
Università degli studi di Padova

Dipartimento di Ingegneria dell’Informazione

Tesi di Laurea Magistrale in

Ingegneria Elettronica

Matlab-based Control of a SCARA Robot

Relatore Candidato

Prof. Alessandro Beghi Luca Enrico Ferrari

Correlatore

Dr. Richard Kavanagh

Anno Accademico 2014/2015

Abstract

This master’s thesis shows how it is possible to increase the flexibility and the
functionality of a SCARA robot by introducing an interpreter in order to control
the robot through Matlab, a very versatile and powerful programming language. It
is explained how a Matlab control of the robot opens interesting scenarios and how
the Matlab control has been implemented.
A SCARA robot is a widely used industrial manipulator with three axes and four
degrees of freedom. Common applications of this robot are pick and place operations,
assembling, palletizing, and packaging.

iii

iv

Acknowledgements

First of all, I sincerely would like to thank my supervisor Doctor Richard Kavanagh
who helped me in all the phases of the project with advice and ideas which have
been crucial for the fulfillment of this thesis.
I also would like to thank Professor Alessandro Beghi for all the precious advice and
support that he gave to me during the project.
Furthermore, I greatly appreciated Michael O’Shea, Hilary Mansfield, Timothy
Power, James Griffiths, Ralph O’Flaherty for the impeccable technical support at
UCC laboratories.
Finally, I would like to extend my appreciation to Milind Rodake with whom I
shared this experience at the UCC Mechatronic Laboratory.

v

vi

Contents

1 Introduction 1
1.1 UCC SCARA robots project . 2
1.2 Objectives of the thesis . 3
1.3 Why choose Matlab? . 3

2 The SCARA Robot 5
2.1 Introduction . 5
2.2 Structure and Mathematical Analysis 6

2.2.1 Forward Kinematics . 7

3 The Sankyo SR8408 13
3.1 Mechanical structure . 13
3.2 Motors and motion transmission . 17

3.2.1 Closed loop control and repeatability 18

4 HW configuration and Interpreter 25
4.1 Hardware configuration . 25
4.2 Interpreter . 25

4.2.1 Matlab functions: distinction into families 25
4.2.2 Programming with and without Matlab 26
4.2.3 The Interpreter: what it is, and how it works 29

4.3 Serial communication and synchronization 32
4.3.1 Serial communication . 32
4.3.2 Synchronization . 34

4.4 Auxiliary Matlab Functions . 36
4.4.1 The startup function . 36
4.4.2 The state keeper function 36
4.4.3 The functions serial out . 37

vii

viii CONTENTS

5 Matlab Robot Functions 39
5.1 Coordinate Systems . 39
5.2 Point to point motion functions . 41

5.2.1 Motion in the Cartesian Coordinate System 41
5.2.2 Motion in the Joint Coordinate System 43

5.3 Continuous Path motion functions 46
5.4 Speed and acceleration/deceleration functions 55
5.5 Arm mode functions . 61
5.6 Mark functions . 62
5.7 I/O functions . 63
5.8 Pendant output message functions 67
5.9 Palletizing functions . 69
5.10 Sampling Mode . 71

5.10.1 How it works . 72

6 Vision based applications 75
6.1 HD cam, image acquisition and processing 75

6.1.1 HD camera . 75
6.1.2 Image acquisition and processing 77
6.1.3 Object position detection . 78

6.2 Vacuum Gripping System . 78
6.3 Vibrating surface . 79
6.4 Vacuum ejector and motor drive circuit 81

6.4.1 Schematic diagram . 81
6.4.2 P1 and P2 . 81

6.5 Keys pick and place application . 83
6.5.1 Aim of the application . 83
6.5.2 Keys detection . 84
6.5.3 Application execution . 88
6.5.4 Conclusion . 89

6.6 Coloured discs pick and place application 94
6.6.1 Aim of the application . 94
6.6.2 Discs detection . 94
6.6.3 Application execution . 100
6.6.4 Conclusion . 101

7 Graphical User Interface 107

8 Simulink virtual robot 113

CONTENTS ix

9 Conclusion and future work 115

A Code 117

Bibliography 150
References . 150

x CONTENTS

List of Figures

2.1 The Hirata AR-300, one of the first model of a SCARA. 6
2.2 SCARA Sankyo SR8408. 7
2.3 Example of the four Kinematic Parameters θi,di,ai,αi. With those

four parameters, the coordinates can be translated from Oi to Oi−1. 8
2.4 SCARA frames placement. 9
2.5 SCARA top view scheme. 11

3.1 Base of the robot. 14
3.2 General assembly. 15
3.3 Showing the Robot with the covers in place. 16

3.4 Robot partially uncovered. 16
3.5 Θ1 and Θ2 motors. 19
3.6 Θ2 motor. 19
3.7 Θ2 motor and connectors. 20
3.8 Rotor of Θ2 motor. 20
3.9 Encoder electronic board. 21
3.10 Harmonic Drive. 21
3.11 Harmonic Drive functioning. 22
3.12 Roll motor. 22
3.13 Roll motor belts. 22
3.14 Z motor and electromagnetic clutch. 23
3.15 Z axis motion unit and break unit. 23

4.1 Hardware configuration. 26
4.2 Programming, and program execution in Buzz2. 27
4.3 Programming, and program execution with Matlab. 28

4.4 Interpreter functioning . 31

xi

xii LIST OF FIGURES

4.5 RS232 cable . 32
4.6 Pseudo code explaining the synchronization protocol between Matlab

and the Interpreter from the Interpreter side. 35
4.7 Function serial out1 flowchart. 37

5.1 Cartesian Coordinate System. 40
5.2 Joint Coordinate System. 40
5.3 Arc motion example . 49
5.4 Circular motion example . 50
5.5 Possible starting points for circular motion in X-Y plane. 51
5.6 Circular motion example by using xycir. 52
5.7 Possible starting points for circular motion in X-Z plane. 53
5.8 Circular motion example by using xzcir. 53
5.9 Possible starting points for a circle in Y-Z plane. 54
5.10 Circular motion example by using yzcir. 54
5.11 PTP motion speed profile. 57
5.12 The three areas of the workspace. 61
5.13 Examples of pallet definition. 70

5.14 Trajectory. 73
5.15 Θ1 and Θ2 trends during the motion. 74

6.1 The Creative Live! Cam Chat HD. 75
6.2 Camera position (upper view). 76
6.3 Camera position (side view). 76
6.4 Camera position (close views). 76
6.5 Air pressure regulator and Vacuum Ejector 79
6.6 Hose second arm connection. 80
6.7 Vaccum cup (end effector). 80
6.8 Vibrating surface. 81
6.9 Vacuum ejector and motor drive circuit schematic diagram. 82
6.10 Relays K1, K2, and connectors. 82
6.11 EX. I/O-2 connector. 83
6.12 Random key placement. 84
6.13 Ordered key placement. 84
6.14 Function keys detection flowchart. 85
6.15 BW image obtained by using opt threshold detection threshold. . . 86
6.16 Image obtained by using the function image processing. 86

LIST OF FIGURES xiii

6.17 Translated 'Centroid' positions for a generic keys configuration. . . 88

6.18 Function keys pick and place flowchart. 90

6.19 Nine key configuration before vibrating. 90

6.20 Nine key configuration after vibrating. 91

6.21 First key pick up action. 91

6.22 First key place down action. 91

6.23 Key configuration after nine keys picked up. 92

6.24 Placement of four keys before vibrating. 92

6.25 Ninth key pick up action. 92

6.26 Ninth key place down action. 93

6.27 The execution is completed. 93

6.28 Random coloured discs placement and containers. 94

6.29 True colour image. 95

6.30 Red chanel. 96

6.31 Green channel. 96

6.32 Blue channel. 96

6.33 Red channel BW conversion. 97

6.34 Green channel BW conversion. 97

6.35 Blue channel BW conversion. 97

6.36 Image after OR operation between channels. 98

6.37 Processed image. 98

6.38 Translated 'Centroid' positions for a generic discs configuration. . . 99

6.39 Random disc placement before vibrating. 101

6.40 Random disc configuration after vibrating. 102

6.41 Red disc pick up operation. 102

6.42 Red disc place down operation. 102

6.43 Green disc pick up operation. 103

6.44 Green disc place down operation. 103

6.45 Blue disc pick up operation. 103

6.46 Blue disc place down operation. 104

6.47 White disc pick up operation. 104

6.48 White disc place down operation. 104

6.49 The execution is completed. 105

xiv LIST OF FIGURES

7.1 GUI G1. 108
7.2 GUI G2. 109
7.3 GUI G3. 110

8.1 The robot virtual model. 113

List of Tables

2.1 Link and joint parameters. 9

3.1 Main operative features of Sankyo SR8408. 13
3.2 Item list for Figure 3.2. 14
3.3 Item list for Figure 3.3. 15
3.4 Item list for Figure 3.4. 17
3.5 Θ1 and Θ2 motor specifications. 17

6.1 Item list for Figure 3.4. 79
6.2 Item list for Figure 6.9. 81
6.3 Relays switch commands. 82
6.4 Properties range of values defining a key pattern. 87
6.5 Properties range of values defining a disc pattern. 99

7.1 Item list for Figure 7.2. 111
7.2 Item list for Figure 7.3. 112

xv

xvi LIST OF TABLES

Listings

4.1 Matlab program: six items are moved from position P1 to a position
P2. 28

4.2 Matlab code for point to point motion. 29
4.3 Matlab program that configures communication settings of the con-

nection and reads, and sends data through a RS232 port. 32
4.4 SSL/E program that configures communication settings of the con-

nection and for reads, and sends data through a RS232 port. 33
5.1 Trajectory sampling mode example. 72
5.2 Angles sampling mode example. 73
6.1 Matlab application function start cam. 77
6.2 Function keys detection piece of code. 87
6.3 Function discs&colours detection piece of code. 95
A.1 Function serial out1 . 117
A.2 Function position . 119
A.3 Function keys detection. 119
A.4 Script keys pick and place. 125
A.5 Function discs&colours detection. 128
A.6 Script coloured discs pick and place. 133
A.7 Interpreter (SSL/E program). 136

xvii

xviii LISTINGS

Chapter 1

Introduction

This master’s thesis shows how it is possible to increase the flexibility and the
functionality of a SCARA robot by introducing an interpreter in order to control
the robot through Matlab, a very versatile and powerful programming language.
A SCARA robot is a widely used industrial manipulator with three axes and four
degrees of freedom. Common applications of this robot are pick and place operations,
assembling, palletizing, and packaging. The Scara robot involved in this project is
the Robot SR8408, produced by The NIDEC SANKYO Corporation. This robot
and the hardware configuration in which it is usually employed has to satisfy strict
policies in terms of safety and reliability. It leads hardware and software rigidities,
clashing with the university research approach which is more focused on prototyping
and on the development of new solutions.
This thesis provides an explanation of how a Matlab control of the robot opens
interesting scenarios and how the Matlab control has been implemented.
Chapter 1, after a brief introduction to the overrall project, concerns the objectives
of the thesis and the reasons why the software Matlab has been chosen to control
the robot.
Chapter 2 deals with the structure and the mathematical analysis of the SCARA
robot.
Chapter 3 is about the Robot SR8408, produced by The NIDEC SANKYO Corpo-
ration.
Chapter 4 shows the hardware configuration used in the laboratory. Furthermore,
the chapter deals with the structure of the interpreter and its communication with
Matlab.
Chapter 5 describes the Matlab functions for robot control.
Chapter 6 concerns two vision-based applications developed using an HD camera.
In this chapter, the vacuum gripping system is also described.
Chapter 7 deals with the development of some GUIs (Graphical User Interface).

1

2 CHAPTER 1. INTRODUCTION

Chapter 8 concerns the Simulink virtual Model developed by the UCC student
Milind Sudhir Rokade.
Chapter 9 concludes the thesis and describes possible future developments.
Appendix A includes part of the code developed in the project.

1.1 UCC SCARA robots project

Some work has been done on the Matlab control of industrial robots [10, 12, 13],
however the overall project in which this thesis is involved makes the Matlab control
the base for further interesting developments.
The mechatronic laboratory of the UCC (University College Cork) Electrical and
Electronic Engineering Department was provided with four SCARA Sankyo SR8408
robots in September 2013. Under the supervision of Dr. Richard Kavanagh a
research project has been undertaken. This project has many potential tasks:

• Task 1: develop an interpeter for controlling the robot through Matlab

• Task 2: design a Simulink virtual model of the robot, so that its motion can be
compared with the motion of the actual robot and it can be used as a training
method;

• Task 3: develop a vacuum gripping system in order to allow the use of a pick
and place end effector (vacuum based);

• Task 4: design a gripper (pneumatic-based) so that the robot can pick up a
part.

• Task 5: construct a conveyor-based work cell to demonstrate the operation of
a SCARA-based work-cell;

• Task 6: design a software/hardware based system so that the robot can be
controlled remotely (via the Internet);

• Task 7: implement a camera-based part identification algorithm so that image
processing routines can be developed to control the robot/gripper;

• Task 8: use two robots to operate cooperatively on a task.

This thesis concerns Task 1, Task 3, and Task 7. Another student, with whom I
collaborated, is working on Task 2. A brief overview of that work is shown in chapter
8.

1.2. OBJECTIVES OF THE THESIS 3

1.2 Objectives of the thesis

The objectives of this thesis are:

• develop an interpreter written in the robot native programming language, in
order to control the robot through Matlab;

• develop Matlab functions that allow robot control. Some of these functions are
in one to one correspondence with the native robot language functions, but
also new functions has to be developed in order to increase its functionality;

• develop Matlab GUIs (Graphical User Interfaces), so that non expert users
can perform some basic operation with the robot;

• mantain safety conditions for the user;

• develop a vacuum gripping system, so that the robot can pick up an object;

• develop two vision-based applications;

• provide some program examples.

1.3 Why choose Matlab?

The language provided by Sankyo (SSL/E language), is a very specific language
with many limitations. For instance, the possibility of modular programming are
very limited, the mathematics tools are not so powerful, and programming is quite
uncomfortable. Furthermore, the robot controller has harware limitations in terms of
I/0 communications ports. These aspects can be resolved if the user could program
the robot from a PC where a more structured programming language like C, C++,
Java, or Matlab is installed. In this case, an interpreter should perform a translation
operation. As will be explained in this document, the interpreter is a program
written in the robot native language (SSL/E language), which is running on the
robot controller. The user who wants to control the robot, will write an operative
program in Matlab that is installed on a PC of the lab.
Matlab [8, 19], is a very versatile software environment developed by MathWorks
used in many fields and it is known by almost every engineering student. The reasons
that led the choice of Matlab instead of other high-level programming languages are:

• easy communication with external devices via all the main communication
protocols (GPIB, serial, TCP/IP, and UDP) by using the Matlab Instrument
Control Toolbox functions;

• easy implementation of GUIs (Graphical User Interfaces);

4 CHAPTER 1. INTRODUCTION

• possibility of developing a virtual model of the robot by using the Matlab
integrated software Simulink;

• easy image and video acquisition and processing by using the Matlab Image
Acquisition Toolbox and Image Processing Toolbox;

• control, simulation, and visual control integrated in the same software;

• Matlab Help, MathWorks on-line support, and many examples of code on the
Internet make Matlab programming suitable for didactic applications with the
robot.

Chapter 2

The SCARA Robot

2.1 Introduction

An industrial robot is a mechanical device that can be programmed to perform a
variety of tasks of manipulation and locomotion under automatic control [2]. The
industrial robots can be classified in five typologies [1, 2]:

• cartesian robot;

• cylindrical robot;

• spherical robot;

• SCARA robot;

• parallel robot.

The SCARA robot was introduced in Japan in 1979 [2, 3] and has since been
adopted by numerous manufacturers. In Figure 2.1 the Hirata AR-300, one of the
first SCARA robot, is shown. In the 1980’s the SCARA Robot contributed largely
to the flexibility and efficiency of Japanese assembly systems, due to its adaptability
and functionality with its comparative decrease in overall production costs vis-a-vis
competitors [3]. The prices of products decreased and in particular electronic
products became more affordable in a worldwide market place.
Despite the continuous evolution in robotics, the SCARA is still a very widely used
machine with widespread applications. The success of this robot was possible due in
the main to the following factors:

• precision;

• high speed, due to its light structure;

• small dimensions;

5

6 CHAPTER 2. THE SCARA ROBOT

• smooth motion;

• simple and reliable structure;

• ease of installation and use;

• very small backlash.

This robot is used in different sizes in all kinds of industries such as automotive,
electronics, and pharmaceutical. The most common applications are:

• pick and place operations;

• assembling products;

• palletizing;

• packaging applications.

Figure 2.1: The Hirata AR-300, one of the first model of a SCARA.

2.2 Structure and Mathematical Analysis

Each company produces SCARA robots with different features, but the basic struc-
ture is pretty much the same. It has similarities to a human arm with a shoulder,

2.2. STRUCTURE AND MATHEMATICAL ANALYSIS 7

an elbow, and a wrist. The two links and 4 axes structure allows four degrees of
freedom. Two parallel rotary joints and a linear vertical joint allow freedom in the
X-Y-Z space. The fourth degree of freedom is given by the rotational motion of the
end effector along the vertical axis. A heavy base is used to make the structure
stable. See figure 2.2.

Figure 2.2: SCARA Sankyo SR8408.

2.2.1 Forward Kinematics

The aim of the Forward Kinematics [4, 5, 6, 22] is to determine the position
and orientation of the end effector in reference to the main frame (base frame).
Underlining the fact that the Joint Axis for a rotational joint and for a linear joint
are respectively around the axis of rotation and along the positive direction of motion,
one can introduce four Kinematic Parameters. The relative position and orientation
of a link joint axes is specified by two Link Parameters: the Link Length (ai) and
the Link Twist (αi). In detail:

• ai is the common normal distance between the joint axes, measured from the
axis of joint i to axis of joint i+ 1;

• αi is the angle by which axis i must be twisted to bring it into alignment
with axis i + 1 when looking along ai. It is assumed the sign of the angle
corresponds to “clockwise positive”.

The relative position and orientation of a link referring to the successive link is
specified by two Joint Parameters: the Joint Distance (di) and the Joint Angle (Θi).

8 CHAPTER 2. THE SCARA ROBOT

Detail:

• di is the distance between the two normals ai−1 and ai, measured along the
joint axis from ai−1 to ai;

• Θi is the angle from ai−1 to ai in a plane normal to the joint axis.

An example of the four Kinematic Parameters is shown in Figure 2.3. In order to
determine these parameters the Denavit and Hartenberg (D-H) representation is
used [4, 5]. Basically, according to this representation a link frame for each link has
to be assigned. Let n be the number of links and Lk the frame of the Link k with
0 ≤ k ≤ n. The rules that must to be followed are:

1) the zk-axis is in the direction of the joint axis;

2) the xk-axis is parallel to the common normal: xk = zk−1 × zk. The direction
of the xk-axis is from zk−1 to zk;

3) the yk-axis follows from the x- and z-axis by choosing it to be a right-handed
coordinate system.

Figure 2.3: Example of the four Kinematic Parameters θi,di,ai,αi. With those four parame-
ters, the coordinates can be translated from Oi to Oi−1.

Once all the frames are positioned, the parameters ak, αk, dk and Θk are calculated
for 0 ≤ k ≤ n. The positive aspect of this approach is that transformations between
successive frames are represented by a simple 4 × 4 matrix, with the same structure
for each transformation.

2.2. STRUCTURE AND MATHEMATICAL ANALYSIS 9

In the case of simple serial links, the matrix that relates the Link k to the Link k-1
is:

T k
k−1 =


cos Θk − sin Θk cosαk sin Θk sinαk ak cos Θk

sin Θk cos Θk cosαk − cos Θk sinαk ak sin Θk

0 sinαk cosαk dk

0 0 0 1

 . (2.1)

The placement of frames on the SCARA robot is shown in figure 2.4. Due to the
structure of the SCARA, only four parameters are variable: Θ1,Θ2,Θ4, d3. The
parameter values are listed in the table 2.1.

Figure 2.4: SCARA frames placement.

Table 2.1: Link and joint parameters.

Axis Θ d a α Home

1 Θ1 l1 l2 180° 0°
2 Θ2 0 l3 0° 0°
3 0° d3 0 0° dmax

4 Θ4 l4 0 0° 90°

10 CHAPTER 2. THE SCARA ROBOT

The matrix relating tool position to the base frame is T tool
base:

T tool
base = T 1

0 T
2
1 T

3
2 T

4
3 (2.2)

with

T 1
0 =


cos Θ1 − sin Θ1 0 l2 cos Θ1

sin Θ1 − cos Θ1 0 l2 sin Θ1

0 0 −1 l1

0 0 0 1



T 2
1 =


cos Θ2 − sin Θ2 0 l3 cos Θ2

sin Θ2 cos Θ2 0 l3 sin Θ2

0 0 1 0
0 0 0 1



T 3
2 =


1 0 0 0
0 1 0 0
0 0 1 d3

0 0 0 1



T 4
3 =


cos Θ4 − sin Θ4 0 0
sin Θ4 cos Θ4 0 0

0 0 1 l4

0 0 0 1

 .

Finally:

T tool
base =


cos Θ1−2−4 sin Θ1−2−4 0 l2 cos Θ1 + l2 cos Θ1−2

sin Θ1−2−4 − cos Θ1−2−4 0 l2 sin Θ1 + l3 sin Θ1−2

0 0 −1 l1 − d3 − l4

0 0 0 1

 (2.3)

where
Θ1−2−4 = Θ1 − Θ2 − Θ4 (2.4)

Θ1−2 = Θ1 − Θ2. (2.5)

Inverse Kinematics

Often the matrix T tool
base and the approach vector of the tool are known. The aim

of the Inverse Kinematics [6, 22] calculation is to find the values of the variable
parameters that allow a specific position to be reached. In the case of the SCARA,
the parameters are Θ1,Θ2,Θ4, d3. The approach vector of this robot is (0, 0,−1)T ,

2.2. STRUCTURE AND MATHEMATICAL ANALYSIS 11

which means that the approach direction of the end effector is always straight down.

Figure 2.5: SCARA top view scheme.

Given the numerical matrix:

T tool
base =


R11 R12 R13 px

R21 R22 R23 py

R31 R32 R33 pz

0 0 0 1

 , (2.6)

the value of d3 can be easily found:

d3 = l1 − l4 − pz. (2.7)

To find Θ2:

p2
x + p2

y = l22 + l23 − 2l2l3 cos (180° − Θ2)

= l22 + l23 + 2l2l3 cos Θ2

.

(2.8)

Because px and py are known, it is obtained:

Θ2 = ± arccos
(p2

x + p2
y − l22 − l23
2l2l3

)
. (2.9)

The two possible solutions (one positive and one negative) are coherent with the fact
that the robot can reach the target point in the right arm mode (positive solution)

12 CHAPTER 2. THE SCARA ROBOT

and in the left arm mode (negative solution).
To find Θ1:

px = l2C1 + l3C1−2 = (l2 + l3C2)C1 + l3S2S1 (2.10)

py = l2S1 + l3S1−2 = −l3S2C1 + (l2 + l3C2)S1 (2.11)

[
C1

S1

]
=
[
l1 + l2C2 l2S2

−l2S2 l1 + l2C2

]−1 [
px

py

]
(2.12)

Θ1 = arctan 2(l2S2px + (l1 + l2C2)py , (l1 + l2C2)px − l2S2py) (2.13)

If it is necessary Θ4 can be found:

R21 = S1−2−4 (2.14)

R11 = C1−2−4 (2.15)

Θ4 = Θ1 − Θ2 − Θ1−2−4

= Θ1 − Θ2 − arctan 2(R21, R11).
(2.16)

Chapter 3

The Sankyo SR8408

In this chapter, the structure, the main features and components present on board the
Robot SR8408, produced by The NIDEC SANKYO Corporation are described [34].
The main operative features of this robot are listed in Table 3.1.

Table 3.1: Main operative features of Sankyo SR8408.

Arm length
Total 550 mm
First arm 300 mm
Second arm 250 mm

Operative area

Θ1 ± 120 °
Θ2 ± 120 °
Z axis travel 150 mm
Θ4 ± 360 °

Maximum speed
Composite speed 5000 mm/s
Z axis travel 1000 mm/s
Rotational speed 730 °/s

Repeatability
X-Y 0.1 mm
Z 0.02 mm
Rotation 0.05°

Load-carrying capacity 3 Kg

Max couple 3 Nm

Weight 40 Kg

3.1 Mechanical structure

Only functional parts pertaining the motion are described in this section.
The base of the robot is shown in Figure 3.1. It allows the fixing of the robot in a
safe and stable way.

13

14 CHAPTER 3. THE SANKYO SR8408

Figure 3.1: Base of the robot.

Each degree of freedom of the robot is driven by its own servo motor. Two motors
are fixed on the rotational joints and allow the user to change the values of Θ1

and Θ2. The roll motion motor along the Z axis is fixed inside the first arm. This
position makes the centre of mass of the entire arm closer to the first rotational
joint, and gives space to the motor positioned at the edge of the arm, that moves
the prismatic joint. In the table 3.2 all the indicated parts of Figure 3.2 are listed.
The position of some important components listed in the tables 3.3 and 3.4 is shown
in Figure 3.3 and 3.4 respectively.

Table 3.2: Item list for Figure 3.2.

Item Parts name

A1 Θ1 motor
B1 Θ2 motor
C1 Z axis motor
D1 Roll axis motor
E1 Θ1 harmonic drive (inside)
F1 Θ2 harmonic drive (inside)
G1 Roll axis reduction gear unit
H1 Z axis shaft
I1 Z axis brake unit
J1 Connector panel
K1 Flexible cable hose connection and serial port
L1 Θ1 arm
M1 Θ2 arm
N1 Z axis pulley
O1 Z axis belt

3.1. MECHANICAL STRUCTURE 15

Figure 3.2: General assembly.

16 CHAPTER 3. THE SANKYO SR8408

Figure 3.3: Showing the Robot with the covers in place.

K3L3

Figure 3.4: Robot partially uncovered.

3.2. MOTORS AND MOTION TRANSMISSION 17

Table 3.3: Item list for Figure 3.3.

Item Parts name

A2 Θ1 motor
B2 Θ1 harmonic drive (inside)
C2 Θ2 motor
D2 Θ2 harmonic drive (inside)
E2 Z axis brake unit
F2 Roll axis motor
G2 Z axis shaft

Table 3.4: Item list for Figure 3.4.

Item Parts name

A3 Θ1 motor
B3 Θ1 harmonic drive
C3 Roll axis belt 1
D3 Θ2 motor
E3 Θ2 harmonic drive
F3 Roll axis motor
G3 Z axis brake unit
H3 Z axis shaft
I3 Z axis pulley
J3 Z axis belt
K3 Roll axis belt 2 (inside)
L3 Roll axis pulley

3.2 Motors and motion transmission

Rotational joints motion

Both Θ1 and Θ2 motors are AC servo motors. See table 3.5 for their specifications.

Table 3.5: Θ1 and Θ2 motor specifications.

Motor Power Speed
(W) (rpm)

Θ1 366 4000
Θ2 267 4000

The two motors are shown in Figure 3.5. In Figures 3.6, 3.7, and 3.8, Θ2 motor is
shown in detail. As it can be seen in Figure 3.6(b), it has two wire connections: a
connection with four pins that provides power (LINE 1, Line 2, N/C, GROUND),
and another connection for powering the encoder and for acquiring signals from it.
In Figure 3.9 the electronic board attached to the encoder is shown .

18 CHAPTER 3. THE SANKYO SR8408

Harmonic drive

Θ1 and Θ2 joints employ a harmonic drive in order to increase the torque delivered by
the servo motor. Developed over 50 years ago, primarily for aerospace applications,
harmonic drives are compact transmission systems which increase torque of electric
motors [7]. They are reduction drive with very low backlash, compactness, good
resolution, excellent repeatability, and high torque capability. It allows a very
smooth motion and it is made up of three main components: the Circular Spline,
the Wave Generator, and the Flexspline. See Figure 3.10. The Circular Spline is a
rigid steel ring with teeth on the inner surface. The Flexspline is a steel cylinder
with flexible walls with teeth, but a quite rigid closed side. It is fixed to the load.
The Generator is a thin elliptical ball bearing assembly, fixed to the rotor of the
motor. To understand how the Harmonic Drive works, please see Figure 3.11. The
zone of the tooth Wave engagement between the Flexspline and the Circular Spline
moves with the Wave Generator major axis. The Flexspline has normally two teeth
less than the Circular Spline due to its shorter diameter. Because of that, when
the Wave Generator has turned 180 deg clockwise, the Flexspline has regressed by
one tooth relative to the Circular Spline. After a complete revolution of the Wave
Generator, the Flexspline has regressed by two teeth relative to the Circular Spline.

Roll motion and Z motion

The roll motion along the Z axis is activated by a servo motor inside the Θ1 arm
(118 W, 4000 rpm). Two belts and two pulleys ensure the motion transmission up
to the Z axis. See Figures 3.12, 3.13. The prismatic joint is driven by another servo
motor (118 W, 4000 rpm) through a pulley and a belt. An electromagnetic clutch is
used as a break unit. See Figures 3.14, 3.15.

3.2.1 Closed loop control and repeatability

The Sankyo SR8404 is controlled by the SC3150 Controller produced by NIDEC
SANKYO corporation. This Controller uses the ABS (absolute) encoders backed up
by battery. Therefore, the Home position operation doesn’t have to be carried out
each time the robot is powered because the positional data is stored in the encoders
back-up memory. During the Home position operation, this position is detected
by 4 Home sensors. The mechanical structure and the feedback control allow a
repeatability of 0.1 mm in the X-Y plane, 0.02 mm in Z positioning, and 0.05° in
rotation.

3.2. MOTORS AND MOTION TRANSMISSION 19

(a) Θ1 motor. (b) Θ2 motor.

Figure 3.5: Θ1 and Θ2 motors.

Figure 3.6: Θ2 motor.

20 CHAPTER 3. THE SANKYO SR8408

(a) Θ2 motor. (b) Connectors.

Figure 3.7: Θ2 motor and connectors.

Figure 3.8: Rotor of Θ2 motor.

3.2. MOTORS AND MOTION TRANSMISSION 21

Figure 3.9: Encoder electronic board.

(a) Disassembled Harmonic Drive. (b) Assembled Harmonic Drive.

Figure 3.10: Harmonic Drive.

22 CHAPTER 3. THE SANKYO SR8408

Figure 3.11: Harmonic Drive functioning.

Figure 3.12: Roll motor.

Figure 3.13: Roll motor belts.

3.2. MOTORS AND MOTION TRANSMISSION 23

(a) Z motor and electromagnetic clutch. (b) Z motor.

Figure 3.14: Z motor and electromagnetic clutch.

(a) Z axis motion unit and break unit. (b) Electromagnetic clutch.

Figure 3.15: Z axis motion unit and break unit.

24 CHAPTER 3. THE SANKYO SR8408

Chapter 4

HW configuration and
Interpreter

4.1 Hardware configuration

The robot manufacturer, the Sankyo Corporation, provides a robot controller and a
programming language called SSL/E Language (Sankyo Structured Language/En-
hanced). The controller includes a CPU board, the power electronics for driving the
arm motors, the control electronics for managing the feedback loop, a mother board,
some digital I/O ports, and two serial ports. Since the robot controller supports only
the language provided by Sankyo (SSL/E language), an interpretation is necessary
in order to convert a Matlab robot function in a SSL/E function.
The Hardware Configuration used is shown in Figure 4.1. Matlab is installed on a
PC connected to the SC3150 Controller, through a RS232 cable. The Interpreter, as
it will be explained, is a program written in the SSL/E Language (Sankyo Structured
Language/Enhanced) and runs on the controller. The controller is connected to
the Robot in order to provide power to the motors and to the ABS encoders, and
to receive the encoder position feedback signals. The Teaching Pendant OP3000
allows many operations, but most importantly the operator can start and stop the
Interpreter execution by using it.

4.2 Interpreter

4.2.1 Matlab functions: distinction into families

In order to make clear the content of the next sections, Matlab functions are divided
in three families:

- Matlab Native Commands and Functions: these commands and functions are

25

26 CHAPTER 4. HW CONFIGURATION AND INTERPRETER

Figure 4.1: Hardware configuration.

provided by Matlab itself;

- Matlab Robot Functions: these functions have been developed in this project
and are provided to the user without the possibility to see the inner code.
They allow Robot control;

- Matlab Application Functions: these functions have been developed in this
project and concern two applications. See chapter 6;

- Matlab Auxiliary Functions: these functions have been developed in this project.
They carry out crucial operations to allow the correct execution of Matlab
Robot Functions.

4.2.2 Programming with and without Matlab

Sankyo provides a Robot Application Development Software named Buzz2, that
supports the writing, compiling or building, editing, monitoring and debugging
of the user application programs for the Sankyo SC3000 series Robot Controllers.
Thus, without the Matlab Interpreter developed in this project, the user has to
write a program in Buzz2 and download it to the controller. The Task can be
started from the Pendant or entering in the Buzz2 Debug Mode. See the diagram in
Figure 4.2. On selecting the Interpreter, the user, can write a program in Matlab by
using Matlab native commands, and functions that this project has made available.
Matlab also allows debugging and variables monitoring. A function can be launched
from the Command Window, this allows a very quick check about the effect of the
function itself. See the diagram in Figure 4.3. However, a program is usually written

4.2. INTERPRETER 27

as a Script. The Listing 4.1 is an example of a simple application written in Matlab.
It is for picking up 6 pieces individually, and moving them to a different position.

Figure 4.2: Programming, and program execution in Buzz2.

28 CHAPTER 4. HW CONFIGURATION AND INTERPRETER

Figure 4.3: Programming, and program execution with Matlab.

Listing 4.1: Matlab program: six items are moved from position P1 to a position P2.
1 speed(4); % Sets the speed (4% of the maximum speed)
2

3 PIECE POS=[280,280,10,112]; % Cartesian Position of a piece
4 % [X (mm),Y (mm),Z (mm), rotation
5 % along the Z-axis (deg)]
6

7 RELEASE POS=[280,280,10,112]; % Cartesian Position of the
8 % release position [X (mm),
9 % Y (mm),Z (mm), rotation

10 % along the Z-axis (deg)]
11

4.2. INTERPRETER 29

12 move(PIECE POS); % Moves to PIECE POS
13

14 i=1; % Iteration variable
15

16 % Cycle for picking up 6 pieces in the workspace (It has
17 % been considered all the pieces in the same position)
18

19 while(i<7)
20

21 move(PIECE POS); % Moves to PIECE POS
22

23 out(937,1); % Activates vacuum device in order
24 % to pick up a piece by using a sucker
25

26 smove(3,60); % Moves only the third axis (z-axis) straight
27 % down in order to reach the piece
28

29 smove(3,-60); % Moves only the third axis (z-axis)
30 % straight up
31

32 move(RELEASE POS); % Moves to RELEASE POS
33

34 out(937,0); % Deactivates vacuum device, and releases
35 % the piece
36

37 pause(0.2); % Delay for allowing piece release (s)
38

39 i=i+1; % Iteration variable updating
40

41 end

4.2.3 The Interpreter: what it is, and how it works

Actually, what has been developed is not exactly a true interpreter. Indeed, it does
not translate a Matlab program to a SSL/E program. An example is used in order to
explain this. A simple Matlab program is considered. See Listing 4.2. This program,
after defining two positions in the workspace (P1 and P2), and setting the speed
to the 10% of the maximum speed, moves the robot over P1 and P2 waiting one
second after positioning.

Listing 4.2: Matlab code for point to point motion.
1 P1=[280,280,10,112]; % Cartesian Position of a piece
2 % [X (mm),Y (mm),Z (mm), rotation
3 % along the Z-axis (deg)]
4

5 P2=[-280,280,10,112]; % Cartesian Position of a piece
6 % [X (mm),Y (mm),Z (mm), rotation
7 % along the Z-axis (deg)]
8

9 speed(10); % Sets the speed (10% of the maximum speed)
10

11 i=1; % Iteration variable

30 CHAPTER 4. HW CONFIGURATION AND INTERPRETER

12

13 while(i<11)
14

15 move(P1); % Moves to P1
16

17 pause(1); % Waits 1 second
18

19 move(P2); % Moves to P2
20

21 pause(1); % Waits 1 second
22

23 i=i+1; % Iteration variable updating
24

25 end

Moving inside the function move function that performs point to point motion, the
function serial out1 is called.

1 function [] = move(A)
2

3 % This function performs point to point motion
4

5 x=serial out1(1000,A);
6

7 end

This function is extremely important. It has two input parameters: the first one
is the number 1000, the unambiguous code that identifies the function move, the
second one is the argument of the function move, i.e. a generic position A which is a
vector of four numbers. The function serial out1 sends the code and the parameter
through a serial cable to the controller, on which the “Interpreter” runs. After that,
Matlab waits for the Feedback Execution Confirmation Code from the controller
that confirms the correct execution of the statement by the Interpreter. Then, the
Matlab program continues with the next statements.
What needs to be understood, is that this operation involves only a set of functions
made available to the user. These functions will be called Matlab Robot Functions.
They have been developed during this project and their inner code is not accessible to
the user. It’s easy to understand that, in the example of Listing 4.2, only the function
move and the function speed, that are Matlab Robot Functions, are interpreted by
the interpreter on the controller.
Therefore, the “Interpreter” is a program in the Robot programming
language (SSL/E). It associates a Matlab robot function with a SSL/E
function. It is a black box for the Matlab programmer. It is downloaded
to the controller only once, and it doesn’t get changed.

4.2. INTERPRETER 31

The programmer can use every Matlab Native Command. When a Matlab robot
function (such as move or speed) occurs in the program flow, Matlab sends its code
and argument(s) to the controller that executes the corresponding SSL/E Function.
Then, the Matlab program execution continues with the next statement.

The basic functioning of the Interpreter program is shown in the diagram of Figure
4.4. Once the interpreter is started from the pendant, it polls the serial port waiting
data from Matlab, i.e. the code that identifies the function, and its argument(s).
Then a sequence of IF statements recognises which statement has to be executed.
Finally, the program starts a new polling phase after sending the Feedback Execution
Confirmation Code to Matlab.

Figure 4.4: Interpreter functioning

32 CHAPTER 4. HW CONFIGURATION AND INTERPRETER

4.3 Serial communication and synchronization

4.3.1 Serial communication

Data exchange between Matlab and the controller is made by using a RS232 cable
shown in Figure 4.5. Both SSL/E language and Matlab are provided with some
user-friendly statements that configure communication settings of the connection
and read and send data through a RS232 serial port. See the Matlab example of
Listing 4.3 and the examples in SSL/E language of Listing 4.4. For more details,
refer to the Sankyo SSL/E Reference Manual [29] and Matlab Communications
System Toolbox Documentation [24].

Figure 4.5: RS232 cable

Listing 4.3: Matlab program that configures communication settings of the connection and
reads, and sends data through a RS232 port.

1 A=25.5; % Real variable
2

3 S1='ABCD'; % String
4

5 S2='XYZ'; % String
6

7 s = serial('COM1'); % Creates a serial port object
8

9 % The next statement opens the RS232 communication
10 % port and configures communication settings
11

12 set(s,'BaudRate',115200,'Parity','even','StopBits',2,
13 'DataBits',8,'Terminator','CR/LF','Timeout',1);
14

15 fopen(s); % Connects the RS232 port object to the device
16

17 A=num2str(A) % Converts the integer variable A into
18 % a string

4.3. SERIAL COMMUNICATION AND SYNCHRONIZATION 33

19 fprintf(s,A); % Sends the string A to the RS232 port
20

21 I=fscanf(s); % Stores a string read from the RS232
22 % port into the variable I
23

24 I=str2num(I); % Converts the string I into an integer
25

26 if(I==0)
27

28 fprintf(s,S1); % Sends the string S1 to the
29 % RS232 port
30 else
31

32 fprintf(s,S2) % Sends the string S2 to the
33 % RS232 port
34 end
35

36 fclose(s); % Removes the serial port object from memory
37

38 delete % Closes the RS232 communication port
39

40 end

Listing 4.4: SSL/E program that configures communication settings of the connection and
for reads, and sends data through a RS232 port.

1 INT I; // Integer variable
2

3 REAL A=25.5; // Real variable
4

5 STRING S1="ABCD"; // String
6

7 S2="XYZ"; // String
8

9 PROG SUB()
10

11

12 // The next statement opens the RS232 communication port and
13 // configures communication settings
14 // BAUD RATE: 115200
15 // DATA LENGTH: B8
16 // PARITY bits: PE
17 // STOP bits: S2
18 // BUFFER length (bytes): L512
19 // DELIMITER characters: CRLF
20

21

22

23 RSOPEN(1, "115200 B8 PE S2 L512 CRLF");
24

25 RSOUT(1,A); // Sends the string A to the RS232 port
26

27 RSIN(1,I) // Receives data from the RS232 port and
28 // assign it into the variable I
29

30 IF(I==0)
31 RSOUT(1,S1); // Sends the string S1 to the RS232 port

34 CHAPTER 4. HW CONFIGURATION AND INTERPRETER

32 ELSE
33 RSOUT(1,S2); // Sends the string S1 to the RS232 port
34

35

36 RSCLOSE(1); // Closes the RS232 communication port
37

38 END

4.3.2 Synchronization

Interpreter side

As it has been shown above, the communication is possible by using a few simple
statements. A simple protocol has been developed in order to synchronize Matlab
and the Interpreter. In Figure 4.6 pseudocode explains the synchronization protocol
between Matlab and the Interpreter from the Interpreter side. When the Start key
on the pendant is pressed, the Interpreter starts running. First, it sends the Feedback
Execution Error Code ‘7777’ to Matlab. This provides a feedback to Matlab in
case of error in the statement execution, see subsection 4.3.2 about the Feedback
Execution Error Code. Then, a polling operation of the serial port is started. The
Interpreter waits for the Matlab Communication Initialization Code ‘0000’. After
receiving this code, the interpreter enters in a loop and it polls the port again
waiting for the New Matlab Robot Function Notification Code ‘1111’. Once it gets
this code, the interpreter reads from the port the Function Code of the Matlab
robot function, and reads and stores the argument(s) of the Matlab robot function
itself. Then, it executes the corresponding SSL/E function and returns to the polling
operation of the serial port thanks to a jump statement. Before polling the port a
Feedback Execution Confirmation Code is sent to Matlab in order to confirm the
correct execution of the function.

Matlab side

After opening Matlab, the Matab user must execute the function prog. This function
is for opening and configuring the serial port from the Matlab side. Furthermore, this
function sends the Matlab Communication Initialization Code ‘0000’. As has been
explained above, a Matlab robot function calls the Matlab function serial out1. If
prog hadn’t been executed before executing the Matlab robot function, serial out1

stops the program and outputs an error message on the Matlab Command window.
Otherwise, it sends the New Matlab Robot Function Notification Code ‘1111’ to
the Interpreter. Then, it sends the Function Code and the argument(s) of the
Matlab robot function. After that, serial out1 waits for the Feedback Execution
Confirmation Code.

4.3. SERIAL COMMUNICATION AND SYNCHRONIZATION 35

Figure 4.6: Pseudo code explaining the synchronization protocol between Matlab and the
Interpreter from the Interpreter side.

36 CHAPTER 4. HW CONFIGURATION AND INTERPRETER

Feedback Execution Error Code

During the robot control operations, some types of error can occur. For instance, a
very frequent error is the “out of workspace” error. It occurs when the user tries
to move the robot in a position out of the workspace. When an error occurs, the
controller stops the program execution, switches on a LED on the pendant and
outputs a message on the pendant screen. The Matlab auxiliary function serial out1

continues to poll the serial port waiting for feedback from the Interpreter. However
the controller has stopped the execution and does not send any massage to Matlab.
A manual intervention is necessary. The user has to press the Error Reset Switch on
the pendant and then the Start touch key, in order to restart the Interpreter. As
has been shown in the pseudocode in Figure 4.6, the first thing that the Interpreter
carries out is the output of the Feedback Execution Error Code ‘7777’. Therefore,
serial out1 detects that an error has occurred and, after closing the serial port
object, it outputs an error message to the command window, asking the user to type
the function prog in order to reopen and configure the serial port.
It is clear that the Feedback Execution Error Code ‘7777’ is always outputted when
the Interpreter is started. In order to allow Matlab to ignores this code when a
normal start of the Interpreter is done by the user (i.e. an error condition has not
occurred), the Interpreter has to be started before the Matlab robot function prog

is executed. Indeed, in this case the serial port object is not open and configured,
and thus the Feedback Execution Error Code ‘7777’ is not taken into account.

4.4 Auxiliary Matlab Functions

4.4.1 The startup function

The Matlab auxiliary function startup is executed at Matlab startup. It includes
commands that initialize important state variables.

4.4.2 The state keeper function

The Matlab auxiliary function state keeper is an important function that includes
important persistent variables shared by some functions. Persistent variables are
local to the function state keeper itself; yet their values are retained in memory
between calls to the function. persistent variables are similar to global variables
because the MATLAB software creates permanent storage for both. They differ
from global variables in that persistent variables are known only to the function
in which they are declared. This prevents persistent variables from being changed
directly by other functions, or from the MATLAB command line [8]. Actually, few
robot functions can change and access these variables but they can’t do it directly.

4.4. AUXILIARY MATLAB FUNCTIONS 37

Indeed they have to call the function state keeper with a specific string as input
parameter. The function state keeper compares the input string with two strings
defined inside it. Depending on the string comparing result, state keeper allows
updating or retrieval of these variables, or denies these operations.

4.4.3 The functions serial out

As has been shown in section 4.3.2, inside each Matlab robot function, a Matlab
auxiliary function is called. It has to send the Function Code and the argument(s) of
the Matlab Robot Function itself to the Interpreter. Depending on the type (scalar
or matrix) and number of argument(s) that have to be sent, five different functions
are used: serial out1, serial out2, serial out3, serial out4, serial out5. The
structure of these five functions is pretty much the same. The serial out1 flowchart
and source code is shown in Figure 4.7 and Listing A.1 in appendix A. For Sample
mode refer to chapter 5.10.

Figure 4.7: Function serial out1 flowchart.

38 CHAPTER 4. HW CONFIGURATION AND INTERPRETER

Chapter 5

Matlab Robot Functions

The SSL/E language is provided with many functions for managing and converting
data types, e.g. for converting number to string, for converting an integer to a real
number. It is also provided with mathematical functions, and cycle and if than else
constructions. All these kinds of basic functions have not been transposed to Matlab,
since Matlab has a more complete and wider set of commands.
Seventy MATLAB robot functions have been developed. Most of them are present in
SSL/E [29]. A few new statements, not provided by SSL/E, allow new functionality.

5.1 Coordinate Systems

The robot end effector position in the X-Y-Z space can be decribed by two coordinate
systems: the Cartesian Coordinate System and the Joint Coordinate System. See
Figure 5.2 and Figure 5.2.

Cartesian Coordinate System

In Matlab, a vector of four numbers P1=[x,y,z,s] is used in order to define a position
in the Cartesian Coordinate System, where:

- 1st element: X position (mm);

- 2nd element: Y position (mm);

- 3rd element: Z-axis position (mm);

- 4th element: Roll/S-axis position (deg).

Example: P1=[280,280,10,112]

39

40 CHAPTER 5. MATLAB ROBOT FUNCTIONS

Joint Coordinate System

In Matlab, a vector of four numbers P1=[t1,t2,z,s] is used in order to define a
position in the Joint Coordinate System, where:

- 1st element: Angle of the 1st arm (deg);

- 2nd element: Angle of the 2nd arm (deg);

- 3rd element: Z-axis position (mm);

- 4th element: Roll/S-axis position (deg).

Example: P1=[90,15,35,220]

Figure 5.1: Cartesian Coordinate System.

Figure 5.2: Joint Coordinate System.

5.2. POINT TO POINT MOTION FUNCTIONS 41

5.2 Point to point motion functions

In Point to Point Motion (PTP motion), a target point is specified for the Ma-
nipulator. Neither motion trajectory nor actual motion speed on the way can be
set. The motion trajectory and actual motion speed depend on the conditions of
the Manipulator type. In general, this motion mode realizes the fastest speed to
move to the target point. Thus, the Manipulator speed is specified indirectly with a
percentage of the maximum speed of the Manipulator (see the function speed).
In Point to Point Motion, only the target point is specified. Indeed, the trajectory
cannot be selected by the programmer. It is automatically chosen by the controller
in order to optimize the motion.

5.2.1 Motion in the Cartesian Coordinate System

MOVE

Moves the robot to a position specified in the Cartesian coordinate system.
Syntax: move(P)

Input:

- P: matrix of Nx4 elements, where N is between 1 and 8, i.e. up to 8 positions
can be passed to the functions. The positions are reached in row order.

Return value: none. Example

1 P1=[280,280,10,112]; % Defines position P1
2 move(P1); % Moves to P1
3

4 P=[280,280,10,112; % Defines a matrix P of 4 positions
5 300,280,10,112;
6 400,0,60,200;
7 0,300,10,112];
8 move(P); % Moves to the positions defined in P
9 % in row order

MOVED

Moves the robot to a position in the Cartesian coordinate system and not yet
declared.
Syntax: moved(x,y,z,s)

Input:

- x: X position (mm);

42 CHAPTER 5. MATLAB ROBOT FUNCTIONS

- y: Y position (mm);

- z: Z-axis position (mm);

- s: Roll/S-axis position (deg).

Return value: none.
Example

1 move(280,280,10,112); % Moves to the point
2 % (280,280,10,112)

RMOVE

Moves the robot to a position specified relative to the current position in the
Cartesian coordinate system.
Syntax: rmove(x,y,z,s)

Input:

- x: X position variation (mm);

- y: Y position variation (mm);

- z: Z-axis position variation (mm);

- s: Roll/S-axis position variation (deg).

Return value: none.
Example

1 P1=[280,280,10,112]; % Defines position P1
2 move(P1); % Moves to P1
3

4 rmove(20,10,30,10); % Moves to (300,290,40,122)
5

6 P1=[280,280,10,112]; % Defines position P1
7 move(P1); % Moves to P1
8

9 rmove(-20,-10,30,10); % Moves to (260,270,40,122)

SMOVE

Moves the robot by changing only one of the three Cartesian coordinates or the
Roll/S-axis position.
Syntax: smove(n,p)

Input:

5.2. POINT TO POINT MOTION FUNCTIONS 43

- n: one of the three coordinates or the Roll/S-axis position (1 − 4);

- p: value of the selected coordinate (mm) or of the Roll/S-axis position (deg).

Return value: none.
Example

1 P1=[280,280,10,112]; % Defines position P1
2 move(P1); % Moves to P1
3

4 smove(1,300); % Moves to (300,280,10,112)
5

6 smove(3,50); % Moves to (300,280,50,112)
7

8 smove(4,100); % Moves to (300,280,60,100)

SRMOVE

Moves the robot by changing only one of the three Cartesian coordinates or the
Roll/S-axis position, relative to the current position in the Cartesian coordinate
system.
Syntax: srmove(n,p)

Input:

- n: one of the three coordinates or the Roll/S-axis position (1 − 4);

- p: variation of the selected coordinate (mm) or of the Roll/S-axis position
(deg);

Return value: none.
Example

1 P1=[280,280,10,112]; % Defines position P1
2 move(P1); % Moves to P1
3

4 srmove(1,30); % Moves to (310,280,10,112)
5

6 srmove(3,50); % Moves to (300,280,60,112)
7

8 srmove(4,100); % Moves to (300,280,60,212)

5.2.2 Motion in the Joint Coordinate System

JMOVE

Moves the robot to a position specified in the joint coordinate system.
Syntax: jmove(P)

Input:

44 CHAPTER 5. MATLAB ROBOT FUNCTIONS

- P: matrix of Nx4 elements, where N is between 1 and 8, i.e. up to 8 positions
can be passed to the functions. The positions are reached in row order.

Return value: none.
Example

1 P1=[90,30,10,112]; % Defines position P1
2 jmove(P1); % Moves to P1
3

4 P=[90,30,10,112; % Defines a matrix P of 4 positions
5 110,50,10,112;
6 90,-45,60,200;
7 70,10,10,-200];
8 jmove(P); % Moves to the positions defined in P
9 % in row order

JMOVED

Moves the robot to a position specified in the joint coordinate system and not yet
declared. Syntax: jmoved(t1,t2,z,s)

Input:

- t1: angle of the 1st arm (deg);

- t2: angle of the 2nd arm (deg);

- z: Z-axis position (mm);

- s: Roll/S-axis position (deg).

Return value: none.
Example

1 jmoved(90,30,10,112); % Moves to the point
2 % (90,30,10,112)

RJMOVE

Moves the robot to a position specified relative to the current position in the joint
coordinate system.
Syntax: rjmove(x,y,z,s)

Input:

- t1: 1st arm angle variation (deg);

- t2: 2nd arm angle variation (deg);

5.2. POINT TO POINT MOTION FUNCTIONS 45

- z: Z-axis position variation (mm);

- s: Roll/S-axis position variation (deg).

Return value: none.
Example

1 P1=[90,30,10,112]; % Defines position P1
2 jmove(P1); % Moves to P1
3

4 rjmove(20,10,30,10); % Moves to (110,40,40,122)
5

6 P1=[90,30,10,112]; % Defines position P1
7 jmove(P1); % Moves to P1
8

9 rjmove(-90,-40,20,30); % Moves to (0,-10,30,142)

SJMOVE

Moves the robot by changing only one of the three joint coordinates or the Roll/S-axis
position.
Syntax: sjmove(n,p)

Input:

- n: one of the three coordinates or the Roll/S-axis position (1 − 4);

- p: value of the selected coordinates (deg or mm) of the Roll/S-axis position
(deg).

Return value: none.
Example

1 P1=[90,30,10,112]; % Defines position P1
2 jmove(P1); % Moves to P1
3

4 sjmove(1,20); % Moves to (20,30,10,112)
5

6 sjmove(3,50); % Moves to (20,50,10,112)
7

8 sjmove(4,100); % Moves to (20,50,10,100)

SRJMOVE

Moves the robot by changing only one of the three joint coordinates or the Roll/S-axis
position, relative to the current position in the joint coordinate system.
Syntax: srjmove(n,p)

Input:

46 CHAPTER 5. MATLAB ROBOT FUNCTIONS

- n: one of the three coordinates or the Roll/S-axis position (1 − 4);

- p: variation of the selected coordinate (deg or mm) or of the Roll/S-axis
position (deg).

Return value: none.
Example

1 P1=[90,30,10,112]; % Defines position P1
2 jmove(P1); % Moves to P1
3

4 srjmove(1,20); % Moves to (110,30,10,112)
5

6 srjmove(3,50); % Moves to (110,30,60,112)
7

8 srjmove(4,100); % Moves to (110,30,60,212)

5.3 Continuous Path motion functions

In Continuous Path motion (CP motion), not only the target point but also the
motion trajectory and motion speed on the path of the Manipulator tip are specified
(see the function cpspeed). This motion is also called Interpolated motion and can
be performed only in the Cartesian coodinate system.

LMOVE

Moves the robot to some positions following a straight line as trajectory.
Syntax: lmove(P)

Input:

- P: matrix of Nx4 elements, where N is between 1 and 8, i.e. up to 8 positions
can be passed to the functions. The positions are reached in row order.

Return value: none.
Example

1 P1=[280,280,10,112]; % Defines position P1
2 lmove(P1); % Moves to P1
3

4 P=[280,280,10,112; % Defines a matrix P of 4 positions
5 300,280,10,112;
6 400,0,60,200;
7 0,300,10,112];
8 lmove(P); % Moves to the positions defined in P
9 % in row order

5.3. CONTINUOUS PATH MOTION FUNCTIONS 47

LMOVED

Moves the Manipulator to a position not yet declared, following a straight line as
trajectory.
Syntax: lmoved(x,y,z,s)

Input:

- x: X position (mm);

- y: Y position (mm);

- z: Z-axis position (mm);

- s: Roll/S-axis position (deg).

Return value: none.
Example

1 lmove(280,280,10,112); % Moves to the point
2 % (280,280,10,112)

RLMOVE

Moves the robot to a position specified relative to the current position following a
straight line as trajectory.
Syntax: rlmove(x,y,z,s)

Input:

- x: X position variation (mm);

- y: Y position variation (mm);

- z: Z-axis position variation (mm);

- s: Roll/S-axis position variation (deg).

Return value: none.
Example

1 P1=[280,280,10,112]; % Defines position P1
2 lmove(P1); % Moves to P1
3

4 rlmove(20,10,30,10); % Moves to (300,290,40,122)
5

6 P1=[280,280,10,112]; % Defines position P1
7 lmove(P1); % Moves to P1
8

9 rlmove(-20,-10,30,10); % Moves to (260,270,40,122)

48 CHAPTER 5. MATLAB ROBOT FUNCTIONS

SLMOVE

Moves the robot by changing only one of the three Cartesian coordinates or the
Roll/S-axis position. The trajectory of the motion is a straight line.
Syntax: slmove(n,p)

Input:

- n: one of the three coordinates or the Roll/S-axis position (1 − 4);

- p: value of the selected coordinate (mm) or of the Roll/S-axis position (deg).

Return value: none.
Example

1 P1=[280,280,10,112]; % Defines position P1
2 lmove(P1); % Moves to P1
3

4 slmove(1,300); % Moves to (300,280,10,112)
5

6 slmove(3,50); % Moves to (300,280,50,112)
7

8 slmove(4,100); % Moves to (300,280,60,100)

SRLMOVE

Moves the robot by changing only one of the three Cartesian coordinates or the
Roll/S-axis position, relative to the current position in the Cartesian coordinate
system. The trajectory of the motion is a straight line.
Syntax: srlmove(n,p)

Input:

- n: one of the three coordinates or the Roll/S-axis position (1 − 4);

- p: variation of the selected coordinate (mm) or of the Roll/S-axis position
(deg).

Return value: none.
Example

1 P1=[280,280,10,112]; % Defines position P1
2 lmove(P1); % Moves to P1
3

4 srlmove(1,30); % Moves to (310,280,10,112)
5

6 srlmove(3,50); % Moves to (300,280,60,112)
7

8 srlmove(4,100); % Moves to (300,280,60,212)

5.3. CONTINUOUS PATH MOTION FUNCTIONS 49

ARCHMOVE

Moves the robot in a 3D arc motion by interpolating three points.
Syntax: archmove(PA,PB)

Input:

- PA: intermediate point;

- PB: end point.

Return value: none.
Example

1 P1 = [??, ??, ??, ??]; % Generic position inside the
2 % workspace
3 P2 = [??, ??, ??, ??]; % Generic position inside the
4 % workspace
5 P3 = [??, ??, ??, ??]; % Generic position inside the
6 % workspace
7 P4 = [??, ??, ??, ??]; % Generic position inside the
8 % workspace
9 P5 = [??, ??, ??, ??]; % Generic position inside the

10 % workspace
11 P6 = [??, ??, ??, ??]; % Generic position inside the
12 % workspace
13

14 lmove(P1); % Moves to P1
15 lmove(P2); % Moves to P2
16

17 archmove(P3,P4); % Performs an arc motion that
18 % interpolates P2, P3, P4
19

20 archmove(P5,P6); % Performs an arc motion that
21 % interpolates P4, P5, P6

Figure 5.3: Arc motion example

50 CHAPTER 5. MATLAB ROBOT FUNCTIONS

CMOVE

Moves the robot in a 3D circular motion by interpolating three points.
Syntax: cmove(P1,P2,P3)

Input:

- P1: first intermediate point;

- P2: second intermediate point;

- P3: end point (The value of the X- and Y- axes must be the same as
those of the starting point).

Return value: none.
Example

1 P1 = [??, ??, ??, ??]; % Generic position inside the
2 % workspace
3 P2 = [??, ??, ??, ??]; % Generic position inside the
4 % workspace
5 P3 = [??, ??, ??, ??]; % Generic position inside the
6 % workspace
7

8 lmove(P1); % Moves to P1
9

10 lmove(P2); % Moves to P2
11

12 cmove(P3, P4, P2); % Performs a circular motion

Figure 5.4: Circular motion example

5.3. CONTINUOUS PATH MOTION FUNCTIONS 51

XYCIR

Moves the robot in a 2D circular motion in the X-Y plane by setting the centre and
the radius.
Syntax: xycir(r,P,a,b)

Input:

- r: radius of the circle;

- P: centre of the circle;

- a: parameter for selecting the starting point (1 − 4), see Figure 5.5;

- b: parameter for selecting wise (1 clockwise , 2 counterclockwise).

Return value: none.
Example

1 P centre = [??, ??, ??, ??]; % Generic position inside the
2 % workspace
3

4 r=100; % Sets a radius of 100 mm
5

6 xycir(r, P centre, 2, 1); % Moves the robot in a
7 % circular clockwise motion
8 % starting from the point 2

Figure 5.5: Possible starting points for circular motion in X-Y plane.

XZCIR

Moves the robot in a 2D circular motion in the X-Z plane by setting the centre and
the radius.
Syntax: xzcir(r,P,a,b)

Input:

52 CHAPTER 5. MATLAB ROBOT FUNCTIONS

Figure 5.6: Circular motion example by using xycir.

- r: radius of the circle;

- P: centre of the circle;

- a: parameter for selecting the starting point (1 − 4), see Figure 5.7;

- b: parameter for selecting wise (1 clockwise , 2 counterclockwise).

Return value: none.
Example

1 P centre = [??, ??, ??, ??]; % Generic position inside the
2 % workspace
3

4 r=100; % Sets a radius of 100 mm
5

6 xzcir(r, P centre, 4, 2); % Moves the robot in a
7 % circular counterclockwise
8 % motion starting from the
9 % point 4

5.3. CONTINUOUS PATH MOTION FUNCTIONS 53

Figure 5.7: Possible starting points for circular motion in X-Z plane.

Figure 5.8: Circular motion example by using xzcir.

YZCIR

Moves the robot in a 2D circular motion in the Y-Z plane by setting the centre and
the radius.
Syntax: yzcir(r,P,a,b)

Input:

- r: radius of the circle;

- P: centre of the circle;

- a: parameter for selecting the starting point (1 − 4), see Figure 5.9;

- b: parameter for selecting wise (1 clockwise , 2 counterclockwise).

54 CHAPTER 5. MATLAB ROBOT FUNCTIONS

Return value: none.

Example

1 P centre = [??, ??, ??, ??]; % Generic position inside the
2 % workspace
3

4 r=100; % Sets a radius of 100 mm
5

6 yzcir(r, P centre, 4, 2); % Moves the robot in a
7 % circular clockwise motion
8 % starting from the point 4

Figure 5.9: Possible starting points for a circle in Y-Z plane.

Figure 5.10: Circular motion example by using yzcir.

5.4. SPEED AND ACCELERATION/DECELERATION FUNCTIONS 55

5.4 Speed and acceleration/deceleration functions

SPEED

Sets the PTP motion maximum speed for all axes. The value is a percentage of the
speed limit due to the mechanical structure of the robot. When the speed is not
specified in the program, the default speed is 10%.
Syntax: speed(a)

Input:

- a: real number from 1 to 100 [%].

Return value: previous set value.
Example

1 P1=[280,280,10,112]; % Defines position P1
2 P2=[-300,200,15,140]; % Defines position P2
3

4 speed(18); % Sets 18% as maximum PTP motion speed
5

6 move(P1); % Moves to P1
7

8 speed(40); % Sets 40% as maximum motion speed
9

10 move(P2); % Moves to P2

CPSPEED

Sets the CP motion speed.
Syntax: cpspeed(a)

Input:

- a: positive real number (mm/s).

Return value: previous set value.
Example

1 speed(30); % Sets 30% as maximum PTP
2 % motion speed
3

4 P1=[300,280,10,112]; % Defines position P1
5 P2=[-300,200,15,140]; % Defines position P2
6

7 move(P1); % Moves to P1 (PTP motion)
8

9 cpspeed(150); % Sets 150 mm/s as speed
10 % for CP motion

56 CHAPTER 5. MATLAB ROBOT FUNCTIONS

11

12 lmove(P2); % Linear motion to P2 (CP motion)
13

14 P3=[313,300,90,112;]; % Defines position P3
15 P4=[0,231,3,112;]; % Defines position P4
16 P5=[-313,300,90,112;]; % Defines position P5
17

18 cpseed(100); % Sets 100 mm/s as speed
19 % for CP motion
20

21 move(P3); % Moves to P3 (PTP motion)
22

23 cmove(130,P4,P5,P3); % Performs a circular motion
24 % (CP motion)

ACCT

The function acct sets the accelerating time in PTP motion.
When the robot performs PTP motion, it cannot immediately reach the desired speed
set by the function speed. Therefore, after starting the motion, the robot increases
its speed gradually up to the value set by speed and continues with a constant
speed. Then it decreases the speed gradually before it finally reaches its commanded
position. The period while the Robot is accelerating is called Accelerating Time.
See Figure 5.11.

By default, this function is disabled. Type autoalcl(1) for enabling it
and autoalcl(0) for disabling it again. Therefore, when the command
autoalcl(1) is used, the command acct becomes invalid and is just ig-
nored.

When autoalcl is made invalid and dacct is not specified, the default value
is 1 second.

Syntax: acct(a)

Input:

- a: real non-negative number (s).

Return value: previous set value.
Example

See autoacl example.

Set with 0 makes the motion through multiple points very smooth. De-

5.4. SPEED AND ACCELERATION/DECELERATION FUNCTIONS 57

Figure 5.11: PTP motion speed profile.

pending on the setup conditions, this setting could damage the robot.
Therefore, try setting at 0 after becoming familiar with the robot oper-
ations and programming.

DACCT

The function dacct sets the decelerating time in PTP motion.
When the robot performs PTP motion, it cannot immediately reach the desired
speed set by the function speed. Thus, after starting motion, the robot increases
its speed gradually up to the value set by speed and continues with a constant
speed. Then it decreases the speed gradually before it finally reaches its commanded
position. The period while the Robot is decelerating is called Decelerating Time.
See Figure 5.11.

By default, this function is disabled. Type autoalcl(1) for enabling it
and autoalcl(0) for disabling it again. Therefore, when the command
autoalcl(1) is used, the command dacct becomes invalid and is just ig-
nored.

When autoalcl is made invalid and acct is not specified, the default value
is 1 second.

Syntax: acct(a)

Input:

- a: real not negative number (s).

58 CHAPTER 5. MATLAB ROBOT FUNCTIONS

Return value: previous set value.
Example

See autoacl example.

Set with 0 makes the motion through multiple points very smooth. De-
pending on the setup conditions, this setting could damage the robot.
Therefore, try setting at 0 after becoming familiar with the robot oper-
ations and programming.

WEIGHT

Specifies the payload required for automatic acceleration/deceleration calculation.
Syntax: weight(a)

Input:

- a: real number, from 0 to the maximum payload weight [kg].

Return value: none.
Example

See autoacl example.

AUTOACL

Enables or disables the automatic optimum acceleration and deceleration settings
for PTP motion. The automatic acceleration and deceleration settings depend on
the payload, which the robot handles, specified by the function weight. When
the automatic acceleration and deceleration settings are disabled, acceleration and
deceleration time can be set by using acct and dacct.
Syntax: autoacl(a)

Input:

- a: 1 (Enables the automatic acceleration and deceleration settings);
0 (Disables the automatic acceleration and deceleration settings).

Return value: none.
Example

5.4. SPEED AND ACCELERATION/DECELERATION FUNCTIONS 59

1 speed(30) % Sets 30% as maximum PTP
2 % motion speed
3

4 P1=[300,280,10,112]; % Defines position P1
5 P2=[-300,200,15,140]; % Defines position P2
6

7 move(P1); % Moves to P1 in automatic
8 % acceleration & deceleration
9 % since autoacl has not be

10 % disabled.
11

12 acct(2); % It is ignored, since autoacl
13 % has not be disabled
14

15 dacct(2); % It is ignored, since autoacl
16 % has not be disabled
17

18 autoacl(0); % Disables the automatic acceleration
19 % and deceleration settings
20

21 acct(2); % Set 2 s as accelerating time
22

23 dacct(2.6); % Set 2.6 s as decelerating time
24

25 move(P1); % Moves to P1 (PTP motion).
26 % The acceleration a deceleration
27 % time are set to 2 s and 2.6 s
28 % respectively
29

30 autoacl(1); % Enables the automatic acceleration
31 % and deceleration settings
32

33 weight(2); % Weight is 2 kg
34

35 move(P1); % Moves to P1 in automatic
36 % acceleration & deceleration

CPACCT

Sets the accelerating time for CP motion. If acceleration time is not set in the
program, the default acceleration time is set at 0.1 seconds.
Syntax: cpacct(a)

Input:

- a: real not negative number. (s).

Return value: previous set value.
Example

1 P1=[300,280,10,112]; % Defines position P1
2 P2=[-300,200,15,140]; % Defines position P2
3

4 cpspeed(100); % Sets 100 mm/s as CP

60 CHAPTER 5. MATLAB ROBOT FUNCTIONS

5 % motion speed
6

7 cpacc(1); % Sets 1 s as accelerating
8 % time for CP motion
9

10 cpdacc(1.5); % Sets 1.5 s as decelerating
11 % time for CP motion
12

13 lmove(P1); % Moves to P1 (CP motion)

Set with 0 makes the motion through multiple points very smooth. De-
pending on the setup conditions, this setting could damage the robot.
Therefore, try setting at 0 after becoming familiar with the robot oper-
ations and programming.

CPDACCT

Sets the decelerating time for CP motion. If decelerating time is not set in the
program, the default acceleration time is set at 0.1 seconds.
Syntax: cpdacct(a)

Input:

- a: real not negative number (s).

Return value: previous set value.
Example

1 P1=[300,280,10,112]; % Defines position P1
2 P2=[-300,200,15,140]; % Defines position P2
3

4 cpspeed(100); % Sets 100 mm/s as CP
5 % motion speed
6

7 cpacc(1); % Sets 1 s as accelerating
8 % time for CP motion
9

10 cpdacc(1.5); % Sets 1.5 s as decelerating
11 % time for CP motion
12

13 lmove(P1); % Moves to P1 (CP motion)

Set with 0 makes the motion through multiple points very smooth. De-
pending on the setup conditions, this setting could damage the robot.
Therefore, try setting at 0 after becoming familiar with the robot oper-
ations and programming.

5.5. ARM MODE FUNCTIONS 61

5.5 Arm mode functions

RIGHT

Selects the right arm mode.
The workspace is divided in three areas: one can be reached in left arm mode only,
one in right arm mode only, and one in both arm modes. See Figure 5.12.
If the arm mode is not set in the program, the right arm mode is set by default.

Syntax: right()

Input: none.
Return value: none.
Example

1 P1=[300,280,10,112]; % Defines position P1
2 P2=[-300,200,15,140]; % Defines position P2
3

4 right(); % Selects the right
5 % arm mode
6

7 move(P1); % Moves to P1 (PTP motion)
8 % in right arm mode
9

10 lmove(P2); % Moves to P2 (CP motion)
11 % in right arm mode

Figure 5.12: The three areas of the workspace.

LEFT

See comments about right above.
Syntax: left()

62 CHAPTER 5. MATLAB ROBOT FUNCTIONS

Input: none
Return value: none
Example

1 P1=[300,280,10,112]; % Defines position P1
2 P2=[-300,200,15,140]; % Defines position P2
3

4 left(); % Selects the left
5 % arm mode
6

7 move(P1); % Moves to P1 (PTP motion)
8 % in left arm mode
9

10 lmove(P2); % Moves to P2 (CP motion)
11 % in left arm mode

5.6 Mark functions

MARK

Calculates the robot current position in the Cartesian coordinate system. Due to
the fact that the values are calculated by reverse-conversion of quantized position
pulses (not command pulses), a small error can be introduced between the position
specified in the program and the values calculated with this function.
Syntax: mark()

Input: none.
Return value: a position, i.e. a vector of four numbers.
Example

1 P1=[300,280,10,112]; % Defines position P1
2

3 move(P1); % Moves to P1
4

5 srmotion(1,-100); % Moves only the first axis
6 srmotion(2,-10); % Moves only the second axis
7

8 P current = mark(); % Calculates the current
9 % position and stores it

10 % in P current

JMARK

Calculates the robot current position in the joint coordinate system. As with the
function mark(), a small error can be introduced between the position specified in
the program and the values calculated with this function.

5.7. I/O FUNCTIONS 63

Syntax: jmark()

Input: none.
Return value: a position, i.e. a vector of four numbers.
Example

1 P1=[300,280,10,112]; % Defines position P1
2

3 move(P1); % Moves tp P1
4

5 srmotion(1,-100); % Moves only the first axis
6 srmotion(2,-10); % Moves only the second axis
7

8 P current = jmark(); % Calculates the current
9 % position and stores it

10 % in P current

5.7 I/O functions

IN

Checks the status of any digital input (DI) port.
Syntax: in(a)

Input:

- a: number that identifies an input port (1-8 I/O-1, 9-16 I/O-2, 921-936 EX.
I/O-1).

Return value: 1 (Port is ON);
0 (Port is OFF).

Example

1 P1=[300,280,10,112]; % Defines position P1
2 P2=[-300,200,15,140]; % Defines position P2
3

4 port status = in(922); % Checks the status of
5 % the port 922
6

7 if(port status==1) % If port 922 is ON
8 % it moves to P1, if
9 move(P1); % port 922 is OFF it

10 % moves to P2
11

12 else
13

14 move(P2);
15

16 end

64 CHAPTER 5. MATLAB ROBOT FUNCTIONS

OUT

Turns ON or OFF a digital output port.
Syntax: out(a, b)

Input:

- a: number that identifies an output port (17-20 I/O-1, 21-24 I/O-2, 937-952
EX. I/O-2);

- b: 1 (ON);
0 (OFF).

Return value: none.
Example

1 P1=[300,280,10,112]; % Defines position P1
2

3 move(P1); % Moves to P1
4

5 out(939,1); % Turns ON the output
6 % port
7

8 i=1; % Iteration variable
9

10 while(i<11) % This cycle is for
11 % blinking the output
12 out(18,1); % port with a period
13 pause(1); % of 1 s
14 out(18,0);
15 pause(1);
16 i=i+1;
17

18 end

WINTIME

Sets the input wait time for functions win(a, b) and tri(a, b) .
Syntax: wintime(a, b)

Input:

- a: real not negative number (s).

Return value: previous set value.
Example

See win and tri examples.

5.7. I/O FUNCTIONS 65

WIN

Waits for a specified digital input port of the Controller to turn on or off. If the
conditions are not met within the time specified by the function wintime, a time-out
error is caused and the program stops.
Syntax: win(a, b)

Input:

- a: number that identifies an input port (1-8 I/O-1, 9-16 I/O-2, 921-936 EX.
I/O-1);

- b: 1 (ON)
0 (OFF)

Return value: none. Example

1 P1=[300,280,10,112]; % Defines position P1
2

3 wintime(5); % Sets the waiting time
4 % to 5 s
5

6 win(10,1); % Waits for state 1 of port 10. If this
7 % doesn't happen within 5 seconds,
8 % time-out error is caused and the
9 % program stops.

10

11 move(P1); % Moves to P1

TRI

Waits for a specified digital input port of the Controller to turn on or off, and notifies
whether or not it turns on or off within the time specified by the function wintime.
Syntax: tri(a, b)

Input:

- a: number that identifies an input port (1-8 I/O-1, 9-16 I/O-2, 921-936 EX.
I/O-1).

Return value: 1: it met on/off condition within time specified by wintime;
0: it did not meet on/off condition within time specified by

wintime.

Example

1 P1=[300,280,10,112]; % Defines position P1

66 CHAPTER 5. MATLAB ROBOT FUNCTIONS

2 P2=[-300,200,15,140]; % Defines position P2
3

4 wintime(5); % Sets the waiting time to 5 s
5

6

7 x = tri(10,1); % Waits for state 1 of port 10.
8

9 % If this happen within 5 seconds
10 % x=1, else x=0
11

12 if(x==1)
13

14 move(P1);
15

16 else
17

18 move(P2);
19

20 end

BLINK

Blinks a specified digital output port.
The Controller can control up to 16 ports simultaneously.

Syntax: blink(a, b, c)

Input:

- a: number that identifies an output port (17-20 I/O-1, 21-24 I/O-2, 937-952
EX. I/O-2);

- b: time while the port is on (a positive real number);

- c: time while the port is off (a positive real number).

If “c” is not specified, the time while the port is off becomes the same as “b”.

Return value: none
Example

1 blink(19,1,3); % Blinks port 19: time while the
2 % port is on=1 s, time while
3 % the port 19 is off=3 s
4

5 blink(20,2); % Blinks port 19: time while the
6 % port is on=2 s, time while
7 % the port 19 is off=2 s

5.8. PENDANT OUTPUT MESSAGE FUNCTIONS 67

BLINKED

Invalidates up to 4 functions blink turning off the specified ports.

Syntax: blinked(a [, b, c, d])

The “b”, “c”, “d” are optional.

Input:

- a: number that identifies an output port (17-20 I/O-1, 21-24 I/O-2, 937-952
EX. I/O-2);

- b: number that identifies an output port (17-20 I/O-1, 21-24 I/O-2, 937-952
EX. I/O-2);

- c: number that identifies an output port (17-20 I/O-1, 21-24 I/O-2, 937-952
EX. I/O-2);

- d: number that identifies an output port (17-20 I/O-1, 21-24 I/O-2, 937-952
EX. I/O-2).

Return value: none.
Example

1 blink(19,1,3); % Blinks port 19: time while the
2 % port is on=1 s, time while
3 % the port 19 is off=3 s
4

5 blink(20,2); % Blinks port 19: time while the
6 % port is on=2 s, time while
7 % the port 19 is off=2 s
8

9 blinkend(19,20); % Invalidates the two previous
10 % blink commands turning off
11 % ports 19 and 20

5.8 Pendant output message functions

LOCATE

Locates the position to display a message defined by opeout on the Pendant display.
Syntax: locate(a, b)

Input:

68 CHAPTER 5. MATLAB ROBOT FUNCTIONS

- a: integer in the range of 1 − 4 to specify the line to display the message on
the pendant screen;

- b: integer in the range of 0 − 16 to specify the column to display the message
on the pendant screen.

Return value: none.
Example

See opeout example.

OPCLR

Clears the characters on the Pendant display outputted by opeout.
Syntax: opeout()

Input: none.
Return value: none.
Example

See opeout example.

OPEOUT

Outputs a message on Pendant display according to the line and column set by
locate.
Syntax: opeout(a)

Input:

- a: string (max 16 characters);

Return value: none.
Example

1 x='Hello World'; % Defines string x
2 y='11111'; % Defines string y
3 z='UCC'; % Defines string z
4

5 locate(0,0); % Locates the position on the Pendant display
6

7 opeout(x); % Outputs the string x on Pendant display
8

9 opeclr(); % Clears the characters on the Pendant display
10

5.9. PALLETIZING FUNCTIONS 69

11 locate(1,0); % Locates the position on the Pendant display
12

13 opeout(y); % Outputs the string y on Pendant display
14

15 opeclr(); % Clears the characters on the Pendant display
16

17 locate(1,3); % Locates the position on the Pendant display
18

19 opeout(z); % Outputs the string z on Pendant display
20

21 opeclr(); % Clears the characters on the Pendant display

5.9 Palletizing functions

SETPLT

Defines a pallet configuration.
Syntax: setplt(1,p0,p1,p2,p3,i,j,k)

Input:

- n: pallet number (1 through 10 are valid);

- p0: position variable;

- p1: position variable;

- p2: position variable;

- p3: position variable;

- i: number of element between p0 and p1;

- j: number of element between p0 and p2;

- k: number of element between p0 and p3.

Return value: none
Example

See Figure 5.13.

PLT

Calculates the position corresponding to a point number on an user-defined pallet.
Syntax: plt(n,a)

Input:

70 CHAPTER 5. MATLAB ROBOT FUNCTIONS

Figure 5.13: Examples of pallet definition.

5.10. SAMPLING MODE 71

- n: pallet number (positive integer);

- a: point number (positive integer).

Return value: none.
Example

1 right();
2

3 moved(260,260,10,112);
4

5 % Palletizing
6

7 p0=[300,300,50,112];
8 p1=[100,300,50,112];
9 p2=[300,450,50,112];

10

11 speed(12);
12

13 setplt(1,p0,p1,p2,p0,3,3,1); % Defines a pallet
14 % configuration.
15 i=1;
16

17 % The next cycle moves the robot over all
18 % the points defined by setplt function
19

20 while(i≤9)
21

22 p=plt(1,i);
23 p(1,3)=10;
24 move(p);
25 speed(25);
26 move(plt(1,i));
27 speed(25);
28 move(p);
29 speed(12);
30 i=i+1;
31

32 end

5.10 Sampling Mode

A new important functionality has been developed in this project and it is called
Trajectory/Angles Sampling Mode. This option allows the trajectory of the end
effector or the values of Θ1 and Θ2 during the motion to be sampled. The samples
are then available for analysis and processing. They can also be interpolated and
plotted. An example of the Trajectory Sampling Mode is shown in Listing 5.1 and
Figure 5.14. An example of the Angles Sampling Mode is shown in Listing 5.2 and
Figure 5.15.

72 CHAPTER 5. MATLAB ROBOT FUNCTIONS

The function sample activates the trajectory sampling mode, or the angles sampling
mode depending on the input string value: trajectory or angles. The function
visual allows data interpolation and plotting, depending on the selected sampling
mode.

5.10.1 How it works

The application involves six Matlab functions: three Matlab Robot Functions (sample,
visual, and samplesstorage), and three auxiliary Matlab functions (serial out1,
serial out5, and state keper). The three Matlab robot functions use the auxiliary
Matlab function state keeper (see section 4.4.2) in order to update and retrieve
some variables that keep information about the state of the application, and the time
information associated with each sample. The function serial out5 is called when
sample is executed and it sends a communication code, depending on the selected
sampling mode, to the interpreter through the serial cable. Once the controller
receives this code, it sets a variable. Once this variable is set, during whatever
motion function execution, i.e. while the robot is moving, a sampling operation is
carried out. This is possible due to the fact that the robot controller can perform
some basic operations while the robot is moving (turning on or off an output pin,
reading the state of an input pin, and sampling the current position).
Therefore, when a Matlab robot function is executed, serial out1 sends the Function
Code of the function and the target position. Then it waits for the Feedback
Execution Confirmation Code. If the sampling mode is activated, it has also to read
samples that the controller sends back to Matlab, and store them in a matrix calling
the function samplesstorage. This function allows both the storing and retrieving
of samples.
The time information associated with each sample is not the true sampling instant,
but the instant when the sample is received from Matlab. Furthermore, the interval
between two samples is not exactly the same every time, due to the fact that the
system is not a real-time system. The sampling period lies between 0.2 to 0.27 ms.

Listing 5.1: Trajectory sampling mode example.
1 cpspeed(50); % Sets the speed of linear motion
2 % and circular motion
3

4 P1=[313,300,90,112];
5 P2=[0,231,3,112];
6 P3=[-313,300,90,112];
7

8 move(P1); % Moves to P1 (PTP motion)
9

10 sample('trajectory'); % Activates the Trajectory

5.10. SAMPLING MODE 73

11 % Sampling Mode
12

13 archmove(P2,P3); % Arc motion
14

15 lmove(P1); % Linear motion
16

17 visual() % Plots the trajectory

Figure 5.14: Trajectory.

Listing 5.2: Angles sampling mode example.
1 cpspeed(50); % Sets the speed of linear motion
2 % and circular motion
3

4 P1=[313,300,90,112;];
5 P2=[0,231,3,112;];
6 P3=[-313,300,90,112;];
7

8 move(P1); % Moves to P1 (PTP motion)
9

74 CHAPTER 5. MATLAB ROBOT FUNCTIONS

10 sample('angles'); % Activates the Angle
11 % Sampling Mode
12

13 archmove(P2,P3); % Arc motion
14

15 lmove(P1); % Linear motion
16

17 visual() % Plots Theta1 and Theta2 trends

Figure 5.15: Θ1 and Θ2 trends during the motion.

Chapter 6

Vision based applications

Without sensory feedback, an industrial robot can not intelligently interact with its
environment. The most valuable sense that can be provided to a robot, to establish
information about the environment and feedback direction control, is vision [17].
Computer vision and pattern recognition techniques are widely used for industrial
applications and especially for robot vision. In many fields of industry, indeed, there
is the need to automate the pick-and-place process of picking up objects, possibly
performing some tasks, and then placing down them on a different location [18].
In this project, two applications have been developed, using an HD camera combined
with the Matlab Image Acquisition Toolbox and Image Processing Toolbox, in order
to widen the robot functionality. The first part of this chapter is an overview of the
software and hardware tools. In the second part, the two applications are described.

6.1 HD cam, image acquisition and processing

6.1.1 HD camera

An HD 720p camera, the Creative Live! Cam Chat HD (see Figure 6.1), is used in
order to acquire images of the items in the workspace. It is fixed at the end of the
second arm of the robot (see Figures 6.2, 6.3, and 6.4) and connected to the PC,
where Matlab is installed, through a USB cable.

Figure 6.1: The Creative Live! Cam Chat HD.

75

76 CHAPTER 6. VISION BASED APPLICATIONS

Figure 6.2: Camera position (upper view).

Figure 6.3: Camera position (side view).

Figure 6.4: Camera position (close views).

6.1. HD CAM, IMAGE ACQUISITION AND PROCESSING 77

6.1.2 Image acquisition and processing

Image Acquisition Toolbox

The Matlab Image Acquisition Toolbox allows an easy acquisition of images and
videos directly into Matlab and Simulink [27]. The Matlab native commands for
opening the camera, for configuring the images acquisition, and outputting the
video input object are written inside the Matlab application function start cam. See
Listing 6.1.
The Matlab commands for image capturing are included in other Matlab Application
Function that will be shown later.

Image Processing Toolbox

The Matlab Image Processing Toolbox offers a massive set of algorithms, functions,
and apps for image processing, analysis, visualization, and algorithm development [25].
The two developed applications exploit some of these functions, especially in order
to recognise the target object, its color and orientation, and to reduce noise. A
colour image in Matlab is stored as an m x n x 3 matrix where each element is the
RGB (Red, Green, Blue) value of that particular pixel (therefore it’s a 3D matrix)
[8]. It can be considered as three 2D matrices for red, green and blue intensities.
The intensity of each pixel lies between 0 and 255. Alternatively, a BW image is
stored as a 2D matrix where each pixel is 0 (black) or 1 (white).

Listing 6.1: Matlab application function start cam.
1 function [o] = start cam(a)
2

3 persistent vid;
4

5 if(strcmp(a,'open')) % The inner expression is true if
6 % the input parameter is the string
7 % 'open'
8

9 pause on;
10

11 % The video input object is stored in the variable vid
12

13 vid =videoinput('winvideo',1);
14

15 % The next statement sets to 1 the number of frames that
16 % are captured each time 'trigger' is executed
17

18 set(vid, 'FramesPerTrigger', 1);
19

20 % The next statement sets 'TriggerRepeat' to inf, that
21 % allows to use 'trigger? infinite times
22

23 set(vid, 'TriggerRepeat', Inf); % Sets the object to
24 % manual triggering
25

26 triggerconfig(vid, 'manual'); % Starts the video capture

78 CHAPTER 6. VISION BASED APPLICATIONS

27

28 start(vid); % Starts the video capture
29

30 else
31

32 if(strcmp(a,'retrieve')) % The inner expression is true
33 % if the input parameter is the
34 % string 'retrieve'
35

36 o=vid % If the function start cam has been
37 % called passing 1 as input parameter,
38 % the object 'vid' is outputs
39

40 end
41 end
42

43 end

6.1.3 Object position detection

In order to refer to the centroid of an object in an image, to the main reference frame
of the manipulator, an heuristic approach has been used. The system does not have
to determine the Z coordinate of the object because it is considered known. Three
objects have been placed in the robot workspace inside the camera field of view. In
an acquired image, one object is in the centre, one at the top right corner, and one
at the bottom left corner. This positioning has been chosen in order to cover all the
camera field of view. Already knowing the position of the object centroids in the
image (it will be shown how it is possible in section 6.5.2), and already knowing the
position of the object centroids in the workspace (the end effector of the manipulator
has been moved over the positioned objects and the robot position has been sampled),
the constant parameters of the relationship between the position of the object in the
image and the position of the object in the manipulator reference frame has been
calculated. These parameters have been used by the Matlab application function
position (see Listing A.2 in appendix A) which receives the centroid position of an
object in the image as input parameter, and it outputs the centroid position of the
object in the manipulator workspace. The precision of this camera calibration has
been proved good for the purposes of the two pick and place applications that have
been developed.

6.2 Vacuum Gripping System

In order to pick up some objects inside the workspace, the SCARA robot has been
provided with a Vacuum Gripping System. The high speed in picking and releasing
items, combined with its reliability, and very low cost make this option the best
solution for the project purposes. Considering Figure 6.5 and table 6.1, a pressure

6.3. VIBRATING SURFACE 79

regulator provides 0.35 MPa to a Vacuum Ejector [35]. These are fixed on a rail
placed at the base of the workspace structure. The Vacuum Ejector, exploits the
Venturi effect for creating vacuum. It is provided with two ports: a pressure port
(input), and a vacuum port (output). A normally closed solenoid valve allows the
device activation (24 V has to be provided) and deactivation (0 V has to be provided)
for picking up and releasing the piece respectively. A suction filter ensures that
dust or particulates do not damage the device. A hose connects the vacuum port
of the vacuum ejector, to a connector in the rear panel of the robot base. Vacuum
can reach the connector panel on the second arm of the robot by way a pipe inside
the manipulator structure. Another hose brings vacuum to the hollow Z-axis metal
extension. See Figure 6.6. A vacuum cup acts as an end effector (see Figure 6.7).

Figure 6.5: Air pressure regulator and Vacuum Ejector .

Table 6.1: Item list for Figure 3.4.

Item Parts name

1 Pressured air hose
2 Pressure regulator
3 Vacuum Enjector
4 Pressure port (input)
5 Solenoid valve
6 Suction filter
7 Vacuum port (output)

6.3 Vibrating surface

In a pick and place application, using a digital camera for recognising the presence
and position of an object in the workspace, two problems that can occur are the

80 CHAPTER 6. VISION BASED APPLICATIONS

Figure 6.6: Hose second arm connection.

Figure 6.7: Vaccum cup (end effector).

overlap between objects, and touching objects. Indeed if this happens, the system
cannot recognise the shape of the target object. In order to fix this, a vibrating
surface has been developed. It’s a black metal sheet (50 x 30 cm) with a hinge (see
Figure 6.8). The vibration action is carried out by a DC motor with an asymmetric
load that can be switched on or off using the specific Matlab robot function out.

6.4. VACUUM EJECTOR AND MOTOR DRIVE CIRCUIT 81

Figure 6.8: Vibrating surface.

6.4 Vacuum ejector and motor drive circuit

6.4.1 Schematic diagram

In order to switch on and off the vacuum ejector solenoid valve and the DC motor
of the vibrating surface, a simple drive circuit is necessary. Two relays have been
used so that the robot controller is insulated from the two devices that have to be
driven. The schematic diagram of the circuit is shown in Figure 6.9. See Table 6.2
for parts description. The relays and connectors are shown in Figure 6.10.

Table 6.2: Item list for Figure 6.9.
Parts Function

P1 Switch inside the robot controller. It can be opened
or closed with Matlab robot function out.

K1 Relay for the vacuum ejector solenoid valve.

EV1 Vacuum ejector solenoid valve.

P2 Switch inside the robot controller. It can be opened
or closed with Matlab robot function out.

K2 Relay for the DC motor of the vibrating surface.

M1 Vibrating surface DC motor.

6.4.2 P1 and P2

The push-button action represented by P1 and P2 in the Figure 6.9, is carried out
by two BJTs inside the EX. I/O-2 module of the robot controller. See Figure 6.11.
Only the pin couples 1-20 and 2-21 of the HDCB-37P connector are involved.

82 CHAPTER 6. VISION BASED APPLICATIONS

Figure 6.9: Vacuum ejector and motor drive circuit schematic diagram.

Figure 6.10: Relays K1, K2, and connectors.

The Matlab robot function out is used in order to switch on and off the BJTs, i.e.
the relays. See Table 6.3.

Table 6.3: Relays switch commands.

Relays ON OFF

K1 (Valve) out(937,1) out(937,0)

K2 (Motor) out(938,1) out(938,0)

6.5. KEYS PICK AND PLACE APPLICATION 83

Figure 6.11: EX. I/O-2 connector.

6.5 Keys pick and place application

6.5.1 Aim of the application

Starting from a random placement of nine keys (see Figure 6.12), the robot has
to pick them up and place them down one by one, with the longest axes aligned
in the same manner (see Figure 6.13). The robot has to perform this operation
autonomously by using a digital camera and a vacuum gripping system.

84 CHAPTER 6. VISION BASED APPLICATIONS

Figure 6.12: Random key placement.

Figure 6.13: Ordered key placement.

6.5.2 Keys detection

The Matlab application function developed for keys detection is keys detection. See
the flowchart in Figure 6.14 . The complete source code is shown in Listing A.3 in
appendix A. The function keys detection exploits two local functions defined in the
same m-file: opt threshold detection and image processing. The first one is for
detecting the optimum BW threshold used in colour to BW conversion. Indeed, the
light condition can frequently change, and BW threshold has to change consequently
in order to provide the best image conversion. If the threshold is not correct, a key
could not be recognised. The function image processing reduces noise, clears white
border, and makes the shape of possible keys clearer in an image, by using Matlab
Image Processing Toolbox functions.

The BW image obtained by using the opt threshold detection threshold for a
generic keys configuration, is shown in Figure 6.15, and the same image is shown
in Figure 6.16 after image processing action. It can be seen that the keys in the
Figure 6.16 are very well defined white spots on a black background. The white spot
on the left hand side of the image is the DC motor.

6.5. KEYS PICK AND PLACE APPLICATION 85

Figure 6.14: Function keys detection flowchart.

The keys detection is directly carried out in keys detection, starting from the
image given by image processing (see Figure 6.16 again). Two Matlab Image
Processing Toolbox functions are used: bwlabel and regionprops [25]. Considering
the key detection piece of code of Listing 6.2, the function bwlabel returns a matrix
L, of the same size as the image given by image processing, containing labels for
the connected objects in M1 (BW image). n is the number of objects. The function
regionprops measures a set of properties for each labeled region in the label matrix
L and stores them in the matrix stats. Twenty two different properties can be
measured. Since the measuring operation takes time, only six of them have been
measured in this application:

86 CHAPTER 6. VISION BASED APPLICATIONS

Figure 6.15: BW image obtained by using opt threshold detection threshold.

Figure 6.16: Image obtained by using the function image processing.

- 'Area' (Scalar): the actual number of pixels in the region [25];

- 'Centroid': 1-by-Q vector that specifies the center of mass of the region. Note
that the first element of Centroid is the horizontal coordinate (or x-coordinate)
of the center of mass, and the second element is the vertical coordinate (or
y-coordinate). All other elements of Centroid are in order of dimension [25];

- 'BoundixBox': the smallest rectangle containing the region, a 1-by-Q2 vector,
where Q is the number of image dimensions, and BoundingBox is [ul corner ...

width], where: ul corner is in the form [x y z ...] and specifies the upper-
left corner of the bounding box, width is in the form [x width y width ...]

and specifies the width of the bounding box along each dimension [25];

- 'Orientation' (Scalar): the angle (in degrees ranging from -90 to 90 degrees)

6.5. KEYS PICK AND PLACE APPLICATION 87

between the x-axis and the major axis of the ellipse that has the same second-
moments as the region [25];

- 'MajorAxisLength' (Scalar): specifies the length (in pixels) of the major axis
of the ellipse that has the same normalized second central moments as the
region [25];

- 'MinorAxisLength' (Scalar): Scalar; the length (in pixels) of the minor axis of
the ellipse that has the same normalized second central moments as the region
[25];

- 'Perimeter' (Scalar): the distance around the boundary of the region. The
function regionprops computes the perimeter by calculating the distance
between each adjoining pair of pixels around the border of the region [25].

Listing 6.2: Function keys detection piece of code.
1 M1=image processing(M1)
2 [L n] = bwlabel(M1);
3

4 stats = regionprops(L,'Area', 'Centroid', 'BoundingBox',
5 'Orientation', 'MajorAxisLength',
6 'MinorAxisLength', 'Perimeter');

A key pattern has been determined by setting a range of values for some of these
properties, see Table 6.4. These ranges have been obtained after many experimental
tests and the resulting findings obtained are significant and necessary for the following
three reasons:

- the nine keys are similar, but not completely equal;

- the light condition changes, thus BW images obtained by coloured images that
have been acquired in different moments, can have small differences even if
the keys configuration is the same;

- prospective effects.

Table 6.4: Properties range of values defining a key pattern.

Property Range of values

'Area' 2600 - 3100
'Perimeter' 490 - 670

'MajorAxisLength' 106 - 115
'MinorAxisLength' 40 - 43

88 CHAPTER 6. VISION BASED APPLICATIONS

For each object stored in stats, an if statement detects if all these four properties
are verified. Only if this happens, and that means the object is a key, the 'Centroid'

and 'Orientation' of the key are determined. Then, the 'BoundingBox' property is
used to detect if the key bow points towards the top or the bottom of the image.
After that, the 'Centroid' is translated along key major axis by a few millimetres,
in order to allow a better grab by the vacuum cup. The translated 'Centroid'

positions for a generic keys configuration are shown in Figure 6.17. Finally, the
'Orientation', the key bow orientation information, and the translated 'Centroid'

coordinates of each key are stored in a matrix and outputted.

Figure 6.17: Translated 'Centroid' positions for a generic keys configuration.

6.5.3 Application execution

The application is executed by the Matlab script keys pick and place, see the
flowchart in Figure 6.18. The source code is shown in Listing A.4 in appendix A.
First of all, this script moves the robot to image acq pos, i.e. the position from where
images are acquired. Then, the program vibrates for 0.8 seconds the surface where
keys are placed on. This is for separating overlapped keys and touching keys. After
that, an image is acquired and processed by using keys detection (see previous
section). If at a minimum one disc has been detected, a pick and place cycle is
carried out in order to move all the detected keys. The pick and place operation in
this cycle is made up by many steps:

1) function position (see section 6.1.3) is called in order to detect the key centroid
Cartesian coordinates in X-Y plane;

2) the robot moves above the key centroid;

3) the gripping vacuum system is switched on;

6.5. KEYS PICK AND PLACE APPLICATION 89

4) the robot lowers the Z-axis in order to grab the key by using the vacuum cup;

5) the key is grabbed by the vacuum cup;

6) the robot lifts up the Z-axis;

7) the rotation, needed to align the key major axis along the specified direction,
is calculated;

8) the key place position is calculated;

9) the rotation of the key is carried out while the robot moves above the placement
position;

10) the robot lowers the Z-axis in order to release the key;

11) the gripping vacuum system is switched off;

12) the key is released (a pause of 0.2 seconds is necessary in order to complete
the release operation).

After the execution of a pick and place cycle, a new image acquisition and processing
is performed. Indeed, some keys can still be on the vibrating surface. That happens
because keys can remain or become overlapped or there are touching keys even
after the vibration action. Furthermore, sometimes the light reflection and the light
condition can effect the image capture of a key in a specific position. Anyway, if
after four vibration actions, and image acquisition and processing, no keys have
been detected, the software detects that the execution is completed. The four times
vibration repeat has been decided after many experimental tests.
An example of the application execution is shown in Figures 6.19, 6.20, 6.21, 6.22,
6.23, 6.24, 6.25, 6.26, 6.27.

6.5.4 Conclusion

It turns out a very reliable application, even if the light condition changes before,
or during the execution. Precision results have been very good, considering the
difference in the profiles of the keys and the loss of precision due to perspective.
Spending more time in testing and setting operations, a very good result would be
certain. The speed of the robot has not been increased over the 50% of the maximum
speed due to the vibrations of the structure on which the robot is fixed that could
damage the manipulator. The time the application takes, is not constant because of
the random keys configurations before and after vibrating actions. Anyway, normally
the execution takes roughly 39 seconds.

90 CHAPTER 6. VISION BASED APPLICATIONS

Figure 6.18: Function keys pick and place flowchart.

Figure 6.19: Nine key configuration before vibrating.

6.5. KEYS PICK AND PLACE APPLICATION 91

Figure 6.20: Nine key configuration after vibrating.

Figure 6.21: First key pick up action.

Figure 6.22: First key place down action.

92 CHAPTER 6. VISION BASED APPLICATIONS

Figure 6.23: Key configuration after nine keys picked up.

Figure 6.24: Placement of four keys before vibrating.

Figure 6.25: Ninth key pick up action.

6.5. KEYS PICK AND PLACE APPLICATION 93

Figure 6.26: Ninth key place down action.

Figure 6.27: The execution is completed.

94 CHAPTER 6. VISION BASED APPLICATIONS

6.6 Coloured discs pick and place application

6.6.1 Aim of the application

Starting from a random placement of about thirty coloured discs (the exact number
is not important), the robot has to pick them up and place them down one by one,
in four small containers depending on the colour. The colours are: white, red, green,
and blue. See Figures 6.28.

Figure 6.28: Random coloured discs placement and containers.

6.6.2 Discs detection

The Matlab application function developed for detection of discs and colours detec-
tion is discs&colours detection. The complete source code is shown in Listing A.5
in appendix A. The structure of this function is quite similar to that of the function
keys detection seen in section 6.5.2. It exploits three local functions defined in the
same m-file: opt threshold detection, image processing, and colour detection.
The first one is for detecting the optimum BW threshold used in colour to BW
conversion. The function image processing reduces noise, clears white border, and
makes the shapes of possible keys clearer in an image, by using Matlab Image
Processing Toolbox functions [25]. The function colour detection is for detecting
the colour of a disc.

Different colours means a different contrast with the black background of the vibrating
surface. For instance, if the acquired colour image were converted directly into a
BW image, probably some blue or red discs would not be detected.
Considering the discs&colours detection piece of code of Listing 6.3, the acquired
true colour image M (see Figure 6.29) is split into RGB (Red, Green, and Blue)

6.6. COLOURED DISCS PICK AND PLACE APPLICATION 95

channels M1 (see Figure 6.30), M2 (see Figure 6.31), and M3 (see Figure 6.32). After
that, each channel is converted to BW image by using the optimum threshold given
by opt threshold detection (see Figures 6.33, 6.34, and 6.35). These three BW
images are then combined by using an OR operation obtaining the complete BW
image (see Figure 6.36). The final image is provided by image processing and it is
shown in Figure 6.37.

Listing 6.3: Function discs&colours detection piece of code.
1

2 M1 = M(:,:,1);
3 M2 = M(:,:,2);
4 M3 = M(:,:,3);
5

6 M1=im2bw(M1,opt thr);
7 M2=im2bw(M2,opt thr);
8 M3=im2bw(M3,opt thr);
9

10 M=M1 | M2 | M3;
11

12 M = image processing(M)
13

14 [L n] = bwlabel(M1);
15

16 stats = regionprops(L,'Area', 'Centroid',
17 'Orientation', 'MajorAxisLength',
18 'MinorAxisLength', 'Perimeter');

Figure 6.29: True colour image.

96 CHAPTER 6. VISION BASED APPLICATIONS

Figure 6.30: Red chanel.

Figure 6.31: Green channel.

Figure 6.32: Blue channel.

6.6. COLOURED DISCS PICK AND PLACE APPLICATION 97

Figure 6.33: Red channel BW conversion.

Figure 6.34: Green channel BW conversion.

Figure 6.35: Blue channel BW conversion.

98 CHAPTER 6. VISION BASED APPLICATIONS

Figure 6.36: Image after OR operation between channels.

Figure 6.37: Processed image.

6.6. COLOURED DISCS PICK AND PLACE APPLICATION 99

The discs detection is directly carried out in discs&colours detection, starting from
the image given by image processing (see Figure 6.37 again). As in keys detection,
the two Matlab Image Processing Toolbox functions bwlabel and regionprops are
used.
A disc pattern has been determined by setting a range of values for the properties
'Area', 'Perimeter', 'MajorAxisLength', and 'MinorAxisLength'. See Table 6.5.

Table 6.5: Properties range of values defining a disc pattern.

Property Range of values

'Area' 1950 - 2200
'Perimeter' 430 - 470

'MajorAxisLength' 51 - 56
'MinorAxisLength' 49 - 54

For each object stored in stats, an if statement detects if all these four properties
are verified. Only if this happens, and that means the object is a disc, the 'Centroid'

and colour of the disc are determined. The 'Centroid' positions for a generic discs
configuration is shown in Figure 6.38.

Figure 6.38: Translated 'Centroid' positions for a generic discs configuration.

Colour detection

In RGB (Red, Green, Blue) channels M1, M2, M3, the pixel colour value is an integer
between 0 and 255. For example, considering the pixel (100,100) of the colour image
M, if M1(100,100)== 250, M2(100,100)== 10, and M3(100,100)== 10 the pixel (x,y)
in M is almost red. It would be true red if M1(100,100)== 255, M2(100,100)== 0,

100 CHAPTER 6. VISION BASED APPLICATIONS

and M3(100,100)== 0. The function discs&colours detection calls a local function
colour detection in order to recognise the colour of each disc. This function uses
four if statements. Each statement compares the colour value of a tested pixel
(x,y) with three thresholds, one for each channel. After many experimental tests, it
has been deduced that a pixel (x,y) in the true colour image (see Figure 6.29) is:

- white: if M1(x,y)> 180 & M2(x,y)> 200 & M3(x,y)> 200;

- red: if M1(x,y)> 200 & M2(x,y)< 150 & M3(x,y)< 150;

- blue: if M1(x,y)< 120 & M2(x,y)< 120 & M3(x,y)> 150;

- green: if M1(x,y)< 130 & M2(x,y)> 150 & M3(x,y)< 130;

Where the tested pixel (x,y) is not the centroid but another one. This is necessary
due to the fact that a gold number is printed on the centre of one side of each disc.
This function is called twice in order to perform a double check. If the output colour
detection of the two calls are different, or one of them detects that the colour does
not lie in any of the previous ranges, the disc is not taken into account.

6.6.3 Application execution

The application is executed by the Matlab script coloured discs pick and place

The source code is shown in Listing A.6 in appendix A. First of all, this script moves
the robot to image acq pos, i.e. the position images are acquired from. Then, the
program for 0.8 seconds vibrates the surface where discs are placed on. This is for
separating overlapped discs and touching discs. After that, an image is acquired
and processed by using discs&colours detection (see previous subsection). If, at a
minimum, one disc has been detected, a pick and place cycle is carried out in order
to move all the detected discs. The pick and place operation in this cycle is made
up by many steps:

1) function position (see section) is called in order to detect the disc centroid
Cartesian coordinates in X-Y plane;

2) the robot moves above the disc centroid;

3) the gripping vacuum system is switched on;

4) the robot lowers the Z-axis in order to grab the disc by using the vacuum cup;

5) the disc is grabbed by the vacuum cup;

6) the robot lifts up the Z-axis;

6.6. COLOURED DISCS PICK AND PLACE APPLICATION 101

7) the robot moves above the place position that depends on the detected colour
of the disc;

8) the robot lowers the Z-axis in order to release the disc;

9) the gripping vacuum system is switched off;

10) the disc is released (a pause of 0.2 seconds is necessary in order to complete
the release operation);

After the execution of a pick and place cycle, a new image acquisition and processing
is performed. Indeed, some discs can still be on the vibrating surface. That happens
because discs can remain or become overlapped and touching, even after the vibration
action. Furthermore, the reflection and condition of the light can effect the image
capture of a disc in a specific position. If after four vibration actions, and image
acquisition and processing, no discs have been detected, the software detects that the
execution is completed. The four times vibration repeat has been decided after many
experimental tests. An example of the application execution is shown in Figures
6.39, 6.40, 6.41, 6.42, 6.43, 6.44, 6.45, 6.46, 6.47, 6.48, 6.49.

6.6.4 Conclusion

It turns out a very reliable application, even in changing light conditions, before
or during the execution. The speed of the robot has not been increased over the
50% of the maximum speed due to the vibrations of the structure on which the
robot is fixed that could damage the manipulator. The time the application takes, is
not constant because of the random discs configurations before and after vibrating
actions. Anyway, normally the execution with 34 discs takes roughly 1 minute and
25 seconds.

Figure 6.39: Random disc placement before vibrating.

102 CHAPTER 6. VISION BASED APPLICATIONS

Figure 6.40: Random disc configuration after vibrating.

Figure 6.41: Red disc pick up operation.

Figure 6.42: Red disc place down operation.

6.6. COLOURED DISCS PICK AND PLACE APPLICATION 103

Figure 6.43: Green disc pick up operation.

Figure 6.44: Green disc place down operation.

Figure 6.45: Blue disc pick up operation.

104 CHAPTER 6. VISION BASED APPLICATIONS

Figure 6.46: Blue disc place down operation.

Figure 6.47: White disc pick up operation.

Figure 6.48: White disc place down operation.

6.6. COLOURED DISCS PICK AND PLACE APPLICATION 105

Figure 6.49: The execution is completed.

106 CHAPTER 6. VISION BASED APPLICATIONS

Chapter 7

Graphical User Interface

In order to allow a simple and user-friendly control of the robot, three GUIs (
Graphical User Interfaces) [8] have been developed:

1) G1: GUI for selecting G1 or G2 (see Figure 7.1);

2) G2: GUI for controlling the robot in the Cartesian Coordinate System (see
Figure 7.2);

3) G3: GUI for controlling the robot in the joint Coordinate System (see Figure
7.3);

Although the control options are limited, these tools are extremely useful, expecially
for non expert users. GUIs have been designed with a Matlab tool called GUIDE.
This software, after panel compiling, creates two types of files: m-files and fig-files.
The m-files contain MATLAB commands to initialise the GUI and the GUI call-
backs. The callbacks are the routines that execute when a user interacts with a GUI
component: pressing a screen button, clicking a mouse button, selecting a menu
item, typing a string or a numeric value, or passing the cursor over a component.
Code is added to the callbacks to perform the functions that are required. The
fig-files contain a full description of GUI layout and GUI components such as push
buttons, axes, panels, menus, etc. G1 is launched by typing GUI in the command
window and executing it.

The G2 parts are listed in Table 7.1. The G3 parts are listed in Table 7.2.

107

108 CHAPTER 7. GRAPHICAL USER INTERFACE

Figure 7.1: GUI G1.

109

Figure 7.2: GUI G2.

110 CHAPTER 7. GRAPHICAL USER INTERFACE

Figure 7.3: GUI G3.

111

Table 7.1: Item list for Figure 7.2.
Part Function

1 Coordinates input textboxes The user can input the Cartesian
coordinates of the target point.

2 Move button

When it is pressed, the robot moves to
the target position specified in the
coordinates input text boxes (PTP
motion).

3 Arm mode buttons Pressing one of these buttons, the user
can select the arm mode (left or right).

4 Current position text boxes Show the current position.

5 Point creation button Pressing this button, the current position
is output to the command window.

6 X-Y step motion control
Allows PTP motion in X-Y plane along
8 directions. The step of the motion can
be input in a text box.

7 Z step motion Allows Z axis PTP motion. The step of
the motion can be input in a text box.

8 Acceleration time text box
The user can input the acceleration time.
If this box is left empty, then a default
value of 0.1 second is considered.

9 Decceleration time text box
The user can input the decceleration
time. If this box is left empty, then a
default value of 0.1 second is considered.

10 Speed control slide bar

The user can set the speed of the PTP
motion in terms of percentage. I.e. 100%
speed would refer to the maximum speed
attained by the robot. The default
setting is 10% of the maximum speed.

11 Vacuum ON and OFF buttons For activating and disactivating the
vacuum gripping system

11 Th4 step motion. Allows Th4 PTP motion. The step of
the motion can be input in a text box.

12 Back button. Allows the user to return to G1.

112 CHAPTER 7. GRAPHICAL USER INTERFACE

Table 7.2: Item list for Figure 7.3.
Part Function

1 Coordinates input text boxes The user can input the joints coordinates
of the target point.

2 Move button

When it is pressed, the robot moves to
the target position specified in the
coordinates input text boxes (PTP
motion).

3 Current position text boxes Show the current position.

4 Point creation button Pressing this button the current position
is output to the command window.

5 Speed control slide bar

The user can set the speed of the PTP
motion in terms of percentage. I.e. 100%
speed would refer to the maximum speed
attained by the robot. The default
setting is 10% of the maximum speed.

6 Step motion control
Allows Th1, Th2, Th3 PTP motion. The
step of the motion can be input in a text
box.

7 Z step motion Allows Z axis PTP motion. The step of
the motion can be input in a text box.

8 Acceleration time text box
The user can input the acceleration time.
If this box is left empty, then a default
value of 0.1 second is considered.

9 Decceleration time text box
The user can input the decceleration
time. If this box is left empty, then a
default value of 0.1 second is considered.

10 Vacuum ON and OFF buttons For activating and disactivating the
vacuum gripping system

11 Back button. Allows the user to return to G1.

Chapter 8

Simulink virtual robot

One of the tasks of the project is the development of a Simulink virtual model of the
robot. A UCC student, Milind Sudhir Rokade, has worked on that topic. The parts
of the robot structure have been designed in Solidworks (a CAD software). This 3D
model has then been exported to MATLAB/Simulink, using SimMechanics software.
SimMechanics provides a multibody simulation environment for 3D mechanical
systems, such as robots, pendulums, vehicle suspensions, and aircraft landing gear.
The imported model carries properties like mass, inertia, joint, constraint and 3D
geometry [26]. SimMechanics generates a 3D animation which lets the user visualize
the system dynamics. The robot virtual model is shown in figure 8.1 (a) and (b).
A big effort has been made in order to integrate the control of the actual robot,
with the control of the virtual robot. A folder, provided with the more significant
Matlab robot functions, has been developed. This allows the control of both the
physical and virtual robots, in a manner so that the motion of the virtual robot
closely matches that of the physical Sankyo system.

(a) (b)

Figure 8.1: The robot virtual model.

113

114 CHAPTER 8. SIMULINK VIRTUAL ROBOT

Chapter 9

Conclusion and future work

Matlab is not designed for real-time applications. Moreover, the communication
between the PC where Matlab is installed and the robot controller introduces a
delay. For example, the reaction time of the system to an external event is about
40 ms rather than 4 ms of the original configuration (i.e. without Matlab control).
These two facts show that the developed system is more suitable for prototyping
than for industrial applications.
The flexibility of the robot has been increased. Indeed, it can communicate easy
with other devices due to the intermediate action of a PC where Matlab is installed.
Furthermore, new functions have been added to the robot such as the Trajecto-
ry/Angles Sampling Mode. Two GUIs (Graphical User Interfaces) allow the robot
control by non expert users.
The user safety conditions are not effected by the Matlab control because the robot
controller carries out the same supervision operations which it would perform with
the usual direct control.
With Matlab, the robot programming results more comfortable. For instance, all
the available functions are listed on the left side of the Matlab command window.
Clicking on the function name, a brief description of the function is shown. The
devolopment of two vision-based applications has been proved quite easy due to the
functions provided by the Matlab Image Acquisition Toolbox, and the Matlab Image
Processing Toolbox. These two applications can be a base for further developments.
From the collaboration with Milind Sudhir Rokade, the student who has developed
a Simulink virtual model of the robot, it turns out that the integration between
the actual robot control and the virtual robot control in Matlab, can open very
interesting scenarios in terms of motion comparison and investigation of inertia
problems.
Future work will also focus on the other tasks of the projects such as:

• design a gripper (pneumatic-based) so that the robot can pick up a part;

115

116 CHAPTER 9. CONCLUSION AND FUTURE WORK

• construct a conveyor-based work cell to demonstrate the operation of a SCARA-
based work-cell;

• design a software/hardware based system so that the robot can be controlled
remotely (via the Internet);

• use two robots to operate cooperatively on a task.

Moreover, a micro camera may be mounted near the end effector. The video stream
may be visualized on a GUI in order to have a better control and supervision of
the end effector operations. Some microcontroller boards could be used in order to
improve the efficiency and the supervision of the system.
On September 20 the company ODG Technologies carried out some tests on the
SCARA robot in the UCC Mechatronic Laboratory by using the software developed
in this project. This demonstrates that prototyping developed in this University-
based project can be interesting for private entities. This kind of collaboration is
probably one of the keys to innovation.
Two final folders have been created, both include all the Matlab functions developed
in this project. In one of them the code is visible to the user. This will allow further
developments. In the other folder, the developed Matlab robot functions and the
Matlab auxiliary functions are hidden in p-files. A p-file is obtained from an m-file
by using the Matlab pcode command, and its content is very hard to understand.
This folder is intended for users who are not involved in the research project.

Appendix A

Code

Listing A.1: Function serial out1

1 function [y] = serial out1(Code, A)
2

3 % This function sends data to the robot controller on which
4 % the interpreter is running, and waits for a feedback
5 % message from the controller.
6 % PARAMETERS:
7 % Code:
8 % Identification code of the function in which serial out1
9 % has been called.

10 % A: Data that has to be sent to the robot
11 % controller.
12 %
13 % The function state keeper is called many times
14 % in order to verify if the transmission is allowed, and to
15 % update the state of the program.
16

17 s = ser('retrieve'); % Serial port object
18

19 % If the inner expression of the next statement is TRUE, it means
20 % "Start" on the pedant has not be selected and an error message
21 % is outputted
22

23 if(state keeper('retrieve',2) == 0)
24

25 if(state keeper('retrieve',3) == 0)
26

27 state keeper('store',3,1);
28 disp(' ')
29 disp('Please be sure that "Start" on the pedant has been selected,')
30 disp('then type the prog() statement to continue with programming,')
31 disp('otherwise the next statement will be useless.')
32 disp(' ')
33 state keeper('store',1,1);
34

35 end
36

37 else
38

39 if(state keeper('retrieve',4)6=0)
40

117

118 APPENDIX A. CODE

41 [n,m] = size(A); % Size of the second input parameter
42

43 % The next statement converts the number 1111
44 % into a string and sends it to the robot
45 % controller through the serial port s (and cable).
46 % The code 1111 if for notifying the controller,
47 % which is polling its serial port, about the
48 % transmission
49

50 fprintf(s,num2str(1111));
51

52 % The next statement converts the Code into a string
53 % and sends it to the robot controller through the
54 % serial port s (and cable)
55

56 fprintf(s,num2str(Code));
57

58 % The next statement converts the number n into a
59 % string and sends it to the robot controller through
60 % the serial port s (and cable)
61

62 fprintf(s,num2str(n));
63

64 i=1; % iteration variable
65

66 % The next cycle sends the items of A to the robot
67 % controller through the serial port s (and cable)
68

69 while(i ≤ n)
70 fprintf(s,num2str(A(i,1)));
71 fprintf(s,num2str(A(i,2)));
72 fprintf(s,num2str(A(i,3)));
73 fprintf(s,num2str(A(i,4)));
74 i = i + 1;
75 end
76

77 % The next statement performs a polling operation
78 % of the serial port until it receives a feedback
79 % message from the controller
80

81 x=fscanf(s)
82

83 % If the inner expression is TRUE, an error has occurred
84

85 if(str2num(x) == 7777)
86

87 state keeper('store',4,0);
88 disp(' ')
89 disp('A problem occurred. There are two possible reasons:')
90 disp(' ')
91 disp('1)A robot ERROR has occurred. ')
92 disp('2)"Start" on the pedant has not been selected when you ...

typed prog() or the next')
93 disp('statement in Matlab.')
94 disp(' ')
95 disp('SOLUTION:')
96 disp('Be sure that "Start" on the pedant has been selected, then ...

type the prog()')
97 disp('statement to continue with programming, otherwise the next ...

statements ')
98 disp('will be useless.')

119

99 disp('In the case 1) obviously fix your code!!!')
100 disp(' ')
101

102 % The next statement disconnects serial
103 % port object from device
104

105 fclose(s);
106

107 % The next statement removes the
108 % serial port object from memory
109

110 delete(s);
111 state keeper('store',1,1);
112 return;
113

114 end
115

116 % If the sample mode has been selected (see section 5.10),
117 % the function sstorage is called in order
118 % to store the position data coming from the controller
119

120 if(state keeper('retrieve',8) == 1 |
121 state keeper('retrieve',8) == 2)
122 sstorage(str2num(x));
123 end
124

125 end
126

127 end
128

129 end

Listing A.2: Function position

1 function [o] = position(a)
2 % This function receives as an input parameter the centroid
3 % of an object in an image, and it outputs the position of
4 % the centroid of the same object in the workspace.
5

6

7 a = a / 96 * 10; % Pixel to mm conversion
8

9 % X coordinate
10

11 px = 5.5141 * a(1,1) + 0.2346 * a(1,2) - 270.5216;
12

13 % Y coordinate
14

15 py= 0.1974 * a(1,1) - 5.4673 * a(1,2) + 463.5217;
16

17 o=[px,py];
18

19 end

Listing A.3: Function keys detection.
1 function [o] = keys detection()
2 % This main function detects keys in an image

120 APPENDIX A. CODE

3 % Output: - '-1' if no keys are detected;
4 % - Nx4 matrix if N keys are detected, the structure of the
5 % ith row is: ['Orientation', key bow pointing,
6 % 'Centroid' horizontal (x) coord, 'Centroid'
7 % vertical (y) coord]
8

9

10

11 vid = cam('retrieve'); % Retrieves the video input
12 % object
13

14 % The 'opt threshold detection' local
15 % function is called, in order to detect the optimum BW threshold
16

17 opt thr = opt threshold detection(vid)
18

19 M1 = getsnapshot(vid); % Takes a picture and stores it in
20 % a matrix variable
21

22 M1 = im2bw(M1,opt thr); % Converts the coulour image
23 % into a black and white
24 % image by using 'opt thr'
25 % as threshold
26

27 M1 = image processing(M1) % The 'image processing' local function
28 % is called. It returns a processed image
29

30 % The next statements returns a matrix L, of the same size as M1,
31 % containing labels for the connected objects. n is the number of
32 % connected objects.
33

34 [L n] = bwlabel(M1);
35

36 % The next statement measures a set of properties for each
37 % labeled region in the label matrix L and stores them
38 % in the matrix 'stats'
39

40 stats = regionprops(L,'Area', 'Centroid', 'BoundingBox', 'Orientation',
41 'EquivDiameter', 'Perimeter');
42

43 i = 1; % Iteration variable
44 j = 1; % Position pointer in 'OBJ&PROP'
45

46

47 % In the next cycle, if an object matches key shape, it is stored in
48 % 'OBJ&PROP' with its orientation and coordinates of its centroid
49

50 OBJ&PROP=[0,0,0,0,0];
51

52 while(i ≤ n)
53

54 % The next if statement detects if an onject matches the key shape
55

56 if(stats(i).Area > 2600 & stats(i).Area < 3100 &
57 stats(i).Perimeter > 490 & stats(i).Perimeter < 670
58 & stats(i).MajorAxisLength > 106 & stats(i).MajorAxisLength < 115
59 & stats(i).MajorAxisLength > 40 & stats(i).MajorAxisLength < 43)
60

61

62 OBJ&PROP(j,1)=i;
63 OBJ&PROP(j,2)=stats(i).Orientation; % Stores in

121

64 % 'OBJ&PROP(j,2)'
65 % the orientation
66 % of the key (deg)
67

68

69 % The next four if statements detect if the key bow is
70 % pointing towards the top of the image (in this case
71 % '1' is stored in 'OBJ&PROP(j,3)', or towards the bottom of
72 % the image (in this case '2' is stored in 'OBJ&PROP(j,3)'
73

74 if(stats(i).Orientation ≥ 0 & stats(i).Orientation < 45)
75 if(stats(i).Centroid(1) < stats(i).BoundingBox(1) + ...

stats(i).BoundingBox(3)/2)
76 OBJ&PROP(j,3) = 1;
77 else
78 OBJ&PROP(j,3) = 2;
79 end
80 end
81

82 if(stats(i).Orientation ≥ 45 & stats(i).Orientation < 90)
83 if(stats(i).Centroid(2) > stats(i).BoundingBox(2) + ...

stats(i).BoundingBox(4)/2)
84 OBJ&PROP(j,3) = 1;
85 else
86 OBJ&PROP(j,3) = 2;
87 end
88 end
89

90 if(stats(i).Orientation < 0 & stats(i).Orientation >- 45)
91 if(stats(i).Centroid(1) < stats(i).BoundingBox(1) + ...

stats(i).BoundingBox(3)/2)
92 OBJ&PROP(j,3) = 1;
93 else
94 OBJ&PROP(j,3) = 2;
95 end
96 end
97

98 if(stats(i).Orientation ≤ -45 & stats(i).Orientation ≥ - 90)
99

100 if(stats(i).Centroid(2) < stats(i).BoundingBox(2) + ...
stats(i).BoundingBox(4)/2)

101 OBJ&PROP(j,3) = 1;
102 else
103 OBJ&PROP(j,3) = 2;
104 end
105 end
106

107

108

109 % The next part of code is for detecting the centroid of each
110 % key and storing its image coordinates in 'OBJ&PROP(j,4)'
111 % (x coordinates) and 'OBJ&PROP(j,5)' (y coordinates)
112

113 if(stats(i).Orientation ≤ 0)
114

115 if(OBJ&PROP(j,3) == 1)
116

117 OBJ&PROP(j,4) = round(stats(i).Centroid(2)+
118 8*sind(stats(i).Orientation));
119 OBJ&PROP(j,5) = round(stats(i).Centroid(1)-
120 8*cosd(stats(i).Orientation));

122 APPENDIX A. CODE

121 M1(round(stats(i).Centroid(2)+
122 8*sind(stats(i).Orientation)),
123 round(stats(i).Centroid(1)-
124 8*cosd(stats(i).Orientation))) = 0;
125 else
126 OBJ&PROP(j,4)=round(stats(i).Centroid(2)+
127 8*sind(-stats(i).Orientation));
128 OBJ&PROP(j,5)=round(stats(i).Centroid(1)+
129 8*cosd(-stats(i).Orientation));
130 M1(round(stats(i).Centroid(2)+
131 8*sind(-stats(i).Orientation));
132 round(stats(i).Centroid(1)+
133 8*cosd(-stats(i).Orientation))) = 0;
134 end
135

136 end
137

138 if(stats(i).Orientation > 0)
139

140 if(OBJ&PROP(j,3) == 1)
141 OBJ&PROP(j,4) = round(stats(i).Centroid(2)+
142 8*sind(stats(i).Orientation));
143 OBJ&PROP(j,5) = round(stats(i).Centroid(1)-
144 8*cosd(stats(i).Orientation));
145 M1(round(stats(i).Centroid(2)+
146 8*sind(stats(i).Orientation)),
147 round(stats(i).Centroid(1)-8*cosd(stats(i).Orientation))) = 0;
148 else
149 OBJ&PROP(j,4) = round(stats(i).Centroid(2)-
150 8*sind(stats(i).Orientation));
151 OBJ&PROP(j,5) = round(stats(i).Centroid(1)+
152 8*cosd(stats(i).Orientation));
153 M1(round(stats(i).Centroid(2)-
154 8*sind(stats(i).Orientation)),
155 round(stats(i).Centroid(1)+
156 8*cosd(stats(i).Orientation))) = 0;
157 end
158

159 end
160

161 j=j+1;
162

163 end
164

165 i=i+1;
166

167 end
168

169 % If no keys have been detected, '-1' is outputted, otherwise OBJ&PROP
170 % is outputted
171

172 if(OBJ&PROP(1,1)==0 & OBJ&PROP(1,2)==0 & OBJ&PROP(1,3)==0
173 & OBJ&PROP(1,4)==0 & OBJ&PROP(1,5)==0)
174

175 o=[-1];
176 else
177 o=[OBJ&PROP(:,2), OBJ&PROP(:,3), OBJ&PROP(:,4), OBJ&PROP(:,5)];
178 end
179

180 end
181

123

182

183 %%
184 %%
185

186

187

188 function [o] = opt threshold detection(vid)
189

190 % This local function detects the optimum BW threshold.
191 % Input: video object
192 % Output: optimum BW threshold
193

194 opt thr = 0.8; % Optimum BW threshold
195

196 opt thr # obj = 0; % Number of objects that match key shape
197 % by using opt thr
198

199 current # obj = 0; % Number of objects that match key shape
200 % by using a lower threshold than 'opt thr'
201

202 l=1; % Iteration variable
203

204

205

206 while(l ≤ 6)
207

208 M1 = getsnapshot(vid); % Takes a picture and store it in
209 % a matrix variable
210

211 M1 = im2bw(M1,0.8 - 0.1*l); % Converts the coulored image
212 % into a black and white
213 % image by using '0.8-0.1*l'
214 % as threshold
215

216

217 M1 = image processing(M1) % The 'image processing' local
218 % function is called. It returns a
219 % processed image
220

221

222 % The next statements returns a matrix L, of the same size as M1,
223 % containing labels for the connected objects.
224

225 [L n] = bwlabel(image processing(M1));
226

227

228 % The next statement measures a set of properties for each
229 % labeled region in the label matrix L and stores them
230 % in the matrix 'stats'
231

232 stats = regionprops(L,'Area', 'Centroid', 'BoundingBox',
233 'Orientation', 'EquivDiameter', 'Perimeter');
234

235 i = 1; % iteration variable
236

237 while(i ≤ n)
238

239 % The next 'if' statemet detects which object matches
240 % key shape
241

242 if(stats(i).Area > 2600 & stats(i).Area < 3100 &

124 APPENDIX A. CODE

243 stats(i).Perimeter > 490 & stats(i).Perimeter < 670
244 & stats(i).MajorAxisLength > 106 & stats(i).MajorAxisLength < 115
245 & stats(i).MajorAxisLength > 40 & stats(i).MajorAxisLength < 43)
246

247

248

249 current # obj = current # obj + 1;
250

251 end
252

253 i = i + 1;
254

255 end
256

257 % If the number of objects that matches key shape by using 'opt thr-0.1'
258 % as BW threshold is greater than with 'opt thr', 'opt thr' becomes
259 % 'opt thr-0.1'
260

261 if(current # obj > opt thr # obj)
262

263 opt thr # obj = current # obj;
264

265

266 opt thr = opt thr - 0.1;
267

268 end
269

270 current # obj = 0;
271

272 end
273

274 o = opt thr;
275

276 end
277

278

279 %%
280 %%
281

282 function [o] = image processing(M1)
283

284 % This local function processes an input image in order
285 % to reduce noise, clear white border and make clearer
286 % the shapes of possible keys.
287 % Input: image
288 % Output: image
289

290

291 % The image is dilated using linear structuring elements,
292 % that can be created with the strel function
293

294 se90 = strel('line', 3, 90);
295 se0 = strel('line', 3, 0);
296

297 M1 = imdilate(M1, [se90 se0]); % Dilates the image
298

299 M1 = imclearborder(M1, 4); % Suppresses light structures
300 % connected to image border
301

302 M1= bwareaopen(M1,20); % Removes small objects from
303 % binary image

125

304

305 M1 = imfill(M1,'holes'); % Fills image regions and holes
306

307 M1 = bwareaopen(M1,800); % Removes small objects from
308 % binary image
309

310 imwrite(M1, 'M1.tif'); % Writes the image to Tagged Image
311 % File Format
312

313 BW = imread('M1.tif'); % Reads the image from a Tagged Image
314 % File Format
315 o = M1
316

317 end

Listing A.4: Script keys pick and place.
1 % Starting from a random placement of nine keys, the robot has to
2 % pick them up and place them down one by one, with the major
3 % axes aligned in the same manner. The robot has to perform
4 % this operation autonomously by using a digital camera and a
5 % vacuum gripping system.
6

7 right(); % Selects the right arm mode
8

9 speed(50); % Sets the speed [50% of the maximum speed]
10

11 start cam(); % Opens the video input device and configures
12 % image acquisition
13

14 A = [-340.9334 135.6999]; % First keys placement position
15

16 j = 0; % Keys placement position iteration variable
17

18 % If after four vibration actions, and image acquisition
19 % and processing, no keys have been detected, the software
20 % detects that the operation has been completed and stops the
21 % cycle using a break command.
22

23

24 while(1 6= 0)
25

26

27 % The next statement defines the image acquisition position
28

29 image acq pos = [125.0769, 184.8158, 6.0472, 119.4322];
30

31 moved(image acq pos); % Moves to image acq pos
32

33 l = 0; % Iteration variable
34 m = 1; % Variables for storing the number of rows of matrix M
35

36 % The next cycle stops after four iterations with no detected
37 % keys or when at least one key is detected
38

39 while(m == 1 & l < 4)
40

41 out(938,1); % Switches on the DC motor in order to vibrate
42 % the surface where the keys are randomly
43 % placed

126 APPENDIX A. CODE

44

45 pause(0.8); % Pause of 0.8 sec during which the DC motor
46 % is working
47

48 out(938,0); % Switches on the DC motor in order to block
49 % vibration
50

51 M = keys detection(); % The function keys detection is
52 % called in order to acquiring an
53 % image and detect possible keys. The
54 % x-y coordinates and orientation of
55 % each key are stored in M.
56

57 [n,m] = size(M); % Returns size of M dimensions
58

59 l = l + 1; % Iteration variable updating
60 end
61

62 % If l == 4, that means four iterations have been executed with
63 % no keys detected, the cycle is interrupted by using a break
64 % command
65

66 if(l == 4)
67

68 break;
69

70 end
71

72

73 i = 1; % Iteration variable
74

75 % The next cycle is for picking up and placing down
76 % keys
77

78 while(i ≤ n)
79

80 % The next statement retrieves row i of matrix M:
81 % ['Orientation', key bow pointing information, Image
82 % 'Centroid' horizontal (x) coord, Image 'Centroid'
83 % vertical (y) coord]
84

85 p = M(i,:);
86

87 % The next statement is a call to cent position function for
88 % detecting the centroid in the workspace. The input parameter
89 % are the 'Centroid' image coordinates
90

91 pos = cent position([p(1,4),p(1,3)]);
92

93 moved(pos(1,1),pos(1,2),20,0); % Moves above the new key
94 % centroid position.
95

96 out(937,1); % Switches on the vacuum gripping system
97

98 smove(3,87.7); % Lowers the Z-axis in order to grab
99 % the key

100

101 srmove(3,-30); % Lifts the Z-axis (the key is attached to
102 % the (vacuum cup)
103

104 % The next block of code calculates the rotation angle needed

127

105 % to align the key major axis along the specified direction.
106 % Remind: - M(1,1) is the 'Orientation'
107 % - M(1,2) is 1 if the key bow points to the top of the
108 % - image, is 2 if it points to the bottom of the image
109

110 if(M(i,1) ≥ 0)
111

112 if(M(i,2) == 1)
113

114 s = M(i,1);
115

116 else
117

118 s = M(i,1) + 180;
119

120 end
121

122 else
123 if(M(i,2) == 1)
124

125 s = M(i,1);
126

127 else
128 s = M(i,1) + 180;
129

130 end
131

132 end
133

134

135 if(j == 3) % Updates the Y coordinate of the key placement
136 % position
137

138 A(1,2) = A(1,2) + 30;
139

140 j = 0;
141 end
142

143

144 moved(A(1,1) - j*70,A(1,2),20,s); % Moves above the new
145 % placement position after
146 % updating X coordinate
147 % of the key position
148

149 smove(3,67.8137); % Lowers the Z-axis
150

151 out(937,0); % Switches off the vcuum gripping system in order
152 % to release the key
153

154 pause(0.2); % Pause of 0.2 sec in order to allow key
155 % release
156

157 srmove(3,-20); % Lifts Z-axis
158

159 i = i + 1; % Iteration variable updating
160

161 j = j + 1; % Updating of keys placement position iteration
162 % variable
163

164 end
165

128 APPENDIX A. CODE

166

167 end
168

169 close cam(); % Closes the input video object

Listing A.5: Function discs&colours detection.
1 function [o] = discs&colours detection()
2 % This main function detects discs in an image
3 % Output: - '-1' if no discs are detected;
4 % - Nx3 matrix if N discs are detected, the structure of the
5 % ith row is: ['Centroid' horizontal (x) coord, 'Centroid'
6 % vertical (y) coord, disc colour]
7

8

9

10

11 vid=cam('retrieve');
12

13 opt thr = opt threshold detection(vid)
14

15 trigger(vid); % Acquires an image
16

17 M = getdata(vid); % Stores the image in the matrix M
18

19

20 % The next three statements split the colour image M to its 3 RGB
21 % (red, green, blue) channels
22

23 M1 = M(:,:,1);
24 M2 = M(:,:,2);
25 M3 = M(:,:,3);
26

27 % The next three statements perform a colour to BW conversion
28 % by using by using opt thr as threshold
29

30 M1=im2bw(M1,opt thr);
31 M2=im2bw(M2,opt thr);
32 M3=im2bw(M3,opt thr);
33

34 % The next statement performs a OR operation between three images
35

36 M=M1 | M2 | M3;
37

38 M = image processing(M) % Call to 'image processing' local
39 % function that returns a processed
40 % image
41

42

43 % The next statements returns a matrix L, of the same size as M,
44 % containing labels for the connected objects.
45

46 [L n] = bwlabel(M);
47

48 % The next statement measures a set of properties for each
49 % labeled region in the label matrix L and stores them
50 % in the matrix 'stats'
51

52 stats = regionprops(L,'Area','Centroid','Perimeter','MajorAxisLength',
53 'MinorAxisLength');

129

54

55

56 i = 1; % Iteration variable
57 j = 1; % Position pointer in 'OBJ&PROP'
58

59

60 % In the next cycle, if an object matches disc shape, it is stored in
61 % 'OBJ&PROP' with its orientation and coordinates of its centroid
62

63 OBJ&PROP=[0,0,0,0];
64

65 while(i ≤ n)
66

67 if(stats(i).Area > 1950 & stats(i).Area < 2200 &
68 stats(i).Perimeter > 430 & stats(i).Perimeter < 470
69 & stats(i).MajorAxisLength > 51 & stats(i).MajorAxisLength < 56
70 & stats(i).MajorAxisLength > 49 & stats(i).MajorAxisLength < 54)
71

72 OBJ&PROP(j,1)=i;
73 OBJ&PROP(j,2)=stats(i).Centroid(1);
74 OBJ&PROP(j,3)=stats(i).Centroid(2);
75

76 % The local function 'colour detection' is called
77 % in order perform a double colour detection.
78 % Only if the two colour detections outputs a colour (1 is for
79 % white, 2 is for red, 3 is for blue, and 4 is for green) and the
80 % colour is the same, the colour information is stored in
81 % OBJ&PROP(j,4) and the position pointer 'j' is updated.
82 % Otherwise, if the functions output two different colours
83 % or 5 (that means a problem with the colour detection has
84 % occured): the position pointer 'j' is not updated i.e.
85 % the disc is not detected
86

87 first clour detection = colour detection(12);
88 second clour detection = colour detection(-12);
89

90 if(first clour detection == second clour detection &&
91 first clour detection 6= 5)
92

93 OBJ&PROP(j,4) = first clour detection;
94

95 j=j+1;
96

97 end
98

99 end
100

101 i=i+1;
102

103 end
104

105

106 if(OBJ&PROP(1,1)==0 & OBJ&PROP(1,2)==0 & OBJ&PROP(1,3)==0 OBJ&PROP(1,4)==0)
107

108 o=[-1];
109

110 else
111

112 o=[OBJ&PROP(:,2), OBJ&PROP(:,3), OBJ&PROP(:,4)];
113

114 end

130 APPENDIX A. CODE

115

116

117

118

119 end
120

121

122 %%%
123 %%%
124

125

126 function [o] = opt threshold detection(vid)
127 % This local function detects the optimum BW threshold.
128 % Input: video object
129 % Output: optimum BW threshold
130

131

132

133 opt thr = 0.8; % Optimum BW threshold
134

135 opt thr # obj = 0; % Number of objects that match disc shape
136 % by using optimum opt thr
137

138 current # obj = 0; % Number of objects that match disc shape
139 % by using a lower threshold than 'opt thr'
140

141 l=1; % Iteration variable
142

143

144

145

146 while(l ≤ 6)
147

148 trigger(vid); % Acquires an image
149

150 M = getdata(vid); % Stores the image in the matrix M
151

152

153 % The next three statements split the colour image M to its 3 RGB
154 % (red, green, blue) channels
155

156 M1 = M(:,:,1);
157 M2 = M(:,:,2);
158 M3 = M(:,:,3);
159

160 % The next three statements perform a colour to BW conversion
161 % by using by using '0.8-0.1*l' as threshold
162

163 M1=im2bw(M1,0.8 - 0.1*l);
164 M2=im2bw(M2,0.8 - 0.1*l);
165 M3=im2bw(M3,0.8 - 0.1*l);
166

167 % The next statement performs a OR operation between three images
168

169 M=M1 | M2 | M3;
170

171 M = image processing(M) % Call to 'image processing' local
172 % function that returns a processed
173 % image
174

175

131

176 % The next statements returns a matrix L, of the same size as M,
177 % containing labels for the connected objects.
178

179 [L n] = bwlabel(image processing(M));
180

181

182 % The next statement measures a set of properties for each
183 % labeled region in the label matrix L and stores them
184 % in the matrix 'stats'
185

186 stats = regionprops(L,'Area','Centroid','Perimeter','EquivDiameter');
187

188

189 i = 1; % Iteration variable
190

191 while(i≤n)
192

193 % The next 'if' statemet detects which object matches
194 % disc shape
195

196 if(stats(i).Area > 1950 & stats(i).Area < 2200 &
197 stats(i).Perimeter > 430 & stats(i).Perimeter < 470
198 & stats(i).MajorAxisLength > 51 & stats(i).MajorAxisLength < 56
199 & stats(i).MajorAxisLength > 49 & stats(i).MajorAxisLength < 54)
200

201 current # obj = current # obj + 1;
202

203 end
204

205 i=i+1;
206

207 end
208

209 % If number of objects that matches disc shape by using 'opt thr-0.1'
210 % as BW threshold is greater than with 'opt thr', 'opt thr' becomes
211 % 'opt thr-0.1'
212

213 if(current # obj > opt thr # obj)
214

215 opt thr # obj = current # obj;
216

217 opt thr = opt thr - 0.1;
218

219 end
220

221 current # obj = 0;
222

223 end
224

225 o = opt thr;
226

227 end
228

229

230

231 %%%
232 %%%
233

234

235 function [o] = image processing(M)
236 % This local function processes an input image in order

132 APPENDIX A. CODE

237 % to reduce noise, clear white border and make clearer
238 % the shapes of possible discs.
239 % Input: image
240 % Output: image
241

242

243 % The image is dilated using linear structuring elements,
244 % that can be created with the strel function
245

246 se90 = strel('line', 3, 90);
247 se0 = strel('line', 3, 0);
248

249 M1 = imdilate(M1, [se90 se0]); % Dilates the image
250

251 M1 = imclearborder(M, 4); % Suppresses light structures
252 % connected to image border
253

254 M1= bwareaopen(M1,20); % Removes small objects from
255 % binary image
256

257 M1 = imfill(M,'holes'); % Fills image regions and holes
258

259 M1 = bwareaopen(M,800); % Removes small objects from
260 % binary image
261

262 imwrite(M1, 'M1.tif'); % Writes the image to Tagged Image
263 % File Format
264

265 BW = imread('M1.tif'); % Reads the image from a Tagged Image
266 % File Format
267 o = M1
268

269 end
270

271

272 %%%
273 %%%
274

275

276 function [o] = colours detection(t)
277 % This local function, by checking the colour value of the same
278 % pixel for each channel, detects the colour (red, green,
279 % blue, or white) of the pixel (and thus of the disc) in the
280 % true colour image. The checked pixel is not the centroid but
281 % another pixel of the disc
282 % This is necessary due to the fact that a gold number is printed
283 % on the centre of one side of the circle.
284 % Input: translation (pixels)
285 % Output: 1 white, 2 red, 3 blue, 4 green, 5 no detected colour
286

287

288 if(M1(round(stats(i).Centroid(2)) - t,
289 round(stats(i).Centroid(1)) - t) > 180
290 & M2(round(stats(i).Centroid(2)) -t,
291 round(stats(i).Centroid(1)) - t) > 200
292 & M3(round(stats(i).Centroid(2)) - t,
293 round(stats(i).Centroid(1)) - t) > 200)
294

295 o = 1;
296

297 else

133

298

299 if(M1(round(stats(i).Centroid(2)) - t,
300 round(stats(i).Centroid(1)) - t) > 200
301 & M2(round(stats(i).Centroid(2)) - t,
302 round(stats(i).Centroid(1)) - t) < 150
303 & M3(round(stats(i).Centroid(2)) - t,
304 round(stats(i).Centroid(1)) - t) < 150)
305

306 o = 2;
307

308 else
309

310 if(M1(round(stats(i).Centroid(2)) - t,
311 round(stats(i).Centroid(1)) - t) < 120
312 & M2(round(stats(i).Centroid(2)) - t,
313 round(stats(i).Centroid(1)) - t) < 120
314 & M3(round(stats(i).Centroid(2)) - t,
315 round(stats(i).Centroid(1)) - t) > 150)
316

317 o = 3;
318

319 else
320

321 if(M1(round(stats(i).Centroid(2)) - t,
322 round(stats(i).Centroid(1)) - t) < 130
323 & M2(round(stats(i).Centroid(2)) - t,
324 round(stats(i).Centroid(1)) - t) > 150
325 & M3(round(stats(i).Centroid(2)) - t,
326 round(stats(i).Centroid(1)) - t) < 130)
327

328 o=4;
329

330 else
331

332 o=5;
333

334 end
335

336 end
337

338 end
339

340 end
341

342 end

Listing A.6: Script coloured discs pick and place.

1 % Starting from a random placement of about thirty coloured
2 % discs (the exact number is not important), the robot has
3 % to pick them up and place them down one by one, in 4 small
4 % containers depending on the colour. The colours are: white,
5 % red, green, blue.
6

7 right(); % Selects the right arm mode
8

9 speed(50); % Sets the speed [50% of the maximum speed]
10

11 start cam(); % Opens the video input device and configures
12 % image acquisition

134 APPENDIX A. CODE

13

14

15

16 while(16=0)
17

18 l = 0; % Iteration variable
19 m = 1; % Variables for storing the number of rows of
20 % matrix M
21

22 image acq pos = [125.0769, 184.8158, 6.0472, 119.4322];
23

24 moved(image acq pos); % Moves to image acq pos
25

26

27 while(m == 1 & l < 4)
28

29 out(938,1); % Switches on the DC motor in order to vibrate
30 % the surface where the discs are randomly
31 % placed
32

33 pause(0.8); % Pause of 0.8 sec during which the DC motor
34 % is working
35

36 out(938,0); % Switches on the DC motor in order to block
37 % vibration
38

39

40 % The function discs detection is called. It
41 % acquires an image and detects possible discs.
42 % The x-y orientation of each disc are stored in M.
43

44 M = discs&colours detection();
45

46 [n,m] = size(M); % Returns size of M dimensions
47

48 l = l + 1; % Iteration variable updating
49 end
50

51 % If l == 4, that means four iterations have been executed
52 % with no detected discs, the cycle is interrupted by using
53 % a break command
54

55 if(l == 4)
56

57 break;
58

59 end
60

61

62 i=1; % Iteration variable
63

64 while(i ≤ n)
65

66 % The next statement retrieves row i of matrix M:
67 % 'Centroid' horizontal (x) coord, 'Centroid'
68 % vertical (y) coord, colour]
69

70 p=M(i,:);
71

72 % The function cent position is called in order to
73 % detect the centroid in the workspace.

135

74 % The input parameter are the 'Centroid'
75 % coordinates
76

77 pos=position([p(1,2),p(1,3)]);
78

79 moved(pos(1,1),pos(1,2),20,0); % Moves above the new
80 % disc centroid
81 % position.
82

83 out(937,1); % Switches on the vacuum gripping system
84

85 smove(3,84.8); % Lowers the Z-axis in order to grab
86 % the disc
87

88 smove(3,30); % Lifts the Z-axis (the disc is attached to
89 % the (vacuum cup)
90

91 % The next 'switch' construction moves the robot over
92 % the placement position depending on the disc colour,
93 % and releases the disc
94

95

96 white release pos = [-374.92, 129.82, 32.00, 111.99];
97 red release pos = [-384.99, 214.99, 31.99, 112.00];
98 blue release pos = [-384.99, 214.99, 31.99, 111.99];
99 green release pos = [-399.99, 375.00, 31.99, 111.99];

100

101

102 switch(M(i,4))
103 case(1)
104

105 moved(white release pos);
106

107 out(937,0); % Switches off the vcuum gripping system
108 % in order to release the disc
109

110 pause(0.2); % Pause of 0.2 sec in order to allow
111 % disc release
112

113 case(2)
114 moved(red release pos);
115 out(937,0);
116 pause(0.2);
117 case(3)
118 moved(blue release pos);
119 out(937,0);
120 pause(0.2);
121 case(4)
122 moved(green release pos);
123 out(937,0);
124 pause(0.2);
125 end
126 end
127

128 i=i+1;
129

130 end
131

132

133 end
134

136 APPENDIX A. CODE

135 close cam();

Listing A.7: Interpreter (SSL/E program).
1 // Variables declaration and initialization
2

3 POSITION POS[8]; // Position array of 8 elements
4 POSITION P; // Position variable
5 POSITION P1; // Position variable
6

7 REAL X; // Variable for storing a coordinate read from the serial port
8 REAL Y; // Variable for storing a coordinate read from the serial port
9 REAL Z; // Variable for storing a coordinate read from the serial port

10 REAL S; // Variable for storing a coordinate read from the serial port
11

12 REAL ARRAY 1[13]; // Real array (13 elements)
13 INT ARRAY 2[5]; // Real array (5 elements)
14

15

16 INT MAT FUN CODE=0; // Variable for storing Matlab Robot Function
17 // Identification Code
18

19 REAL PAR;
20 INT COMIN;
21 STRING S1;
22 INT I=0; // Iteration variable
23 INT M=0; // It's for avoiding PROG SAMPLE execution before
24 // it is called in PROG
25

26

27 INTERPRETER()
28

29 INT VIS=0; // If this variable is 0 the trajectory sampling mode
30 // is not active, if it is 1 the trajectory sampling
31 // mode is active.
32 REAL VAR;
33 INT K=7777;
34 REAL RET=7777;
35 INT MAT FUN CODE CODE=0;
36

37

38

39 //
40 //
41

42 /* Routine for sampling position during the motion */
43

44 PROG SAMPLE()
45

46 IF(M!=0){
47 I=1;
48 WHILE(I!=0){
49 IF(VIS==1){
50 TIMEST(0);
51 MARK(P1);
52 RSOUT(1,POSGET(P1,1));
53 RSOUT(1,POSGET(P1,2));
54 RSOUT(1,POSGET(P1,3));
55 RSOUT(1,POSGET(P1,4));
56 I=timerd(1);

137

57 }
58

59 ELSE{
60 JMARK(P1);
61 RSOUT(1,POSGET(P1,1));
62 RSOUT(1,POSGET(P1,2));
63 RSOUT(1,POSGET(P1,3));
64 RSOUT(1,POSGET(P1,4));
65 I=STATM(1);
66 }
67 }
68 }
69

70 END
71

72

73 // Interpreter
74

75 PROG INTERPRETER()
76

77 M=1; // For enabling PROG SAMPLE()
78

79

80 RSCLOSE(1); /* Closes the serial port in order to delate any previous
81 data stored in the port buffer avoiding the
82 port buffer saturation */
83

84

85 /* The next statement opens the serial port COM1 setting 115200 bps
86 as baud rate and 512 bytes as BUFFER length. Thus, the settings
87 of the port are "9600 B8 PE S2 L128 CRLF"
88

89 RSOPEN(1,"115200 L512"); /*
90

91

92 /* The next statement sends the Feedback Execution Error Code 7777 through
93 the serial cable. Since Matlab is waiting for a feedback from the interpreter,
94 this is a necessary feedback code sent when the interpreter is restarted
95 after an error occurrance. It alerts Matlab about the occurred error */
96

97 RSOUT(1,7777);
98

99 /* The software starts a polling operation of the serial port,
100 waiting for the Matlab Communication Intialization Code 0000
101 (Matlab sends 0000 in order to establish the communication) */
102

103 RSIN(1,K);
104

105 WHILE(K!=0000){
106 RSIN(1,K);
107 }
108

109

110

111 //
112

113

114 START:
115

116 /* The next block of code is for sending a Feedback Execution Confirmation Code.
117 Depending on the function, the Code can be: 1, 0, 8888, or four numbers*/

138 APPENDIX A. CODE

118

119

120 IF((1000≤MAT FUN CODE) && (MAT FUN CODE≤1020) && VIS==0)
121 RSOUT(1,1);
122

123 IF((2000≤MAT FUN CODE) && (MAT FUN CODE≤3020)){
124

125 IF(MAT FUN CODE==2003 | | MAT FUN CODE==2004 | | MAT FUN CODE==3014){
126 RSOUT(1,POSGET(P,1));
127 RSOUT(1,POSGET(P,2));
128 RSOUT(1,POSGET(P,3));
129 RSOUT(1,POSGET(P,4));
130 }
131

132 IF(MAT FUN CODE==2018 | | MAT FUN CODE==2019){
133

134 IF(RET==1){
135 RSOUT(1,POSGET(P,1));
136 RSOUT(1,POSGET(P,2));
137 RSOUT(1,POSGET(P,3));
138 RSOUT(1,POSGET(P,4));
139 }
140

141 ELSE
142

143 RSOUT(1,8888);
144

145 }
146

147 IF(MAT FUN CODE!=2003 && MAT FUN CODE!=2004 && MAT FUN CODE!=2018
148 && MAT FUN CODE!=2019 && MAT FUN CODE!=3014)
149

150 RSOUT(1,1);
151 }
152

153 IF(MAT FUN CODE==4000 | | MAT FUN CODE==4003 | | MAT FUN CODE==4004)
154 RSOUT(1,1);
155

156 IF(MAT FUN CODE==4001 | | MAT FUN CODE==4002 && VIS==0)
157 RSOUT(1,1);
158

159 /* The next block of code is for polling the serial port waiting the
160 New Matlab Function Communication Code '1111' *\
161

162 RSIN(1,COMIN);
163

164 WHILE(COMIN!=1111)
165 RSIN(1,COMIN);
166

167

168 RSIN(1,MAT FUN CODE); /* Reads the Matlab Function Code
169

170

171

172

173

174

175

176 /* Matlab Robot Functions with identification code between 1000 and 1007:
177

178 archmove, cmove, jmove, jmoved, lmove, lmoved, move, moved, rjmove,

139

179 rlmove, rmove, sjmove, slmove, smove, srjmove, srlmove, srmove,
180 xyrcir, xzrcir, yzrcir */
181

182

183

184 IF((1000≤MAT FUN CODE) && (MAT FUN CODE≤1020)){
185

186 RSIN(1,PAR); // reads the # of parameters of the statement from the port
187

188 I=1;
189 WHILE(I≤PAR){
190

191 RSIN(1,X); // Reads a parameter from the port
192 RSIN(1,Y);
193 RSIN(1,Z);
194 RSIN(1,S);
195 POS[I]=X,Y,Z,S; // Parameters storing operation
196 I=I+1;
197

198 }
199

200

201 /* Functions execution */
202

203

204 IF(MAT FUN CODE==1000){
205

206 IF(VIS==0){
207

208 IF(PAR==1){
209 MOVE(POS[1]);
210 CYCLE START;
211 }
212

213 IF(PAR==2){
214 MOVE(POS[1],POS[2]);
215 CYCLE START;
216 }
217

218 IF(PAR==3){
219

220 MOVE(POS[1],POS[2],POS[3]);
221 CYCLE START;
222 }
223

224 IF(PAR==4){
225 MOVE(POS[1],POS[2],POS[3],POS[4]);
226 CYCLE START;
227 }
228

229 IF(PAR==5){
230 MOVE(POS[1],POS[2],POS[3],POS[4],POS[5]);
231 CYCLE START;
232 }
233

234 IF(PAR==6){
235 MOVE(POS[1],POS[2],POS[3],POS[4],POS[5], POS[6]);
236 CYCLE START;
237 }
238

239 IF(PAR==7){

140 APPENDIX A. CODE

240 MOVE(POS[1],POS[2],POS[3],POS[4],POS[5], POS[6], POS[7]);
241 CYCLE START;
242 }
243

244 IF(PAR==8){
245 MOVE(POS[1],POS[2],POS[3],POS[4],POS[5], POS[6], POS[7],POS[8]);
246 CYCLE START;
247 }
248

249 }
250

251

252 ELSE {
253

254 IF(PAR==1){
255 QMOVE(POS[1]);
256 SAMPLE();
257 RSOUT(1,7777);
258 CYCLE START;
259 }
260

261 IF(PAR==2){
262 QMOVE(POS[1],POS[2]);
263 SAMPLE();
264 RSOUT(1,7777);
265 CYCLE START;
266 }
267

268 IF(PAR==3){
269 QMOVE(POS[1],POS[2],POS[3]);
270 SAMPLE();
271 RSOUT(1,7777);
272 CYCLE START;
273 }
274

275 IF(PAR==4){
276 QMOVE(POS[1],POS[2],POS[3],POS[4]);
277 SAMPLE();
278 RSOUT(1,7777);
279 CYCLE START;
280 }
281

282 IF(PAR==5){
283 QMOVE(POS[1],POS[2],POS[3],POS[4],POS[5]);
284 SAMPLE();
285 RSOUT(1,7777);
286 CYCLE START;
287 }
288

289 IF(PAR==6){
290 QMOVE(POS[1],POS[2],POS[3],POS[4],POS[5],POS[6]);
291 SAMPLE();
292 RSOUT(1,7777);
293 CYCLE START;
294 }
295

296 IF(PAR==7){
297 QMOVE(POS[1],POS[2],POS[3],POS[4],POS[5],POS[6],POS[7]);
298 SAMPLE();
299 RSOUT(1,7777);
300 CYCLE START;

141

301 }
302

303 IF(PAR==8){
304 QMOVE(POS[1],POS[2],POS[3],POS[4],POS[5],POS[6],POS[7],POS[8]);
305 SAMPLE();
306 RSOUT(1,7777);
307 CYCLE START;
308 }
309

310 }
311

312 }
313

314

315

316

317

318 IF(MAT FUN CODE==1001){
319

320 IF(VIS==0){
321

322 IF(PAR==1){
323 LMOVE(POS[1]);
324 CYCLE START;
325 }
326

327 IF(PAR==2){
328 LMOVE(POS[1],POS[2]);
329 CYCLE START;
330 }
331

332 IF(PAR==3){
333 LMOVE(POS[1],POS[2],POS[3]);
334 CYCLE START;
335 }
336

337 IF(PAR==4){
338 LMOVE(POS[1],POS[2],POS[3],POS[4]);
339 CYCLE START;
340 }
341

342 IF(PAR==5){
343 LMOVE(POS[1],POS[2],POS[3],POS[4],POS[5]);
344 CYCLE START;
345 }
346

347 IF(PAR==6){
348 LMOVE(POS[1],POS[2],POS[3],POS[4],POS[5], POS[6]);
349 CYCLE START;
350 }
351

352 IF(PAR==7){
353 LMOVE(POS[1],POS[2],POS[3],POS[4],POS[5], POS[6], POS[7]);
354 CYCLE START;
355 }
356

357 IF(PAR==8){
358 LMOVE(POS[1],POS[2],POS[3],POS[4],POS[5], POS[6], POS[7],POS[8]);
359 CYCLE START;
360 }
361

142 APPENDIX A. CODE

362 }
363

364

365 ELSE {
366

367 IF(PAR==1){
368 QLMOVE(POS[1]);
369 SAMPLE();
370 RSOUT(1,7777);
371 CYCLE START;
372 }
373

374 IF(PAR==2){
375 QLMOVE(POS[1],POS[2]);
376 SAMPLE();
377 RSOUT(1,7777);
378 CYCLE START;
379 }
380

381 IF(PAR==3){
382 QLMOVE(POS[1],POS[2],POS[3]);
383 SAMPLE();
384 RSOUT(1,7777);
385 CYCLE START;
386 }
387

388 IF(PAR==4){
389 QLMOVE(POS[1],POS[2],POS[3],POS[4]);
390 SAMPLE();
391 RSOUT(1,7777);
392 CYCLE START;
393 }
394

395 IF(PAR==5){
396 QLMOVE(POS[1],POS[2],POS[3],POS[4],POS[5]);
397 SAMPLE();
398 RSOUT(1,7777);
399 CYCLE START;
400 }
401

402 IF(PAR==6){
403 QLMOVE(POS[1],POS[2],POS[3],POS[4],POS[5],POS[6]);
404 SAMPLE();
405 RSOUT(1,7777);
406 CYCLE START;
407 }
408

409 IF(PAR==7){
410 QLMOVE(POS[1],POS[2],POS[3],POS[4],POS[5],POS[6],POS[7]);
411 SAMPLE();
412 RSOUT(1,7777);
413 CYCLE START;
414 }
415

416 IF(PAR==8){
417 QLMOVE(POS[1],POS[2],POS[3],POS[4],POS[5],POS[6],POS[7],POS[8]);
418 SAMPLE();
419 RSOUT(1,7777);
420 CYCLE START;
421 }
422

143

423 }
424

425 }
426

427

428

429 IF(MAT FUN CODE==1002){
430

431 IF(VIS==0){
432

433 IF(PAR==1){
434 JMOVE(POS[1]);
435 CYCLE START;
436 }
437

438 IF(PAR==2){
439 JMOVE(POS[1],POS[2]);
440 CYCLE START;
441 }
442

443 IF(PAR==3){
444 JMOVE(POS[1],POS[2],POS[3]);
445 CYCLE START;
446 }
447

448 IF(PAR==4){
449 JMOVE(POS[1],POS[2],POS[3],POS[4]);
450 CYCLE START;
451 }
452

453 IF(PAR==5){
454 JMOVE(POS[1],POS[2],POS[3],POS[4],POS[5]);
455 CYCLE START;
456 }
457

458 IF(PAR==6){
459 JMOVE(POS[1],POS[2],POS[3],POS[4],POS[5], POS[6]);
460 CYCLE START;
461 }
462

463 IF(PAR==7){
464 JMOVE(POS[1],POS[2],POS[3],POS[4],POS[5], POS[6], POS[7]);
465 CYCLE START;
466 }
467

468 IF(PAR==8){
469 JMOVE(POS[1],POS[2],POS[3],POS[4],POS[5], POS[6], POS[7],POS[8]);
470 CYCLE START;
471 }
472

473 }
474

475

476 ELSE {
477

478 IF(PAR==1){
479 QJMOVE(POS[1]);
480 SAMPLE();
481 RSOUT(1,7777);
482 CYCLE START;
483 }

144 APPENDIX A. CODE

484

485 IF(PAR==2){
486 QJMOVE(POS[1],POS[2]);
487 SAMPLE();
488 RSOUT(1,7777);
489 CYCLE START;
490 }
491

492 IF(PAR==3){
493 QJMOVE(POS[1],POS[2],POS[3]);
494 SAMPLE();
495 RSOUT(1,7777);
496 CYCLE START;
497 }
498

499 IF(PAR==4){
500 QJMOVE(POS[1],POS[2],POS[3],POS[4]);
501 SAMPLE();
502 RSOUT(1,7777);
503 CYCLE START;
504 }
505

506 IF(PAR==5){
507 QJMOVE(POS[1],POS[2],POS[3],POS[4],POS[5]);
508 SAMPLE();
509 RSOUT(1,7777);
510 CYCLE START;
511 }
512

513 IF(PAR==6){
514 QJMOVE(POS[1],POS[2],POS[3],POS[4],POS[5],POS[6]);
515 SAMPLE();
516 RSOUT(1,7777);
517 CYCLE START;
518 }
519

520 IF(PAR==7){
521 QJMOVE(POS[1],POS[2],POS[3],POS[4],POS[5],POS[6],POS[7]);
522 SAMPLE();
523 RSOUT(1,7777);
524 CYCLE START;
525 }
526

527 IF(PAR==8){
528 QJMOVE(POS[1],POS[2],POS[3],POS[4],POS[5],POS[6],POS[7],POS[8]);
529 SAMPLE();
530 RSOUT(1,7777);
531 CYCLE START;
532 }
533

534 }
535

536 }
537

538

539

540 IF(MAT FUN CODE==1003){
541 VAR=POSGET(POS[3],1);
542 CIRCULAR(VAR);
543 IF(VIS==0){
544 MOVE(POS[1],POS[2]);

145

545 CIRCULAR(0);
546 CYCLE START;
547 }
548 }
549 ELSE{
550 QMOVE(POS[1],POS[2]);
551 SAMPLE();
552 CIRCULAR(0);
553 RSOUT(1,7777);
554 CYCLE START;
555 }
556

557

558 IF(MAT FUN CODE==1004){
559 VAR=POSGET(POS[4],1);
560 CIRCULAR(VAR);
561 IF(VIS==0){
562 MOVE(POS[1],POS[2],POS[3]);
563 CIRCULAR(0);
564 CYCLE START;
565 }
566 }
567 ELSE{
568 QMOVE(POS[1],POS[2],POS[3]);
569 SAMPLE();
570 CIRCULAR(0);
571 RSOUT(1,7777);
572 CYCLE START;
573 }
574

575

576 IF(MAT FUN CODE==1005){
577 VAR=POSGET(POS[3],1);
578 CIRCULAR(VAR,1);
579 IF(VIS==0){
580 MOVE(POS[1],POS[2]);
581 CIRCULAR(0);
582 CYCLE START;
583 }
584 }
585 ELSE{
586 QMOVE(POS[1],POS[2]);
587 SAMPLE();
588 CIRCULAR(0);
589 RSOUT(1,7777);
590 CYCLE START;
591 }
592

593

594 IF(MAT FUN CODE==1006){
595 VAR=POSGET(POS[4],1);
596 CIRCULAR(VAR,1);
597 IF(VIS==0){
598 MOVE(POS[1],POS[2],POS[3]);
599 CIRCULAR(0);
600 CYCLE START;
601 }
602 }
603 ELSE{
604 QMOVE(POS[1],POS[2],POS[3]);
605 SAMPLE();

146 APPENDIX A. CODE

606 CIRCULAR(0);
607 RSOUT(1,7777);
608 CYCLE START;
609 }
610

611

612

613 /* Matlab Robot Functions with identification code between 2000 and 2030:
614

615 acct, autoacl, cpacct, cpdacct, cpspeed, dacct, in, jmark,
616 left, mark, opeclr, opeout, right, sample,
617 speed, weight, wintime*/
618

619

620 IF((2000≤MAT FUN CODE) && (MAT FUN CODE≤2030)){
621

622 IF(MAT FUN CODE!=2022) // reads the parameter from the port
623 RSIN(1,PAR);
624 ELSE
625 RSIN(1,S1);
626

627 /* MAT FUN CODEtions execution */
628

629 IF(MAT FUN CODE==2000){
630 RET=SPEED(PAR);
631 CYCLE START;
632 }
633

634

635 IF(MAT FUN CODE==2002){
636 RET=CPSPEED(PAR);
637 CYCLE START;
638 }
639

640

641 IF(MAT FUN CODE==2003){
642 MARK(P);
643 RSOUT(1,POSGET(P,1));
644 RSOUT(1,POSGET(P,2));
645 RSOUT(1,POSGET(P,3));
646 RSOUT(1,POSGET(P,4));
647 CYCLE START;
648 }
649

650

651 IF(MAT FUN CODE==2004){
652 JMARK(P);
653 RSOUT(1,POSGET(P,1));
654 RSOUT(1,POSGET(P,2));
655 RSOUT(1,POSGET(P,3));
656 RSOUT(1,POSGET(P,4));
657 CYCLE START;
658 }
659

660

661 IF(MAT FUN CODE==2005){
662 RET=LEFT();
663 CYCLE START;
664 }
665

666

147

667 IF(MAT FUN CODE==2006){
668 RET=RIGHT();
669 CYCLE START;
670 }
671

672 IF(MAT FUN CODE==2007){
673 RET=ACCT(PAR);
674 CYCLE START;
675 }
676

677 IF(MAT FUN CODE==2008){
678 RET=DACCT(PAR);
679 CYCLE START;
680 }
681

682 IF(MAT FUN CODE==2009){
683 RET=AUTOACL(PAR);
684 CYCLE START;
685 }
686

687

688 IF(MAT FUN CODE==2012){
689 RET=CPACCT(PAR);
690 CYCLE START;
691 }
692

693 IF(MAT FUN CODE==2013){
694 RET=CPDACCT(PAR);
695 CYCLE START;
696 }
697

698 IF(MAT FUN CODE==2015){
699 RET=WEIGHT(PAR);
700 CYCLE START;
701 }
702

703

704 /* Matlab Robot Functions with identification code between 3000 and 3014:
705

706 acct, autoacl, cpacct, cpdacct, cpspeed, dacct, delay, forder, in, jmark,
707 left, mark, opeclr, opeout, right, sample,
708 speed, weight, wintime */
709

710

711

712 IF((3000≤MAT FUN CODE) && (MAT FUN CODE≤3014)){
713

714 IF(MAT FUN CODE!=3014){
715 RSIN(1,PAR);
716 I=1;
717 WHILE(I≤PAR){
718

719 RSIN(1,ARRAY 1[I]);
720 I=I+1;
721

722 }
723 }
724

725 ELSE {
726

727 RSIN(1,PAR);

148 APPENDIX A. CODE

728 I=1;
729 WHILE(I≤PAR){
730

731 RSIN(1,ARRAY 2[I]);
732 I=I+1;
733

734 }
735 }
736

737

738

739 IF(MAT FUN CODE==3006){
740 RET=OUT(ARRAY 1[1],ARRAY 1[2]);
741 CYCLE START;
742 }
743

744

745 IF(MAT FUN CODE==3007){
746 WINTIME(ARRAY 1[1]);
747 RET=TRI(ARRAY 1[2],ARRAY 1[3]);
748 CYCLE START;
749 }
750

751 IF(MAT FUN CODE==3008){
752 WINTIME(ARRAY 1[1]);
753 RET=WIN(ARRAY 1[2],ARRAY 1[3]);
754 CYCLE START;
755 }
756

757 IF(MAT FUN CODE==3009){
758 IF(PAR==2){
759 RET=BLINK(ARRAY 1[1],ARRAY 1[2]);
760 CYCLE START;
761 }
762

763 IF(PAR==3){
764 RET=BLINK(ARRAY 1[1],ARRAY 1[2],ARRAY 1[3]);
765 CYCLE START;
766 }
767 }
768

769 IF(MAT FUN CODE==3010){
770 IF(PAR==1){
771 RET=BLINKEND(ARRAY 1[1]);
772 CYCLE START;
773 }
774 IF(PAR==2){
775 RET=BLINKEND(ARRAY 1[1],ARRAY 1[2]);
776 CYCLE START;
777 }
778 IF(PAR==3){
779 RET=BLINKEND(ARRAY 1[1],ARRAY 1[2],ARRAY 1[3]);
780 CYCLE START;
781 }
782 IF(PAR==4){
783 RET=BLINKEND(ARRAY 1[1],ARRAY 1[2],ARRAY 1[3],ARRAY 1[4]);
784 CYCLE START;
785 }
786

787 }
788

149

789

790 IF(MAT FUN CODE==3013){
791 RET=LOCATE(ARRAY 1[1],ARRAY 1[2]);
792 CYCLE START;
793 }
794

795 IF(MAT FUN CODE==3014){
796 PLTNS(ARRAY 2[1],ARRAY 2[2],P);
797 RSOUT(1,POSGET(P,1));
798 RSOUT(1,POSGET(P,2));
799 RSOUT(1,POSGET(P,3));
800 RSOUT(1,POSGET(P,4));
801 CYCLE START;
802 }
803

804

805

806

807

808 /* Matlab Robot Functions with identification code 4000: setplt */
809

810 IF(MAT FUN CODE==4000){
811

812 RSIN(1,PAR);
813 I=1;
814 WHILE(I≤4){
815

816 RSIN(1,X);
817 RSIN(1,Y);
818 RSIN(1,Z);
819 RSIN(1,S);
820 POS[I]=X,Y,Z,S;
821 I=I+1;
822 }
823

824 RSIN(1,ARRAY 2[1]);
825 RSIN(1,ARRAY 2[2]);
826 RSIN(1,ARRAY 2[3]);
827 RSOUT(1,1);
828

829 /* Function execution */
830

831 SETPLTNS(PAR,POS[1],POS[2],POS[3],POS[4],ARRAY 2[1],ARRAY 2[2],ARRAY 2[3]);
832 CYCLE START;
833 }
834

835

836

837 RSCLOSE(1);
838

839 END

150 APPENDIX A. CODE

Bibliography

[1] R. H. Bishop, The Mechatronics Handbook, CRC Press Inc, 2002.

[2] Handbook of Industrial Robotics, Second Edition. Edited by Shimon Y. Nof
Copyright © 1999 John Wiley Sons, Inc.

[3] Hiroshi Makino, Akitaka Kato, and Yasunori Yamazaki. Research and Commer-
cialization of SCARA Robot − The Case of Industry-University Joint Research
and Development. Int. J. of Automation Technology, Vol.1 No.1, 2007.

[4] Jacques Denavit, Richard S. Hartenberg. A kinematic notation for lower-pair
mechanisms based on matrices, Trans ASME J. Appl. Mech, nº 23, 1955, pp.
215-221.

[5] Jacques Denavit, Richard S.Hartenberg. Kinematic synthesis of linkages, New
York, McGraw-Hill, 1964.

[6] Richard M. Murray, Zexiang Li, S. Shankar Sastry. A Mathematical Introduction
to Robotic Manipulation, CRC Press, 1994.

[7] H Kazerooni. Instrumented Harmonic Drives for Robotic Compliant Maneu-
vers. Proceedings of the 1991 IEEE International Conference on Robotics and
Automation Sacramento, California, April 1991.

[8] MATLAB and Simulink for Technical Computing. The MathWorks Inc., USA.
[Online]: http://www.mathworks.com/.

[9] P.I. Corke. MATLAB toolboxes: robotics and vision for students and teachers.
IEEE Robotics and Automation Magazine, Volume 14(4), 2007, pp. 16-17

[10] Francesco Chinello, Stefano Scheggi, Fabio Morbidi, Domenico Prattichizzo.
KCT: a MATLAB toolbox for motion control of KUKA robot manipulators.
Robotics and Automation (ICRA), 2010 IEEE International Conference, 2010,
pp. 4603 - 4608

[11] W.E. Dixon, D. Moses, I.D. Walker, and D.M. Dawson. A Simulink- Based
Robotic Toolkit for Simulation and Control of the PUMA 560 Robot Manipulator.
In Proc. IEEE/RSJ Int. Conf. Intel. Robots Syst, pages 2202-2207, 2001.

[12] Sean G. McSweeney and William M. D. Wright, Software Interface and Vision
System for a Scara Robot, Proceedings of the 24th International Manufacturing
Conference, IMC 24, 2007.

151

152 BIBLIOGRAPHY

[13] J. Norberto Pires. Using Matlab to interface Industrial Robotic Automation
Equipment. IEEE Robotics and Automation Magazines, September 2000.

[14] Ford, W. What is an open architecture robot controller?, Proceedings of the
1994 IEEE International Symposium on Intelligent Control, Piscataway, NJ,
USA: IEEE Press, Columbus, USA, pp. 27-32.

[15] Nikolaos P. Papanikolopoulos, Pradeep K. Khosla, Takeo Kanade. Visual Track-
ing of a Moving Target by a Camera Mounted on a Robot: A Combination of
Control and Vision. IEEE Transections on Robotics and Automation, VOL. 9,
NO. 1. Frebruary 1993.

[16] Ahmed Sh. Khusheef, Ganesh Kothapalli and Majid Tolouei-Rad. An Approach
for Integration of Industrial Robot with Vision System and Simulation Software,
World Academy of Science, Engineering and Technology, Vol: 5, 2011-10-24.

[17] Nello Zucch, Machine Vision, The fairmont Press Inc, 1987.

[18] P. Piccinini, A. Prati, R. Cucchiara, Real-time object detection and localization
with sift-based clustering, in Proc. of Image and Vision Computing, 2012, pp.
1-15.

[19] Stormy Attaway. MATLAB: a practical introduction to programming and prob-
lem solving - 2nd ed., Elsevier Inc, 2012.

[20] Peter Corke. Robotics,Vision and Control, Fundamental Algorithms in MAT-
LAB. Springer, 2011.

[21] Fu, K. S., Gonzales, R. C. and Lee, C. S. G. Robotics Control, Sensing, Vision
and Intelligence, Industrial Enginering Series, McGraw-Hill, New York, 1987.

[22] R. Kavanagh. Mechatronics and Robotics Course Notes, UCC (Cork), 2013.

[23] R. Kavanagh. Industrial Automation and Control Course Notes, UCC (Cork),
2013.

[24] Instrument Control Toolbox User’s Guide, MathWorks, 2014, http://www.
mathworks.cn/help/pdf_doc/instrument/instrument.pdf.

[25] Image Processig Toolbox User’s Guide, MathWorks, 2014, http://www.
mathworks.com/help/pdf_doc/images/images_tb.pdf.

[26] MathWorks Inc, SimMechanics, 2014. http://www.mathworks.co.uk/
products/simmechanics/.

[27] Image Acquisition Toolbox User’s Guide, MathWorks, 2014, http://www.
mathworks.com/help/pdf_doc/imaq/imaq_ug.pdf.

[28] SC3000 Series Robot Systems, C3150 Controller Hardware Manual, NIDEC
SANKYO CORPORATION, 2005.

[29] SC3000 Robot System, SSL/E Language Reference Manual Rev. 2, NIDEC
SANKYO CORPORATION, 2005.

BIBLIOGRAPHY 153

[30] SC3000 Robot System, System Instructions Rev. 3, NIDEC SANKYO CORPO-
RATION, 2005.

[31] SC3000 Series Robot Systems, Pendant Operation Manual Rev. 3, NIDEC
SANKYO CORPORATION, 2005.

[32] SC3000 Series Robot Systems, Installation Manual Rev. 3, NIDEC SANKYO
CORPORATION, 2005.

[33] Buzz2 User’s Guide, NIDEC SANKYO CORPORATION, 2005.

[34] SC3000 Series Robot Systems, SCARA Series Hardware Manual, NIDEC
SANKYO CORPORATION, 2005.

[35] Space Saving Vacuum Ejector Series ZQ Datasheet, SMC Corporation of Amer-
ica.

[36] Milind Sudhir Rokade. Modeling, simulation and virtual reality based visualisa-
tion of SCARA robot, UCC (Cork), 2014.

