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Abstract

This study explores the underexplored domain of performance degradation in machine learn-
ing models, a common challenge in dynamic data environments. While the academic com-
munity often prioritizes the development of new training methods to enhance model perfor-
mance on benchmark datasets, little attention has been given to sustaining those high levels of
performance post-deployment or identifying when performance starts to decade. In a rapidly
evolving data landscape, where covariate shifts can significantly impact model performance,
understanding and mitigating performance degradation issues becomes essential.

To tackle this issue, this study introduces three comprehensive tests. TheTemporalDegrada-
tion Test examines how variousmodels performwhen trained on different samples of the same
dataset, shedding light on degradation patterns. The Continuous Retraining Test simulates a
production environment by assessing the impact of continuous model retraining. Finally, the
Performance Estimation Test explores the potential of performance estimation methods, such
asDirect Loss Estimation (DLE), to identify degradationwithout ground truth data. Our find-
ings reveal diverse degradation patterns influenced by machine learning methodologies, with
continuous retraining offering partial relief but not complete resolution. Performance estima-
tion methods emerge as vital early warning systems, enabling timely interventions to maintain
model efficacy.
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1
Introduction

In the academic world, we often focus on investigating new methods and training procedures
to achieve better performance results across different benchmark datasets. However, less has
been written about how to maintain those performance levels or how to identify performance
degradation after a model has been deployed.

Most of the time, Machine Learning models are trained to make predictions about future
data. In those situations, ideally, the training data is a good representation of what the model
will see once in production—also referred to as serving data [1].

But in fast-changing environments, the feature’s distribution in the servingdatamight evolve
with time. These changes are known as covariate shifts. When the changes are so that the train-
ing data is no longer a good representation of the serving data, the model’s predictive perfor-
mance is expected to decrease. This phenomenon is known as model degradation or model
performance degradation to be more strict.

In the industry, model performance degradation is hard to spot since; to evaluate the perfor-
mance of a model on new data, one needs access to ground truth. Most of the time, depending
on the type of prediction problem, the ground truth is either delayed, time-consuming to get,
or unavailable. Circumstances like this leavemostMachine Learning practitioners without any
visibility of how well a deployedMachine Learning model is performing on serving data.

Continuous retraining and online learning have been the proposed solutions to keepmodels
up-to-date with their environments. But as mentioned in [2] we still don’t have a systematic
framework on what should trigger model retraining, how often we should do it, or whether it
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is needed at all.
In the present study, we implement three different tests to evaluate the predictive perfor-

mance degradation of Machine Learning models and measures to overcome and identify such
changes. Chapter 2 starts by describing the Temporal Degradation Test used to investigate the
performance degradation patterns that different models might produce on different training
samples of the same dataset—followed by the Continuous Retraining Test, which investigates
the effects of a continuous retraining process by setting up a framework that emulates a retrain-
ing process of a Machine Learning model in production. And finishes with the Performance
Estimation Test used to study how performance estimation methods [3] can help us know if
the model’s predictive performance has degraded without needing access to ground truth data.

We close the investigation by evaluating what percentage of the previously observed degra-
dation patterns might have been avoided by retraining and estimating the models’ predictive
performance.
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2
Methods

This chapter explains in detail the three main contributions this study brings to the table: the
Temporal Degradation, the Continuous Retraining, and the Performance Estimations Tests.
These three frameworks are used across all the experiments in Chapter 4, and their implemen-
tation code is open to the general public [4].

2.1 Temporal Degradation Test

The temporal degradation test is based on the model aging framework developed in a previous
work by Vela et al. in 2022, as referenced in [2]. They define the ”age” of a Machine Learning
model as the time passed since the model was last trained. We designed a similar framework to
investigate temporal degradation patterns emulating a typical Machine Learning model train-
ing and deployment phases. We can understand the Temporal Degradation Test as an iterative
process, starting from a dataset previously arranged in chronological order based onwhen each
observation was gathered. Next, we randomly sample three subsets from this dataset.

• The first subset will be the training set.

• The second subset, which is adjacent to the training set, will be used as the test set.

• Finally, a third subset is randomly selected from any point in the future. This set will
serve as the production set, which will play the role of serving data.
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After sampling these three subsets, we evaluate different hyperparameters by performing
cross-validation in a TimeSeriesSplit [5]manner across the training set. After selecting the best
hyperparameters, we fit the model on all the training sets and test on the test sets to collect its
test scores. If the test scores are acceptable, meaning they are smaller than an arbitrary thresh-
old, set up at the moment of the experiment (e.g., Test MAPE < 10%), we consider that the
model generalizes well on test data and flag it as a good model since it has a good initial fit.

This way, we study only the performance degradation of good models. Checking if a model
is good is fundamental to the study since analyzing the degradation of models with a poor
initial fit is not worth it and can bias the results. After this procedure is complete, we run an
inference step on the production subset and collect its production performance errors. In total,
we run a large number (N=3000) of these types of sampling, training, testing, and production
simulations. Collect all the production performance errors from the goodmodels and plotwhat
we call a model aging plot, where we study the performance degradation patterns.

Figure 2.1 exemplifies visually the temporal degradation test. The long grey box represents
the original dataset, and the green, yellow, and blue boxes represent the training, test, and pro-
duction set randomly sampled from the original dataset. We see how the training and test sets
are always adjacent to each other. The gap between the test set’s end and the production set’s
beginning is defined as the model age. Simulations 2, 3, … N in the same figure are different
that can occur during a single Temporal Degradation Test. In summary, a single Temporal
Degradation Test uses a dataset that is partitioned differently on each simulation and a model
type that is defined prior to the experiment. So, each degradation test allows us to study the
model aging patterns between a model-dataset pair.

As we will discuss in Chapter 4, for all the experiments with the methods explained here, we
will use the two datasets explained in Section 3 and four Machine Learning approaches (linear
models, ensembles, boostedmodels, andneural networks) intending to explore the degradation
pattern from different mathematical approaches when building Machine Learning models.
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Simulation 1

Temporal Degradation Test (Example)
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Simulation N
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dataset train test prod

Figure 2.1: Temporal Degradation Experiment.

2.2 Continuous Retraining Test

To combat the performance degradation issue, companies tend to re-fit/retrain their models
occasionally with more recent data to build a more robust model that hopefully does not de-
grade in the near future [1]. The continuous retraining test aims to check if these updates can
decrease the number of observed performance degradation patterns.

Similar to the Temporal Degradation Test in 2.1, the Continuous Retraining Test is an it-
erative process where we start from a dataset previously arranged in chronological order based
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on when each observation was gathered.
Then, we randomly sample Ntrain0 adjacent observations and build an initial training set.

Next, adjacent to the end of the training dataset, we select Ntest observations that will repre-
sent the test set. Similarly, the followingNprod adjacent observations to the test set will be the
examples used as a production set.

A visual representation of this can be seen in the initial state row of Figure 2.2, where we
start from a random training point and then partition the training, test, and production set.

After this initial sampling step is performed, we perform a training procedure as described in
Section 2.1 and collect the production performance scores. In the second iteration, we expand
the training set by settingNtrain1 = Ntrain0 +Ntest. The test and production sets are shifted
accordingly. And perform the first retraining step. In the second row of Figure 2.2, we can see
how the train (green) set grows, and the test and production sets shift accordingly. We continue
this process for n retraining iterations.

The assumption is that as the training set grows, we allow the model to capture more pat-
terns, making it less prone to predicted performance degradation. By analyzing the model per-
formance from the production set results, we can test that assumption.

In the end, we plot themodel’s performance evolution and evaluate if the performance stays
stable thanks to continuous retraining or if we still observe degradation patterns.
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Figure 2.2: Continuous Retraining Experiment.

2.3 Performance Estimation Test

The performance estimation test leverages the Direct Loss Estimation (DLE) method from
NannyML, anopen-sourcePython library forpost-deploymentdata science. TheDLEmethod
estimates the performance metric of regression models [3].

The way it works is as follows. Under the hood, DLE fits an additional Machine Learn-
ing model to estimate the value of the loss function of the monitored model. In our case, the
monitored model will be each model from each simulation of the Temporal Degradation test
of Section 2.1. After estimating the value of the loss function, DLE calculates the difference
between the estimated loss and the actual loss of the model and turns this difference into the
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regression performance metric of our choice. We designed the Performance estimation test to
study if DLE can correctly estimate the degradation patterns observed in the Temporal degra-
dation test.

For each simulation of the Temporal degradation Test, we fit DLE with a reference dataset.
The reference set consists of the previously used test dataset plus the most recent available data
before the model was put into production. The reference set also contains the model predic-
tions on that data. This is in order to calibrate the DLE method before it is used to estimate
the performance of the production set. After each iteration, collect the estimated performance
results and repeat for n simulations.

A visual representation of this process can be seen in Figure 2.3, where we start with the
results of a simulation from the Temporal Degradation Test and later build the reference set to
fit the DLE method. And estimate the performance of the production set. It is important to
emphasize that at no time does DLE have access to the production set targets.

So, as in a real scenario, we are simulating that a model is in production, and we do not
have a way to tell how well the model is performing on this new serving data. At the end of
this performance estimation analysis, we will bring back the production target to validate and
check the accuracy of NannyML’s DLEmethod.

2.4 Methods andHyperparameter Tunning

For all the experiments of the previously described methods, we will use the two datasets ex-
plained in Section 3 and fourMachineLearning approaches (linearmodels, ensembles, boosted
models, and neural networks). This is with the intention to explore the degradation pattern
fromdifferentmathematical approacheswhenbuildingMachineLearningmodels. Thepresent
section introduces these methods and their hyperparameter tunning procedures.

For each model, we validated the hyperparameter choice by using a TimeSeriesSplit cross-
validation technique andusedOptuna [6], anopen-sourcehyperparameter optimization frame-
work, to perform the optimal search. For every model-dataset pair, we performed 25 trials to
find the combination of hyperparameter values that reduces the most the mean cross-validated
coefficient of determination of the predictions.

The search space for the optimal hyperparameters is defined in the following subsections.
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Figure 2.3: Performance Estimation Test.
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2.4.1 LGBMRegressor

As our choice for a gradient-boosted model, we use a light gradient-boosting machine regres-
sor (LGBMRegressor) [7]. The search space for the optimal hyperparameters was defined as
follows.

• num_leaves: integer distribution in the domain [2, 24]

• max_depth: integer distribution in the domain [1, 13]

• min_child_samples: integer distribution in the domain [10, 50]

• n_estimators: integer distribution in the domain [100, 2000]

• learning_rate: float distribution in the domain [0.0001, 0.3]

• reg_alpha: float distribution in the domain [0, 1000]

• reg_lambda: float distribution in the domain [0, 1000]

• colsample_bytree: float distribution in the domain [0, 1]

• subsample: float distribution in the domain [0, 1]

2.4.2 ElasticNet

An ElasticNet [8] was our choice for a linear model since it allows us to play with the lasso and
ridge regularization coefficients. The search space for the optimal hyperparameters was defined
as follows.

• alpha: float distribution in the domain [0, 1000]

• l1_ratio: float distribution in the domain [0, 1]

• max_iter: integer distribution in the domain [1000, 2000]
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2.4.3 RandomForestRegressor

ARandomForestRegressor [9] was our choice for an ensemblemodel. The search space for the
optimal hyperparameters was defined as follows.

• n_estimators: integer distribution in the domain [100, 400]

• max_depth: integer distribution in the domain [1, 13]

• min_samples_split: integer distribution in the domain [2, 10]

2.4.4 MLPRegressor

Finally, a Multilayer Perceptron Regressor (MLPRegressor) [10] was used as the neural net-
work alternative. The search space for the optimal hyperparameters was defined as follows.

• hidden_layer_sizes: integer distribution in the domain [20, 150]

• activation: categorical distribution in the domain [‘relu’, ‘tanh’]

• solver: categorical distribution in the domain [‘lbfgs’, ‘sgd’, ‘adam’]

• alpha: float distribution in the domain [0.0001, 0.01]

• learning_rate_init: float distribution in the domain [0.0001, 0.01]

• max_iter: integer distribution in the domain [300, 1000]

11
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3
Datasets

In this chapter, we review in detail the two datasets that wewill be using for all the experiments
related to the Temporal Degradation, Continuous Retraining, and Performance Estimation
Tests. We will describe the pre-processing and feature engineering process necessary to build
the final time-series datasets. Then, wewill explore them in order to gain some valuable insights
before the models are designed, and finally, we will build a baseline model and describe a first
post-deployment analysis.

3.1 US AvocadoHass Sales

TheUSAvocadoHass Sales dataset is anopendataset providedby theAvocadoHassBoard [11].
It contains weekly sales of Hass avocados across the United States. Apart from date-time fea-
tures, the dataset contains information about sales from different regions, avocado types, aver-
age prices, and the total volume of avocados sold weekly.

This is the first dataset that we will use to investigate the performance degradation in Ma-
chine Learning models. As mentioned before, we will fit Machine Learning models from dif-
ferent mathematical natures on different training and testing intervals to estimate the weekly
sales amount and evaluate their performance over time. In the following subsection, we de-
scribe in detail the pre-processing and feature engineering pipeline that we applied to create
the time-series dataset for this specific task.

13



3.1.1 Data Pre-processing and feature engineering

We took the original dataset and kept only the date, average price, and demand columns. Then,
we created 6 new date features.

• month: month of the inference time.

• week: week of the inference time.

• week_in_month: week number in the month of inference time.

• day: day of the inference time.

• days_since_last_holiday: howmany days have passed since the last holiday.

• days_since_until_next_holiday: howmany days need to pass for the next holiday.

Apart from date-related features, we created two categories of lag columns for the weekly
average price and weekly avocado demand. The categories are:

• average_demand_in_last_n_weeks: weekly average avocadodemand in the last nweeks.

• demand_n_weeks_ago: weekly avocado demand n weeks ago.

• average_price_in_last_n_weeks: average avocado selling price in the last n weeks.

• price_n_weeks_ago: avocado selling price n weeks ago.

Where n goes from 1 to 7, so, during each prediction, the model has access to the past 7
weeks of avocado price and demand. The final dataset contains 33 features: 5 date-related and
28 lag features.

3.1.2 Exploratory data analysis

In this section, we will perform an Exploratory Data Analysis (EDA) to gain a better under-
standing of theUSAvocadoHass Sales dataset. Wewill focus on exploring the demand variable
since it is the variable that we will try to model. We will also study how other variables might
impact it.

Let’s remember that the focus of this study is to investigate howMachine Learning models
degradewith time andwhat tools can help us detect or avoid those degradations. Asmentioned
in Chapter 2, to achieve this, we will run simulations where we sample different training sets
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from a dataset and create different training-model pairs to study their performance evolution.
So, the EDA explained here applies only to one of those train samples. To simplify the analysis,
we have selected the first 15 months of the dataset to perform the EDA. We decided to use
only a portion of the dataset to not be biased about the findings here when we get to build the
models.

We begin the exploration by checking the weekly avocado units sold per week. Looking at
the left plot of Figure 3.1, we see how the weekly demand changes over time. During almost
all of 2015, we see that the demand stays between the 80-90 million range. The month of
December 2015 is when we observed the lowest demand point, followed by two big spikes in
the first half of 2016. The right plot of the same figure shows the distribution of the demand
column. It shows a slightly right-skew distribution with a median, red dashed line, close to 90
million units. Furthermore, it is worth noting that 50% of the observations fall between the
80-90 million units range.

Figure 3.1: Left: Weekly demand in million units of avocados. Right: Distribution of the avocados demand variable.

Additionally, we wanted to investigate if the week in a month or the month impacts the
demand for avocados throughout the year. To analyze that, we checked how the demand is
distributed per week and month. On the left of Figure 3.2, we see that the week in a month
plays almost no role in the demand for avocados. Themedian stays very stable at the 90million
mark across different weeks in a month. Probably the most significant difference is that week
four seems to have the biggest variability. What it tells us is the lowest and highest demand
peaks are more likely to happen at the end of the month.

On the contrary, when looking at the right-hand side of Figure 3.2, we do see an effect of the
month on the response variable. On average, the demand seems to be high in the first half of
the year, with its highest peak in April and lower in the rest of the year.
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Figure 3.2: Left: Boxplots of the avocados demand at different weeks in a month. Right: Boxplots of avocados demand per
month

Next, we wanted to verify if there was a relationship between avocado demand and price.
In Figure 3.3, we see how there is a slight trend suggesting that there tends to be an increase in
demandwhen the price is lower. In this case, we compare the demandwith the previous week’s
price. This is because the inference time occurs one week before the actual event happens. For
this reason, the actual avocado price in the week of interest is still unknown when the model
makes a prediction.

Figure 3.3: Avocado’s demand with respect to the previous week’s unit price.

Finally, we close theUSAvocados Sales EDAwith Figure 3.4 showing a heatmap correlation
matrix with the correlation between all the continuous features and the demand response vari-
able. We see that the variables that correlate the most with the demand are the total volume of
units sold in the previous 1 to 7 weeks. It is important to note that the price-related variables
also show the same correlation magnitude but in the opposite direction.

16



Figure 3.4: Correlation heatmap between all continuous features and the demand variable.

3.1.3 Baseline model and first post-deployment analysis.

Before formally starting the Temporal Degradation Test described in Section 2.1, we built a
baselinemodel to set up some expectations and checkwhether or not the independent variables
thatwe have designedwould be sufficient tomodel the avocado demand curve. For this process,
we used the first 15 months of the dataset as the training set and fitted an LGBMRegressor on
its default parameters. We tested it on the following 3months after the end of the training data.
Figure 3.5 shows the goodness-of-fit plots for both the train and test sets and their respective
Mean Average Percentage Error (MAPE). The value after the < > symbols is the MAPE of a
model whose predictions are always equal to the average demand observed on the train set.
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Figure 3.5: Goodness‐of‐fit plot for the Avocados demand forecasting task. Left: Train results. Right: Test results.

Figure 3.6 shows the top 10 features with the highest importance level for the LGBM Re-
gressor model. The average price five and six weeks prior to the prediction ended up being the
two most influential features of the model. The importance_type parameter when measuring
the importance was set to ‘split’, meaning that each value in Figure 3.6 represents the number
of times a feature was used in the model [12].

Figure 3.6: Top 10 feature importance’s for the avocados demand prediction LGBM Regressor model.

We followed the analysis with an appetizer of what we will study on the Temporal Degrada-
tion Test. Figure 3.7 shows in blue the actual demand curve throughout all the available time
periods. In red, we see the predicted values from the LGBMRegressor model. The light green
and yellow areas represent the training and testing periods, respectively.

We see how, during the training period, the model catches relatively well the demand curve
behavior. And in the months after, it is able to approximate the general trend but without
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completely catching its ups and downs.

Figure 3.7: Weekly predicted and actual avocado demand through time.

Finally, we plot the evolution of the absolute error through time. We see how, during the
training and testing periods, the error was relatively low, but in the months after testing, the
absolute error reached its highest magnitudes. This is the type of model performance degra-
dation that we will try to avoid by implementing a continuous retraining workflow and or by
estimating the model performance.

Figure 3.8: Evolution of the absolute error for the Avocado’s demand forecasting problem.

3.2 NYC Taxi Service Demand

TheNYCTaxi Service Demand dataset is a collection of datasets from theNew York City Taxi
& Limousine Commission (TLC). It contains information about yellow taxi trip records and
includes fields capturing pick-up anddrop-offdates/times, pick-up anddrop-off locations, trip
distances, itemized fares, rate types, payment types, and driver-reported passenger counts [13].
The dataset contains hourly information about taxi trips from 2011 to 2022.

Similar to the US Avocado Hass Sales dataset in Section 3.1. We will use this dataset to
investigate the performance degradation in Machine Learning models. We will train different
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Machine Learning models with different training and testing intervals to estimate the number
of hourly taxi trips. In the following section,wedescribe indetail thepre-processing and feature
engineering pipeline that we applied to create the time-series dataset for this task.

3.2.1 Data Pre-processing and feature engineering

We took the original granular dataset containing trip-level data and aggregated it per hour. So
we end up with a dataset having information such as total_trips total_passenger_count, to-
tal_trip_distance, total_tip_amount, total_amount, and total_trip_duration, per hour.

Then we created 8 date-related features.

• month: month of the inference time.

• week: week of the inference time.

• day: day of the inference time.

• day_of_week: day of the week of the inference time.

• hour: hour of the inference time.

• holiday: boolean flag stating if the day is a holiday or not.

• days_since_last_holiday: howmany days have passed since the last holiday.

• days_since_until_next_holiday: howmany days need to pass until the next holiday.

Additionally, for all theoriginal features: total_trips, total_passenger_count, total_trip_distance,
total_tip_amount, total_amount, and total_trip_duration. We created two categories of lag
columns:

• {feature_name}_in_last_{n}_days

• {feature_name}_{n}_days_ago

Where feature_name is every feature from the original dataset features, andn goes from 1 to
7. This means that the resulting dataset contains 92 features: 8 date-related features and 84 lag
features.
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3.2.2 Exploratory data analysis

In this section, we will follow a similar approach as in the EDA of the US Avocado Hass Sales
dataset on Section 3.1.2. We will focus on exploring the total trip demand variable since it is
the variable that we will try to model. We will also study how other variables might impact it.
The EDA here is applied to the first 15 months of the NYC Taxi Service Demand dataset. As
mentioned before, we decided to do the EDA for only a portion of the dataset in order not to
be biased about the findings here when we get to build the models.

We begin the exploration by checking the daily demand for taxi trips. Looking at the left plot
of Figure 3.9, we see how the daily demand behaves during all of 2011 and the first half of 2012.
The daily demand seems to stay most of the time between the 400-600 thousand trips range,
with the apparent exception of some drastic downs, especially the one in September 2011. The
right plot on the same figure shows the distribution of the taxi demand column. It shows a left-
skew distribution with a median, red dashed line, of 490 thousand daily trips. Furthermore, it
is worth noting that 50% of the observations fall between the 453-490 thousand trips range.

Figure 3.9: Daily taxi demand in thousands of trips.

Additionally, we wanted to investigate if the day in a week or the month has an impact on
the taxi demand throughout the year. In order to analyze that, we checked how the demand is
distributed per day andmonth. On the left of Figure 3.10, we see that the day in a week plays a
slight role in the taxi demand. The median seems to increase as the week approaches the sixth
day (Friday); Saturday seems very similar to Friday’s values, except that it has more variability.
And Sunday is the day where it is likely to have the least taxi demand during the week. On the
other side, when we look at the daily trip distributions per month, the results seem a bit more
stable with the exception of January, which is the month with the least amount of taxi trips.

Finally, we wanted to verify if there was a relationship between taxi demand and holidays.
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Figure 3.10: Left: Boxplots of the taxi demand on different days in a week. Right: Boxplots of taxi demand per month

Figure 3.11 suggests that there tends to be less taxi demand on holidays. Non-holidays also
showmore outliers than their counterparts.

Figure 3.11: Distribution of daily taxi demand on holidays.

3.2.3 Baseline model and first post-deployment analysis

Again, similar to the baselinemodel for theUSAvocadosHass Sales dataset in Section 3.1.3, we
decided that before formally starting the Temporal Degradation Test described in Section 2.1,
we will build a baseline model to set up some expectations and check whether or not the inde-
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pendent variables that we have designed would be sufficient to model the taxi demand curve.
For this process, we used the first 15 months of the dataset as the train set and fitted an LGBM
Regressor on its default parameters. We tested it on the following 3 months after the end of
the training data. Figure 3.12 shows the goodness-of-fit plots for both the train and test sets
and their respective Mean Average Percentage Error (MAPE). The value after the < > symbols
is the MAPE of a model whose predictions are always equal to the average demand observed
on the train set.

Figure 3.12: Goodness‐of‐fit plot for the taxi demand forecasting task. Left: Train results. Right: Test results.

Figure 3.13 shows the top 10 features with the highest importance level for the LGBMRe-
gressormodel. Interestingly, week, hour, and daywere by far the threemost influential features
of the model.

Figure 3.13: Top 10 feature importance’s for the taxi demand prediction LGBM Regressor model.

Again, we followed the analysis with an appetizer of what we will study on the Temporal
Degradation Test. Figure 3.14 shows in blue the actual demand curve throughout all the avail-
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able periods. In red are the predicted values from the LGBMRegressormodel. The light green
and yellow areas represent the training and testing periods, respectively.

We see how, during the training period, both the blue and red curves overlap almost per-
fectly. Then, between 2013 and 2017, the model behaved relatively well, but after that, the
gap between the actual and the predicted demand increased. It is still surprising that themodel
catches the downside trend in 2020 (COVID-19), although it still overestimates the expected
demand.

Figure 3.14: Weekly predicted and actual taxi demand through time.

Finally, we plot the evolution of the absolute error through time. Figure 3.15 shows how,
during training, the absolute error was basically zero and relatively low during testing. But in
the following years, after testing, the absolute error reached its highest magnitudes, especially
during 2020. As mentioned before, this is the type of model performance degradation that we
will try to avoid by either implementing a continuous retraining workflow or by estimating the
model performance on the production serving data.

Figure 3.15: Evolution of the absolute error for the taxi’s demand forecasting problem.
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4
Results and Discussion

In this chapter, we present the results from the experiments described in Chapter 2 using
the datasets described in Chapter 3. As mentioned before, for each experiment, we analyze
the results of applying four different Machine Learning approaches (linear models, ensembles,
boosted models, and neural networks). This will allow us to study whether the same dataset
trained on different model approaches shows different degradation results. Or if a type of
model is more prone to lose its performance over time. It is worth mentioning that all the
results that we will observe are from models with a good initial fit. By good initial fit, we refer
to models with a test MAPE of lower than 0.1. We will consider it a performance degradation
any production performance above the 0.15MAPE value.

4.1 Temporal degradation results

The previously described Performance Degradation Test was performed on the US Avocado
Hass Sales dataset and on the NYCTaxi Trip Demand dataset. The following two subsections
describe the experiment settings, results, and discussion.

4.1.1 Dataset: US AvocadoHass Sales

For every simulationof theTemporalDegradationTestwith theUSAvocadoHass Sales dataset,
we used a randomly sampled training set of 52 weeks, a test set of 12 weeks, and a production
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set of 24weeks. In total, we ran 3000model-dataset pair simulations. Asmentioned before, we
performed a hyper-parameter tuning for each of these 3000 simulations to find the optimal pa-
rameters. For this, asmentioned inChapter 2weusedOptuna to automate the hyperparameter
search.

LGBMRegressor Results

From the original 3000 LGBMRegressor-Avocado pair simulations, 2684 qualified as models
with a good initial fit, indicating that 316 models had a testing MAPE greater than 0.1. In
Figure 4.1, you can observe the model aging plot of an LGBMRegressor trained on the US Av-
ocado Hass Sales dataset. Each purple dot represents the observed performance result of the
production dataset at a given model age. The yellow, black, and red lines indicate the weekly
25th, 50th, and 75th percentiles, respectively. It is notable that the percentile line remains rel-
atively stable during the first 50 weeks of the production period. However, after week 50, a
slight increase in performance error becomes apparent, which is expected, given that themodel
is approximately one year old at that point. When using a 0.15 MAPE threshold to measure
degradation, it was found that only 11.7% of the predictions had a MAPE greater than 0.15.
However, among all 2684 models with a good initial fit, 2453 (91.4%) exhibited at least 5 in-
stances of degradation.
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Figure 4.1: Model Aging plot of the LGBMRegressor model trained on the US Avocado Hass Sales dataset.

ElasticNet Results

Let’s now examine the results of the same experiment, but this time using an ElasticNetmodel.
Out of the original 3000ElasticNet-Avocado pair simulations, 2423models qualified as having
a good initial fit, indicating that 577models had a testing MAPE greater than 0.1. Figure 4.2
illustrates the model aging plot of an ElasticNet model trained on the US Avocado Hass Sales
dataset.

This time, we can clearly discern two distinct patterns. During the first 40 weeks of the
model’s production, the weekly median MAPE remains below 0.1 but then increases rapidly,
with the median weekly values approaching 0.2. It’s worth noting the widening gap between
the 25th and 75th percentiles, signifying significant performance degradation. Observing the
percentile lines, the ElasticNet model exhibits more pronounced degradation than the other
aging plots, with errors appearing clustered and less variable.

When using a 0.15MAPE threshold tomeasure degradation, only 14.6% of the predictions

27



had a MAPE greater than 0.15. However, out of all 2423models with a good initial fit, 2423
(100%) exhibitedmore than 9 instances of degradation, indicating that every ElasticNetmodel
experienced degradation at some point.

Figure 4.2: Model Aging plot of the ElasticNet model trained on the US Avocado Hass Sales dataset.

RandomForestRegressor Results

Let’s now examine the results of the same experiment, this time using a RandomForestRegres-
sor model. Out of the original 3000RandomForestRegressor-Avocado pair simulations, 2675
models qualified as having a good initial fit, with 325models exhibiting a testingMAPE greater
than 0.1. Figure 4.3 depicts the model aging plot of a RandomForestRegressor trained on the
US Avocado Hass Sales dataset.

These results initially mirror those observed for the LGBMRegressor. The primary distinc-
tion lies in the fact that, around week 60, the gap between the 25th and 75th percentile lines
narrows, indicating that most predictions at that time demonstrate poor performance.

When using a 0.15MAPE threshold to assess degradation, it was found that only 11.4% of
the predictions exceeded this threshold. However, out of all 2675 models with a good initial
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fit, 2492 (93.2%) exhibited more than 5 instances of degradation.

Figure 4.3: Model Aging plot of the RandomForestRegressor model trained on the US Avocado Hass Sales dataset.

MLPRegressor Results

Finally, let’s now examine the results of the same experiment, this time using an MLPRegres-
sor model. Out of the original 3000MLPRegressor-Avocado pair simulations, 2045 models
qualified as having a good initial fit, while 955models exhibited a testing MAPE greater than
0.1. Interestingly, this model type generated the highest number of models that didn’t meet
the criteria for validity. Figure 4.4 illustrates the model aging plot of anMLPRegressor trained
on the US Avocado Hass Sales dataset.

The weekly percentile lines appear relatively consistent throughout the entire period. Un-
like the other models, the MLPRegressor did not experience as much fluctuation during the
40th to 50th weeks. However, upon closer inspection, theMLPRegressor exhibits the greatest
variability in predictive errors, with some predictions exceeding a 0.8MAPE.

When using a 0.15MAPE threshold to assess degradation, it was found that 16.0% of the
predictions surpassed this threshold. Nonetheless, among all the 2045 models with a good
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initial fit, 2032 (99.4%) displayed more than 5 instances of degradation.

Figure 4.4: Model Aging plot of the MLPRegressor model trained on the US Avocado Hass Sales dataset.

4.1.2 Dataset: NYC Taxi Trip Demand

For each simulation of the Temporal Degradation Test using the NYC Taxi Trip Demand
dataset, we employed a randomly sampled training set spanning 365 days, a testing set compris-
ing 90 days, and a production set spanning 180 days. In total, we conducted 1500 simulations
for model-dataset pairs. As mentioned previously, we carried out hyperparameter tuning for
each of these 1500 simulations to determine the optimal parameters.

As discussed in the following results, predicting NYC Taxi Trip Demand presents a more
challenging task than Avocado Sales prediction. This dataset spans eight years of data, and our
predictions are made on a daily basis, in contrast to the weekly predictions for the Avocado
dataset. You will observe that degradation patterns are more pronounced, and even certain
models, such as the MLPRegressor, struggle to find a good initial fit.
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LGBMRegressor Results

From the original 1500 LGBMRegressor-Taxi pair simulations, 1129 models met the criteria
for a good initial fit, while 371models exhibited a testing MAPE greater than 0.1. Figure 4.5
depicts the model aging plot of an LGBMRegressor trained on the NYC Taxi Trip Demand
dataset. Each purple dot represents the daily observed performance result of the production
dataset at a specific model age.

During the first year, the model maintains a relatively low MAPE, and the gap between
the 25th and 75th percentiles remains small. However, shortly thereafter, a noticeable dete-
rioration occurs. The gap between the 25th and 75th percentiles widens abruptly, indicating
a significant increase in error variability and a degradation issue. When using a 0.15 MAPE
threshold to assess degradation, it was discovered that 22.9% of the predictions exceeded this
threshold. Nevertheless, among all 1129models with a good initial fit, 1129 (100%) exhibited
at least 27 instances of degradation. This implies that even the best model experienced degra-
dation on at least 27 occasions during its lifetime.

Figure 4.5: Model Aging plot of the LGBMRegressor model trained on the NYC Taxi Trip Demand dataset.
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ElasticNet Results

Let’s now examine the results of the same experiment, this time using an ElasticNet model.
Out of the original 1500 ElasticNet-Taxi pair simulations, only 170models met the criteria for
a good initial fit, while 1330models exhibited a testing MAPE greater than 0.1. This number
is surprisingly low.

Figure 4.6 illustrates the model aging plot of an ElasticNet trained on the NYC Taxi Trip
Demand dataset. This time, we observe a gradual degradation rather than an extreme increase
in error variability. This highlights a notable difference between the LGBMRegressor and the
ElasticNet model. The LGBMRegressor was able to produce more models with a good initial
fit, although, on average, they experienced more pronounced degradation. Conversely, with
ElasticNet, itwasmore challenging tofindgood initialmodels, but those fewweremore reliable
in production. However, in the long term, they still exhibited degradation.

When using a 0.15MAPE threshold to assess degradation, it was found that 48.5% of the
predictions exceeded this threshold. However, out of all 170models with a good initial fit, each
one ended up showing at least 169 instances of degradation. The main distinction from the
LGBMRegressor result is that these 169 degradations were less extreme.
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Figure 4.6: Model Aging plot of the ElasticNet model trained on the NYC Taxi Trip Demand dataset.

RandomForestRegressor Results

Finally, let’s take a closer look at the results of the same experiment, this time using a Random-
ForestRegressor model. Out of the original 1500 RandomForestRegressor-Taxi pair simula-
tions, only 1007 models met the criteria for a good initial fit, while 493 models exhibited a
testing MAPE greater than 0.1.
Figure 4.7 illustrates themodel aging plot of aRandomForestRegressor trained on theNYC

Taxi TripDemand dataset. Similar to the LGBMRegressor, we observe a rapid increase in error
variability after themodel’s first year in production. One notable difference between this result
and the LGBMRegressor is that around the 600th day, the median performance error begins
to degrade more rapidly, whereas with the LGBMRegressor, it remains relatively stable.

When using a 0.15MAPE threshold to assess degradation, it was found that 23.3% of the
predictions exceeded this threshold. However, all 1007 models with a good initial fit experi-
enced degradation at some point in time. Even the best model exhibited at least 27 instances of
degradation during its lifetime.
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Regarding the MLPRegressor, none of the 1500 simulations were able to generalize well
enough on the test set to be considered models with a good initial fit, even when applying
Optuna’s automatic hyperparameter optimization algorithm.

Figure 4.7: Model Aging plot of the RandomForestRegressor model trained on the NYC Taxi Trip Demand dataset.

4.2 Continuous retraining results

In this section, we review the results obtained from the Continuous Retraining Test, as de-
scribed in Section 2.2. We conducted these experiments with both the US AvocadoHass Sales
dataset and the NYC Taxi Trip Demand dataset. The following two sections describe the ex-
periment settings, results, and discussions for each dataset, respectively.

4.2.1 Dataset: US AvocadoHass Sales

Similar to the Temporal Degradation Test, for each simulation, we utilized the US Avocado
Hass Sales dataset and randomly selected a training set of 52 weeks, a testing set of 12 weeks,
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and a production set of 12 weeks. We conducted 3000 model-dataset pair simulations and
executed 2 retraining steps after the initial fitting. Each retraining step followed the procedure
described in Section 2.2.

Additionally, we performed hyper-parameter tuning for the initial fittings of all 3000 simu-
lations. The subsequent two retraining steps utilized the discovered hyperparameters.

LGBMRegressor Results

Figure 4.8 summarizes the median MAPE results for the 3000 LGBMRegressor models fol-
lowing their initial fit and two subsequent retraining updates. Interestingly, the model with
no retraining update and the one with a second retraining update exhibit very similar behavior,
whereas the model after the first retraining update demonstrates the worst performance. As
mentioned earlier, this experiment involved using 52 weeks of training data, 12 weeks for test-
ing, and 12weeks of production data. Consequently, themodels were retrained every 12weeks
with the latest 12 weeks of available data. The observation that all three median MAPE lines
display an upward trend suggests that re-fitting the models does not eliminate the possibility
of predictive performance degradation.
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Figure 4.8: Model retraining plot of the LGBMRegressor model trained on the US Avocado Hass Sales dataset.

ElasticNet Results

Figure 4.9 presents the summary of medianMAPE results for the 3000 ElasticNet models fol-
lowing their initial fit and two subsequent retraining updates. This outcome aligns with the
common intuition that model performance tends to improve as we refit them with more data.
However, similar to the previous result, the medianMAPE lines also exhibit an upward trend,
indicating performance degradation over time.
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Figure 4.9: Model retraining plot of the ElasticNet model trained on the US Avocado Hass Sales dataset.

RandomForestRegressor Results

Figure 4.10 presents a summary of the median MAPE results for the 3000 RandomForestRe-
gressor models following their initial fit and two subsequent retraining updates. This plot re-
veals a counter-intuitive finding, with the second retraining update displaying the highest me-
dianMAPE values. Like the other models, it also exhibits an upward degradation trend.
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Figure 4.10: Model retraining plot of the RandomForestRegressor model trained on the US Avocado Hass Sales dataset.

MLPRegressor Results

Finally, Figure 4.11 provides a summary of themedianMAPE results for the 3000MLPRegres-
sormodels after their initial fit and two subsequent retraining updates. This plot exhibitsmore
extreme behavior in terms of the difference between the no retraining and the second retraining
update lines. While this result is not necessarily positive, it’s noteworthy that the MLPRegres-
sor stands out among our experiments. Unlike the other models, its median MAPE lines did
not display a significant upward trend; they remained relatively constant throughout each re-
training instance.
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Figure 4.11: Model retraining plot of the MLPRegressor model trained on the US Avocado Hass Sales dataset.

4.2.2 Dataset: NYC Taxi Trip Demand

Similar to the Temporal Degradation Test, for each simulation, we utilized the NYCTaxi Trip
Demanddataset and randomly selected a training set spanning 365 days, a testing set of 90days,
and a production set of 90 days. We conducted a total of 1500model-dataset pair simulations
and executed 2 retraining steps following the initial fitting. Each retraining step followed the
procedure described in Section 2.2. Additionally, we performed hyper-parameter tuning for
the initial fittings of all 1500 simulations. The subsequent two retraining steps utilized the
discovered hyperparameters.

LGBMRegressor Results

Figure 4.12 presents a summary of the median MAPE results for the 1500 LGBMRegressor
models following their initial fit and two subsequent retraining updates. The median MAPE
remains relatively consistent over time between retraining instances. Around day 40 of the
second retraining update, the median MAPE tends to be lower than the rest. However, in
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general, all three trends remain relatively stable. Asmentioned earlier, this experiment involved
utilizing 365 days of training data, 90 days for testing, and an additional 90 days for production
data. Consequently, themodelswere retrained every90days using the latest90days of available
data.

Figure 4.12: Model retraining plot of the LGBMRegressor model trained on the NYC Taxi Trip Demand dataset.

ElasticNet Results

Figure 4.13 provides a summary of the median MAPE results for the 1500 models. This re-
sult exhibits greater variability than the previous one and follows a counterintuitive pattern:
the models with no retraining and those with the first retraining instance behave very similarly,
while the second retraining instance shows even more degradation. This suggests that retrain-
ing alone is insufficient for maintaining model performance within acceptable bounds.
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Figure 4.13: Model retraining plot of the ElasticNet model trained on the NYC Taxi Trip Demand dataset.

RandomForestRegressor Results

Figure 4.14 provides a summary of the median MAPE results for the 3000RandomForestRe-
gressor models after their initial fit and two subsequent retraining updates. The plot displays
very similar patterns across retraining instances, with no clear indication that retraining is sig-
nificantly improving or degrading performance. Although there is a slight upward trend in the
first 30 days, the performance trend stabilizes thereafter.
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Figure 4.14: Model retraining plot of the RandomForestRegressor model trained on the NYC Taxi Trip Demand dataset.

4.3 Performance estimation results

In this section, we analyze the results of the Performance Estimation Test described in Section
4.3. To do this, we leverage the results obtained from the Temporal Degradation Test and as-
sess whether a performance estimationmethod such as DLE, short for Direct Loss Estimation,
could accurately estimate the observed degradations.

We applied this analysis only to models with a good initial fit (valid models). For each sim-
ulation, DLE was fitted with the simulation’s respective reference set, which consisted of the
simulation’s test set and the latest available data before themodel was put into production. We
then performed DLE estimations on the simulation’s respective production set.

Finally, we gathered the results and analyzed how many of the degraded models DLE man-
aged to estimate as degrading without needing access to ground truth data. Since each predic-
tion event is later associated with a degradation or no degradation outcome, we also measured
how well DLE estimated the performance behavior of each prediction event. This means we
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were interested in understanding both the true positive rate (TPR) and the true negative rate
(TNR).

Table 4.1 summarizes some of the results of theTemporalDegradation and the Performance
Estimation tests. In the context of the US Avocado Hass Sales datasets, we see that LGBMRe-
gressor had the highest number of valid models (2684 out of 3000), followed closely by Ran-
domForestRegressor (2675 out of 3000). ElasticNet had all of its models (100%) classified as
degraded.

When looking at a model-level analysis, we found that, on average, DLE was able to cor-
rectly estimate the degradation of 46% of the models that actually degraded. For the case of
the LGBMRegressor, this means that out of the 2684models that degraded, DLE estimated at
least one degradation in 1177 of them.

On the other side, if we analyze the results from an alert level, we distinguish between two
types of results. TPR, also known as Sensitivity or Recall, measures the proportion of truly
degradation alerts correctly identified as degradation alerts. TNR, also known as Specificity,
measures the proportion of truly non-degradation outcomes correctly identified as regular per-
formance points.

The US Avocado Hass Sales dataset results tend to have a relatively low TPR and a high
FNR. We attribute these results to two main conditions. DLE is fitted on a reference dataset
that consists of the simulation’s test set and its latest available data. In these simulations, the
test set is fixed at 12 weeks, and the length of the latest available data is chosen randomly, as
it precisely reflects the model’s initial age. So, in some cases, this dataset might be 1 week or
up to 80 weeks, meaning that most of the time, DLE might be fitted with a relatively small
reference dataset. This makes it difficult for DLE to capture gradual degradations, as seen in
the US Avocado Hass Sales dataset.

On the other hand, theNYCTaxi Trip dataset is quite large and granular, and the likelihood
that a reference set is more than a year’s worth of data is higher. Thanks to this, we can see an
increase in effectiveness fromDLEon theTPR.On average, DLEwas able to correctly estimate
95% of the degradation alerts. This result is quite impressive for a method that only uses the
model inputs and its predictions.
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DLE Analysis

Dataset Model Type # Valid
Models

% Degraded
Models

Correctly Estimated the
Degradation of TPR TNR

LGBMRegressor 2684/3000 2453 (91.4%) 1177 (48.0%) models 0.22 0.90
ElasticNet 2423/3000 2423 (100%) 1009 (41.6%) models 0.12 0.95
RandomForestRegressor 2675/3000 2492 (93.2%) 1144 (45.9%) models 0.20 0.88

US Avocado Hass Sales

MLPRegressor 2045/3000 2032 (99.4%) 986 (48.5%) models 0.20 0.92
LGBMRegressor 1129/1500 1129 (100%) 1048 (92.8%) models 0.92 0.33
ElasticNet 170/1500 170 (100%) 161 (94.7%) models 0.99 0.36NYCTaxi Trip Demand
RandomForestRegressor 1007/1500 1007 (100%) 961 (95.4%) models 0.95 0.32

Table 4.1: DLE Analysis Summary.
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5
Conclusion

5.1 Summary of results

In summary, the findings validate several well-established insights in the field regarding the
performance degradation of machine learningmodels [2]. We observed that different machine
learningmathematical approaches can exhibit varyingdegradationpatterns, particularly in terms
of prediction error variability. The continuous retraining test demonstrates that refitting the
model withmore data tends to help but does not entirely resolve the degradation issue, as most
of the error trend lines exhibited an upward tendency.

Toaddress the challengeofperformancedegradation, performance estimationmethods such
as DLE prove to be valuable tools. DLE can serve as an early detectionmechanism for identify-
ing deterioratingmodel performance. Bymonitoring key performance indicators and assessing
deviations from expected levels, we can intervene in a timely manner and identify the factors
contributing to the performance problem.

5.2 Limitations

Expanding the scope of the present study to include classification tasks is a crucial step in gain-
ing a better understanding of how machine learning models deteriorate across various predic-
tion tasks. While the study’s focus on regression tasks provides valuable insights, classification
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tasks present unique challenges and considerations.

5.3 Concludingwords

Performance degradation effects will always be intrinsic to Machine Learning models, given
that data continues to change, sometimes in unpredictable ways. To confront this challenge,
we have emphasized the role of performance estimation methods. To serve as valuable early
detection mechanisms for identifying declining model performance.

Furthermore, in a commitment to fostering collaboration and knowledge dissemination, we
have made the source code of the core methods employed in this study accessible to the public
[4]. This open-source initiative allows fellow researchers, practitioners, and enthusiasts to lever-
age our work as a foundation for their own endeavors. Whether it involves adapting our meth-
ods for different prediction tasks, exploring alternative datasets, or utilizing diverse machine
learning techniques, our aim is to facilitate the broader exploration of performance degrada-
tion in machine learning.
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