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Introduction

In a predictive context, where the aim of a study is to calibrate a pre-

dictive model, a very important step is to assess its performance. A common

technique is to use cross-validation, which consists of splitting the dataset

into subsets and using in turn one of them as an independent validation set

and all the others to calibrate the model. Once the predictive rules have been

de�ned, we use them to predict the outcome on the validation set and model

performance can be assessed by comparing predictions with the observed

outcome. At the same time though, we may need to use multiple imputa-

tion to account for missing data in the dataset. This technique, developed

by Rubin (1978), imputes missing values by generating a set of several pos-

sible values from the predictive distribution of the missing values given the

observed values. This is done in order to add some uncertainty to the im-

putation process. Combining validation and imputation may be problematic

though. Indeed, on one hand we have cross-validation, that requires outcome

to be removed from the calibration set to build the predictive model. While

on the other hand, we have multiple imputation that requires the outcome as

integral part of the estimation of the imputation model, in order to preserve

the association between predictors and outcome in the imputation (White,

Royston, and Wood 2011).

A second issue concerns how to obtain �nal predictions. Multiple im-

putation procedure, indeed, replaces the missing data with multiple possible

values, that means creating several complete datasets. The model calibration

has to be computed in each of them and the results have to be combined
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somehow. In the presence of missing values in the predictors, much of classi-

cal biostatistics data analysis practice in predictive calibration focuses on the

application of the so-called Rubin's rules (Rubin 2004). Basically, all the sets

of parameters derived from the separate analysis on the imputed datasets are

pooled together, in order to get the overall e�ect estimates, and plugged into

the assumed substantive model, which will be used for the prediction of new

outcome. In the predictive scenario however, and from a formal probabilistic

point of view, the e�ect estimates are nuisance parameters and predictions

should be obtained from the calibrated posterior predictive density with the

missing observations and e�ect measures integrated out (Lesa�re and Law-

son 2012). Hence, if the aim of the study is to get predictions, these should

be obtained by pooling together the single predictions from the calibrations

on the complete datasets, instead of applying Rubin's rules to the sets of

parameters.

The aim of this work is to propose methodologies to combine multiple

imputation with cross-validation for the assessment of prediction rules, which

can also be implemented using existing imputation software. Our approaches

allow outcomes of the left-out fold to be set-aside from the calibration of the

�nal prediction model, in order to use it for validation of the estimated

prediction rules. In addiction, we develop methodology to directly calibrate

the required marginal density of future predictive outcomes in the presence of

missing values and compare this method with direct applications of Rubin's

rules. Finally, we also compare these approaches with their corresponding

naïve implementations, which imply to compute multiple imputation prior

to the cross-validation procedure. Since this work primary idea came from

the analysis of clinical survival data, proposed methods are then described

to account for lifetime outcome.

Proposed approaches performance is then evaluated by applying these

methods to real and simulated data. First of all, we introduce application in

prognosis and describe two real datasets with lifetime outcomes subject to

censoring. The CRT (Cardiac Resynchronization Therapy) dataset concerns



3

a study from the department of cardiology of Leiden University Medical Cen-

ter (LUMC), while the CLL (Chronic Lymphocytic Leukemia) dataset has

been extracted from the registry of the European Society for Blood and Mar-

row Transplantation (EBMT). Finally, we also perform a simulation study

to better investigate statistical performance of the proposed approaches in

di�erent scenarios.

Chapter 1 contains a brief introduction on the statistical methods used in

this work. Chapter 2 concerns a general description of the theoretical back-

ground of predictive calibration, multiple imputation and validation, with

particular attention on predictions. It also describes two basic approaches to

the problem of predictive calibrations and assessment when multiple impu-

tation is used to account for the presence of missing values in predictors. In

addiction, it also provides a speci�c description on the application of these

ideas in survival analysis. Chapter 3 brie�y describes the real datasets we use

for the analysis and presents the simulation study and the statistical mea-

sures used to assess the performance of the proposed methodologies. Finally,

chapter 4 presents the results from application of the proposed approaches

on the two real datasets and simulations.
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Chapter 1

Statistical methods

This chapter contains a brief introduction to the statistical methods used

in this work. First of all, section 1.1 presents an introduction to survival

analysis and the Cox regression model. Section 1.2 is about missing data

and multiple imputation, a technique to deal with them, and �nally, section

1.3 deals with cross-validation.

1.1 Survival analysis

Survival analysis is the study of time-to-event data, where the depen-

dent variable is the waiting time until the occurrence of a well-de�ned event.

Time can be measured in years, months, weeks or days from the beginning

of the follow-up of an individual, until the event occurs. For example, indi-

viduals might be followed from birth to the diagnosis of a certain disease, or

from the day of surgery to death. The waiting time until the event occurs is

usually called survival time. The most important thing is that the starting

point and the event of interest must be well de�ned. This means that the

time origin must be the same for each individual in the study, even if it can

occur in di�erent calendar years (e.g. birth, recovery, day of surgery,...) and

furthermore, the endpoint has to be appropriately speci�ed, in order to be

able to calculate the time until event occurs. One could also be interested in
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the occurrence of more than one event, which could be a recurrent event or

a competing risk problem. In this work we only consider the possibility of

one event occurring and that this occurs with certainty.

1.1.1 Censoring

An important issue concerning survival analysis is the presence of cen-

sored data. Censoring occurs when we do not know exactly the survival time

of some individuals, but we still have some information about their survival

times. There are three types of censoring: right censoring, left censoring and

interval censoring. The most common one in survival analysis is right cen-

soring, that occurs when, at the end of the followed up time, an individual

has not yet experienced the event and thus we only know the time interval

in which it did not occur.

This might be due to three main reasons (Kleinbaum and Klein 2012):

• a subject does not experience the event before the end of the study;

• a subject is lost to follow-up during the study period;

• a subject withdraws from the study because of death (if death is not

the event of interest) or some other reason.

On the other hand, left censoring occurs when it is known that an individual

experienced the event of interest before a speci�c time point, but that could

be any time before the censoring time. Finally, interval censoring de�nes

a situation where it is only known that the event occurred between two

di�erent time points, without knowing the exact time.

For example, we may be interested in studying the onset of HIV in a

subset of the population. People in the study are then followed until they

become HIV positive and the event occurs when the test for the virus is

positive. In this situation it could happen that some people die during the

study without the event occurring, or that at some point the study ends and

some people have not yet experienced the event. For those individuals we
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therefore have a right censoring. On the other hand, we might also not know

the exact time of exposure to the virus, because when an individual gets a

positive test, the follow-up period ends, but the exposure time could be any

time between the starting point (say the day of born) and that moment.

In this case, we have a left censoring, since the true survival time, which

ends at the time of exposure, is shorter than the follow-up one, which ends

when the test is positive. Finally, if the test turns out to be negative the

�rst time an individual does it and positive the second time it is done, we

would have interval censorship, because we do not know exactly when the

exposure happened, but we know that it occurred between two well de�ned

time points. (Kleinbaum and Klein 2012)

For survival data, the most important assumption about censoring is that

it should be non-informative. This means that the distribution of survival

times provides no information about the distribution of censorship times,

and vice versa (Kleinbaum and Klein 2012). Under this assumption, infer-

ence is not biased. On the other hand, informative censoring occurs when,

for example, in a survival study after a disease diagnosis, patients are lost

to follow-up because their health conditions no longer allow them to attend

appointments (Kartsonaki 2016).

1.1.2 Notation

Let T be a continuous non-negative random variable representing the

survival time with probability density function f(t). The probability of ob-

serving an event before time t is given by the cumulative distribution func-

tion:

F (t) = Pr(T < t) =

∫ t

0
f(x) dx (1.1)

While the survival function is given by:

S(t) = Pr(T ≥ t) = 1− F (t) =

∫ ∞
t

f(x) dx (1.2)



8 Statistical methods

which is the probability that the event has not occurred before time t.

The hazard function h(t) represents the instantaneous rate of occurrence and

it is the probability to observe a failure in the in�nitesimal interval [t, t+∆t).

It is de�ned as

h(t) = lim
∆t→0

Pr(t ≤ T < t+ ∆t|T ≥ t)
∆t

(1.3)

and it can also be seen as the density of events at time t, divided by the

probability of surviving to that duration without experiencing the event:

h(t) =
f(t)

S(t)
(1.4)

Since −f(t) is the derivative of S(t), the hazard function can also be de�ned

as

h(t) = − d

dt
lnS(t) (1.5)

Then, the survival function can be written as

S(t) = exp(−H(t)) (1.6)

where H(t) is the cumulative hazard function:

H(t) =

∫ t

0
h(x) dx (1.7)

which can be interpreted as the total amount of risk that has been accumu-

lated up to time t.

1.1.3 Cox proportional hazard models

The main purpose of a survival study is, usually, to measure the associ-

ation between the time to event with a set of covariates. This can be done

using several di�erent models, which can be parametric, if the distribution of

T is considered known, non-parametric, if no assumption about the distribu-
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tion of T is made, or semi-parametric, if the model combines both parametric

and non-parametric assumptions.

Cox model assumes that the hazard at time t for an individual with

covariates xi has the form:

h(t|xi) = h0(t) exp{x′
iβ}. (1.8)

In this equation, h0(t) is the baseline hazard function, that describes the

risk for an individual with all the covariates equal to 0, exp{x′
iβ} is the

parametric component and β is the coe�cients vector. The parametric com-

ponent de�nes the relative risk associated with the covariates and represents

a proportional increase or reduction in risk, that is the same for each value

of t.

The corresponding estimates of these parameters are derived by maximiz-

ing a likelihood function. The formula for the Cox model likelihood function

is actually called a "partial" likelihood function. For the Cox PH model, in

fact, a full likelihood based on the outcome distribution cannot be formu-

lated, since there is not an assumed distribution for the outcome variable.

Hence, the construction of the Cox likelihood is based on the observed order

of events rather than the joint distribution of events and the formula con-

siders probabilities only for those subjects who fail and does not consider

probabilities for those who are censored. In particular, the partial likelihood

can be written as the product of several likelihoods, one for each failure time.

Each of them represents the likelihood of failing at that speci�c time point,

given survival up to that time (Kleinbaum and Klein 2012).

Furthermore, an important feature of this formula concerns the main

assumption on which this class of models is based: the proportional hazard

assumption. This assumption implies that the hazard ratio comparing any

two speci�cations of predictors is constant over time, or equivalently, that

the hazard for one individual is proportional to the hazard for any other

individual, where the proportionality constant is independent of time. We

can easily check that, once we have written the hazard ratio that compares
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two di�erent speci�cations for the explanatory variables (using equation 1.8),

the baseline hazard function ĥ0(t) cancels out of the formula and the �nal

expression no longer involves time t (Kleinbaum and Klein 2012). The pro-

portional hazard assumption has to be checked every time the Cox model is

used.

Finally, since no assumptions are made about the nature or the shape of

the baseline hazard function, the Cox model can be considered as a semi-

parametric model. This implies that this class of models does not rely on

distributional assumptions for the outcome and it is the main reason why

the Cox model is widely popular (Kleinbaum and Klein 2012).

1.2 Multiple imputation

The problem of missing data occurs frequently in almost all �elds of re-

search and it has to be taken into account when data are analysed. If missing

data are inadequately handled, this could lead to biased or ine�cient esti-

mates of parameters and it a�ects the whole analysis. Since the presence of

missing values may lead to technical di�culties, an approach used to handle

this problem is to delete them, if they are not too many, i.e. ignoring rows of

individuals with missing data (listwise deletion), or, otherwise, not consider

in the analysis covariates with too many incomplete records. Usually, the

problem is also downplayed by authors and presence of missing data and

the use of listwise deletion are not even explicitly mentioned in the text, or

sometimes it also happens that di�erent tables are based on di�erent sample

sizes (Van Buuren 2012).

This section provides a brief introduction to the kinds of missing data

mechanisms, along with an explanation of the multiple imputation procedure

to deal with this problem, both in a univariate and multivariate context.



1.2 Multiple imputation 11

1.2.1 Missing data mechanisms

De�ning the missing data mechanism is a key point in the analysis, since

the properties of methods used to deal with them depend very strongly on the

nature of the dependence on these mechanisms. This means that it has to be

de�ned whether the fact that some observations have missing values is related

somehow to the values of the other variables in the dataset, or not (Little

and Rubin 2014). Rubin (1976) formalized this concept, by treating the

missing data indicator as a random variable and assigning it a distribution.

He de�ned three di�erent scenarios to describe the mechanism underlying the

presence of missing data: missing completely at random (MCAR), missing

at random (MAR) and missing not at random (MNAR).

The explanation of missing data mechanisms described in this section is

based on the books of Little and Rubin (2014) and of Van Buuren (2012).

Let Z be a n× p matrix with n observations of p variables. The Z matrix is

partially observed, so that Z = (Zobs,Zmis), where Zobs and Zmis denote

respectively the subset of fully observed data and the one with missing val-

ues. De�ne the missing data indicator R, which is a n×p matrix, that takes

values in {0, 1} to de�ne observed and missing values in Z respectively. The

relation that might exist between R and Z is described by a missing data

model, which is characterized by the conditional distribution of R given Z,

f(R|Z, ϕ), where ϕ denotes a vector containing the unknown parameters of

the model. Hence, there are three possible scenarios.

MCAR Data are said to be missing completely at random if missingness

does not depend on the values of Z, that means, if

f(R|Z, ϕ) = f(R|ϕ) (1.9)

and hence, the probability of being missing only depends on ϕ, the over-

all probability of being missing. This assumption does not mean that the
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mechanism itself is random, but rather that causes of the missing data are

unrelated to the data. In this case, ten, we might also ignore the process

that leads to missing data and many of the complexities that arise because

of that, apart from the loss of information, and do a complete case analysis

taking into account only the fully observed records. MCAR data may be

generated because, for example, a weighing scale might run out of batteries,

a questionnaire may be lost in the post or a blood sample might be damaged

in the lab. This assumption can be tested by separating the missing and

the complete cases and examining the characteristics of these two groups.

If characteristics are equal for both groups, we can assume that data are

MCAR, otherwise this assumption does not hold.

MAR Assuming that data are missing at random makes a less restrictive

assumption on the underlying mechanism and it de�nes a scenario where the

missingness depends only on the observed components Zobs, and not on the

missing values. That is, if

f(R|Z, ϕ) = f(R|Zobs, ϕ). (1.10)

MAR assumption is more general and more realistic than MCAR. For exam-

ple, if a weighing scale is placed on a soft surface, it may lead to more missing

values than when it is placed on a hard surface. In this case, data cannot be

MCAR, however, if we know the surface type and we assume MCAR within

the type of surface, then the data are MAR. Another example, people who

come from poorer families might be less inclined to complete the question-

naire, thus the missingness would be related to family income. Also in this

case, if we know the family income and, stratifying for that, missingness can

be assumed random, then we can say data are MAR. The key aspect about

MAR is that the values of the missing data can somehow be predicted from

some of the other variables being studied. The assumption that the mech-

anism is MAR cannot be con�rmed, because it cannot be tested whether
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the probability of missing data on a variable is solely a function of other

measured variables.

MNAR If neither MCAR nor MAR hypothesis holds, then data are miss-

ing not at random, which means that the probability of being missing varies

for unknown reasons. This means that the general expression of the missing

data model does not simplify and the distribution of R depends on both

observed and unobserved information and on the parameters:

f(R|Zobs,Zmis, ϕ) (1.11)

In public opinion research, an example of MNAR data may occur if those

with weaker opinions respond less often than the others, or this is also the

case where people with the lowest education are missing on education or the

sickest people are most likely to drop out of the study. MNAR is the most

complex case. Strategies to handle MNAR are to �nd more data about the

causes of missingness, or to perform sensitivity analyses to see how sensitive

the results are under various scenarios.

1.2.2 Multiple imputation

Multiple imputation is a statistical technique to handle missing data,

that was developed by Rubin (1978). He thought that imputing only one

value (single imputation), in order to estimate the "best", one could not

be correct in general, because we cannot know which value to impute with

certainty, otherwise it would not be missing. Hence, since the observed and

the unobserved data are connected to each other by a statistical model, the

method used to impute missing values should re�ect this uncertainty. His

idea was to create multiple versions of the data, drawing imputations from

a distribution. This approach is a Bayesian perspective, where the missing

values have a distribution given the observed values. Thus, what we really
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want to impute is the predictive distribution of the missing values given the

observed values and not a single value (Rubin 1978).

The key point of the multiple imputation procedure is to use the dis-

tribution of the observed data to estimate a set of plausible values for the

missing data. In this way, multiple datasets are created and subsequently

analyzed individually and identically in order to obtain a set of parame-

ter estimates, that are combined together to obtain the �nal results. When

correctly implemented, multiple imputation is asymptotically e�cient and

produces asymptotically unbiased estimates and standard errors. Two key

requirements to gain precision and avoid bias are using all the available co-

variates for the imputation model. To avoid bias in the analysis model, all the

variables that are then used for calibrating the model have to be included in

the imputation model, as well as the outcome itself. This point is important

to ensure that the imputation model has the ability to reconstruct all the

relationships between the variables in the dataset. Moreover, including also

predictors of the incomplete variable in the imputation model can improve

the analysis. In fact, this makes the MAR assumption more plausible, since

it assumes that the probability of data being missing does not depend on

the unobserved, conditional on the observed data that are included in the

imputation model. Doing that can reduce the bias and improve the imputa-

tions (White, Royston, and Wood 2011).

Procedure

The multiple imputation technique consists of three main stages: gener-

ating multiply imputed datasets, analyzing multiply imputed datasets and

combining estimates from multiply imputed datasets. Figure 1.1 illustrates

the three main steps as depicted in the book of Van Buuren (2012, p.17).

As it is shown in Figure 1.1, multiple imputation replaces every missing

value withM plausible values drawn from a distribution speci�cally modelled

using the observed data. This results in M completed datasets, which di�er
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Figure 1.1: Schematic illustration of the main steps in multiple imputation (Van
Buuren 2012, p.17)

from each other only for the entries that were missing. After that, each

dataset is analyzed and the results are pooled together. These three steps

are explained more detailed below.

Step 1: Generating multiply imputed datasets. To generate the im-

puted values, three tasks exist: the modelling task, the estimation task and

the imputation task. The modelling task chooses a model for the data, the

estimation task computes a posterior distribution for the parameters of this

model and �nally, the imputation task takes one random draw from the as-

sociated predictive distribution of the missing data given the observed data

(Rubin 1978).

Missing values are therefore replaced by M independent set of values, sim-

ulated from the posterior predictive distribution of the missing data condi-

tional on the observed data. For a single incomplete variable Z, this means

de�ning an imputation model which regresses Z on a set of completed vari-

ables, sayX = (X1, X2, . . . , Xq), among all the individuals with the observed

Z.

We then have to choose a speci�c model for the imputation of the missing

data, f(Zmis|X;ϕ), parametrized by ϕ. This might be a linear regression

model, if we want to impute normally distributed continuous variables, or

a logistic regression model to impute binary variables. Several models are

possible and the choice has to be made according to the type of variable
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whose missing values we wish to impute. For more details about choices of

imputation model, see White and Royston (2009). Formally, multiple impu-

tation involves drawing values of the missing data Zmis from the predictive

distribution

f(Zmis|Zobs,X) =

∫
f(Zmis|Zobs,X;ϕ)f(ϕ|Zobs,X) dϕ (1.12)

where f(ϕ|Zobs,X) is the Bayesian distribution of ϕ. Once the imputation

model has been chosen, the regression parameters, ϕ, and the relative covari-

ance matrix have to be estimated. In practice, this may be achieved, with

implicit vague priors, by �tting the model f(Zmis|Zobs;ϕ) to the case with

Z observed, estimating ϕ̂ with covariance matrix Vϕ and drawing a value of

ϕ, say ϕ∗, from its posterior (which may be approximated by N(ϕ∗, Vϕ)).

Finally, imputations for Zmis are drawn from f(Zmis|X;ϕ∗) (Rubin and

Schenker 1986; White and Royston 2009). The estimation and imputation

procedure have to be repeated M times, so at the end M datasets are gen-

erated.

Step 2: Analyzing multiply imputed datasets. After multiple impu-

tation, the M di�erent imputed datasets are separately analyzed in order

to obtain, from each dataset, the quantities of interest (usually regression

coe�cients). The results of these M analysis di�er because the procedure

generated di�erent datasets (White, Royston, and Wood 2011).

Step 3: Combining estimates from multiply imputed datasets. The

M estimates are �nally combined together into an overall estimate and

variance-covariance matrix using Rubin's rules, which are based on asymp-

totic theory in a Bayesian framework (Rubin 2004; White, Royston, and

Wood 2011). In this case, the goal of multiple imputation is to �nd an esti-

mate of the quantity of interest that is unbiased and with correct con�dent
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coverage (Rubin 1996). This means that the estimate should be equal, on

average, to the value of the population parameter and the associated con�-

dence intervals and hypothesis tests should achieve at least the stated nom-

inal value (Van Buuren 2012).

Suppose θ̂m is an estimate of a quantity of interest obtained from the analysis

of the mth imputed dataset andWm is the corresponding estimate variance.

Then, the combined overall estimate θ̂ is equal to the average of the individ-

ual estimates:

θ̂ =
1

M

M∑
m=1

θ̂m (1.13)

While the variance of θ̂ is the sum of the within-imputation variance:

W =
1

M

M∑
m=1

Wm (1.14)

and the between-imputation variance

B =
1

M − 1

M∑
m=1

(θ̂m − θ̂)2 (1.15)

Combining these two measures together leads to the total variance:

var(θ̂) = W +

(
1 +

1

M

)
B. (1.16)

1.2.3 Imputing multivariate missing data

When we have a large dataset, with many predictors, it is common that

missing values occur in several variables. In this case, the main problem

arises when we want to use a regression-based imputation as described in

the previous section to impute missing values in Xj . To do that, we need

to use all the other predictors X−j , but those variables themselves contain
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missing values. Several other practical problems may also occur: for example,

the "circular" dependence, that arises when the missing values of two incom-

plete variables depend on each other because of their correlation, variables

may also be of di�erent types (e.g., binary, unordered, ordered, continuous)

or collinearity or empty cells might occur as well (Van Buuren et al. 2006).

These and many others complexities may arise when we have to deal with

multivariate missing data. A strategy to impute missing values in a multi-

variate context is fully conditional speci�cation (Van Buuren 2007).

Fully conditional speci�cation

Fully conditional speci�cation (FSC), also known as chained equations

(Van Buuren and Groothuis-Oudshoorn 2011) and sequential regression mul-

tivariate imputation (Raghunathan et al. 2001), is a method to impute data

in a variable-by-variable basis, by specifying an imputation model per vari-

able (Van Buuren 2007).

Suppose that Z = (Z1, Z2, . . . , Zk) is a set of variables which contains

missing values and X is the set of completely observed variables, while R

is the already de�ned indicator of missing values. This approach de�nes

P (Z,X,R|ϕ) by specifying a conditional density P (Zj |Z−j ,X,R, ϕj) for

each Zj . Hence, Z
mis
j values are imputed given Z−j , X and R, while the

multivariate distribution of ϕ is obtained (either explicitly or implicitly) by

sampling iteratively from conditional distributions. This procedure starts

from simple guessed values and then, imputation under FCS is done by iter-

ating over all conditionally speci�ed imputation models (Van Buuren 2007).

FCS is the natural generalization of univariate imputation discussed in the

previously section, the main di�erence is that FSC does not need to specify

a multivariate model for the data, because it directly de�nes the conditional

distributions from which draws should be made (Van Buuren 2012).
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Multiple imputation by chained equations

Multiple imputation by chained equations (MICE) is an algorithm pro-

posed by Van Buuren and Oudshoorn (2000) as a practical approach to gen-

erate imputations, under conditionally speci�ed models, one for each variable

with missing values.

The algorithm starts �lling in all missing values by simple random draw-

ing from the observed values. Then, the �rst variable with missing values, Z1

is regressed on all the other variables, Z2, . . . , Zk, restricted to individuals

with the observed Z1 and missing values in Z1 are replaced with simulated

draws from the corresponding posterior predictive distribution of Z1. After

that, the second variable with missing values, Z2, is regressed on all the

other variables, restricted to those observations with observed Z2, but this

time, the new imputed values of Z1 are used. After missing values of Z2

have been imputed, the process is repeated for all the other variables with

missing values: this is called a cycle. To stabilize the results, the procedure

is repeated for several cycles, usually 10 or 20, to produce a single imputed

dataset. Finally, in order to have M imputed datasets, the entire procedure

is repeated M times (White, Royston, and Wood 2011).

The MICE algorithm can handle di�erent types of variables, because each

variable is imputed using its own imputation model. Moreover, the choice of

the conditional distributions is made by the user and so, the joint distribu-

tion is only implicitly known (Van Buuren 2012).

1.3 Cross-validation

Assessing performance of a model relates to its predictive capability on

independent data and it is very important, especially in practice. Ideally, we

would like to assess the performance of our model using a set of observations,

that is independent from the one used to calibrate the model. If we had

enough data, we could split the original dataset in two parts and use one of
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them for the calibration and set aside the other one as validation set. This

is not always possible, since the available datasets might be too small to

allow this kind of procedure. To deal with that, several techniques have been

developed and cross-validation is one of the most famous and widely used

methods to estimate prediction error of a model using part of the available

dataset to �t the model and a di�erent one to test it.

First of all we split the dataset inK equal-sized parts and we set aside the

kth fold (validation set) and �t the model using the other K− 1 parts of the

data (calibration set). Finally, we calculate the prediction error of the �tted

model when predicting the kth part of the data. The previous steps have to

be done for k = 1, 2, . . . ,K and then the K estimates have to be combined

together in order to obtain the prediction error of the model (Friedman,

Hastie, and Tibshirani 2009).

The most common choices for K are 5 or 10, but it is intuitive that the

method becomes more accurate with increasing K. The maximum possible

value for K is N and this procedure is called leave-one-out cross-validation.

With K = N , the cross-validation estimator is approximately unbiased for

the true (expected) prediction error, but can have high variance because the

N calibration set are obviously very similar to one another. The opposite

problem occurs with low values of folds, for example with K = 5, because

even if in this case the variance is lower, the bias could be a problem and

the procedure may overestimate the true prediction error (Friedman, Hastie,

and Tibshirani 2009). Overall, �ve- or tenfold cross-validation are a good

compromise (Kohavi 1995). The crucial point of this procedure is that it

must be done at the very beginning of the analysis and, in case of a multistep

modeling procedure, it must be applied to the entire sequence of modeling

steps. This is a crucial point of the cross-validation procedure, because it

basically does the analysis K times and each time is independent of each

other. Thus, to ensure the analysis is not biased, when the model is calibrated

in one set of the data, the procedure must not "see" the outcome of the test

set.



Chapter 2

Combining multiple imputation

and cross-validation

This chapter presents the theoretical issues that arise when multiple im-

putation and cross-validation are used at the same time and �nally, our

proposal to deal with that. A general theoretical explanation of the problem

is described in section 2.1, together with the description of the most proper

way to get predictions in this situation. In section 2.2, instead, we de�ne

2 approaches specially designed to handle with these issues, along with an

implementation for survival data.

2.1 Theoretical issues

2.1.1 Imputing missing values

When we want to asses the performance of a prediction model using

cross-validatory assessment and, at the same time, multiple imputation is

used to account for missing values, a problematic con�ict between these

two procedures arises. In fact, as it is described in section 1.3, validation,

and above all cross-validation, requires outcome to be removed from the

calibration data and then predicted applying the calibrated prediction rules,
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in order to compare predicted values with the actually observed outcome. On

the other hand, multiple imputation requires the outcome data as an integral

part of the estimation of the imputation model, in order to preserve the

association between predictors and outcome in the imputed values. Basically,

during the cross-validation procedure, calibration models should not "see"

the outcome in the validation set, but this actually implicitly happens if

multiple imputation is done once at the beginning of the analysis, because

the outcome is used to generate the imputed values.

This problematic can also be extended to a general situation, where the

aim of the analysis is to predict a future outcome. For example, when we

have a set of individuals, of which we only know the predictors values, and

we would like to predict their future outcome using the model calibrated

in advance on a previous set of individuals. In this case, the new set of

observations may also contain missing values, which should be imputed using

both the predictor variables as well as the outcome information to preserve

all the relationships between covariates in the dataset. The main problem in

this case is that we do not have the outcome yet. To solve this problem, we

should then estimate the imputation model borrowing information from both

sets of observations, that means by building the imputation model on the

two sets together, treating them as a unique dataset. Once all the missing

values have been imputed, we can then use the "old" set to calibrate the

model and �nally get the predictions for the "new" one.

This argumentation can also be generalized to a cross-validation scenario

where, for example, the aim of the study is to calibrate a predictive model

and using a cross-validatory assessment on data that contains missing val-

ues. The con�ict generated by these two approaches can actually be solved,

as we have seen in the previous paragraph. In fact, once we have split the

data into K folds and have de�ned the kth fold as validation set and all

the others as calibration set, we are exactly in the same situation described

above, where the validation set represents the "new" observations set, while

the calibration set the "old" one. Now, to correctly use the cross-validation
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technique and to then take advantage of its theoretical properties, the out-

come of the validation set cannot be seen by the calibration procedure and

we could actually consider it as missing.

2.1.2 Getting predictions

Another issue, regarding above all multiple imputation, concerns Rubin's

rules, as they are described in section 1.2. The Rubin's rules are generally

used after the imputation procedure to summarize the estimates obtained

from the calibration of the M models in order to get the assumed substan-

tial model, which is used later for the prediction of the new outcome. In the

predictive scenario, however, and from a formal probabilistic point of view,

the e�ect estimate are nuisance parameters and predictions are obtained

from the calibrated posterior predictive density with the missing observa-

tions and e�ect measures integrated out (Lesa�re and Lawson 2012). Hence,

�nal predictions could actually be obtained in two di�erent ways. The most

common one is to use straightforwardly Rubin's rules, that means pooling

together theM sets of coe�cients obtained from the calibration of the model

on the M imputed datasets and using them to get �nal predictions. While

the other one implies to use separately the M sets of coe�cients obtained

from the M calibrations in order to get M predictions, that will be �nally

pooled together to get the �nal predictions.

Pooling coe�cients

Let Y be the outcome of interest andX a set of predictors. We assume a

substantive prediction model f(Y |X,β), which describes the variation in an

univariate outcome Y conditional on the predictor matrix X and depending

on β, which is an unknown vector of regression parameters. The latter has to

be estimated in order to subsequent use of the model. In this work we only

consider scenarios with fully observed Y and missing values in the predictors,
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such that X = (Xmis,Xobs), where Xmis is the set of predictors with

missing values, while Xobs is the set with fully observed components. If we

were interested in estimating the parameters β in the presence of missing

values, then we can calibrate the conditional density:

p(β|Xobs, Y ) =

∫
p(β,Xmis|Xobs, Y ) dXmis

=

∫
p(β|Xmis,Xobs, Y ) p(Xmis|Xobs, Y ) dXmis

(2.1)

which is obtained as the marginalized joint density on the two unknown com-

ponents β and Xmis, marginalized across the unobserved values in Xmis.

The �rst equality may also be written as the probability density of the pa-

rameters vector β, conditional on the unknown quantitiesXmis and averaged

across the uncertainty in Xmis, both conditional on the observed data.

The multiple imputation procedure, based on Rubin's rules, represents a

practical approximation to this latter integration, by �rst generating imputed

data, X̂
mis

m , sampling from the conditional density p(Xmis|Xobs, Y ), with

m = 1, . . . ,M for a total number of M imputations. After that, we estimate

the modes β̂m of the conditional densities p(β | X̂
mis

m ,Xobs, Y ) evaluated at

the "completed" datasets (X̂
mis

m ,Xobs, Y ) for all m. Finally, the conditional

density p(β |Xobs, Y ) is approximated using classical frequentist theory and

this gives rise to the so-called Rubin's rules estimate of the expectation as

β̂MI =
1

M

M∑
m=1

β̂m. (2.2)

In a predictive scenario, where the study aim is to get predictions, for a

new set of data, these can be �nally obtained using the pooled model.

Pooling predictions

In the predictive scenario, the averaging described in equation 2.1 should

be expanded to average across the regression coe�cients in order to account
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for both the missing values Xmis and the uncertainty in β.

Let Ỹ be a future outcome, which we want to predict using covariates X̃.

To simplify the discussion, in the �rst instance we assume no missing data

in future data. The calibration data we use to calibrate the model includes

the outcome Y and the regression variables X. To predict a future Ỹ , we

calibrate the target density as p(Ỹ |Xobs, Y ), which denotes the conditional

dependence of Ỹ on the past observed calibration data Y and Xobs.

In the presence of missing values, the predictive density for future out-

come outcomes Ỹ can be calibrated as

p(Ỹ |Xobs, Y ) =

∫
f(Ỹ ,β,Xmis|Xobs, Y ) dβ dXmis

=

∫
f(Ỹ |β,Xmis,Xobs, Y ) p(β,Xmis|Xobs, Y ) dβ dXmis.

(2.3)

The integration is then achieved by averaging across both imputations X̂
mis

m

and simulations β̂m from the density p(β,Xmis|Xobs, Y ), always condition-

ing on the observed calibration data. In analogy with parameter estimation,

we then could calculate expectations:

Ŷm = E[f(Ỹ | β̂m, X̂
mis

m ,Xobs, Y )] (2.4)

for each pair of imputed values β̂m, X̂
mis

m , from the conditional density

p(β,Xmis|Xobs, Y ). The set of predictions Ŷm for m = 1, . . . ,M , might be

summarized using a suitable summary measure, like the mean or the median,

in order to get the �nal prediction estimate Ŷ . For example, using Rubin's

rules to summarize the set of predictions Ŷm, m = 1, . . . ,M , the quantity

E[Ŷ |Xobs, Y ] would be estimated using

ŶMI =
1

M

M∑
m=1

Ŷm. (2.5)

In the previous paragraph we only describe how to get predictions when
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we have no missing values in the new observations. It may also happen

though that the future outcomes have themselves missing values in the pre-

dictors, such that X̃ = (X̃obs, X̃mis), and they also might not occur in the

same covariates containing missing values in the calibration data. In case of

missing values, the equation 2.4 should then be expanded in order to include

averaging across X̃miss and to obtain predictions we will then have

Ŷ = E[Ỹ | X̃obs,Xobs, Y ] (2.6)

2.2 Methods

This section presents a general approach to validation, which enables to

deal with the problem discussed above. First of all, this approach allows the

outcome of the validation set Ỹ to be set-aside during the calibration of the

imputation model to impute X̃mis and Xmis and thus, this subsequently

allows to use it for the validation of the prediction rules. In section 2.2.1, we

then propose two di�erent algorithms to get �nal predictions, that means by

directly estimating the outcome by pooling predictions or, in contrast, by

applying Rubin's rules for the parameter estimation and afterwards getting

predictions. In section 2.2.2 we also de�ne the naïve implementation of the

previous approaches in order to use them as comparison during the anal-

ysis. Finally, in section 2.2.3, we describe the implementation for survival

outcomes.

This discussion focuses on cross-validation, but it could also be adapted

for a single set-aside validation set.

2.2.1 Combining cross-validation and multiple imputation

A general approach to generate imputations without considering the out-

come of the validation test is to remove it (Ỹ ) from the left-out fold de�ned

within the cross-validation procedure. This can be achieved by setting the

outcome of the left-out fold as "missing". After that, multiple imputation can
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be used to impute missing values in X̃mis and Xmis by calibrating the im-

putation model on the remainder of the observed data (X̃obs,Xobs, Y ). After

missing values have been imputed using the multiple imputation procedure,

a prediction model can be �tted on the calibration data (X̂mis,Xobs, Y ) and

subsequently applied to predict the outcome of the validation set, using
̂̃
Xmis

and X̃obs. Imputed values of Ỹ in the left-out fold are then discarded and

the real outcome values are returned in order to repeat the entire procedure

for the next fold within the whole sequence de�ned by the cross-validation

at the beginning.

As mentioned before, the multiple imputation procedure generates M

imputed datasets and �nal predictions can be obtained in di�erent ways, by

pooling predictions obtained from the analysis of the M imputed datasets,

as described in Approach 1, or by applying Rubin's rules to get a pooled

parameters vector and then getting predictions from that one, as described

in Approach 2. Note that the approaches coincide for M = 1.

Once we have the �nal predictions, these can then be compared with the

original outcome to get assessment measures.

Approach 1

The �rst approach starts de�ning K folds on the entire dataset. After

that, for each left-out fold, one realization of the multiple imputation proce-

dure is run to get a complete dataset on which a suitable model is then �tted

and corresponding predictions for the outcome of the left-out fold are gener-

ated, as described above. This procedure is then repeated M times in order

to getM predictions for each individual. The K folds may also be re-de�ned

each time in order to add extra variation. In this way then,M predictions for

each individual are generated and the �nal predictions vector can be derived

by taking the mean, the median or other suitable summary measure within

each individual. Note that individual �nal predictions are derived by using

M di�erent models and extra variation is add by fold de�nitions.



28 Combining multiple imputation and cross-validation

A schematic diagram of this approach is shown at the end of this chapter

in �gure 2.3.

Approach 2

The second approach starts de�ning K folds on the whole dataset, but

this time they will be kept �xed for the entire procedure. For each left-out

fold, multiple imputation is run M times, so that at the end, M completed

datasets are generated. For each of them, a suitable model is then �tted on

the calibration set to get the corresponding parameters. These M param-

eters are then pooled together using Rubin's rules in order to obtain the

"�nal" model. The latter is then applied to the validation set of each im-

puted dataset to get predictions. Since we have M validation sets, at the

end of this procedure, each subject has M predictions which will be pooled

together within each individual using a suitable summary measure to get the

�nal predictions. Note that the latter will of course all coincide for complete

records.

A schematic diagram of this approach is shown at the end of this chapter

in �gure 2.4.

2.2.2 Naïve approaches

Naïve approaches are de�ned in analogy to the above approaches. Essen-

tial di�erence is that, in this case, �rst of all multiple imputation is used to

get a set of complete datasets and, only after that, cross-validation is sep-

arately done using the complete datasets. Thus, both of the naïve methods

start computing multiple imputationM times on the whole dataset, in order

to obtain M complete datasets for the analysis. At this point, the Naïve 1

approach de�nes K folds in each imputed dataset for the cross-validation

procedure and in turn the kth fold is selected to be the validation set, while

on the others, a prediction model is �tted in order to obtain predictions for
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the individuals in the left-out fold, in analogy with Approach 1. After that

this procedure has been completed for each fold, each subject has M predic-

tions, one from each complete dataset, which will be pooled together using

a suitable summary measure. Alternatively, the Naïve 2 approach de�nes K

�xed folds, which will be the same on each imputed dataset, and in turn, the

kth fold is de�ned as validation set, while on all the others a predictive model

is calibrated. Once this operation has been applied in each imputed dataset,

the M resulted parameters are pooled together using Rubin's rules to get

the "�nal" model, in accordance with Approach 2. The pooled parameters

vector is then used to obtain predictions for the individuals in the validation

sets. After this procedure has been computed for each fold, also in this case,

each subject has M predictions, which will be pooled together to obtain the

�nal predictions vector.

2.2.3 Implementation for survival data

The previous sections presented a general approach to solve the problem

of the combination of multiple imputation and cross-validation, but in prin-

ciple, this question arose during the analysis of survival data. These data

will be presented in the next chapter and the approaches will be also tested

using real and simulated survival data (chapter 3). However, some additional

aspects must be considered to apply these approaches to survival outcomes.

Moreover, to emphasize the speci�c application for survival outcome, from

now on, the notation will be switched from Y to T , when discussing lifetime

outcome, in addition to a status indicator δ to denote censoring.

First of all, it is really important to �nd the right way to include the sur-

vival outcome in the imputation model because, otherwise, the association

between covariates and survival is likely to be biased. For this reason, White

and Royston (2009) showed how imputation models should be constructed

considering the censoring indicator and an estimate of the cumulative haz-

ard for the observed individual follow-up time, in addition to the regression
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covariates. The estimate of the cumulative hazard can be obtained by using

the Nelson-Aalen estimator and this should also be used instead of the sur-

vival time. Denoting by t1 < t2 < . . . the times when events are observed

and de�ning dj as the number of individuals who experienced the event at

time tj , the Nelson-Aalen estimator for the cumulative hazard rate function

has the form:

Â(t) =
∑
tj≤t

dj
rj

(2.7)

where rj is the number of individuals at risk just prior to time tj . To respect

the cross-validatory logic, the Nelson-Aalen estimate is computed from the

data only for the calibration set corresponding to any left-out fold. The Cox

models are instead estimated using the original outcome data within the

calibration set.

A second issue concerns the Approach 2 and in particular, how to con-

struct the combined model for subsequent application in prediction. In fact,

the Cox regression models involve both the regression parameters (hazard

ratios) as well as the baseline hazards to vary across imputations and thus,

both sources of variation must be considered. There are two methods to do

that, which we will denote as Approach 2A and 2B respectively. The �rst

one (2A) consists of averaging both the regression parameters as well as

the baseline hazards separately, and use them to de�ne the �nal model for

predictions. The second one (2B) applies Rubin's rules only for the combi-

nation of the regression parameters, which will then be averaged together, in

order to get the estimate of the cumulative baseline hazard with the Breslow

estimator. Denoting by Ti the observed survival time and by δi the status

indicator, the Breslow estimator takes the form:

Λ̂0(t) =

N∑
i=1

I(Ti ≤ t) δi∑
j∈Ri

exp{x′
j β̂}

(2.8)

where Ri = {j : Tj ≥ Ti}.

We have then de�ned 3 implementations for Cox proportional hazards
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modeling, which we will refer to in tables and graphs as Approach 1, 2A and

2B. A summary in pseudo-code of Approach 1 is shown in �gure 2.1, while

Approaches 2A and 2B are shown in �gure 2.2.

The naïve approaches for Cox proportional hazards modeling are de�ned

in analogy to those presented in section 2.2.2 making the same changes dis-

cussed above. We have then also de�ned 3 naïve approaches which we will

refer to as Naïve 1, 2A and 2B.

All analyses were performed using R Statistical Software (version 3.4.3,

R Core Team (2017)) and multiple imputations were generated using the

chained equations methodology, already discussed in section 1.2.3 and im-

plemented by Van Buuren and Groothuis-Oudshoorn (2011) in the package

MICE. All covariates have also been included in the same functional form as

in analysis model and no variable selection has been done.
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Approach 1

De�ne M and repeat the following steps M times:

1. De�ne K folds for the CV procedure.

2. Select each fold in turn as the validation set and use the others
as calibration set. Run the following steps for each selected fold:

(a) Remove the outcome from the validation data.

(b) Compute the Nelson-Aalen estimate for the cumulative
hazard in the calibration data and replace the original
calibration values of the "Time" variable with it.

(c) Run a single imputation on this dataset.

(d) Remove the Nelson-Aalen estimate and restore the origi-
nal "Time" data to the calibration data only.

(e) Fit a Cox PH model on the calibration set.

(f) Derive predictions from this model for subjects in the im-
puted validation set, using the equation:

Ŝi,m(t) = Ŝ0,m(t)exp{x
′
i,m β̂m}

Compute the �nal prediction Ŝi(t) for each individual as the average
of all the M individual predictions.

Figure 2.1: Algorithmic description of Approach 1 for combination of multiple im-
putation and cross-validation using the Cox model.
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Approaches 2A and 2B

De�ne K folds for the CV procedure and select each fold in turn
as the validation set and use the others as calibration set. Run the
following steps for each selected fold:

1. Remove the outcome from the validation data.

2. Compute the Nelson-Aalen estimate for the cumulative haz-
ard in the calibration data and replace the original calibration
values of the "Time" variable with it.

3. Run M imputations on this dataset.

4. Remove the Nelson-Aalen estimate from each imputed dataset
and restore the original "Time" data to the calibration sets
only.

5. Fit separate Cox PH model on the calibration set of each of
the M imputed datasets.

6. Compute the average β of theM coe�cients vectors from these
models.

7. Compute the baseline survival:

• For Approach 2A, calculate the combined baseline haz-
ard as the average of the M baseline hazards

• For Approach 2B, calculate the Breslow estimate of the
baseline hazard from β

8. Derive predictions from the combined model for subjects in the
imputed validation sets, using the equation:

Ŝi,m(t) = Ŝ0(t)exp{x
′
i,m β}

Compute the �nal prediction Ŝi(t) for each individual as the average
of all the M individual predictions.

Figure 2.2: Algorithmic description of Approaches 2A and 2B for combination of
multiple imputation and cross-validation using the Cox model.
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Figure 2.3: Schematic representation of Approach 1 for combination of multiple
imputation and cross-validation. Missing values are represented with
"x".
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Figure 2.4: Schematic representation of Approach 2 for combination of multiple
imputation and cross-validation. Missing values are represented with
"x".
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Chapter 3

Application in real and

simulated data

This chapter investigates performance of the proposed methodologies.

First of all, we will use two real datasets, which generated the interest in

this research �eld, to study performance in real data applications in clinical

survival analysis. The Cox proportional hazards model is used to calibrate

prognostic models to take censoring into account, regressing on all variables

without variable selection. Results for predicted survival probabilities at 1

and 5 years of follow-up are presented. Furthermore, performance of the

proposed methods is also investigated using simulations, which are designed

to test methodologies under various combinations of missing values patterns

and strength of association of predictors with the outcome.

Since this work aims to investigate performances of the proposed method-

ologies and it is not focused on the data themselves, section 3.1 provides just

a brief introduction to the datasets used for the analyses, as they have al-

ready been described in previous works. In particular, section 3.1.1 describes

the CRT dataset analysed by Hoke et al. (2017), while section 3.1.2 presents

the CLL dataset studied by Schetelig et al. (2017a,b). Section 3.2 provides

a description of the simulation study and �nally, section 3.3 presents the

summary measures used to evaluate approaches on real and simulated data.
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3.1 Data

3.1.1 CRT data

The CRT (Cardiac Resynchronization Therapy) data has been collected

by the Department of Cardiology of Leiden University Medical Center (LUMC)

and consists of an observational cardiology cohort of 1053 patients. Cardiac

resynchronization therapy is a treatment option for individuals with heart

failure, especially for those resistant to drugs, and consists of the implanta-

tion of a speci�c device in the heart, which sends small electrical impulses

to help both chambers of the heart to beat together in a more synchronized

pattern. However, the bene�ts of this treatment are not guaranteed, because

they depend on the characteristics of the patient. To avoid patients have to

undergo unsuccessful implantations, it would be helpful to be able to predict

their short- and long-term survival probabilities. For this reason, the study

of Hoke et al. (2017) aimed to derive a multi-parametric prognostic risk

score (CRT-SCORE) using pre-implantation variables, for use in the shared

decision-making between patients with heart failure and their physicians.

Data consists of 1053 patients, who underwent CRT implantation be-

tween 1999 and 2003. Survival outcome was de�ned as all-cause mortality

(494 deaths (47%), of which 438 are cardiovascular related). The median

follow-up is 60 months, while the median survival time is 85 months. Fur-

thermore, data were arti�cially censored after 7 years (84 months). A total

of 430 deaths occurred during this period of follow-up. There are 14 predic-

tor variables: age at implantation (Age, continuous), gender (Gender, two

categories), New York Heart Association functional class (Nyha, three cate-

gories), etiology of heart failure (Et, two categories), diabetes mellitus (Dm,

two categories), mitral regurgitation (Mr, two categories), left ventricular di-

astolic dysfunction (Lvdias, two categories), left bundle branch block (Lbbb,

two categories), atrial �brillation (Af, two categories), estimated glomerular

�ltration rate (Egfr, continuous), hemoglobin levels (Hb, continuous), left

ventricular ejection fraction (Lvef, continuous) and QRS duration (Qrs, two
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categories). Information is missing in 529 records, of which the majority is

concentrated in the Lvdias variable, which is missing in 524 cases (50%).

In addition, missing values occur also in Egfr (2 cases), Hb (7 cases), Lvef

(20 cases) and in Mr (30 cases). Missing observations in Lvdias were due

to failure of the measuring device, which give some credence to the missing

completely at random assumption.

3.1.2 CLL data

The CLL (Chronic Lymphocytic Leukemia) data has been extracted from

the registry of the European Society for Blood and Marrow Transplantation

(EBMT) and describes the risk factors and outcomes of a cohort of patients

with chronic lymphocytic leukemia who received an allogeneic hematopoietic

stem cell transplantation. Data have already been analysed in two papers by

Schetelig et al. (2017a,b) in order to study the impact on several outcomes

of a large series of risk factors, including patient-, disease-, procedure- and

center-related information. For this work, a simpli�ed version of the data

analysed in Schetelig et al. (2017b) is used.

Data consists of 694 retrospective observations of patients who were

transplanted between 2000 and 2011. The outcome of interest is overall sur-

vival up to 5 years after �rst allogeneic stem cell transplantation and it

was 64% at 2 years and 47% at 5 years. In addition, data were arti�cially

censored after 5 years and a total of 314 deaths were observed during this

period of interest. There are 8 predictor variables: age at transplantation

(age10, continuous), performance status indicated by the Karnofsky Index

(perfstat, four categories), remission status at transplantation (remstat, three

categories), cytogenetic abnormalities (cyto, four categories), previous autol-

ogous transplantation (asct, two categories), donor type (donor, three cate-

gories), patient-donor sex match (sex_match, four categories) and condition-

ing regimen (cond, three categories). Information is missing in 241 records,

in particular for cyto (171 cases, 25%), perfstat (63 cases, 9%), remstat (42
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cases, 6%), cond (9 cases, 1%) and �nally, for sex_match (8 cases, 1%).

3.2 Simulation study

3.2.1 Simulating lifetimes

Dataset are randomly generated resembling the CRT data to some ex-

tent, especially the fact that missing values are almost uniquely con�ned to

a single predictor. In particular, simulated data consists of survival time T , a

censoring status indicator δ and a predictor matrix X with 4 continuous co-

variates, which are drawn from a multivariate normal distribution N4(µ,Σ),

with µj = 0, j = 1, . . . , 4. The covariance matrix

Σ =


1. −0.5486 −0.1442 0.0617

−0.5486 1. 0.2970 0.1189

−0.1442 0.2970 1. −0.0210

0.0617 0.1189 −0.0210 1.


is chosen to equal the sample covariance matrix between the standardized

continuous variables in the CRT data (Age, Egfr, Hb, Lvef).

The survival times Ti, where i denotes the ith individual, with i =

1, . . . , N and N = 1000, are drawn from an Exponential distribution with

hazard

h(t|xi) = λ exp{x′
iβ} (3.1)

where xi is the corresponding vector of predictors and the baseline hazard

is �xed λ = 0.0073. The hazard ratios are chosen as

β
′

= (β1, log(1.2), log(0.85), log(0.75)) (3.2)

such that β2, β3, β4 are �xed, while β1 varies across simulation scenarios.

Censoring times are drawn from a Uniform distribution between 13.5 and

167.5, resembling the CRT dataset. The observed follow-up time T is de�ned
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for each individual by taking the minimum between the generated survival

and censoring times. The status indicator δ is set to 0 when T corresponds

to a censoring time, and to 1 when T is an event time point. Finally, admin-

istrative censorship is applied at t = 84 months, as for the CRT data. The

choices for λ and β were made so that the simulated data has similar sur-

vival proportions and levels of censoring as in the CRT data at 1 and 5 years.

3.2.2 Missing values scenarios

Once the simulated outcomes and predictors have been generated, miss-

ing values are introduced by removing a percentage of observations from the

X1 variable. As in the CRT data, missing values are concentrated in one

variable. The percentage of missing values in X1 and the value of the re-

gression coe�cient β1 are chosen in order to generate 4 di�erent scenarios,

which are de�ned as all combinations of low or high association of X1 with

the outcome (β1 = log(1.1) or log(2)) and low or high percentage of missing

values in X1 (10% or 50%), as shown in table 3.1.

Association between % of missing values in X1

X1 and the outcome Low [10%] High [50%]

Low [β1 = log(1.1)] Scenario 1 Scenario 3

High [β1 = log(2)] Scenario 2 Scenario 4

Table 3.1: De�nition of the simulation scenarios.

For each scenario, missing values are introduced completely at random

(MCAR) or at random (MAR), such that we have 8 scenarios in total. MAR

observations are generated by calculating for each individual i the probability

of being missing, given X2, de�ned by the equation below:

pMAR
i = min

[
x∗2,i L

X
∗
2

, 1

]
(3.3)
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where x∗2,i = (x2,i−min(X2))/(max(X2)−min(X2)), L is a fraction between

0 and 1 chosen to de�ne the percentage of missing values as described in ta-

ble 3.1 and X
∗
2 is the mean of the X2 variable. We take the minimum value

between 1 and the generated value to avoid exceeding 1. For each individual

a draw is then generated from the Bernoulli density with probability pMAR
i .

For each of the above described 4 simulation scenarios and for both MAR

and MCAR, we generate S = 100 simulated datasets, with N = 1000.

3.3 Comparison statistics to assess performance of

a predictive model

This section introduces the comparison statistics used to assess the per-

formance of the proposed methodologies in a survival analysis context. First

of all, we present a calibration and discrimination measure, as they are used

to assess survival predictions. Finally, we present some ad hoc statistics, ex-

pressly created to evaluate the e�ect of multiple imputation on predictions.

All statistics and summary measures are calculated based on the output

from the K-folds cross-validatory approaches described in section 2.2, using

K = 10. Furthermore, for each simulated dataset, R = 10 replications of

each approach are run to account for imputation variation.

3.3.1 Calibration and discrimination measures

When the study aims to build a prediction model, it is very important

to assess its predictive performance in a new set of data. This model eval-

uation process is usually called model validation. The general idea of vali-

dating a prediction model is to establish that it performs well also for new

observations, and this is very important, especially in a health research con-

text. When validating a prediction model, the predictive performance of the
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model is commonly addressed by quantifying the agreement between the

observed and predicted outcomes, calibration, and the ability of the model

to distinguish between low and high risk patients, discrimination. Several

performance measures based on these concepts are well established for risk

models for binary outcomes, but for survival prediction models the pres-

ence of censoring in the validation data has to be considered to avoid biased

results (Rahman et al. 2017).

In this work we use the Brier score as calibration measure and the C-

index to evaluate the discriminative ability of the models, both of them ad-

justed for survival outcomes. Furthermore, for both CRT and CLL datasets,

as well as for the simulated datasets, we evaluate all methods described in

section 2.2 using the Brier score and the C-index measures at both 1 and 5

years follow-up. Calculations were carried out in R using the packages pec

(Mogensen, Ishwaran, and Gerds 2012) for the Brier score and timeROC

(Blanche, Dartigues, and Jacqmin-Gadda 2013) for the C-index. We evalu-

ated each method for both M = 10 and M = 100. For the CRT and CLL

data, the above measures are also based on 10 applications of each method-

ology on the single data and the resulting �nal measures are then averaged

across replications. While for the simulated data, Brier score and C-index

statistics are calculated for each simulation scenario, averaging across repli-

cations and the 100 simulations from that scenario.

Brier score

The Brier score measures the predictive performance by measuring the

"predictor error". There are several versions of this statistic, but the most

popular one has been introduced by Graf et al. (1999). In a survival con-

text, prediction is not to be understood as an absolute prediction whether

an individual will survive beyond t0 or not, but as a probabilistic predic-

tion quantifying the probability of survival beyond t0 (Van Houwelingen and

Putter 2011).
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Let Ŝ(t0|x) be the predicted survival probability for an individual beyond

t0 given the predictor x and let y = I(T > t0) be the actual observation

(ignoring censoring). Brier score is then de�ned as follows:

BS(y, Ŝ(t0|x)) = (y − Ŝ(t0|x))2. (3.4)

With respect to a new observation ynew under the true model S(t0|x), the

expected value of this measure can be seen as the sum of two components:

the "true variation" and the "model error" due to misspeci�cation of the

model. It can in fact be written as:

E[BS(ynew, Ŝ(t0|x))] = S(t0|x)(1− S(t0|x)) + (S(t0|x)− Ŝ(t0|x))2. (3.5)

In survival context, censoring has to be considered. Graf et al. (1999)

suggested a weighted derivation of the Brier score, based on the assump-

tion that the censoring mechanism is independent of the covariates, called

Inverse Probability of Censoring Weighting (IPCW). To compensate for the

loss of information due to censoring, the individual contributions have to be

weighted. For each patient we observe Ti = min(T̃i, Ci) and δi = I(T̃i ≤ Ci)

where T̃i is the time to the event of interest and Ci the censoring time. For

a �xed time point t0, the weighted Brier score equation for the entire model

is then:

BS(t0) =
1

N

N∑
i=1

(yi − Ŝi(t0|xi))2 wi (3.6)

where the weight function wi is de�ned as:

wi =



0, if Ti < t0 and di = 0

1

Ĝ(t0)
, if Ti > t0

1

Ĝ(Ti)
, if Ti < t0 and di = 1

(3.7)

where Ĝ(t) is the estimate of the censoring distribution G(t) = P (C > t).

The Brier score can take values between 0 and 1, where 0 denotes a
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model with no predictor error. When comparing two di�erent models, the

best model is the one with the smallest model error.

C-index

Harrell's (1996) C-index is the most commonly used performance measure

to indicate the discriminative ability of generalized linear regression models.

For a binary outcome, it corresponds to the area under the receiver operating

characteristic (ROC) curve, also called AUC, which plots the true positive

rate against the false positive rate for consecutive cut-o�s for the probability

of an outcome. This measure can be seen as a rank-order statistic for pre-

dictions against true outcomes and can also be extended to censored data

ignoring the pairs that cannot be ordered (Steyerberg et al. 2010). C-index

is then the fraction of pairs of observations for which the order of survival

times and model predictions are correctly ordered among all pairs that can

be ordered. In a survival context, a pair (i, j) is considered usable if both

individuals are non-censored or if at least the individual with the shortest

time has an event. The pair is then considered concordant if the one who

dies �rst has the largest x-value (Van Houwelingen and Putter 2011).

A version of the C-index corrected for censoring can be obtained by

IPCW, as it has been shown in Uno et al. (2007). Assuming that random

censoring time C is independent of predictors, the C-index can be estimated

as follows:

Ĉ(t) =

∑N
i=1

∑N
j=1 I(Ti ≤ t) I(Tj > t) I(Xi > Xj)

δi
ŜC(Zi) ŜC(t)

n2 ŜKM (t)[1− ŜKM (t)]
(3.8)

where ŜC(.) is the Kaplan-Meier estimator of the survival function of the

censoring time C, while ŜKM (t) is the Kaplan-Meier estimator of P (T > t).

Furthermore, Ti and Tj are the observed survival times for individuals i and

j respectively, δi is the status indicator for the individual i and �nally, Xi

and Xj are the marker values for individuals i and j respectively. X can be
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a single marker or several markers combined into a predictive model, we also

assume that larger values of X are associated with greater risks.

The C-index can take values between 0 and 1, with 1 denoting a perfect

discrimination and 0.5 corresponding to a model with no predictive ability,

as a random guess model. When comparing two di�erent models, the best

model is the one with the higher discrimination ability.

3.3.2 Summary measures for the CRT and CLL data

In addition to the above calibration (Brier score) and discrimination (C-

index) measures, we also investigated the variation of predictions for individ-

ual patients in the data across several repeated calibrations of the methods.

The objective of the latter is to investigate the sensitivity of prediction at

the patient-level due to imputation variation.

Let Ŝi,r(t) be the predicted survival probability at time t for the patient

i, while r denotes the replicate (calibration) of the model. We then �rst

calculate the mean of the �nal predictions across replications, Si(t), for each

patient and then the deviations Di,r(t) = Ŝ(t)i,r−Si(t). While the latter are

heteroscedastic, their variation will be approximately constant for patients

with 0.2 ≤ Si(t) ≤ 0.8, we therefore discard all the deviations corresponding

to patients with Si(t) < 0.2 or Si(t) > 0.8 and compute the 90th and 10th

percentiles, Q0.90 and Q0.10, across all the remaining deviations Di,r(t).

We then report

R(t) = Q0.90 −Q0.10 (3.9)

as a measure of spread of predictive probabilities induced by imputation

variation at the probability scale. We calculate this measure forM = 10, 100

and 1000, we set the number of replicates to r = 10 and investigate measures

for t = 1 and t = 5 years.
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3.3.3 Summary measures for simulated data

For the simulated data, in addition to the Brier score and C-index mea-

sure, we could also investigate variance as well as bias, as we have the true

survival fractions Si,TRUE(t) available for each simulated individual i at any

time t, based on the assumed simulation model. We therefore de�ne a mea-

sure to asses variation of predictions based on percentiles and a measure of

bias.

Let Ŝ(t)i,r,s be the �tted survival probability from any approach at time

t for the individual i within the simulated dataset s and for the rth replicate

analysis. We then �rst calculate the mean of the �nal predictions across

replications, Si,s(t), for each individual i within the sth simulation. We then

compute the deviations Hi,r,s(t) = Ŝ(t)i,r,s−Si,s(t). In analogy to the above

description of the measure D, we now calculate the 90th and 10th percentiles,

Q0.90 and Q0.10, across all the deviations corresponding to individuals with

0.2 ≤ Si,TRUE(t) ≤ 0.8 within each sth simulated dataset. We then de�ne

Vs(t) = Q0.90 − Q0.10 as a measure of variation for the sth simulation and

report as �nal summary measure of variance

V (t) = Vs(t) (3.10)

that is the mean across simulations of these measures.

To de�ne a measure of bias, we proceed by �rst calculating the average

values of predictions Si,s(t) across replicates and subsequently computing

the deviations within the sth simulation from the true survival fraction:

Bi,s(t) = Si,s(t)− Si,TRUE(t). (3.11)

We report the summary measure B(t) de�ned as the mean across i and

across all the simulations s of all the Bi,s(t) measures of those individuals

with 0.2 ≤ Si,TRUE(t) ≤ 0.8:

B(t) = Bi,s(t). (3.12)
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Chapter 4

Results

This chapter discusses the results from application of the proposed method-

ologies on the two real datasets (section 4.1) and simulations (section 4.2).

All the measures described in section 3.3 are reported, but only the most

interesting tables and graphs are shown in the chapter, other materials can

be found in the appendix.

4.1 CRT and CLL data

4.1.1 Calibration and discrimination

Tables 4.1 and 4.2 report results on the evaluation of calibration and

discrimination performance of the proposed methods on the CRT and CLL

data. These tables show the Brier score and the C-index statistics based on

10 multiple imputations and on 10-folds cross-validation. Approaches have

been applied 10 times to the data and, as �nal measures, we took the average

values of these statistics across repetitions. Results are tabulated for both

1 and 5 years follow-up. The calculation has been done on the full set of

observations in column "All obs." and repeated for only those observations

containing missing values, in column "Missing", and for the completely ob-

served records, in column "Fully obs." In addition we also show the results



50 Results

based on 10-fold cross-validation in the complete case, that means consider-

ing only completely observed records, which does not require imputation. In

this case, predictions for each left-out fold have been obtained after a single

estimation of the Cox model in the corresponding calibration sets. The com-

plete case analysis can be seen as reference performance.

CRT Brier Score C-index

M=10 Missing Fully obs. All obs. Missing Fully obs. All obs.

A 1 0.0711 0.0628 0.0670 0.8230 0.7111 0.7703

A 2A 0.0712 0.0629 0.0671 0.8146 0.7113 0.7654

1 yr A 2B 0.0713 0.0629 0.0671 0.8146 0.7113 0.7654

N 1 0.0702 0.0627 0.0665 0.8395 0.7125 0.7794

N 2A 0.0704 0.0627 0.0666 0.8209 0.7021 0.7647

N 2B 0.0704 0.0627 0.0666 0.8209 0.7021 0.7647

Compl. case 0.0629 0.7353

A 1 0.2104 0.1761 0.1904 0.6863 0.7693 0.7371

A 2A 0.2121 0.1767 0.1914 0.6747 0.7573 0.7243

5 yrs A 2B 0.2120 0.1767 0.1914 0.6747 0.7573 0.7243

N 1 0.2043 0.1757 0.1876 0.7032 0.7714 0.7450

N 2A 0.2048 0.1765 0.1882 0.6988 0.7548 0.7327

N 2B 0.2048 0.1764 0.1882 0.6988 0.7548 0.7327

Compl. case 0.1780 0.7346

Table 4.1: Brier score and C-index statistics for the CRT data based on 10 multiple
imputations and on 10-fold cross-validation. We report the average val-
ues of these statistics across 10 replicates of the approaches. Results are
shown for both 1 and 5 years of follow-up, for those observations with
missing values ("Missing"), for the completely observed records ("Fully
obs.") and for the full set of observations ("All obs."). Results for the
complete case analysis are shown as well.

Tables show that there are no relevant di�erences in the performance of

the proposed methods, neither at 1 nor at 5 years of follow-up. We might see

a small di�erence in the summary measures computed on those observations

with missing values, where naïve approaches seem to have slightly higher

C-index values. Results for Brier score and C-index computed on the whole

set of data are a mixture between the corresponding results on the missing

and completely observed cases. Brier score is slightly higher for those obser-
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vations with missing values, as a consequence of the increased uncertainty in

prediction. C-index score calculated on observations with missing values is

also slightly larger, which seems counter-intuitive and it might be due to a

misspeci�cation of the imputation methods, which underestimates the vari-

ation in imputed values. Finally, we can also note that the Brier score for

the complete case analysis for the CRT data closely matches the results ob-

tained for the fully observed data across approaches. As has been discussed

before, the missingness pattern in the CRT dataset could be seen as a MCAR

scenario and thus, complete case analysis could be actually done.

ForM = 100 we obtained the same results as forM = 10. Since numbers

are almost indistinguishable, results forM = 100 are shown in the appendix,

in table 9 for the CRT dataset and in table 10 for the CLL.

CLL Brier Score C-index

M=10 Missing Fully obs. All obs. Missing Fully obs. All obs.

A 1 0.2019 0.1815 0.1886 0.6698 0.5982 0.6260

A 2A 0.2026 0.1816 0.1889 0.6667 0.6006 0.6256

1 yr A 2B 0.2026 0.1816 0.1889 0.6667 0.6006 0.6256

N 1 0.1972 0.1808 0.1864 0.6952 0.6011 0.6374

N 2A 0.1979 0.1813 0.1870 0.6883 0.6006 0.6341

N 2B 0.1980 0.1813 0.1870 0.6883 0.6006 0.6341

Compl. case 0.1837 0.5950

A 1 0.2362 0.2416 0.2404 0.6462 0.6109 0.6235

A 2A 0.2362 0.2411 0.2401 0.6451 0.6137 0.6248

5 yrs A 2B 0.2363 0.2411 0.2401 0.6451 0.6137 0.6248

N 1 0.2293 0.2396 0.2362 0.6750 0.6166 0.6393

N 2A 0.2307 0.2407 0.2375 0.6656 0.6168 0.6353

N 2B 0.2308 0.2407 0.2375 0.6656 0.6168 0.6353

Compl. case 0.2560 0.6046

Table 4.2: Brier score and C-index statistics for the CLL data based on 10 multiple
imputations and on 10-fold cross-validation. We report the average val-
ues of these statistics across 10 replicates of the approaches. Results are
shown for both 1 and 5 years of follow-up, for those observations with
missing values ("Missing"), for the completely observed records ("Fully
obs.") and for the full set of observations ("All obs."). Results for the
complete case analysis are shown as well.
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4.1.2 Variation of the individual predictions

In addition to the above measures to asses classi�cation performance

of the proposed methods, we also study the variability of predictions at

individual-level to account for variation due to imputations. We therefore

investigate the variation in individual predictions within methods, after a

single calibration of any approach, and after several replications of the anal-

ysis. That means that we study the variation in predictions at two di�erent

levels: �rst of all, looking at how much individual predictions Ŝi,m(t) vary

before averaging them to get the �nal predictions Ŝi(t) and second, we also

investigate how much the latter vary, this time across di�erent replicates of

the same method.

Within a single multiple-imputation based calibration

We start investigating variation of Ŝi,m(t). Figures 4.1 and 4.2 plot the

individual survival predictions Ŝi,m(t) versus the �nal ones Ŝi(t) at 5 years

for all the approaches and using M = 1000 imputations. Note that the �-

nal predictions correspond to the mean of the individual survival predictions

within individuals. We also distinguish between predictions corresponding to

fully observed records and to those with missing values, respectively marked

with black and red dots. For fully observed records, variation of predictions

at individual level is zero for approaches 2A and 2B, by design. These �gures

show that the variation in individual predictions is very large, especially for

those predictions with averaged value around 0.5 and for those observations

with missing values, as we expected.

These �gures are further summarized in table 4.3. In this case, we cal-

culate the same statistic de�ned in section 3.3.2 to express variation, but in

this case within a single application of the approaches. Which means that we

calculate the distance between the 90th and 10th percentiles of the deviations

Ŝi,m(t)−Ŝi(t) for those observations with average survival rate Ŝi(t) between
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Figure 4.1: Survival prediction Ŝi,m(t) at 5 years for the CRT data within ap-

proaches 1, 2A and 2B versus the mean (�nal) predictions Ŝi(t). Results
are shown for 1000 multiple imputations. Red dots show predictions for
individuals with missing values in the covariates, while black dots de-
note predictions based on fully observed records.

Figure 4.2: Survival prediction Ŝi,m(t) at 5 years for the CLL data within ap-

proaches 1, 2A and 2B versus the mean (�nal) predictions Ŝi(t). Results
are shown for 1000 multiple imputations. Red dots show predictions for
individuals with missing values in the covariates, while black dots de-
note predictions based on fully observed records.
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0.2 and 0.8. Results are shown for both 1 year and 5 years follow-up and are

also separately calculated for those individuals with missing values, as well

as for those with fully observed records.

CRT CLL

M=1000 Missing Fully obs. Missing Fully obs.

A 1 0.117 0.061 0.138 0.075

A 2A 0.103 0 0.115 0

1 year A 2B 0.102 0 0.115 0

N 1 0.115 0.060 0.135 0.071

N 2A 0.103 0 0.113 0

N 2B 0.103 0 0.113 0

A 1 0.153 0.066 0.173 0.099

A 2A 0.136 0 0.144 0

5 years A 2B 0.135 0 0.144 0

N 1 0.151 0.065 0.169 0.094

N 2A 0.134 0 0.141 0

N 2B 0.135 0 0.141 0

Table 4.3: Variation between predictions within a single calibration of any ap-
proach, using 1000 imputations. Results are shown for both CRT and
CLL data at 1 and 5 years follow-up and distinguishing between fully
observed records and those with missing values. Refer to section 3.3.2
for the precise de�nition of the measure.

Both for the CRT and CLL data, the di�erence between the deviation of

the individual predicted survival probabilities at the 90th and 10th percentiles

can be larger then 10% in case of records with missing values, both at 1 and

5 years of follow-up. For the fully observed records, numbers are smaller and,

for example, for approach 1 at 1 year, variation is around 6% for the CRT

data and around 7% for the CLL data.

Within a single method calibration, approach 1 has higher variation of the

individual predictions than the two approaches 2, based on Rubin's rules.

This depends on the fact that approach 2A and 2B are based on the direct

averaging of the model coe�cients and some of the between-models variation

is removed before the application to the individual observations. On the other
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hand, approach 1 approximates the posterior predictive density and this leads

to a higher variation between the individual predictions.

Fully observed records have in general a smaller variation and if we now

look at the di�erence between 1 and 5 years of follow-up, for the CLL data,

predictions after 5 years have always a larger variation, as would be expected.

The same behaviour can be observed for the approach 1 for the CRT data,

even if the di�erence is smaller.

Finally, note that variation observed for approach 1 may also be inter-

preted as the variation between predictions which would be observed if we

applied single-imputation and then repeated the analysis. Table 4.3 shows

that variation is very high and single-imputation should then be avoided in

the predictive calibration of prognostic rules. It is also clear that a larger

number of imputations is preferable.

Between replicates of the imputed-based approaches

In this section we investigate the predictive variation at the individual

level, due to the variation in multiple imputation. We then recalibrate each

approach 10 times and study the variation in the individual �nal predictions

(Ŝi,r(t)), which are the average of the imputation-based individual survival

predictions(Ŝi,r,m(t)). Results for the R(t) statistic, as discussed in section

3.3.2, are shown in table 4.4 for the CRT data and in table 4.5 for the CLL

data. Results are presented for M = 10, 100 and 1000 imputations, at 1 and

5 years of follow-up and distinguishing between records with missing values

and those completely observed.

First of all, we can notice that approach 1 has lower between-replicates

variation in prediction if compared with approaches 2A and 2B. This result

is true independently of the number of multiple imputations considered, for

the prediction of both fully observed and with partially missing records set of

data and also at both years of follow-up. Furthermore, the di�erence in the

values of R(t), comparing between approach 1 versus 2A and 2B, increases



56 Results

CRT M=10 M=100 M=1000

Missing Fully obs. Missing Fully obs. Missing Fully obs.

A 1 0.048 0.023 0.019 0.007 0.004 0.002

A 2A 0.080 0.050 0.050 0.050 0.043 0.049

1 yr A 2B 0.076 0.046 0.051 0.045 0.042 0.048

N 1 0.054 0.023 0.015 0.007 0.005 0.003

N 2A 0.085 0.048 0.053 0.051 0.051 0.049

N 2B 0.078 0.044 0.047 0.047 0.049 0.050

A 1 0.059 0.024 0.017 0.008 0.005 0.003

A 2A 0.097 0.053 0.057 0.049 0.049 0.050

5 yrs A 2B 0.095 0.051 0.056 0.055 0.050 0.048

N 1 0.063 0.024 0.018 0.008 0.006 0.004

N 2A 0.092 0.050 0.053 0.047 0.066 0.066

N 2B 0.094 0.049 0.055 0.048 0.064 0.067

Table 4.4: Variation measure in prediction between replicate analysis (R(t)) using
the same approach for eitherM = 10, 100 or 1000, for CRT data at 1 and
5 years follow-up and distinguishing between fully observed records and
those with missing values. Refer to section 3.3.2 for the precise de�nition
of the measure.

CLL M=10 M=100 M=1000

Missing Fully obs. Missing Fully obs. Missing Fully obs.

A 1 0.051 0.026 0.016 0.009 0.005 0.003

A 2A 0.073 0.057 0.059 0.054 0.052 0.052

1 yr A 2B 0.076 0.057 0.056 0.055 0.052 0.054

N 1 0.046 0.027 0.016 0.009 0.005 0.003

N 2A 0.069 0.050 0.056 0.053 0.051 0.050

N 2B 0.067 0.051 0.054 0.051 0.049 0.050

A 1 0.061 0.036 0.002 0.012 0.006 0.004

A 2A 0.095 0.076 0.077 0.073 0.068 0.068

5 yrs A 2B 0.093 0.076 0.071 0.072 0.068 0.072

N 1 0.057 0.035 0.002 0.011 0.006 0.004

N 2A 0.084 0.067 0.071 0.070 0.066 0.066

N 2B 0.085 0.069 0.072 0.070 0.064 0.067

Table 4.5: Variation measure in prediction between replicate analysis (R(t)) using
the same approach for eitherM = 10, 100 or 1000, for CLL data at 1 and
5 years follow-up and distinguishing between fully observed records and
those with missing values. Refer to section 3.3.2 for the precise de�nition
of the measure.



4.1 CRT and CLL data 57

with the rise in the number of imputations and the biggest gap is observed

for the complete records at M = 1000.

Second, the number of imputations seems to have an important role in reduc-

ing variation. Results show that 10 imputations are not enough for predictive

calibration in the presence of missing data and that a substantial improve-

ment can be made by increasing this number at least to 100. In general, in

fact, variation reduces when increasing the number of imputations and this is

especially true for approach 1. For the latter, indeed, reduction in predictive

variation is still achieved when increasing the number of imputation from

100 to 1000 and this also leads to a predictive variation below 1%, which

is highly desirable for practical use in any medical application. While, in

contrast, for approaches 2A and 2B, reduction in predictive variation does

not considerably improve when increasing number of imputations beyond

100 and moreover, the predictive variation measure R(t), for both CRT and

CLL data, is stuck above 4.5% for both M = 100 and M = 1000. These

conclusions can be drawn for predictions based on the fully observed records

as well for those based on records with missing values. Furthermore, we can

see that the di�erence in variation between completely observed records and

those with some missing values is higher for approach 1, while approach 2A

and 2B do not present a big gap between the two groups, especially for M

bigger than 10.

The above argumentations can be easily better realized by looking at

�gures 4.3 and 4.4, respectively for CRT and CLL data, which show the

same results presented in tables 4.4 and 4.5 for the three approaches. The

red lines correspond to results for partially observed records, while the black

ones are for fully observed records. Finally, the solid lines are for results at

1 year of follow-up, while the dashed lines correspond to results at 5 years.

From these graphics, the di�erence between approach 1 and the other two

is even more understandable. As we can easily see, for M = 10, approach 1

achieves a precision that is not matched for approaches 2A and 2B, not even

with M = 1000. We can also notice an e�ective reduction in variation when
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Figure 4.3: Deviation of predictions R(t) across replicate calibration for approaches
1, 2A and 2B versus the number of imputations for the CRT data.
Results are shown at 1 and 5 years follow-up, respectively denoted by
solid and dashed lines. Red lines correspond to results for predictions
with missing values, while black lines are for fully observed records.

Figure 4.4: Deviation of predictions R(t) across replicate calibration for approaches
1, 2A and 2B versus the number of imputations for the CLL data.
Results are shown at 1 and 5 years follow-up, respectively denoted by
solid and dashed lines. Red lines correspond to results for predictions
with missing values, while black lines are for fully observed records.
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increasing the number of imputations for approach 1, behaviour that we do

not see for the other approaches, which seem cannot pro�t from the increase

of number of imputations. The fact that the above results are common fea-

tures of both the CRT and CLL data �nally suggests that they might actually

represent general properties of the methods and are not data-speci�c.

Furthermore, we can also compare these results with the ones in table 4.3,

which can be seen as the single-imputation scenario, with M = 1. We can

then see that, especially for approach 1, the reduction in predictive variation

is achieved by using multiple imputation instead of one.

Finally, regarding the naïve implementation of the proposed approaches,

we note that their predictive variation is not much di�erent from the one of

the proposed methods.

4.2 Simulated data

This section presents the results of the simulation study, as described

in section 3.2. Analyses have been carried out for both MCAR and MAR

scenarios, withM = 10 and 100. Summary measures, as described in section

3.3, have been computed at both 1 and 5 years of follow-up and separately for

fully observed records and for those with missing values. For scenarios 1 and

3, measures of variation and bias at 1 year of follow-up are not shown, since

these measures are de�ned for all those observations with "true" survival

outcome between 0.2 and 0.8, but because of the way simulations have been

set up, there were not enough observations within this range of interest.

For comparison, we have also performed analysis for a single calibration

of the Cox model with cross-validatory assessment, considering �rst, the

complete cases only, and second, the original simulated datasets, before the

introduction of the missing values. Results of the analyses on the original

datasets can be seen as benchmarks, since they represent the optimal values,

those we would expect if we had no lack of information.

In the next sections we present tables with the most interesting results,
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complete tables with all the results of the simulation study can be found in

the appendix in section .2.

4.2.1 Calibration and discrimination

Table 4.6 shows the simulation results for the Brier score and the C-index

at 1 year of follow-up and using M = 10 multiple imputations on simulated

datasets with MCAR values. Results of the analyses on the complete cases

and on the original datasets are shown as well.

Simulations show that the Brier score, as we would expect, presents in

general higher values for those records with missing values. If we compare the

performance of our proposed approaches with the corresponding naïve im-

plementations, we can also note that naïve approaches present lower values

of this index and this fact may be seen as in favour of the naïve implementa-

tion. However, if we compare these numbers with the benchmark values, we

can see that naïve approaches give actually too optimistic results, especially

for scenarios 2 and 4. The analysis on the original data, indeed, represents

what we would expect if we had no missing data and it then can be seen as

the best achievement we can have for those datasets.

On the other hand, C-index generally shows lower values for those records

with missing values, as we would expect, since they are characterized by more

uncertainty. As for the Brier score, if we compare the proposed approaches

with the corresponding naïve implementations for those observations with

missing values, we would say that the latter present better performance than

the proposed ones. For example, in scenario 2, C-index for approach 1 is

around 59% and reaches 76% for the corresponding naïve implementation.

Also in this case though, this hypothesis is contradicted by the comparison

with the result obtained from the analysis in the original datasets, which

gives a C-index around 69%. Discrimination performance of the naïve im-

plementations seems indeed to be better than the one we would have in the

best scenario we could have, that is the one with no missing values. Once
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MCAR Brier Score C-index

M=10, 1 year Missing Fully obs. Missing Fully obs.

A 1 0.0780 0.0803 0.5911 0.5867

A 2A 0.0780 0.0803 0.5911 0.5862

Scen 1 A 2B 0.0780 0.0803 0.5911 0.5862

N 1 0.0779 0.0803 0.5978 0.5870

N 2A 0.0779 0.0803 0.5969 0.5864

N 2B 0.0779 0.0803 0.5969 0.5864

Complete Case 0.0803 0.5859

Original Dataset 0.0801 0.5884

A 1 0.0928 0.0871 0.5876 0.6880

A 2A 0.0929 0.0872 0.5862 0.6878

Scen 2 A 2B 0.0929 0.0872 0.5862 0.6878

N 1 0.0879 0.0871 0.7566 0.6882

N 2A 0.0879 0.0871 0.7562 0.6880

N 2B 0.0879 0.0871 0.7562 0.6880

Complete Case 0.0872 0.6878

Original Dataset 0.0873 0.6876

A 1 0.0793 0.0801 0.5872 0.5829

A 2A 0.0793 0.0801 0.5870 0.5827

Scen 3 A 2B 0.0793 0.0801 0.5870 0.5827

N 1 0.0791 0.0801 0.5984 0.5849

N 2A 0.0791 0.0801 0.5966 0.5845

N 2B 0.0791 0.0801 0.5966 0.5845

Complete Case 0.0803 0.5773

Original Dataset 0.0797 0.5873

A 1 0.0906 0.0865 0.5934 0.6845

A 2A 0.0907 0.0865 0.5927 0.6843

Scen 4 A 2B 0.0907 0.0865 0.5927 0.6843

N 1 0.0859 0.0864 0.7613 0.6855

N 2A 0.0859 0.0864 0.7600 0.6853

N 2B 0.0859 0.0864 0.7600 0.6853

Complete Case 0.0867 0.6834

Original Dataset 0.0866 0.6881

Table 4.6: Results of the simulation study for the Brier score and the C-index at 1
year of follow-up and using M = 10. Results refer to simulated datasets
with MCAR values and are reported separately for fully observed records
and for those with missing values. Results of the analyses on the complete
cases and on the original datasets are shown as well.
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again, this a�rmation is particularly true for scenarios 2 and 4. As well as for

the Brier score before, this might be due to the strong association between

the variable with missing values and the outcome and it clearly shows how

naïve implementations in predictive calibration should be avoided.

Increasing M to 100 or applying the proposed approaches to MAR data

leads to the same conclusions and values are almost indistinguishable from

those in table 4.6. For this reason, results of the analyses carried out with

M = 100 and on MAR data are reported in the appendix, along with the

results at 5 years of follow-up.

For both statistics, not much di�erence has been observed between anal-

ysis on the original datasets and on the complete cases only, even if we can

see that complete case analysis has slightly worse performance than the other

one. We would have expected to gain something more from doing multiple

imputation, at least for the MAR scenarios. These results may then be due

to the way simulations have been set up and especially to the fact that pre-

dictors are not strongly correlated to the outcome. Multiple imputation is

shown to be preferable than complete cases analysis to avoid bias in the

parameters estimation, but since this work is focused on predictions, further

research to better understand this phenomenon is suggested.

4.2.2 Variation and bias

Tables 4.7 and 4.8 show the simulation results for variation and bias

measures as described in section 3.3.3. Results refer to MCAR scenarios at

5 years of follow-up (more informative than those at 1 year, reported in the

appendix) and using respectively M = 10 and 100 multiple imputations.

Values are reported separately for fully observed records and for those with

missing values. Tables with the summary measures for datasets with MAR

values can be found in the appendix, since numbers are very similar to those

of MCAR scenarios and lead to the same conclusions.
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MCAR Variation Bias

M=10, 5 years Missing Fully obs. Missing Fully obs.

A 1 0.0191 0.0088 -0.0000 -0.0006

A 2A 0.0293 0.0257 -0.0001 -0.0006

Scen 1 A 2B 0.0293 0.0258 -0.0001 -0.0006

N 1 0.0190 0.0086 -0.0001 -0.0006

N 2A 0.0292 0.0254 -0.0001 -0.0006

N 2B 0.0292 0.0254 -0.0001 -0.0006

A 1 0.1186 0.0090 0.0182 -0.0002

A 2A 0.1211 0.0256 0.0182 -0.0002

Scen 2 A 2B 0.1211 0.0261 0.0182 -0.0002

N 1 0.1117 0.0089 0.0172 -0.0002

N 2A 0.1136 0.0248 0.0171 -0.0002

N 2B 0.1137 0.0254 0.0172 -0.0001

A 1 0.0249 0.0127 0.0033 0.0033

A 2A 0.0319 0.0287 0.0035 0.0035

Scen 3 A 2B 0.0320 0.0289 0.0033 0.0033

N 1 0.0242 0.0122 0.0033 0.0033

N 2A 0.0314 0.0260 0.0035 0.0035

N 2B 0.0315 0.0262 0.0033 0.0033

A 1 0.1166 0.0143 0.0204 0.0036

A 2A 0.1183 0.0297 0.0205 0.0036

Scen 4 A 2B 0.1190 0.0329 0.0206 0.0036

N 1 0.1085 0.0133 0.0184 0.0038

N 2A 0.1103 0.0258 0.0185 0.0039

N 2B 0.1110 0.0293 0.0183 0.0037

Table 4.7: Results of the simulation study for the variation and bias statistics de-
scribed in section 3.3.3 at 5 years of follow-up and usingM = 10. Results
refer to simulated datasets with MCAR values and are reported sepa-
rately for fully observed records and for those with missing values.
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MCAR Variation Bias

M=100, 5 years Missing Fully obs. Missing Fully obs.

A 1 0.0060 0.0028 -0.0000 -0.0006

A 2A 0.0234 0.0255 -0.0000 -0.0006

Scen 1 A 2B 0.0234 0.0255 -0.0001 -0.0006

N 1 0.0060 0.0027 -0.0000 -0.0006

N 2A 0.0233 0.0251 -0.0000 -0.0006

N 2B 0.0233 0.0251 -0.0000 -0.0006

A 1 0.0381 0.0029 0.0209 0.0010

A 2A 0.0453 0.0253 0.0209 0.0010

Scen 2 A 2B 0.0455 0.0259 0.0209 0.0010

N 1 0.0358 0.0028 0.0186 0.0010

N 2A 0.0420 0.0247 0.0187 0.0010

N 2B 0.0423 0.0254 0.0187 0.0011

A 1 0.0080 0.0040 -0.0019 -0.0023

A 2A 0.0239 0.0273 -0.0017 -0.0021

Scen 3 A 2B 0.0241 0.0275 -0.0019 -0.0022

N 1 0.0077 0.0038 -0.0019 -0.0023

N 2A 0.0237 0.0241 -0.0017 -0.0021

N 2B 0.0239 0.0243 -0.0020 -0.0024

A 1 0.0362 0.0045 0.0214 0.0042

A 2A 0.0440 0.0279 0.0214 0.0043

Scen 4 A 2B 0.0459 0.0315 0.0214 0.0043

N 1 0.0337 0.0042 0.0203 0.0042

N 2A 0.0400 0.0235 0.0204 0.0042

N 2B 0.0422 0.0276 0.0207 0.0046

Table 4.8: Results of the simulation study for the variation and bias statistics de-
scribed in section 3.3.3 at 5 years of follow-up and using M = 100.
Results refer to simulated datasets with MCAR values and are reported
separately for fully observed records and for those with missing values.

Variation in predictive probabilities is systematically smaller for approach

1 than for approaches 2A and 2B and this can especially be seen for scenar-

ios 1 and 3. As we expected, observations with missing values have generally

larger variation of predictions than those with fully observed records. Fur-

thermore, for the latter group, the di�erence in variation between approach
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1 and the other two is bigger than for the ones with missing values. For fully

observed observations, indeed, variation of approaches 2A and 2B is always

at least two times the one of approach 1. Predictions at 5 years of follow-up

are generally more variable than those at 1 year and the highest values are

registered in scenarios 2 and 4, withM = 10, where variation presents values

around 12%. These two scenarios are characterized by a strong association

between the predictor with missing values and the outcome, the e�ect of

multiple imputation is then ampli�ed in predictions by leading to more vari-

able results. By increasing the number of imputations from 10 to 100, this

variability is reduced in all scenarios and the biggest gain is observable for

approach 1, as we have already seen for the application in the real data. On

the other hand, reduction in variation observed for approaches 2A and 2B is

not very considerable. Furthermore, no relevant di�erence in variation can be

observed between the proposed methods and their naïve implementations.

Bias in predictive probabilities is small in all scenarios, but especially for

scenarios 1 and 3, and can be both positive and negative. Bias for fully ob-

served records presents almost the same values across all scenarios. The high-

est values can be observed in scenarios 2 and 4, for incomplete observations,

but in any case, bias is still always lower than 0.03. This seems to con�rm

that including the survival information in the form of the Nelson-Aalen es-

timate of the cumulative hazard, together with the status information, gives

satisfactory results within this context of simulation scenarios where the goal

is getting predictions and β is not investigated. No relevant improvement in

bias reduction has been observed when increasing the number of imputations

from 10 to 100. Regarding naïve approaches, it might seem that for scenarios

2 and 4 they lead to a slightly lower bias than our proposed methods do,

but this can actually be seen as a too "optimistic" results, connected with

what has already been said for the Brier score. The latter, in fact, can be

seen as the sum of a measure of variance and model error and the fact that

bias presents smaller values may then be related to the smaller values also

observed for the Brier score.
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Discussion

This work aimed to compare two approaches to the calibration of predic-

tion models when multiple imputation is used to deal with missing data and

cross-validatory assessment is required to asses models performance. We have

�rst de�ned two general approaches to the combination of cross-validation

and multiple imputation, further speci�ed for the application on survival

data. The �rst approach aims to calibrate the predictive density by averag-

ing predictions of multiple models, which have been separately estimated on

distinct imputed datasets. The second approach is based on the application

of the so-called Rubin's rules to combine the model parameters across mul-

tiple imputations. Once we have the pooled set of parameters, we can use

it to get �nal predictions. In addition, two versions of this second approach

have been implemented to take into account the particular features of the

Cox regression model. When the �nal aim is getting predictions in a Cox re-

gression context, in fact, the substantive model is a combination of the usual

regression parameters, say β, and the cumulative baseline hazard, which has

to be summarized as well. Hence, we proposed two di�erent ways to get the

�nal estimate of this latter measure. The �rst one is a straightforward appli-

cation of the Rubin's rules, which means that the pooled cumulative baseline

hazard is obtained by averaging the single estimates across multiple impu-

tations. On the other hand, the second one gets the estimate of the quantity

of interest by plugging the pooled set of parameters β into the Breslow es-

timator. These approaches are respectively called 2A and 2B. All the above

mentioned methods have been implemented to combine cross-validatory as-
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sessment with multiple imputation, which means avoiding the re-use of the

set-aside data in the cross-validation when computing imputations. We also

compared these approaches with the corresponding naïve implementations,

which �rst derive imputations on the full dataset and subsequently compute

cross-validation on the already-imputed data.

We investigated application of the proposed methods in prognosis, us-

ing two real datasets, and we also presented a simulation study where we

generated lifetime outcome data subject to censoring and with missing data

in predictors. We used simulations to assess the proposed methodologies in

di�erent scenarios. Finally, to generate multiple imputations for the survival

data, we replaced the observed follow-up times with the Nelson-Aalen esti-

mator of the cumulative hazard.

Results demonstrate, both for the real data and across simulations, that

the �rst approach is vastly superior in terms of variation of the achieved pre-

dictions due to multiple imputations. This seems to be true irrespective of

the number of imputations used and when comparing the �rst approach with

both the approaches 2A and 2B. Indeed, even when increasing the number of

imputations to 1000, the variability of the two approaches based on Rubin's

rules is outperformed by approach 1 when using only 10 imputations.

Regarding the naïve implementations of the proposed methods, simulations

have shown that they should be avoided, as they may exhibit optimistic

bias. As we expected, indeed, computing multiple imputation prior to cross-

validation leads to overrate the performance of the calibrated predictive

model, since the predictive rules have been calibrated already "knowing"

exactly what they have to predict.

Finally, we have shown that the number of multiple imputations should be

much higher than current practice would suggest for predictive purpose and

it should then be likely closer to 1000 imputations (or even more) in order to

achieve reliable predictions which can be used in practical clinical applica-

tions. Moreover, the most important thing is that any implementation based

on single imputation should be treated with greatest caution, since it may
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lead to misleading results.

Preferring the �rst approach, of course, goes against the desire to report

interpretable models, which makes the use of models based on Rubin's rules

more attractive. Approach 1 is, in fact, specially built for predictive purpose

and any attention has been paid to the parameters. However, Rubin's rules

pooled estimates and standard errors may also be reported for interpretation

of e�ects side to side with performance measures for approach 1. This issue

is then left to further research and considerations.

Variable selection is another aspect that would require more investiga-

tion, since in this work we simply used all the available predictors, without

any kind of selection.

Another topic that should be explored is the extension to handling other

outcomes, such as continuous or binary, even though in theory there are no

restriction to the general applicability of the discussed methodologies.
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Appendix

.1 Real data

CRT Brier Score C-index

M=100 Missing Fully obs. All obs. Missing Fully obs. All obs.

A 1 0.0711 0.0627 0.0670 0.8261 0.7134 0.7723

A 2A 0.0710 0.0628 0.0669 0.8140 0.7039 0.7611

1 yr A 2B 0.0711 0.0628 0.0669 0.8140 0.7039 0.7611

N 1 0.0702 0.0627 0.0665 0.8416 0.7131 0.7803

N 2A 0.0701 0.0626 0.0663 0.8281 0.7052 0.7696

N 2B 0.0701 0.0626 0.0664 0.8281 0.7052 0.7696

Compl. case 0.0629 0.7353

A 1 0.2104 0.1760 0.1903 0.6869 0.7706 0.7377

A 2A 0.2110 0.1763 0.1907 0.6808 0.7590 0.7287

5 yrs A 2B 0.2109 0.1763 0.1907 0.6808 0.7590 0.7287

N 1 0.2040 0.1757 0.1874 0.7058 0.7710 0.7457

N 2A 0.2039 0.1755 0.1872 0.6946 0.7634 0.7367

N 2B 0.2038 0.1754 0.1872 0.6946 0.7634 0.7367

Compl. case 0.1780 0.7346

Table 9: Brier score and C-index statistics for the CRT data based on 100 multiple
imputations and on 10-folds cross-validation. We report the average values
of these statistics across 10 replicates of the approaches.Results are shown
for both 1 and 5 years of follow-up, for the full set of observations (All
obs.), for those observations with missing values (Missing) and for the
completely observed records (Fully obs.). Results for the complete case
analysis are shown as well.
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CLL Brier Score C-index

M=100 Missing Fully obs. All obs. Missing Fully obs. All obs.

A 1 0.2020 0.1814 0.1885 0.6713 0.5980 0.6266

A 2A 0.2026 0.1818 0.1890 0.6683 0.5996 0.6260

1 yr A 2B 0.2026 0.1818 0.1890 0.6683 0.5996 0.6260

N 1 0.1965 0.1807 0.1861 0.7000 0.6032 0.6401

N 2A 0.1980 0.1812 0.1870 0.6879 0.5999 0.6331

N 2B 0.1980 0.1812 0.1870 0.6879 0.5999 0.6331

Compl. case 0.1837 0.5950

A 1 0.2362 0.2412 0.2402 0.6463 0.6119 0.6243

A 2A 0.2362 0.2410 0.2400 0.6496 0.6147 0.6268

5 yrs A 2B 0.2361 0.2411 0.2401 0.6496 0.6147 0.6268

N 1 0.2288 0.2396 0.2360 0.6752 0.6179 0.6402

N 2A 0.2316 0.2414 0.2383 0.6640 0.6118 0.6310

N 2B 0.2317 0.2414 0.2383 0.6640 0.6118 0.6310

Compl. case 0.2560 0.6046

Table 10: Brier score and C-index statistics for the CLL data based on 100 multiple
imputations and on 10-folds cross-validation. We report the average val-
ues of these statistics across 10 replicates of the approaches.Results are
shown for both 1 and 5 years of follow-up, for the full set of observations
(All obs.), for those observations with missing values (Missing) and for
the completely observed records (Fully obs.). Results for the complete
case analysis are shown as well.
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MCAR 1 year 5 years

Compl. Case Bias Brier Score C-index Bias Brier Score C-index

M=10

Scen 1 - 0.0803 0.5859 0.0007 0.2243 0.6032

Scen 2 -0.0014 0.0872 0.6878 -0.0012 0.2041 0.7162

Scen 3 - 0.0803 0.5773 0.0020 0.2256 0.5932

Scen 4 0.0041 0.0867 0.6834 0.0033 0.2053 0.7113

M=100

Scen 1 - 0.0803 0.5859 0.0007 0.2243 0.6032

Scen 2 0.0005 0.0865 0.6900 0.0007 0.2043 0.7143

Scen 3 - 0.0803 0.5930 -0.0017 0.2253 0.6037

Scen 4 -0.0035 0.0884 0.6853 0.0008 0.2044 0.7123

Table 11: Results for bias, Brier score and C-index statistics for predictions ob-
tained with a single calibration of the Cox model with cross-validatory
assessment for the 4 scenarios with MCAR values and considering for the
analysis only the fully observed records (complete cases) of the datasets
which have been generated to test the approaches with M = 10 or 100.
Results are shown at both 1 and 5 years of follow-up.
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MAR 1 year 5 years

Compl. Case Bias Brier Score C-index Bias Brier Score C-index

M=10

Scen 1 - 0.0801 0.5881 -0.0007 0.2242 0.6049

Scen 2 -0.0039 0.0880 0.6871 0.0005 0.2042 0.7149

Scen 3 - 0.0783 0.5852 0.0014 0.2239 0.6005

Scen 4 -0.0042 0.0950 0.6776 -0.0011 0.2086 0.7136

M=100

Scen 1 - 0.0801 0.5898 -0.0007 0.2241 0.6056

Scen 2 0.0013 0.0861 0.6949 0.0015 0.2031 0.7170

Scen 3 - 0.0779 0.5910 0.0023 0.2232 0.6006

Scen 4 -0.0104 0.0951 0.6866 0.0025 0.2076 0.7157

Table 12: Results for bias, Brier score and C-index statistics for predictions ob-
tained with a single calibration of the Cox model with cross-validatory
assessment for the 4 scenarios with MAR values and considering for the
analysis only the fully observed records (complete cases) of the datasets
which have been generated to test the approaches with M = 10 or 100.
Results are shown at both 1 and 5 years of follow-up.

MCAR 1 year 5 years

Original Data Bias Brier Score C-index Bias Brier Score C-index

M=10

Scen 1 - 0.0801 0.5884 -0.0007 0.2243 0.6041

Scen 2 -0.0019 0.0873 0.6876 -0.0010 0.2039 0.7160

Scen 3 - 0.0797 0.5873 0.0031 0.2238 0.6015

Scen 4 0.0019 0.0866 0.6881 0.0001 0.2040 0.7154

M=100

Scen 1 - 0.0801 0.5884 -0.0007 0.2243 0.6041

Scen 2 0.0004 0.0865 0.6903 0.0004 0.2041 0.7146

Scen 3 - 0.0791 0.5947 -0.0024 0.2245 0.6075

Scen 4 0.0004 0.0866 0.6897 0.0018 0.2035 0.7150

Table 13: Results for bias, Brier score and C-index statistics for predictions ob-
tained with a single calibration of the Cox model with cross-validatory
assessment for the 4 scenarios with MCAR values and considering for the
analysis the original datasets (without missing values) which have been
generated to test the approaches with M = 10 or 100. Results are shown
at both 1 and 5 years of follow-up.
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MAR 1 year 5 years

Original Data Bias Brier Score C-index Bias Brier Score C-index

M=10

Scen 1 - 0.0801 0.5884 -0.0007 0.2243 0.6041

Scen 2 -0.0043 0.0873 0.6877 0.0002 0.2037 0.7147

Scen 3 - 0.0792 0.5865 0.0016 0.2239 0.6037

Scen 4 -0.0052 0.0881 0.6862 -0.0004 0.2038 0.7150

M=100

Scen 1 - 0.0801 0.5894 -0.0005 0.2242 0.6048

Scen 2 -0.0018 0.0856 0.6954 0.0013 0.2028 0.7165

Scen 3 - 0.0792 0.5968 0.0027 0.2234 0.6047

Scen 4 -0.0080 0.0881 0.6896 0.0020 0.2026 0.7174

Table 14: Results for bias, Brier score and C-index statistics for predictions ob-
tained with a single calibration of the Cox model with cross-validatory
assessment for the 4 scenarios with MAR values and considering for the
analysis the original datasets (without missing values) which have been
generated to test the approaches with M = 10 or 100. Results are shown
at both 1 and 5 years of follow-up.
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