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Introduction

The Ising model was born in the field of statistical mechanics, to describe the ferromag-
netism of materials. This model dates back to 1920 [1], when the physicist Wilhelm Lenz
proposed it to his student Ernst Ising, as a problem to investigate the phase transition,
from paramagnetic state to ferromagnetic state of some materials. Ising solved it in 1-
dimension (1924), publishing in his thesis (1925) that no phase transition occurs [2].

For what concerns the 2-dimensional (or more) square-lattice Ising model, much harder
of the 1-dimensional one, we have to wait until 1936 when Rudolph Peierls proved for
the firs time the possibility of a spontaneous magnetization, using what is now called a
Peierls argument [3]. Only in 1944, Lars Onsager proposed an analytical solution to the
problem of phase transition in the Ising model, with no external magnetic field [4].

Even if the model was introduced in the field of physics, it’s now widely accepted in
the mathematical literature, thanks to the many tools it uses, such as graph theory, com-
binatorics and certainly the theory of probability, to name a few ones. In its simplest
formulation, the Ising model is based on discrete variables, which we call spins. As hap-
pens in reality, such spins are characterized by having interactions that strongly depend on
the proximity they have with each other. For this purpose, a topology that makes this idea
precise and formal is introduced. As we will see, this topology does not have particularly
stringent rules. For this reason, this model represents the paradigm of collective phenom-
ena, that are certainly presented not only in many other realities of physics, but also in
many other areas such as opinion theory, genetic statistics, neuroscience, economics and
environmental sciences.

In this regard, simulating the model computationally is very important and of practical
interest. As it often happens, evaluating numerically this model in a direct way is diffi-
cult, due to the large amount of data that must be processed from a number of inputs not
high at all. This is why the model is simulated via Monte Carlo methods. Since it has
a characteristic stochastic aspect, the Markov chain Monte Carlo methods are even more
useful in this case. Indeed, this class of computational algorithms uses randomness to
obtain estimates of quantities that converge in probability to those desired. In particular

do it by constructing a Markov chain that has a specific stationary distribution .

In this thesis, we present the 2-dimension Ising model and its occurrence of phase
transition from a purely probabilistic point of view, without going into the more physical
as well as analytic aspects of the issue.

An extensive initial part is dedicated to introducing the fundamental and basic concepts

of the theory behind the model. For this purpose we introduce the homogeneous Markov

v



chains to get to the Markov random fields and Gibbs fields. We will also focus on some
introductory aspects of the theory of the stability of Markov chains to prove the very
powerful Ergodic theorem and to complete this theoretical framework. The theorem is
the operating principle of the Metropolis-Hastings algorithm (one of the first and funda-
mental among the MCMC methods), whose usefulness in this thesis can be appreciated
by showing the phase transition from a practical point of view throughout the simulations.

In addition the Peierls argument is also considered for its historical importance.






Chapter 1

Basics of Homogeneous Markov Chain

and the Ergodic Theorem

1.1 Homogeneous Markov Chains

Let us start introducing the key object that will make the whole work possible.
In order to represent a process that evolves in a discrete-time, from a probabilistic point

of view, the starting point is to define what is a Stochastic Process.

Definition 1.1.1 (Stochastic Process). A sequence {X,},cn, of random variables, with

with values in a set E, called the state space, is called a discrete-time Stochastic Process.

In this context the time is indexed by n € N and we assume that E is countable. More-
over we will say that if X;, = i, the process is in state 1 at time 7.
Among all these possible processes, in particular we are interested to Markov chains and

more specifically in which ones are homogeneous over the time.

Definition 1.1.2 (Markov Chains and Homogeneous Markov Chains). A stochastic pro-
cess {X,}n,>0 with state space E, is called a Markov Chain if it satisfies the following

property, called Markov property

P(Xpt1 = jIXn =1,Xn—1 = in—1,.,X0 = i0) = P(Xp41 = j|Xu = i) (1.1)
VneN;Vjii,_1,.,i0€E.
In particular, if the right-hand side of (1.1) is independent of # it is called an Homogeneous
Markov Chains [HMC], i.e. it holds

P(Xn—H Zj‘XnIi) zmij. (12)

To paraphrase the above definition, in a Markov chain the future X,, = j and the past

X,—1 = i,—1 are independent, given the present X, = i,.



Focusing our attention on the HMC:s, it is natural to define the main object that character-
ized any chain. From the property (1.2) it is possible to define the matrix M = (m;;); jeE,
called the Transition Matrix of the HMC {X,,},>0.

Remark 1. Since the entries of the transition matrix M = (m; j) i,jeE are probabilities and
the chain in state i must move to some state, it holds true that M is a Stochastic Matrix,
that is

mij=0, > mg=1  VijeE. (1.3)
keE

1.2 Stationarity

Let us introduce the notion of stationarity, an important concept in the stability theory
of HMCs.

Definition 1.2.1 (Invariant Measure/Distribution). Let X = {X,},,~0 be an HMC with val-
ues in the state space E and transition matrix M = (m; j)i7 jee- The measure, or the proba-

bility distribution, & = (7(i));eg is said stationary or invariant for the chian X if

M =1 (1.4)
or equivalently,
> w(iymij = n(j) VjeE (1.5)
ieE
Iterating (1.4) it follows that tM" = tMM"~' = ... = &. Therefore, if the initial state

of the chain is chosen according to the stationary distribution, i.e. P(Xy = i) = (i), we
obtain that

and also

P(Xy = 0,Xn11 = lnt1s- - Xnsk = Intk) = P(Xn = i)mi(iﬂ) M (b k—1) (n+k)
= T()My(is1) " M (ptk—1) (k) -
In this sense we say that the chain is stationary, because if the chain starts according to

the stationary distribution, the probability P(X,, = i) depends only on 7 and not on the

time n, in other words a chain starting in equilibrium remains in equilibrium.



Let us give a sufficient condition for the stationarity of a distribution.

Theorem 1.2.1 (Detailed Balance Test [DBT]). Let X = {X,},>0 be an HMC with values
in the state space E and transition matrix M = (m;;); jek.

If the probabity distribution 7 on E satisfies the detailed balance equation (DBE):
Jt(i)mij:ﬂ(j)mﬁ Vi,jEE, (16)

then 7 is stationary for X.

Proof. Summing on the all possible state and recalling that M is a stochastic matrix, it

follows that (i) = X g T(i)mij = X jep T(J)mji.
[

1.3 Strong Markov Property and Regeneration

In order to give a generalization of the Markov property let us introduce the notion of

stopping time.

Definition 1.3.1 (Stopping Time). Let X = {X,,},,>0 be a stochastic process.
A random variable T with values in N U {+00} is called stopping time, with respect to
X, if the event {7 = m} does depend only on Xy, X1, .., Xy, i.e. {T = m} depends on the

trajectories of the process X up to m.

Example 1 (Return times). Let X = {X,},>0 be an HMC with values in E and define
T;=inf{n>=1:X, = i} the return time to state i.

T; is a stopping time since we can write {T; = m} = {D L iy _y = 1, X = i}.

Example 2 (Successive return times). In the same setting as Example 1, define {7;} ;> by

n=Ti=infin>1:X,=1i}, ti=inf{n>7j_1:X,=1i} Vj=2.

{7;}j=11s a sequence of stopping times, since we can write
{tj=m} = {200 Vx=iy = Jis Xm = i}
With these elements we can give the following theorem that allows us to generalize

the Markov property, that is very useful in applications.

Theorem 1.3.1 (Strong Markov Property). Let X = {X,,},>0 be an HMC with values in
the state space E and transition matrix M = (m;;); jek.

Let 7 be a finite stopping time, with respect to X.

Then:



(1) Vv iOvilv-'7i7j17j27“7.jkEEa

P(XT+1 = jlaXr+2 = j27 "7XT+k = ]k|XT = iuxffl = iT*17"7X0 = ZO)
=P(Xt11 = j1,Xe12 = 2, Xk = Ji|Xe = i)

=Mij Mgy My s

(ii) the process Y = {¥,}n>0 = {Xt4n}n=0 is an HMC with the same transition matrix
M= (mij)i,jeE of X.

For the proof see [5].

Now, let us denote by

N; = Z Lix,—iy (1.7)

n=1

the number of visits to state i, in particular after the initial state at time 0.

Remark 2. Consider an HMC starting from state 0 and such that Py(Np = +o0) = 1 and
let the sequence 79 = 0, 7] = Ty, T2, .. be that one of the successive return times to 0.

By the Theorem (1.3.1), for any k > 1, the process after 7; is independent of the process
before 7. In particular the process after 7; is a Markov chain with the same transition

matrix of the process that generated it.
Therefore, as a consequence of the Strong Markov Property we have the following

Corollary 1.3.1.1 (Regenerative Cycles). Let {X,,},,~0 be an HMC, with initial state 0 and
such that Py(No = +0) = 1.
Let (7,)n=0, To = 0, be the successive return times to 0.

Then, the pieces of trajectories
{er7XTk+17~-7XTk+1—l}; k=0

called regenerative clicles, are independent and identically distributed.

In particular, the sequence {7 — Tx_1 }x>1 is i.i.d. .

1.4 Recurrence

Let us focus on the number of visits to a state.
Denoting by fj; = P;(T; < +0o0) the probability of the return time to state i



starting from j,then it follows

r—1
if (1= fi), r=1
1 _fji7 r=0
Remark 3. Observing that P,(N; = r) = f(1 — fi;), r = 0, it follows
P(Ti<+w)=1 <= PB(N;=+w)=1 (1.9)
Furthermore,
Ei(N;) = Y rfi(1— fi)
r=1
— i e - )
r=1
= fiE(Geo(1 — fii))
_ i
1~ fii’
Therefore, we obtain the following equivalence
Ei(N;) <40 <= PB(Tj<+x)<l1. (1.10)

It is possible to classify a state, with respect to the chain under consideration, depend-

ing on its number of visits. To this aim we give the following

Definition 1.4.1 (Positive/Null-recurrent and transient state). Consider a stochastic pro-
cess with values in E and let 7; be first return time to state i € E.
Then the state i is called

1. recurrent if P,(T; < +00) = 1, in particular is said

- positive recurrent if it also holds E;(T;) < +o0

- null recurrent if it also holds E;(T;) = +o0
2. transient if P(T; < +0) < 1.

Now we give a criterion for recurrence which is called the Potenial Matrix Criterion.

Let {X; }n,>0 be an HMC with values in E and with transition matrix M = (m;;), we will



use the following notation

mjj(n) = (M")ij = P(Xy = j).
Theorem 1.4.1 (Potential Matrix Criterion [PMC]). State i € E is recurrent if, and only
if,
40
> mii(n) = +o0 (1.11)
n=0

Proof. Observing first that

remark3
<

P(Ti<+w) =1 Ei(N;) =+

the thesis follows rewriting the condition (1.11), indeed

+
> mi(n) = > P(X, = i)
n=0

n=0

= Y Ei(Lx,—)

n=0

= Ei() Lix,=3)

n=0
= E;i(N;).
]

Continuing the study of the recurrence properties, we shall now prove that the recur-
rence is a (communication) class property.

Let us start with a definition.

Definition 1.4.2 (Communicating states). Given an HMC X = {X,},>0 with values in E,
we say that the state i and j communicate if there exist a trajectory of X from i to j,
ie. Inst P(X,=j)>0.

As a direct theoretical application of the PMC we have the following

Theorem 1.4.2 (Recurrence is a class property). If i and j communicate, they are either

both recurrent or both transient.
Since in an irreducible HMC all the states communicate, it holds the following

Corollary 1.4.2.1. An irreducible HMC has all its states of the same nature: recurrent or

transient.



In this sense we will say that a chain is recurrent or transient.

A slight generalization of the Potential Matrix Criterion is possible when we are treat-

ing an irreducible HMC, let us call X such a chain.

Indeed, with the same notations of the Theorem 1.4.1, we have that

1. X is recurrent if, and olnly if,

Ej(N;) = Y mji(n) = +o0 Vi, jeE;

n=>1

2. X is transient if, and olnly if,

Ej(N;) = Y mji(n) < +o0 Vi, jeE.

n=1

These observations are useful to obtain the following

Theorem 1.4.3. A finite (i.e. |E| < +00) and irreducible HMC is recurrent.

Proof. Assume by contradiction that the chain X is transient.
By (1.13) it follows
Z mj,‘(l’l) < +ow,Vi,jeE.

n=1

Therefore, since |E| < +00, it holds

Z Z mji(n) < 400,

i€EEn>1

then, recalling that M is a stochastic matrix, it is also true

Z Z mji(n) = Z Zmij(n) = +00.

ieEn>1 n=1iek

(1.12)

(1.13)

]

The continuation of the theory that follows will be aimed at proving that a finite state

irreducible HMC is positive recurrent.

This result is clear that it is quite understandable because, if it were not so, the states

would be visited in a finite number of times and therefore after a random time no state

would be visited anymore. Let us we now proceed formally.



Theorem 1.4.4. Let X = {X,},>0 be an irreducible and recurrent HMC with values in
E ={0,1,..} and transition matrix M = (m;;); jeE-
For k € E, let T}, be the return time to state k.
Set for any i € E, Tk = Ek(anl 1{X,,=i}1{n<Tk})-
Then:
1. >0 VieE
2. # = (%*)icE is a stationary measure for M.
Moreover, the invariant measure of such a chain is unique up to a multiplicative factor.

For the proof see [5].

Remark 4. Observe that

200 Y= Linsny = D) <Zﬂ{xn=i}> Linsny

ieEn>1 n=1 \iek

= Z ]1{"<Tk}

n=1

~T;.

Therefore,

Y xf = E(T). (1.14)
ieE

The following useful corollary is easily obtained from the Theorem 1.4.4 and the
Remark 4.

Corollary 1.4.4.1. An irreducible, recurrent HMC is positive recurrent if, and only if,

Zyl' < +o0

i€k
where (y;)ieg is an invariant measure for the chain.

Remark 5. Thanks to this last result, it follows by the normalization of the invariant
measure, that an irreducible and positive recurrent HMC admits an invariant distribution,

moreover which is unique.
There is also the converse part of the Remark 5, that we give it in the following

Theorem 1.4.5. An irreducible HMC which admits a stationary distribution is positive

recurrent.



Proof. Let M be the transition matrix of the chain and 7 be the invariant distribution.
Therefore,
(i) = > w(j)mji(n)  VieE\¥n>1 (1.15)
JEE
Assume that the chain is transient, then by the observation in (1.13) it follows that

i my () =0

Taking the limit in (1.15), for any i € E we have

7(i) = nEToojeE”(J)mﬁ(”>

ZTL’(]) lim mji(n)=0

n—+ao
JjeE

in contradiction with the normalisation constraint.
Therefore, the chain must be recurrent and the thesis follows thank to the Corollary
1.4.4.1.

(The equality * follows from the Dominated Convergence theorem for series)

Finally, we have all the tools to demonstrated the following
Theorem 1.4.6. A finite state space irreducible HMC is positive recurrent.

Proof. A finite space HMC, which is irreducible, is recurrent.
Therefore, by Theorem 1.4.4 it admits an invariant measure that can be normalized since
the space state is finite. The thesis follows by Theorem 1.4.5.

]

1.5 The Ergodic Theorem

We now want to present an important theorem, very powerful in applications, which
is the Markov chain equivalent version of the Strong Law of Large Numbers (SLLN) re-

called below, the Ergodic Theorem.

Let us start first with a definition.

Definition 1.5.1 (Almost-surely convergence). A sequence (Z,),>; of real random vari-

ables converges almost surely to a real number z, with respect to probability measure P,



if it holds
P( lim Z,=2z)=1.

n——+00
Theorem 1.5.1 (SLLN). Let {X,},>1 be ani.i.d. (independent and identically distributed)
sequence of random variables, such that E(|X;|) < +o0.

Consider the empirical mean §,, = %Z?:l X;, then

lim S, =% E(X)) (1.16)
n——+0o0
Theorem 1.5.2 (Ergodic Theorem). Let {X,},>0 be an irreducible, positive recurrent and
homogeneous Markov chain with values in the state space E.

Let 7 be the invariant distribution of the chain and f : E — R be a function such that

Ex(|f1) = Y1 (0)|2(0) < +o-.

icE
Then, for any initial distribution y, it hold true the following:

—a.s.

tim ~ 3 60 2 Ea(p) = S F)m(i), (1.17)
k=1

n—+owon '
1

where P, is the law of chain when the initial distribution is (L.

Proof. Without loss of generality, take f : E — R, f > 0. The general case follows con-
sidering the positive and negative part of f, f = f™ — f~.

Let 70 = 0,7 = Tp, 7z, ... be the sequence of the successive return times to 0 € E and
define

Tp+1

@, =, [(Xi), p=0.

Tp+1

We know that {®),} >0 is an i.i.d. sequence of random variables, which have finite mean

Ty
E(mo) = Eo (Zf(&-))
i=1
Ty
=Ep (Z Z f(Xj)ﬂ{X,-—j}>

i=1 jeE
Ty
= > f(X))Eo <Z ]1{x,=j}>
jeE i=1
= > fxpE?,
JEE

10



where (¥,°) jeg is the invariant measure defined in the Theorem 1.4.4.

Now we can apply the SLLN to say

Tn+1 n
. . 1 Py—a.s -0
nETOO; Z fXi) = nETOO’; Z wp = Zf(XJ)xJ
i=1 p=0 JEE
Observing that
T S 1S T

where Ty, = (2j—; Lix,—0}), We can write

DVNIC AN ¥Ry 0. B viiep [0 )

g(n) b g(n) b g(n)

Therefore,

(1.18)

(1.19)

taking the limits for n — +o0 and observing that g(n) "= +0 since the chain is positive

recurrent, it follows from (1.18)

nEIEOO (L ; Pﬂ = Z £

JEE

Now, taking f = 1, the latter equality implies that

n—+x g(n)

Therefore

11

(1.20)

(1.21)



Chapter 2

A MCMC Method:
The Metropolis-Hasting Algorithm

2.1 General Principle and MCMC methods

Let us start from the following problem.
Consider the configuration space Ey = AN, where A = {—1,+1} and the set of the sites
Sy = {1,..,N} is finite. Take a distribution 7 = (7(i));=1,.. |y on Ey and a function
f:Enx—R.
Suppose we want to compute numerically the average

Ex(f) =, f(i)n(i) 2.1)

i€cEyn

In the vast cases of applications, it is not taken granted the previous computation is
effectively numerically possible. For instance:
- the cardinality |[Ey| = 2" may be very large even N is not,
assuming N = 100 = |Ey| = 10°°;
- the distribution 7 is known only up to a normalizing factor,
we will see in the chapter 3 that this is the case of a Gibbs distribution , for which the
partition function is usually uncomputable in closed form.
In order to overcome such a difficulty we can think of giving up the exact result of the av-
erage and proceed through ergotic estimates. To this aim, a powerful tools are the Makov
chain Monte Carlo (MCMC) methods.

MCMC methods are algorithms to build an homogeneous Markov chain (HMC) {X,, },,>0

with a given stationary measure/distribution 7.

Therefore if we are able to construct an irreducible HMC, which is an ergodic chain

by the finiteness of the state space Ey, thanks to the Ergodic Theorem we can estimate

12



the average through

lim Zf ) M E(f) 22)

Na+ooN

for any initial distribution y.

In the sequel we will see the Metropolis-Hastings algorithm, a particular form of a
MCMC methods.

2.2 Metropolis-Hasting Algorithm

Idea: starting from some homogeneous chain, i.e. an arbitrary transition matrix, on
a finite state space E and a given distribution 7 we want modify the chain so that the new

chain obtained has as stationary distribution 7.

Let us take an arbitrary irreducible transition matrix Q = (g;;)i jeE,
called the candidate — generating matrix, and a collection of probabilities (0;;);, jek-
When the present state is i, the MCMC algorithm has the following steps:

Step 1. (Proposal) The next tentative state j is chosen with probability g; ;.

Step 2. (Acceptance-Rejection) If j # i, the new state j is accepted with probability ¢;; and
rejected, i.e. the chain does not move from i, with probability 1 — ;.

According to these two steps we can construct the transition matrix P = (p;;);. jek defined
by:

qij0j if j #1,
pij:{ o (2.3)

Indeed, for j = i, we have

=g+ Z ‘Izz azz
F#I

= Z iz — 2 qiz Qiz

z€E Z#1

= 1) qi0.

Z#I

In order to have 7 as stationary distribution of P we impose the DBE with the quite general

13



form, due to Hastings [6], of the acceptance probabilities

S,‘j
o = 2.4
ij 1+tij ( )

where S = (s;;)i jeE 18 @ symmetric matrix:

n(i)pij = 7(j)pji (2.5)
. 5ij . sji
ﬂ(l)%ﬁ = ”(])jSﬁ
lj jl

(L+t5)m(i)gij = (1 + )7 (f)q;i

In conclusion we can take (0
(1)qij
oo — ' (2.6)
Yom()gji

and therefore the DBE (2.5) is satisfied.

To conclude, it remains to impose the constraints @;; € [0, 1], so one must have
Sij <1+ (l,‘j /\tj,')

since the symmetry of S.

Taking equality, which corresponds to the Metropolis algorithm [7], we obtain

7(j)qji

o =1
Y " 7(i)qi

: (2.7)

Remark 6. It is important to observe that in the construction of P through the Hastings
algorithm, the dependence on 7 is only on the ratio 7(j)/7(i) and therefore to apply this
method it is sufficient to know 7 only up to a multiplicative constant.

Remark 7. If we take an irreducible candidate-generating matrix Q, we will obtain that

P is irreducible.

14



Metropolis-Hastings algorithm

Input: - finite state space E
- target distribution 7 on E

- candidate-generating irreducible transition matrix Q = (g;;)i jee

Output: - transition matrix P = (p;;); jer, defined by

gij (1 1 25 if j i

pij = N e
1—2#1-4],-2(1/\%) if j=i

15



Chapter 3

Markov Random Fields and Gibbs Fields

3.1 Neighborhoods and Local Specifications

We now want to extend the concept of Markov chains on the size of the working
space, that will allow us to model more complex situations in which the 1-dimensionality
of chains may not be enough. To this aim we present the random fields, as we did for a

generic stochastic process, and we will then give the markovianity conditions on them.

Definition 3.1.1 (Random Field). Let S be a finite set, with elements denoted by s and
called sites, and let A be a finite set called the phase space. A random field on S with

phase space in A is a collection X = {X(s)}es of random variables X (s) with values in
A.

A random field can be regarded as a random variable taking its values in the con figuration

space AS.

A natural generalization of the Markov property comes out observing that the Markov
property of a stochastic sequence {X,},>0 implies that for all n > 1, X,, is independent of
(Xp, k¢ {n—1,n,n+ 1}) given (X,_1,X,+1). In order to make rigorous this property for
Random fields let’s introduce a topology on the sites.

Definition 3.1.2 (Neighborhoods). A Neighborhood system on S is a family N = { 4} }scs
of subsets of S such that for all s € S,

(i) s¢ A5
(i) te Ny=s5€ N

The subset .45 is called the neighborhood of sites s,
the couple (S,N) is called topology,
the boundary of A — § is, by definition, the set 0A = (| J,c4 -45)\A.

16



Definition 3.1.3 (Markov Random Filed). The random field X is called a Markov random
filed (MRF), with respect to the neighborhood system N, if for all sites s € S the random
variables X (s) and X (S\.#;) are independent given X (_4;),
that is

P(X(s) = x(s)[X(S\s) = x(S\s)) = P(X(s) = x(s)|X (A5) = x(-45)) 3.1

VseS xeAS,
where A} := ;U {s}.

Markov fields are characterized by local interactions.

Definition 3.1.4 (Local Specification). The local characteristic of the MRF at sites s is
the function 7° : AS — [0, 1] defined by

7 (x) = 7 (x(s) |x(A5)) = P(X (s) = x(s)[X (A5) = x(A45)) (3:2)

The family {7°} ey is called the local specification of the MRF.

Let us see with the following condition that the distribution of a MRF is univocally

determined by the local specification.

Definition 3.1.5 (Positivity Condition). The probability distribution 7 on the finite con-
figuration space AS, where § = {1,2,..,K}, is said to satisfy the positivity condition
ifVjeS,xjeA,

(7j(xj) = 0) = (B(Y1,-,¥j—1,%,Yj+ 15 Yk) = 0) (3.3)
V y1,..,yk € A, where 7; is the marginal distribution of site j.

Theorem 3.1.1 (At Most One Distribution for a Local Specification). Two distributions
of a MRF with a finite configuration space A®, where S = {1,2,..,K}, that satisfy the
positivity condition and have the same local specification are identical.

Proof. Letx,y be two configurations in AS with non-null probability and 7 the distribution
of the field.
The positivity condition and 7(x), w(y) > 0 imply that: Vj € {1,..,K},

T(x1,..,Xj,Yj+1,--,Yk) > 0. Therefore, using Bayes’s formula, we have:

(Xl s X 1)
(Y|t 5 Xk—1)

717()6) = 7[()61,..,Xk,1,yk)
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First iterating the same argue, thanks to the finiteness of S, and then using the Markovian-
ity of the field we obtain:
K n(-xi’xh cXi—1,Yi+1, "ayK)
(x) = H T
T(yilx1, . Xi—1,Yit1, - VK)

i=1

K i

T (xla'-rxiayi-i—la“ayl()
:H i 7 (y)
1 T X1, Vi - VK )

Therefore, if the local specification is specified and y is fixed, then 7 is determined up to
the factor 7(y), which is determined by normalization.
O

Note that Theorem 3.1.1 is not true in general for an infinite number of sites, and this
is why the basic assumption on the finiteness of S was recalled. We will see, specified to
the Ising model dealing the phase transition that where S is infinite there may be several

distributions corresponding to a given local specification.

3.2 Cliques, Potential, and Gibbs Distributions

Consider the probability distribution on the configuration space AS

1
7w (x) = e T (3.4)
Zr
where T > 0 is the femperature, €(x) is the Energy function of a configuration x and Z7 is

the normalizing constant called Partition function.

The definition of such a measure, called under some conditions Gibbs Measure, is
particularly useful when we want to describe, from a mathematical point of view, an equi-
librium state of a physical system which consists of a very large number of interacting

components.

To manage the interactions of neighbors let us define, in this environment, what a

clique is.

Definition 3.2.1 (Clique). Any singleton {s} is a clique. A susetC S, |C| # 1, is a clique
of the topology (S,N) if Vs,r€S,s#t,s€ 4, and t € 5.
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Definition 3.2.2 (Gibbs Potential, Gibbs Distribution and Gibbs field). A Gibbs Potential
on AS relative to the neighborhood system N is a collection {V¢}ccs of functions
Ve : A5 — R U {+00} such that

(1) Ve =01if Cis not a clique,

(i) Vx,xeAS,VCcS,

X(C)=x(C) = Velx) =Ve(®) (3.5)

The energy function € : AS — R U {+0o0} is said to derive from the potential {V¢}ccs,
if
£(x) = > Velx) (3.6)
c

In this context, the distribution in (3.4), characterized by an energy which derives from a
Gibbs potential is called a Gibbs distribution. Similarly a MRF with a distribution equal
to a Gibbs distribution is called Gibbs field.

3.3 Gibbs-Markov Equivalence

Gibbs distributions, characterized by Gibbs potentials defined on a topology, are dis-

tributions of Markov field with respect to the same topology.

Theorem 3.3.1 (Gibbs field are Markov field). If X is a random field with a Gibbs distri-
bution 7, relative to the neighborhood system N, then X is Markovian with respect to the
same neighborhood system N.

Moreover, its local specification is given by the formula

s e~ 2 s Velx) e—gs(x)
(X) - Zla/\ e_ZCQ‘X'VC(Lx(S\s)) - Zla/\ 6_83(17)‘(5\5)’

T 3.7

where &(x) = > o, Ve (x) is the local energy at site s of configuration x.

Remark 8. The right-hand side of (3.7), by the point (ii) of the Definition 3.2.2, depends
on x only through x(s) and x(.45).

Indeed, V- (x) depends only on (x(¢),t € C) and if t,s € C clique, it follows that ¢ = s or
t e N

Proof. Thanks to the remark 8, if one can show that P(X(s) = x(s) | X(S\s) = x(S\s))
equals the right-hand side of (3.7), the Markov property and the equality (3.7) will be
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proven.
By definition and from the law of total probability,
7(x)

PIX(s) = x(s) | X(S\5) = (8\5)) = - s (3.8)

Moreover, we can write

TC(X) = %e_(ZCQs VC(X)"‘ZC% Ve(x))

and similarly

T, x(S\s)) = Lo~ (Seas Veha(S\9)+ Zep Ve@r(S\5)
’ Z
L e Velh$19) + Sy, Vel)
where the last equality follows from the fact that if C is a clique and s ¢ C, then
Ve(A,x(S\s)) = Ve(x) and in particular is independent of 4 € A.

Therefore, the formula (3.7) follows factoring out e~ Xcps V),
O

This result admits a converse part, which is important from a theoretical point of view,
because we can conclude that the two object apparently different, MRFs and Gibbs fields,

are essentially the same object.

Theorem 3.3.2 (Hammerslet-Clifford Theorem). Let & be the distribution of a MRF with
respect to a topology (S, N) satisfying the positivity condition. Then

for some energy function €(x) deriving from a Gibbs potential associated with the same

topology (S, N).

For the proof see [5].
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Chapter 4

2D Ising Model

In statistical physics the following model is regarded as a qualitatively correct ideal-
ization of a piece of ferromagnetic material, indeed it was introduced by Lenz in 1920,

solved in 1D by Ising in 1925, for understanding the phenom of phase transition.

4.1 Ising’s finite model

Let us defined
S =72 ={(i,j) € Z* : i,j € [1,m]} the set of the sites which represents the piece of
material whose sites represent particles;
A = {+1,—1} the phase space which represents the orientation of the magnetic spin at
given site and
N = {A;}ses the neighborhood system, where
N ={(s1,y2),(y1,52) €S [s2 —y2| = 1,]y1 — 51| = 1}, it will be useful to describe the

local interactions of the particles.

Figure 4.1: 1 = {t1,12,13,14}.

The Gibbs potential is
H
Vi (x) = =05

Vs> (x) =— %x(t)x(s)
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where < s,t > is the 2-element clique, r € .4;. Here k is the Boltzmann constant, H is
the external magnetic field and J is the internal energy of an elementary magnetic dipole.

Therefore, by (3.6) the Energy function associated to this potential is:

£(x) — —i S x(s)x(r) - %Zx(s) @.1)

<s,t> seS

As a consequence of the Theorem 3.3.1, for the Ising model the local energy at site s is

g(x)=——(J > x(t)+H)x(s) (4.2)
t;]s,t|=1
and the local characteristics are
L (JZ x(t)+H)x(s)
erT 1:]st|=1

ot (121;|s,z|=1x(f)+H) 4 o (JZt;\s,t\=1x(f)+H)

mr(x) = 4.3)

4.2 Phase Transitions

In a slightly generalization of the Ising model, with the distribution 77 associated to

the spins that is a Gibbs distribution of the form:
L —te
r(x) = —e T 4.4)
Zr

let us consider the energy function

e(x) =g(x)—

| =

N
> x(i) (4.5)
i=1

where the term &y (x) is considered symmetric on configurations x € A% =: E, with S enu-
merated as S = {1,..,N}.

The magnetic moment of configuration x is
m(x) = > x(i) (4.6)
i=1
and the magnetization is the average magnetic moment per site
M(H,T) 127:()() L s (4.7)
=— x)mx)=—<m>. .
TN N

xeE

22



Let us now see some some facts about the magnetization:

1. is an odd function of H:
M(—-H,T)=—-M(H,T). 4.8)

Indeed

therefore

—1<MH,T)< +1 (4.9)

3. is a nondecreasing function of H:

OM(H,T)

oH =0 (4.10)

Indeed, take E(x) = Eo(x) + E(x), where Ey(x) = kg&y(x) is the interaction energy
(assumed symmetric) and E; (x) = —Hm/(x).

The partition function Z, is now a function of 7" and H.

The free energy per site is f(H,T) = —kT%ln(Z).
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Observing that,

T 11 e_Eo<x>kTHm<x> m(x)
xeE kT
1 I _E@
=y —e T m(x)
xeE
1
=—<m>
N
=M(H,T),

it holds true

OuM(H,T) = % f(H,T)
1 Lo o 1o
1
NkT

(—<m>2+<m2>)>o.

M(0,T) =0 4.11)

since 7y (—x) = mr(x) when H = 0 and —m(x) = m(—x),

therefore the sum in (4.7) is null.
5. moreover, the magnetization is an analytic function of H.

However, the experiments seem to contradict the previous two last points. Indeed if
an iron bar is placed in a strong magnetic field H parallel to the axis, it is completely
magnetized (M (H,T) = +1), and if H is slowly decreased to 0 one can be observe that
M decreases, but tends to a limit M (0,7) = My > 0, called spontaneous magnetization, in
contradiction with the point 4. Moreover, from the point 1 we have a discontinuity of M
at H = 0, in disagreement with the analyticity of M with respect to H.

This discontinuity, called phase transition by physicists, occurs at room temperature
and if the temperature is increased, the spontaneous magnetization My decreases until it
reaches the value O at a certain temperature 7, called critical temperature (see Figure 4.2
below).

This gap that can be noted between the experience and the theory, below the critical

temperature, is due to the fact that the experimental results describe the situation in a ther-
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Figure 4.2: Magnetization and critical temperature [5]

modynamical limit N = +c0. For fixed but sufficient large N the theoretic magnetization
curve is analytic, but it present for all practical purposes the same aspect as if it had a
discontinuity.

Therefore, looking at the experimental results, it seems that, below the critical tem-
perature, the spontaneous magnetization has two possible "choices" when no external
magnetic field is applied.

We shall now explain this phenomenon within the Ising model with the Peierls’s Argu-

ment.

4.2.1 Peierls’s Argument

In the Ising model, considering the situation when no external magnetic field is ap-

plied, let us set H = 0. In this case the energy function is

e(x) = —J > x(s)x(t) (4.12)
<s,t>
where < s,¢ > represents an unordered pair of neighbors.
It is clear that the previous sum is well defined when S = {1,.., N} is finite, but when the
cardinal of § is infinite, in general is not defined for all configurations, and therefore is
not possible to define the Gibbs distribution 777 on A® by the formula (3.4). Nevertheless,
the local specification, according to the formula (4.3)

JDNEEIONG)

P 0) = B0 4 B (4.13)
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where B is ,up to a multiplicative factor, the inverse temerature,

is well-defined Vx € AS, since the sum is finite even S is not.

A probablity distribution 777 on AS, which admits a local specification as in (4.13),
is called a solution of DRL problem (Dobrushin (1965), Ruelle and Lanfrod (1969)).

Therefore, when S is finite, we know that there exists a unique solution given by (4.4),
since the sum in (4.12) is well-defined.
When S = Z?2, the existence of at least one solution of the DRL problem has be proven
by Dobrushin. One way of constructing a solution is to start from a solution on a finite
configuration space, for example taking as the set of sites Ky = Z> n [N, +N]?, and then
let N tend to infinity. More precisely:
let us take an arbitrary configuration z and the probability distribution ﬂéN) that has the
local specification (4.13) on AKN~1, then we extend it to AS considering the field frozen at
the configuration z outside Ky_1, i.e. E}N) (z(S\Kn—1)) = 1.
Now we can obtain a solution 77 of the DRL problem as follows:

VxeASand VA c S, |A| < +o0, exists the following limit

Jim 7Y (x(4)) = 77 (x(4)) (4.14)

and moreover, there exists a unique MREF, let us it call X, with local specification (4.13)

and characterized by the probability distribution
P(X(A) =x(A)) = mr(x(A)) (4.15)

VxeASandVAcS,|A| < +oo.

Remark 9. Note that E;N) depends on z only through the restriction of z to the boundary

oKy = Kn\Ky—_1.

If the DRL problem admits more than one solution, we will say that a phase transition

occurs.

In the sequel, it will be clear as the method that we have seen before to construct a
solution, can be useful also to prove the existence of the phase transition when it occurs. It
is sufficient to show that for two different configurations z1, z; and for a given finite subset
A c S, the left-hand of (4.14) is not uniquely determined since is different for z = z; and

for z = 25.
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Peierls applied the above program with z; = {+1}5, zp = {—1}% and A = {0,} to prove

that for sufficiently small values of T, there is a phase transition.

Let us introduce a few notations and definitions that will be useful to our aim .
We will indicate with nJ(rN) (risp. n'SN)) the restriction to Ky of the probability distribution
E;N) when z = z; (risp. z = 22).
We will call even (risp. odd) bound of a configuration x € AX¥ a clique < s,7 > such that
x(s)x(¢) =1 (risp. x(s)x(t) = —1) and we will indicate with n,(x) (risp. n,(x)) the number
of even (risp. odd) bounds.
For a fixed configuration x, we will denote with C(x;0) the circuit that is the boundary
of the largest connected, in the sense of the topology, group of sites with negative phase,
containing site 0. If x(0) = +1 then C(x;0) = .
We will denote with ¥ the configuration obtained by x reversing all the phases inside the
circuit C(x;0).

7 (RGN PR L O ) A
\ .r'-.'- 220000 "l.él—-—‘ border frozen at +1 (@)
'@ ® 000 00 Oe
:.:.....O.:.:
_ ®|0|® @O|® @ @@, circuit C(z;0) around 0
site zero J:.E. ~ .450 O oOle E.: of length 18
'® @800 O0(e e 00
E.E.OO..OOE‘E circuit C of length 10
" ®, ® ® @ (O O|0 0.
I EREREEREERY

Figure 4.3: Circuits in the Ising model [5]

Let us then proceed more formally with Peierls’s argument to demonstrate how the
phase transition occurs if 7 is large enough.

It is sufficient to prove that

1
™ (x(0) = —1) < 3 (4.16)
VNeN.
In fact, by symmetry of the problem, it holds true also that ﬂ(_N) (x(0) = +1) < % and
therefore 7/ (x(0) =—1) > %

Since the previous estimations are preserved passing to the limit N ' +oo, it implies
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that 7, (x(0) = —1) < 1 and 7_(x(0) = —1) %, i.e. the limiting distributions are not

identical.

Proof. Let x be a configuration in AV,
Observing that — > _ /- x(s)x(t) = ny(x) — ne(x) and ne(x) = M —ny(x), where M is the

total number of two-elements cliques, we can write

—2Bno(x)
M) = S (4.17)
Z-‘r

where ZSFN) is the normalization factor.

For a given circuit C around 0, by the law of total probability we have
—2Bng(x)

—2Bno(%)

—C efzﬁno(x)

Zx;C(x;O) Zx;C(x;O)=C €

Zy e—2ﬁn0 »)

M (C(x0) =) =

<
Zx;C(x;O) —c¢

Now, if x is such that C(x;0) = C, it follows that ng (%) = ng(x) — L, where L is the length
of C.

Therefore

In particular

Vw0 =-n< Y aewo=0< Y e
L—
C around 0 4,6, 21(N)
where r(L) is the number of nonempty circuits around O of length L and f(N) is s.t.
limy— 40 f(N) = +00.
Observe that
r(L) <4173

Indeed a circuit around O of length L must have at least one point at distance L/2, or
less, from 0; there are L? way of selecting such point and at most 4 ways of choosing the
segment of C starting from this point, then at most 3 ways of choosing the next connect

segment and so on. .., see [8] for more additional observations.
Therefore

A0 =-1< Y 42@e P

L=
4767' 72f(N)
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Now, 3, 46 L?xL < 3% L2xL and the latter series has radius of convergence 1;
so we can conclude that

if 3¢=2P is small enough,or equivalently T is large enough, it holds

vV NeN.

4.3 Simulations via the Metropolis-Hastings Algorithm

The aim of this section is to show, with a more practical approach, that in the 2-D
Ising model the phase transition occurs. Let us give some motivations that should better

clarify the simulation that is presented below.

4.3.1 Motivations

In the 2D square-lattice Ising model, with the same notations introduced in the Section
4.1 and in the absence of the external magnetic field, let us set J = 1 for a simplified

version of the Energy function, that results to be
e(x) =— > x(s)x(r), (4.18)

according to the formula (4.1).

Therefore, we can define the Gibbs distribution 75 associated to the spins as

75 () = P a0 (4.19)

= Z ,
where f3 is up to a multiplicative factor the inverse temperature.

Our aim is to show that a phase transition occurs, with respect to the parameter f3,

estimating the mean of the square of the observable

2.ix()

NZ

i(x) = xeA, (4.20)

where N in this case is the dimension of the set of the sites S = Z3,.

Indeed, thinking of a piece of ferromagnetic material, represented by the lattice-square,
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where the spins are distributed according to the probability distribution 7g, for large
enough values of f3, i.e. low temperature values, the system, for any initially possible
configuration of the states, via only interactions between its pairs of spin, tends over time
to minimize internal energy by arranging its configuration in the most orderly possible
way, showing a complete magnetization.

On the other hand, for sufficient low values of 3, i.e. large temperature values, the system
is in a state of high excitement, it completely loses its magnetic properties and fails to

arrange its configuration as in the opposite situation previously presented.

4.3.2 Simulations

Before simulating the model, we would point out our choice to work on the Ising

model, where the set of sites is the torus-lattice-square S = Z3,.

Figure 4.4: torus-lattice-square Z2

The idea behind the simulation is to generate a Markov chain with values in the state
space AS, A = {4+1,—1}, which definitively is homogeneous and it has the stationary
Gibbs distribution g of the form (4.19), let us call X = {X,},> this homogeneous chain.
The first obstacle that we may expect, is to numerically calculate the partition function Zg.
To overcome this aspect, one of the possible choices, is to simulate via the Metropolis-
Hasting algorithm, we have seen in the Chapter 2 that is able to cope with this apparent
problem.

We are now able, with the chain X and thanks to the Ergodic Theorem 1.5.2, to estimate
the mean of /7>,

Therefore, starting for any initial distribution, i.e. for any initial configuration of the spins,

we obtain that

1 N
Eg, () ~ I >t (X;) (4.21)
k=1
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Let us illustrate the results of the simulations.

0.8 ; |

0.7 £ 1

0.5 4 1

03} F 1

0.2r 1

0<3<1

Figure 4.5: S = 73,

We can see how the behavior of the mean Enﬁ (ﬁaz) , as function of 3, changes between
the two opposite states 0 and +1, in accordance with the reasons we had made explicit
above.

Indeed, the distribution g, is reduced to being an uniform distribution for small value of
B. Moreover, with high probability, the spins configuration is randomly arranged and the
observable 7 has a null mean.

In the opposite situation, when f3 is large enough, the largest values of the distribution 7g,
are on the configurations with spins of the same value and vice versa.

Therefore the mean of /? gets closer to +1 as 3 increases.
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Conclusions

The present thesis studies the Ising model both from a theoretical and simulation per-
spective. Historically the Ising model was initially proposed by the physicists Ernest Ising
and Wilhelm Lenz as a model of spontaneous magnetization of materials, but nowadays
possible applications of the Ising model and its variations are almost uncountable, rang-
ing from physics to economics, from neurosciences to quantitative sociology. Indeed the
Ising model became a paradigmatic model in complex system science. The reasons of its
success are grounded on the fact although simple to define, the Ising model has a fairly

complicated behavior, showing the phenomenon of phase transition.

In Chapters 1 and 3 theoretical results about Markov chains and Markov fields that
are useful in the sequel of the thesis are collected. Here, an attempt has been made to
make this part self-contained, presenting it not only as an instrumental. In this regard, we
included almost all the proofs of the results presented in these chapters, as we skipped
only few technical demonstrations.

In Chapter 2, we present the Metropolis-Hasting algorithm in its most general form,
specifying the peculiarities that give its own importance.

In Chapter 4, we define the Ising model and study the phenomenon of phase transi-
tion using a probabilistic language. In particular we focus on the 2D Ising model and we
prove the existence of a phase transition using Peierls’ contours. This famous Peierls’
argument is an elegant and effective geometric-combinatorial approach to the problem,
generalizable to more complex models, which is effective to prove the existence of the
phase transition. To compute the value of the critical point of the model is a much more
difficult task and it is out of the scopes of the present work. However, in the last part of
the thesis, we simulated the Ising model through the Metropolis-Hasting algorithm, via
the Matlab platform. The results of our simulations are compatible with a critical value

of B(~ 0.44), as predicted by the Onsager’s solution of the 2D Ising model.

A further study on these subjects could be about the latest more practical aspect of
the simulations. In order to be able to verify via simulations a sharper phase transition
and, thus, a more accurate value of the critical point for which it occurs, optimizing the
implemented algorithm could be useful for applications. An other aspect that could be
considered, could be the ratio between the size of the model and the number of itera-
tions of the algorithm necessary to produce the results and more generally the study of

computational complexity.
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Matlab Code

Ndim=%25;
Niter=%9.%10.%"6;
Beta=%0:.02:1;

iter=1:Niter;
X=(-1) ."randi (2,Ndim) ;

M=[];

for beta=Beta
Y=X;
m=[];

for k=iter
i=randi (Ndim) ;

j=randi (Ndim) ;

v=[1;
if (((i~=1) && (i~=Ndim)) && ((j~=1) s&&
v(l)=Y(i+1l, 3J);
v(2)=Y(1i,3+1);
v(3)=Y(i-1,3);
v(4)=Y(i,3-1);
elseif ((j~=1) && (j~=Ndim))
if i==
v(1)=Y(i+1,3);
v (2)=Y (i, 3+1);
v (3)=Y (Ndim, J) ;
v(4)=Y(i,3-1);
else
v(1)=Y(1,3);
v(2)=Y(1i,3+1);
v(3)=Y(i-1,73);
v(4)=Y(i,3-1);
end
elseif ((i~=1) && (i1~=Ndim))
if ==
v(1l)=Y(i+1, 3);
v(2)=Y(i,3+1);
v(3)=Y(i-1,7);
v(4)=Y(i,Ndim) ;

35



39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

else

end
s=sum (V)
ratdistr
a=min (1,
u=rand;
if (u <=

Y (i,

end

else

end

if i==Ndim
v(l)=Y(1,3);

else
v(1l)=Y(i+1l,j);end

if j==Ndim
v(2)=Y(i,1);

else
v(2)=Y (i, j+1) ;end

if i==
v (3)=Y (Ndim, j);

else
v(3)=Y(i-1,j);end

if j==1
v(4)=Y(i,Ndim);

else
v(4)=Y (i, j-1);end

4

=exp ((-2) .xbeta.*Y (i, j) .*s);

ratdistr);

a)
):_Y(j—/ j);

m(k)= sum(sum(Y)) ./ (Ndim."2) ;

end
M (length (M) +

end

1)=sum(m((900000+1) :end) .”2) ./ (Niter—-(900000));
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