
University of Padua

FACULTY OF ENGINEERING

Department of Information Engineering

Dynamic 3D Sensors: Data

Characterization and Post–Processing

Laurea Magistrale in Informatic Engineering

Supervisor:
Prof. Pietro Zanuttigh

Co-Supervisors:
Ch.mo Prof. Guido M. Cortelazzo
Ing. Carlo Dal Mutto

Graduate:
Lucio Bezze

July 12th, 2011

Academic Year
2010–2011

ii

Dedicated to my family and to Valentina

iv

Abstract

After a brief introduction about Time–of–Flight range cameras
and 3D sensor of Microsoft Kinect characteristics, a deep analysis
on statistical distribution of data retrieved from these sensors,
is performed. A set of algorithms and procedures are designed
and implemented to improve the general quality of the depth–
maps acquired, on the basis of the problems highlighted. They
are computed in particular denoising and upscaling operations,
through the use of an innovative and smart smoothing filter, the
trilateral filter. The main attention is focused towards Kinect
sensor, but the procedure can be adapted to other setting of
utilizations. In the end they are presented experimental results,
applications and further improvements.

v

vi

Contents

Abstract v

Introduction ix

1 General Description of 3D Sensors 1

1.1 Time Of Flight Range Cameras 1

1.1.1 ToF technology . 1

1.1.2 Error components for ToF processes 2

1.1.3 Mesa SR4000 . 5

1.1.4 Software Toolkit for SR4000 6

1.1.5 Canesta Range Camera 7

1.1.6 Software Toolkit for Canesta camera 7

1.2 Structured Light Sensor . 8

1.2.1 Structured Light technology 8

1.2.2 Microsoft Kinect sensor 8

1.2.3 Software Toolkit for Microsoft Kinect 10

2 Comparison between 3D Sensors 11

2.1 Preliminary Acquisition . 12

2.1.1 Time–of–Flight . 15

2.1.2 Microsoft Kinect . 16

2.2 Quantitative Analysis . 17

2.2.1 Implementation of algorithm analysis 20

2.2.2 Non-Edge Pixels analysis 21

2.2.3 Edge Pixels analysis 22

3 Algorithms for Depth–Map Improving 41

3.1 Error analysis and planning of the methods. 41

3.2 Error Detection and Removal 44

3.2.1 Canny Edge Detector Algorithm 47

3.2.2 Dilation Algorithm . 49

vii

3.3 Backprojection . 50
3.3.1 zBuffer Algorithm and Radial Smoothing 53
3.3.2 Backprojection Algorithm 55

3.4 High Resolution Interpolation 57
3.4.1 Trilateral Filtering . 59

3.5 Computational complexity analysis 65

4 Results 69
4.1 Experimental results . 70

A Code Documentation 85

viii

Introduction

Even tough computer vision is one of the branches of Information Technol-
ogy that has more involved researchers all over the world, and it contains
inside a huge fascinating potential, it is clear how in these years it had not
taken to real production of commercial products, but it had simply per-
formed vast forwarding steps from a theoretical and algorithmic point of
view.
During last years the interest against different devices that are capable to
retrieve information about geometry of surrounding environment, has grown
up. This kind of information is very interesting to try to build even more
realistic model about real world. While normal cameras detect exclusively
color informations, these devices can retrieve the distance of every point
of the subject framed. Naturally the state-of-the-art of this research field,
and also high costs of materials and hardware deployment of these sensors
permitted, until recently, the production of restricted-access prototype, and
not large-scale products.
In the recent past, Microsoft released to general public a device of very
low costs, but preserving inside the previous named characteristics of depth
and shape retrieving. Such device, Microsoft Kinect, although designed
for gaming purpose (in combination with the well known game console Mi-
crosoft Xbox 360), paves the way to several applications, above all the ones
that need an accurate knowledge of tridimensional surrounding space. The
purposes of possible utilization range over robotic, video-surveillance, acqui-
sition and subsequently the fruition of multimedia 3D contents, industrial
ambit, and so on.
The more interesting ones are certainly those that in the past became set
apart, not only for low quality levels, but above all for huge realization costs.
The work that is illustrated in this thesis, is the achievements of more in-
formation about the measurements behaviour of those kind of 3D dynamic
sensors. Next step is an extensive analysis of data acquired from real scenes,
specifically built to highlight differences, strengths and weaknesses of these
3D sensors. On the basis of the considerations made upon analysis, it has
been proposed a method to improve the quality of the data retrieved, with
particular attention against Microsoft Kinect device. This method contains
several algorithms, some of them are well known, and other ones are more

ix

innovative and less utilized. In the end experimental results are shown and
compared each other, with some consideration on the overall performances
and further improvements presented.

x

Chapter 1
General Description of 3D Sensors

1.1 Time Of Flight Range Cameras

Time-of-Flight cameras are sensors which are designed to retrieve geometri-
cal information from surrounding environment. In particular the technology
included inside permits the acquisition of the depth, thanks to the measure-
ments of the time of flight of a signal emitted and subsequently received
back to the sensor.
The devices considered on further analysis are MESA SR4k[2] and Canesta
Range Camera (now Microsoft); both cameras are based upon Time-of-
Flight technology, but they present different hardware implementation and
performances.

1.1.1 ToF technology

The skill to measure the distance is based upon an optical system of time
of flight. A modulated infra-red radiation is emitted by the sensor and hits
the objects in the environments. The reflected waves are received, and a
measurement of the time t used to travel, permits a simple calculation of
the distance d. In fact considering the speed c of the irradiated waves as the
light speed (i.e. c = 3 · 108[m/s]) becomes clear that

d =
c · t
2

(1.1)

The real physical data that is measured from the sensor is the phase shift
∆ϕ between sent and received signal. This phase delay allows to calculate
the time of flight t of the wave. The signal that is produced at the source
is a sinusoidal signal, which is modulated with amplitude modulation (AM)
to permit the transmission over the air channel. The signal s(t) transmitted
is of the form

s(t) = A cos(2πfct) cos(2πfst) (1.2)

1

d

ToF sensor

Figure 1.1: Time of Flight working principle.

where fc is modulation frequency and fs is the frequency of signal created
by the sensor.
The receiver can acquire the signal that is of the form

r(t) = R · s(t− τ) +B + w(t) (1.3)

where R is the amplitude of the received signal, τ is the transmission delay, B
is the illumination cover and in the end w(t) contains the error components,
that affect the overall transmission.

1.1.2 Error components for ToF processes

It is important to know the maximum number of error causes, to deeply
understand the behaviours of devices based upon ToF technology.
For every point, the estimation of the depth ẑ can be considered as the sum
of different components [11]

ẑ = z + ∆z + w(t) (1.4)

• ∆z is the systematic component, which is time-invariant.

• w(t) is the random white gaussian noise component, which is time-
variant.

The random noise component w(t) is mainly due to the sensor accuracy and
intrinsic noise that affects every measurements process.
The systematic component ∆z is due for a lot of factors, that can be divided
in two major categories: internal and external factors. Internal factors are
correlated to the calibration of the device, and they strictly depend on the
hardware and firmware implementation of the sensor, and it is not simple to
create a model for this kind of error for this reason. Instead, external factors
are recurrent in measurement processes. They are principally environmental
factors that modify the depth values returned from the sensor. Following
factors can be considered as technology-dependent, in fact different devices
based upon ToF principle are affected from following problems:

2

• amplitude sensitivity

• scattering phenomenon

• mixed pixel

• external temperature

• warm-up effects

Amplitude sensitivity

The amplitude value of received signal r(t) is function of different agents.
Several experiments [14, 11] show how this value is highly susceptible.
First of all near infra-red component of environment light radiation (pre-
viously called B) cannot be distinguished by the sensor, which retrieve its
value as an additive component in the received signal r(t).
Secondly the reflectance capability of the objects in the scene can affect mea-
surement consistency. In fact in case of high reflectance surfaces, saturation
phenomenon can occur, precluding the possibility of the sensor to retrieve
a good measurement.
Again, the integration time plays a role, too. In fact too high integration
time can lead to fully saturated depth-maps, and on the contrary too low
integration time can prevent in some cases a good depth-map estimation.

Scattering phenomenon

The scattering phenomenon is a limiting factor for actual ToF devices, be-
cause the hypothesis that every single pixel only receives optical energy only
from the are of the space that is related to, is never verified at all.
For this reflectance phenomenon, every pixel receives in reality the con-
tribute of various contiguous pixels. The first undesired effect is that in
correspondence of depth discontinuity, or simply in correspondence of high
reflectance surfaces (i.e. white walls), the depth can assume values dis-
tributed in a weighted mean of all the contributes. For example it happens
frequently that the squared rooms can assume a more curved appearance
in correspondence of the corners for the multiple reflections path that are
captured from the receiver. This phenomenon can be viewed in Figure 1.2.

Mixed pixel

They are simply pixel for which the depth value is affected by ambiguity
value assignation. Measurements are subject to a so called back-folding
phenomenon that is due to the periodicity of the signal that is used for
the distance measurement. If the objects could be present in the scene at
distances which differ by more than the distance D corresponding to a full

3

Figure 1.2: Multiple reflections phenomenon on correspondance of walls.

modulation period, the measurement of their position is ambiguous: it could
be at x or at x+D, or even x+ 2D, etcetera.
This problem is often solved filtering the received signal for which reflecting
object are farther than the non-ambiguity range, in fact an higher attenua-
tion phenomenon on these reflected signals will occur and so lower amplitude
is acquired.
A simple explanation can be viewed on Figure 1.3.

Figure 1.3: Backfolding phenomenon.

External temperature

Another factor that is responsible for measurement error is the environmen-
tal temperature. Often the producers of range cameras declare the best
working temperature value, and design a built-in cooling system which can
in some cases misrepresents the depth values retrieved.

Warm-up effects

Some devices can present warm-up effects, that can be simply described as
different behaviours as function of the moment of utilization. In fact optimal
operating trend is reached after some minutes of exploitation.

4

1.1.3 Mesa SR4000

Mesa Swiss Ranger 4000 is the first ToF sensor analysed in this work. It is
a range camera produced by Mesa Corporate [2] in 2008, and it is one of the
most advanced device that implements ToF technology.
The device is constituted by 24 LEDs emitters, arranged in a square man-
ner, that irradiate the environment with a signal s(t) with wavelength λc
850[nm], modulated with frequency fs often set to 30[MHz]1. The receiver
component is constituted by a CCD/CMOS matrix of sensors, which dimen-
sions are 176× 144. Every receiver has an area of 40× 40[µm2].

At least other two components must be cited to describe quite well this

Figure 1.4: Mesa Swiss Ranger 4000 camera overview.

device:

• Optical Filter allows only light of wavelengths near that of the illumi-
nation LEDs to pass into the camera lens.

• Illumination LED cover protects the LEDs while allowing their light
to be transmitted.

They are important because permit a better filtering of unwanted frequency
light, improving acquisition quality.
The physical process of analogical signal acquiring is composed by a sam-
pling process of r(t) signal. SR4000 range camera executes a 4-times for
every period sampling process, and from these samples it starts to calculate
the phase shift ∆ϕ; it is the phase shift itself that allows the camera to pro-
duce the depth-map data. The amplitude values may be used as a measure

1This value can be easily tuned via software to change the maximum distance value
that can be identified by SR4k sensor.

5

of quality of the distance measurement, or to generate a grayscale image of
the scene.
From a software point of view, the first step after the analogical, physical ac-
quisition is the A/D conversion. The analog electrical signals are converted
into digital values in a conversion process, from which a 16-bit distance is
calculated. This is the raw output of the camera, with the full-phase value of
0xFFFF corresponding to a distance of 5[m], for a modulation frequency
value of 30[MHz]. The camera produces also a 16-bit digital amplitude
signal.

1.1.4 Software Toolkit for SR4000

With the official supplied kit of Mesa (SR_3D_view.exe), it is possible to
handle different kinds of datas.

• Distance image: for each pixel (176×144 = 25344) this image contains
the depth value of the corresponding object. The distance is expressed
in meters in a 16 bits spanned range, which spaces from 0 to 5 meters.

• Amplitude image: for each pixel (176× 144 = 25344) this image con-
tains the amplitude value of the corresponding object, which is another
time an array of 16 bits words. It can report the happening of satura-
tion phenomenon for each pixel, and in this case the MSB is set to be
1.

• Confidence image: it is generated in the driver of the host PC using
a combination of Distance and Amplitude measurements and their
temporal variations. It represents a measure of probability that the
distance measurement for each pixel is correct. Low confidence is
typically due to low reflected signal or movement in the scene. The
Confidence Map can be used to select regions containing measurements
of high quality, reject measurements of low quality, or even to obtain a
confidence measure for a measurement derived from a combination of
many pixels. Confidence Map data is output from the SR4000 as an
array of 16 bit words, of length (176 * 144 = 25344). The Confidence
Map has a range of 0-0xFFFF, with greater values representing higher
confidence.

For further considerations and acquisitions, it have been used a software
(ToolCalibrazione.exe [14]) that exported data values in a handy format.
For each acquired frame we have (xxxx stands for the incremental number
of the measurements):

• sr_a_xxxx.png amplitude PNG image.

• sr_c_xxxx.png confidence PNG image.

6

• sr_d_xxxx.txt depth matrix in a simple text file; it contains the
176× 144 depth values in a floating point format.

1.1.5 Canesta Range Camera

Another ToF sensor analysed in this work is the Canesta range camera. This
sensor has been developed by Canesta Inc. (now acquired by Microsoft) in
2010. It presents some improvements against SR4k device.
It is a newer sensor, which presents first of all a RGB built-in camera. Its
resolution is standard VGA, so it returns also a color information of the scene
of 640 × 480 pixels. For the depth measurement technology side, it is very
similar to Mesa SR4000 for a lot of aspects, in the sense that uses the same
working principle, measuring the time of flight of a modulated sinusoidal
signal. A very important improved feature is the dimension of the depth
map, that is increased to 320× 200. Unfortunately more deep informations
around the implementation of this device are not available because of it is
covered by trade secret.

1.1.6 Software Toolkit for Canesta camera

With the official supplied kit of Canesta (SALSample.exe), it is possible to
handle different kind of data, very similar to the data handled by SR4k.
The main difference is the possibility to directly export also RGB images
of the frame. For canonical geometrical informations, the output format
is the PGM format, while for color images the software uses PPM format.
These formats are used because of they have some technical advantages: for
example they are very suitable for multiple acquisitions, because even more
images can share the same header, using less disk space because they are
placed consecutively into the same files. Even if this solution uses less disk
space, for several acquisitions it is an important issue, that can in some cases
compromise buffer integrity of acquisition software, if some errors occur.
For further considerations the saved data of Canesta camera have been pro-
cessed by a Matlab script to adapt the informations in a handy format.
Also in this case for every acquired frame we have (xxxx stands for the
incremental number of the measurements):

• ca_a_xxxx.png amplitude PNG image.

• ca_c_xxxx.png confidence PNG image.

• ca_d_xxxx.txt depth matrix in a simple text file; it contains the
320× 200 depth values.

7

1.2 Structured Light Sensor

1.2.1 Structured Light technology

Other techniques frequently used to retrieve shape informations of the en-
vironment consider the shading on a surface as an important source of in-
formation about local surface orientation. When a surface is covered by a
projection of light source, the surface normal changes across the object and
the apparent brightness changes as a function of the angle between the local
surface orientation and the incident illumination.
Upon this basic principle, structured light technology permits the shape
estimation of an object[16].

Figure 1.5: Structured light projection with dots.

1.2.2 Microsoft Kinect sensor

The Microsoft Kinect is a device released in late 2010 by Microsoft, designed
for the gaming console Microsoft Xbox. Its main purpose is obviously vide-
oludic, and it is a controller-free gaming and entertainment experience[3].
The innovative aspect of this controller is the fact that enables users to con-
trol and interact with the Xbox 360 without the need to touch a game con-
troller, through a natural user interface of gestures and spoken commands.
In fact its software technology enables advanced gesture recognition, facial

8

Figure 1.6: The Microsoft Kinect device.

recognition and voice recognition.
It contains inside a variety of sensors which permit the use of such natural
interfaces. It is constituted by a little mechanic motor that enables some
movements of the sensor and an array of microphones to capture sounds
from the surrounding environment, but the most important components are
a VGA camera with 640×480 resolution and a 3D depth sensor that produce
at the output a post-processed depth map with 640× 480 resolution2.
The last one is the sensor on which the analysis has been mainly focused.
Before starting to describe this interesting part of the Kinect, a little pream-
ble must be done. It is a device developed with a proprietary paradigm, for
which no detailed description is officially provided and even though a lot
of reverse engineering has been done by some fans and researchers, more
detailed technical information are not available. It is known that the depth
sensor has been acquired by Microsoft from PrimeSense Ltd., a company
skilled in natural-interface interaction between human and computer.
It is PrimeSense itself that publishes a little description about the compo-
nent which enables 3D capabilities, asserting that it is based upon Light
CodingTMtechnology[4]. This technology is a 3D structured light sensor,
constituted by two main component, well distinguishable between them;
they are an IR emitter and an IR CMOS camera. The emitter projects a
static pattern on the scene, constituted by a constellation of dots, which
are captured by the IR camera that decode the constellation to retrieve a
complete depth-map of the scene. The decoding step executes a sophisti-
cated parallel computational algorithm to decipher the informations about
the scene.
A very similar technology is described in another PrimeSense patent [15],
and it can be used as a reference, while the real Light Coding patent is
pending.
A fundamental characteristic of the sensor is that it performs by construc-
tion a post-processing step on raw-data acquisition. The Microsoft Kinect
doesn’t produce a dense depth map, but the output is relatively sparse, and
for every depth measurement we have more than only one pixel. For this
reason the 640 × 480 resolution is obtained with a particular interpolation

2More details about post-processing operation of the Kinect are explained soon and so
the Kinect has not a native 640 × 480 resolution.

9

of the pixel of the IR image acquired by the CMOS camera. The algorithm
of the interpolation procedure is unknown, for the already cited reasons of
trade secret covering this new technology.
It is important to underline also that a formal error model has not been
developed yet for the Microsoft Kinect 3D depth sensor.

1.2.3 Software Toolkit for Microsoft Kinect

To retrieve informations on the scene using the Microsoft Kinect device, a
very user-friendly tool has been used. It is RGBDemo [5], which looks very
similar to other tools used in case of ToF acquisitions. The version used for
further analysis is 0.4.0, which supports a complete retrieving of following
informations through the use of libfreenect[1]:

• Depth-map, which is available in two different format, a grayscale PNG
image and a YML text version, with a resolution of 640× 480.

• Intensity, available in grayscale PNG image format

• Color image, available in RGB color PNG image format.

Figure 1.7: Main window for RGBDemo acquisition tool.

This tool supports a fast grabbing of multiple frames, but it has some issues3

for much longer acquisition, stopping the process in a random way. This
problem lightly limited the number of acquisitions that have been performed
for further analysis.

3The issues were encountered in version 0.4.0. Further versions has not been tested.

10

Chapter 2
Comparison between 3D Sensors

To get more knowledge on the behaviour of the sensors, it is necessary to
achieve some data. After some preliminary considerations, a more deep and
rigorous analysis will be performed and in order to qualitatively and quan-
titatively analyse all three devices, a set of experiments have been designed
with the purpose to characterize all the features of ToF cameras and of Mi-
crosoft Kinect.
Before starting to present some measurements’ results, it is important to
declare the costs of the different devices considered. For ToF sensors both
the hardware implementation and the state-of-the-art of the technology it-
self lead to highly increase the realization costs. Mesa SR4k has a price
of about e7000, even if it is produced to be sold on the market. For the
Canesta camera another type of observation must be done. In fact it is the
result of a research prototype, for which a real price doesn’t exist since it
is not a product ready to the market. Even with previous statement, it is
simple to understand the magnitude of the price on the basis of the SR4k
one.
In the case of the Microsoft Kinect, previous considerations must be drasti-
cally changed. It is a device produced by one of the most important corpo-
ration of the IT world, and so any other further statement must take into
account this fact. Moreover the target of this product is the mass market of
video-games, and the price of the Kinect must respect some business con-
straints. The actual price for italian market is about e150.
Already with the last statement it is possible to understand how ToF de-
vices and Kinect belong to different categories. This fact must be taken into
account to make final conclusions.

11

2.1 Preliminary Acquisition

Upon the basis of the introduction made in Chapter 1, it is possible to
prepare an experimental setup to highlight the characteristics of the sensors
and consequently perform a deeper analysis.
A simple setup has been prepared and it is presented in Figure 2.1(a).

(a) Acquisition setup. (b) Sensors used: Microsoft Kinect and
Mesa SR4k.

Figure 2.1: Preliminary setup.

This scene has been considered in order to qualitatively analyse different
behaviours on different sensor, the ToF technology based one and on the
other side the structured light technology-based one.
As you can see it contains several interesting elements that can stress the
performances of both the cameras. These objects are:

• a gray-scale board with patches that have different reflectivity property

• a photogrammetry marker, characterized by an high reflectance in the
near IR

• a baby doll which represents an articulated shape object in the scene

• a table with a very large slanted surface

• a wall on the background with a large flat surface

In Figure 2.2 we can see the different acquisitions with both ToF, i.e.
Mesa SR4k, and structured light sensor, i.e. Microsoft Kinect (see Figure
2.1(b)).

It becomes more clear looking to Figure 2.2, how the two technology work
in a different manner. In Figure 2.2(b) and 2.2(d) there are the intensity
images of the two sensors, Mesa SR4k and Kinect ones respectively. The
latter one is characterized by the constellation of dots projected by the IR
emitter, mentioned in Chapter 1, while the intensity of Mesa SR4k doesn’t
show this kind of structure. Continuing with a preliminary analysis of the

12

(a) Depth map from SR4k. (b) Intensity image from SR4k.

(c) Depth map from Kinect. (d) Intensity image from Kinect.

Figure 2.2: Acquisitions on setup in Figure 2.1

intensity and depth images, some more aspects must be highlighted and
after a short presentation of such phenomenons, in the next sections a more
deep analysis will be done.

Grayscale Board

The gray-scale board positioned on the table is made by some different
patches. In the case of SR4k it is highly visible on the Figure 2.2(a) the
presence of a lot of Gaussian noise on the depth-map estimation. For the
sensor of the Kinect, there are not issues on this object, and the depth
estimation seems being lightly affected by any kind of error.

Photogrammetry Marker

The property of the photogrammetry marker causes a high saturation in
depth estimation of the ToF, and it is characterized by a black depth color
(that means no depth estimation) in Figure 2.2(a). Even Kinect seems to
detect the high reflectance itself, in fact the intensity image reports the

13

acquired dots with an higher brightness in the zone of such marker, but in
this case the depth estimation is not affected by any kind of artefact and
the relative zone contain consistent value of depth.

Edge Identification

To correctly control the aspect of edge identification, it is necessary to zoom
an image and make an overlapping between the depth and the intensity im-
age. Figure 2.3 shows clearly this phenomenon. The blue shading is the

Figure 2.3: Depth map misalignement with Microsoft Kinect with respect
to the acquired IR image.

shape in the depth image, which is overlapped onto the IR image. As it
is highlighted by the red lines, there is an annoying misalignement phe-
nomenon. In some cases it rise up to 10 pixels of dimensions, and it must
be taken into account on further analysis and data processing.
The phenomenon occurs only with the Kinect sensor, while ToF cameras
are not affected in general by this systematic error.

Shape Estimation

Figure 2.2 is characterized by a lot of complex shape, that are positioned
very near in the space. While Mesa SR4k produce a regular depth map
also in presence of articulated shapes, Kinect depth-map is affected by some
holes, where the real values of depth are not retrieved. In particular in
Figure 2.2(c), the baby arms are not retrieved at all. This consideration
makes the Kinect very error-prone in such environmental conditions.

14

Depth–map Production

Continuing with the analysis of the depth-map appearance, some other arte-
facts occur in image. For the SR4k side, the main problem is represented
by saturated points, in fact on correspondence of the marker, there are not
values of depth. For the Kinect side another problem occurs in correspon-
dence of the slanted surface of the table, and here there aren’t available
depth values. It is curious to highlight that where the ToF camera doesn’t
perform very well, the Kinect doesn’t show any issue, and vice versa where
the Kinect has problems of depth retrieving, the ToF produces a low noise
depth map.

Occluded Points

The last aspect of this preliminary analysis is the occlusion of some part of
the scene. While SR4k is not affected by this issue, with Kinect it occurs
all but in every acquisition. In Figure 2.2(c) the phenomenon occurs on the
left of the table.

2.1.1 Time–of–Flight

There are multiple causes that influence the measurement of ToF sensors.
The reflectance of the scene at the emitters wavelength can modify the value
of the measure. If the surface is highly reflective (e.g. white coloured sur-
face), the depth measures are more precise. On the contrary if the surface
is poorly reflective (e.g. black coloured surface) the depth measures are less
precise, and in particular they are inclined to retrieve a farther object.
The worst case of the reflective phenomenon is a high reflectance surface,
(e.g. the photogrammetry marker in Figure 2.1(a)) that bring on the occur
of the saturation phenomenon, and as stated in previous section, it leads to
absence of depth information.
The background illumination B is also another important factor of error
increasing in a measurement. For example, the sun radiation has of course
a non-neglectable component in the near IR (e.g. 830[nm]). The higher is
the value of this background illumination, the higher value of component B,
and so the less precise is the ToF measurement.
The geometry of the scene can also affect the measurement in a particular
way that is explained here. For discontinuity in the shapes of the scene that
are covered by a single pixel, e.g. part of this area may be relative to a
closer object and another part to a farther object. The effect encountered
is that the measured distance is somehow in between the distance of the
farther and closer objects. The pixels affected by this phenomenon might
be referred to edge pixels.

15

For the non-edge pixels it is possible to perform a canonical Signal-to-
Noise-Ratio (SNR) analysis of the measurement errors. The general distri-
bution of their measurement noise is approximately Gaussian, as described
in [14] and as it is shown in following section. The standard distribution of
such a Gaussian is directly proportional to the SNR of the considered pixel.
Within r(t), the useful signal component is R · s(t− τ), and the noise com-
ponent is B+w(t). In order to estimate the values of the SNR the following
considerations should be taken into account.
The higher is the reflectivity of the area the higher is the amplitude of the
received signal R and the SNR (e.g. white surface has a high SNR and a low
standard deviation of the Gaussian, while black surface has lower SNR and
the Gaussian has a higher standard deviation). The further is the object
from the sensor, the lower is R, and so the lower is the SNR. The higher is
the background illumination, the higher is B, and the lower is the SNR.
The SNR analysis of the edge pixels is more complex because of multiple
reflections that might occur. However it is interesting to notice that the
measured distance can still be approximated by a Gaussian, with mean
somehow in between the further and the closer surface parts and standard
deviation with unknown characteristics. The mean location depends on the
proportion between the area of the closer and the further surface.
Last but not the least, there is another effect that generally affects the mea-
surements performed by a ToF range camera, i.e., a systematic offset in the
distance measurement due to harmonic distortion [13]. However, this issue is
internally corrected by the manufacturers, as in the case of the Mesa SR4k,
and therefore it is not considered in this analysis.

2.1.2 Microsoft Kinect

For the Microsoft Kinect it is not possible to make the same consideration
that have been stated before for ToF cameras, because a formal error model
has not been developed yet. However it is possible to describe its various
sources of errors and artefacts.
With respect to the ToF cameras analysis of the previous section, the dis-
tinction between edge and non-edge pixels for the Kinect camera needs to
be slightly modified. For the previous highlighted phenomenon of edge mis-
alignment, in these zones of the depth-map, the systematic error of depth
misalignment can rise up to huge levels.
Moreover some random errors in the measurement of the depth values of
all the pixel may occur, but the distribution of the measurements is not a
Gaussian anymore as the distribution of the ToF measurements. The dis-
tribution of the error for such a depth sensor is spiky, for both the edge or
the non-edge pixel. Probably this randomness is due to the noise of the IR
CMOS camera and to some reflections artefacts that do not allow to the
camera to correctly retrieve the reflected dots of the scene, or alternatively

16

by some internal post-processing calculation of the firmware of the Kinect
made upon the raw data of the depth-map.
Other depth artefacts typical of the Kinect are the lack of measurements
for a considerable amount of pixels. This is due by several causes. The
first one is principally the spatial dislocation of the IR emitter with respect
to the IR receiver, that is rather large, countable in about 7.5[cm]. The
generated effect is the occlusion of some parts of the scene, and the con-
sequent absence of informations. Another cause can be considered in the
acquisition of slanted surfaces, on which the prospective distortion affects
too much the shape of the projection pattern, making impossible for the
Kinect estimation algorithm to correctly interpret it. In the end also a very
low reflective surface can produce a complete absorption of the light emitted
by the projector causing a lack of depth measurements.

2.2 Quantitative Analysis

In the previous sections it has been presented a preliminary analysis of the
behaviours of the camera that are based upon different working principle.
In particular to test the data retrieved by Mesa SR4k and by the Microsoft
Kinect a setup has been prepared.
Now a more methodical and rigorous analysis is done on all three devices
presented in Chapter 1. In order to perform it, a specific template object
has been designed and built with some advantageous characteristics. It is
showed in Figure 2.4.

Figure 2.4: Template object.

17

This object has been designed with specific intentions. It is constituted
by a flat panel, half is black-coloured and half is white-coloured. For every-
one of those zones, there are two protruding cubes, one black and and the
other white coloured. Figure 2.5 shows the specifications of such panel. This
particular configuration has been chosen for the analysis of the acquisition
errors in several situation:

1. Distribution of the measurements noise on flat surfaces as function of
the target reflectivity (white and black surface).

2. Distribution of the measurements noise on surfaces characterized by
depth discontinuities in every combination of the target reflectivity.

93 cm

73
 c

m

20
 c

m

20 cm

Figure 2.5: Template object specification. Cyan circles are single points,
red rectangles represents edges points stripes

In order to quantify the first type of noise, i.e. the noise on flat surfaces
as function of flat surface reflectivity, four points on the scene have been
considered. Such points (shown by cyan circles in Figure 2.5) have been
picked in the middle of the four cubes and represent the following situations:

1. PointWW : high reflectivity foreground (white cube) on high reflec-
tivity background (white panel).

2. PointWB: high reflectivity foreground (white cube) on low reflectivity
background (black panel).

3. PointBW : low reflectivity foreground (black cube) on high reflectivity
background (white panel).

18

4. PointBB: low reflectivity foreground (black cube) on low reflectivity
background (black panel).

On the contrary, in order to analyse the distribution of second type of noise,
i.e., the noise on depth discontinuities, another set of points of the template
has been considered. For each of the four cubes, a segment of five points
that crosses a depth discontinuity, has been considered (the corresponding
region is shown in red in Figure 2.5, while the points position with respect
to the edge is represented in Figure 2.6. Such stripes of points reflects four
possible situations1:

1. EdgeWWi: high reflectivity foreground (white cube) on high reflec-
tivity background (white panel).

2. EdgeWBi: high reflectivity foreground (white cube) on low reflectivity
background (black panel).

3. EdgeBWi: low reflectivity foreground (black cube) on high reflectivity
background (white panel).

4. EdgeBBi: low reflectivity foreground (black cube) on low reflectivity
background (black panel).

Edge

1 2 3 4 5

Foreground surface

Background surface

Figure 2.6: Alignment of the considered segment of pixels, along a depth
discontinuity.

For each of these points a set of 10000 depth acquisitions have been
performed with the Mesa SR4k and with the Canesta Time-of-Flight camera.
A set of 1500 depth acquisitions has been performed with the Microsoft

1The symbol i can assume a value in the integer interval [1, 5] as shown in Figure 2.6.

19

Kinect2. In all the acquisition the panel was at a distance of about 2 meters
in a controlled environment without external illumination. This was made in
order to avoid multiple reflection phenomenons, and to obtain a repeatable
configuration. Nevertheless the distance from the set of acquisitions made
with different sensors can change of about 10-20 cm, but this fact doesn’t
affect the exactness of the analysis which is rather focused on the distribution
of the measurements, instead of absolute precision.
For each pixel several useful calculations have been done. Furthermore they
have been calculated and drawn a histogram for every pixel, to highlight
their distribution, and also they have been calculated the maximum value,
the minimum value, the mean and the standard deviation with the well-
known formulas

µp =

N∑
i=1

zpi

N
(2.1)

σp =

√√√√√ N∑
i=1

(zpi − µp)2

N − 1
(2.2)

where zp stands for depth value of pixel p considered (e.g. PointWW or
EdgeBW3) and N is the maximum number of pixel (i.e. 10000 for ToF
camera and 1500 for the Microsoft Kinect).

2.2.1 Implementation of algorithm analysis

To perform the requested operations, a simple C++ program has been im-
plemented. It makes use of some standard C++ libraries like iostream, or
string, and the powerful OpenCV 2.2 library [7] for the computer-vision
computation part of the program.
The program is composed by the following steps:

1. Detection of the edges of the scene through the use of Canny algorithm
applied on intensity image of the ToF cameras, and on depth image
for the Microsoft Kinect3. See Figures 2.7(a), 2.8(a), and 2.9(a) that
show the intensity images, while the Figures 2.7(b), 2.8(b) and 2.9(b)
show the results of the edge detection.

2. Detection of the pixel considered and retrieving of their correct co-
ordinates. The Figures 2.7(c), 2.8(c) and 2.9(c) show the considered
pixels.

2The number of acquisition performed with the Kinect is limited because the acqui-
sition library (i.e. RGBDemo [5]) had some problems with the acquisition of several
consequent frames, making the acquisition process very annoying with random crashes of
the application.

3The pixels considered for the Kinect were not affected by misalignment.

20

(a) Amplitude image from
SR4k.

(b) Canny computation
for SR4k image.

(c) Pixels detected for
SR4k image.

Figure 2.7: Analysis for Mesa SR4k acquisitions. The Figures 2.7(a),
2.7(b) and 2.7(c) have all a 176× 144 resolution

(a) Amplitude image from
Canesta.

(b) Canny computation
for Canesta image.

(c) Pixels detected for
Canesta image.

Figure 2.8: Analysis for Canesta acquisitions. The Figures 2.8(a), 2.8(b)
and 2.8(c) have all a 320× 200 resolution.

3. Loading of the depth data zp, through the parsing of previously ac-
quired data.

4. Computation of max, min, mean and standard deviation values.

5. Computation of the histograms of the depth data zp.

6. Creation of the output of all the informations computed and acquired
by the program.

Every single implementation of the procedure is slightly different on the
basis of the sensor considered. This was due for the different kind of files
format that store the depth values, or for the canny algorithm thresholds
that had to be slightly differentiated to perform a correct edge detection in
the scene.

2.2.2 Non-Edge Pixels analysis

The Figures 2.11, 2.12 and 2.13 show the distribution of measurements made
by SR4k, Canesta and Kinect devices respectively, on the pixels in flat sur-
faces of the template object. It is highlighted by such plots, how the distri-
bution of ToF sensors measurements are highly comparable with a Gaussian

21

(a) Depth image from the
Kinect.

(b) Canny computation
for the Kinect image.

(c) Pixels detected for the
Kinect image.

Figure 2.9: Analysis for the Microsoft Kinect acquisitions. The Figures
2.9(a), 2.9(b) and 2.9(c) have all a 640× 480 resolution.

distribution in every reflectance condition (e.g. black surface foreground on
black background, or black surface foreground on white background).
On the other hand the Microsoft Kinect demonstrates a very strange be-
haviour. The distribution of its measurements is very spiky and the plots
in Figure 2.13 show that the values acquired tend to agglomerate them in
some sparse bins, and very far from each other. The presence of these out-
liers might be a problem for applications that are not robust with respect to
such errors. This issue is probably due by internal processing of the Kinect
software, also mentioned in previous section.
Concerning with standard deviation values, a complete comparison for the
non-edge pixels is present in Figure 2.10. It is clear how all the three sensors
have similar values of deviation from the mean value, even if the distribution
of Kinect is not a Gaussian properly. Moreover it is worth to notice that
for the ToF sensors, the black surfaces increase the deviation. This fact
demonstrates how low reflectance conditions decrease the quality of a depth
measurement.
The Table 2.1 reports some numerical values for measurements on flat points,
in particular they are minimum, maximum, mean and standard deviation
values.

2.2.3 Edge Pixels analysis

The Figures 2.16, 2.17 and 2.18 show the distribution of the measurements
made by SR4k, Canesta and Kinect devices respectively in a particular
edge4. It is clear how the two ToF sensors (i.e. Mesa SR4k and Canesta
cameras) have also in this case a comparable behaviour, that is a Gaussian
distribution of the measurements for all the pixels on an edge, withstanding
the difficult measurement of the zones with discontinuities.
On the other hand, Microsoft Kinect repeats its very strange behaviour.
The distribution of its measurements is very spiky, both in, for example,

4The various histograms show EdgeBBi measurements distribution.

22

Point p Device Min [m] Max [m] µp[m] σp[m]

PointBB
SR4k 1,6594 1,7006 1,6812 0,0056
Canesta 2,0300 2,1170 2,0721 0,0116
Kinect 1,6994 1,7173 1,7052 0,0043

PointBW
SR4k 1,6590 1,7097 1,6864 0,0058
Canesta 2,0350 2,1200 2,0779 0,0122
Kinect 1,6994 1,7173 1,7088 0,0023

PointWB
SR4k 1,6805 1,6987 1,6898 0,0024
Canesta 2,0440 2,0780 2,0604 0,0045
Kinect 1,7083 1,9426 1,7173 0,0076

PointWW
SR4k 1,6856 1,7061 1,6964 0,0024
Canesta 2,0380 2,0730 2,0553 0,0049
Kinect 1,6994 1,9544 1,7116 0,0076

Table 2.1: Values of important parameters acquired on flat surfaces.

EdgeBB1, that is the pixel on the protruding flat surface, or in EdgeBB3,
that is exactly the edge pixel (remember the scheme in Figure 2.6). The
plots show that the values acquired tend to agglomerate them also in these
conditions, in some sparse and very far from each other bins. The presence
of these outliers might be a problem for applications that are not robust with
respect to such errors. This issue is probably due by internal processing of
the Kinect software, also mentioned in previous section.
It is worth to notice also how in presence of depth discontinuities, the depths
measured by SR4k and by Canesta are somehow in between the closer sur-
face (cube) and the further surface (panel), where the distance reported
changes smoothly from the points in the and the point in the panel. The
depth measurements performed by the Kinect are more affected by noise,
and they can present in some cases also some overshoots of about 4[cm] near
edges, i.e. some points in the edges are measured closer that the cube or
further than the panel. In Figure 2.14 they are reported the mean values of
all the sensor for the pixels at the discontinuities, and all these phenomenons
can be easily viewed. In particular the difficulty of Kinect to detect the cor-
rect edges is highlighted, i.e. the pixel 3 that should be exactly on the cube,
sometime can be addressed with its real value of distance, to the background
flat surface.
Concerning with standard deviations, the Figure 2.15 shows interesting top-
ics. As it was expected, Microsoft Kinect presents a more noisy behaviour,
in fact almost in every test case it has higher values of standard deviation. It
can grow up to 20 times the standard deviation of the time of flight sensors,
especially in the EdgeWWi set of points, where the brightness of the pixels

23

SR4000 Canesta Kinect
0,000

0,002

0,004

0,006

0,008

0,010

0,012

0,014

Standard Deviation Single Points

PixelBB
PixelBW
PixelWB
PixelWW[m

]

Figure 2.10: Standard deviation values of depth measures on flat surfaces.

acquired, probably5 affects the detection process of IR CMOS camera.
For time-of-flight devices, the depth detection process is more stable and the
measurements present in general lower values of standard deviation with re-
spect of Microsoft Kinect. Both SR4k and Canesta have similar values, but
in general Mesa range camera seems to be lesser affected by noise with a
general lower value of deviation. This fact is mainly due for the production
hardware process of Mesa and for its drivers and software that are more
tested and stable: the Canesta camera is in fact a laboratory prototype and
it is not fully optimized. Both ToF sensors have in every case a standard
deviation value lesser of 1[cm] that can be considered a good value, related
to a measure of about 2[m].
The Table 2.2 presents some numerical values for edge pixel EdgeBBi. In
particular they are minimum, maximum, mean and standard deviation val-
ues.

5It is used the term probably because the Microsoft Kinect decoding algorithm is com-
pletely unknown.

24

1,65939
1,66214

1,66489
1,66764

1,67038
1,67313

1,67588
1,67863

1,68138
1,68413

1,68688
1,68963

1,69237
1,69512

1,69787

0

2

4

6

8

10

12

SR4000 PointBB

[m]

[%
 o

f m
ea

su
re

m
en

ts
]

1,65906
1,66243

1,66581
1,66918

1,67255
1,67592

1,67930
1,68267

1,68604
1,68941

1,69279
1,69616

1,69953
1,70290

1,70628

0

2

4

6

8

10

12

SR4000 PointBW

[m]

[%
 o

f m
ea

su
re

m
en

ts
]

Figure 2.11: Distribution of measurements for Mesa SR4k of pixels on the
flat surfaces.

25

1,68051
1,68172

1,68293
1,68415

1,68536
1,68657

1,68778
1,68899

1,69021
1,69142

1,69263
1,69384

1,69505
1,69627

1,69748

0

2

4

6

8

10

12

14

16

SR4000 PointWB

[m]

[%
 o

f m
ea

su
re

m
en

ts
]

1,68555
1,68692

1,68828
1,68965

1,69102
1,69239

1,69375
1,69512

1,69649
1,69786

1,69922
1,70059

1,70196
1,70333

1,70469

0

2

4

6

8

10

12

14

16

SR4000 PointWW

[m]

[%
 o

f m
ea

su
re

m
en

ts
]

Figure 2.11: Distribution of measurements for Mesa SR4k of pixels on the
flat surfaces.

26

2,03000
2,03580

2,04160
2,04740

2,05320
2,05900

2,06480
2,07060

2,07640
2,08220

2,08800
2,09380

2,09960
2,10540

2,11120

0

2

4

6

8

10

12

Canesta PointBB

[m]

[%
 o

f m
ea

su
re

m
en

ts
]

2,03500
2,04067

2,04633
2,05200

2,05767
2,06333

2,06900
2,07467

2,08033
2,08600

2,09167
2,09733

2,10300
2,10867

2,11433

0

2

4

6

8

10

12

Canesta PointBW

[m]

[%
 o

f m
ea

su
re

m
en

ts
]

Figure 2.12: Distribution of measurements for Canesta range camera of
pixels on the flat surfaces.

27

2,04400
2,04627

2,04853
2,05080

2,05307
2,05533

2,05760
2,05987

2,06213
2,06440

2,06667
2,06893

2,07120
2,07347

2,07573

0
2
4
6
8

10
12
14
16
18
20

Canesta PointWB

[m]

[%
 o

f m
ea

su
re

m
en

ts
]

2,03800
2,04033

2,04267
2,04500

2,04733
2,04967

2,05200
2,05433

2,05667
2,05900

2,06133
2,06367

2,06600
2,06833

2,07067

0
2
4
6
8

10
12
14
16
18

Canesta PointWW

[m]

[%
 o

f m
ea

su
re

m
en

ts
]

Figure 2.12: Distribution of measurements for Canesta range camera of
pixels on the flat surfaces.

28

1,69936
1,70055

1,70175
1,70294

1,70414
1,70533

1,70653
1,70772

1,70892
1,71011

1,71131
1,71250

1,71370
1,71489

1,71609

0

10

20

30

40

50

60

70

Kinect PointBB

[m]

[%
 o

f m
ea

su
re

m
en

ts
]

1,69936
1,70055

1,70175
1,70294

1,70414
1,70533

1,70653
1,70772

1,70892
1,71011

1,71131
1,71250

1,71370
1,71489

1,71609

0
10
20
30
40
50
60
70
80
90

100

Kinect PointBW

[m]

[%
 o

f m
ea

su
re

m
en

ts
]

Figure 2.13: Distribution of measurements for Microsoft Kinect sensor of
pixels on the flat surfaces.

29

1,70828
1,72391

1,73954
1,75516

1,77079
1,78642

1,80205
1,81767

1,83330
1,84893

1,86456
1,88018

1,89581
1,91144

1,92707

0
10
20
30
40
50
60
70
80
90

100

Kinect PointWB

[m]

[%
 o

f m
ea

su
re

m
en

ts
]

1,69936
1,71636

1,73336
1,75036

1,76736
1,78436

1,80136
1,81836

1,83535
1,85235

1,86935
1,88635

1,90335
1,92035

1,93735

0

10

20

30

40

50

60

70

Kinect PointWW

[m]

[%
 o

f m
ea

su
re

m
en

ts
]

Figure 2.13: Distribution of measurements for Microsoft Kinect sensor of
pixels on the flat surfaces.

30

1 2 3 4 5
1,650

1,700

1,750

1,800

1,850

1,900

1,950

Mean Value SR4000

EdgeBB
EdgeBW
EdgeWB
EdgeWW

Pixel position

[m
]

M
ea

su
re

d
di

st
an

ce

1 2 3 4 5
1,900

1,950

2,000

2,050

2,100

2,150

2,200

2,250

2,300

Mean Values Canesta

EdgeBB
EdgeBW
EdgeWB
EdgeWW

Pixel position

[m
]

M
ea

su
re

d
di

st
an

ce

1 2 3 4 5
1,650

1,700

1,750

1,800

1,850

1,900

1,950

2,000

Mean Values Kinect

EdgeBB
EdgeBW
EdgeWB
EdgeWW

Pixel position

[m
]

M
ea

su
re

d
di

st
an

ce

Figure 2.14: Means of depth measures in correspondence of an edge for
the three sensors.

31

SR4000 Canesta Kinect
0,000

0,010

0,020

0,030

0,040

0,050

0,060

0,070

0,080

Standard Deviation EdgeBB

Pixel_1
Pixel_2
Pixel_3
Pixel_4
Pixel_5

[m
]

SR4000 Canesta Kinect
0,000

0,002

0,004

0,006

0,008

0,010

0,012

Standard Deviation EdgeBW

Pixel_1
Pixel_2
Pixel_3
Pixel_4
Pixel_5

[m
]

Figure 2.15: Standard deviation values of depth measures in correspon-
dence an edge for the three sensors.

32

SR4000 Canesta Kinect
0,000

0,010

0,020

0,030

0,040

0,050

0,060

Standard Deviation EdgeWB

Pixel_1
Pixel_2
Pixel_3
Pixel_4
Pixel_5

[m
]

SR4000 Canesta Kinect
0,000

0,010

0,020

0,030

0,040

0,050

0,060

0,070

0,080

Standard Deviation EdgeWW

Pixel_1
Pixel_2
Pixel_3
Pixel_4
Pixel_5

[m
]

Figure 2.15: Standard deviation values of depth measures in correspon-
dence an edge for the three sensors.

33

1,66106
1,66395

1,66683
1,66972

1,67260
1,67549

1,67838
1,68126

1,68415
1,68703

1,68992
1,69281

1,69569
1,69858

1,70146

0

2

4

6

8

10

12

14

SR4k EdgeBB_1

[m]

[%
 o

f m
ea

su
re

m
en

ts
]

1,71174
1,71500

1,71826
1,72153

1,72479
1,72805

1,73131
1,73457

1,73784
1,74110

1,74436
1,74762

1,75088
1,75415

1,75741

0

2

4

6

8

10

12

14

SR4k EdgeBB_2

[m]

[%
 o

f m
ea

su
re

m
en

ts
]

1,82640
1,83047

1,83455
1,83862

1,84270
1,84677

1,85085
1,85492

1,85900
1,86307

1,86715
1,87122

1,87530
1,87937

1,88345

0

2

4

6

8

10

12

14

SR4k EdgeBB_3

[m]

[%
 o

f m
ea

su
re

m
en

ts
]

Figure 2.16: Distribution of measurements for Mesa SR4k of EdgeBBi

pixels.

34

1,86549
1,86893

1,87236
1,87580

1,87923
1,88267

1,88610
1,88954

1,89297
1,89641

1,89984
1,90328

1,90671
1,91015

1,91358

0

2

4

6

8

10

12

14

SR4k EdgeBB_4

[m]

[%
 o

f m
ea

su
re

m
en

ts
]

1,86400
1,86757

1,87114
1,87472

1,87829
1,88186

1,88543
1,88900

1,89258
1,89615

1,89972
1,90329

1,90686
1,91044

1,91401

0

2

4

6

8

10

12

14

SR4k EdgeBB_5

[m]

[%
 o

f m
ea

su
re

m
en

ts
]

Figure 2.16: Distribution of measurements for Mesa SR4k of EdgeBBi

pixels.

35

2,22100
2,22833

2,23567
2,24300

2,25033
2,25767

2,26500
2,27233

2,27967
2,28700

2,29433
2,30167

2,30900
2,31633

2,32367

0

2

4

6

8

10

12

14

Canesta EdgeBB_1

[m]

[%
 o

f m
ea

su
re

m
en

ts
]

2,21700
2,22373

2,23047
2,23720

2,24393
2,25067

2,25740
2,26413

2,27087
2,27760

2,28433
2,29107

2,29780
2,30453

2,31127

0

2

4

6

8

10

12

14

Canesta EdgeBB_2

[m]

[%
 o

f m
ea

su
re

m
en

ts
]

2,10000
2,10640

2,11280
2,11920

2,12560
2,13200

2,13840
2,14480

2,15120
2,15760

2,16400
2,17040

2,17680
2,18320

2,18960

0

2

4

6

8

10

12

14

Canesta EdgeBB_3

[m]

[%
 o

f m
ea

su
re

m
en

ts
]

Figure 2.17: Distribution of measurements for Canesta of EdgeBBi pixels.

36

2,04000
2,04607

2,05213
2,05820

2,06427
2,07033

2,07640
2,08247

2,08853
2,09460

2,10067
2,10673

2,11280
2,11887

2,12493

0

2

4

6

8

10

12

14

Canesta EdgeBB_4

[m]

[%
 o

f m
ea

su
re

m
en

ts
]

2,03400
2,04013

2,04627
2,05240

2,05853
2,06467

2,07080
2,07693

2,08307
2,08920

2,09533
2,10147

2,10760
2,11373

2,11987

0

2

4

6

8

10

12

14

Canesta EdgeBB_5

[m]

[%
 o

f m
ea

su
re

m
en

ts
]

Figure 2.17: Distribution of measurements for Canesta of EdgeBBi pixels.

37

1,90853
1,91004

1,91155
1,91306

1,91457
1,91608

1,91759
1,91909

1,92060
1,92211

1,92362
1,92513

1,92664
1,92815

1,92966

0
10
20
30
40
50
60
70
80
90

100

Kinect EdgeBB_1

[m]

[%
 o

f m
ea

su
re

m
en

ts
]

1,89741
1,89966

1,90191
1,90416

1,90641
1,90866

1,91091
1,91316

1,91542
1,91767

1,91992
1,92217

1,92442
1,92667

1,92892

0

10

20

30

40

50

60

Kinect EdgeBB_2

[m]

[%
 o

f m
ea

su
re

m
en

ts
]

1,69054
1,70658

1,72262
1,73867

1,75471
1,77075

1,78679
1,80283

1,81888
1,83492

1,85096
1,86700

1,88304
1,89909

1,91513

0
10
20
30
40
50
60
70
80
90

100

Kinect EdgeBB_3

[m]

[%
 o

f m
ea

su
re

m
en

ts
]

Figure 2.18: Distribution of measurements for the Kinect of EdgeBBi

pixels.

38

1,69054
1,70658

1,72262
1,73867

1,75471
1,77075

1,78679
1,80283

1,81888
1,83492

1,85096
1,86700

1,88304
1,89909

1,91513

0

5

10

15

20

25

30

35

Kinect EdgeBB_4

[m]

[%
 o

f m
ea

su
re

m
en

ts
]

1,69054
1,69172

1,69291
1,69409

1,69527
1,69645

1,69764
1,69882

1,70000
1,70118

1,70237
1,70355

1,70473
1,70591

1,70710

0

10

20

30

40

50

60

70

Kinect EdgeBB_5

[m]

[%
 o

f m
ea

su
re

m
en

ts
]

Figure 2.18: Distribution of measurements for the Kinect of EdgeBBi

pixels.

39

Point p Device Min [m] Max [m] µp[m] σp[m]

EdgeBB1

SR4k 1,8640 1,9176 1,8906 0,0072
Canesta 2,2210 2,3310 2,2800 0,0132
Kinect 1,9085 1,9312 1,9183 0,0020

EdgeBB2

SR4k 1,8655 1,9170 1,8900 0,0069
Canesta 2,2170 2,3180 2,2648 0,0136
Kinect 1,8974 1,9312 1,9145 0,0065

EdgeBB3

SR4k 1,8264 1,8875 1,8531 0,0068
Canesta 2,1000 2,1960 2,1469 0,0117
Kinect 1,6905 1,9312 1,9162 0,0207

EdgeBB4

SR4k 1,7117 1,7607 1,7352 0,0064
Canesta 2,0400 2,1310 2,0850 0.0123
Kinect 1,6905 1,9312 1,7292 0,0747

EdgeBB5

SR4k 1,6611 1,7044 1,6835 0,0060
Canesta 2,0340 2,1260 2,0861 0,0125
Kinect 1,6905 1,70828 1,6997 0,0052

Table 2.2: Values acquired of important parameters on discontinuity points
of EdgeBBi.

40

Chapter 3
Algorithms for Depth–Map
Improving

After the analysis performed in previous chapters, it becomes clear how data
retrieved by dynamic 3D sensors are affected by errors in a considerable way.
They can have several kind of causes, but they can be in most cases mod-
elled and consequently they can be also corrected.
From previous section it is highlighted in particular, how the Microsoft
Kinect have lower, but comparable performances with respect to Time-
of-Flight devices and it takes more sense trying to improve with a post–
processing step the quality of the depth map. Previous considerations about
the very low cost of this dynamic 3D sensor, give greater credence to the
reasons of improving the quality, with the hope to obtain both a cheap and
a less–affected by errors device.
This chapter of the thesis focuses on the preparation of a rigorous method
that combine several techniques and algorithms to improve the quality of
the depth map acquired by the Microsoft Kinect sensor. Most of these tech-
niques can be easily adapted also to depth–maps acquired by other sensors.

3.1 Error analysis and planning of the methods.

It is worth to remember what kind of problems were decisive to encounter
depth-map low quality.
First of all, Kinect suffers of bad edge estimation; this is mainly due for the
misalignment of the depth-map with respect to real edges of the image, but
also for simple errors of depth value assignment. The bad edge detection
is also encountered in correspondence of articulated shapes, where in some
cases the depth can also have considerable holes, i.e. unknown values of
depth.
The phenomenon of depth absence is also noticed in correspondence of oc-

41

cluded point, and this problem is due for the distance between IR projector
and IR camera of the Kinect device.
The first improving that is researched is of course a repair of the misalign-
ment on the edges, consequently a complete filling of holes, both for articu-
lated and occluded zones of the scene.
In second instance other considerations can be done. The process of quality
improvement can also be orientated towards another important aspect of
computer vision, that is the resolution. The devices considered until this
moment (e.g. ToF Swiss Ranger 4000 and Canesta) are characterized by
low values of resolutions. Depth-maps of order of magnitude of 176×144 or
320× 200 are for some particular purposes, too much undersized, also con-
sidering the fact that actual resolutions for common cameras can grow up to
several millions of pixels. Even Microsoft Kinect with an output resolution
of 640× 480, can be upscaled to more considerable resolution values.
To perform all these operations of improvement, a new acquisition setup has
been prepared, and it is reported in Figure 3.1 as a scheme. They have been
used a Microsoft Kinect sensor and a Nikon D70s color camera, shown in
Figure 3.2.

In this stereo configuration, the Nikon color camera is the left-eye, while

NIKON
CAMERA

KINECT
SENSOR

Figure 3.1: New setup for depth-map quality improving.

the right-eye is the Kinect. The set of acquired informations is populated
with just two objects:

• Nikon JPEG image of resolution 3008 × 2000, that is used for colour
information of the scene. The image is shown in Figure 3.3.

• Microsoft Kinect depth-map, with both gray scale PNG image and
YML text formats, with a resolution of 640×480, utilized for distance
information of the scene. The image is shown in Figure 3.4

42

Figure 3.2: Nikon D70s camera used for color information.

A set of algorithms will be designed and correctly correlated each other o
perform a correction on depth-map errors; moreover both color information
from the Nikon camera and other algorithms will be used to upgrade the
resolution of the depth-map.
The complete pipeline of the methods that have been planned is presented
here, while a more detailed analysis on every step will be explained in fol-
lowing sections:

1. Error Detection and Removal

2. Backprojection

3. High Resolution Interpolation

The implementation of the complete procedure has been done, also this
time, in C++ with the support of various standard libraries, and also with a
massive use of already cited OpenCV computer vision libraries [7]. It had been
chosen because it offers some powerful sets of data types, I/O functions and
in particular images and matrix processing functions. The huge quantity of
algorithms implemented are fully optimized. OpenCV is released under a BSD
license, so it is free for both academic and commercial use, and it makes the
code written able to be redistributed, modified, improved and also integrated
in other projects. It is used around the world and a so populated community
of developers maintains the code young and clean; moreover it can give help
through the web-group and it is easy to find accurate informations about
OpenCV framework.

43

Figure 3.3: Color image

3.2 Error Detection and Removal

The first operation that has to be performed is the detection of such pixels
that we know to be affected by error. In particular, from previous con-
siderations, it has been highlighted that we have three categories of such
pixels:

• Pixels on the edges with misaligned depth.

• Pixels on bad edges estimation.

• Saturated and occluded pixels without depth value.

It is reported in Figure 3.4 the gray scale PNG image of the Kinect depth–
map. It presents inside all of such types of pixels affected by error just
mentioned in the list. First of all it is worth to remember that the inten-
sity of every pixel of this image have a direct correspondence with its depth
value, i.e. the higher the depth value the brighter the pixel, and in partic-
ular the black colour is used by the acquisition software to warn about the
absence of depth information. So, to detect saturated and occluded points
it is enough to consider black pixels of the depth map. Instead to detect
the other two categories of pixels, it is necessary to make use of some more
advanced computer vision algorithm. Before citing them, some considera-
tions and assumptions must be done on how this error is distributed onto
the space domain of the depth map.
The Figure 3.5 shows with a black line an hypothetical shape that has to
be detected, for which the dynamic sensor has to retrieve the distance and
with a blue line it represents the same shape in the depth map detected by
the sensor, where they can occur in some zones the just presented issues.
It is clear how their mutual spatial arrangement is correlated and so it is

reasonable to think that their distance cannot overcome an upper bound.

44

Figure 3.4: Depth PNG image of Kinect depth map.

Figure 3.5: Real edge of an object with black line. Detected edge of an
object by Kinect sensor with blue line. Ideal representation.

45

Even if this error has not been modelled with a formal theory, previous anal-
ysis and other particular investigations stated that this upper bound cannot
overcome the size of 15 pixels, for further considered acquisitions.
The Figure 3.6 shows that it is possible to consider an enlargement of the
blue line to catch a considerable amount of pixels with wrong depth value.
Those pixels are covered by the area between blue dotted lines. The pol-
icy utilized for this error correction procedure completely prunes the corre-
sponding depth values.
So for the implementation of this phase of error detection and removal, it

Figure 3.6: The zone between blue dotted lines is the subject for depth
value pruning.

Algorithm 1 Edge Error Detection and Removal

Require: depth,r
edges ← canny(depth)
dilatedEdges ← dilate(edges)
for i = 0→ r − 1 do

if depth [i] == black and dilatedEdges[i] == black then
dilatedEdges[i]← white

end if
end for

has been designed the Algorithm 1, that uses a very well-known in litera-
ture edge detector algorithm, i.e. the Canny edge detector [8], and an image
morphological operator, i.e. the dilation algorithm [10]. In the text of the al-
gorithm, r is the number of pixel of depth image, depth[i] and dilatedEdge[i]
are the images where i is their progressive number of pixel, which can span

46

the integer interval [0, r − 1].
Through the use of the canny operator it is possible to detect the edges
of the scene, that are the edges detected from the sensor of Kinect (see
Figure 3.7), because canny operates upon the depth PNG image returned
from the acquisition software. Upon this output it is performed the planned
enlargement, i.e. the dilation, of the edges area with the second operator
dilate , for which depth values will not be taken in account (see Figure 3.8).
The last loop has the purpose to detect all the remaining areas for which no
depth values is available, corresponding to black pixels into the depth map,
adding a white pixel in the dilated image.
As result of all these operations we have a black and white (boolean) image
(see Figure 3.9) that is a sort of mask:

• Black pixels correspond to good values in the depth-map.

• White pixels correspond to wrong and pruned values in the depth-map.

Figure 3.7: Edges detection: output image of canny algorithm.

3.2.1 Canny Edge Detector Algorithm

The challenge of edge detection is a frequent problem that has to be over-
come. Qualitatively edges occur at boundaries regions of different color,
intensity or texture. Under such conditions, a reasonable approach is to
define an edge as a location of rapid intensity variation.
In literature there are a lot of well known procedures and algorithms that
perform edge detection, but a particular refinement of existing techniques
[10, 16, 7] has been considered, that is Canny algorithm.
In the Canny algorithm, the first derivatives are computed in x and y and
then combined into four directional derivatives. The points where these di-
rectional derivatives are local maxima, are then candidates for assembling

47

Figure 3.8: Edges dilation: output image of dilate algorithm.

Figure 3.9: Final result: the area of unknown and pruned depth is marked
with a white pixel.

48

into edges. However, the most significant new dimension to the Canny al-
gorithm is that it tries to assemble the individual edge candidate pixels into
contours. These contours are formed by applying an hysteresis threshold to
the pixels. This means that there are two thresholds, an upper and a lower.
If a pixel has a gradient larger than the upper threshold, then it is accepted
as an edge pixel; if a pixel is below the lower threshold, it is rejected. If the
pixels gradient is between the thresholds, then it will be accepted only if it
is connected to a pixel that is above the high threshold.
OpenCV contains a useful function to operate such algorithm on an input
image, that is

• cvCanny(input,edges,lowThresh,highThresh)

where input is the Figure 3.4 and edges is the Figure 3.7. For the particular
implementation they have been used

• lowThresh=49

• highThresh=50

3.2.2 Dilation Algorithm

The Dilation algorithm belongs to the morphology category of image pro-
cessing operators. This category contains a lot of as simple as useful algo-
rithms that are very well described in the majority of literature [10, 16, 7].
Dilation is a convolution of some (gray scale or binary) image (or region of
an image) A, with some kernel B. The kernel, which can be any shape or
size, has a single defined anchor point, i.e. the central point. The kernel can
be thought of as a template or mask, and its effect for dilation is that of a
local maximum operator. As the kernel B is scanned over the image, the
procedure computes the maximal pixel value overlapped by B and replaces
the image pixel under the anchor point with that maximal value. This causes
bright regions within an image to grow as diagrammed in Figure 3.10.
OpenCV contains a useful function to operate such algorithm on an input

image, that is

• cvDilate(input,dilation,kernel,iterations)

where input is the image in Figure 3.7 and dilation is the image in Figure
3.8. The kernel is a parameter to change the dimension of the kernel B and
iterations is of course a parameter to set the number of iterations of the
kernel B over the input image A. For the particular implementation they
have been used

• kernel=DEFAULT

• iterations=3

49

Figure 3.10: Morphological dilation: take the maximum of A under the
kernel B.

3.3 Backprojection

Before being ready to use the high resolution informations of the Nikon cam-
era of the stereo setup shown in Figure 3.1, it is necessary to find a correct
way to correlate such informations with the Kinect ones. Starting from a
couple of images of the same scene from different point of view, it is neces-
sary to find the correspondences of every point between Kinect and Nikon
reference systems. The solution for this kind of problem is well-known in
literature and it is called stereo calibration[9, 18, 14].
For the particular stereo setup considered, a set of operations must be per-
formed:

• Right camera calibration.

• Left camera calibration.

• Stereo calibration.

This set of consequent calibration steps allows to find the complete geomet-
rical description of the information of the scene. With the first two types of
calibration we can find a way to easily pass between 2D and 3D coordinates
from a single camera point of view, both for Nikon and Kinect reference sys-
tems. The last calibration step allows to express the 3D reference systems
of one device in function of the other one.
All these calibration steps impose to execute some particular calculations
that made the assumption that every camera satisfies the hypothesis of a
pinhole camera model[18, 9, 14].
In general the calibration of extrinsic parameters is the procedure that allow
to retrieve a decription of the projection of the points that belong to the
real world into the image produced by a single camera. The following ex-
pression is a matrix representation in homogeneous coordinates that models

50

the projection of the tridimensional points

z

uv
1

 =

−fku fku cot (θ) u0 0
0 −fkv/ sin (θ) u0 0
0 0 1 0

x
y
z
1

 (3.1)

In 3.1, p = [u, v]T are the 2D coordinates of the point in the image of the
camera, while P = [x, y, z]T are the coordinates of the same points in a 3D
reference system. The other intrinsic parameters −fku and −fkv are the
focal lengths of the camera, and they are expressed in pixels, θ is the angle
between the axis u e v, and in the end [u0, v0] are the coordinates of the
principal point relative to the image reference frame.
The operation of instrinsic parameters calibration is the estimation of such
parameters that allow the description of the projection of the points in the
real world during the process of image making. This model is verified if the
coordinates of the tridimensional space are expressed with respect to the
reference system of the camera itself, that is when the reference system of
the world corresponds with the reference system of the camera.
In case of multiple cameras setup, or in case of not correspondence between
the world reference system and the camera reference system the model must
be slightly changed.
The difference of the two reference systems can be calculated through the
estimation of the parameters of a rototranslation matrix that can be written
in general

G =

[
R t
0 1

]
(3.2)

where R is a 3 × 3 rotation matrix of the camera reference system with
respect to the world reference system, and t is the 3–component vector that
explain its translation from the world reference system.
The complete transformation is explained by the following equationuv

1

 ∼=
−fku fku cot (θ) u0 0

0 −fkv/ sin (θ) u0 0
0 0 1 0

[R t
0 1

]
xw
yw
zw
1

 (3.3)

where P = [xw, yw, zw]T are the coordinates of the point in the world refer-
ence system.
The complete procedure of calibration has been performed through the use
of the software Matlab Calibration Toolbox[6], that permits the calculation
of all extrinsic and intrinsic parameters.
After the calibration processes, the conversion that has to be performed al-
lows the rendering of Nikon coordinates starting from Kinect coordinates.
The complete proceedings are

51

1. Conversion from Kinect 2D reference system to Kinect 3D reference
system.

2. Conversion from Kinect 3D reference system to Nikon 3D reference
system, that is considered to be the same of the world reference system.

3. Conversion from Nikon 3D reference system to Nikon 2D reference
system.

Introducing a new point of view of the same scene, other considerations
must be done. In particular it appears the problem of the occluded points
that must be solved in order to correctly project all the right points onto
the left reference system. Contextualizing, there can be some points that
are visible from the visual of the Kinect, but that are not visible from the
point of view of Nikon. This problem requires the utilization of a zBuffer. It
is a well known support structure in computer graphics, and it serves to the
management of image depth coordinates in tridimensional graphics, usually
done in hardware, sometimes in software. It is one solution to the visibil-
ity problem, which is the problem of deciding which elements of a rendered
scene are visible, and which are hidden.
For this particular setup it is used a static two-dimensional buffer of Nikon
resolution dimensions, where for every pixel it is stored the minimum dis-
tance zmin that this point can have from the left point of view. The Figure
3.11 shows a simple representation of an occlusion phenomenon in a binoc-
ular vision of a synthetic scene.

To perform a correct backprojection of the points of the Kinect refer-

Figure 3.11: Red zone on triangle is an occluded area for the left visual.

ence system, it has been designed the Algorithm 2. The input of the algo-
rithm are the color image, that is the high resolution Nikon image, and the
depthRight image, that is the Kinect depth map. The algorithm continues

52

Algorithm 2 Backprojection

Require: colorLeft,depthRight
x← getX (color)
y ← getY (color)
zBuffer← zbuffer (depthRight)
for i = 0→ n− 1 do

(ui, vi, zi)← backprojection (depthRight[i])
if ui ∈ [0, x− 1] and vi ∈ [0, y − 1] and zi ≤ zBuffer [i] then
depthLeft [i]← zi

end if
end for

with the zBuffer and backprojection procedure, that are already cited and
that will be explained soon. Into the last loop the if–statement is designed
to check for every projected pixel of the depth map, if it falls inside the true
coordinates of the Nikon image, and above all if the depth computed for left
reference system is less or equal than the zBuffer value, just to avoid that
the occluded points become visible.

3.3.1 zBuffer Algorithm and Radial Smoothing

The calculation of the zBuffer is done with the utilization of OpenCV matrix
data structures, and with the support of matrix operators that are already
implemented inside this framework.
Referencing the Figure 3.12, the algorithm considers every possible set of
four close points, that is a rectangle of vertexes A(x, y), B(x+1, y), C(x, y+
1) and D(x + 1, y + 1). For these point it is computed the backprojection
with the algorithm that will be shown in next section, calculating also the
depth value associated.
The projection will be in general a polygon in the reference system of the

Nikon camera and in this polygon it is considered the set of two triangles
(i.e. AB̂C and BĈD, or AB̂D and AĈD) that generate a lower value of
polygon diagonal between the two possibles AD or BC segments. Consid-
ering the window spanned by the two points of coordinates α(xMin, yMin)
and β(xMax, yMax), for each pixel inside the window that belongs to al-
most one triangle, it is computed its smoothed depth zi. A final check is
computed and if zi is lower than zmin

i of such pixel, the value zi replaces
zmin
i in the zBuffer matrix.

From these considerations it becomes clear that the zBuffer algorithm as-
sumes the hypothesis that the depth map is completely available, but the
starting point of zBuffer calculation is a depth map with some pruned depth
values (remember the Figure 3.9). In order to compute completely the
zBuffer, it is necessary to retrieve a filled version of the depth map.

53

A B

C D
A

B

C

D

Backprojection

β (xMax,yMax)

α (xMin,yMin)

Figure 3.12: zBuffer backprojection scheme.

A simple solution to this problem is to compute, for the pruned pixels that
constitutes the holes in Figure 3.9, a weighted mean of the depth of the pix-
els surrounding them and for which the depth value is still available. This
solution is called here radial smoothing.
A concept of distance must be introduced in order to show the algorithm
that calculate the depth for the pruned values. It is used the D8 distance,
often called chessboard distance [10], where the 8-neighbour pixels that form
a square around the considered pixel have distance 1, where the square that
surround these pixels have distance 2, and so on. In general given two points
p = (x, y) and q = (s, t), the D8 distance is

D8(p, q) = max(|x− s|, |y − t|) (3.4)

The Table 3.1 can explain in a better way this concept. For every pixel with

2 2 2 2 2

2 1 1 1 2

2 1 0 1 2

2 1 1 1 2

2 2 2 2 2

Table 3.1: D8 distance of pixels with respect of central pixel.

unavailable depth value zu we consider a four zones division of the image
space, that are the four cardinal directions, i.e. North, South, West and
East. For each of these zones it is caught one available depth value in an
iterative way getting zn, zs, zw and ze, searching for these depth values in
a D8 distance increasing manner. This can lead to a more balanced choice
of depth values that compose the final weighting, in fact the procedure can
take a value of depth from every distinct cardinal direction. The Figure 3.13

54

can show an example of such search into the North direction, and the other
ones are specular.
The final depth has been designed to be a simple mean of these 4 values

zu =
zn + zs + zw + ze

4
(3.5)

In Figure 3.14 it is shown the result of radial smoothing operation.

z
u

Figure 3.13: The space is divided into four cardinal zones. Iterative search-
ing, with D8 distance increasing manner to calculate unknown depth value
zu.

3.3.2 Backprojection Algorithm

The backprojection procedure has been already presented and in this sec-
tion it will be contextualized for the particular setup designed, presented in
previous sections and also in Figure 3.1.
Considering this binocular system, some conventions must be declared to
explain better every calculation of the backprojection step.
The intrinsic parameters matrix for Kinect sensor is KR and for the Nikon
camera is KL. The rotation matrix R and the translation vector t compose
the estimated parameters of stereo calibration.

The first operation is to obtain the 3D coordinates
[
xi

R, yi
R, zi

R
]T

of the
point PR in the Kinect reference system, starting from 2D coordinates[
ui

R, vi
R
]T

of the same point pR in the bidimensional reference system.

55

Figure 3.14: The result of radial smoothing operation for the pixels for
which the depth is unknown.

It is done with the following transformation

zi
R

uiRviR
1

 = KR

xiRyiR
zi

R

 =⇒ PR =

xiRyiR
zi

R

 = KR
−1

uiRviR
1

 ziR (3.6)

where zi
R is really the depth value retrieved from the Kinect sensor and

that is stored into the depth map.
Secondly the consequent operation is the conversion of the reference system,

passing to the Nikon 3D coordinates
[
xi

L, yi
L, zi

L
]T

of the point PL. For the
particular calibration toolbox used, the rotation matrix R and translation
vector t provided allow to perform the following conversion

PR = R · PL + ~t (3.7)

that is exactly the inverse rototranslation that is needed, so applying the
inverse operation in both the members

PL =

xiLyiL
zi

L

 = R−1 ·
(
PR − t

)
(3.8)

the wanted coordinates are calculated.
The final step is the calculation of the 2D coordinates

[
ui

L, vi
L
]T

of point
pL in the Nikon reference system with utilization of the left intrinsic matrix
parameters KL

zi
L

uiLviL
1

 = KL

xiLyiL
zi

L

 (3.9)

56

The result of these matrix multiplications allows to store in a depthLeft depth
map the computed values of depth zi

L into the bidimensional coordinates
(ui

L, vi
L). The depth map obtained is shown in Figure 3.15. It is worth to

notice that the output of backprojection is a very sparse depth map, where
black pixels have still unknown depth value.
To give an idea of the quantity of pixels projected in relations with the
number of total pixels of high resolution image, if every Kinect depth pixel
would fall into the Nikon coordinates, the sparse depth map would have a
fraction of pixels with known depth of about

640× 480

3008× 2000
=

307200

6016000
∼= 0, 05 = 5% (3.10)

In general the real number of known depth pixels can be lesser, for the

Figure 3.15: Result of backprojection into the Nikon 2D reference system.
This sparse depth–map is the input of the interpolation process.

already described pruning operations.

3.4 High Resolution Interpolation

At this point of the complete procedure, the depth informations are ready
to be interpolated to completely fill the target resolution that is presented
with color image of the scene, shown in Figure 3.3.
Some considerations can be done on the actual situation. Referencing Figure
3.16, it is reasonable to think that pixels with no informations about their

57

depth value can get some kind of information from the surrounding pixels
that have depth informations.

In literature are also available a lot of methods that are applicable to

Figure 3.16: Grey circle are pixels with unknown depth value. It can take
some informations from a considerable amount of blue circles, that are pixels
with known depth value.

this situations and that give a paradigm to combine the information that is
present in a local neighborhood. Even if for a different purpose, bilateral
filtering [17, 12] wants to combine spatial closeness and range similarity
of two pixels to calculate the smoothness of a target pixel. Taking into
account those statements, the considerations that have done in this context
are rooted in a so different knowledge field.
The propagation of depth information can be considered as the physical
process of thermal energy transfer between two corps. An ideal process
of thermal energy exchange is schemed in Figure 3.17. The factors that

d

A B

Figure 3.17: Thermal energy transfer between a source A and a recipient
B.

influence such process can be grouped in following sets

• The energy intensity of the thermal source, or even better, the thermal
gradient from the source A to the recipient B, so the energy distance.

58

• The distance between the two corps A and B, so the spatial distance.

• The conduction properties of the objects and of the space between the
two corps A and B.

It is natural to agree with previous statements, and also the everyday expe-
rience can help to understand these concepts:

• The more the temperature difference between two corps, the more heat
is transferred.

• The more the vicinity between two corps, the more heat is transferred.

• The more the conductivity of the space between two corps, the more
heat is transferred.

To fall within the context of these considerations, there are some theoretical
parameters that can be immediately compared to the previous statements
and that can represent the subjects for the interpolation process.
Firstly it is trivial to associate the spatial distance between two pixels to
their euclidean distance, secondly to interpret the energy distance it is used
the color information of the two pixels and, in the end, they are taken
into account also the morphology of the shapes in the space between the
compared pixels to contextualize the concept of thermal conduction. To do
this it is computed a Laplacian of Gaussian (LoG) filter on color image.
This tern of factors can concur to a complete estimating of depth of a target
pixel in a way that is better explained by following sentences:

• The higher the spatial distance, the lower the contribute of the asso-
ciated weight.

• The higher the color difference, the lower the contribute of the associ-
ated weight.

• The higher the module of the gradient between the compared pixels,
the lower the contribute of the associated weight.

3.4.1 Trilateral Filtering

The following procedure has been designed on the basis of the observations
made in previous section. The preliminary part is the preparation of Lapla-
cian of Gaussian computation of the scene for the third component of the
trilateral filter, that requires this preprocessing. The first step is the search-
ing of available informations in a surrounding zone of unknown pixel pi in
the sparse depth map, with the creation of an adaptive window. The con-
sequent step is the computation of the weights for the trilateral calculation,
and in the end the last step of depth estimation itself.

59

Laplacian of Gaussian

To take in account the morphology of the objects acquired, it is not sufficient
to consider the edges of the scenes, but a more detailed information has to
be considered. In particular the gradient of the image of the scene can be
used to acquire morphological informations of the scene.
It is introduced the Laplacian operator computes on pixel p

∇2p =
ϑ2p

ϑx2
+
ϑ2p

ϑy2
(3.11)

Because the Laplacian operator can be defined in terms of second derivatives,
a common application is to detect blobs or edges. This means that a single
point or any small zone (smaller than the aperture) that is surrounded by
higher values will tend to maximize this function. Conversely, a point or
small blob that is surrounded by lower values will tend to maximize the
negative of this function.
The computation of the second derivative measurement on the image is
very sensitive to noise. To solve this problem, the image is often Gaussian
smoothed before applying the Laplacian filter with following function

G(x, y;σ) =
1

2πσ2
e−

x2+y2

2σ2 (3.12)

This pre-processing step reduces the high frequency noise components prior
to the differentiation step.In literature the consequent use of Gaussian filter
and Laplacian operator is often called LoG, Laplacian of Gaussian[16].

To implement these filters, they have been used the following OpenCV

(a) Gaussian pre-processing filter. (b) Laplacian operator on filtered gray scale
image.

Figure 3.18: Application of Laplacian of Gaussian filter on color image.

functions:

• cvSmooth(input,gaussian,

CV_GAUSSIAN,xKernel,yKernel,xSigma,ySigma)

60

• cvLaplace(gaussian,laplace,kernel)

where input of cvSmooth function is a gray scale image obtained from Nikon
color image, gaussian is the Figure 3.18(a), and laplace is the Figure
3.18(b). The parameters xKernel and yKernel, xSigma and ySigma, and
also kernel of Laplacian function, have been changed from time to time to
perform different tests, but frequent values are

• xKernel=yKernel=7

• xSigma=ySigma=2

Adaptive Window

Let Pj be the pixel considered for the depth calculation. Let Wj the square
window that cover the area surrounding Pj , with dimensions k × k. Let n
be the number of pixel with known depth, overlapped by Wj . If k would be
constant, and it could not change its value, the procedure should be affected
by almost one of following issues. A too much high k values can lead to a
number of calculations that can be higher than requested, because a great
number of good pixel n is encountered into the scan of the window Wj ,
leading to very long computation time. On the contrary a too much low
value of k can lead the number of good pixels detected to be zero. This
can mean in some cases a depth map with some zones for which the depth
cannot be estimated, e.g. in the zones where pixels have been pruned in
previous steps, because Wj doesn’t overlap any known depth value.
A solution for this problem is the utilization of an adaptive window, that
can change its dimensions. The paradigm utilized follows the argument
of previous radial smoothing algorithm. In fact the size of Wj can grow
up until n reaches a selected threshold t of good pixels detected. In the
implementation the threshold is counted upon four components, i.e. tNorth,
tSouth, tWest and tEast, that have to take into account the distribution of the
spatial location of detected pixels. The Figure 3.19 reports a scheme of the
window centered in pixel Pj . The external green crown Cl represents the
area of possible subsequent increase, that is effectuated if and only if the
number of good pixels into grey area of actual window does not overcome the
lower bound t selected. The value l corresponds to the chessboard-distance
of pixels that will constitute the following increment crown Cl.
This solution permits both to obtain a spatial balanced contribute of good
pixels, that doesn’t depend on the magnitude of the holes in the depth map
and also a efficient research of known pixels. The procedure of adaptive
window calculation is reported in Algorithm 3.

61

p
i

P
j

k

k

l

Figure 3.19: Adaptive window Wj . Grey pixels represent actual window,
while the green pixels make the crown Cl added to actual window if n < t.

Algorithm 3 Adaptive Window

Require: sparseDepth, t, Pj

l← 1
n← 0
while n < t do

Consider the crown Cl centered in Pj

c← getNumberOfPixel(Cl)
for i = 0→ c− 1 do

if Cl[i] 6= black then
n← n+ 1

end if
end for
l← l + 1

end while

kernel ←
l−1⋃
i=1

Ci

k2 ← getNumberOfPixel(kernel)
return k

62

Weights Computation

At this point the procedure can start some computations from the known
pixels that are covered by the window Wj .
For every good pixel pi the algorithm has to compute

1. The spatial distance with the target pixel, ds(pi, Pj).

2. The color distance with the target pixel, dc(pi, Pj).

3. The maximum value of the module of the gradient value in the route
between pi and Pj , maxGrad(pi, Pj).

To calculate the euclidean distance it is used the canonical formula for two
dimensions distance

ds(pi, Pj) =
√

(xp − xP)2 + (yp − yP)2 (3.13)

on the basis of the cartesian coordinates of the two points.
For the color distance it has to be introduced a particular color space. Its
characteristics have to support a fast and simple measurement of distance,
and also its value must correspond in some way to a perceived dissimilarity of
colours compared. CIE-Lab color space satisfies all these hypothesis because
it is based on a large body of psychophysical data concerning color-matching
experiments of human observers[17]. So, also in this case the distance is
computed with the well-known formula of euclidean distance, but this time
on the tridimensional space of CIE-Lab parameters

dc(pi, Pj) =
√

(Lp − LP)2 + (ap − aP)2 + (bp − bP)2 (3.14)

The last component is represented by the maximum value of module of the
gradient that is present in the route from pi to Pj . See Figure 3.20 as
reference.
The algorithm has to find the values of gradient, starting from pixel pi. It

calculates the four D4 distances of neighbour pixels with respect to the pixel
Pj [16]. For the particular pixel pl that minimize the value of ds(pl, Pj) it is
checked the gradient that have been previously calculated by LoG operator,
and it is saved the maximum value of gradient encountered. The procedure
is repeated until the pl becomes Pj , i.e. Pj is reached.
The complete procedure of distances computation is reported in Algorithm
4.

Trilateral filter computation

For all n known pixels pi in Wj , the weights have been computed and they

can concur to calculate the target value of depth d̂j for the pixel Pj .

63

p
i

p
l

P
j

Figure 3.20: Gradient algorithm crosses the minimum path, represented
by yellow pixels, saving the maximum of module of the values.

Algorithm 4 Distances Computation

Require: sparseDepth, color, gradient, k
for i = 0→ k2 − 1 do
t← 0
if kernel [i] 6= black then

depth[t]← kernel [i]
ds[t]← ds(pi, Pj)
dc[t]← dc(pi, Pj)
grad [t]← 0
pl ← pi
while ds(pl, Pj) == 0 do

grad [t]← max (grad [t], grad(pl, Pj))
pl ← argminl{D4 distances of pl neighbours}

end while
t← t+ 1

end if
end for
return depth[], ds[], dc[], grad [t]

64

Taking inspiration from the bilateral filtering paper[17], it is used a ex-
ponential function with gaussian morphology, for the calculation of every
weighting component.
In particular the depth d̂j is estimated through the use of following function:

w(pi, Pj) = e
−
(
ds(pi,Pj)

σs

)2

e
−
(
dc(pi,Pj)

σc

)2

e
−
(
maxGrad(pi,Pj)

σg

)2

(3.15)

that is used as weight at the numerator, and as normalization factor at the
denominator, into the depth estimation equation

d̂j =

n∑
i=1

di · w(pi, Pj)

n∑
i=1

w(pi, Pj)

(3.16)

3.5 Computational complexity analysis

Before presenting some results on test cases and comparing them each other,
it is important to make an analysis on computational complexity of the
algorithm presented in previous section.
The analysis takes in consideration only the most innovative part of the
complete procedure, that is the trilateral filter, leaving to the reader the
analysis of other algorithms (e.g. canny edge detector or dilation) to their
references.
Let’s consider some parameters:

• m is the number of total unknown pixels into the high resolution image.

• t is the threshold (lower bound) selected for number of known pixels
overlapped by the window Wj .

• k is the dimension of square adaptive window Wj , such that the thresh-
old t is exceeded.

• r

R
is the ratio between the number of pixels r of the source depth map

at low resolution, and the number of pixels R of the target depth map
at high resolution. The assumption is that R > r.

Search of known pixel in Wj

For every unknown pixel, the algorithm has to find into the window Wj the
number of known pixels. If the lower bound t is not reached, at the next
loop the counter will search only into the external crown, to maintain a lower

65

complexity. For these reasons the research step requires k× k comparisons,
that leads to a computational complexity of

O(k2). (3.17)

Calculation of weights

The consequent step is made by the calculation of the tern of weights. For
how concern spatial and color distance, it is simple to understand that for
every known pixel they are performed 6 operations for spatial distance (see
Equation 3.13), and they are performed 9 operations for color distance (see
Equation 3.14), which lead to 15 × t total operations, and to O(t) compu-
tational complexity. For the gradient factor, the consideration has to be
lightly changed. For every known pixel, it is computed the shortest path
between pi and Pj , and for every crossed pixel it is made one comparison.
The maximum length of such route is k/2 + k/2, that leads to a complexity
O(tk).
Summing for the three components, the calculation of distances requires

O(t) +O(t) +O(tk) = O(tk). (3.18)

Depth Estimation

The last step of trilateral filtering is constituted by the estimation of un-
known depth through the use of Equation 3.16, which counts a number of
constant operations for every unknown pixel t of Wj , leading to a complexity
computation of

O(t). (3.19)

Total Accounting

The total sum of three contributes for trilateral filter is

O(k2) +O(tk) +O(t) = O(k2) +O(tk). (3.20)

It is important to remember that these operations are repeated for every
window, and so for every unknown pixel m. In general for every unknown
pixel the dimension k of the window is not the same for every step. From
a theoretical point of view, the size of Wj can grow up indefinitely but the
assumption is that this fact cannot happen in reality. In fact k is directly
correlated with t and with the ratio r/R in such way

k2
r

R
= t =⇒ k =

√
tR

r
(3.21)

This equation leads to the value k, assuming a uniform distribution of the
known pixel on the surface of high resolution depth map. This value can be

66

considered for the analysis of computational complexity. In particular we
can rewrite using k = k

m
[
O(k2) +O(tk)

]
= O(mk2) +O(mtk). (3.22)

It is reasonable to think that t is a constant, compared with m, so previous
explanation can be slightly changed:

O(mk2) +O(mtk) = O(mk2) +O(mk) = O(mk2) (3.23)

For previous assertions, the computational complexity highly depends from
the size of window Wj , that is a direct consequence of r/R ratio itself. When
r

R
∼= 0, i.e. the high resolution R � r, k can have a very high value, on

the contrary if
r

R
∼= 1, i.e. the target resolution is not so high, the size of k

doesn’t grow up in a considerable way.
Concluding, on real utilization of this algorithm, it is reasonable to find a
good trade off between the upscaling factor of the depth map resolution and
the computational time length.

67

68

Chapter 4
Results

It is important to make a better explanation of the implementation of the
trilateral filter algorithm.
In particular, referencing with Function 3.15 that is the weighting function
used for the depth value estimation, they must be taken into account the
possible values of functions ds(pi, Pj), dc(pi, Pj) and maxGrad(pi, Pj).
The first distance ds(pi, Pj) can be at most the diagonal of high resolution
image, and in the considered case this value can be

√
30082 + 20002 ∼= 3612.

A slightly different consideration has to be done for dc(pi, Pj); this dis-
tance is computed over the three 8–bit spaced components L–a–b, leading
to
√

3× 2552 ∼= 441 maximum distance value. In the end, maxGrad(pi, Pj)
is retrieved over a float image, that is the result of LoG computation, and
its maximum values is 1. So the three components of weighting function can
assume the values in following ranges:

• ds(pi, Pj) ∈ [0, 3612]

• dc(pi, Pj) ∈ [0, 441]

• maxGrad(pi, Pj) ∈ [0, 1]

This clarification has been done because they have been performed different
tests with several values of σs, σc and σg to stress the performances of the
trilateral filter algorithm. The Table 4.1 contains a fast comparison between
σ values.

69

σs σc σg
361,2 44,1 0,1

721,4 88,2 0,2

180,6 220,5 0,5

3612 441 1

Table 4.1: Parameters of weighting function. For each each row different
values of parameters lead to same weights magnitude.

4.1 Experimental results

Before showing a complete analysis of results, it is important to recall what
were the objectives for which this algorithm has been designed.
The most important scope is of course the improving of edges accuracy in
the depth–map, fixing the misalignment between real and acquired edge and
in a second instance also an estimation of depth into the holes of saturated
zones. Both of these improvements have to be realized within an operation
of resolution upscaling.
In Figure 4.1 they are reported and compared each other source depth–map
with r = 640 × 480 and target depth–map with R = 3008 × 2000, with
their respective aspect ratios preserved. The upscaling factor is countable
in about R/r ∼= 19, 58.
The image of high resolution depth–map is shown in Figure 4.2. For this

Figure 4.1: Upscaling of source depth–map is performed. Mutual aspect
ratios are preserved in this Figure.

depth–map, the 255 gray scale values are mapped into the range of mini-
mum and maximum values of distance. So the black pixels are the closer
values of depth, while the white pixels are the further values.

It is worth to notice that the resolution upscaling is performed with a
good final result. The Figure 4.2 presents a complete filling of the depth–

70

Figure 4.2: High resolution depth–map. It is the output of the trilateral
filter algorithm.

71

map, considering the huge absence of informations in the input of trilateral
smoothing (see the image in Figure 3.15). Concerning with edge estimation
the algorithm shows a very good behaviour too, restoring the researched
edge alignment in almost the totality of shapes. As it is shown in Figure
4.3, the overlapping of color image upon the depth–map image is very faith-
ful with the shape of the object acquired.

On the contrary for big holes, the algorithm doesn’t achieve the desired

Figure 4.3: Edge alignment is restored on output depth–map. Blue line is
the edge in the color image.

result. In particular for the slanted surface of the table the estimation has
big area where depth–map has a low accuracy. The phenomenon is shown
in Figure 4.4.

This fact is certainly due for the threshold t setted to a particular value

Figure 4.4: Depth estimation is affected by error on very large zones with-
out depth values. Blue line is the edge in the color image.

that was not sufficient to retrieve depth values such that the surface is cor-
rectly estimated. In fact increasing t better estimation is achieved, but at
the same time also computational time grows up in considerable way.
There are other small imperfections that are encountered all over the depth–

72

map in correspondence of depth discontinuities. This phenomenon is mainly
due for the operation of fusion between the sparse depth–map with the es-
timated depth–map. They are combined in a way that all the known pixel
are copied into the output image and the missing values are replaced by the
estimated ones. This operation of mixing raw values with smoothed values
create the not so natural presence of close white and black pixels1.
To justify this fact it is important to remember that the trilateral filter
works upon strange conditions. In literature every type of filter, smoothing
or morphological ones, processes the input image (or in a more theoretical
way, the input matrix) with the hypothesis that in all over the input they
are available data on which it computes the output value: very often the
kernel (i.e. the window) parses all the surface of the input, and the data
overlapped by the kernel are retrieved in a complete homogeneous distri-
bution. For the filter implemented in this work, this assumption is never
verified and in most cases the depth acquisition made by Kinect produce
vaste zones with absence of information. These zones can be in some cases
(e.g. the slanted surfaces) too big, and they can lead to bad estimation by
the trilateral filter.
To support this statement the trilateral filter has been applied on another
sparse depth–map with more uniform distribution of values on high resolu-
tion space, generated by a Time-of-Flight device, i.e. Mesa SR4k. As it was
already showed in previous chapters, in general ToF devices do not suffer
of high absence of depth detection, and in particular articulated shapes and
slanted surfaces do not decrease the quality of their depth–maps. It is worth
to notice that this test has been performed with r = 176 × 144 and with
R = 1032× 778, so an even more higher upscaling factor R/r ∼= 31, 67 than
Kinect case. The sparse depth–map is shown in Figure 4.5(a) and the color
image of the same scene is presented in Figure 4.5(b).

The trilateral filter has been applied on this input data and the results
obtained is shown in the Figure 4.6.
This time the depth map obtained is not affected by any kind of alignment

error, and in particular also in the zone of slanted surface of the table, the
depth obtained is consistent with the shape of the scene, moreover the al-
gorithm has better time performances.
They are shown several tests of trilateral filter processing in following Fig-
ures. It is not performed a deep analysis on every depth map produced, but
they are listed to permit a better understanding of the results on even more
cases.
In Figure 4.16 and 4.17, it can be viewed the application of depth map up-
scaling on a human subject, to give an idea of the results on such utilization
fields.

1An eventual post–processing step with smoothing filter can be done to overcome these
little imperfections.

73

(a) Sparse depth map, generated by
ToF device.

(b) Color of the scene, generated by
a color camera.

Figure 4.5: Color and sparse depth map for Time-of-Flight trilateral filter
test. It has been applied an undistortion operation in the calibration process.

Figure 4.6: High resolution depth map obtained on ToF depth data.

74

They are shown low resolution depth map produced by the Kinect, high res-
olution color image acquired by the Nikon camera and in the end the result
of the trilateral filter computation with the parameters σd = 360, σc = 44
and σg = 0, 1, for every scene.

75

(a) Kinect depth map. (b) Nikon color image.

(c) High resolution depth map, generated by
trilateral filter.

Figure 4.7

(a) Kinect depth map. (b) Nikon color image.

(c) High resolution depth map, generated by
trilateral filter.

Figure 4.8

76

(a) Kinect depth map. (b) Nikon color image.

(c) High resolution depth map, generated by
trilateral filter.

Figure 4.9

(a) Kinect depth map. (b) Nikon color image.

(c) High resolution depth map, generated by
trilateral filter.

Figure 4.10

77

(a) Kinect depth map. (b) Nikon color image.

(c) High resolution depth map, generated by
trilateral filter.

Figure 4.11

(a) Kinect depth map. (b) Nikon color image.

(c) High resolution depth map, generated by
trilateral filter.

Figure 4.12

78

(a) Kinect depth map. (b) Nikon color image.

(c) High resolution depth map, generated by
trilateral filter.

Figure 4.13

(a) Kinect depth map. (b) Nikon color image.

(c) High resolution depth map, generated by
trilateral filter.

Figure 4.14

79

(a) Kinect depth map. (b) Nikon color image.

(c) High resolution depth map, generated by
trilateral filter.

Figure 4.15

(a) Kinect depth map. (b) Nikon color image.

(c) High resolution depth map, generated by
trilateral filter.

Figure 4.16

80

(a) Kinect depth map. (b) Nikon color image.

(c) High resolution depth map, generated by
trilateral filter.

Figure 4.17

81

82

Conclusions and further
improvements

In this thesis they have been accurately analysed the performance of both
Time–of–Flight and Microsoft Kinect 3D dynamic sensor. The comparison
is articulated on the basis of rigorous acquisitions and a deep characteriza-
tion is made upon the huge set of measurements performed with Mesa SR4k,
Canesta and Microsoft Kinect devices.
Even if the Kinect performances are globally lower the ToF ones, its af-
fordability justifies the aim to improve the quality of depth maps retrieved
by this new 3D sensor. The designed pipeline of work has the purpose to
remove artefacts and to detect errors, moreover it wants to significantly in-
crease the resolution of such depth–map using a smart variant of bilateral
filter, adding the utilization of shapes information for the calculation of a
Trilateral Filter.
The effectuated tests highlighted the robustness of the algorithm against
edge errors fixing, but reported also too high computation time of the im-
plementation, to fill with accuracy the saturated zones of the depth map.
How demonstrates the application of the algorithm on a more uniform sparse
depth map, the concept of trilateral filter weighting is both efficient and in-
novative.
Moreover the computational complexity can be reduced for the worst cases
that have been encountered, because a big part of the procedure can be
parallelized, e.g. the distance measurements, and another one can be im-
plemented on GPU, e.g. backprojection and z–Buffer procedures, also to
achieve real–time computation of the trilateral filter.
Finally, the technique presented can be integrated in almost every computer
vision software toolkit, that is designed for the geometrical acquisition of
the environment, through the use of a 3D dynamic sensor.

83

84

Appendix A
Code Documentation

In this appendix it is contained the documentation for the most important
implemented functions of Trilateral Filter project. The documentation has
been created with Doxygen; it shows all the function declarations of methods
used into the implementation of Trilateral Filter.
The complete latex pdf file has been attached in following pages.

85

Chapter 1

File Documentation

1.1 Backprojection.h File Reference

It contains backprojection functions.

Functions

• void kinect2D3D (int u_r, int v_r, double z_r, CvMat ∗p_r)

It calculates 3D Kinect coordinates p_r from 2D coordinates u_r and v_r and depth
value z_r .

• void kinect3Dnikon3D (CvMat ∗p_r, CvMat ∗p_l)

It calculates 3D Nikon coordinates p_l from 3D Kinect coordinates p_r .

• void nikon3D2D (CvMat ∗p_l, CvMat ∗leftPoint)

It calculates 2D Nikon coordinates leftPoint from 3D Nikon coordinates p_l.

• bool pointInTriangle (CvMat ∗point, CvMat ∗a, CvMat ∗b, CvMat ∗c)

Check if point belongs to a b c triangle.

1.1.1 Detailed Description

It contains backprojection functions. Methods implemented can pass from 2D Kinect
reference system, to 3D Kinect, to 3D Nikon, to 2D Nikon reference system. All the
intrinsic and extrinsic parametrs matrix are hard-coded. The CvMat matrix are CV_-
64FC1.

1.1.2 Function Documentation

1.1.2.1 void kinect2D3D (int u r, int v r, double z r, CvMat ∗ p r)

It calculates 3D Kinect coordinates p_r from 2D coordinates u_r and v_r and depth
value z_r .

ii File Documentation

Parameters
u_r Coordinate x of Kinect point.
v_r Coordinate y of Kinect point.
z_r Depth coordinate of (u_r , v_r) point.
p_r 3D coordinate in Kinect reference system.

1.1.2.2 void kinect3Dnikon3D (CvMat ∗ p r, CvMat ∗ p l)

It calculates 3D Nikon coordinates p_l from 3D Kinect coordinates p_r .

Parameters
p_r 3D coordinates in Kinect reference system.
p_l 3D coordinates in Nikon reference system.

1.1.2.3 void nikon3D2D (CvMat ∗ p l, CvMat ∗ leftPoint)

It calculates 2D Nikon coordinates leftPoint from 3D Nikon coordinates p_l .

Parameters
p_l 3D coordinates in Nikon reference system.

leftPoint 2D coordinates in Nikon reference system.

1.1.2.4 bool pointInTriangle (CvMat ∗ point, CvMat ∗ a, CvMat ∗ b, CvMat ∗ c)

Check if point belongs to a b c triangle.

Parameters
point 3D coordinates of the point that has to be checked.

a 3D coordinates of first triangle vertex.
b 3D coordinates of second triangle vertex.
c 3D coordinates of third triangle vertex.

Returns

Return true if point belongs to a b c triangle, false otherwhise.

1.2 printInfo.h File Reference

A support printing library for OpenCV objects.

Functions

• void printImageInfo (IplImage ∗img, string filename)

Generated on Mon Jul 4 2011 16:49:51 for Trilateral Filter by Doxygen

1.3 RadialSmoothing.h File Reference iii

Print to filename.txt some img parameters.

• void printDoubleCvMat (CvMat ∗mat)

Print to std::cout some parameters of a double mat.

• void printIntCvMat (CvMat ∗mat)

Print to std::cout some parameters of an int mat.

1.2.1 Detailed Description

A support printing library for OpenCV objects. Methods implemented can print to file or
std:cout IplImage and CvMat parameters. See method documentation for more detailed
descrpition.

1.2.2 Function Documentation

1.2.2.1 void printDoubleCvMat (CvMat ∗ mat)

Print to std::cout some parameters of a double mat .

Parameters
mat CvMat object for which are printed the double parameters.

1.2.2.2 void printImageInfo (IplImage ∗ img, string filename)

Print to filename.txt some img parameters.

Parameters
img Pointer to IplImage object.

filename Name of the txt saved.

1.2.2.3 void printIntCvMat (CvMat ∗ mat)

Print to std::cout some parameters of an int mat .

Parameters
mat CvMat object for which are printed the int parameters.

1.3 RadialSmoothing.h File Reference

It contains radial smoothing functions.

Generated on Mon Jul 4 2011 16:49:51 for Trilateral Filter by Doxygen

iv File Documentation

Functions

• void radialSmoothing (IplImage ∗src, IplImage ∗dst, IplImage ∗mask)

It calculates in dst a smoothing of values of src where mask is white.

• void radialSmoothingCvMat (CvMat ∗src, CvMat ∗dst, IplImage ∗mask)

It calculates in dst a smoothing of values of src where mask is white.

1.3.1 Detailed Description

It contains radial smoothing functions. Methods implemented can calculate RadialSmooth-
ing operator on both IplImage or CvMat objects.

1.3.2 Function Documentation

1.3.2.1 void radialSmoothing (IplImage ∗ src, IplImage ∗ dst, IplImage ∗ mask)

It calculates in dst a smoothing of values of src where mask is white.

Parameters
src Pointer to IplImage where values are taken. It must be 1 channel grayscale

IPL_DEPTH_8U.
dst Pointer to IplImage where smoothed pixels are saved. It must be 1 channel

grayscale IPL_DEPTH_8U.
mask Pointer to boolean IplImage. White pixels are holes. It must be 1 channel

grayscale IPL_DEPTH_8U.

1.3.2.2 void radialSmoothingCvMat (CvMat ∗ src, CvMat ∗ dst, IplImage ∗ mask)

It calculates in dst a smoothing of values of src where mask is white.

Parameters
src Pointer to CvMat where values are taken. It must be of type CV_32FC1.
dst Pointer to CvMat where smoothed pixels are saved. It must be of type CV_-

32FC1.
mask Pointer to boolean IplImage. White pixels are holes. It must be 1 channel

grayscale IPL_DEPTH_8U.

1.4 TrilateralFiltering.h File Reference

It contains all version of Trilateral Filtering methods.

Generated on Mon Jul 4 2011 16:49:51 for Trilateral Filter by Doxygen

1.4 TrilateralFiltering.h File Reference v

Functions

• void trilateralFiltering (CvMat ∗depthMat, IplImage ∗colorMat, IplImage ∗laplaceMat,
int halfKernel, CvMat ∗depthFinal)

It calculates in depthFinal matrix a trilateral smoothing of values of depthMat using a
fixed window with dimension 2∗ halfKernel +1.

• void trilateralFilteringVariable (CvMat ∗depthMat, IplImage ∗colorMat, IplImage
∗laplaceMat, int threshold, CvMat ∗depthFinal)

It calculates in depthFinal matrix a trilateral smoothing of values of depthMat using a
variable window.

1.4.1 Detailed Description

It contains all version of Trilateral Filtering methods. Methods implemented can calculate
Trilateral Filtering. There are fixed and variable window versions.

1.4.2 Function Documentation

1.4.2.1 void trilateralFiltering (CvMat ∗ depthMat, IplImage ∗ colorMat, IplImage ∗ laplaceMat,
int halfKernel, CvMat ∗ depthFinal)

It calculates in depthFinal matrix a trilateral smoothing of values of depthMat using a
fixed window with dimension 2∗ halfKernel +1.

Parameters
depthMat Pointer to CvMat where good pixel values are taken to calculate the tern of

weights. It must be CV_32FC1.
colorMat Pointer to IplImage where CIE-Lab color information are taken. It must be in

CIE-Lab color space, 3 channels IPL_DEPTH_8U.
laplaceMat Pointer to CvMat where gradient value are taken. It must be 1 channel IPL_-

DEPTH_32F.
halfkernel The dimension of the kernel are (2∗ halfkernel +1) ∗ (2∗ halfkernel +1).

depthFinal Pointer to CvMat where computed values of trilateral filter is saved. It must
be CV_32FC1.

1.4.2.2 void trilateralFilteringVariable (CvMat ∗ depthMat, IplImage ∗ colorMat, IplImage ∗
laplaceMat, int threshold, CvMat ∗ depthFinal)

It calculates in depthFinal matrix a trilateral smoothing of values of depthMat using a
variable window.

Parameters
depthMat Pointer to CvMat where good pixel values are taken to calculate the tern of

weights. It must be CV_32FC1.
colorMat Pointer to IplImage where CIE-Lab color information are taken. It must be in

CIE-Lab color space, 3 channels IPL_DEPTH_8U.

Generated on Mon Jul 4 2011 16:49:51 for Trilateral Filter by Doxygen

vi File Documentation

laplaceMat Pointer to CvMat where gradient value are taken. It must be 1 channel IPL_-
DEPTH_32F.

threshold Minimum number of good pixels in the trilateral filter window.
depthFinal Pointer to CvMat where computed values of trilateral filter is saved. It must

be CV_32FC1.

Generated on Mon Jul 4 2011 16:49:51 for Trilateral Filter by Doxygen

92

Thanks

Before everything I would like to thank Prof. Zanuttigh, Prof. Cortelazzo
and Ing. Carlo Dal Mutto, for the knowledge that they shared with me,
and for the opportunity to work in Computer Vision field, one of the most
fascinating of all the information engineering. In particular I thank Carlo, for
the assistance, for the help and all the precious hints during the preparation
of this thesis in LTTM laboratory.
A big thank to all my family that sustained me during the university years,
and a big thank also to my friends for the physical and psychological help
outside the walls of the department, and inside the rectangle of football
training.
Last but not least important, thanks to Valentina for putting up with me
during my exams and for her Love.

93

94

Bibliography

[1] Libfreenect Software Library. http://openkinect.org.

[2] Mesa Imaging AG. "http://www.mesa-imaging.ch".

[3] Microsoft Kinect. http://www.xbox.com/it-IT/kinect.

[4] PrimeSense. http://www.primesense.com/.

[5] RGBDemo software. http://nicolas.burrus.name/index.php/

Research/Kinect.

[6] Jean-Yves Bouguet. Matlab Calibration Toolbox. http://www.

vision.caltech.edu/bouguetj/calib_doc/.

[7] Gary Bradski and Adrian Kaehler. Learning OpenCV. O’Reilly Media,
2008. http://opencv.willowgarage.com/wiki/.

[8] John Canny. A computational approach to edge detection. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, Vol 8:679–698,
1986.

[9] Andrea Fusiello. Visione computazionale. Appunti delle lezioni, 2009.

[10] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing.
Prentice Hall, 3rd edition, 2007.

[11] Timo Kahlmann and Hilmar Ingensand. Calibration and development
for increased accuracy of 3D range imaging cameras. Journal of Applied
Geodesy, 2, 2008.

[12] J. Kopf, M. F. Coehn, D. Lischinski, and M. Uyttendaele. Joint Bilat-
eral Upsampling. ACM Transactions on Graphics, 26(3), 2007.

[13] Robert Lange. 3D Time-of-flight Distance Measurement with Custom
Solid-state Image Sensors in CMOS/CCD–technology, 2000.

95

http://openkinect.org
"http://www.mesa-imaging.ch"
http://www.xbox.com/it-IT/kinect
http://www.primesense.com/
http://nicolas.burrus.name/index.php/Research/Kinect
http://nicolas.burrus.name/index.php/Research/Kinect
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://opencv.willowgarage.com/wiki/

[14] Carlo Dal Mutto. Ricostruzione 3D tramite fusione di dati stereo e
ToF. Univesity of Padova, 2009.

[15] PrimeSense. Depth mapping using multi-beam, 2010.

[16] Richard Szeliski. Computer Vision: Algorithms and Applications.
Springer, 2010.

[17] C. Tomasi and R. Manduchi. Bilateral Filtering for Gray and Color
Images. In Proceedings of the 1998 IEEE International Conference on
Computer Vision.

[18] Jana Kosecka S. Shankar Sastry Yi Ma, Stefano Soatto. An Invitation
to 3D Vision. Springer, 2003.

96

	Abstract
	Introduction
	General Description of 3D Sensors
	Time Of Flight Range Cameras
	ToF technology
	Error components for ToF processes
	Mesa SR4000
	Software Toolkit for SR4000
	Canesta Range Camera
	Software Toolkit for Canesta camera

	Structured Light Sensor
	Structured Light technology
	Microsoft Kinect sensor
	Software Toolkit for Microsoft Kinect

	Comparison between 3D Sensors
	Preliminary Acquisition
	Time–of–Flight
	Microsoft Kinect

	Quantitative Analysis
	Implementation of algorithm analysis
	Non-Edge Pixels analysis
	Edge Pixels analysis

	Algorithms for Depth–Map Improving
	Error analysis and planning of the methods.
	Error Detection and Removal
	Canny Edge Detector Algorithm
	Dilation Algorithm

	Backprojection
	zBuffer Algorithm and Radial Smoothing
	Backprojection Algorithm

	High Resolution Interpolation
	Trilateral Filtering

	Computational complexity analysis

	Results
	Experimental results

	Code Documentation

