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Abstract

The brain electrical activity can be acquired via electroencephalography (EEG) with
electrodes placed on the scalp of the individual. When EEG signals are recorded, signal
artifacts such as muscular activities, blinking of eyes, and power line electrical noise can
significantly affect the quality of the EEG signals [1]. Machine learning (ML) techniques are
an example of method used to classify and remove EEG artifacts. Deep learning is a type
of ML inspired by the architecture of the cerebral cortex, that is formed by a dense network
of neurons, simple processing units in our brain. [2]. In this thesis work we use ICLabel [3]
that is an artificial neural network developed by EEGLAB to automatically classify, that
classifies the inidpendent component(ICs), obtained by the application of the independent
component analysis (ICA), in seven classes, i.e., brain, eye, muscle, heart, channel noise,
line noise, other. ICLabel provides the probability that each IC features belongs to one out
of 6 artefact classes, or it is a pure brain component. We create a simple CNN similar to
the ICLabel’s one that classifies the EEG artifacts ICs in two classes, brain and not brain.
and we added an explainability tool, i.e., GradCAM, to investigate how the algorithm is
able to successfully classify the ICs. We compared the performances f our simple CNN
versus those of ICLabel, finding that CNN is able to reach satisfactory accuracies (over
two classes, i.e., brain/non-brain). Then we applied GradCAM to the CNN to understand
what are the most important parts of the spectrogram that the network used to classify
the data and we could speculate that, as expected, the CNN is driven by components such
as the power line noise (50 Hz and higher harmonics) to identify non-brain components,
while it focuses on the range 1-30 Hz to identify brain components. Although promising,
these results need further investigations. Moreover, GradCAM could be later applied to
ICLabel, too, in order to explain the more sophisticated DL model with 7 classes.
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Abstract

L’attività celebrale puù essere acquisita tramite elettroencefalografia (EEG) con degli
elettrodi posti sullo scalpo del soggetto. Quando un segnale EEG viene acquisito si for-
mano degli artefatti dovuti a: movimenti dei muscoli, movimenti degli occhi, attività del
cuore o dovuti all’apparecchio di acquisizione stesso. Questi artefatti possono notevolmente
compromettere la qualità dei segnali EEG. La rimozione di questi artefatti è fondamentale
per molte discipline per ottenere un segnale pultio e poterlo utilizzare nel miglire dei modi.
Il machine learning (ML) è un esempio di tecnica che può essere utilizzata per classifi-
care e rimuovere gli artefatti dai segnali EEG. Il deep leraning (DL) è una branca del ML
che è sviluppata ispirandosi all’architettura della corteccia cerebrale umana. Il DL è alla
base della creazione dell’intelligenza artificiale e della costruzione di reti neurali (NN) [2].
Nella tesi applicheremo ICLabel [3] che è una rete neurale che classifica le componenti
indipendenti (IC), ottenute con la scomposizione tramite independent component analysis
(ICA), in sette classi differenti: brain, eye, muscle, heart, channel noise, line noise e other.
ICLabel calcola la probabilità che le ICs appartengano a ciascuna di queste sette classi.
Durante questo lavoro di tesi abbiamo sviluppato una semplice rete neurale, simile a quella
di ICLabel, che classifica le ICs in due classi: una contenente le ICs che corrispondono a
quelli che sono i segnali base dell’attività cerebrale, l’altra invece contenente le ICs che
non appartengono a questi segnali base. Abbiamo creato questa rete neurale per poter ap-
plicare poi un algoritmo di explainability (basato sulle reti neurali), chiamato GradCAM.
Abbiamo, poi, comparato le performances di ICLabel e della rete neurale da noi svilup-
pata per vedere le differenze dal punto di vista della accuratezza e della precisione nella
classificazione, come descritto nel capitolo 4. Abbiamo infine applicato gradCAM alla rete
neurale da noi sviluppata per capire quali parti del segnale la rete usa per compiere le clas-
sificazioni, evidenziando sugli spettrogrammi delle ICs le parti più importanti del segnale.
Possiamo dire poi, che come ci aspettavamo la CNN è guidata da componenti come quelle
del line noise (che corrisponde alla frequenza di 50 Hz e armoniche più alte) per identificare
le componenti non brain, mentre si concentra sul range da 1-30 Hz per identificare quelle
brain. Anche se promettenti questi risultati vannno investigati. Inoltre GradCAM potrebbe
essere applicato anche su ICLabel per spiegare la sua struttura più complessa.
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Outline

The brain electrical activity can be acquired via electroencephalography (EEG) with
electrodes placed on the scalp of the individual. When EEG signals are recorded, signal
artifacts such as muscular activities, blinking of eyes, and power line electrical noise can
significantly affect the quality of the EEG signals [1]. These artifacts are hard to eliminate
due to their frequencies range that are nearly the same of the EEG bands. Detection, cor-
rection, or removal of physiological/internal and non-physiological/external artifacts is an
important process to minimize the chance of misinterpretation of EEG, not only for clini-
cal and non-clinical fields such as brain computer interface (BCI), but also for intelligent
control system, robotics, etc. [4]. For these reasons, several methods have been developed
to classify and remove the artifacts from EEG signals. Generally it is applied the indepen-
dent component analysis (ICA) to the multichannel EEG signals, before the classification.
This method separates multichannel EEG signal mixtures into a corresponding set of sta-
tistically independent components (IC). These ICs are manually selected with a great deal
of time, and also, with the necessity of a clinical expertise. To speed up and simplify the
problem, several automatic methods were developed to classify an remove EEG artifacts.

Machine learning (ML) techniques are an example of method used to classify and
remove EEG artifacts. Deep learning is a type of ML inspired by the architecture of the
cerebral cortex, is foundational for building artificial neural network [2]. One deep learning
feedforward network easier to train is convolutional neural networks (CNN). The work
of Pion-Tonachini et al. [3] presents a new CNN-based independent components (ICs)
classifier. The algorithm is called IClabel and is an artificial neural network, that classifies
the ICs in seven classes, i.e., brain, eye, muscle, heart, channel noise, line noise, other.
It provides the probability that the IC features belong to these classes. To do so, each
IC is described by its spatial importance (i.e., topography), its time course and its power
spectral density (PSD). These data are used as inputs for the CNN-based classifier.

As all neural networks, ICLabel is unable to explain the decision it takes to the users,
and is considered a black box. For these reasons understand how the algorithm takes deci-
sions could be very interesting to make the most of its capabilities. To this aim, an explain-
ability algorithm 1.4 can be used. Particularly, in this thesis work, we selected GradCAM
3.3, as it is good in performance, demonstrated when applied to CNN architectures.

The aim of the thesis should have been to apply GradCAM, to ICLabel to understand
better how the CNN algorithm classifies the EEG artifacts into seven different classes,

vii



viii CHAPTER 0. OUTLINE

highlighting the regions of the IC spectrogram that are more important. However, ICLabel
was developed with Python by Pion-Tonachini and colleagues, then imported to MATLAB
and used as EEGLAB plug-in. Unfortunately, ICLabel has been developed using some ad-
hoc functions that was not possible to easily use in conjunction with GradCAM. Therefore,
we decided to implement a simple CNN similar to the ICLabel’s net. We compared the
performances between ICLabel and the best results of the CNN’s training, as described in
the chapter 4, to see how far the performances of the CNN are from those of ICLabel. We
also applied GradCAM to the CNN to understand what are the most important parts of
the spectrogram that the net uses to classify the data.

Then, the main contributions of this thesi work are:

• the development of a new simple CNN implemented in MATLAB. The training, val-
idation and test of the abovementioned CNN on the same dataset used in a previous
MSc thesis work [5].

• The comparison the classification performance between the simple CNN (using 2
classes, i.e., "brain" vs "non-brain") and ICLabel.

• The application of GradCAM to the CNN.

The first chapter offers a brief overview of the thesis work, enlightening the context,
the motivation and the main objective. The second chapter, 1, Background, is dedicated
to the theoretical background needed for understanding the thesis. Chapter 2, State of
art, describes the state of the art of the methods of explainability used to explain the
decisions made by deep learning-based classifiers operating on a corrupted EEG dataset
(with artefacts). Chapter 3, Methods describes the the algorithms implemented and used
on this thesis work. Finally chapter 4, Results and discussion, presents the main results
and the conclusions of this thesis work.
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Chapter 1

Background

1.1 Electroencephalography

EEG is the physiological noninvasive method to record the electrical activity generated
by the brain with electrodes placed on the scalp surface of the individual [6]. EEG measures
the electric potentials generated by the neurons. Between 10 to 20 billion neurons are
contained only in the gray matter [10]. The neurons are electrical excitable cell that
communicate with each other by connection called synapses. Neurons are composed by
a cell body, called soma, dendrites and a single axon. The soma contains the nucleus of
the cell and is surrounded by dendrites, that connect the cell with other neurons, and an
axon. The axon is a cable-like projection that can extend tens, hundreds, or even tens of
thousands of times the diameter of the soma in length. Its function is to carry the nerve
signals that is an all-or-nothing electrochemical pulse called action potential. The action
potential runs along the axon thanks to ions exchange between the inside and the outside
of the membrane. To keep rapid conduction, neurons have insulating sheaths of myelin
around their axons, formed by glial cells, enables action potentials to travel faster. The
hall where the myelin is punctuated are called nodes of Ranvier, which contain a high
density of voltage-gated ion channels [11]. In the synapses, at the end of the dendrites
and of the axon, the signals cross from the axon of one neuron to a dendrite of another,
through neurotransmitters. Figure 1.1.

Electrical potentials are created by the postsynaptic potentials generated at apical
dendrites of pyramidal cells in the cortex. The poles of the electric dipole can be seen as
the source of a ionic currents created by the excess and defect of cations in the soma and
apical dendrites, respectively. These ions can freely move through the cerebrospinal fluid
and brain tissues, thus causing ionic currents [12]. EEG provides excellent time resolution
(in the order of ms), allowing to detect activity in different cortical areas in real-time with
very complex tasks.

The cortex is divided into four areas as in Figure 1.2 and they are associated to different
processing of the information:

1. Occipital cortex: it is the visual processing center of our brain, located in the rear
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6 CHAPTER 1. BACKGROUND

Figure 1.1: Structure of a typical neuron.

portion of the skull.

2. Parietal cortex: it integrates information stemming from external sources and internal
sensory feedback from our body.

3. Temporal cortex:it is associated to the processing sensory input to derived, meanings,
using visual memories, language and emotional associations.

4. Frontal cortex: it helps us maintain control, plans for the future, and to monitor our
behavior.

Figure 1.2: cortical areas. From [6]

The multi-channel EEG recordings are always a mixture of several underlying base
frequencies, which are considered to reflect certain cognitive, affective, or attentional states
[6]. These frequencies are associated with different types of waves that represent several
states of mind Figure 1.4:

• Delta (δ) waves with a frequency of range [0.1− 4]Hz. In sleep labs, delta waves are
examined to assess the depth of sleep.
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• Theta (θ) waves with a frequency of range [4−8]Hz, are associated with a wide range
of cognitive processing such as memory encoding and retrieval as well as cognitive
workload.

• Alpha (α) waves with a frequency of range [8− 13]Hz, are associated to relax wake-
fulness of the individual.

• Beta (β) waves with a frequency of range [13 − 20]Hz. Over motor regions, beta
frequencies become stronger with the execution of movements of any body part.

• Gamma (γ) waves with a frequency of range [30 − 100]Hz, Some researchers argue
that gamma reflects attentive focusing and serves as carrier frequency to facilitate
data exchange between brain regions [13]

Figure 1.3: Brain waves

1.1.1 Electrodes placement on the scalp

To measure the EEG signals are used electrodes placed on the scalp. There’s different
standard system suitable for describing the locations of scalp potential measurements, the
first, proposed by Jasper in 1958 [14] is the 10-20 system with 21 electrodes. After, in
1985 Chatrian [15] proposed the 10-10 method with 74 electrodes. In 2000 another system
was proposed, with 345 electrodes, called 10-5 system [16]. These electrodes are labeled
by letters (i.e. F-Frontal, O-Occipital, T-Temporal, C-Central, P-Parietal) which indicate
the lobes. Odd numbers indicate the left hemisphere and even numbers indicate the right
hemisphere. The electrodes are also placed in two methods (i.e. montages) depending on
whether are referential or bipolar electrodes. In referential method, each electrode records
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the potential differences compared to a reference electrode, placed on both ear lobes. In
bipolar method the potential is recorded between paired active electrodes [17].

Figure 1.4: Location of the electrodes in the scalp: a. 10-20 system, b. 10-5 system, c. 10-10
system. Figures modified from [7]

1.2 Artefacts and interferences in EEG

When EEG signals are recorded, signal artifacts such as muscular activities, blinking
of eyes, and power line electrical noise can affect the quality of the EEG signal [1]. For
this reason there are different methods to classify, recognise and eliminate EEG artifacts.

There are several types of artifacts and they may be broadly categorized as physiologi-
cal/internal and non-physiological/external artifacts. Physiological artifacts are related to
physiological sources of the human body like ocular artifacts, muscle artifacts, and cardiac
artifacts [18]. The non-physiological artifacts are related to external factors and include:
power line noise (50/60 Hz), electrode malfunction (loose connection with the scalp or high
impedance electrodes), electromagnetic interference, and variations of the impedances [18].

1.2.1 Ocular artifacts

Electroculogram (EOG) is major source of contamination of EEG. The EOG measures,
the electrical activity produced by eye movement, are primarily picked up by the frontal
electrodes, and the amplitude is generally much larger than that of the background EEG
activity [19].

1.2.2 Muscular artifacts

The electromyogram (EMG) measures the electrical activity on the body surface caused
by contracting muscles. This artifact is typical of patients who are awake and occurs when
the patient swallows, talks, walks, etc [20]
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1.2.3 Cardiac artifacts

Interference due to cardiac activity (either electrical or pulse related) generates a pe-
riodic waveform at a frequency that corresponds to the cardiac frequency (expressed in
beats per minute, BPM). Typically at rest, cardiac frequencies vary from 60 to 100 BPM
[21] for healthy individuals and from 40 to 50 BPM for athletes [22].

1.2.4 Other artifacts

Other possible artifacts include movements of the tongue, clenching of the teeth, breath-
ing artifacts in the lower part of the spectrum, electrodermal interferences due to sweating,
chest movements, etc. [23].

1.3 Convolutional neural network (CNN)

In this thesis the type of neural network used is CNN [24]. CNNs could be composed
by several types of layers, the principals are: convolutional layers, pooling layers, fully-
connected layers and classification layers, that stack together form the CNN architecture.
As explained by O’Shea et al. [25]: the convolutional layer will determine the output of
neurons of which are connected to local regions of the input through the calculation of
the scalar product between their weights and the region connected to the input volume,
this layer also reduces the complexity of the network thanks to three hyperparameters:
depth, stride and zero-padding. The pooling layer simply performs downsampling along
the spatial dimensionality of the given input, further reducing the number of parameters
within that activation. The fully-connected layer perform the same duties of a standard
neural network and attempts to produce class scores from the activations, to be used for
classification. Learnable kernels are fundamental to the creation of 2D activation map. The
scalar product is calculated for each value in that kernel and the network learn kernels that
’fire’ when they see a specific feature at a given spatial position of the input. These are
commonly known as activations.

Figure 1.5: An example of CNN structure.(From [8])
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1.3.1 Deep Learning

CNN is a neural network based on deep learning. As explained by Dong review [26],
Deep learning is a training algorithm with layer-by-layer unsupervised learning and train-
ing. It’s composed by many classifiers working together, which are based on linear regression
followed by some activation functions. The statistical linear regression approach is com-
posed by only one node, and one classifier node is known as a neural unit or perception.
Every layer can have many hundreds or even thousands of neural units. The layers which
are in between the input and the output are known as the hidden layers, and the nodes
are known as the hidden node Figure 1.7 . The activation functions (e.g. Relu, Sigmoid,
etc.) are used to generate nonlinear relationships between the input and the output, and
to transform and abstract the data into a more classifiable plane. Non linearity, combined
with many neural nodes and many layers, mimics the human brain like structure, which is
why it is called a neural network (NN). Technique as drop-out, that switch off some of the
neural units randomly, are used to prevent over-fitting.

Figure 1.6: General Artificial Neural Network structure (from Saha et al. [27]).

Dong et al. [26] survey the deep learning-based models that mainly includes: stacked
automatic encoder,deep belief network, deep Boltzmann machine, convolution neural net-
work etc. The automatic encoder mainly consists of the encoder, the decoder and the hidden
layer, staking automatic encoder is an automatic encoder upgraded, restricted Boltzmann
machine (RBM) can be represented by a network of stochastic binary neurons, whose states
are observable, which are connected to stochastic, unobservable, hidden units [28]. Deep
belief network (DBN) is composed of a superposition of multiple constrained Boltzmann
models with hidden explanatory factor and neural networks of multiple layers. Deep Boltz-
mann Machine (DBM) is also formed by the restricted Boltzmann machine stack, which
is similar to the deep belief network, with the differences that they have the former layer
and the current layer between the non directional connections, and there are no feedback
parameters from top to bottom.
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1.4 Explainability

Despite the good performances of the EEG automated classifier, as the general pur-
pose nature, and the ability to merge together features extraction and classification, these
algorithms, are not able to explain and demonstrate their decisions to human users. For
these reasons they are considered black boxes. Understand the decision procedures of the
algorithm is essential, expecially in some applications as health sector [29].

Sometimes, the highest performing methods (e.g., DL) are the least explainable, and
the most explainable (e.g., decision trees) are the least accurate [30]. In the last years
have been developed new artificial intelligence (AI) methods to explain and control the
algorithm’s decisions: this branch of AI is called explainable AI (XAI). Among the DL
methods for the explainability there are: Local Interpretable Model-agnostic Explanations
(LIME), SHapley Additive exPlanation (SHAP), attention mechanism and the class activa-
tion mapping (CAM). LIME concretely tests how predictions change when data variations
are given to the model, LIME could be used to interpret the black box of neural networks,
but also to interpret boosting-based method as NGBoost as cited by Barus et al. [31].
SHAP falls into class of additive feature attribution methods and is associated to Shapley
values, a game theory concept that is based on the attribution of certain importance values
to the input features. SHAP values are consistent, even when the order in which features
appear in the tree changes, for this reason as described in the article of Lundberg and Lee
[32], SHAP values provide a strict theoretical improvement over existing approaches by
eliminating the un-intuitive consistency problems. SHAP respects all the three desirable
properties that the additive feature attribution methods class have [32]: local accuracy,
missingness, and consistency. Attention mechanisms are components of prediction systems
that allow the system to sequentially focus on different subsets of the input. The selection
of the subset is typically conditioned on the state of the system which is itself a function of
the previously attended subsets [33]. The CAM are attention techniques used to identify
a sort of “heat map” highlighting regions that support the classification by the CNN into
specific categories [34]. As described in section 3.3 GradCAM is an example of a specific
CAM implementation that use class-specific gradient information to localize important
regions of the data.

Layer-wise relevance propagation (LRP) [35] is another algorithms for image classifica-
tions, the core idea underlying the LRP algorithm, for attributing relevance to individual
input nodes, is to trace back contributions to the final output node layer by layer. LRP
applies a propagation rule that distributes class relevance found at a given layer onto the
previous layer. The layer-wise propagation rule was applied iteratively from the output
back to the input, thus, forming a possible pixelwise decomposition. It utilizes the gradi-
ents and activations of the network to estimate relevance, outputting both positive and
negative relevance indicating the features that provide evidence of a sample being assigned
to a class (for positive relevance), or in contrast indicates features that provide evidence
for a sample being assigned to classes other than what it is ultimately assigned to by the
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classifier (for negative relevance) [36]. This inherits the favorable scaling properties of
backpropagation.

1.5 Rejection methods

Rashmi and colleagues [37] and Gorjan et al. [38] present an overview of the available
methods to classify and remove artifacts. Some precautionary measures followed during
EEG signals acquisition can prevent some artifacts, such as avoid eye blinks and movement
as much as possible, but this cannot be a practical solution for all the applications. Artifacts
detection is the most important step for handling artifacts because, often, the artifacts
overlap with EEG signals in both spectral and temporal domains and it becomes difficult
to use simple filtering or straight forward signal processing technique to identify these
artifacts [39]. Artifacts segment rejection methods remove the segment or channel which
causes the artifact, but it also eliminates the important neural activities. For this reason the
artifacts removal methods, such as regression methods, filters or decomposition techniques,
are used to eliminate or correct the artifact without affecting the characteristics of raw
signal. The artifacts removal methods include: single artifact removal methods, blind source
separation (BSS), empirical mode decomposition (EMD), filters, signal space projection
(SSP), beamforming, artifact subspace reconstruction (ASR), and hybrid methods [39].

Several methods have been developed to classify and remove the artifacts from EEG
signals [37] [38]. Conventional methods to detect and remove artifacts employ, e.g., filters,
technologist visually inspects the data and remove artifacts-affected slots, called manual
methods, and automatic methods, that use mathematical algorithms.

1.5.1 Manual rejection

Manual rejection is a common practice in the BCI field. Trials are visually checked by
an expert, and those contaminated with artifacts are removed from the analysis it also has
the advantage of not being computationally demanding, as it is assumed that a human
expert has identified all the artifact-contaminated epochs. The drawbacks of this method
are: time-expensiveness and technical expertise, the process of selecting the artifact-free
trials may become subjective, and the eventual loss of data due to offline analysis [40].

1.5.2 Spatial filters

Adaptive filtering
It can be used to remove the physiological artifacts using them as the reference signal. The
weights are updated iteratively to subtract the artifact from the raw signal.
Low and high-pass filters
They are commonly used before other artifact removal methods, only if the frequency
bands of artifacts are known and do not overlap the EEG signals.
Bayesian filters
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Bayesian filters use the recorded signal to estimate the EEG state based on the probability.
It then use a prediction-correction technique with two models: time update model, describes
how the state updates from one time point to another, measurement model, that describes
how the recorded data relates to the internal state of the brain [41].

1.5.3 Single artifact removal methods

Regression model

This method uses one or more reference channel to identify and remove the artifacts as
electrooculography (EOG), it’s composed by a linear equation with two transmission
coefficients that correlate EEG and EOG. The main problem of this method is that
it fails when there is no reference channel [42].

Wavelet transform

Wavelet decomposition can be used to remove the artifacts from EEG signal using
detailed and approximation coefficients with thresholding. The detailed coefficient
is given by high pass filter and approximation coefficient is given by low pass filter.
The drawback of this method is that it cannot identify the artifacts when they are
overlapped with the spectral features [43].

1.5.4 Indipendent Component Analysis

Indipendent Component Analysis (ICA) is a method for decomposing data. ICA sepa-
rates a set of signal mixtures into a corresponding set of statistically independent com-
ponents (IC) [44]. ICA belongs to a class of blind source separation (BSS) methods
for separating data into underlying informational components. BSS is the most popular
method of artifact removal. It considers the EEG signals recorded and the original signals
as mixing matrix and gets the estimated sources of artifacts. Very little is known about the
recorded signals, and that is why these methods are called ’blind’ [45]. To this class belongs:
ICA, Canonical correlation analysis (CCA) that is an automatic method that reduces the
computational time due to second-order statistics method to fetch the components from
uncorrelated feature [46], Principal component analysis (PCA) that is used to construct
the mixing matrix based on normalized Eigen-vectors of covariance matrix, coefficients are
sorted, based on the first largest value of variance which makes them orthogonal [47], and
MCA is limited to few artifacts. It decomposes the signal depending on the morphology of
EEG signal whose is already stored in the database [48].

ICA is considered as an extension of the PCA technique. However, PCA optimizes the
covariance matrix of the data which represents second-order statistics, while ICA opti-
mizes higher-order statistics such as kurtosis. The main goal of this algorithm is to extract
independent components by maximizing the non-Gaussianity, minimizing the mutual in-
formation, or using maximum likelihood (ML) estimation method [49]. Considering the
spatial separation of the EEG signals, each sensor records a different mixture of the sources,
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modelling the mixing process with matrix multiplication the simple model equations are:

x(t) = As(t) (1.1)

Where A is an unknown matrix called the mixing matrix and x(t), s(t) are the two vectors
representing the observed signals and source signals respectively. The objective is to recover
the original signals, si(t) from only the observed vector xi(t). We obtain estimates for the
sources by first obtaining the “unmixing matrix” W, where, W = A−1. This enables an
estimate, ŝ(t), of the independent sources to be obtained:

ŝ(t) = Wx(t) (1.2)

The above descriptions are a generalization of the ICA decomposition [50], that takes
into account three fundamental assumptions: the sources being considered are statistically
independent, the independent components have non-Gaussian distribution and, the mixing
matrix is invertible. These assumption allow to decomposed the signals into ICs, knowing
only very little information about the mixing process and about the sources themselves.

1.5.5 Empirical mode decomposition (EMD)

EMD is used for non-stationary, non-linear signal processing. It decomposes the signal
using fractional gaussian noise (fGn) that removes artifacts using data adaptive detrending
approach. The basis of decomposition in this method is intrinsic mode function (IMF)
which are finite set of amplitude modulation (AM)-frequency modulation (FM) oscillating
components [51].

1.5.6 Signal space projection (SSP)

In the SSP methods, signals with stable spatial patterns are separated into set of
components in multidimensional space but the amplitude varies depending on time. It
works on the assumption that subspace of the neural signal is different or orthogonal
compared to artifact signal [52].

1.5.7 Hybrid methods

There are many hybrid methods proposed by few researchers to overcome the limita-
tions of single artifact removal methods: Adaptive filtering and BSS, Wavelet and BSS,
EMD and BSS, BSS and support vector machine (SVM), and others.

Artifact detection or removal is also addressed using machine learning and deep learning
models, considering it as hybrid methods. SVM combined with other removal methods is
the most used hybrid method as described by Rashmi et al. [37], followed by DL and
ANN. Also K-nearest neighbor (KNN), decision tree, linear regression, Bayesian model,
and Bagged tree ensemble model, are used, but less frequently.
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Many MATLAB/Pythons toolboxes have been recently developed to implement the
most common algorithms to detect and remove artefacts as described in table 1.1

1.6 Artifact subspace reconstruction (ASR)

ASR is an automatic, online-capable, component-based method that can remove tran-
sient or large-amplitude artifacts. ASR is similar to principal component analysis (PCA)-
based method in which large-variance components are rejected and channel data are re-
constructed from remaining components [53] with the difference that ASR automatically
identifies and utilizes clean portions of data to determine thresholds for rejecting com-
ponents. Chang et al. [54] studies showed that ASR cleaning improved the quality of a
subsequent ICA decompositions, and that this method is particularly effectives for eye and
muscle artefacts cancellation.

Figure 1.7: Example of EEG eye-blinking artefact cleaned with ASR (from [9]).
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Toolbox Year Authors Performances Types of arteficts Techniques
ReMAE 2020 Chen et al. [55] Muscle All state of the art methods
ICLabel 2019 Pion-Tonachini et al. [3] Outperform IC_MARC All ICA

CL-LDA
ASR
GAN-based classifiers

HEAR 2019 Kobler et al. [56] High-variance electrode artifacts Detection depends on electrode variance
IC_MARC 2015 Frolich et al. [57] Outperform ADJUST, MARA and FASTER All Multinomial regression
SASICA 2015 Chaumon et al. [58] All ICA
MNE 2014 Gramfort et al. [59] All ICA

Connectivity Analysis
Statistical Analysis
Python Implementation of Pre-Processing Pipeline
Automatic Bad Channel Detection and Interpolation

FORCe 2014 Daly et al. [60] Outperform LAMIC and FASTER Eye movement, movement, ECG and EMG Wavelet decomposition with ICA
EEGLAB 2013 Brunner et al. [61] All ICA

Artifact rjection
Filtering
Time/Frequency Analysis
Event-Related Statistics
Visualizations

ADJUST 2011 Mognon et al. [62] Artifacts from ERP ICA
FieldTrip 2011 Oostenveld et al. [63] MEG and EOG Time-Frequency Analysis

Source Reconstruction
MARA 2011 Winkler et al. [64] All ICA

Supervised learning
FASTER 2010 Nolan et al. [65] All Artifact rejection based on ICA
CORRMAP 2009 Viola et al. [66] Eye movement and heartbeat Based on ICA
LAMIC 2007 Nicolaou et al. [67] Artifacts for ERP Uses BSS with ICA. Followed by clustering.

Table 1.1: Table of Matlab and Python plugins and toolboxes



Chapter 2

State of art

In the recent years many methods of explainability were applied to EEG classifiers.
As said in the background 1.4, the automated classifiers such as ICLabel merge together
features extraction and classification and have a general purpose nature. They are based
on deep learning and neural network algorithms and for these reasons they are not able
to explain and demonstrate their decisions to human users. The XAI helps the users to
explain the decision making procedures of the algorithms highligghting those parts of the
data/features that are important for the results of the classifications.

After a research on Google scholar on the attention methods applied for the EEG
artifacts classification and removal with key words as "attention & EEG artifacts",or "deep
learning EEG classification artifacts & attention or CNN & attention", I found that quite
all the papers and articles applied the attention methods to classify the artifacts, but not to
explain how the algorithm of classification works. Searching for "explainability algorithms
& artifacts EEG classifier", or "EEG classifier & and explainability", the results are more
exhaustive.

The results obtained highlights that, at the state of the art, LRP [35] and GradCAM
are two of the most used algorithms for explainability. LRP is a gradient-based feature
attribution approach. The core idea underlying the LRP algorithm, for attributing rele-
vance to individual input nodes, is to trace back contributions to the final output node
layer by layer. It utilizes the gradients and activations of the network to estimate relevance,
outputting both positive and negative relevance indicating the features that provide evi-
dence of a sample being assigned to a class (for positive relevance), or in contrast indicates
features that provide evidence for a sample being assigned to classes other than what it
is ultimately assigned to by the classifier (for negative relevance) [36]. GradCAM, as de-
scribed in the section 3.3, is a specific CAM implementation that use class-specific gradient
information to localize important regions of the images, in general, which supported the
classification as favorable outcome.

In the last six years several applications of these algorithms were developed for various
contexts. Ellis and colleagues [36], for example, applied ablation and LRP to evaluate the
approach within the context of automated sleep stage classification and find that, for the
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most part, the explainability results are highly consistent with clinical guidelines. Other
researchers in the past years used LRP. For example, Sturm et al. [68] applied LRP to
solve a DNN classification task related to motor-imaginary BCI. They used LRP to produce
heatmaps that indicate the relevance of each data point of a spatio-temporal EEG epoch
for the classifier’s decision in single trial. Also GradCAM is widely used as algorithm
for explainability. Li and colleagues [69], for example, applied GradCAM visualization
technology to the EEG channel selection for a BCI application. In particular they used a
recurrent-CNN structure for EEG intention recognition [69], preprocessing preserves, and
captures spatial information by converting the original one-dimensional EEG data vector
into a two-dimensional EEG data matrix. Then they applied GradCAM for the channel
selection. One other example of application of an algorithm for explainability is given by
Ye et al. [70]. In their work they evaluate the performance of a three-dimensional joint
convolutional and recurrent neural network for the detection of intracranial hemorrhages
in non-contrast head CT. They applied GradCAM to highlight important regions in the
image leading to the decision of the algorithm. Comparing the important areas in the heat
map and the bleeding positions in the CT images, the algorithm localize in every slice the
positions of the bleeding areas and predicts the correct type of intracranial hemorrhage.
Also Chen and colleagues [71] and Jonas and colleagues [72] implemented GradCAM to
identify the class-discriminative region of the feature maps, and the EEG features that the
two CNN algorithms derive. Respectively, they detect abnormalities in EEGs of children
with ADHD and predict the clinical outcome in comatose patients after cardiac attack.

GradCAM was, also, tested against other algorithms for explainability, as LRP, as
shown by Arias-Duart and colleagues [73]. They compare some popular explainability
techniques such as LIME or SHAP, across several CNN architectures and classification EEG
datasets. Looking at performances of GradCAM, Arias-Duart and collegues demonstrates
the best results on average, and robustness to noisy models. LRP, instead, performs very
well in high accuracy models, outperforming GradCAM, but on other less accurate models
LRP does not even reach the average results of GradCAM. Also LIME performs remarkably
well for high accuracy model but for lower accuracy models it becomes less reliable. For the
good performances demonstrated when applied to CNN architectures, and against other
explainability algorithms we decided to use GradCAM to highlight the region of the data
that our implemented CNN uses to classify the EEG artifacts.



Chapter 3

Methods

In this chapter we firstly discuss ICLabel, an EEGLAB plug-in, in the section 3.1, that
we compare against our implemented CNN, discussed in section 3.4. It’s a simple neural
network, that I have created in this thesis work, similar to the net of ICLabel. We also
applied GradCAM, discussed in section 3.3, to the CNN implemented to understand what
are the most important regions of the data that the net uses to classify the EEG artifacts.
In the section 3.2 we discuss about short-time Fourier transform we used to represent the
time-frequency images of the ICs contained in the dataset. Instead, the dataset is discussed
in section 3.6. All the details about the implementation are given in the section 3.5.

3.1 EEGLAB’s ICLabel

EEGLAB is a widely used open-source MATLAB toolbox for analysis of EEG data. It
is an open-source software project of the Swartz Center for Computational Neuroscience
(SCCN) of the University of California San Diego (UCSD) [61]. The data analysis func-
tions available on EEGLAB include: data filtering, data epoch extraction, baseline removal,
average reference conversion, data resampling and extraction of data epochs. EEGLAB
also includes methods allowing users to remove data channels, epochs, and components
dominated by non-neural artifacts, by accepting or rejecting visually-cued EEGLAB rec-
ommendations derived from signal processing and information measures [74]. EEGLAB
uses a single structure to store data, acquisition parameters, events, channel locations, and
epoch information as an EEGLAB dataset.

ICLabel is an EEGLAB plug-in presented by Pion-Tonachini and colleagues in 2019
[3]. It’s a new CNN-based deep learning architecture to automatically classify ICs into
seven classes i.e. brain, eye, heart, muscle ,line noise , channel noise and other. Moreover,
they proposed to train and validate the classifier using an ICs dataset that was collected
in a crowdsourcing way on a proper website [75].

• Brain ICs contain activity from locally synchronously activity in one (or sometimes
two well-connected) cortical patches, they tend to have power spectral densities with
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inversely related frequency and power, and exhibit increased power in frequency
bands between 5 and 30 Hz.

• Muscle ICs, are surface EMG measures recorded using EEG electrodes, they con-
tain activity originating from groups of muscle motor units (MU) and strong high-
frequency broadband activity aggregating many MU action potentials (MUAP) dur-
ing muscle contractions and periods of static tension.

• Eye ICs describe activity originating from the eyes such as horizontal eye movements,
ICs blinks and vertical eye movements.

• Heart ICs are rare electrocardiographic (ECG) signals recorded using scalp EEG
electrodes. They are recognizable by the clear QRS complexes.

• Line noise ICs capture the effects of line current noise emanating from nearby
electrical fixtures or poorly grounded EEG amplifiers. They are recognizable by their
high concentration of power at either 50 Hz or 60 Hz.

• Channel noise ICs indicate that some portion of the signal recorded at an electrode
channel is already nearly statistically independent of those from other channels. These
components can be produced by high impedance at the scalp-electrode junction or
physical electrode movement, and are typically an indication of poor signal quality
or large artifacts affecting single channels.

• Other ICs are ICs that fit none of the previous types.

ICLabel is trained by Pion-Tonachini and collegues with a dataset that has been drawn
from 6352 EEG recordings collected from storage drives at the Swartz Center for Com-
putational Neuroscience (SCCN) at UC San Diego. These recordings result from different
studies where the participants were involved in different activities such as pressing bottoms
or throwing darts. Also the numbers of electrodes and their positions differ across studies.

The website [75] has a key role in collect labels, from contributors. The website collected
over 34,000 suggested labels on over 8000 ICs, each labeled IC has an average of 3.8
suggested labels associated with it. These labels are processed using the crowd labeling
(CL) algorithm and the “crowd labeling latent Dirichlet allocation” (CL-LDA) to estimates
“true labels” as a compositional vector (vector of nonnegative elements that sum to one)
for each IC using the redundant labels from different labelers [75]. All these labels are used
to trian the classifier. Figure 3.1 presents an example of output from ICLabel for a set of
ICs. Each topographic map represents one IC with its weights for each electrode, and each
subplot includes the suggested class ICLabel assigns to the topography. For example, IC
19 is assigned to brain with a probability of 99.5% and IC 29 is assigned to line noise
with a probability of 93.6%.

Further details are provided to the user to check the time-course of the corresponding
IC, its power spectrum, and the other classes probability, as shown in Figure 3.2. Particu-
larly, the following information are provided:
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Figure 3.1: ICs ICLabel classification example

a. Scalp topography (top left panel in figure 3.2): it shows what weight the IC has on
each electrode by interpolating and extrapolating IC projections to each electrode
position into a standard projection image across the scalp. The green color code rep-
resents no effect, red and blue show positive and negative contributions, respectively.

b. ERP image (bottom left panel in figure 3.2): ERP stands for "event related potential",
which is the repeatable response of the brain to a stimulus.

c. Component time series (top right panel in figure 3.2): it shows a segment of activity
from entire time course of the IC.

d. Activity power spectrum (bottom right panel in figure 3.2): it shows the power spec-
trum of the IC activity across the entire dataset. It’s calculated using a variation of
Welch’s method .

e. IC number and percent data variance accounted for (middle left panel in figure 3.2):
Percent data variance accounted for describing how much of the original variance in
the channel data can be attributed to this IC.

f. Probability results (middle top panel in figure 3.2): it shows the probability that the
IC feature belongs to each class.

Pion-Tonachini and colleagues [3] has already compared ICLabel against other publicly
available EEG IC classifiers as MARA, ADJUST, FASTER, SASICA and IC-MARC, that
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are only a restricted group of automatic method classifier: publicly available, that do not
require any information beyond the ICA-decomposed EEG recordings, with generally avail-
able meta-data such as electrode locations, and that have at minimum a category for Brain
ICs. This comparison demonstrates that ICLabel computes labels ten times faster than
those classifiers. Also recent application of ICLabel on other different classifiers, such as
standardized and automated EEG processing open-source scripts (EPOS), demonstrates
its good performances. One other example, comparing EPOS with the Harvard automated
processing pipeline for EEG (HAPPE) [76], with the same dataset, as maid by Rodriugues
et al. [77], ICLabel showed similar accuracy performances but more variance restricting and
even less residual artifact prone fashion. This proves once again the optimal performances
of ICLabel and its promising value to support experts and non-experts in objective distin-
guishing brain-related ICs from purely artifactual ICs.

Figure 3.2: Example of ICLabel output

3.2 Short-Time Fourier Transform

The short-time Fourier Transform (STFT) is a Fourier-related transform used to deter-
mine the sinusoidal frequency and phase content of local sections of a signal as it changes
over time [78]. The STFT has a fundamental property that simplifies the interpretation of
the resultant distribution, i. e. magnitude-wise shift invariance in both time and frequency.
In practice, the procedure for computing STFTs is to divide a longer time signal into
shorter segments of equal length and then compute the Fourier transform separately on
each shorter segment. This reveals the Fourier spectrum on each shorter segment. One then
usually plots the changing spectra as a function of time, known as a spectrogram [79]. The
Fourier transform decomposes space-time dependent functions into functions depending on
spatial frequency or temporal frequency.

The mathematical definition of continuos time short-time Fourier transform is:

STFT {x(t)} (τ, ω) ≡ X (τ, ω) =

∫︂ ∞

−∞
x(t)ω(t− τ)e−iωtdt (3.1)
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where ω(τ) is the window function, commonly a Hann window or Gaussian window
centered around zero, and x(t) is the signal to be transformed X (τ, ω)is essentially the
Fourier transform of x(t)ω(t− τ) a complex function representing the phase and magnitude
of the signal over time and frequency.

3.3 Gradient-weighted Class Activation Mapping (Grad-CAM)

Grad-CAM is a specific CAM implementation that uses class-specific gradient informa-
tion to localize important regions of the data. The algorithm identifies which EEG features
were used by a network to classify an EEG epoch as favorable or unfavorable outcome,
and also to understand failures of the network. A heatmap is created by the size of the
features maps from the last convolutional layer of the classification network to highlight
specific regions of the EEG segments which supported the classification as favorable out-
come. Grad-CAM is also used to highlights the so-called “counterfactual explanations”, i.e.
regions that if removed could change the algorithm’s classification. With this approach
Grad-CAM can also highlights regions supportive of a classification as favorable outcome
[80].

In order to obtain the class discriminative localization map Grad-CAM Lc
Grad−CAM ∈

Rc×t of width u and height v for any class c, compute the gradient of the score for class c,
yc (before the softmax), with respect to feature maps Ak of a convolutional layer, i.e. ∂yc

∂Ak .
These gradients flowing back are global-average-pooled to obtain the neuron importance
weight αc

k:

αc
k =

global average pooling⏟ ⏞⏞ ⏟
1

Z

∑︂
i

∑︂
j

∂yc

∂Aijk⏞ ⏟⏟ ⏞
gradients via backprop

(3.2)

This weight αc
k represents a partial linearization of the deep network downstream from

A, and captures the ‘importance’ of feature map k for a target class c. Then, a weighted
combination of forward activation maps, and follow it by a ReLU, are applied to obtain:

Lc
Grad−CAM = ReLU

(︄∑︂
k

αc
kA

k

)︄
⏞ ⏟⏟ ⏞

linear combination

(3.3)

In general, yc need to be the class score produced by an image classification CNN. It could
be any differentiable activation including words from a caption or the answer to a question,
as described by Selvaraju et al. [81]. In figure 3.3 there’s an example and explanation of
the Grad-CAM structure.
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Figure 3.3: Example of Grad-CAM applied to highlights the damages of Covid-19 on lungs.

3.4 CNN

The CNN used in this thesis work is composed by two dimensional (2D) convolutional
layers that were created with convolutional2dLayer. Between each convolutional layer there
are Batch normalization layers, created with the function batchNormalizationLayer, that
normalize the activations and gradients propagating through the network, making it the
training an easier optimization problem. The batch normalization layer is followed by a
nonlinear activation function, i.e. the rectified linear unit (ReLU), created with the function
reluLayer. Convolutional layers (with activation functions) are followed by a down-sampling
operation that reduces the spatial size of the feature map and removes redundant spatial
information. Down-sampling makes it possible to increase the number of filters in deeper
convolutional layers without increasing the required amount of computation per layer.
For the down-sampling were created a max pooling layer, using maxPooling2dLayer. The
max pooling layer returns the maximum values of rectangular regions of inputs, specified
by the first argument, poolSize. The ’Stride’ name-value pair argument specifies the step
size that the training function takes as it scans along the input. The convolutional and
down-sampling layers are followed by one fully connected layers, created with the function
fullyConnectedLayer that connect the neurons to all the neurons in the preceding layer.
This layer combines all the features learned by the previous layers across the image to
identify the larger patterns. The last fully connected layer combines the features to classify
the images. Therefore, the OutputSize parameter in the last fully connected layer is equal
to the number of classes in the target data. Than, the softmax activation function, soft-
maxLayer, normalizes the output of the fully connected layer. The output of the softmax
layer consists of positive numbers that sum to one. The final layer is the classification
layer, classificationLayer. This layer uses the probabilities returned by the softmax activa-
tion function for each input, to assign the input to one of the mutually exclusive classes
and compute the loss.
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3.5 Implementation

Before creating the CNN as described before, five tools were devolped during this thesis
work to adapt the data from the dataset to the input that the CNN requires to do the
training of the net. The first tool is formatDATA(), this function takes the folder "trail"
where are contained the time course for each ICs of several acquisitions of the EEG signal
of the subject, it puts together all the ICs classified as brain and not brain in two folders
"dataIC" and "dataNOIC" contained in the MATLAB struct "EEG". The names of the
ICs already classified as brain or not brain are contained in the folders "brain_ic_vs"
contained in the struct "comp_class". This classification was made by experts and pro-
fessors at University of La Sapienza of Rome. Then the tools estrazioneDATA() used the
function formatDATA() to extract the data for each subject saving each "EEG" MATLAB
structure of the subject into the folders "EEG" and calculate the maximum and mini-
mum of the amplitude of all the ICs. The tool createImages() uses this the maximum and
minimum of the amplitude to calculate and normalize each ICs, the tool uses a short-time
Fourier Transform (STFT) that is generally used to analyze how the frequency content of a
nonstationary signal changes over time. The function spectrogram(), plot the spectrogram
with a sample rate of 256 Hz (as used in the dataset), produced by the STFT, of all the
ICs extracted before. The spectrograms have a range of frequency between 0 Hz and 120
Hz and a time renage of 0 to 6 minutes that correspond with the acquisition time of the
original data. The spectrograms are created for each IC of each subject and saved in a
folder named "BrainIC" and "BrainNOIC" respectively for the ICs classified as brain and
those classified as not brain (each subject has is folders named "BrainIC" followed by the
number of the subject).

The CNN developed during this thesis work is composed by three, two dimensional (2D)
convolutional layers, two pooling layers, three batch normalization layers, three ReLU ac-
tivation functions, one fully connected layer, one softmax layer and one classification layer.
The three convolutional layers were created using convolutional2dLayer with a filter size of
5-by-5 and a number of layer, respectively, of 8 for the first convolutional layer, 16 for the
second, and 32 for the third, these are the number of neurons in the layer that are connected
to the same region of the input. Between each convolutional layer there are Batch normal-
ization layers, created with the function batchNormalizationLayer. Convolutional layers
(with activation functions) are followed by a max pooling layer, using maxPooling2dLayer
with size of the rectangular region of [2,2]. The convolutional and down-sampling layers
are followed by one fully connected layers, created with the function fullyConnectedLayer
. The OutputSize parameter is 2, corresponding to the 2 classes of output: ICs classified
as brain "BrainIC" and ICs classified as not brain "BrainNON_IC". Than, there is the
softmax activation function, softmaxLayer, and at the end the classification layer, classifi-
cationLayer.

To train the network we had to choose some subjects because the number of samples
differs from one subject to another and to have all the spectrograms with the same di-
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mensions and do not eliminate too much samples from some subjects we decided to don’t
consider some subjects. The ICs used for the training were 2008, randomly selected in
order to have 256 ICs for each of the two classes of output. By doing this, we used 512
ICs for the training that correspond to the 19% of the total. 215 ICs, that belongs to the
two subjects excluded from training, that corresponds to the 8% of the total, were used
for the test and the validation of the net. Respectively all the ICs of one subject 107 were
used for the test and the 108 ICs of the other subject were used for the validation. With
the data correctly elaborated in the two folders "BrainIC" and "BrainNON_IC", we pro-
ceeded with the training tests of the net with stochastic gradient descent algorithm with
momentum (SGDM) [82] and ADAM. These two algorithms are considered the most effi-
cient algorithms for stochastic optimization in the training process of convolutional neural
network, as described by Kingma and colleagues [83]. SGDM is an algorithm that can
oscillate along the path of steepest descent towards the optimum, adding a momentum
term to the parameter update to reduce this oscillation. ADAM is another algorithm for
first-order gradient-based optimization of stochastic objective functions, based on adaptive
estimates of lower-order moments [83]. It uses a parameter update with single learning
rate, but with an added momentum term. It keeps an element-wise moving average of both
the parameter gradients and their squared values.

After some tests changing the parameters of training we compared the performances
between ICLabel and the best results of the CNN’s training, as described in the chapter
4, to see how far the performances of the CNN are from those of ICLabel. We also applied
GradCAM to the CNN to understand what are the most important parts of the spec-
trogram that the net uses to classify the data. The tool applyGradCAM (), simply applied
GradCAM, with the MATLAB built-in function gradCAM (), to the CNN, giving as output
an heatmap. This heatmap were overlaid on an IC of the dataset to higlights the regions
of the spectrogram that the CNN uses to classy the IC into brain IC or not.

3.6 Dataset

The dataset used was created by Cosync Lab, that is a scientific laboratory of the
Department of Psychology of University of La Sapienza of Rome. The dataset was prevously
used by Milad in his MSc thesis (april, 2022) and is composed by 31 folders, one for each
subjects, where are contained the ICA classification outputs. In each folder there is a
MATLAB matrix ".mat" file containing:

• options with parameters used by the algorithm, E.g., filters, removed epochs, channel
number, etc.

• comp_class that is a MATLAB structure with the classification results. In this
structure are saved the following fields :

– trial that is the time course for each component.
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– topo that is a matrix with dimension of number of channels by number of ICs,
and corresponds to the ICA spheres.

– unmixing that is a matrix with dimension of number of ICs by number of
channels, and corresponds to the ICA weights.

– topolabel contains the channels labels

– class that is a MATLAB structure containing the classification results. In par-
ticular the field "brain_ic_vs" is a vector with the components classified as
brain. It also contains the values for each threshold for each component (e.g.,
"elc_signal_correlation" ).

The dataset contains a total of 2677 ICs of which 2008 ICs, that correspond at the 75%
of the total, were used to the training the CNN model (see Section 3.4). These ICs are
subdivided into the two folders "BrainIC" and "BrainNON_IC" respectively, 256 in the
folder "BrainIC" and 1499 in the folder "BrainNON_IC". For the validation o the CNN
were used 108 ICs that corresponds to the 4% and for the test were used 107 ICs.
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Chapter 4

Results and discussion

What we expected from the comparison between ICLabel and the CNN implemented
is that the accuracy of ICLabel could be better than the CNN’s one, because the training
of ICLabel is based on more data coming from different acquisition tests, instead the CNN
implemented is based on a single dataset with only 31 subjects. Also, ICLabel classifies
the data in seven different class instead CNN classifies the data in only two classes, this
could determine differences in accuracy results.

After several training tests of the CNN, the best result in accuracy was obtained with
ADAM with an initial learning rate of 0.01, a maximum number of epochs of 20 and with
a frequency of network validation in number of iterations of 50 as in figure 4.1. The CNN
demonstrates good results for validation accuracy 98.15% and 99.07% for test accuracy.
We might explain this performance considering that: firstly the CNN implemented is a
simple net work that classifies only two classes i.e. it assigns the artifacts in only one class;
secondly, the training of the CNN is based on only 256 ICs for Brain class and 256 ICs for
not Brain class from the same dataset. We also made tests and validation on two different
subjects from the same dataset and maybe the application of this net on other data could
give less accurate results.

Comparing the results obtained by ICLabel and the simple CNN we can affirm that
the number of ICs classified by the simple CNN of one subject are the same of those of
ICLabel classification on the same subject. This is a good result, but we have to consider
that this comparison is made with only one subject, test and validation consider only one
subject, and the training uses not all the subjects. To do things properly we should have
trained several times the net work choosing two different subjects each time for test and
validation and using the others for training. However the results obtained are good and
better of what we expected.

What we expected by the application of GradCAM on the CNN is closed to the results
obtained. Certainly, what we expect is that GradCAM highlights some regions of the IC
spectrogram that are important for the classification, and that this region could be related
to certain specific frequency bands of the EEG. What we obtained is represented in figure
4.2, where the spectrogram of a brian IC represents the time-frequency visualization of
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Figure 4.1: Best training results of the CNN implemented, with ADAM opitmization.

the IC (Fig. 4.2 a) and the GradCAM result (Fig. 4.2 b), on the same IC, represents the
important regions for the classification, of the spectrogram. These results are what we
expected.

In the figure 4.3 there’s the rapresentation of the spectrogram of a not brain IC and the
GradCAM result related to this IC. In this case we could notice that the regions highlighted
are bigger then the figure 4.2 and not related to only one frequency. We could speculate
that, as expected, the CNN is driven by components such as the power line noise (50 Hz
and higher harmonics) to identify non-brain components, while it focuses on the range 1-30
Hz to identify brain components.

4.1 Conclusions

As described, our CNN has good performances, we compared them to those of ICLabel
as in thesis work of Milad [5] where 99% of the ICs of the dataset that we also used are
classified as brain. The CNN the validation accuracy is of 98.15% and the test accuracy is
of 99% similar to the performances of ICLabel. We applied GradCAM to better understand
how ICLabel and similar CNN classify the EEG artifacts. IClabel classifies the artifacts
in seven different classes and is trained on several dataset with a huge number of ICs.
Our CNN si trained in a small dataset that doesn’t contain all the variability on which
ICLabel is trained. So, more studies are needed. What could be done in the future is to
create a CNN more similar to the IClabel’s one with the same layers with seven output
classes and three inputs. Maybe this networks could be trained in a dataset similar to the
dataset used by Pion-Tonachini to trian ICLabel. Even though the results on GradCAM
need more investigations, this work was useful to set up a general framework to explain
the ICs automatic classification and to reveal the importance of the 50Hz line noise in the
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Figure 4.2: Brain IC spectrogram and GradCAM heatmap output.

Figure 4.3: Not brain IC spectrogram and GradCAM heatmap output.
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classification of the ICs.
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