consists of using an
expression for aptq, plugging it in (4.39) and solve it. One could see (4.39) as an approximation of some other
equation, going further with the recursive method. We will proceed with two steps and treat  ptq ptq˚ as
related to the evolution rate of the Universe, as it was said above.

We will firstly consider a simple cosmological model, for which the only energy source is the vacuum en-
ergy. This implies Tµ⌫ “ 0, that is ⇢ “ p “ 0. Friedmann’s equations become

:aptq “ ⇤

3
aptq (4.49)

9aptq2 “ ⇤

3
aptq2 ´  (4.50)

The most general solution for (4.49) is

aptq “ Ae
?

⇤
3 t ` Be´

?
⇤
3 t (4.51)

where A,B are real coe�cients. We will refer to this solution as classical non-singular bouncing solution.
Note that according to this expression, Universe’s expansion is accelerating for t ° 0. We can rewrite (4.51)
as

aptq “ C1 cosh

˜c
⇤

3
t ` C2

¸
A “ C1

2
eC2 , B “ C1

2
e´C2 (4.52)

Plugging (4.52) into (4.50) we get an expression for the coe�cient C1

C2
1 “ 3

4⇤
(4.53)

Choosing the plus solution (we require the scale factor to be positive) we get

aptq “
c

3

⇤
cosh

˜c
⇤

3
t ` C2

¸
(4.54)
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Using the bouncing solution (4.54), equation (4.39) becomes

d2 

dt2
` ⇤

12

«
cosh

˜c
⇤

3
t ` C2

¸�´2

 “ 0 (4.55)

Note that this expression does not depend on the spatial curvature (and so does the solution  ptq). This
behaviour was anticipated above and it shows how equation (4.39) could be valid also for vanishing . With

the change of variable t “
b

3
⇤ p⌧ ´ C2q we get

d2 

d⌧2
` 1

4

1

cosh2 ⌧
 “ 0 (4.56)

The most general solution of (4.56) is a linear combination of a Legendre function of first kind and a Legendre
function of second kind, where � “ ´1

2 ` 1?
2
(see section 5.1)

 p⌧q “ AP´ 1
2 ` 1?

2
ptanh ⌧q ` BQ´ 1

2 ` 1?
2

ptanh ⌧q A,B P R (4.57)

We obtain  ptq just by setting ⌧ “
b

⇤
3 t ` C2. We will plot and discuss  ˚ptq ptq for A “ 1,B “ 0 and for

A “ 0,B “ 1 respectively. We use ⇤ “ p4.24 ˘ 0.11q ˆ 10´66eV2 [12] (note that the cosmological constant
has the units of a length´2 6) and we set C2 “ 0.

Figures 1a and 1b show the cases pA “ 1,B “ 0q and pA “ 0,B “ 1q respectively.
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(a) P´ 1
2 ` 1?

2
ptanh ⌧q
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(b) Q´ 1
2 ` 1?

2
ptanh ⌧q

Figure 1a shows an asymptotic behaviour of | |2 in the B “ 0 case. Note that we obtained an asymptotic
behaviour from a non-asymptotic scale factor. Figure 1b (A “ 0 case) shows an accelerating expansion.

To conclude this work, let us consider an expression for aptq which solves Friedmann’s equations for p “ ⇢

3
and ⇤ “ 0

aptq “
ˆ
8⇡G⇢0
3

´ t2
˙ 1

2

(4.58)

6
We are adopting in this case the convention for which ~ “ c “ 1. This means that 1eV “ 5.067730716... ˆ 10

6
m

´1
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where ⇢ “ ⇢0

a4 and ⇢0 P R is a constant with the dimensions of an energy density. Note that (4.58) is singular

for t0 “ ˘ 1


b
8⇡G⇢0

3 . Plugging this solution into (4.37) we get

˜
d2

dt2
` 

4

ˆ
8⇡G⇢0
3

´ t2
˙´1

¸
 ptq “ 0 (4.59)

Defining ⇠ :“ 8⇡G⇢0
3 , a generic solution for (4.59) is

 ptq “ ↵ 2F 1

ˆ
1

4
p´1 ´

?
5q, 1

4
p´1 `

?
5q; 1

2
;
2t2

4⇠

˙
` i�



2
?
⇠
t 2F 1

ˆ
1

4
p1 ´

?
5q, 1

4
p1 `

?
5q; 3

2
;
2t2

4⇠

˙
(4.60)

where 2F 1pa, b; c; zq is the hypergeometric function (see section 5.1) and ↵,� P R. This example shows how
we can avoid singularities using this recursive method, expressing the evolution of the Universe through
 ptq ptq˚. This is clear if taking a look at figure 2, which shows  ptq ptq˚ as given by equation (4.60) (in
blue) and aptq as given by equation (4.58) (in orange).

-2 -1 1 2
time [a.u.]
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2.0

2.5
ψ(t)ψ(t)*

Figure 2. Comparison between the singular solution for Friedmann’s equations (equation
(4.58), orange) and  ptq ptq˚ (equation (4.60), blue). ↵,� were chosen to be
such that ↵ “ � “ 1 and we set ⇠ “ 1,  “ 1. Time is just an dimensionless
parameter (a.u. stands for arbitrary units). This figure’s sake is only to compare
the two solutions.

Figure 2 shows that  ptq ptq˚ does not have the singularities at t0, defined above, and it tracks aptq for small
values of t. Although the expression for the scale factor in equation (4.58) does not have any significant
physical meaning, it is interesting how we obtained an evolution without singularities via  ptq starting from
a singular aptq. We also obtained an expansion starting from a contraction.

All peculiar behaviours of | ptq|2 showed above may be imputed to quantum e↵ects which do not emerge in
the context of FLRW Universe, as it was said in the previous paragraphs.
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5 Appendix

5.1 Legendre functions of first and second kind

For this last section we are referring to [16]. Let us consider the general Legendre equation

p1 ´ x2qy2 ´ 2xy1 `
„
�p�` 1q ´ µ2

1 ´ x2

⇢
y “ 0 (5.1)

where �, µ P C. If µ “ 0 and � P N the solutions for (5.1) are the Legendre polynomials. If � P N and µ P Z
such that |µ| § � the solutions are the associated Legendre polynomials.

Equation (5.1) has two linearly independent solutions

Pµ

�
pzq “ 1

�p1 ´ µq

„
1 ` z

1 ´ z

⇢µ
2

2F 1

ˆ
´�,�` 1; 1 ´ µ;

1 ´ z

2

˙
|1 ´ z| † 2 (5.2)

Qµ

�
pzq “

?
⇡�p�` µ ` 1q

2�`1 ` �
`
�` 3

2

˘ eiµ⇡pz2 ´ 1qµ
2

z�`µ`1 2F 1

ˆ
�` µ ` 1

2
,
�` µ ` 2

2
;�` 3

2
;
1

z2

˙
|z| ° 1 (5.3)

where Pµ

�
pzq and Qµ

�
pzq are denoted respectively as Legendre functions of first and second kind. � is the

Euler-gamma function while 2F 1 is the hypergeometric function defined for |z| † 1

2F 1pa, b; c; zq :“
8ÿ

n“0

paqnpbqn
pcqn

zn

n!
(5.4)

where pqqn is the falling factorial

pqqn :“
"
1 n “ 0
q ¨ pq ` 1q ¨ ... ¨ pq ` n ´ 1q n ° 0

(5.5)

2F 1pa, b; c; zq is undefined (or infinite) if c equals a non-positive integer. When we write P� or Q� we intend
P 0
�
and Q0

�
respectively.
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