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Introduction

The Ising model was born in the field of statistical mechanics, to describe the ferromag-

netism of materials. This model dates back to 1920 [1], when the physicist Wilhelm Lenz

proposed it to his student Ernst Ising, as a problem to investigate the phase transition,

from paramagnetic state to ferromagnetic state of some materials. Ising solved it in 1-

dimension (1924), publishing in his thesis (1925) that no phase transition occurs [2].

For what concerns the 2-dimensional (or more) square-lattice Ising model, much harder

of the 1-dimensional one, we have to wait until 1936 when Rudolph Peierls proved for

the firs time the possibility of a spontaneous magnetization, using what is now called a

Peierls argument [3]. Only in 1944, Lars Onsager proposed an analytical solution to the

problem of phase transition in the Ising model, with no external magnetic field [4].

Even if the model was introduced in the field of physics, it’s now widely accepted in

the mathematical literature, thanks to the many tools it uses, such as graph theory, com-

binatorics and certainly the theory of probability, to name a few ones. In its simplest

formulation, the Ising model is based on discrete variables, which we call spins. As hap-

pens in reality, such spins are characterized by having interactions that strongly depend on

the proximity they have with each other. For this purpose, a topology that makes this idea

precise and formal is introduced. As we will see, this topology does not have particularly

stringent rules. For this reason, this model represents the paradigm of collective phenom-

ena, that are certainly presented not only in many other realities of physics, but also in

many other areas such as opinion theory, genetic statistics, neuroscience, economics and

environmental sciences.

In this regard, simulating the model computationally is very important and of practical

interest. As it often happens, evaluating numerically this model in a direct way is diffi-

cult, due to the large amount of data that must be processed from a number of inputs not

high at all. This is why the model is simulated via Monte Carlo methods. Since it has

a characteristic stochastic aspect, the Markov chain Monte Carlo methods are even more

useful in this case. Indeed, this class of computational algorithms uses randomness to

obtain estimates of quantities that converge in probability to those desired. In particular

do it by constructing a Markov chain that has a specific stationary distribution .

In this thesis, we present the 2-dimension Ising model and its occurrence of phase

transition from a purely probabilistic point of view, without going into the more physical

as well as analytic aspects of the issue.

An extensive initial part is dedicated to introducing the fundamental and basic concepts

of the theory behind the model. For this purpose we introduce the homogeneous Markov
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chains to get to the Markov random fields and Gibbs fields. We will also focus on some

introductory aspects of the theory of the stability of Markov chains to prove the very

powerful Ergodic theorem and to complete this theoretical framework. The theorem is

the operating principle of the Metropolis-Hastings algorithm (one of the first and funda-

mental among the MCMC methods), whose usefulness in this thesis can be appreciated

by showing the phase transition from a practical point of view throughout the simulations.

In addition the Peierls argument is also considered for its historical importance.
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Chapter 1

Basics of Homogeneous Markov Chain

and the Ergodic Theorem

1.1 Homogeneous Markov Chains

Let us start introducing the key object that will make the whole work possible.

In order to represent a process that evolves in a discrete-time, from a probabilistic point

of view, the starting point is to define what is a Stochastic Process.

Definition 1.1.1 (Stochastic Process). A sequence tXnunPN, of random variables, with

with values in a set E, called the state space, is called a discrete-time Stochastic Process.

In this context the time is indexed by n P N and we assume that E is countable. More-

over we will say that if Xn “ i, the process is in state i at time n.

Among all these possible processes, in particular we are interested to Markov chains and

more specifically in which ones are homogeneous over the time.

Definition 1.1.2 (Markov Chains and Homogeneous Markov Chains). A stochastic pro-

cess tXnuně0 with state space E, is called a Markov Chain if it satisfies the following

property, called Markov property

PpXn`1 “ j|Xn “ i,Xn´1 “ in´1, ..,X0 “ i0q “ PpXn`1 “ j|Xn “ iq (1.1)

@ n P N; @ j, i, in´1, .., i0 P E.

In particular, if the right-hand side of (1.1) is independent of n it is called an Homogeneous

Markov Chains [HMC], i.e. it holds

PpXn`1 “ j|Xn “ iq “ mi j. (1.2)

To paraphrase the above definition, in a Markov chain the future Xn “ j and the past

Xn´1 “ in´1 are independent, given the present Xn “ in.
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Focusing our attention on the HMCs, it is natural to define the main object that character-

ized any chain. From the property (1.2) it is possible to define the matrix M “ pmi jqi, jPE ,

called the Transition Matrix of the HMC tXnuně0.

Remark 1. Since the entries of the transition matrix M “ pmi jqi, jPE are probabilities and

the chain in state i must move to some state, it holds true that M is a Stochastic Matrix,

that is

mi j ě 0,
ÿ

kPE

mik “ 1 @i, j P E. (1.3)

1.2 Stationarity

Let us introduce the notion of stationarity, an important concept in the stability theory

of HMCs.

Definition 1.2.1 (Invariant Measure/Distribution). Let X “ tXnuně0 be an HMC with val-

ues in the state space E and transition matrix M “ pmi jqi, jPE . The measure, or the proba-

bility distribution, π “ pπpiqqiPE is said stationary or invariant for the chian X if

πM “ π (1.4)

or equivalently,
ÿ

iPE

πpiqmi j “ πp jq @ j P E (1.5)

Iterating (1.4) it follows that πMn “ πMMn´1 “ . . . “ π . Therefore, if the initial state

of the chain is chosen according to the stationary distribution, i.e. PpX0 “ iq “ πpiq, we

obtain that

PpXn “ iq “ pπMnqi “ πpiq

and also

PpXn “ i,Xn`1 “ in`1, . . . ,Xn`k “ in`kq “ PpXn “ iqmipi`1q ¨ ¨ ¨mpn`k´1qpn`kq

“ πpiqmipi`1q ¨ ¨ ¨mpn`k´1qpn`kq.

In this sense we say that the chain is stationary, because if the chain starts according to

the stationary distribution, the probability PpXn “ iq depends only on π and not on the

time n, in other words a chain starting in equilibrium remains in equilibrium.
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Let us give a sufficient condition for the stationarity of a distribution.

Theorem 1.2.1 (Detailed Balance Test [DBT]). Let X “ tXnuně0 be an HMC with values

in the state space E and transition matrix M “ pmi jqi, jPE .

If the probabity distribution π on E satisfies the detailed balance equation (DBE):

πpiqmi j “ πp jqm ji @i, j P E, (1.6)

then π is stationary for X .

Proof. Summing on the all possible state and recalling that M is a stochastic matrix, it

follows that πpiq “
ř

jPE πpiqmi j “
ř

jPE πp jqm ji.

1.3 Strong Markov Property and Regeneration

In order to give a generalization of the Markov property let us introduce the notion of

stopping time.

Definition 1.3.1 (Stopping Time). Let X “ tXnuně0 be a stochastic process.

A random variable τ with values in NY t`8u is called stopping time, with respect to

X , if the event tτ “ mu does depend only on X0,X1, ..,Xm, i.e. tτ “ mu depends on the

trajectories of the process X up to m.

Example 1 (Return times). Let X “ tXnuně0 be an HMC with values in E and define

Ti “ in f tn ě 1 : Xn “ iu the return time to state i.

Ti is a stopping time since we can write tTi “ mu “ t
řm

k“1✶tXk“iu “ 1,Xm “ iu.

Example 2 (Successive return times). In the same setting as Example 1, define tτ ju jě1 by

τ1 “ Ti “ in f tn ě 1 : Xn “ iu, τ j “ in f tn ą τ j´1 : Xn “ iu @ j ě 2.

tτ ju jě1 is a sequence of stopping times, since we can write

tτ j “ mu “ t
řm

k“1✶tXk“iu “ j,Xm “ iu.

With these elements we can give the following theorem that allows us to generalize

the Markov property, that is very useful in applications.

Theorem 1.3.1 (Strong Markov Property). Let X “ tXnuně0 be an HMC with values in

the state space E and transition matrix M “ pmi jqi, jPE .

Let τ be a finite stopping time, with respect to X .

Then:
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(i) @ i0, i1, .., i, j1, j2, .., jk P E,

PpXτ`1 “ j1,Xτ`2 “ j2, ..,Xτ`k “ jk|Xτ “ i,Xτ´1 “ iτ´1, ..,X0 “ i0q

“PpXτ`1 “ j1,Xτ`2 “ j2, ..,Xτ`k “ jk|Xτ “ iq

“mi j1m j1 j2 ¨ ¨ ¨m jk´1 jk ;

(ii) the process Y “ tYnuně0 “ tXτ`nuně0 is an HMC with the same transition matrix

M “ pmi jqi, jPE of X .

For the proof see [5].

Now, let us denote by

Ni “
ÿ

ně1

✶tXn“iu (1.7)

the number of visits to state i, in particular after the initial state at time 0.

Remark 2. Consider an HMC starting from state 0 and such that P0pN0 “ `8q “ 1 and

let the sequence τ0 “ 0,τ1 “ T0,τ2, .. be that one of the successive return times to 0.

By the Theorem (1.3.1), for any k ě 1, the process after τk is independent of the process

before τk. In particular the process after τk is a Markov chain with the same transition

matrix of the process that generated it.

Therefore, as a consequence of the Strong Markov Property we have the following

Corollary 1.3.1.1 (Regenerative Cycles). Let tXnuně0 be an HMC, with initial state 0 and

such that P0pN0 “ `8q “ 1.

Let pτnqně0, τ0 “ 0, be the successive return times to 0.

Then, the pieces of trajectories

tXτk
,Xτk`1, ..,Xτk`1´1u, k ě 0

called regenerative clicles, are independent and identically distributed.

In particular, the sequence tτk ´ τk´1ukě1 is i.i.d. .

1.4 Recurrence

Let us focus on the number of visits to a state.

Denoting by f ji “ PjpTi ă `8q the probability of the return time to state i
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starting from j,then it follows

PjpNi “ rq “

#

f ji f r´1
ii p1 ´ fiiq, r ě 1

1 ´ f ji, r “ 0
(1.8)

Remark 3. Observing that PipNi “ rq “ f r
iip1 ´ fiiq, r ě 0, it follows

PipTi ă `8q “ 1 ðñ PipNi “ `8q “ 1 (1.9)

Furthermore,

EipNiq “
ÿ

rě1

r f r
iip1 ´ fiiq

“ fii

ÿ

rě1

r f r´1
ii p1 ´ fiiq

“ fiiEpGeop1 ´ f iiqq

“
fii

1 ´ fii
,

Therefore, we obtain the following equivalence

EipNiq ă `8 ðñ PipTi ă `8q ă 1. (1.10)

It is possible to classify a state, with respect to the chain under consideration, depend-

ing on its number of visits. To this aim we give the following

Definition 1.4.1 (Positive/Null-recurrent and transient state). Consider a stochastic pro-

cess with values in E and let Ti be first return time to state i P E.

Then the state i is called

1. recurrent if PipTi ă `8q “ 1, in particular is said

- positive recurrent if it also holds EipTiq ă `8

- null recurrent if it also holds EipTiq “ `8

2. transient if PipTi ă `8q ă 1.

Now we give a criterion for recurrence which is called the Potenial Matrix Criterion.

Let tXnuně0 be an HMC with values in E and with transition matrix M “ pmi jq, we will
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use the following notation

mi jpnq “ pMnqi j “ PipXn “ jq.

Theorem 1.4.1 (Potential Matrix Criterion [PMC]). State i P E is recurrent if, and only

if,
`8
ÿ

n“0

miipnq “ `8 (1.11)

Proof. Observing first that

PipTi ă `8q “ 1
remark3
ðñ EipNiq “ `8

the thesis follows rewriting the condition (1.11), indeed

`8
ÿ

n“0

miipnq “
ÿ

ně0

PipXn “ iq

“
ÿ

ně0

Eip✶tXn“iuq

“ Eip
ÿ

ně0

✶tXn“iuq

“ EipNiq.

Continuing the study of the recurrence properties, we shall now prove that the recur-

rence is a (communication) class property.

Let us start with a definition.

Definition 1.4.2 (Communicating states). Given an HMC X “ tXnuně0 with values in E,

we say that the state i and j communicate if there exist a trajectory of X from i to j,

i.e. D n s.t. PipXn “ jq ą 0.

As a direct theoretical application of the PMC we have the following

Theorem 1.4.2 (Recurrence is a class property). If i and j communicate, they are either

both recurrent or both transient.

Since in an irreducible HMC all the states communicate, it holds the following

Corollary 1.4.2.1. An irreducible HMC has all its states of the same nature: recurrent or

transient.
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In this sense we will say that a chain is recurrent or transient.

A slight generalization of the Potential Matrix Criterion is possible when we are treat-

ing an irreducible HMC, let us call X such a chain.

Indeed, with the same notations of the Theorem 1.4.1, we have that

1. X is recurrent if, and olnly if,

E jpNiq “
ÿ

ně1

m jipnq “ `8 @i, j P E; (1.12)

2. X is transient if, and olnly if,

E jpNiq “
ÿ

ně1

m jipnq ă `8 @i, j P E. (1.13)

These observations are useful to obtain the following

Theorem 1.4.3. A finite (i.e. |E| ă `8) and irreducible HMC is recurrent.

Proof. Assume by contradiction that the chain X is transient.

By (1.13) it follows
ÿ

ně1

m jipnq ă `8,@i, j P E.

Therefore, since |E| ă `8, it holds

ÿ

iPE

ÿ

ně1

m jipnq ă `8,

then, recalling that M is a stochastic matrix, it is also true

ÿ

iPE

ÿ

ně1

m jipnq “
ÿ

ně1

ÿ

iPE

mi jpnq “ `8.

The continuation of the theory that follows will be aimed at proving that a finite state

irreducible HMC is positive recurrent.

This result is clear that it is quite understandable because, if it were not so, the states

would be visited in a finite number of times and therefore after a random time no state

would be visited anymore. Let us we now proceed formally.
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Theorem 1.4.4. Let X “ tXnuně0 be an irreducible and recurrent HMC with values in

E “ t0,1, ..u and transition matrix M “ pmi jqi, jPE .

For k P E, let Tk be the return time to state k.

Set for any i P E, Åxi
k “ Ekp

ř

ně1✶tXn“iu✶tnďTkuq.

Then:

1. Åxi
k ą 0 @i P E

2. Åxk “ p Åxi
kqiPE is a stationary measure for M.

Moreover, the invariant measure of such a chain is unique up to a multiplicative factor.

For the proof see [5].

Remark 4. Observe that

ÿ

iPE

ÿ

ně1

✶tXn“iu✶tnďTku “
ÿ

ně1

˜

ÿ

iPE

✶tXn“iu

¸

✶tnďTku

“
ÿ

ně1

✶tnďTku

“ Tk.

Therefore,
ÿ

iPE

Åxi
k “ EkpTkq. (1.14)

The following useful corollary is easily obtained from the Theorem 1.4.4 and the

Remark 4.

Corollary 1.4.4.1. An irreducible, recurrent HMC is positive recurrent if, and only if,

ÿ

iPE

yi ă `8

where pyiqiPE is an invariant measure for the chain.

Remark 5. Thanks to this last result, it follows by the normalization of the invariant

measure, that an irreducible and positive recurrent HMC admits an invariant distribution,

moreover which is unique.

There is also the converse part of the Remark 5, that we give it in the following

Theorem 1.4.5. An irreducible HMC which admits a stationary distribution is positive

recurrent.

8



Proof. Let M be the transition matrix of the chain and π be the invariant distribution.

Therefore,

πpiq “
ÿ

jPE

πp jqm jipnq @i P E,@n ě 1 (1.15)

Assume that the chain is transient, then by the observation in (1.13) it follows that

lim
nÑ`8

m jipnq “ 0.

Taking the limit in (1.15), for any i P E we have

πpiq “ lim
nÑ`8

ÿ

jPE

πp jqm jipnq

˚
“

ÿ

jPE

πp jq lim
nÑ`8

m jipnq “ 0

in contradiction with the normalisation constraint.

Therefore, the chain must be recurrent and the thesis follows thank to the Corollary

1.4.4.1.

(The equality * follows from the Dominated Convergence theorem for series)

Finally, we have all the tools to demonstrated the following

Theorem 1.4.6. A finite state space irreducible HMC is positive recurrent.

Proof. A finite space HMC, which is irreducible, is recurrent.

Therefore, by Theorem 1.4.4 it admits an invariant measure that can be normalized since

the space state is finite. The thesis follows by Theorem 1.4.5.

1.5 The Ergodic Theorem

We now want to present an important theorem, very powerful in applications, which

is the Markov chain equivalent version of the Strong Law of Large Numbers (SLLN) re-

called below, the Ergodic Theorem.

Let us start first with a definition.

Definition 1.5.1 (Almost-surely convergence). A sequence pZnqně1 of real random vari-

ables converges almost surely to a real number z, with respect to probability measure P,
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if it holds

P
`

lim
nÑ`8

Zn “ z
˘

“ 1.

Theorem 1.5.1 (SLLN). Let tXnuně1 be an i.i.d. (independent and identically distributed)

sequence of random variables, such that Ep|X1|q ă `8.

Consider the empirical mean Sn “ 1
n

řn
i“1 Xi, then

lim
nÑ`8

Sn
P´a.s.

“ EpX1q (1.16)

Theorem 1.5.2 (Ergodic Theorem). Let tXnuně0 be an irreducible, positive recurrent and

homogeneous Markov chain with values in the state space E.

Let π be the invariant distribution of the chain and f : E Ñ R be a function such that

Eπp| f |q “
ÿ

iPE

| f piq|πpiq ă `8.

Then, for any initial distribution µ , it hold true the following:

lim
nÑ`8

1

n

n
ÿ

k“1

f pXkq
Pµ ´a.s.

“ Eπp f q “
ÿ

iPE

f piqπpiq, (1.17)

where Pµ is the law of chain when the initial distribution is µ .

Proof. Without loss of generality, take f : E Ñ R, f ě 0. The general case follows con-

sidering the positive and negative part of f , f “ f ` ´ f ´.

Let τ0 ” 0,τ1 ” T0,τ2, . . . be the sequence of the successive return times to 0 P E and

define

ωp “

τp`1
ÿ

τp`1

f pXiq, p ě 0.

We know that tωpupě0 is an i.i.d. sequence of random variables, which have finite mean

Epω0q “ E0

˜

T0
ÿ

i“1

f pXiq

¸

“ E0

˜

T0
ÿ

i“1

ÿ

jPE

f pX jq✶tXi“ ju

¸

“
ÿ

jPE

f pX jqE0

˜

T0
ÿ

i“1

✶tXi“ ju

¸

“
ÿ

jPE

f pX jq Åx j
0
,
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where p Åx j
0q jPE is the invariant measure defined in the Theorem 1.4.4.

Now we can apply the SLLN to say

lim
nÑ`8

1

n

τn`1
ÿ

i“1

f pXiq “ lim
nÑ`8

1

n

n
ÿ

p“0

ωp

Pµ ´a.s.
“

ÿ

jPE

f pX jq Åx j
0
. (1.18)

Observing that

τgpnq ď n ď τgpnq`1 (1.19)

where τgpnq “
`
řn

k“1✶tXk“0u

˘

, we can write

řτgpnq

k“1 f pXkq

gpnq
ď

řτn

k“1 f pXkq

gpnq
ď

řτgpnq`1

k“1 f pXkq

gpnq
.

Therefore,

taking the limits for n Ñ `8 and observing that gpnq
nÑ`8
ÝÑ `8 since the chain is positive

recurrent, it follows from (1.18)

lim
nÑ`8

1

gpnq

n
ÿ

k“1

f pXkq
Pµ ´a.s.

“
ÿ

jPE

f p jq Åx j
0 (1.20)

Now, taking f ” 1, the latter equality implies that

lim
nÑ`8

n

gpnq

Pµ ´a.s.
“

ÿ

jPE

Åx j
0 (1.21)

Therefore

lim
nÑ`8

n
ÿ

k“1

f pXkq “ lim
nÑ`8

gpnq

n

1

gpnq

n
ÿ

k“1

f pXkq

Pµ ´a.s.
“

ÿ

jPE

f p jq
Åx j

0

ř

jPE Åx j
0

“
ÿ

jPE

f p jqπp jq

“ Eπp f q

11



Chapter 2

A MCMC Method:

The Metropolis-Hasting Algorithm

2.1 General Principle and MCMC methods

Let us start from the following problem.

Consider the configuration space EN “ Λ
SN , where Λ “ t´1,`1u and the set of the sites

SN “ t1, ..,Nu is finite. Take a distribution π “ pπpiqqi“1,..,|EN | on EN and a function

f : EN Ñ R.

Suppose we want to compute numerically the average

Eπp f q “
ÿ

iPEN

f piqπpiq (2.1)

In the vast cases of applications, it is not taken granted the previous computation is

effectively numerically possible. For instance:

- the cardinality |EN | “ 2N may be very large even N is not,

assuming N “ 100 ñ |EN | Á 1030;

- the distribution π is known only up to a normalizing factor,

we will see in the chapter 3 that this is the case of a Gibbs distribution , for which the

partition function is usually uncomputable in closed form.

In order to overcome such a difficulty we can think of giving up the exact result of the av-

erage and proceed through ergotic estimates. To this aim, a powerful tools are the Makov

chain Monte Carlo (MCMC) methods.

MCMC methods are algorithms to build an homogeneous Markov chain (HMC) tXnuně0

with a given stationary measure/distribution π .

Therefore if we are able to construct an irreducible HMC, which is an ergodic chain

by the finiteness of the state space EN , thanks to the Ergodic Theorem we can estimate

12



the average through

lim
NÑ`8

1

N

N
ÿ

n“1

f pXnq
Pµ a´s

“ Eπp f q (2.2)

for any initial distribution µ .

In the sequel we will see the Metropolis-Hastings algorithm, a particular form of a

MCMC methods.

2.2 Metropolis-Hasting Algorithm

Idea: starting from some homogeneous chain, i.e. an arbitrary transition matrix, on

a finite state space E and a given distribution π we want modify the chain so that the new

chain obtained has as stationary distribution π .

Let us take an arbitrary irreducible transition matrix Q “ pqi jqi, jPE ,

called the candidate ´ generating matrix, and a collection of probabilities pαi jqi, jPE .

When the present state is i, the MCMC algorithm has the following steps:

Step 1. (Proposal) The next tentative state j is chosen with probability qi j.

Step 2. (Acceptance-Rejection) If j ‰ i, the new state j is accepted with probability αi j and

rejected, i.e. the chain does not move from i, with probability 1 ´ αi j.

According to these two steps we can construct the transition matrix P “ ppi jqi, jPE defined

by:

pi j “

#

qi jαi j if j ‰ i,

1 ´
ř

z‰i qizαiz if j “ i.
(2.3)

Indeed, for j “ i, we have

pii “ qii `
ÿ

z‰i

qizp1 ´ αizq

“
ÿ

zPE

qiz ´
ÿ

z‰i

qizαiz

“ 1 ´
ÿ

z‰i

qizαiz.

In order to have π as stationary distribution of P we impose the DBE with the quite general
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form, due to Hastings [6], of the acceptance probabilities

αi j “
si j

1 ` ti j
(2.4)

where S “ psi jqi, jPE is a symmetric matrix:

πpiqpi j “ πp jqp ji (2.5)

πpiqqi j

si j

1 ` ti j
“ πp jqq ji

s ji

1 ` t ji

p1 ` t jiqπpiqqi j “ p1 ` t jiqπp jqq ji

In conclusion we can take

ti j “
πpiqqi j

πp jqq ji
(2.6)

and therefore the DBE (2.5) is satisfied.

To conclude, it remains to impose the constraints αi j P r0,1s, so one must have

si j ď 1 ` pti j ^ t jiq

since the symmetry of S.

Taking equality, which corresponds to the Metropolis algorithm [7], we obtain

αi j “ 1 ^
πp jqq ji

πpiqqi j
. (2.7)

Remark 6. It is important to observe that in the construction of P through the Hastings

algorithm, the dependence on π is only on the ratio πp jq{πpiq and therefore to apply this

method it is sufficient to know π only up to a multiplicative constant.

Remark 7. If we take an irreducible candidate-generating matrix Q, we will obtain that

P is irreducible.
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Metropolis-Hastings algorithm

Input: - finite state space E

- target distribution π on E

- candidate-generating irreducible transition matrix Q “ pqi jqi, jPE

Output: - transition matrix P “ ppi jqi, jPE , defined by

pi j “

$

&

%

qi j

`

1 ^
πp jqq ji

πpiqqi j

˘

if j ‰ i

1 ´
ř

z‰i qiz

`

1 ^ πpzqqzi

πpiqqiz

˘

if j “ i
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Chapter 3

Markov Random Fields and Gibbs Fields

3.1 Neighborhoods and Local Specifications

We now want to extend the concept of Markov chains on the size of the working

space, that will allow us to model more complex situations in which the 1-dimensionality

of chains may not be enough. To this aim we present the random fields, as we did for a

generic stochastic process, and we will then give the markovianity conditions on them.

Definition 3.1.1 (Random Field). Let S be a f inite set, with elements denoted by s and

called sites, and let Λ be a finite set called the phase space. A random f ield on S with

phase space in Λ is a collection X “ tXpsqusPS of random variables Xpsq with values in

Λ.

A random field can be regarded as a random variable taking its values in the con f iguration

space Λ
S.

A natural generalization of the Markov property comes out observing that the Markov

property of a stochastic sequence tXnuně0 implies that for all n ě 1, Xn is independent of

pXk,k R tn ´ 1,n,n ` 1uq given pXn´1,Xn`1q. In order to make rigorous this property for

Random fields let’s introduce a topology on the sites.

Definition 3.1.2 (Neighborhoods). A Neighborhood system on S is a family N “ tNsusPS

of subsets of S such that for all s P S,

(i) s R Ns

(ii) t P Ns ñ s P Nt

The subset Ns is called the neighborhood of sites s,

the couple pS,Nq is called topology,

the boundary of A Ă S is, by definition, the set BA “ p
Ť

sPA NsqzA.
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Definition 3.1.3 (Markov Random Filed). The random field X is called a Markov random

f iled (MRF), with respect to the neighborhood system N, if for all sites s P S the random

variables Xpsq and XpSz ˜Nsq are independent given XpNsq,

that is

PpXpsq “ xpsq|XpSzsq “ xpSzsqq “ PpXpsq “ xpsq|XpNsq “ xpNsqq (3.1)

@ s P S,x P Λ
S,

where ˜Ns :“ Ns Y tsu.

Markov fields are characterized by local interactions.

Definition 3.1.4 (Local Specification). The local characteristic of the MRF at sites s is

the function πs : Λ
S Ñ r0,1s defined by

πspxq “ πspxpsq|xpNsqq “ PpXpsq “ xpsq|XpNsq “ xpNsqq (3.2)

The family tπsusPS is called the local specification of the MRF.

Let us see with the following condition that the distribution of a MRF is univocally

determined by the local specification.

Definition 3.1.5 (Positivity Condition). The probability distribution π on the finite con-

figuration space Λ
S, where S “ t1,2, ..,Ku, is said to satisfy the positivity condition

if @ j P S,x j P Λ,

pπ jpx jq “ 0q ñ pπpy1, ..,y j´1,x j,y j`1, ..,yKq “ 0q (3.3)

@ y1, ..,yK P Λ, where π j is the marginal distribution of site j.

Theorem 3.1.1 (At Most One Distribution for a Local Specification). Two distributions

of a MRF with a finite configuration space Λ
S, where S “ t1,2, ..,Ku, that satisfy the

positivity condition and have the same local specification are identical.

Proof. Let x,y be two configurations in Λ
S with non-null probability and π the distribution

of the field.

The positivity condition and πpxq,πpyq > 0 imply that: @ j P t1, ..,Ku,

πpx1, ..,x j,y j`1, ..,yKq > 0. Therefore, using Bayes’s formula, we have:

πpxq “
πpxk|x1, ..,xk´1q

πpyk|x1, ..,xk´1q
πpx1, ..,xk´1,ykq
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First iterating the same argue, thanks to the finiteness of S, and then using the Markovian-

ity of the field we obtain:

πpxq “
K

ź

i“1

πpxi|x1, ..,xi´1,yi`1, ..,yKq

πpyi|x1, ..,xi´1,yi`1, ..,yKq
πpyq

“
K

ź

i“1

π ipx1, ..,xi,yi`1, ..,yKq

π ipx1, ..,xi´1,yi, ..,yKq
πpyq

Therefore, if the local specification is specified and y is fixed, then π is determined up to

the factor πpyq, which is determined by normalization.

Note that Theorem 3.1.1 is not true in general for an infinite number of sites, and this

is why the basic assumption on the finiteness of S was recalled. We will see, specified to

the Ising model dealing the phase transition that where S is infinite there may be several

distributions corresponding to a given local specification.

3.2 Cliques, Potential, and Gibbs Distributions

Consider the probability distribution on the configuration space Λ
S

πT pxq “
1

ZT
e´ 1

T εpxq (3.4)

where T > 0 is the temperature, εpxq is the Energy function of a configuration x and ZT is

the normalizing constant called Partition function.

The definition of such a measure, called under some conditions Gibbs Measure, is

particularly useful when we want to describe, from a mathematical point of view, an equi-

librium state of a physical system which consists of a very large number of interacting

components.

To manage the interactions of neighbors let us define, in this environment, what a

clique is.

Definition 3.2.1 (Clique). Any singleton tsu is a clique. A suset C Ă S, |C| ‰ 1, is a clique

of the topology pS,Nq if @ s, t P S, s ‰ t, s P Nt and t P Ns.
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Definition 3.2.2 (Gibbs Potential, Gibbs Distribution and Gibbs field). A Gibbs Potential

on Λ
S relative to the neighborhood system N is a collection tVCuCĂS of functions

VC : Λ
S Ñ RY t`8u such that

(i) VC ” 0 if C is not a clique,

(ii) @ x, Åx P Λ
S, @ C Ă S,

xpCq “ ÅxpCq ñ VCpxq “ VCp Åxq (3.5)

The energy function ε : Λ
S Ñ RY t`8u is said to derive from the potential tVCuCĂS,

if

εpxq “
ÿ

C

VCpxq (3.6)

In this context, the distribution in (3.4), characterized by an energy which derives from a

Gibbs potential is called a Gibbs distribution. Similarly a MRF with a distribution equal

to a Gibbs distribution is called Gibbs field.

3.3 Gibbs-Markov Equivalence

Gibbs distributions, characterized by Gibbs potentials defined on a topology, are dis-

tributions of Markov field with respect to the same topology.

Theorem 3.3.1 (Gibbs field are Markov field). If X is a random field with a Gibbs distri-

bution π , relative to the neighborhood system N, then X is Markovian with respect to the

same neighborhood system N.

Moreover, its local specification is given by the formula

πspxq “
e´

ř

CQs VCpxq

ř

λQΛ
e´

ř

CQs VCpλ ,xpSzsqq
“

e´εspxq

ř

λQΛ
e´εspλ ,xpSzsq

, (3.7)

where εspxq “
ř

CQsVCpxq is the local energy at site s of configuration x.

Remark 8. The right-hand side of (3.7), by the point (ii) of the Definition 3.2.2, depends

on x only through xpsq and xpNsq.

Indeed, VCpxq depends only on pxptq, t P Cq and if t,s P C clique, it follows that t “ s or

t P Ns.

Proof. Thanks to the remark 8, if one can show that PpXpsq “ xpsq | XpSzsq “ xpSzsqq

equals the right-hand side of (3.7), the Markov property and the equality (3.7) will be
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proven.

By definition and from the law of total probability,

PpXpsq “ xpsq | XpSzsq “ xpSzsqq “
πpxq

ř

λPΛ
πpλ ,xpSzsqq

. (3.8)

Moreover, we can write

πpxq “
1

Z
e´p

ř

CQs VCpxq`
ř

CSs VCpxqq

and similarly

πpλ ,xpSzsqq “
1

Z
e´p

ř

CQs VCpλ ,xpSzsqq`
ř

CSs VCpλ ,xpSzsqqq

“
1

Z
e´p

ř

CQs VCpλ ,xpSzsqq`
ř

CSs VCpxqq
,

where the last equality follows from the fact that if C is a clique and s R C, then

VCpλ ,xpSzsqq “ VCpxq and in particular is independent of λ P Λ.

Therefore, the formula (3.7) follows factoring out e´
ř

CSs VCpxq.

This result admits a converse part, which is important from a theoretical point of view,

because we can conclude that the two object apparently different, MRFs and Gibbs fields,

are essentially the same object.

Theorem 3.3.2 (Hammerslet-Clifford Theorem). Let π be the distribution of a MRF with

respect to a topology (S,N) satisfying the positivity condition. Then

πpxq “
1

Z
e´εpxq

for some energy function εpxq deriving from a Gibbs potential associated with the same

topology (S,N).

For the proof see [5].
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Chapter 4

2D Ising Model

In statistical physics the following model is regarded as a qualitatively correct ideal-

ization of a piece of ferromagnetic material, indeed it was introduced by Lenz in 1920,

solved in 1D by Ising in 1925, for understanding the phenom of phase transition.

4.1 Ising’s finite model

Let us defined

S “ Z
2
m “ tpi, jq P Z

2 : i, j P r1,msu the set of the sites which represents the piece of

material whose sites represent particles;

Λ “ t`1,´1u the phase space which represents the orientation of the magnetic spin at

given site and

N “ tNsusPS the neighborhood system, where

Ns “ tps1,y2q,py1,s2q P S : |s2 ´ y2| “ 1, |y1 ´ s1| “ 1u, it will be useful to describe the

local interactions of the particles.

Figure 4.1: Ns “ tt1, t2, t3, t4u.

The Gibbs potential is

Vtsupxq “ ´
H

k
xpsq

Văs,tąpxq “ ´
J

k
xptqxpsq
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where ă s, t ą is the 2-element clique, t P Ns. Here k is the Boltzmann constant, H is

the external magnetic field and J is the internal energy of an elementary magnetic dipole.

Therefore, by (3.6) the Energy function associated to this potential is:

εpxq “ ´
J

k

ÿ

ăs,tą

xpsqxptq ´
H

k

ÿ

sPS

xpsq (4.1)

As a consequence of the Theorem 3.3.1, for the Ising model the local energy at site s is

εspxq “ ´
1

k

`

J
ÿ

t;|s,t|“1

xptq ` H
˘

xpsq (4.2)

and the local characteristics are

πs
T pxq “

e
1

kT

`

J
ř

t;|s,t|“1 xptq`H
˘

xpsq

e
` 1

kT

`

J
ř

t;|s,t|“1 xptq`H
˘

` e
´ 1

kT

`

J
ř

t;|s,t|“1 xptq`H
˘ (4.3)

4.2 Phase Transitions

In a slightly generalization of the Ising model, with the distribution πT associated to

the spins that is a Gibbs distribution of the form:

πT pxq “
1

ZT
e´ 1

T εpxq
, (4.4)

let us consider the energy function

εpxq “ ε0pxq ´
H

k

N
ÿ

i“1

xpiq (4.5)

where the term ε0pxq is considered symmetric on configurations x P Λ
S “: E, with S enu-

merated as S “ t1, ..,Nu.

The magnetic moment of configuration x is

mpxq “
N

ÿ

i“1

xpiq (4.6)

and the magnetization is the average magnetic moment per site

MpH,T q “
1

N

ÿ

xPE

πT pxqmpxq “
1

N
ă m ą . (4.7)
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Let us now see some some facts about the magnetization:

1. is an odd function of H:

Mp´H,T q “ ´MpH,T q. (4.8)

Indeed

εpxq “ ε0pxq ´
H

k

N
ÿ

i“1

xpiq

“ ε0pxq ´
p´Hq

k

`

´
N

ÿ

i“1

xpiq
˘

“ ε0pxq ´
p´Hq

k
p´mpxqq,

therefore

Mp´H,T q “
1

N

ÿ

xPE

πT pxq
`

´mpxq
˘

“ ´
1

N

ÿ

xPE

πT pxqmpxq

“ ´MpH,T q.

2.

´ 1 ď MpH,T q ď `1 (4.9)

3. is a nondecreasing function of H:

BMpH,T q

BH
ě 0 (4.10)

Indeed, take Epxq “ E0pxq ` E1pxq, where E0pxq “ kε0pxq is the interaction energy

(assumed symmetric) and E1pxq “ ´Hmpxq.

The partition function Z, is now a function of T and H.

The free energy per site is f pH,T q “ ´kT 1
N

lnpZq.
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Observing that,

´BH f pH,T q “ kT
1

N

1

Z
BHZ

“ kT
1

N

1

Z

ÿ

xPE

e´
E0pxq´Hmpxq

kT
mpxq

kT

“
1

N

ÿ

xPE

1

Z
e´

Epxq
kT mpxq

“
1

N
ă m ą

“ MpH,T q,

it holds true

BHMpH,T q “ ´B2
H f pH,T q

“ kT
1

N

ˆ

´
1

Z2
pBHZq2 `

1

Z
B2

HZ

˙

“
1

NkT

`

´ ă m ą2 ` ă m2 ą
˘

ě 0.

4.

Mp0,T q “ 0 (4.11)

since πT p´xq “ πT pxq when H “ 0 and ´mpxq “ mp´xq,

therefore the sum in (4.7) is null.

5. moreover, the magnetization is an analytic function of H.

However, the experiments seem to contradict the previous two last points. Indeed if

an iron bar is placed in a strong magnetic field H parallel to the axis, it is completely

magnetized
`

MpH,T q “ `1
˘

, and if H is slowly decreased to 0 one can be observe that

M decreases, but tends to a limit Mp0,T q “ M0 ą 0, called spontaneous magnetization, in

contradiction with the point 4. Moreover, from the point 1 we have a discontinuity of M

at H “ 0, in disagreement with the analyticity of M with respect to H.

This discontinuity, called phase transition by physicists, occurs at room temperature

and if the temperature is increased, the spontaneous magnetization M0 decreases until it

reaches the value 0 at a certain temperature Tc, called critical temperature (see Figure 4.2

below).

This gap that can be noted between the experience and the theory, below the critical

temperature, is due to the fact that the experimental results describe the situation in a ther-
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Figure 4.2: Magnetization and critical temperature r5s

modynamical limit N “ `8. For fixed but sufficient large N the theoretic magnetization

curve is analytic, but it present for all practical purposes the same aspect as if it had a

discontinuity.

Therefore, looking at the experimental results, it seems that, below the critical tem-

perature, the spontaneous magnetization has two possible "choices" when no external

magnetic field is applied.

We shall now explain this phenomenon within the Ising model with the Peierls’s Argu-

ment.

4.2.1 Peierls’s Argument

In the Ising model, considering the situation when no external magnetic field is ap-

plied, let us set H “ 0. In this case the energy function is

εpxq “ ´J
ÿ

ăs,tą

xpsqxptq (4.12)

where ă s, t ą represents an unordered pair of neighbors.

It is clear that the previous sum is well defined when S “ t1, ..,Nu is finite, but when the

cardinal of S is infinite, in general is not defined for all configurations, and therefore is

not possible to define the Gibbs distribution πT on Λ
S by the formula (3.4). Nevertheless,

the local specification, according to the formula (4.3)

πs
T pxq “

e
β

ř

|s,t|“1 xptqxpsq

e
`β

ř

|s,t|“1 xptq ` e
´β

ř

|s,t|“1 xptq
(4.13)
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where β is ,up to a multiplicative factor, the inverse temerature,

is well-defined @x P Λ
S, since the sum is finite even S is not.

A probablity distribution πT on Λ
S, which admits a local specification as in (4.13),

is called a solution of DRL problem (Dobrushin (1965), Ruelle and Lanfrod (1969)).

Therefore, when S is finite, we know that there exists a unique solution given by (4.4),

since the sum in (4.12) is well-defined.

When S “ Z
2, the existence of at least one solution of the DRL problem has be proven

by Dobrushin. One way of constructing a solution is to start from a solution on a finite

configuration space, for example taking as the set of sites KN “ Z
2 Xr´N,`Ns2, and then

let N tend to infinity. More precisely:

let us take an arbitrary configuration z and the probability distribution π
pNq
T that has the

local specification (4.13) on Λ
KN´1 , then we extend it to Λ

S considering the field frozen at

the configuration z outside KN´1, i.e. π
pNq
T pzpSzKN´1qq “ 1.

Now we can obtain a solution πT of the DRL problem as follows:

@ x P Λ
S and @ A Ă S, |A| ă `8, exists the following limit

lim
NÑ`8

π
pNq
T pxpAqq “ πT pxpAqq (4.14)

and moreover, there exists a unique MRF, let us it call X , with local specification (4.13)

and characterized by the probability distribution

PpXpAq “ xpAqq “ πT pxpAqq (4.15)

@ x P Λ
S and @ A Ă S, |A| ă `8.

Remark 9. Note that π
pNq
T depends on z only through the restriction of z to the boundary

BKN “ KNzKN´1.

If the DRL problem admits more than one solution, we will say that a phase transition

occurs.

In the sequel, it will be clear as the method that we have seen before to construct a

solution, can be useful also to prove the existence of the phase transition when it occurs. It

is sufficient to show that for two different configurations z1, z2 and for a given finite subset

A Ă S, the left-hand of (4.14) is not uniquely determined since is different for z “ z1 and

for z “ z2.
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Peierls applied the above program with z1 “ t`1uS, z2 “ t´1uS and A “ t0Z2u to prove

that for sufficiently small values of T , there is a phase transition.

Let us introduce a few notations and definitions that will be useful to our aim .

We will indicate with π
pNq
` (risp. π

pNq
´ ) the restriction to KN of the probability distribution

π
pNq
T when z “ z1 (risp. z “ z2).

We will call even (risp. odd) bound of a configuration x P Λ
KN a clique ă s, t ą such that

xpsqxptq “ 1 (risp. xpsqxptq “ ´1) and we will indicate with nepxq (risp. nopxq) the number

of even (risp. odd) bounds.

For a fixed configuration x, we will denote with Cpx;0q the circuit that is the boundary

of the largest connected, in the sense of the topology, group of sites with negative phase,

containing site 0. If xp0q “ `1 then Cpx;0q “ H.

We will denote with x̃ the configuration obtained by x reversing all the phases inside the

circuit Cpx;0q.

Figure 4.3: Circuits in the Ising model r5s

Let us then proceed more formally with Peierls’s argument to demonstrate how the

phase transition occurs if T is large enough.

It is sufficient to prove that

π
pNq
` pxp0q “ ´1q ă

1

3
(4.16)

@ N P N.

In fact, by symmetry of the problem, it holds true also that π
pNq
´ pxp0q “ `1q ă 1

3
and

therefore π
pNq
´ pxp0q “ ´1q ą 2

3
.

Since the previous estimations are preserved passing to the limit N Õ `8, it implies
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that π`pxp0q “ ´1q ă 1
3

and π´pxp0q “ ´1q ą 2
3
, i.e. the limiting distributions are not

identical.

Proof. Let x be a configuration in Λ
N .

Observing that ´
ř

ăs,tą xpsqxptq “ nopxq ´ nepxq and nepxq “ M ´ nopxq, where M is the

total number of two-elements cliques, we can write

π
pNq
` pxq “

e´2βn0pxq

Z
pNq
`

, (4.17)

where Z
pNq
` is the normalization factor.

For a given circuit C around 0, by the law of total probability we have

π
pNq
` pCpx;0q “ Cq “

ř

x;Cpx;0q“C e´2βn0pxq

ř

y e´2βn0pyq
ď

ř

x;Cpx;0q“C e´2βn0pxq

ř

x;Cpx;0q“C e´2βn0px̃q
.

Now, if x is such that Cpx;0q “ C, it follows that n0px̃q “ n0pxq ´ L, where L is the length

of C.

Therefore

π
pNq
` pCpx;0q “ Cq ď e´2βL

.

In particular

π
pNq
` pxp0q “ ´1q ď

ÿ

C around 0
C‰ H

π
pNq
` pCpx;0q “ Cq ď

ÿ

L“
4,6,..,2 f pNq

rpLqe´2βL

where rpLq is the number of nonempty circuits around 0 of length L and f pNq is s.t.

limNÑ`8 f pNq “ `8.

Observe that

rpLq ď 4L23L
.

Indeed a circuit around 0 of length L must have at least one point at distance L{2, or

less, from 0; there are L2 way of selecting such point and at most 4 ways of choosing the

segment of C starting from this point, then at most 3 ways of choosing the next connect

segment and so on. . . , see [8] for more additional observations.

Therefore

π
pNq
` pxp0q “ ´1q ď

ÿ

L“
4,6,..,2 f pNq

4L2p3e´2β qL
.
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Now,
ř

L“4,6,..L
2xL ď

ř`8
L“1 L2xL and the latter series has radius of convergence 1;

so we can conclude that

if 3e´2β is small enough,or equivalently T is large enough, it holds

π
pNq
` pxp0q “ ´1q ă

1

3

@ N P N.

4.3 Simulations via the Metropolis-Hastings Algorithm

The aim of this section is to show, with a more practical approach, that in the 2-D

Ising model the phase transition occurs. Let us give some motivations that should better

clarify the simulation that is presented below.

4.3.1 Motivations

In the 2D square-lattice Ising model, with the same notations introduced in the Section

4.1 and in the absence of the external magnetic field, let us set J “ 1 for a simplified

version of the Energy function, that results to be

εpxq “ ´
ÿ

ăs,tą

xpsqxptq, (4.18)

according to the formula (4.1).

Therefore, we can define the Gibbs distribution πβ associated to the spins as

πβ pxq “
1

Zβ
eβ

ř

ăs,tą xpsqxptq
, (4.19)

where β is up to a multiplicative factor the inverse temperature.

Our aim is to show that a phase transition occurs, with respect to the parameter β ,

estimating the mean of the square of the observable

m̃pxq “

ř

i xpiq

N2
, x P Λ

S
, (4.20)

where N in this case is the dimension of the set of the sites S “ Z
2
N .

Indeed, thinking of a piece of ferromagnetic material, represented by the lattice-square,
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where the spins are distributed according to the probability distribution πβ , for large

enough values of β , i.e. low temperature values, the system, for any initially possible

configuration of the states, via only interactions between its pairs of spin, tends over time

to minimize internal energy by arranging its configuration in the most orderly possible

way, showing a complete magnetization.

On the other hand, for sufficient low values of β , i.e. large temperature values, the system

is in a state of high excitement, it completely loses its magnetic properties and fails to

arrange its configuration as in the opposite situation previously presented.

4.3.2 Simulations

Before simulating the model, we would point out our choice to work on the Ising

model, where the set of sites is the torus-lattice-square S “ Z
2
N .

Figure 4.4: torus-lattice-square Z
2
4

The idea behind the simulation is to generate a Markov chain with values in the state

space Λ
S, Λ “ t`1,´1u, which definitively is homogeneous and it has the stationary

Gibbs distribution πβ of the form (4.19), let us call X “ tXnuně1 this homogeneous chain.

The first obstacle that we may expect, is to numerically calculate the partition function Zβ .

To overcome this aspect, one of the possible choices, is to simulate via the Metropolis-

Hasting algorithm, we have seen in the Chapter 2 that is able to cope with this apparent

problem.

We are now able, with the chain X and thanks to the Ergodic Theorem 1.5.2, to estimate

the mean of m̃2.

Therefore, starting for any initial distribution, i.e. for any initial configuration of the spins,

we obtain that

Eπβ

`

m̃2
˘

«
1

N

N
ÿ

k“1

m̃2pXkq (4.21)
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Let us illustrate the results of the simulations.

Figure 4.5: S “ Z
2
25

We can see how the behavior of the mean Eπβ

`

m̃2
˘

, as function of β , changes between

the two opposite states 0 and `1, in accordance with the reasons we had made explicit

above.

Indeed, the distribution πβ , is reduced to being an uniform distribution for small value of

β . Moreover, with high probability, the spins configuration is randomly arranged and the

observable m̃ has a null mean.

In the opposite situation, when β is large enough, the largest values of the distribution πβ ,

are on the configurations with spins of the same value and vice versa.

Therefore the mean of m̃2 gets closer to `1 as β increases.
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Conclusions

The present thesis studies the Ising model both from a theoretical and simulation per-

spective. Historically the Ising model was initially proposed by the physicists Ernest Ising

and Wilhelm Lenz as a model of spontaneous magnetization of materials, but nowadays

possible applications of the Ising model and its variations are almost uncountable, rang-

ing from physics to economics, from neurosciences to quantitative sociology. Indeed the

Ising model became a paradigmatic model in complex system science. The reasons of its

success are grounded on the fact although simple to define, the Ising model has a fairly

complicated behavior, showing the phenomenon of phase transition.

In Chapters 1 and 3 theoretical results about Markov chains and Markov fields that

are useful in the sequel of the thesis are collected. Here, an attempt has been made to

make this part self-contained, presenting it not only as an instrumental. In this regard, we

included almost all the proofs of the results presented in these chapters, as we skipped

only few technical demonstrations.

In Chapter 2, we present the Metropolis-Hasting algorithm in its most general form,

specifying the peculiarities that give its own importance.

In Chapter 4, we define the Ising model and study the phenomenon of phase transi-

tion using a probabilistic language. In particular we focus on the 2D Ising model and we

prove the existence of a phase transition using Peierls’ contours. This famous Peierls’

argument is an elegant and effective geometric-combinatorial approach to the problem,

generalizable to more complex models, which is effective to prove the existence of the

phase transition. To compute the value of the critical point of the model is a much more

difficult task and it is out of the scopes of the present work. However, in the last part of

the thesis, we simulated the Ising model through the Metropolis-Hasting algorithm, via

the Matlab platform. The results of our simulations are compatible with a critical value

of β p« 0.44), as predicted by the Onsager’s solution of the 2D Ising model.

A further study on these subjects could be about the latest more practical aspect of

the simulations. In order to be able to verify via simulations a sharper phase transition

and, thus, a more accurate value of the critical point for which it occurs, optimizing the

implemented algorithm could be useful for applications. An other aspect that could be

considered, could be the ratio between the size of the model and the number of itera-

tions of the algorithm necessary to produce the results and more generally the study of

computational complexity.
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Matlab Code

1 Ndim=%25;

Niter=%9.*10.*^6;

3 Beta=%0:.02:1;

5 iter=1:Niter;

X=(-1).^randi(2,Ndim);

7 M=[];

for beta=Beta

9 Y=X;

m=[];

11 for k=iter

i=randi(Ndim);

13 j=randi(Ndim);

v=[];

15 if (((i~=1) && (i~=Ndim)) && ((j~=1) && (j~=Ndim)))

v(1)=Y(i+1,j);

17 v(2)=Y(i,j+1);

v(3)=Y(i-1,j);

19 v(4)=Y(i,j-1);

elseif ((j~=1) && (j~=Ndim))

21 if i==1

v(1)=Y(i+1,j);

23 v(2)=Y(i,j+1);

v(3)=Y(Ndim,j);

25 v(4)=Y(i,j-1);

else

27 v(1)=Y(1,j);

v(2)=Y(i,j+1);

29 v(3)=Y(i-1,j);

v(4)=Y(i,j-1);

31 end

elseif ((i~=1) && (i~=Ndim))

33 if j==1

v(1)=Y(i+1,j);

35 v(2)=Y(i,j+1);

v(3)=Y(i-1,j);

37 v(4)=Y(i,Ndim);
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else

39 v(1)=Y(i+1,j);

v(2)=Y(i,1);

41 v(3)=Y(i-1,j);

v(4)=Y(i,j-1);

43 end

else

45 if i==Ndim

v(1)=Y(1,j);

47 else

v(1)=Y(i+1,j);end

49 if j==Ndim

v(2)=Y(i,1);

51 else

v(2)=Y(i,j+1);end

53 if i==1

v(3)=Y(Ndim,j);

55 else

v(3)=Y(i-1,j);end

57 if j==1

v(4)=Y(i,Ndim);

59 else

v(4)=Y(i,j-1);end

61 end

s=sum(v);

63 ratdistr=exp((-2).*beta.*Y(i,j).*s);

a=min(1,ratdistr);

65 u=rand;

if (u <=a)

67 Y(i,j)=-Y(i,j);

end

69 m(k)= sum(sum(Y))./(Ndim.^2);

end

71 M(length(M)+1)=sum(m((900000+1):end).^2)./(Niter-(900000));

end
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