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Abstract

The evolution of prices in markets results from the interaction of traders which submit
orders to buy or sell. An order book is a list that contains orders sent to a market
for a particular commodity or a financial instrument. Orders enter and quit the order
book following rules that depends on the particular market. Maybe the most simple and
famous order book model is the one named after Stigler. It is defined by a Markovian
dynamics where buy and sell orders are placed at random within a price range and a
pair of buy-sell orders is cancelled any time a sell order is placed on the left of a buy
order. In spite of its simple definition the Stigler model has interesting features: one
of these is that the dynamics self-organise to criticality. Indeed the Stigler model is
closely related to the Bak-Sneppen model and queueing models with priority which are
also known to show self-organised criticality. In the Stigler model self-organisation is
related to the existence of a competitive window, meaning that in the long run only
orders in a restricted price range are executed. Aim of the thesis is to study through
probability/complex system tools and simulations the behavior of the Stigler model.

L’andamento dei prezzi nei mercati è il risultato dell’interazione complessa tra i vari
traders che inviano ordini di acquisto o di vendita. Un order book è un registro che
tiene traccia di tutti gli ordini inviati a un mercato per un particolare bene o strumento
finanziario. Gli ordini vengono registrati e rimossi dall’order book in base alle regole del
mercato specifico che si sta considerando. Forse il modello di order book più semplice e
famoso è quello che prende il nome da Stigler. È definito da una dinamica markoviana in
cui gli ordini di acquisto e di vendita sono collocati in modo casuale all’interno di un in-
tervallo di prezzi e una coppia di ordini di acquisto e di vendita viene cancellata ogni volta
che un ordine di vendita viene collocato a sinistra di un ordine di acquisto. Nonostante
la sua semplice definizione, il modello di Stigler presenta caratteristiche interessanti: una
di queste è che la dinamica fa evolvere il sistema a uno stato stazionario dalle proprietà
critiche (“self-organised criticality”) . Il modello di Stigler è infatti strettamente corre-
lato al modello di Bak-Sneppen e ai “queueing models with priority”, anch’essi noti per
mostrare la self-organised criticality. Nel modello di Stigler, la self-organised criticality
è legata all’esistenza di una finestra competitiva, il che significa che nel lungo periodo
vengono eseguiti solo gli ordini collocati in un intervallo di prezzo ristretto. L’obiettivo
della tesi è studiare attraverso strumenti di indagine propri della probabilità, dei sistemi
complessi e simulazioni il comportamento del modello Stigler.
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Introduction

A market is a dynamic and organised environment, where buyers and sellers arrange
transactions, exchanging goods, services or resources. Markets have existed since the
beginning of times, long before the advent of formal currencies, when human societies
initially engaged in barter, bargaining basic commodities. With the introduction of
monetary systems, traders gradually transitioned to buying and selling goods under in-
creasingly regulated circumstances. Over time, financial markets evolved, enabling the
trading of specific stocks and in the modern era they have become decidedly elaborate
and interdependent with a wide range of possible transactions and participants.
Considering this framework, the complexity of modern financial markets is easily no-
ticeable and it is due to the interplay of various factors such as numerous participants,
intricate trading systems and tangled macroeconomic variables. Scientists have long
been interested in studying and trying to unravel this complexity in order to predict
trends and develop adequate risk management strategies. Since the beginning of the
last century, economists started developing several financial mathematical models in or-
der to help investors and decision-makers optimally allocate their resources to achieve
the highest possible level of profitability.
Standard economic theory was indeed initially built on one fundamental assumption:
utility maximisation. However every person who expected systematic profit from trades
and tried to foresee price fluctuations had to be confronted with the fundamental corner-
stone of financial theory: the e�cient market hypothesis. It asserts that any information
one tries to utilise to gain profit from price fluctuations has already been incorporated
into the existing price, making impossible to predict future prices from the observation
of past ones.
In proof of this, in the 1960s and 1980s market experiments questioned the mere possi-
bility to play the market with a delineated strategy [4]. In these models the performance
of markets with human traders was confronted with the performance of markets with
machine traders, that submitted random bids and o↵ers with the only budget constraint
of not buying or selling at loss. The results showed that Adam Smith’s invisible hand
might have been more powerful than some may have thought: in fact humans and com-
puters obtained on average the same market results. For this reason economists began
to develop simplified financial market models in which traders have no intelligence: they
do not seek to optimize profits, they cannot inspect or even remember. Investors behav-
ior can be therefore considered random and not driven by any specific rational strategy.

1



INTRODUCTION

These are the “zero intelligence” models. The simplest of all financial markets is the
limit-order market, which is characterised by the employment of an order book, an elec-
tronic device which records all the orders sent to a market with their features (i.e. the
time of placement of the order, its execution, its type, and so on). Hence this apparatus
contains fundamental and powerful market information, that o↵ers a profound under-
standing of the financial market dynamics. For this very reason any model developed
to simulate an order-driven market must be confronted with the empirical trend data of
order books and must capture the salient features of real markets.

This dissertation will focus on the study of the characteristics of limit-order mar-
kets with the analysis of the Stigler (1964) model [9], one of the first order book zero-
intelligence models, in which orders of unit size arrive according to independent Poisson
processes. This simple yet eloquent model has been separately reinvented by Luckock
(2003) [6], whose analysis yielded steady state distributions for the best ask and best
bid prices.
My approach has been to start with the characteristics of the limit order book, assessing
its fundamental properties. Hence, Chapter 1 is a basic description of stylised facts on
limit order books; it will outline the experimental evidence of the analysis of price change
and waiting times distributions, extracted from various real markets. Then the focus
will shift to the mathematical model in consideration: Chapter 2 presents an in-depth
review of the Stigler model, which is defined by a Markovian dynamics where buy and
sell orders are placed at random within a price range and a pair of buy-sell orders is
cancelled any time a sell order is placed on the left of a buy order. The analysis will
emphasise that the model shows two interesting market features: one of these is that
the dynamics self-organise to criticality. Indeed it will become apparent that the Stigler
model is closely related to the Bak-Sneppen model and queueing models with priority,
that are known to show self-organised criticality. In this case self-organisation is related
to the existence of a competitive window, meaning that in the long run only orders in
a restricted price range are executed. The existence of this competitive window will
be shown both mathematically and numerically with computer simulations, that will
confirm the results obtained analytically. Appendix A contains the details of the math-
ematical steps involved in the demonstration and Appendix B the program code utilised
for the Mathematica simulations.
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Chapter 1

Limit Order Books: stylised facts

In the world there are many di↵erent types of stock markets and each is di↵erent from
the other in the way each one organises its trade. Typically, the most e↵ective markets
are those where both buyers and sellers engage in an active competition. In case the
traded goods are completely standardised, a trader takes part in the market competition
by stating the price and the quantity of the items they are prepared to purchase or sell.
An operating marketplace for standardised goods, wherein both buyers and sellers can
propose their o↵ers and are able to score a trade by accepting a proposal, is known
as a “continuous double action” (CDA). This mechanism by which market participants
issue orders (either to buy or sell) under conditions of price and quantity provides a
useful generalisation of the process of haggling, phenomenon ubiquitous in every trading
society.
The continuous double action mechanism finds particular use in catering to the require-
ments of modern financial markets, and is the basis of almost all automated trading
systems that have been implemented since 1980s with the computerisation of trades.
These systems rely on electronic limit orders books, a list where all unexecuted or par-
tially executed orders are stored and displayed while awaiting execution. Therefore, it
is apparent that understanding the structure and the mechanisms of the CDA and the
order books is fundamental for anyone who wants to extract a model to describe this
complex system.

1.1 Order placement

What we have established is that whatever the structure of the stock market is, traders
issue orders under various di↵erent conditions that are peculiar to the particular market
under consideration. In general once the order is issued, it is listed in the order book
and it is executed as soon as an order of the opposite type (buy/sell) can match the
appropriate requirements. But what is in practice a limit order book? [1] It is a tool
extensively utilised in the majority of organised electronic markets. It means that all
major equity, future or derivative markets record the interests of all their market par-
ticipants in a central computer system. In essence, it is a computer file in which orders
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to sell (ask) and buy (bid) are listed according to the following characteristics:

1. the sign of the order: this records the type of the order, whether an ask or bid

2. the price, that the trader regards as realistic or achievable

3. the quantity, i.e. the specific amount of goods the trader is interested in buying or
selling

4. the time of placement, i.e. a timestamp that indicates the order’s registration time

5. the time of execution, i.e. a timestamp that indicates the order’s execution time

In other words the limit order book is a snapshot of all the possible transactions
feasible at any given moment within a particular market. This dynamic list is updated
generally (depending on the peculiar market) at a rate of seconds and thus the state of
the order book evolves every time transactions occur. The process continues as shown
schematically in 1.1:

Figure 1.1: Schematic representation of a limit-order book (figure from “Econophysics
and sociophysics: trends and perspectives.” (2006), Chakrabarti, Bikas K., Anirban
Chakraborti, and Arnab Chatterjee, eds.)

Therefore, in order-driven markets, buy and sell orders are matched and executed
according to specific priority rules. Priority is always determined firstly by price, and in
many markets, by the time of arrival, following the principle of “first in first out”, but
it always depends on the peculiarity of the specific market.

Until now, we have always taken into consideration only limit markets and limit order
books. This specification is due to the order type that a trader can issue. Essentially,
there are three types of orders:

• Limit orders: traders submit orders to buy a specific number of goods at a price
that does not surpass a maximum one is willing to pay, or to sell a defined quantity
at a price not lower than a specified minimum. If it can be matched with any
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opposite orders already lined up in the order book, a new limit order is promptly
carried out against the most competitive. If not, the order joins the queue of
unexecuted asks and bids in the order book, where it remains until it is either
executed or cancelled

• Market orders: orders to buy or sell a designated quantity at the best price
presently available. It has to be executed as soon and comprehensively as pos-
sible.

• Cancellation orders: orders to cancel existing limit orders previously submitted.

While some financial markets accepts many hybrids of the three basic orders de-
scribed above, there is a growing trend, seen in major exchanges as those in Paris,
Tokyo, Hong Kong, Sydney, Mumbai to function as pure limit order markets.

1.2 Empirical order book properties

In a limit order market, the determination of transaction prices depends on the interplay
of incoming orders within the existing order book. The study of the limit order book
therefore makes it possible to infer the stochastic price dynamics. Since these dynam-
ics describe the behavior of the market, an understanding of this interaction would be
of considerable value for the creation of an approachable model. For this reason the
existence of the order book is of paramount importance: with the digitisation of such
devices, detailed market data became easily available and this allowed to quantitatively
assess the condition of a particular market at any time, extracting basic empirical find-
ings characteristic of limit order markets. Therefore any model that aims to explain and
foresee economic phenomena must show these stylised facts.

Here are the basic empirical findings emerging from the study of limit order books
[8]. We will analyse both price and waiting times distributions, even if just the latter
will be useful for the validation of the model under consideration. Furthermore, it is
important to keep in mind that even the slightest change in the functioning of the limit
market can lead to significant di↵erence in trends between one stock market and another.

As regards price statistics, let Zi be the price at which a transaction takes place at
the instant T i. This quantity, that is known as the ‘current price’, can be easily inferred
from the assessment of the order book. We can then evaluate how far from the current
price the limit orders are placed. Let �Z be this distance. The study of empirical data
shows that the distribution of �Z is governed by the following power law:

P (�Z) _ (�Z)�1�µ
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The value of the exponent µ is controversial and can vary from w 0.5 to w 1.4. The study
of the distribution of orders placed at a distance �Z from the current price, for France
Telecom traded at Paris Bourse in 2001 shows exactly this tendency. This distribution
can be seen in the following figure 1.2 where the line in the power law was fitted with a
value of µ w 0.5:

Figure 1.2: Distribution of orders placed at a distance �Z from the current price (in
Euros), for France Telecom traded at Paris Bourse in 2001. The line in the power law
was fitted with a value of µ w 0.5 (figure from [8]).

As regards the Stigler model, a significant temporal characteristic of the order place-
ment is the lifespan of orders, the so called “waiting time” that indicates how long a
specific order remains available within the order book. In the order book there are two
scenarios that lead to the exit of an order from the order book: either an order is exe-
cuted if matched with a complementary one, or it can be artificially removed from the
order book upon request. The latter case can happen if the broker who had placed the
order decides to cancel it or an order can be automatically removed upon expiration after
a predefined period. In the Stigler model, we will just take into consideration limit order
books, so cancellation orders fall outside the scope of this dissertation. Nonetheless, the
distribution of the lifetime �T of both executed and removed orders is also governed by
a power-law, as the following one:

P (�T ) _ (�T )�1�↵

The value of the exponent varies from executed and removed orders. For limit orders
empirical findings show that it is w 0.5. Again, the study of the distribution of waiting
times of orders (in seconds) for France Telecom traded at Paris Bourse in 2001 shows
exactly this tendency. This distribution can be seen in the following figure 1.3, where
the line in the power law was fitted with a value of ↵ w 0.5:

6
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Figure 1.3: Distribution of waiting times of orders (in seconds) for France Telecom traded
at Paris Bourse in 2001. The line in the power law was fitted with a value of ↵ w 0.5
(figure from [8]).

As regards our model, this particular finding will be extremely helpful since the
Stigler model will show the exact same behavior for the distribution of the lifetime of
orders within the order book.
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Chapter 2

The Stigler Model

One of the first attempts to simulate a financial market was undertaken by George J.
Stigler. In 1964 [9] he proposed a simple model in which limit orders, asks or bids, were
randomly submitted in the order book. Their price was uniformly distributed across
the possible price interval and when an ask/bid order crossed the opposite best bid/ask
order, it was executed. All orders were of unit size.

Stigler’s model was then reinvented by Hugh Luckock in 2003, who was apparently
unaware of Stigler’s work. Luckock was able to explicitly calculate the equilibrium dis-
tribution of the bid and ask prices of his model, mathematically demonstrating the
existence of a competitive window in which the vast majority of transactions are exe-
cuted.

This chapter will review Luckock’s mathematical findings and display the result of
my simulation of the Stigler-Luckock model, which will be compared with the empirical
facts presented in the previous chapter. Then it will emphasise how the simulation also
shows that the system dynamics self-organise to self-criticality, a key concept in complex
systems theory that will be analysed in regard to our model.

2.0.1 Stigler model results

Before delving into the specificities of the model, it proves useful to anticipate what the
results of the model are in order to enable a better understanding of its theoretical and
logical development. Through mathematical demonstration and with the application of
a numerical computer simulation, we will show that in an order driven market with zero
intelligence the system self-organises to criticality. In this particular case, this results in
the formation of a competitive window that determines the possible price range in which
orders can be executed. This means that all orders placed a price lower than xmin and
higher than xmax are never executed and they indefinitely joins the other unexecuted
orders in the order book (see Fig. 2.1).

9



CHAPTER 2. THE STIGLER MODEL

Figure 2.1: The price gap between the best bid and the best ask forms the competitive
window where transactions take place. Unexecuted orders accumulate outside the com-
petitive window (figure from “Econophysics and sociophysics: trends and perspectives.”
(2006), Chakrabarti, Bikas K., Anirban Chakraborti, and Arnab Chatterjee, eds.).

After demonstrating both mathematically and numerically the existence of the com-
petitive window, we will analyse the behaviour of the lifetime of orders from placement
to execution. With the aid of the computer simulation it will become apparent that
both sell and buy orders follow a power law distribution. This phenomenon is strictly
linked to the concept of self-organised criticality.

2.1 The characteristics of the model

The basic components of the model consist of buy and sell orders. A sell order, or “ask”,
submitted at a price ↵ represents the seller’s commitment to sell the considered asset
at the first chance, at a price not lower than ↵. Contrariwise, a buy order, or “bid”,
submitted at a price � represents the buyer’s willingness to buy the asset at the first
chance, at a price not higher than �. An order is executable at a given price x 2 (0,1)
if ↵  x and x  � (so no asset can be sold or purchased at a negative price). As noted
before, the model only accepts the submission of limit orders and for this reason the
dynamics studied are those of limit order books.

The market has then the following properties:

1. Every order placed is for a single unit. For this reason the buyer only needs to
specify the maximum price they are willing to pay, while the seller only need to
indicate the minimum price there are willing to accept.

2. Buyers and sellers act independently of one another. Furthermore, they issue
orders without knowing any information about the state of the order book at any
time. Expected order arrival rates will be unconnected to the state of the order
book. For this reason the submission of orders (i.e. the times of arrival of traders)
of both types will be a Poisson process.

10



2.2. DYNAMIC RULES OF THE MODEL

3. Orders cannot be cancelled once submitted and only the fulfillment of a transaction
can remove a pair of orders of opposite types from the order book.

As stated before, the second property assures that this model is populated by “zero
intelligence” traders. Orders are indeed submitted independently from one another: no
trader has the capacity to acquire market information and infer possible trends, thus
having no reason to revise his valuation of the asset in response to the state of the
order book or the other traders’ behavior. Traders will submit orders at prices that
are random, therefore governed by a continuous uniform distribution within an interval
of [0, 1], that identifies a possible normalised range of prices. Despite this seemingly
unrealistic assumptions, zero-intelligence models of the order book are capable to show
many notable traits of real markets, as displayed by Gode and Sunder [4].

2.2 Dynamic rules of the model

At any given time t, the order book displays two queues: one for unexecuted sell orders
at prices ↵1(t), ↵2(t), ↵3(t), ... and one for unexecuted buy orders at prices �1(t), �2(t),
�3(t), ... each one waiting to be paired with an incoming order. The di↵erent prices are
ordered so that ↵1 is the lowest ask price, followed by ↵2 and so on and �1 is the highest
bid price, followed buy �2 and so on. The quantities ↵1 and �1 are known respectively
as best ask and best bid price. Once a new order is issued, the composition of the order
books changes according to the following dynamic rules.

If the newly submitted order is a sell order at a price ↵ (or respectively a buy order
at a price �):

• If ↵  �1 (or respectively � � ↵1), the new sell order/buy order is matched with
the best current bid/ask , resulting in the execution of a transaction at the price
�1/↵1.

• If ↵ > �1 (or respectively � < ↵1), no match can occur and the new sell/buy order
is added to the queue of unexecuted sell/buy orders within the order book.

As noted by Swart [7], classical economic theory predicts that a commodity will be
eventually traded at its equilibrium price, determined by the market. In the Stigler-
Luckock model the situation is quite di↵erent: the existence of the competitive window
prevents the equilibrium price to be reached. Indeed, once the system has reached
stability, bid and ask prices of feasible transactions fluctuate in a competitive window

(xmin, xmax). We can therefore identify two “limit” prices, xmax and xmin. Our model
will show that all orders submitted at a price lower than xmin and higher than xmax are
never executed and they indefinitely joins the queue of unexecuted. Only orders placed
at a price within the competitive window have the chance to be ultimately executed (see
Fig. 2.2):
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CHAPTER 2. THE STIGLER MODEL

Figure 2.2: Snapshot of the order book: the competitive window is very visible and we
can witness the accumulation of unexecuted orders for prices outside the competitive
window. The interval [0, 1] represents the possible range of prices, xmax and xmin are
the endpoints of the competitive window.

2.3 Mathematical formulation of the model

The assumptions that were made to build the structure of the zero-intelligence market
under consideration lead to the conclusion that in this model the submission of new sell
and buy orders at a price x 2 [0, 1] follows a Poisson process. Therefore the probability
that a sell or a buy order is issued in the possible price range [0, 1] in the time interval
�t is for sell orders

P [↵ 2 ([0, 1],�t)] = �A(x)�t+ o(�t)2 (2.1)

and for buy orders
P [� 2 ([0, 1],�t)] = �B(x)�t+ o(�t)2 (2.2)

where �A(x) and �B(x) is the average number of buy and sell orders issued in the time
interval �t at a price x 2 [0, 1]. In our model, �A(x) and �B(x) are cumulative distribu-
tion functions (CDF) of uniform PDF in the interval [0, 1]. This implies that both sell
and buy orders have the same probability of being issued by the trader that has arrived
in the time interval �t. But since the two options are mutually exclusive (an order will
be to either buy or sell) the CDFs are �A(x) = x and �B(x) = 1 � x. Our objective is
therefore to determine the statistical characteristics, in a stable state, of an order book
that follows the dynamical rules stated before with Poisson order arrivals.

To determine the endpoints of the competitive window xmax and xmin, we have to
derive the steady-state distributions of the best ask ↵1 and best bid �1 price. Therefore,
we define A(x) to be the cumulative distribution for the best ask price ↵1 and B(x) to
be the cumulative distribution for the best bid price �1:

A(x) = P [↵1  x] B(x) = P [�1 � x]

In other words, A(x) represents the steady-state probability that the order book contains
at least one executable order at the price x, similarly B(x) represents the steady-state
probability that the order book contains at least one buy order executable at the same

12



2.3. MATHEMATICAL FORMULATION OF THE MODEL

price. We have to remember that once the model has reached stability, best bid and
best ask prices ↵1 and �1 fluctuate in the competitive window (xmin, xmax). Therefore
only buy orders at prices exceeding xmin and sell orders at prices less than xmax have
a positive probability of immediate execution against an existing order. Instead orders
submitted at less competitive prices are unlikely to find matches among existing orders,
leading them to accumulate within the order book.
Translating these considerations in mathematical formulas, we have:

A(x) = 1 for x 2]xmax, 1] B(x) = 1 for x 2 [0, xmin[

The first equivalence represents the fact that no sell orders are executed at a price ex-
ceeding xmax and therefore the order book will certainly contain a sell order ↵ in the
price range ]xmax, 1]. The second represents the fact that no buy orders are executed at
a price below xmin and therefore the order book will certainly contain a buy order � in
the price range [0, xmin[.

Much can be deduced about the functions A and B from simple arguments. We start
by defining mathematically the endpoints of the competitive window:

xmin ⌘ inf{x 2 [0, 1] : B(x) < 1} xmax ⌘ sup{x 2 [0, 1] : B(x) < 1}

The function A : [0, 1] ! [0, 1] is non-decreasing and right-continuous and similarly
B : [0, 1] ! [0, 1] is non-decreasing and left-continuous. The left-continuity of B and the
right-continuity of A then imply:

B(xmin) = 1 A(xmax) = 1

Since A(x) + B(x) is the probability that either ↵1  x or �1 � x and since these
alternatives are mutually exclusive, 0  A(x)+B(x)  1 everywhere. Therefore we also
have

A(xmin) = 0 B(xmax) = 0

and, since A is a non-decreasing function and A(xmin) < A(xmax),

xmin < xmax

The identities A(xmin) = 0 and A(xmax) = 1 display the fact that the best ask price
↵1 will almost always surpass xmin but hardly ever surpass xmax, while the boundary
conditions for B indicate that the best bid price �1 will almost always be lower than
xmax but almost never less than xmin:

xmin < ↵1  xmax xmin  �1 < xmax

Up to now, we have therefore successfully characterise the mathematical qualitative con-
ditions of the competitive window. In order to obtain the values we are searching for, a
more thorough analysis is in order.
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CHAPTER 2. THE STIGLER MODEL

Let M(t, x) be the number of sell orders ↵ in the order book at the time t that are
executable at the price x and N(t, x) be the number of buy orders � in the order book at
the time t that are executable at the same price x. The evolution of the functions M and
N is influenced by the stochastic submission of new orders, so for any fixed price x > 0
and future time t, M(t, x) and N(t, x) are random variables. Therefore the quantities
E[M(t, x2) � M(t, x1)] and E[N(t, x1) � N(t, x2)] represent respectively the expected
number of unexecuted sell orders in the price interval (x1, x2] and of unexecuted buy
orders in the price interval [x1, x2).
We are interested in their time evolution. For all prices x1 and x2 with 0 < x1 < x2 <
1 we can infer the following identities (the detailed mathematical steps are given in
Appendix A, Proof I ).
For M(t, x):

@E[M(t, x2)�M(t, x1)]

@t
=

Z x2

x1

[(1�B) d�A � �BdA] (2.3)

And for N(t, x):

@E[N(t, x1)�N(t, x2)]

@t
=

Z x2

x1

[�AdB � (1�A) d�B] (2.4)

The consequences of 2.3 and 2.4 are very useful. These integral must be non negative
in the steady state, since otherwise the quantity of unexecuted orders in the specified
intervals would be indefinitely decreasing and would eventually become negative, which
would make no sense. Therefore, for any [x1, x2] ⇢]0,1[

Z x2

x1

(1�B) d�A �
Z x2

x1

�BdA � 0 (2.5)

and

�
Z x2

x1

(1�A) d�B � �
Z x2

x1

�AdB � 0 (2.6)

Now let’s suppose that [x1, x2] ⇢ (xmin,1) (it’s also obviously valid in ]xmin, xmax[).
Then B(x1) < 1, this implies the existence of a non zero probability 1 � B(x1) > 0
that at some remote point in time t in the future, the order book will not contain any
buy orders at a price of x1 or higher, i.e. N(t, x1) = 0. Since this probability remains
constant and positive as t ! 1, it can be deduced that N(t, x1) and therefore the
di↵erence N(t, x1)�N(t, x2) must cyclically return to zero from time to time. A similar
argument can be developed for M(t, x1).
Therefore, the two expected values E[N(t, x2) � N(t, x1)] and E[M(t, x2) � M(t, x1)]
cannot be continually growing. This implies that for N(t, x)

Z x2

x1

[�AdB � (1�A)d�B] = 0 for [x1, x2] ⇢ (xmin,1) (2.7)

and for M(t, x)
Z x2

x1

[(1�B)d�A � �BdA] = 0 for [x1, x2] ⇢ (0, xmax) (2.8)
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2.3. MATHEMATICAL FORMULATION OF THE MODEL

These equations shows that in the competitive window the average number of orders
placed is constant and allow to find an explicit expression for the functions A(x) and
B(x).

Indeed, if 2.8 and 2.7 are valid in the specified intervals, then, for any x 2 (xmin, xmax)
(for proof see Appendix A, Proof II ),

[1�A(x)]�B(x) + [1�B(x)]�A(x) =  (2.9)

where  is a constant equal to the overall frequency of the market. Now we can finally
determine A(x) and B(x) from the supply and demand functions �A(x) and �B(x). For
any x0 2 (xmin, xmax), the general solution to equations 2.8 and 2.7 on (xmin, xmax) has
the form

A(x) = 1� [1�A(x0))]�A(x)

�A(x0)
� �A(x)

Z x

x0

✓
1

�B

◆
d

✓
1

�A

◆
(2.10)

B(x) = 1� [1�B(x0))]�B(x)

�B(x0)
� �B(x)

Z x

x0

✓
1

�A

◆
d

✓
1

�B

◆
(2.11)

We can finally consider our uniform model and impose that �A(x) = x and �B(x) = 1�x.
The previous equations become

A(x) = 1� [1�A(x0)]x

x0
+ x

Z x

x0

1

x2(1� x)
dx (2.12)

B(x) = 1� [1�B(x0)](1� x)

1� x0
� (1� x)

Z x

x0

1

x(1� x)2
dx (2.13)

We have now to determine the value of . In order to do so, we consider the previous
expressions for A(x) and B(x) and we take the limit x0 ! xmin for the equation of
A(x) and the limit x0 ! xmax for the equation of B(x). Remembering the boundary
conditions A(xmin) = 0 and B(xmax) = 0 we obtain (we do not immediately specify the
expression of �A and �B for the sake of generality):

A(x) = 1� �A(x)

�A(xmin)
� �A(x)

Z x

xmin

✓
1

�B

◆
d

✓
1

�A

◆
(2.14)

B(x) = 1� �B(x)

�B(xmax)
+ �B(x)

Z xmax

x

✓
1

�A

◆
d

✓
1

�B

◆
(2.15)

We then use the two previous equations and the equation 2.7. We write the latter as
�AdB = (1 � A)d�B . We then find the following equation. Remembering that for the
symmetry of the system xmin + xmax = 1, we find an explicit expression of  as (proof
of this is shown in Appendix A, Proof III ):

 =
1

1� xmin · ln
⇣

xmin
1�xmin

⌘ (2.16)
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CHAPTER 2. THE STIGLER MODEL

Finally, in order to determine the endpoints of the competitive window, we consider
A(xmax) utilising the expression of  just found. The general solution for xmax is there-
fore (proof is shown in Appendix A, Proof IV ):

1

xmax
= ln

✓
xmax

1� xmax

◆
(2.17)

Considering 1
xmax

= z, the previous equation becomes e�z = z � 1. This is an
exponential equation that can only be resolved numerically z ⇡ 1.2785. We can finally
calculate the values for xmin and xmax:

xmin ⇡ 0.2178 xmax ⇡ 0.7822 (2.18)

2.4 Computer simulation

We will now illustrate the details of the computer simulation of the Stigler-Luckock
model. In the simulation we impose that the arrival of traders in the market and there-
fore the submission of a buy or sell order is governed by a Poisson process. This is
equivalent to impose that the probability that an order (whether buy or sell) will be
placed in the possible normalised price range [0, 1] is � · �T , where � is the average
number of orders issued in the time interval �T and �T represents the minimum time
interval in which the market evolves and the state of the order book is updated. We
have set � = 1 both for buy and sell orders, so that they have the same probability of
occurrence and �T = 0.001.

From this simulation we can indeed easily calculate estimates for the endpoint of
the competitive window (xmin, xmax), that we will compare with the theoretical one.
Furthermore, we will study another temporal property very important to our scope: we
will calculate the lifetime of the various orders, in other words how long a specific buy
or sell order lasts in the order book. This will allow us to confirm that the lifetime �T
of executed orders is power-law distributed and to therefore verify that our model suc-
cessfully simulate the behavior of a real market. Both of these results are strictly related
to the phenomenon of self organised criticality : the simulation will therefore confirm
that the system under consideration self-organises to criticality. The Mathematica code
utilised for the simulation can be found on Appendix B.

2.4.1 Results of the simulation: competitive window

With the simulation just described, considering a number of iteration equal to 107, we
can construct the following histogram. It represents the state of the order book at the
end of the process, as if we analysed the remaining orders in the order book at the end
of the day after the market had closed. In other words the Figure 2.3 is a plot of the
unexecuted buy and sell orders (the bins of the histogram have a width of 0.01):
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2.4. COMPUTER SIMULATION

Figure 2.3: Histogram of the order book: the competitive windows is very visible and
we can witness the accumulation of unexecuted orders for prices outside the competitive
window. The interval [0, 1] represents the possible range of prices.

We can observe the competitive window, whose endpoints of the competitive window
are virtually equal to the theoretical ones listed in 2.18.

2.4.2 Results of the simulation: waiting times distribution

With the simulation it is also possible to inspect another property of the system: the
lifetime of orders from placement to execution. If our model e↵ectively reproduces the
behavior of a real market, we should be able to obtain a graph very similar to 1.3 in
Chapter 1, a log-log plot where the horizontal axis represents the interval of the time �t
an order has to wait before being executed and the vertical axis represents its probabil-
ity, i.e. the normalised frequency of the waiting times of executed orders in the order
book.

Both sell and buy orders are clearly power law distributed. If we take into account
the empirical findings listed in Chapter 1, the power law that governs the waiting times
distribution depends on the parameter ↵ as P (�T ) _ (�T )�1�↵ where ↵ ⇡ 0.5 from
empirical findings. If we plot this power law with the simulation data with ↵ ⇡ 0.5 for
buy orders and for sell orders we obtain the two graphs in the following page. As we
can observe, the simulation data are distributed according the empirical results. This
means that our model once again faithfully reproduces the behaviour of a real market
and therefore exhibits power-law distributions for the lifetime of orders.
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CHAPTER 2. THE STIGLER MODEL

Figure 2.4: Graph of the log-log distribution of the lifetime of buy and sell orders from
placement to execution in the simulation. The line is the power law _ (�t)�1.5

This phenomenon, as we will see in the next section, is strictly linked to the concept
of self-organised criticality. Indeed, physical systems at the phase transition point (also
called the critical point) present power law decay of quantities of interest. In analogy
with physics, systems or models that are driven to criticality by their own dynamics are
said to show self-organised criticality.

Our “temporal” analysis does not stop there. It is of particular interest to study the
evolution of the best buy and the best bid once the system has self-organised itself as
traders arrive on the market. As predicted by theory, the simulation data will show that
the equilibrium price is never attained therefore entering in contrast with classical 1900s
economic theory.

If we inspect how the best bid and best ask prices evolve as orders are submitted by
new traders in the market, we clearly see from the image below that these prices do not
settle at an equilibrium price but keep fluctuating in the competitive window. In this
graph the horizontal axis represents the n� th trader that arrives in the market submit-
ting either a sell or a buy order and the vertical axis represents the best ask and best
buy price at the time t the n� th trader has entered the market. In a zero-intelligence

model therefore, the equilibrium price is never attained, and the best bid and best ask
prices are contained within the respective endpoint of the competitive window. In fact,
see Fig.2.5, the best ask price never goes below 0.8 and the best buy price never goes
below 0.2 (i.e. the approximations of xmax and xmin obtained theoretically).
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2.5. THE STIGLER MODEL AND SELF-ORGANISED CRITICALITY

Figure 2.5: Evolution of the best ask and bid price between the arrival of the 5000-th
and the 5400-th trader. As we can observe, the best ask price never goes above xmax

and the best bid price never goes below xmin. The dashed lines represent the endpoint
xmax and xmin, calculated mathematically before.

2.5 The Stigler model and Self-organised criticality

Financial markets can be compared to common microscopical physical systems: both of
them consist of many body with out-of-equilibrium stochastic dynamics. In the limit
order market we have considered so far (i.e. the Stigler model), the device that allows
the evolution of the system is the limit order book which records the placement and
removal of the buy and the sell orders and their settlement. If we wanted to juxtapose
these two entities, we could consider the various orders as “particles” that interact with
each other within the system depositing and evaporating at prescribed rates. But how
can we model such composite and complicated systems? Indeed, a financial market is
a good example of a complex system: the market participants are various and they
each act with an agenda, the dynamical rules (i.e. the norms that regulate possible
transactions) are often complicated and depend on the considered asset, every second
an enormous number of transaction is carried out... What patterns a system like this
shows? Does it showcase a behavior similar to other complex economic systems or even
physical ones? These considerations do not just apply to economical ensembles but are
of great importance to a vast class of systems [5].

Let us take into consideration the following systems: a group of electrons, a pile of
sand, an ecosystem or the community of stock-market traders. What do they all have in
common? Each one of these is composed of many components that interact with each
other exchanging energy or information with some kind of action. In addition to these
“internal” forces, the overall dynamic of the system can be also driven by external inter-
actions (such as an electric field or environmental alterations). The following questions
arise: what happens during this evolution? Is there a simplifying mechanism that leads
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CHAPTER 2. THE STIGLER MODEL

to typical behaviors shared among many systems, or does each system always depend
on the specific details of the dynamical rules?

The paper by Bak, Tang and Wiesenfeld Self-organized criticality: an explanation

of 1/f noise (1987) presented the hypothesis that in fact complex many-bodies sys-
tems exhibit common characteristic behaviors and dynamical patterns. The claim they
made was that, under very general conditions, some dynamical systems tend to organise
themselves into a state that displays a complex yet general structure. The interesting
implication is that although the dynamical response of the system is intricate, the sim-
plifying aspect is that the statistical properties are governed by power laws.
Bak, Tang and Wiesenfeld proposed that this common behavior arises without any ex-
ternal fine “tuning” of the system and this self-organised state has the same properties of
equilibrium systems at the critical point. They described this behavior as self-organised
criticality. In such systems, small events or perturbations have the capacity to trigger
larger cascades and avalanches, causing events of various sizes. This behavior is re-
flected in the word “criticality”. Indeed in equilibrium thermodynamics criticality refers
to phase transitions: when a thermodynamic system reaches exactly its transition tem-
perature, something unexpected happens. While for every other temperature, one can
locally perturb the system and the e↵ect of this disturbance is only noticed by the local
region where the perturbation was applied; at the transition temperature, the local dis-
tortion will propagate throughout the entire system. These systems are therefore critical
because all members of the system influence each other.

Self-organised critical systems evolve to the complex critical state without the in-
terference from any outside agent and the process of self-organisation takes place after
a transient period [2]. For our purposes, one of the most important features of self-
organised critical systems is that in the theory of self-organised criticality the power-law
distributions emerge spontaneously without any parameter tuning. Essentially, all the
phenomena subjected to self-organisation can be expressed in terms of power laws. Thus,
the problem of explaining the observed statistical features of complex systems can be
translated mathematically into the the problem of explaining the underlying power laws
and more specifically the values of the exponents.
These properties are showed by a large number of complex systems and phenomena
like earthquakes, solar flares, avalanches, ecosystems... In particular a model that ex-
hibits self-organisation criticality is indeed the Stigler model under consideration. This
is confirmed by the fact that after a transient period, the order book self-organises itself
showcasing the insurgence of the competitive window, meaning that in the long run only
orders in a restricted price range are executed. Another fundamental proof of its self-
organised critical behavior is its power-law distributions of waiting times: the lifetime of
orders within the order book presents a power law decay distribution, an hard evidence
of its self-organised properties.
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2.5.1 The Stigler model and the Bak Sneppen evolution model: how

self-organised criticality is transversely present

In 1993 Per Bak and Kim Sneppen in their paper “Punctuated equilibrium and criticality

in a simple model of evolution” [3] presented a simple but robust model of the biological
evolution of an ecosystem of interacting species. This model is considered a cornerstone
in the validation of self-organised criticality since the simple dynamics that regulate the
model automatically lead the system to self-organise itself into a steady critical state
with intermittent evolutionary “avalanches” of all sizes. In order to be able to profi-
ciently compare these two models, let us delve into the details of its structure and the
assumptions of its theorizing.
With their article Bak and Sneppen tried to find a mathematical answer to the following
questions. Does evolution exhibit a consistent and steady pattern, characterised by the
continuous flow of old species disappearing while new species emerge and better adapt?
Or does it exhibit a more erratic behavior, involving long periods of peaceful co-existence
among species, punctuated by brief but intense period of extinction, after which new
species can rapidly proliferate? From studies of the fossil record, the paleontological
evidence suggest that the latter scenario is more reflective of reality: species tend to
survive for long periods and the vanish relatively quickly over a relative short span of
time. Moreover, it is often observed that the extinction of one species coincides with the
extinction of several others. Therefore we can summarise the evolutionary phenomenon
as a “process of long time spans of equilibrium separated by short periods of activity”.

Bak and Sneppen managed to mathematically translate these speculations in a very
simple probabilistic model, astoundingly similar to the Stigler one. Consider a fixed
number of species N , each labeled by x. The fitness of a specific species is defined as the
ability of an individual to survive in a given environment/ecosystem and it is represented
by a number B(x) ranging from 0 to 1. If B(x) is close to zero, it means that within the
given environment the species x has a phenotype poorly suited for competing with other
co-existing species. If the fitness B(x) is close to 1, the species has great possibilities
of surviving in the ecosystem. It is important to note that this model only considers
co-evolution: the fitness of a certain species is determined by random peculiarities of
co-existing species and not by the physical environment, whether harsh or favorable.
In order to determine how the species interact with each other, and consequently how
fitness changes, Bak and Sneppen followed a principle often used in statistical mechanics:
they choose the simplest possible representation of the phenomenon. In the Bak-Sneppen
model fitness is a relative quantity and it can therefore increase or decrease when an-
other species disappears or appears. Typically, species with low fitness are more likely
to become extinct. Hence, the dynamics of the model consist of identifying the species
xS with the lowest fitness B and then removing it. In order to maintain constant the
number N of total species in the system, the extinct species xS is immediately replaced
by a new one. Since mutations are by definition random, we expect that the fitness of
the newly arrived species will be random too and chosen at random within the range
[0, 1]. The replacement of the species xS by a new species of a di↵erent phenotype will
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CHAPTER 2. THE STIGLER MODEL

a↵ect all the species that interacted with that species. For this reason the species that
interact with the new species in the environment are given new randomly chosen fitness.
The process is then repeated iteratively. Once a new species is introduced, we will the
re-locate the species xS with the smallest fitness and we will update the fitness of the
two neighboring species.

In order to identify extinction events in the model and try to highlight the punctuated
equilibrium dynamics, we will analyse the temporal evolution of BS(t), the smallest
fitness value at the time t. This function fluctuates up and down as the model progresses.
An extinction is defined as “the set of consecutive updates for which BS(t) is below a
chosen value B0”. So, the extinction begins at the time t0 when BS(t) passes from above
to below B0 and it ends when it rises above B0 again. The size s of an extinction event
is determined by the number of time steps that BS spends below B0. The dynamics of
the Bak-Sneppen model self-organises leading to a state in which nearly all species has
a value B uniformly distributed between the value Bc = 0.6670 and 1. Another proof
of its self-organisation behavior is that the the sizes s of the extinctions are power-law
distributed, as P (s) _ s�⌧ with ⌧ ⇡ 1.09. The following figure shows the probability
density of the fitness B after a transient period; we can easily observe how the B-values
are uniformly distributed between Bc and 1.

Figure 2.6: The line shows the probability density of the fitness B in the Bak-Sneppen
model after a transient period. The B-values are uniformly distributed between Bc =
0.6670 and 1 (figure from [3]).

The similarities between this model and the Stigler one are apparent: both systems
self-organises to a steady critical state in which the only surviving subjects are relegated
within restricted ranges. In other words, for the Stigler model we can observe how all un-
executed orders are uniformly distributed in restricted intervals, entirely similar to those
in the Bak-Snappen model. In this sense we can also identify a competitive window in
the Bak-Sneppen model, within which species may be susceptible to extinction. As for
the distribution analysis, we can observe that both models displays power law distribu-
tion for the phenomena of interest, as expected by a system governed by self-organise
criticality.
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Conclusions

In this thesis, my approach has been to start with the characteristics of the limit order
book, assessing its fundamental properties. Hence, in Chapter 1 we outlined a basic
description of stylised facts on limit order books. We have focused our attention on
the experimental evidence and on the analysis of price change and waiting times dis-
tributions extracted from various real markets. We studied the main characteristics of
limit and market orders and how they are placed in the markets. We then showed how
the study of limit order book makes it possible to infer stochastic price dynamics in-
formation and to asses the performance of a market. We analysed the basic empirical
findings regarding both price and waiting times distribution; in particular we have used
these empirical trends to find matches in the Stigler model in order to verify its feasibility.

Then the focus shifted to the mathematical model in consideration. In Chapter 2 we
presented an in-depth review of the Stigler-Luckock model, analysing its dynamics. We
discussed the process of orders’ placement: buy and sell orders are placed at random
within a price range [0, 1] and a pair of buy-sell orders is cancelled any time a sell order
is placed on the left of a buy order. The assumption of this random behavior is based on
the concept of zero-intelligence market, often used in simplified financial models. The
analysis has emphasised that the model shows two interesting market features: one of
these is that the dynamics self-organise to criticality. Indeed it has become apparent
that the Stigler model is closely related to the Bak-Sneppen model that is known to
show self-organised criticality. In this case self-organisation is related to the existence
of a competitive window, meaning that in the long run only orders in a restricted price
range are executed. The existence of this competitive window has been shown both
mathematically and numerically with a computer simulation, that has confirmed the re-
sults obtained analytically. The values (xmin, xmax) of the competitive window obtained
mathematically and numerically match and are xmin ⇡ 0.218 and xmax ⇡ 0.782. The
results of our simulation have confirmed all mathematical predictions and empirical mar-
ket trends: the existence of the competitive window is clearly visible in the histogram of
the order book and as for the lifetime of orders from placement to execution we can see
that for both buy and sell orders they are clearly power-law distributed in accordance
with the empirical distribution P (�T ) _ (�T )�1�↵ where ↵ ⇡ 0.5.

Then, we analysed how the Stigler model is related to the phenomenon of self-
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organised criticality, after a thorough general description of what it is about. Lastly
we analysed another famous model that shows self-organised criticality behaviour: the
Bak-Sneppen evolution model. We highlighted how even such a di↵erent model about
biological evolution which self-organises to criticality shows many properties similar to
the Stigler model.
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Appendix A

Appendix A: Mathematical

demonstrations

A.1 Mathematical proofs

A.1.1 Proof I

Suppose a new sell order enters the market during the time interval [t, t + �t]. If the
price ↵ of this new sell order is either less or equal to the best bid price �1, these two
orders are matched and executed. Therefore, for x  �1 the number N(t, x) of remaining
buy orders that can be executed at the price x will decrease by one. (If the order book
does not contain any buy orders �1 = 0). Conversely, if ↵ > �1, no match can occur and
the new sell order is placed in the queue, increasing by one the number M(t, x) of sell
orders that can be executed at a price x � ↵.
Therefore, for a given x > 0, the changes of M(t, x) and N(t, x) due to the submission
of a new sell order are:

�M↵(x) = I(x � ↵)I(↵ > �1) �N↵(x) = �I(x  �1)I(↵  �1)

Similarly, the submission of a new buy order at a price � results in the following
changes:

�M�(x) = �I(x � ↵1)I(� � ↵1) �N�(x) = I(x  �)I(� < ↵1)

where I denotes the indicator function.

During the time interval �t, there is a probability �A(x)�t of receiving a new sell
order at a price ↵  x and a probability �B(x)�t of receiving a new buy order at a price
� � x. The expected increments in M(t, x) and N(t, x) over this time interval are:

E[�M(x)] = {I(x > �1)[�A(x)� �A(�1)]� I(x � ↵1)�B(↵1)}�t (A.1)

E[�N(x)] = {I(x < ↵1)[�B(x)� �B(↵1)]� I(x  �1)�A(�1)}�t (A.2)
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For x1 > 0 and x2 > x1, the rate of change of the expectation value of the number
of unexecuted sell orders in the price interval (x1, x2] at time t is:

@E[M(t, x2)�M(t, x1)]

@t
= lim

�t!0

E[�M(x2)]� E[�M(x1)]

�t
= �A(x2)E[I(x2 > �1)]

� �A(x1)E[I(x1 > �1)]� E[I(x2 > �1 � x1)�A(�1)]

� E[I(x2 � ↵1 > x1)�B(↵1)]

= �A(x2)[1�B(x2)]� �A(x1)[1�B(x1)] +

Z x2

x1

�A(�)dB(�)

�
Z x2

x1

�B(↵)dA(↵)

=

Z x2

x1

[(1�B)d�A � �BdA]

(A.3)

where we integrated by parts:
Z x2

x1

�A(�)dB(�) = [�A(�)B(�)]x2
x1

+

Z x2

x1

B(�)d�A(�) (A.4)

A similar procedure for N(t, x) gives

@E[N(t, x1)�N(t, x2)]

@t
=

Z x2

x1

[�AdB � (1�A)d�B] (A.5)

A.1.2 Proof II

Let x 2 (xmin, xmax). Then, equation 2.8 implies that

Z x

xmin

[�BdA� �AdB] =

Z x

xmin

[(1�B)d�A + �Ad(1�B)] = [(1�B)�A]
x
xmin

= [1�B(x)]�A(x)

(A.6)

where we used B(xmin) = 1. A similar argument from equation 2.7 gives

Z xmax

x
[�BdA� �AdB] = [1�A(x)]�B(x) (A.7)

We can then sum the two equations:
Z xmax

xmin

[�BdA� �AdB] = [1�B(x)]�A(x) + [1�A(x)]�B(x) (A.8)

On account of boundary condition, the integral in the first member of the previous
equation exists and it is a constant equal to the overall frequency of the market . In
order to find explicit expression of A(x) and B(x) we consider the forms of the supply and
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demand function of the model under consideration, i.e. �A(x) = x and �B(x) = 1 � x.
For any x0 2 (xmin, xmax), we have to find the general solution to equations 2.7 and 2.8
on (xmin, xmax):

(R x
x0
[xdB + (1�A)dx] = 0

R x0

x [(1�B)dx� (1� x)dA] = 0
(A.9)

We integrate by parts:
(
[xB(x)]xx0

�
R x
x0

Bdx+ x� x0 �
R x
x0

Adx = 0

x0 � x�
R x0

x Bdx�A(x0) +A(x) +
R x0

x xdA = 0
(A.10)

Now using the substition method:
(
�
R x0

x Bdx = xB(x)� x0B(x0) + x� x0 �
R x
x0

Adx

xB(x)� x0B(x0)�A(x0) +A(x)� xA(x) + x0A(x0) = 0
(A.11)

Considering the second equation, by factoring out the expression we obtain:

A(x)(1� x) + xB(x) +A(x0)(x0 � 1)� x0B(x0) = 0 (A.12)

Now, considering the expression of  in the model under consideration (i.e.  = A(x)(x�
1) + 1� xB(x),

� 1 +A(x)(1� x) + xB(x) = 0

We thus find an expression of A(x):

A(x) =
1� � xB(x)

1� x
(A.13)

Substituting the previous expression of A(x) in equation 2.8 we obtain:

xdB +

✓
+ xB(x)� x

1� x

◆
dx = 0 (A.14)

We can thus highlight and resolve the first-order linear ordinary di↵erential equation:

dB(x)

dx
+

B(x)

1� x
=

1

1� x
� 

x(1� x)
(A.15)

The solution is:

B(x) = 1� (1� x)(1�B(x0))

1� x0
�  · (1� x)

Z x

x0

1

x(1� x)2
dx (A.16)

A similar argument for A(x) gives the equivalent di↵erential equation:

dA

dx
� A(x)

x
=



x(1� x)
� 1

x
(A.17)

whose solution is

A(x) = 1 +
x(A(x0)� 1)

x0
+  · x

Z x

x0

1

x2(1� x)
dx (A.18)
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A.1.3 Proof III

In terms of the supply and demand functions �A(x) and �B(x), given any x0 2 (xmin, xmax)
the general solutions to equations 2.7 and 2.8 is:

A(x) = 1� [1�A(x0))]�A(x)

�A(x0)
� �A(x)

Z x

x0

✓
1

�B

◆
d

✓
1

�A

◆
(A.19)

B(x) = 1� [1�B(x0))]�B(x)

�B(x0)
� �B(x)

Z x

x0

✓
1

�A

◆
d

✓
1

�B

◆
(A.20)

We take the limit x0 ! xmin for the equation of A(x) and the limit x0 ! xmax for the
equation of B(x). Remembering the boundary conditions A(xmin) = 0 and B(xmax) = 0
we obtain (we do not immediately specify the expression of �A and �B for the sake of
generality):

A(x) = 1� �A(x)

�A(xmin)
� �A(x)

Z x

xmin

✓
1

�B

◆
d

✓
1

�A

◆
(A.21)

B(x) = 1� �B(x)

�B(xmax)
+ �B(x)

Z xmax

x

✓
1

�A

◆
d

✓
1

�B

◆
(A.22)

We then use the two previous equations and the equation 2.7. We write the latter as
�AdB = (1 � A)d�B . It is readily shown by direct substitution that the two previous
equations represents a solution if and only if:

1




1

�A(xmin)
+

1

�B(xmax)

�
� 1

�A(xmin)�B(xmin)
�
Z xmax

xmin

✓
1

�A

◆
d

✓
1

�B

◆
= 0 (A.23)

or equivalently after integrating by parts:

1




1

�A(xmin)
+

1

�B(xmax)

�
� 1

�A(xmax)�B(xmax)
+

Z xmax

xmin

✓
1

�B

◆
d

✓
1

�A

◆
= 0 (A.24)

We now consider the explicit expression of the supply and demand function of the model
under consideration, i.e. �A(x) = x and �B(x) = 1 � x. By substituting in the latter
equation:

1




1

xmin
+

1

1� xmax

�
� 1

xmax(1� xmax)
+

Z xmax

xmin

1

1� x
d

✓
1

x

◆
= 0 (A.25)

We integrate: Z xmax

xmin

1

1� x
d

✓
1

x

◆
=


1

x
+ ln

✓
1� x

x

◆�xmax

xmin

(A.26)

Substituting this result in the previous equation we obtain

1




1

xmin
+

1

1� xmax

�
� 1

xmax(1� xmax)
+

1

xmax
� 1

xmin
+ ln

✓
1� xmax

1� xmin
· xmin

xmax

◆
= 0
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Remembering that for the symmetry of the system xmin + xmax = 1, we find:

1


· 1

xmin
+

1

xmin
+ ln

✓
xmin

1� xmin

◆
= 0 (A.27)

We can therefore find an explicit expression for :

 =
1

1� xmin · ln
⇣

xmin
1�xmin

⌘ (A.28)

A.1.4 Proof IV

Considering the following equation for A(x), previoulsy derived:

A(x) = 1 +
x(A(x0)� 1)

x0
+  · x

Z x

x0

1

x2(1� x)
dx (A.29)

We want to evaluate A(xmax) with x0 = xmin. Integrating we obtain (for the boundary
conditions A(xmin) = 0 and A(xmax) = 1):

A(xmax) = 1
!
= 1� xmax

xmin
�  · xmax


1

xmax
� 1

xmin
+ ln

✓
1� xmax

1� xmin
· xmin

xmax

◆�
(A.30)

Remembering that for the symmetry of the system xmin + xmax = 1, we find:

0 = �1� xmin

xmin
� 1� xmin

1� xmin · ln
⇣

xmin
1�xmin

⌘


1

1� xmin
� 1

xmin
+ 2 ln

✓
xmin

1� xmin

◆�
(A.31)

By simplifying both members, we obtain:

1

1� xmin
= ln

✓
1� xmin

xmin

◆
(A.32)

Remembering that for the symmetry of the system xmin + xmax = 1, we find:

1

xmax
= ln

✓
xmax

1� xmax

◆
(A.33)
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Appendix B

Appendix B: Simulation

Mathematica code

B.1 Mathematica Code

1 Lambda1 =1;

2 Lambda2 =1;

3 Niter =10000000;

4

5 dT =0.001;

6

7 SellOrders=Table[3,{i,1 ,1}];

8 BuyOrders=Table[0,{i,1 ,1}];

9 BuyTime=Table[0,{i,1 ,1}];

10 SellTime=Table [0,{i,1 ,1}];

11 SellWaiting=Table [0,{i,1 ,1}];

12 BuyWaiting=Table[0,{i,1 ,1}];

13

14 BestAsks=Table [0,{i,1 ,1}];

15 BestBids=Table [0,{i,1 ,1}];

16

17 Lambda=Lambda1+Lambda2;

18

19 Nrtraders =0;

20

21 For[j=1,j<=Niter ,j++,

22 Z=RandomReal [];

23 If[Z<= Lambda*dT,

24 W =RandomReal [];

25 If[W<=1/2,

26 NewSell=RandomReal [];

27 AppendTo[SellOrders ,NewSell ];

28 AppendTo[SellTime ,j*dT];

29 Nrtraders +=1,

30 NewBuy=RandomReal [];

31 AppendTo[BuyOrders ,NewBuy ];

32 AppendTo[BuyTime ,j*dT];
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33 Nrtraders +=1];];

34 BestBidPosition=Ordering[BuyOrders ,-1];

35 Bestbid=BuyOrders [[ BestBidPosition ]].{1};

36 BestAskPosition=Ordering[SellOrders ,1];

37 Bestask=SellOrders [[ BestAskPosition ]].{1};

38 If[Nrtraders >=5000&& Nrtraders <=5500 , AppendTo[BestAsks , {Nrtraders ,

Bestask }];

39 AppendTo[BestBids ,{Nrtraders ,Bestbid }];];

40 If[Bestbid >=Bestask ,

41 AppendTo[SellWaiting ,j*dT-SellTime [[ BestAskPosition ]]];

42 AppendTo[BuyWaiting ,j*dT-BuyTime [[ BestBidPosition ]]];

43 SellOrders=Delete[SellOrders ,BestAskPosition ];

44 BuyOrders=Delete[BuyOrders ,BestBidPosition ];

45 BuyTime=Delete[BuyTime ,BestBidPosition ];

46 SellTime=Delete[SellTime ,BestAskPosition ];

47 ];

48

49 ];

Listing B.1: Mathematica code used for the simulation
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