
University of Padova

Department ofMathematics “Tullio Levi-Civita”

Master Thesis in Cybersecurity

Penetration testing

applied to 5G Core Network

Supervisor Master Candidate
Prof. Mauro Conti Filippo Giambartolomei
University of Padova

Co-supervisor Student ID
Marc Barceló 2020387
Ikerlan S. COOP

Academic Year
2022-2023

ii

“This is forthosepeople inoursocietywhohavealwaysworkhardintheir
field of expertise andwhohave not been recognize for their hardwork and
commitment, sacrifices, and ideas, but who, most importantly, believed in
themselves when no one else did. Always have faith in yourself. With com-
mitment, hard work, and focus, anything can be possible. Never give up be-
cause great things take time.”
—GlenD. Singh

iv

Abstract

Over the years we are witnessing the evolution of the communication system from 1G to 5G
network. This evolution brought us to the nowadays expansion of the 5G into the real world:
firstly spreading into the mobile, automotive and most important into the Internet of Things
(IoT) world, and in a foreseeable future, it will also be used for scheduled flights. This rapid
escalation led to an effective need of flexibility and scalability of resources, also due to the con-
tinuous demands of this technology. This fast growth often does not take into account one of
the most significant features that must be considered: the security of 5G network.

The focus of this security analysis involves one specific component of the 5G network: the
5GCore, which primarily virtualizes all the services it supplies, improving speed, compared to
the previous generations, andproviding services upon request. Thiswork aims toprove, follow-
ing a penetration testing based approach, if the deployed 5G Core are affected by some weak-
ness. Indeed, more specifically the thesis will present first the individual parsing of the avail-
able Core; and subsequently the comparison between three open source 5G Core: Open5gs,
Free5gs and OpenAirInterface. The objective is to suggest the most recommended Core from
the security point of view, providing countermeasures for each of theweaknesses found. These
outcomes aim to be the starting point for future works. The whole thesis, indeed, is intended
to be a pioneering work over some of the security aspects of a so crucial component like the
5G Core; with the purpose of encouraging and inspiring the research in this emerging and
significant branch of cybersecurity.

v

vi

Contents

Abstract v

Listing of acronyms ix

1 Introduction 1

2 Background 3
2.1 5GNetwork . 3

2.1.1 Standalone and Non-Standalone 4
2.1.2 Network slicing . 5

2.2 5G Core . 6
2.3 Network functions . 7

3 Tools 11
3.1 Nmap . 11
3.2 Whatweb . 12
3.3 Nikto . 12
3.4 Dirbuster and Dirb . 12
3.5 Burpsuite . 13
3.6 Nessus . 13
3.7 Hping3 . 13
3.8 SlowLoris . 14
3.9 HULK . 14
3.10 JohnTheRipper . 15

4 Security analysis of the first 5G Core: Open5GS 17
4.1 Environment . 17
4.2 Initial Considerations . 18
4.3 Test implementation and results . 19

4.3.1 Information gathering . 19
4.3.2 Dictionary attack . 21
4.3.3 Bruteforce attack . 22
4.3.4 SQL injections . 23
4.3.5 DoS and DDoS . 24
4.3.6 Database permission leakage . 25

vii

4.3.7 NoSQL injections . 26
4.3.8 Clickjacking . 28
4.3.9 JsonWeb Token robustness . 30

4.4 Countermeasures . 31

5 Security analysis of the second 5GCore: Free5gc 33
5.1 Environment . 33
5.2 Initial Considerations . 34
5.3 Test implementation and results . 35

5.3.1 Information gathering . 35
5.3.2 Directory traversal . 37
5.3.3 Dictionary and Bruteforce attacks 38
5.3.4 SQL injections . 39
5.3.5 NoSQL injections . 40
5.3.6 DoS and DDoS . 41
5.3.7 Clickjacking . 43

5.4 Countermeasures . 43

6 Security analysis of the third 5G Core: OpenAirInterface 45
6.1 Environment . 45
6.2 Initial Considerations . 46
6.3 Test implementation and results . 47

6.3.1 Information gathering . 48
6.3.2 Database permission leakage . 49
6.3.3 SQL injections . 50
6.3.4 DoS and DDoS . 52

6.4 Countermeasures . 53

7 Comparisons and Conclusions 55
7.1 Final considerations . 55
7.2 Future Work . 57

References 59

viii

Listing of acronyms

3GPP: 3rd Generation Partnership Project
ADSL: Asymmetric Digital Subscriber Line
AMF: Access andMobility Management Function
ARM: Acorn RISCMachine (Processor architecture)
AUSF: Authentication Server Function
BSF: Binding Support Funciton
CP: Control Plane
DHCP: Dynamic Host Configuration Protocol
DU: Data Unit
eNB: Enhanced Node B
EPC: Evolved Packet Core
FR: Frequency Range
gNB: Greater Node B
GSM: Global System for Mobile
HSS: Home Subscriber Service
IoT: Internet of Things
IP: Internet Protocol
IMSI: International Mobile Subscriber Identify
MIMO:Multiple Input Multiple Output
MME:Mobility Management entity
NEF: Network Exposure Function
NFVI: Network Functions Virtualization Infrastructure
NGRAN: Next Generation Radio Access Network
NRF: Network Repository Function
NSA: Non Stand Alone
NSSF: Network Slice Selection Function
PCF: Policy and Charging Function
PCRF: Policy and Charging Rules Function
PDU: Protocol Data Unit
P-GW: Packed Data Network Gateway
PGWC/SMF: Packet Gateway Control Plane
PGWC/UPF: Packet Gateway User Plane
RAN: radio access network
RF: Radio Frequency
RSSI: Received Signal Strength Indicator

ix

RU: Radio Unit
SA: Stand Alone
SBA: Service Based Architecture
SDN: Software Defined Network
SDR: Software Defined Radio
S-GW: Service Gateway
SGWC: Service Gateway Control Plane
SGWU: Service Gateway User Plane
SMF: SessionManagement Function
SMO: Service management orchestration
SSH: Secure Shell
UDM: Unified Data Management Function
UDR: Unified Data Repository
UP: User Plane
UPF: User Plane Function

x

1
Introduction

During these years, 5G has been a hot topic in the research community whichmainly analyzed
the way 5G works, while for the amount of material concerning the security of the 5G, and
especially regarding a crucial component of it: the 5G Core, the material is really scarce. This
thesis firstly presents how the 5G Core is structured and how it works, from a high level point
of view. Afterwards, based on the architecture that has been implemented, the objective is to
analyse how it behaves with respect to some specific tests for gathering information and for
gaining access to the system trying to escalate privileges. Consequently, in order to safeguard
the system from the exploitation of the vulnerailities discovered, the idea is to understand how
to improve the security, in terms of the three cybersecurity fundamentals: confidentiality, in-
tegrity and availability. Nevertheless, before immersing ourselves into the 5G world, there is
a significant observation that needs to be done. This concept is mainly in the matter of the
choices made when selected the three Core: Open5GS, Free5gc andOpenAirInterface. A sim-
ilarwork as has beenmade by J. de SouzaNeto and collaborators [1]. Indeed,Open5gs, Free5gc
andOpenAirInterface are all open source project disposable by anyonewho aims to contribute.
This is because open source programs allows more flexibility and transparency with respect to
some private software. In such a way, every user owns the possibility to vary between multiple
versions and multiple implementations, based on the needs and requirements they have. As a
result, the choices relapsed on the threementionedCore, since in our opinion they appeared, at
the presentmoment as themost suited andmost promising components that are at the current
time accessible.

1

Regarding the structure of the thesis, the latter is comprehends: Chapter 1 that includes the
motivation in choosing the 5G topic with a short explanation over the 5GCore chosen. Chap-
ter 2 covers a brief presentationof the 5Gnetwork, starting fromanoverall perspective and then
delving into details. Chapter 3 aims to analyze which are the tools executed during the testing
and experiments implemented in the following three chapters. Indeed, from Chapter 4 to 6,
these describe the experiments made for Open5gs, Free5gs andOpenAirInterface Core respec-
tively, and their corresponding results, also providing countermeasures when needed. Lastly,
Chapter 7 shows a comparison between the previously analyzed components.

2

2
Background

2.1 5GNetwork

In 2019 started the deployment and spreading of 5G (fifth generation network). Themain rea-
soning for the overwhelming of his predecessor 4G, diffused starting from the 2009, was the
massive growth of the number of devices connected to the internet and, as a result, the huge
increase of traffic. Indeed, nowadays, the employment of the 5G Network is under heavy de-
velopment due to the huge spread’s promptness of the technology. Sure enough, 5G will rev-
olutionize this sector making life easier to customers, with the improvement of capacity and
decreasing the delays. Actually 5G network radically improves the performance with respect
to the former generation. Moreover, considering the rapid enhancement in the quantity of ap-
pliances, also the bandwidth had to keep up; and precisely for this reason the download and
upload speed improved significantly. From a more internal point of view, in contrast with its
predecessor, 5G network introduces the usage of high bands spectrum, which broaden the cov-
erage of the 5G network over medium (1GHz to 6GHz) and low bands (<1GHz), extending
its coverage with respect to the previous generations [2]. In this way with the help of Multi-
ple InputMultiple Output (MIMO) this network can transfer a greater amount of data at the
same time, performing as stated in a better way. Nevertheless, in a quick expansion like this, the
security aspects are not taken into account as much as it should [3]. In the following section it
will be explained the twomain structures of the 5Gnetwork: Non-Standalone and Standalone.

3

2.1.1 Standalone andNon-Standalone

Before delving into the details of the 5G Core, it is necessary to make a brief digression regard-
ing the type of architecture implemented when the 5G network took hold [4]. Indeed, at the
beginning, there were two specific ideas regarding the infrastructures that could be employed,
as observable fromFigure 2.1. The first based on the predecessor 4G, whowas relying on it and
on its facilities. While the second that is nowadays still in progress, was totally built anew.

Figure 2.1: Non‐standalone and Standalone mode.

These division primarily comes from the fact that the transition between four generation
network and fifth generation network required some time.

Actually, each 5G network starts its deployment in Non-Standalone (NSA) mode, which
means the 5G Radio Access Network (RAN) is linked to the Evolved Packet Core (EPC) that
is the Long Term Evolution (LTE) Core. Therefore, the network in non-standalone mode
(NSA) is not completely based on the new technology. Indeed, despite this combination of
components, the 5G network is still able to offer better performance than the 4G. For this
reason and because of the reduced cost and time during implementation, 5G NSA took hold.
In addition, even if the services offered were not totally provided by an end to end 5G network,
the latter can still be employed as the foundation for the Standalone mode (SA).

SA 5Gnetwork, entirely employs 5G technology starting from themost significant compo-
nent that is the one missing in the previous modality: the Core. The latter is a key component
for the 5G network, sure enough, it allows to virtualize all the network functionalities it owns
with the help of the so called Service BasedArchitecture (SBA). In thisway, the 5Gnetwork per-
forms in a better way, improving bandwidth and also allowing the re-assignation of resources
based on specific requirements. In addition, SA 5G network also supplies Ultra-Reliable Low

4

Latency Communication (URLLC) for devices that need minimal delay, providing high relia-
bility. Actually, the latter has been added to the already present Enanches Mobile Broadband
(eMBB) which mainly offers high download speed, about 10 Gbps, and the Massive Machine
Type Communication (mMTC) which indicates the minimum requirements for 5G to sup-
port devices that have low power and low costs. With such three specifications 5G supplies
different communication capabilities based on the requirements needed [5].

2.1.2 Network slicing

Network Slicing technique [6] is a fundamental method that brings a lot of benefits for the 5G
network. Indeed, different use cases based on the needs of the customers can be implemented
in a single network, using the so called “Slices”, which creates an isolation of the environment
for the specific task. The idea behind Network Slicing is that it allows to reassign resources
from one virtual network slice to another one. Sure enough, 5G Network Slicing technique
can be defined as a configuration who enables to implement multiple independent and virtu-
alized networks over a single shared physical infrastructure. As observable from the Figure 2.2
some slices can be implemented with high bandwidth as for instance, for the smartphone us-
age. Nevertheless, in case of some specific needs like high reliability and low latency the same
infrastructure can deploy resources for that specific requirements as in the circumstance of au-
tomotive. In addition to these, based on the requirements of some customers, the Network
Slicing can also provide low energy and low bandwidth as in the case of Internet of Things
devices. Indeed, the idea is to supply multiple dedicated network instances which can be used
based on distinct demands.

Figure 2.2: Example of Network Slicing technique.

5

2.2 5G Core

The 5GCore is one of the main components of a 5G network which consists of a wide variety
of storage and processing resources. All these assets can be leveraged by users, on demand, de-
pending on the specific needs of each of the customers. 5GCore, indeed, implements a totally
“virtualized” environment, enhancing the portability and the usability of networking system
and networking services. This is possible due to the use of the network slicing, fundamental
mechanism for the implementation ofmultiple virtual networks over a single physical network
infrastructure. From a high level point of view (Figure 2.3 [7]), we can divide the 5G Core
in twomain components: the Software Defined Network (SDN) and the Network Functions
Virtualization (NFV), where both comprise all the functionalities of the network and how 5G
Core works.

Figure 2.3: 5G Core architecture (Open5gs).

6

2.3 Network functions

The SDN is a technology that brings a lot of benefits to 5G networks; firstly, because it splits
the User Data plane from the Control plane. The first one, indeed, is kept remotely in each de-
vice used (either physical or virtualized) and it is responsible for the achievement of the packets
flow to the chosen destination, it is composed usually by User Equipment (UE), Radio Ac-
cess Network (RAN), User Plane Function (UPF) and the Data Network (DN). Whilst the
Control Plane is used mainly for the forwarding route of the content information, it presents
everything but the user data plane. Regarding the Network Functions Virtualization, instead,
his functionality is to implement all the features of a network using software and virtual ma-
chines. This allows to deploy specific functionalities without the needs of a physical support.
Digging a bit deeper inside the 5G Core, we can notice how his architecture is based on mi-
cro services, that design the so called Service Based Architecture [8]. The SBA (Service Based
Architecture) provide a comprehensive framework which handles all the main functionalities
used in 5G networks. The main operation of the SBA is based on the fact that it is composed
of Network Functions (NFs), in which, each of these, provide services to the others. In order
to achieve their purpose, API calls are used for communicating, using a request-responsemech-
anism. Themain advantage of this framework is that it leads to better flexibility and toughness
in case of errors, considering also matters of time; indeed, it is easier to craft new instances of
NFs, instead of creating a physical support.

Taking into account the totality of available functions and how these are linked with each
other, the Figure 2.4, give us an idea about how these NFs are located inside the Core and how
they compose the SBA. Indeed, focusing into the previously mentioned network functions,
these are divided in two meaningful groups based on the SDN division as already stated [9].
The first set owns two subsets, the first is made up of:

• AMF: Access and Mobility Management Function is the first one that is encountered,
strictly linked to the User Equipment (UE). Its usage is mainly for the setting up of the
connection, authorization, authentication, and location of services; it can be defined
as the access point for the user equipment and mobility management. AMF is strictly
linked with the SMF.

• SMF: Session Management Function receives all the data and information gathered to
process them. The latter function, as the name suggests, handles the session of each
User, managing sessions and being responsible for it. The idea behind it, is that it creates,
modifies, and terminates a Protocol DataUnit (PDU) session, that is an end-to-end con-
nection between Data Network (DN) and User Equipment (UE), which handle one or

7

moreQuality of Services (QoS).Moreover, it executes some useful jobs like IP allocation
where needed and themanagement ofQoS, including also its rule to user equipment and
QoS profile to RAN.

• PCF: Policy Control Function manages all the policy rules: an example of the usage of
this function can be found, looking at the network slicing techniques or the mobility
management; the decisions are taken based on the network condition.

• AUSF: Authenticate Server Function is usually found together with the Unified Data
Management (UDM) because of their correlated functionalities. AUSF is mainly used
for the authentication of the users.

• UDM: UnifiedDataManagement, instead, generates the authentication credentials and
it is also involved in the user registration and mobility management.

Figure 2.4: 5G Core Service Based Architecture.

Still remaining inside the Control Plane, we now consider the remainder of the functions,
as subset of the first big group. This sub-sample, indeed, is composed of five main functions
each with a specific task to accomplish:

8

• SDSF: the Structure Data Storage Network Function provides a service for the storage
of structured data, as the name suggests, for instance subscriber information. In order
to do so, SDSF employs databases (PostgreSQL as an example).

• UDSF: UnstructuredData StorageNetwork Function is exactly the opposite of the pre-
vious one. As a matter of fact, this function is employed for the accumulation of un-
structured data using different databases with respect to the SQL based, deployed by
SDSF.

• NEF: Network Exposure Function is primarily employed in circumstances in which
there is the needs of exposing some specific services to an external entity, usually linked
with the Application Function (AF) that basically handles traffic routing preferences.

• NRF: Network Repository Function keeps an updated index of all the repositories and
functions (NFs) available; it also possesses a discoverymechanism to understand how to
reach other newNFs, for interacting with them.

• NSSF: Network Slicing Selector Function has a huge importance, indeed it communi-
cates with the NRF for the recovery of NFs used for registration request. Moreover, it
determines the correct and specific instance (NSI), then chooses the allowed Network
Slice Selection Assistance Information (NSSAI) and sets the AMF to serve the UE.

As previouslymentioned, the SDNpresents a division: in theControl Plane it is possible to
find all the functions already cited. Subsequently to these, there is a second setwhich composes
the User Plane, and comprehends only one fundamental function:

• UPF: the usage of theUser Plane Function is, indeed a strict connection between theRa-
dio AccessNetworkwith the Internet IP, and it also handles the routing and forwarding
mechanisms. This is important, because the UPF act as an anchor point when there is
Next Generation RAN (NGRAN) mobility, keeping the same IP.

Until now, the NFs have been considered as isolated functionalities that matters for the
correct operation of the 5G Core and in general 5G network. What has not been mentioned,
is the fact that the Network Functions communicate each other using reference points, thus, a
point to point connection. These reference points are, indeed, nodes fromwhichNFs connect
to other NFs [10]. Each of these reference points can be enforced with the use of Service Based
Interfaces (SBI) which usage is based on a logical shared framework between functions. One
meaningful consideration that must be done, is that SBI are mainly used inside the Control
Plane, indeed, User Data Plane does not present SBI, but it only owns the reference points.

9

10

3
Tools

This section aims to analyze from an overall point of view, all the employed tools that will
be seen in the remainder of this thesis. B.I.M. Altariqi proposed a similar approach even if
applied toNetwork Functions Virtualization Infrastructure [11]. Every penetration testing in-
strument taken into account owns more features then the ones showed, but in order to not go
out off topic will be considered only the implemented tags.

3.1 Nmap

Acronym of network mapper, this tool is mainly employed to gather information about a spe-
cific network or host. Nmap, indeed, allows the user to scan one ormore target simultaneously,
in order to obtain much information as possible regarding services, ports, hosts and also vul-
nerabilities. For our purpose this tool appear really handy, giving us the possibility to identify
the target and to better understand how it works. In this specific section the idea is to exhibit
a showcase regarding every tag that will be subsequently presented in the further sections:

• -A: which stands for aggressive will search for operative system, version detection,
script scanning and even traceroute. As the name suggest, -A is not an unobtrusive com-
mand.

• -p: specifies the port that the user wants to scan, it is usually followed by the number of
one ormore ports. It can also be foundwith another dash (-p-), in order to parse all the
ports.

11

• -sN: also calledTCPNull, because owns the header set to 0, is mainly employed in order
to check for open and closed ports. This characteristics allow the packet sent to avoid
firewall control.

• –script: is a tag that is mainly used to introduce a specific method that a user aims to
run; it is always followed by the name of the script.

3.2 Whatweb

The concept behindWhatweb is to try to identify what typology of web site is the target taken
into considerations. Indeed, its purpose is primarily to get all the available info in order to
identify all the technologies and features it presents.

3.3 Nikto

This web application scanner is mainly employed to get basic information, checking for out-
dated system versions, unusual headers and everything that can be exploited against the target.
Differently fromWhatweb and Nmap Nikto can results a bit invasive. Our choice resembled
into this toolmainly because it also provides to checks for possible weaknesses as will be observ-
able in the following sections. Analyzing the specific flags employed, in a different way for each
of the Core considered:

• -h: in order to set the host that the user aims to consider as target. Always followed by
the IP or by the domain.

• -p: like most of the tools this flag identifies the particular port that the user attempts to
analyze, always followed by one or more ports.

3.4 Dirbuster andDirb

Both thementionedweb content scanners are employed to bruteforce a specificweb page, with
the purpose of discovering hidden directories and files. Usually the user must pass to the tools
a specific wordlist in order to check if there are some of the element provided with the set. The
only difference between them is the usage of a graphic interface for Dirbuster.

12

3.5 Burpsuite

This penetration testing tool is one of the most employed by the community. Indeed, it pro-
vides a large variety of techniques implementable for several attacks. In this section will be ana-
lyzed only the exploited techniques. Both the dictionary and the bruteforce attackmade use of
a wordlist: for the first case it is composed by words, while for the second, the set is composed
by suitable characters. In this specific circumstance, both the attacks have been implemented
with this two sub-tools:

• Proxy: allows to intercept the request in order to modify the packet sent, or only some
information of it.

• Intruder: enables tomodify some elements of the packet intercepted and to set themore
effective payload.

3.6 Nessus

This tool is a really powerful vulnerability scanner which allows to perform a highly specialised
scan over a target. Indeed, the idea behind it, is that it providesmany features that can be edited,
in order to craft the most effective scan. Nessus allows to inspect the objective from a general
perspective but also delving into its details providing specific scan templates, focusing only on
specific ports, services or login page.

3.7 Hping3

Hping3 is mainly employed for the creation of ICMP, TCP and UDP packets. This network
tool has the purpose of crafting, following some specifics, the most effective packet; in our situ-
ation for a DoS attack. Let’s now have a look on some of the command subsequently executed:

• -S: used to set the SYN flag, therefore employed to start a TCP connectionwith threeway
handshake.

• -p: followed by a port number, it set the specific port to send the packet to.

• –flood: as the name suggest sends request faster as it can, it does not show for the re-
sponses; the idea is to flood the victim with requests.

13

• –rand-source: allows to randomize the origin of the packets sent to the victim.

3.8 SlowLoris

Also known as Low bandwidth DoS tool, it allows to exploit a Denial of Service (DoS) against
a target web server. The idea behind it, is that SlowLoris keeps as much open connections as it
can. In this way, the victim results as flooded with requests that cannot be closed, overwhelm-
ing the connection pool of the specific web server. To exploit this attack some flags has been
employed:

• -c: used to set the number of connections sent at a time.

• -o: employed to display the content of the attack into a specified file.

• -i: allows to set the interval between each exposition of results.

• -r: used to specify the connection rate.

• -H: provides the type of attack employed, in such case partial HTTP requests.

• -g: supply the generation of CSV and HTML files.

• -t: it specifies the type of request.

• -u: to set the target URL

• -x: used to set the maximal length of data.

• -p: it is employed to set the time before assuring the success or not of the DoS attack.

3.9 HULK

HTTP Unbearable Load King DDoS is a unique tool, totally distinct from the already pre-
sented. Indeed, HULK is able to generate each request different from another one, in this way
each packet sent can avoid the check of a possible IDS. Actually, it modifies the pattern of each
request starting from the header. The only flag employed for HULK is:

• -site: mainly used to specify the target.

14

3.10 JohnTheRipper

This tool has the leading purpose of cracking password. Analyzing theway it has been executed,
JohnTheRipper worked with a wordlist: mainly used to check for a match. Delving inside its
employment, the attacker has to feed it with a hash file, and then pass the wordlist to be used.
In some cases also the format is important and has to be specified. The employed flags for
JohnTheRipper are:

• –wordlist: used to specify the set of words in order to find a match.

• –format: allows to specify the type of the hash, if known.

15

16

4
Security analysis of the first 5G Core:

Open5GS

4.1 Environment

In this section will be presented the environment that has been set up to perform all the at-
tacks and evaluations. Indeed, for testing the Open5gs Core, it has been crafted a specific back-
ground with the help of three virtual machines using Virtualbox, in order to have an isolated
environment [7]. More specifically, the three different machines hold each one some specific
features: the first for the deployment of the 5G core, the second for the simulator of the single
or multiple User Equipment and the Radio Access Network, and the last machine in order to
do all the tests. All these machines are respectively connected with each other, using an inter-
nal NAT network, and each one is also able to communicate outside with a different interface,
even if the latter network interface is not used for our purpose. Delving into the environment,
we can have a look on the distributions and specifications used for every virtual machine.

1. Open5GS

• Operative System: Ubuntu

• Release: 20.04.4 LTS

• Codename: Focal

17

• Linux Kernel: 5.15.0-46-generic

2. UERANSIM

• Operative System: Ubuntu
• Release: 20.04.4 LTS
• Codename: Focal
• Linux Kernel: 5.15.0-46-generic

3. Kali Linux

• Operative System: Kali GNU/Linux Rolling
• Release: 2022.1
• Codename: kali-rolling
• Linux Kernel: 5.15.0-kali3-amd64

4.2 Initial Considerations

As already mentioned, the 5GCore is directly connected to the UERANSIM virtual machine
in which we can turn up an arbitrary number of User Equipment connected to the Radio Ac-
cessNetwork and obviously theCore. To understand how theyworkwe investigate the default
commands of each shell (the UEs shell and the RAN shell) and how they behave. After several
attempts, without any meaningful progress, we reach the conclusion that these shells are really
ordinary and donot present any particular specifications. Indeed, the only available commands
do not give enough field of application to test them, because of the mere number of options
provided. The UE are connected to the RAN and can talk to each other, but as mentioned
above, there is a too small scope of application. This attachment between UE, RAN and Core
should be, for a future work, developed and investigated in a better way. Thus, we took in
consideration only the 5G Core thereby, to figure out how Open5GS behaves and works, we
tried some simple tests in order to comprehend his functioning. The 5GCore, indeed, enables

18

a graphic interface inwhich each user can connect remotely and authenticate itself through the
IP of the Open5GS and the port previously configured during the installation. Once accessed
through the domain, each user can add subscriber, modify, and remove them using its own
profile; same for the accounts. But lets now focus on the access page because at this point arose
the first doubt regarding the security andmore specifically the integrity of the login credentials
introduced by the user. Sure enough, we were looking for if the credentials were encrypted
or were in plain text, and in order to do so we checked if this was true using Wireshark. As
we assumed, the login details are passed in clear text, allowing each malicious user in the same
network, to easily observe, catch and reuse the same credentials with baleful purposes.

4.3 Test implementation and results

This section aims to analyze firstly how the general information about the Core were retrieved,
and then, one by one all the attacks tested. While, the last chapter of this section wants to
provide some countermeasures regard the effective tests made.

4.3.1 Information gathering

The first step taken was to gather some information regarding the Open5GS, hence running
some reconnaissance and subsequently scanning tests. Nmapwas the former tool used, to get a
general idea of the environment, it is indeed mainly used to check the comprehensive informa-
tion regarding the target. Getting the IP was pretty easy, considering the fact that we were
working in an isolated environment, and we were looking for the port of Open5GS server
(scan: nmap -A -p- 192.168.100.0/24). Following this idea, we started to analyse the
domain in a deeper way, searching for open ports, active services or in general anything that
can be exploited by an attacker. In order to achieve our purpose, we first run from the con-
sole some nmap scripts located in the directory /usr/share/nmap/scripts, in this way we
gained someof the useful informationwewere looking for, such as running enum scripts or any
kind of script to get insight. Once obtained the IP and the open ports, we decided to launch
the Whatweb tool from the console, to get some further info. This tool is really handy in a
phase like the reconnaissance one:

whatweb http://192.168.100.9:8080

indeed as can be observed from the Figure 4.1, it ensures us, that the target was the correct one
(giving us some valuable details regarding the objective).

19

Figure 4.1: Information gathered by WhatWeb tool.

Therefore, after the first phase of reconnaissance inwhichwe just earned the basic informa-
tion of the 5G Core; started the Scanning phase, where the penetration tester should discover
weaknesses and figure out how to exploit them. To achieve this purpose, we decided to investi-
gate deeper, searching for hidden pages or directories. Thus, there are many tools that allow to
achieve this scope, for this circumstance our choice relapsed on Dirb: a web content scanner
(Figure 4.2).

dirb http://192.168.100.9:8080 /usr/share/wordlists/dirb/common.txt

Subsequently we extended the research launching the earlier command employing big.txt
a larger and more complete wordlist then the previous one, but neither of them discovered
something valuable, except the /index directory, for which we already have knowledge about.

Figure 4.2: Dirb output employing common.txt wordlist.

Thus, thereafter we tried running Dirbuster, a noteworthy tool used to brute force web
server and web application server, checking for any hidden directories or hidden pages, there-

20

fore approximately the same functioning of Dirb, even if more powerful in terms of computa-
tion power. Nevertheless, even applying, to the tool, different wordlist dimensions, Dirbuster
did not find anything valuable; probably due to the fact that the Open5GS is an open source
project and it is work in progress yet. Afterwards, the second step was to run Nikto, a vulnera-
bility scanner for web servers andweb applications. In this case as observable in Figure 4.3 were
retrieved some information, regarding the absence of some policies (i.e., X-XSS-Protection
header, anti-clickjacking X-frame-Options header and X-Content-Type-Options header) and
the possibility to run GET, POST, OPTIONS, HEAD requests.

Figure 4.3: Nikto outcomes Open5GS.

The next step, was to extend this research, and to do so Golismero, another open source
framework for web auditing, was perfect for the purpose, nevertheless the results were pretty
scarce. We achieve approximately the same information previously gathered, without any im-
provement.

4.3.2 Dictionary attack

Taking into account the outcomes achieved, the main idea was to perform at first place a dic-
tionary attack in order to solicit the login page, and trying to gain credentials that allow us to
have access. A dictionary attack is mostly a bruteforce attack which employs a set of multiple
words possibilities. For this particular attack Burpsuite was the perfect tool to employ. Indeed,
the latter, is a platform used to perform security testing on web application. In our case, we
searched for a wordlist to use and then we execute our attack, specifying the two field that we
were trying to attain: username and password. Based on thewordlist dimension, the attackwill
take longer or shorter time (the first try was with rockyou.txt wordlist, but it was employing
too much time, because of the substantial number of combinations, thus we shrink it into a

21

smaller one). In our situation it succeeded, as visible from the different length of the packets
and from the status of the request, obtaining the default credentials to log inside the 5G Core
as Admin (Figure 4.4). Once in, we were obviously able to Add, Remove orModify any user or
subscriber, having the highest privileges.

Figure 4.4: Credentials found exploiting Dictionary attack.

4.3.3 Bruteforce attack

Acquired this knowledge, another idea arose our mind. The concept was pretty similar: if
it was possible a dictionary attack, was it also possible that the login page is vulnerable to a
brute force attack? Taking however in consideration that this kind of attack are really slow and
time consuming. To test this vulnerability, we use the same tool previously employed: Burp-
suite. But, differently from the dictionary attack in which all the attempts were picked from
a wordlist, here we chose to employ a brute force attack, thereby trying all the possible combi-
nations considering a specific dimension of the credentials. As already mentioned, to succeed,
this typology of attack requires a lot of time. Indeed, the first attempt was with alphanumeric
values for username and password. Nevertheless, despite we shrunk both the credentials to the
minimum value of four digits, the amount of time needed was too much. Ultimately, we de-
cided to fix the username (that, in any case, can be retrieved because of another vulnerability
regarding MongoDB which will be presented later). With this choice, the combinations left
were ten thousand, only for a password of four digits. In this way, after a period of time, we

22

succeeded, obtaining the correct credential as demonstrated in the Figure 4.5. Indeed, the high-
lighted request shows the username that for this casewas user2 and the password foundwhich
was 9130; the truthfulness of what has been said is, even in this situation, proved by the length
of the request and by the status: 302 for this circumstance.

Figure 4.5: Credentials found exploiting Bruteforce attack.

For this experiment, it is true that the whole test has been simplified but it is also true that
with enough processing power and with a Pro version of the tool (hence without limitations
caused by the Community edition), this attack could be implemented in a larger scale.

4.3.4 SQL injections

Changing a bit the field of application, keeping the focus again into the login interface, the
subsequent attack we thought about, involves SQL injections, that are one of themost famous
attacks to open a breach inside systems. The idea is, indeed, to test if, inserting different type of
SQL queries, we can obtain access to the 5G Core. To achieve our purpose, we employed the
already mentioned Burpsuite, mainly because even if we could have done this attack manually,
it would have been really time consuming; while with the latter tool, some functionalities can
be automated. In example, for this use case has been employed the SQL.txt wordlist of Kali
Linux which comprehends one hundred twenty five different structured queries. The idea
behind is similar to the dictionary attack, especially since has been deployed a wordlist contain-
ing different payload with respect to the one used beforehand. The first trial concerned only
the username, the second regards the password, with the knowledge of an effective user, and

23

the third one affected both of them (the latter one has been stopped because of excessive time
needed to complete itself, far too much combinations). In each of these rounds no vulnerabil-
ity has been found. Weird Ifwe consider a login page like this; nevertheless, aswill be observable
later on, this is due to the fact that inOpen5GS, the databases containingusernames, passwords
and every other kind of data, are handled and managed byMongoDB, that is an unstructured
database, unlike the SQL one.

4.3.5 DoS andDDoS

Afterwards, we considered a totally different typology of attacks. The onward experiments that
we tested, were a Denial of Service (DoS) and a Distributed Denial of Service (DDoS) attack.
To make it possible we used three typologies of tools: SlowLoris, Hping3 and HULK. The
idea behind the former one, is that it opens a lot of connections, keeping them open as much
as possible, overwhelming, and slowing down the target. The second ismainly used for sending
arbitraryTCP/IP packets to hosts, even if in this case it has been used to subdue the target from
using a specific service. While, the third one differs from both the other two mostly because
it generates a distinct and unique request each time, by pulling it as legitimate traffic. At first
place we experienced a DoS attack, either with Slowhttptest, running the attack manually:

slowhttptest -c 500 -o text.txt -i 10 -r 200 -H -g -t GET -u http:
//192.168.100.9:8080 -x 30 -p 2

and also using Metasploit with exploit auxiliary/dos/http/slowloris. Subsequently
even employing Hping3 from the terminal with:

hping3 -S -p 8080 –-flood 192.168.100.9

but the server keptworking correctlywithout particular delay. After several changes, we started
increasing the number of requests but even in this case without succeeding. Subsequently the
idea was to change the source address for each request, to avoid any kind of restriction based
on the amount of requests for address that a firewall could have. Hping3 allows to randomize
each query source, just adding a line of code:

hping3 -S -p 8080 –-flood –-rand-source 192.168.100.9

In this circumstance, withHping3 tool, the achievement reached only was some slight delay in
the responses. Therefore, we decided to employ another specific tool. The last attempt, indeed,
has been made with HTTPUnbearable Load King DDoS (HULK) which allows the attacker
to produce unique requests typing:

24

python hulk.py -site http://192.168.100.10:5000

After some time we tried to access the web page, bu even in this case we just obtained a little
lag, so nothing really meaningful that can lead us to consider it as successful. In all the earlier
circumstances, indeed, the server did not go down, even if it does not own any firewall that pro-
tects him. In this case the attack was not very successful, but, considering the environment in
which aDDoS attack has been exploited and that also in this circumstancewe achieved somede-
lay, it is not so difficult to think that this attack, applied in a bigger environment could provoke
real damages.

4.3.6 Database permission leakage

Database permission leakage cannot be considered an attack, although it has a huge impor-
tance with respect to our purpose, considering the latter as one of the most effective vulnera-
bility. Therefore, for this section we decided to change strategy, analysing from a more general
perspective the whole 5G Core. The following step was to use Nessus, a vulnerability scan-
ner mainly employed to find new vulnerabilities. After some attempts, Nessus found a critical
weakness caused byMongoDB as visible fromFigure 4.6. Indeed, the latter onewas configured
to allow every kind of connection without asking for authentication. In this specific situation,
a malicious user could connect to the database, with the intention of creating, reading, updat-
ing, and deleting documents, collections, and databases. In the next section will be illustrated
a way to exploit this specific exposure, indeed permission leakage may be deemed more as an
entry point for leveraging further vulnerabilities, rather than a specific attack.

25

Figure 4.6: Critical vulnerability on Mongo database found by Nessus.

4.3.7 NoSQL injections

In order to exploit what has been discovered in the previous section, we logged in executing:

mongo -host 192.168.100.9 -port 27017

and accessed to the Open5GS database with use open5gs command, we saw that there were
no checks, and we were able to access every collection or document inside. Indeed, the early
attemptwas to gather all the information available and todiscoverwhat databaseswere available
(command: show collections). In order to apply the attempt of removing an account we
primarily run the command: db.accounts.find() for the purpose of showing the available
profiles (Figure 4.7). The following two imageswill show in the above part the terminal output,
while the second contains the same result displayed in the interface.

26

Figure 4.7: Available profiles into the database.

Subsequently, once realized which were the possible targets, we tried to remove one of the
users found typing:

db.accounts.remove({username:“user1”}, {justOne:true})

as observable from figure 4.8 where user1 is the target; same can be made for the subscribers
or entire databases. Even in this case, no password required for deleting a user.

Figure 4.8: Removed account inside MongoDB.

Indeed, we exploit this lack of authentication for our purposes, deleting the account of
somebody else. Before concluding this section, it is important to take into account that the
NoSQL queries tested until now were legitimate queries and not NoSQL injections. Indeed,
an example of a possible injection of this type could be:

db.accounts.find({"username": {"\$ne": ""}})

For this particular query has been employed the keyword: ne, which stands for not equal; in
such a way the outcome of the query will show every record which has a value different from
the empty value. Anothermore specificNoSQL injection could bemade just to show a specific
record. In order to deploy it to check the results we can type:

db.accounts.find({"username": {"\$ne": ""}, "roles": "admin"})

In this circumstance have been displayed all the records that are not equal to the blank value
AND presents the admin role.

27

4.3.8 Clickjacking

Changing a bit the field of application; in one of the preceding sections where we ran a scan
script withNmap, we discovered that theOpen5GS does not own theX-Frame-Option (XFO)
that is the header response ofHTTP page, mainly used to provide security. The idea is that the
XFO allows or not a browser to render a page, employing three options:

• Deny: disallow every domain to show a page in a frame.

• SameOrigin: allows the actual page to be shown in another page frame even if it must
have the same domain.

• Allow from URI: allows the actual page to be shown in another page frame, but only
with a specific URI

Without this policy, the Core could be vulnerable to Clickjacking attack. The latter is an
exploitation of a vulnerability where the victim is deceived to click into a specific element of a
web page that will be hided or invisible. In this way the user will be redirected into a different
page where he can unknowingly provide credentials, download a malware or more generally
leak some information. To exploit this weakness, we emulated a login web page comparable to
the one of the 5G Core (Figure 4.9).

Figure 4.9: Visible login from user perspective.

Above this, we prepended another page with a button that will redirect the user wherever
we previously specified as showed in Figure 4.10.

28

Figure 4.10: Page in which the user has been redirected.

In order to trick the victim in clicking it, we locate the button superimposing it to theLogin
button, and set the opacity of the fake button as really high. Thepicture 4.11 is a representation
of the hypothetical attack, the opacity in this case is less than the final value employed, that is
why the Fake Login button is visible.

Figure 4.11: Idea behind Clickjacking technique.

In this way the user think that he is clicking the correct one, while it will be redirected into
the page of our creation (in our case a fake change password login). Until this point the attack
has succeeded, mainly because the web page allows an application to be encapsulatedwithin an
IFRAME. Subsequently the idea was to create a server to redirect the credentials entered by the

29

legitimate user. Thus, once created the server we understood that this was not possible, due to
the Cross Origin Resource Sharing (CORS) which allows a server to specify any origins from
where it can or cannot retrieve resources.

4.3.9 JsonWeb Token robustness

Subsequently, once understood the functioning of the web page and applying towards it some
inspection techniques, we realized that, each user was possessing a JsonWebToken, which was
used for authentication, keeping the credentials of the member in the current session. Thus,
the idea was to test the robustness of the token. As we know the JWT is composed of three
parties: the first that specifies the algorithm used and the type of the token, the second that
contains the content of the payload and the third one used to verify the signature of the JWT.
In order to crack the hash token we used JohnTheRipper cracking software tool typing:

john jwt.txt --wordlist=/usr/share/wordlists/rockyou.txt --format=
HMAC-SHA256

After a while, we obtain the secret key used to encrypt the token as proven in Figure 4.12. It is
true that for this circumstance, the secret key is the default one, however, the alreadymentioned
one is a significant concept that must be taken in consideration.

Figure 4.12: Cracked hash employing John The Ripper tool.

In this way, any malicious user who has access to the 5G Core can change the content of
the JWT, decrypting the base64 data contained in the payload andmodifying, considering our
specific case, the role of the user, setting it asadmin. In thisway amalicious user has the possibil-
ity to recreate a legitimate signature with the employment of the correct secret key, previously
discovered, attempting in this way a privilege escalation.

30

4.4 Countermeasures

In this sub section some of the most important countermeasures will be presented, consider-
ing all the proven tests and the trials made to achieve information or to exploit some specific
vulnerability.

Starting from the first two attacks presented, which are pretty similar: Dictionary attack
and Brute Force, for both the prior arrangement that can be done to avoid them is to encrypt
every kind of packets in or out of the 5G Core. It is true that with this expedient the packets
can be captured yet, but it is also true that with this trick, whichmeans with a proper ciphering
algorithm the packets should not be read (It is a matter of time and depends on the quality
of the algorithm). In such scenario, the attacker cannot retrieve clear text credentials and as a
result cannot test different login details.

Afterwards, we rehearsed SQL injection technique, and even if without good results, was
still good to make some attempt. As we saw SQL injection attack did not work because of the
unstructured database Open5GS employs. The countermeasures for this typology of database
will be presented in a while.

Thus, thereafter the SQL injection attempts, other two attacks has been tested: DoS and
DDoS (Denial of Service andDistributedDoS). In both cases, aswewitnessed, we just achieved
some delay, but also in this case, it is appropriate to present some countermeasures in case of a
future application of these attacks in a larger scale. Generally speaking, one of the best way to
prevent aDoS attack is to set up a firewall. In this way, after a specific number of requests from
the same source, the IP who is sending all the requests will be blocked. Regarding the DDoS
attacks, the situation is slightly different. However, focusing now on the two specific attacks
applied. In order to protect the pc against slowHTTP attack (SlowHTTPtest) there are some
countermeasures that can be applied, in example fixing a connection timeout or limiting the
incoming data rate; in both cases decreasing too much the values will lead to drop also the
legitimate connections. Another important countermeasure to prevent this kind of attack is
to enlarge the backlog of pending connections, allowing the server to handle a bigger number
of requests. For what concerns DDoS attack, some security tricks to avoid it can be, the use
of firewall and IDS, the segmentation of the network in order to create several subnets with
unique security controls and protocols and also the limitations of the broadcast forwarding,
typically used to amplify the demands. Moreover, another important expedient to forestall
DDoS, before it happens, can also be to keep monitoring the network, in this case, a sudden
increase of the requests will be clearly identifiable and easy to interrupt.

31

Furthermore, as noted earlier, alsoMongoDBpresents a vulnerability. Indeed, to avoid this
weakness, the administrator shouldmake the authenticationmandatory for every user. Instead,
inOpen5GS, anyone can have remotely access toMongoDB.Using this expedients, no one can
modify or even show the contents of the available databases, because unauthorized.

Lastly, instead, in order to prevent Clickjacking attack as previously mentioned, the first
method is to employ the X-Frame-Option to deny any, or to allow only some domains, in this
way the user can decide when framing is permitted (this countermeasure is server-side). While
another less effective countermeasure, because client-side, is the frame busting, in which the
site prevents the framing technique. Moreover, as we saw there is the most important that
is the CORS policy who protects web pages like the one of Open5GS to redirect the flow to
unknown origins. Regarding the JWT privilege escalation, there are some useful techniques
that allow to avoid the exploitation of this attack. The idea is, at first, to employ as secret key
anyword that is not present in commonwordlists or however amore complex key. In addition,
another countermeasure could also be to decrease the IAT (issued at) that identifies how long
the JWT is alive. The concept is to employ an adequate amount of time to live based on the
usage of the token.

32

5
Security analysis of the second 5G Core:

Free5gc

5.1 Environment

To understand how Free5gc works, a little step back has to be taken. Indeed, this core was
born in the 2019 firstly as Non Standalone, therefore combined with fourth generation EPC
(Evolved Packet Core). Subsequently, in the same year has also been implemented the stan-
dalone 5GCore features. In this section will be shown how the Free5gc has been implemented
and how has been parsed, looking for any kind of vulnerabilities [12]. As in the earlier case,
Virtual Box comes in our aid to build the environment claimed. Indeed, to check if the Core
has any typology of weaknesses, has been employed the formerly deployed Kali Linux exactly
with the same specifics. Whilst, for what concerns the free5gc, we used a pretty old recom-
mended version of Ubuntu as operating system. In this case too, as with Open5gs, the two
virtual machines are connected via a NAT network and subsequently connected outside.

1. Free5gc

• Operative System: Ubuntu

• Release: 18.04.6 LTS

• Codename: Bionic

33

• Linux Kernel: 5.4.0-84-generic

2. Kali Linux

• Operative System: Kali GNU/Linux Rolling
• Release: 2022.1
• Codename: kali-rolling
• Linux Kernel: 5.15.0-kali3-amd64

5.2 Initial Considerations

This section makes an overall description of how Free5gc behaves and how it is structured,
analysing from a high level point of view the functioning and the measures applied. Before
digging into the test implementations we analysed the options available once logged in the web
console, as already made in the Open5gs. When inside the Core interface as admin, we tried
to create some other account able to access the interface remotely; but this experiment did not
give the expected result. Whilst with Open5gs we were able to create and successively access
the web interface with the preferred account. This arrangement sounds accountable, because
the only member who should be able to access the interface is the administrator. However,
was possible to create other users or subscribers. Thus, once connected as admin we searched
for any kind of cookie containing session ID, Json Web Token or anything exploitable from
an attacker point of view. Surprisingly, free5gc do not possesses any kind of cookies, indeed,
refreshing the page right after being logged in, will take us back to the login page. This made
us think, together with the impossibility to retrieve credentials usingWireshark, about the pos-
sibility of hardcoded credentials, sure enough, looking for the configuration file, we found the
AuthHelper.js who was containing the credentials of the Administrator. At this point a
consideration has to be taken, because the only way to stole ”admin” credentials should be to
exploit some social engineering techniques. Indeed, we decided tomake a check aboutwhether
was present or not an encryption algorithm. In such a way, our search started from the con-
figuration files located in the Free5gc directory where we found the amfcfg.yaml. As we are
already aware of, AMF is the Access andMobilityManagement Function whose task is mainly

34

to handle authorization and authentication. Indeed, checking for any possible flag in the file,
we found out that Free5gc was employing the NIA2 algorithm. The latter one is based on the
Advanced Encryption Standard, with a secret key of 128-bit to provide integrity protection
for all the messages from and to the 5G Core, giving Freeg5c a good protection against baleful
users. In addition to these, as we will see later on, due to its utility, this Core provides a console
which behaves like Wireshark (as loopback interface). It intercepts all the packets directed to
the server also showing the source IP, thereby is really easy to check if there is someone who is
trying to exploit some kind of attacks.

5.3 Test implementation and results

Fromthis point onwardswill bepresented the gatheringof thebasic information for theFree5gc,
and subsequently the main attempts made to test the security of the Core; followed by the
countermeasures to avoid the effective attacks.

5.3.1 Information gathering

This section pretends to be the guideline for understanding if the Core have some vulnera-
bility; the idea was to apply some reconnaissance methods and subsequently some scanning
techniques. At first place we employed an nmap scan running the usual command:

nmap -A -p- 192.168.100.0/24

retrieving in this way the IP of the 5GCore, the open ports and the available services connected
to these; and also some feeble information (like the possibility to redeem GET, POST, PUT,
DELETE, OPTIONS, PATCH operations). In order to get further insights we run at first
whatweb specifying the IP previously discovered, to ascertain the target is the correct one and
then we run dirb tool to explore the web page, investigating for any kind of hidden page or
directory. The command employed, as with the Open5gs Core, was:

dirb http://192.168.100.10:5000 /usr/share/wordlists/dirb/common.t
xt

where, as a result, it recovered an already known hidden page named /static/index.html con-
taining other two pages: /static/js and /static/media as showed in Figure 5.1.

35

Figure 5.1: Discovered hidden pages with Dirb tool.

Once ended the attempt, and understood that the two directories were not so meaningful
for our purpose, we changed the wordlist, utilizing a bigger one (big.txt), but even in this
case nothing valuable arose. Same outcomewith the Dirbuster tool. Subsequently, we decided
to go another way, using Nessus to scan the Core from an overall outlook, checking for vul-
nerabilities that we may not have noticed. The idea was pretty the same applied to Open5gs,
but in this case, even if Free5gc did not present any kind of firewall who protects him, Nessus
did not find any critical weakness, just some information leakage. The only noteworthy insight
was the one regarding the file traversal, that will be explained in the next section. Indeed, the
second phase encompassed to run some more significant tool like Nikto, who extends the re-
search analyzing from an overall perspective. The first impact of Nikto was excellent because,
after typing:

nikto -h http://192.168.100.10:5000

the tool found out that Free5gc is vulnerable to file traversal. In such a way, just employing
some specific URLwere possible retrieve sensible information, that should not even be visible.
Image 5.2 displays the information obtained. In addition, with the latter tool, some other use-
ful information were retrieved, as some missing policy like: X-Content-Type options which
allows content sniffing inspecting bytes, and the anti clickjacking X-Frame-Options. Some of
these will be subsequently employed, as starting point.

36

Figure 5.2: Information obtained with Nikto tool.

5.3.2 Directory traversal

In this section will be analyzed in a more specific manner the directory traversal attack. In-
deed, we found out the web server allows the attacker to retrieve sensible information. Direc-
tory traversal vulnerability has the objective to grant access to restricted directories with the
use of one or a sequence of double dots followed by a slash (../). Therefore, even without the
knowledge of the path, an attacker is able to reach the target file or directory. For this par-
ticular instance, the examined folder was /etc/passwd enabling the leakage of a large quan-
tity of critical information that can be exploited by malicious users. (Figure 5.3), for instance:
http://192.168.100.10:5000/index.php?page=../../../../../../../../../..
/etc/passwd.

37

Figure 5.3: Contents discovered exploiting directory traversal.

The presented URL is only one of the available paths discovered by Nikto. Actually, it is
true that, in this specific case there were no useful login credentials, but this does not deny the
fact that sensible data are visible and available in clear text.

5.3.3 Dictionary and Bruteforce attacks

Following the first phase of gathering information and the exploitation of Directory traversal,
we tried to exploit the two attacks previously attempted in Open5gs: the Dictionary and the
Bruteforce attack. Regarding the dictionary attack, the idea was clearly the same, using Burp-
suite we checked for the two target points: username and password, to apply one by one all the
combinations of a wordlist. The latter was a shrunk version of the rockyou.txt. At the end of
the trial, differently from the success obtained with the other Core, we do not succeeded. The

38

failure is due to the fact that Free5gc applies an Integrity protection algorithm, as previously
mentioned, that is really tough to bypass without knowing the secret key. In Open5gs we were
able to check if the attackwas successful or not, searching for the different response received for
each combination and also because of the different length of the right response. Clearly notice-
able in Figure 5.4, the Dictionary attack did not succeeded; sure enough, taking into account
that the highlighted row presents the correct username and password, the attacker did not have
any way to prove the correctness of that request: length and status same as other requests.

Figure 5.4: Requests sent, impossibility to check for correct credentials.

This is not possible due to the encryption algorithm. Thus, the following step was to test
if the Web page was vulnerable to Bruteforce attack, employing the same tool used in advance.
However, as assumed, the attack did not reach the purpose. Indeed, because of the formerly
mentioned encryption algorithm, the packets cannot be read, and thus modified. The algo-
rithm, actually gives to Free5gc good protection against baleful users, NIA2 as a result protects
all the packets from and to the 5G Core giving to it Integrity protection.

5.3.4 SQL injections

This section aims to attempt SQL injection attack, even if as it will be later observable, this kind
of offense was not feasible due to the employment of a distinct database, an unstructured one.
The concept was pretty much the same formerly presented in the Open5gs, trying to leverage
weaknesses of the login page. At first place we apply the SQL.txt wordlist for bruteforcing the
username credential. Subsequently the same appliance has been deployed for the password cre-
dential employing a known username, and then both together. Here as well, the last attempt
have been stoppeddue to issues of time andperformances concerning theBurpsuite tool. How-
ever, neither of these attacks succeeded and thus we were not able to access the page, because of

39

the employment ofMongoDB: an unstructured database operated by Free5gc, and in addition
due to the encryption algorithm which denied any possibility to check the outcomes of each
request.

5.3.5 NoSQL injections

Once aware of this behaviour, the ensuing step was to test the unstructured database using
some NoSQL injections. But before delving, we inspected how the MongoDB behaves and
if it was possible to access the database remotely with or without authentication. After some
connection trials we reach our purpose of being admitted from another machine typing:

mongo -host 192.168.100.10 -port 27017

Once in, we tried if we were able to add, remove or modify the databases showed as collections.
In particular, we tested the already redeemed command:

db.userData.remove(email:“user1@gmail.com”, justOne:true)

and some other combinations, realizing that it was not possible to retrieve information. Subse-
quently, considering that we had access to the database, we kept investigating in order to know
what actions were feasible, trying someNoSQL injections to extract information. An example
of these attempts was:

db.userData.find({"username": {"\$ne": ""}, "password": {"\$ne": "
"}})

generally the idea is to use special operator like the $ne and $gt which stands for not equal
and for greater than respectively, by placing as second element an empty value; in such a
way the comparison between the special character and the second value will potentially give
everything that differs from a blank value. Here, we understood why the previous query were
rejected. Actually, Free5gc encrypt almost every sensible data with bcrypt which is a password
hashing algorithm, not enabling to see the content.

Figure 5.5: MongoDB output userData collection.

40

In Figure 5.5 is possible to ascertain what has been previously stated; some information
such as username or e-mail are still in clear, but other data like the password are showed as
encrypted.

5.3.6 DoS andDDoS

Totally changing the attacks typology, the next phase comprise all the distinct facets of a DDoS
attack. Indeed, we apply the three varieties of tools for the attack already deployed with the
other Core, which are: Slowloris, HULK and Hping3. Conscious about the small achieve-
ments reachedwithOpen5gswe immediately increased thenumber of threads for each attempt.
At first, with slowhttptest we used three different machines as sources, typing in each of these:

slowhttptest -c 500 -o text.txt -i 10 -r 200 -H -g -t GET -u http:
//192.168.100.10:5000 -x 30 -p 2

seeking to make the Core server crush. This initial effort did not go really well, indeed, after a
while, the server was already up and working smoothly. As a result the next step was to enlarge
the amount of requests sent. In order to achieve this, we increased the number of sending
machine, although in still in thisway the outcomewas prettymuch the same. Thus, we decided
to change the form of the attack, deploying the already mentioned HULK, typing

python hulk.py -site http://192.168.100.10:5000

from different consoles, considering the HULK selling point, indeed, it generates unique and
differentiated requests avoiding in this manner to be detected. Nevertheless, even in such case,
the attack did not succeeded and the page was still working fine. Therefore, after these two
experiments, we tested the robustness of the web server usingHping3. Actually, because of the
bad results obtainedwith the other two tools, we directly attempted to randomize the origins of
the requests. In addition to this, the latter tool has been executed fromdistinct virtualmachines
in order to boost the rapidity. As shown in Figure 5.6, the command deployed to achieve the
scope was:

hping3 -S -p 5000 --flood --rand-source 192.168.100.10

41

Figure 5.6: Hping3 output, amount of packets sent.

At first place it seemed the effect of the DDoS attack was pretty the same of the previous
attempts, but, waiting some time, we realized that the login web page had some meaningful
delay. Indeed, once realised it, the next stepwas towait somemore time andmeanwhile increase
the number of requests in order to generate more traffic towards the target. The figure 5.7 has
the objective to show the outcome reached after a large period of time.

Figure 5.7: Delay achieved after DDoS attack.

However, shortly thereafter, the web page was up and running as before. Although in this
case too, the server did not crush; with the employment of the Hping3 tool, we obtained a
pretty good achievement. Actually, for a little slice of time, the server was not able to open the
usual web interface. Before analysing the next attack proven, we need to make a little clarifica-
tion: all the offenses tested until now have been performed in an isolated environment with
its relative amount of available resources and processing power. Some of these attacks may be
more effective if applied in a bigger environment.

42

5.3.7 Clickjacking

The last attempt tried, considering all the offenses deployed until now, was a Clickjacking at-
tack. The idea arose when once executed Nikto tool, it displayed some reasonable weaknesses.
Indeed, Free5gc just like Open5gs allows to encapsulate the web page inside an IFRAME, due
to the absence of the anti Clickjacking X-Frame-Options, discovered in advance. The method-
ology was pretty the same performed with the first Core: primarily we tried to open the web
server attempting to create a fake button which subsequently will be set over the real login but-
ton with high opacity, in order to make it invisible from human perspective. Afterwards, the
idea was to raise a server to redirect the input credentials of the user to a file accessible by us,
as attempted in Open5gs. In Free5gc as in the earlier case too, the offense has been blocked by
the Cross Origin Resource Sharing policy, which denies the possibility to load resources from
origins different from the specified ones.

5.4 Countermeasures

This section involves all the possible expedients and countermeasures to avoid the attacks for-
merly mentioned and exploited. Undoubtedly, Free5gc offers a field of application signifi-
cantly lower than the one presented by Open5gs, due to some peculiar features that are by
default implemented, thus making it a bit more secure.

Starting from the first vulnerability found that is the directory traversal, there are many
ways to protect theweb server froma leakage of sensible information. The primary trick should
be to sanitize the input provided by the user before processing it, i.e., avoiding the introduc-
tion of characters which are different from the alphanumeric one. In addition to this kind of
arrangement, another countermeasure could be tomonitor if, after the canonicalization of the
path (that means identifying an object in a unique way) the latter starts with the expected base
directory. The last method to avoid directory traversal is to limit privileges to users, restricting
the access to specific directories; this trick is called principle of least privilege.

Instead, against Dictionary attack and Bruteforce attack, the default features applied by
the Free5gc were enough to deny these two vulnerabilities exploitation. Indeed, the Core is
employing an encryption algorithm, the NIA2 which behaves like an Advanced Encryption
Standard with a 128-bit key. Sure enough, the last mentioned is a really tough algorithm to
decrypt without the use of the proper key. In such a way is possible to capture the packets,
but not to read or modify them, making really difficult to exploit Dictionary and Bruteforce

43

as previously made with Open5gs; giving to Free5gc a better reliability with respect to the first
Core.

As already seen in the previous section, DDoS attacks reached the objective of delaying the
response of the web server, even if the latter did not crush. To make it effective the attack was
deployed using Hping3 which has the ability to randomize the signal’s origin, avoiding possi-
ble firewall limitations that could affect a single IP. There are multiple ways to avert this kind
of attacks, even if there is no assurance of being 100% safe from DDoS. Distributed Denial of
Service are a specific offense that is truly hard to mitigate. Moreover, as stated beforehand, the
impact of the attack was an effective delay in the response, denying the usage of the server in-
terface. Overall some techniques can be applied attempting to forestall this typology of attacks:
an example can be to employ Intrusion Detection System and firewalls which will act as bar-
riers, or more broadly speaking, applying continuous monitoring to analyze the traffic in real
time to be able to understand if a DDoS attack is ongoing. Another feasible way to prevent
this attack is to limit network broadcasting between devices, in this manner just an amount of
packets can be received and handle, all the overload traffic will then be discarded. This latter
countermeasure did not perfectly fit the attempt previously showed; the thing is there is a huge
variety of DDoS each of which could affect a particular vulnerability on a system in order to
make it crush.

44

6
Security analysis of the third 5G Core:

OpenAirInterface

6.1 Environment

OpenAirInterfacehas a slightly different structurewith respect to the two formerCores: Open5
gs and Free5gc. For our purpose have been deployed two virtual machines as in the other cases:
the first with OpenAirInterface CN inside an Ubuntu Operative System and the second with
Kali Linux, to test the security of the Core. Making a comparison, OpenAirInterface differs
from the previous two because of the absence of a web interface and moreover because of the
possibility to deploy OAI in a containerized environment [13]. For our purpose has been em-
ployed Docker: a open source containerization platform which allows to unfold each one of
the functions used by the Core in different containers. Considering the implementation, and
thus the containers available, it is observable that Open Air Interface handles all the basic func-
tionalities: AMF, SMF,UPF,NRF, AUSF,UDM,UDR,NSSF; so the usual Service BasedAr-
chitecture. Differently from the analysis enforcedwith the other twoCores, OpenAirInterface
does not present a web interface, and therefore it forced us to experiment the same typologies
of attacks applied in a different manner. Delving inside, for this tests have been employed the
same Kali Linux machine and Ubuntu system:

1. OpenAirInterface

45

• Operative System: Ubuntu

• Release: 18.04.6 LTS

• Codename: Bionic

• Linux Kernel: 5.4.0-84-generic

2. Kali Linux

• Operative System: Kali GNU/Linux Rolling

• Release: 2022.1

• Codename: kali-rolling

• Linux Kernel: 5.15.0-kali3-amd64

6.2 Initial Considerations

The scenario presented in this section involves the third and last open source Core taken into
account: OpenAirInterface. The focus here is related to the review of the OAI: at first from
an overall perspective, and then more in depth. The former consideration that has already
been mentioned regards the fact that this component, unlike the earlier referred Core, does
not present a Web interface and therefore the attacks presented and experimented could be
slightly different. Before envisaging into the realization of the attacks, another aspect has to be
deemed: the impossibility to repeat all the offenses enforced previously. For this reason, the
earlier outlined Dictionary and Bruteforce attack cannot be proven and as a consequence com-
pared with the Free5gc and Open5gs outcomes. Same fate for the Directory traversal, Click-
jacking and JsonWeb Token: all attacks in fact are exploitable offenses feasible through a Web
Interface. As a result, the final comparison could appear somewhat unfair with respect to the
overall attacks implemented in the antecedents. Moreover, taking a step back, to build Ope-
nAirInterface has been employed Docker, in order to containerized all the SBA functionalities
of the 5GCore, one by one. The analysis started with the beforehand understanding of the ba-
sic characteristics of OAI, looking for IP and open ports. Indeed, each of the Core’s network
functions came with a specific IP address and a specific port through which was possible to

46

Figure 6.1: 5G Integrity and encryption algorithm respectively.

connect. In addition, unlike Free5gc and Open5gs which both employ as database the Mon-
goDB,OpenAirInterfacemake use of the SQL database. Another important feature thatmust
be taken into account is the utilisation or not of an encryption algorithm for a reliable exchange
of packets allowing integrity protection. As already showed Open5gs did not possess any kind
of encryption algorithm, while Free5gc owned bcrypt for the database data and NIA2 (based
on AES) for the packets transfer. In the matter of OAI, it leverages the Advance Encryption
Standard algorithm that results really challenging to bypass and in addition to this, Snow3G
which is used interchangeablywithAES for ciphering or integrity, based on the needs. Actually
as visible from the Fig. 6.1 [14], the mainly used algorithm for the 5G network are the follow-
ing: Snow3G, AES and ZUC even if for the examined Core, the latter is not used. NIA and
NEA stands for NR Integrity algorithm and NR Encryption algorithm respectively. Precisely
for this reason the available feature of Tshark, which allows to intercept the packets from and
to the Core, turned out to be almost useless.

6.3 Test implementation and results

This branch of the thesis aims to show how has been gathered information for the last Core
analyzed. Following will be presented all the attacks attempted in order to test the security of
OpenAirInterface, and subsequently the defences that can be applied to avoid these attacks.

47

6.3.1 Information gathering

This section seeks to investigate what are the main weaknesses of the OpenAirInterface Core.
In the beginning it has been considered from a high level point of view, whereas resulted as
slightly different with respect to the two already mentioned. The first step taken, with the
aim of starting the study of all its potential vulnerabilities, was running some reconnaissance
techniques using Nmap. But, before delving inside we should examine how this tool has been
executed. Indeed, as already stated, OAI presents its whole architecture inside Docker contain-
ers which differentiate each functionality making it accessible individually. This is due to the
fact that each of these owns a precise IP address and following open ports; even if all the func-
tions are located in the same sub-network. For this purpose we run the command precisely for
one NF with:

sudo nmap -sN -A 192.168.70.132

in order to obtain as much information as possible regarding the target; in this situation the
AMF container. The same has been made for the other 5G functions. Each of which exhibit
few open ports, themost common ones were: 80, 8080 and 9090. Since apart from these ports
nothing valuable has been found (Figure 6.2), we tried with a more specific command:

nmap --script http-enum 192.168.70.132

but even for this instance no significant outcomes were obtained.

Figure 6.2: Access and Mobility Management Function (AMF) Nmap output.

48

To assure this fact we extended the investigation employing another tool called Nikto. To
do so, we executed:

nikto -h 192.168.70.132

trying to gain some useful data, although in this case too, without much success. Apart from
this scenario and considering the info formerly given, we taken into account that OpenAirIn-
terface did not hold any kind of login page or login form. This leads to the impossibility to
deploy Dictionary or Bruteforce attack, resulting as not implementable. As we will see, this
Core’s misconfiguration leads to the incapacity of conducting some of the offenses tested for
Open5gs and Free5gc. Afterwards, the following idea was to inspect what kind of database
OAI was using, bearing in mind that the previous Core where using an unstructured database.
Basically, OpenAirInterface was employing a SQL database, therefore a structured DB which
clearly behaves in a different manner thanMongoDB.

6.3.2 Database permission leakage

Thus, we begun investigating if, and in case how to take advantage of it. Indeed, at implemen-
tation time the latter Core held two distinct users: the root one and the user. In order to
understand which permissions any of the profiles have, we started logging in into the database
with each of them. For this reason we inspected what commands were executable, examining
the response received. Especially, with the command: show grants;we were able to retrieve
the privileges of both of them and further take some considerations. The root profile, as it
is supposed to be, owns the whole administrator privileges, allowing every feasible action; the
second, instead, should have been an ordinary user without particular access grants.

Figure 6.3: User privileges in SQL database.

That ain’t true for this circumstance. Sure enough, as visible from image 6.3 the user has
the potential of the administrator, being able to read, modify and delete content of each of the

49

available table of the database. In order to prove it, the idea was to test if and how the regular
user could exploit it.

6.3.3 SQL injections

Indeed, starting from the available rows on the table AuthenticationSubscription, we
showed that 131 different default subscribers were visible (Figure 6.4). In this circumstance
we took into account the AuthenticationSubscription mainly because it was one of the most
significant table with the leading contents.

Figure 6.4: Final rows of the AuthenticationSubscription table.

The next step was to prove the possibility to append a new subscriber choosing character-
istics pretty much as desired. In such a way, we used the SQL query:

INSERT INTO AuthenticationSubscription VALUES ('208950000000132', '
5G_AKA', '0C0A34601D4F07677303652C0462535B','0C0A34601D4F0767730365
2C0462535B', '{"sqn": "000000000020", "sqnScheme": "NON_TIME_BASED"
, "lastIndexes": {"ausf": 0}}', 8000,'milenage', '63bfa50ee6523365f
f14c1f45f88737d', NULL, NULL, NULL, NULL,'208950000000132');

with the purpose of adding the 132th subscriber. As visible from image 6.5 this has been
achieved; indeed the rows available were 102 instead of the 101 previously showed.

Figure 6.5: Appended subscriber number 132 to AuthenticationSubscription table.

Given that in the hands of a common user, we were able to add a new subscriber, the
subsequent move was to test if we were able to customize even just some of the features of a
specificprofile, in the present situation theencPermanentKey. Thereby, to prove this concept,
we deployed the following SQL query:

50

UPDATE AuthenticationSubscription SET encPermanentKey='01D1F57690Z3
0123456789I093723Y2C' WHERE ueid=208950000000131;

As observable in Figure 6.6 we reached our scope, managing to alter the content of one mean-
ingful characteristic. This behaviour as understandable it’s not positive, enabling a malicious
user to make every actions he wants to execute.

Figure 6.6: Modified ”encPermanentKey” feature of subscriber 131.

Thus, considering the last achievement, and the fact that until now we read, inserted and
modified content of the database; the ensuing step was to test if it was possible to delete at least
one of the available rows. In order to reach our scope we deployed another query attempting
to remove a subscriber based on its ID:

DELETE FROM AuthenticationSubscription WHERE ueid=208950000000131

Even in this case we achieved the goal, sure enough, in Fig. 6.7 we were able to demonstrate
that the subscriber 131 was not inside the database.

Figure 6.7: Deleted subscriber with user equipment ID 131.

Considering the successes obtained until now, since the user possesses all the privileges, the
last attempt we tried to demonstrate concerns the ability to drop an entire database: in this
specific case the oai_db. With the intention of proving this concept, at first will be showed
each one of the accessible databases and afterwards, the same set of DB once dropped the OAI
DB. In order to show this, we as previously stated, we listed all the available databases as in
figure 6.8 and subsequently we applied the command DROP DATABASE oai_db;. As visible
from the second picture of the same image, we removed the entire database without too much
effort.

51

Figure 6.8: Comparison of available databases before and after dropping the oai_db.

As a result of all the attempts proven,wedemonstrated thatOpenAirInterface owns apoint
of failure due to the excessive permissions made available for any ordinary user. Actually, for
this specific scenario should be applied the principle of least privilege (PoLP) in which each
member should have the minimum amount of permissions in order to accomplish the func-
tion he is in charge to do. In this way, each assets and data will be protected from leakage of
information. Delving further into thedetails of this argument,we cannot say that thepresented
queries are SQL injections, mainly because the employed user owned all the privileges needed.
Nevertheless, SQL injections are by the way feasible due to the feasibility to show and edit ev-
erything inside the oai_db. To conclude this category of attacks, we naturally have to make a
consideration regarding the NoSQL injection. Undoubtedly, over a Structured database like
the SQLDB, this typology of injections are not effective.

6.3.4 DoS andDDoS

The remainder of this section aims to analyze the Denial of Service and Distributed Denial of
Service attacks attempted, in order to prove if it was possible to make the Core crush. The idea
for this specific circumstance, knowing that OpenAirInterface holds all its SBA architecture
over containers, was to try to inject a large amount of requests towards every container. This
was possiblemainly because anyDocker container owned its proper IP address and opens ports
to access the service. As for Free5gc and Open5gs, the employed tools for this specific offense
were:

• Hping3,

• HULK,

• Slowhttptest.

52

These three tools have been executed individually against each single OpenAirInterface’s
functionality. Initially has been run the Hping3 command, flooding the victim with packets
and randomizing the origin. After some time, each container taken as objective was still up
and running. Therefore, the following step taken was to test the same function with Http
Unbearable Load King DDoS, in order to attempt to crush that component of the Core.
This tool, as already stated, allows the attacker to craft unique requests. However, in this case
too the effort failed. Thus, the last tool we tried to execute was Slowhttptest, opening many
connections with the purpose of overwhelming and slowing down the target. Even with this
try, the containerized environment was seamlessly operative, concluding in such way the Dis-
tributed Denial of Service attempts for the Core.

6.4 Countermeasures

The following paragraph aims to analyze every possible expedient capable of avoiding the at-
tacks previously mentioned. Nevertheless, before going into details we have to make a brief
digression regarding the typology of vulnerabilities discovered. Indeed, differently from the
variety of weaknesses found for Free5gc and Open5gs, the ones presented in the earlier section
are all caused by the same error at implementation time. For this reason, we will just focus into
this misconfiguration, avoiding further explanation about the not deployable offenses.

The main concept as stated, is that at the moment of database creation it presents two
distinct users: the ”root” and the regular ”user”. As observable from the image 6.3, the second
mentioned owns all the privileges, thus, every action can be performed. This option should
be avoided mainly because the scope of the second user should not be to access and edit every
record of the database differently from the root one. In order to avoid this kind of exploitation
the SQLdatabase shouldbe crafted solelywith the administrator user and subsequently employ
this profile to create a further member with read-only privileges. One way to achieve this,
once accessed the database as ”root”, is to manually generate a user using the command:

CREATE USER 'username'@'127.0.0.1' IDENTIFIED BY 'password';

In this circumstance has been adopted the localhost, enabling the user to connect to the
SQL database as ”user” only from the same machine. In order to provide remote access, the
localhost should be replaced by the IP address or by % to sign in from any host. The next
step would be to supply the minimum permissions to the profile, for this specific situation
”read-only”. To accomplish this, the administrator should run:

53

GRANT SELECT ON 'database_name'.* TO 'username'@'127.0.0.1';

and afterwards, to make all the prior instructions effective type:

FLUSH PRIVILEGES;

Another significant concept is the possibility to deploy the SQL injections, which are correlated
to the presented leakage of privileges. Precisely for this reason, once assimilated whichwere the
disposable grants, SQL injections were just a predictable consequence. The concept, indeed,
is that if the user possesses all the available privileges, as a result all this type of offenses will be
automatically feasible. Therefore, in order to avoid SQL injections there are several effective
expedients that can be employed. Sure enough, to prevent this kind of attack is important to
sanitize the input field before it has been processed, also using appropriate privileges accounts,
denying every typology of entries that present binary, escape sequences and comment charac-
ters. In addition, a further countermeasure to SQL injection is to always check for the privileges
of the user who is connecting to the database.

54

7
Comparisons and Conclusions

7.1 Final considerations

The idea behind this final project has been to investigate every analysed Core starting from its
own characteristics, in order to emphasise implementation bug or weakness found, exploit it
and subsequently provide countermeasures to prevent it. Indeed, focusing the attention on
what has been showed until now; we analyzed the open source components available with the
objective of creating a debate between the given ones, as visible fromTable 7.1. Each time, this
distinctive component has been implemented with different configuration based on the free
software model employed.

At the outset, in chapter 3, this specific study pointed out what are the main features in
common for every examined Core: presenting the state of the art and the leading concepts
regarding how the whole 5G Network works and behaves. This section wants to highlight
what are the broader concepts behind Open5gs, Free5gc and OpenAirInterface. Therefore,
once introduced the major notions, the second step was to take into account which, from the
disposable Core, were the most suitable and complete for the investigation and for a future
work implementation. As a result, the choice resembled over the already mentioned three.

However, in addition to Open5gs, Free5gc and OpenAirInterface there was also a further
Core: Magma, which although presented peculiar attributes, has not been taken into account
principally due to the incompleteness that showed. Indeed, it possesses, at the present time, a

55

structure that is more similar to a 4G than a 5GNetwork, therefore, primarily for this pattern,
Magma has been left out.

ATTACKS: Open5gs: Free5gc: OpenAirInterface:

Database Permission Leakage Yes No Yes
SQL injection No No Yes
NoSQL injection Yes No No
Dictionary Yes No /
Bruteforce Yes No /
DoS and DDoS No Yes No
Directory traversal No Yes /
Clickjacking No No /
JsonWeb Token robustness Yes No /

Table 7.1: Representation of attacks and Core affected by these.

Legend:

• Yes = Exploitable

• No =Not Exploitable

• / = Not applicable

Apart from this scenario, making a brief diversion on the problems encountered, we had
to experience some limitations and flaws that affected every Core during implementation. For
what concern the first two components, we experienced some issues about the dependencies,
mainly due to the lack of clarity of the disposable guides: one of the drawbacks of open source
resources. Nevertheless, this is not the most important point that should be treated. Sure
enough, the third deployment was the one that gave much remarks with respect to Open5gs
and Free5gc. OpenAirInterface, indeed, beyond the problems faced during the deployment,
mainly due to the needs of achieving some requirements and some unhealthy container once
implemented, did not own a web interface. Indeed, as has been shown until now, all the the-
sis is focused more on the discovery of vulnerabilities based on the web interface. In order to
obtain a comparison based on the same level, we tested the same attacks in each of the Core

56

examined. This led to the incapacity to deal the last Core in the same manner of the previous
two, as visible from the benchmarking table 7.1. Actually, this typology of issue, even if little,
to a certain extent affected the final comparative between the counted Core. Nonetheless, as-
suming the expansion’s rapidity of this free software, which day by day gains much support
from the community, in a near future it will give the possibility to test the OpenAirInterface
in the same way of Open5gs and Free5gc.

Having a look to the comparison table is clearly observable that among the proven attacks,
there were no offenses that affected every Core in the same manner. This occurrence mainly
arose from the fact that, even if we are talking about the same component, every single one of
these, presents in a small degree some changes that characterized the structure it deploys.

Taking a step back, the purpose of this thesis was to give a reasoning regarding which one
of the analyzed three open source Core is the best in terms of security. As already mentioned
there is a consideration thatmust be done, mainly due to the inability to test these components
in the same manner. Therefore, we prefer to not take a position, still giving an opinion over
Open5GS, Free5gc and OpenAirInterface. As observable from Table 7.1, indeed, there is no
attack which succeeded in every single component; for this reason taking into account the to-
tality of the offenses attempted and the achievements obtained, we might say that Open5GS is
the worst from several point of views. Actually, the latter is the one that presents the greatest
amount of attacks with success andmoreover the majority of this offenses tested are diverse for
what concern the vulnerability exploited, emphasising the fact that Open5GS possesses more
than one point of failure.

7.2 FutureWork

This section aims to analyze what are the possible future work regarding the 5GCore, based on
the attempts tested and the results obtained. The early consideration that shouldbehighlighted
is that the totality of each Core comprehends not only the web interface taken into account,
but also every functionality that compose it and the way this functions are used in order to
link the Core to the outside. This last point is significant to emphasise because the work done
until now can be considered as a tiny section of the whole possible investigation that can be
performed in this field of application looking at the Core in its complexity. Therefore, one idea
could be to expand all the experiments made in this project to a lower level analyzing also how
each functionality relates and communicates with each other.

In addition to this, another potential future work that should be made is to extend what

57

has been done until now to theMagma Core which is still in progress and under development.
Indeed, once Magma will be accomplished the idea could be to insert it into the comparison
with the intention of broaden the debate between open source Core.

Following, another way to extend the workmade in this thesis should be to apply the same
attacks to the OpenAirInterface’s web interface once implemented, in order to be able to eval-
uate it in the same manner as Open5GS and Free5gc. In this way there will be a more detailed
comparison between the Core.

Lastly, the most significant question regard the possibility to widen the field of application
of all the attacks proven to private 5G Core. In this manner will be possible to show a more
comprehensive benchmark and expand the analysis to a wider range of Core; not only open
source.

58

References

[1] F. J. de Souza Neto, E. Amatucci, N. A. Nassif, and P. A. M. Farias, “Analysis for com-
parison of framework for 5g core implementation,” 2021.

[2] Nokia, “5g spectrum bands explained,” https://www.nokia.com/networks/insights/
spectrum-bands-5g-world/, 2020.

[3] C. system, “What is 5g network,” https : //www.cisco . com/c/en/us/ solutions/
what-is-5g.html, 2022.

[4] R. W. News, “Standalone 5g vs. non-standalone 5g,” https://www.rcrwireless.com/
20210907/5g/standalone-5g-vs-non-standalone-5g, September 2021.

[5] A. Ghayas, “What do embb, mmtc and urllc mean in 5g?” https://commsbrief.com/
what-do-embb-mmtc-and-urllc-mean-in-5g/, June 2021.

[6] J. Burke, “Network slicing,” https : / / www . techtarget . com /whatis / definition /
network-slicing, 2022.

[7] “Open5gs documentation,” https://open5gs.org/open5gs/docs/guide/01-quickstart/,
2022.

[8] M. Ivezic, “Introduction to 5g core service-based architecture (sba) components,” https:
//5g.security/5g-edge-miot-technology/5g-core-sba-components-architecture/, Au-
gust 2020.

[9] V. Chemitiganti, “5g core (5gc) – platform architecture,” https://www.vamsitalkstech.
com/5g/5g-core-5gc-platform-architecture/, June 2021.

[10] A. Padmanabhan, “5g service based architecture,” https : / / devopedia . org /
5g-service-based-architecture, February 2022.

[11] B. I. M. Altariqi, “5g core and (nfvi) network functions virtualization infrastructure
penetration testing,” 2020.

59

https://www.nokia.com/networks/insights/spectrum-bands-5g-world/
https://www.nokia.com/networks/insights/spectrum-bands-5g-world/
https://www.cisco.com/c/en/us/solutions/what-is-5g.html
https://www.cisco.com/c/en/us/solutions/what-is-5g.html
https://www.rcrwireless.com/20210907/5g/standalone-5g-vs-non-standalone-5g
https://www.rcrwireless.com/20210907/5g/standalone-5g-vs-non-standalone-5g
https://commsbrief.com/what-do-embb-mmtc-and-urllc-mean-in-5g/
https://commsbrief.com/what-do-embb-mmtc-and-urllc-mean-in-5g/
https://www.techtarget.com/whatis/definition/network-slicing
https://www.techtarget.com/whatis/definition/network-slicing
https://open5gs.org/open5gs/docs/guide/01-quickstart/
https://5g.security/5g-edge-miot-technology/5g-core-sba-components-architecture/
https://5g.security/5g-edge-miot-technology/5g-core-sba-components-architecture/
https://www.vamsitalkstech.com/5g/5g-core-5gc-platform-architecture/
https://www.vamsitalkstech.com/5g/5g-core-5gc-platform-architecture/
https://devopedia.org/5g-service-based-architecture
https://devopedia.org/5g-service-based-architecture

[12] “Free5gc,” https://github.com/free5gc/free5gc/wiki, 2022.

[13] “Openairinterface 5g corenetwork,” https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-fed/
-/blob/master/docs/DEPLOY_SA5G_BASIC_DEPLOYMENT.md, 2022.

[14] P. Sahu, “5g security (5g aka authentication),” https : / / www . 5gblogs . com /
5g-security-5g-aka-authentication/, January 2020.

60

https://github.com/free5gc/free5gc/wiki
https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-fed/-/blob/master/docs/DEPLOY_SA5G_BASIC_DEPLOYMENT.md
https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-fed/-/blob/master/docs/DEPLOY_SA5G_BASIC_DEPLOYMENT.md
https://www.5gblogs.com/5g-security-5g-aka-authentication/
https://www.5gblogs.com/5g-security-5g-aka-authentication/

	Abstract
	Listing of acronyms
	Introduction
	Background
	5G Network
	Standalone and Non-Standalone
	Network slicing

	5G Core
	Network functions

	Tools
	Nmap
	Whatweb
	Nikto
	Dirbuster and Dirb
	Burpsuite
	Nessus
	Hping3
	SlowLoris
	HULK
	JohnTheRipper

	Security analysis of the first 5G Core: Open5GS
	Environment
	Initial Considerations
	Test implementation and results
	Information gathering
	Dictionary attack
	Bruteforce attack
	SQL injections
	DoS and DDoS
	Database permission leakage
	NoSQL injections
	Clickjacking
	Json Web Token robustness

	Countermeasures

	Security analysis of the second 5G Core: Free5gc
	Environment
	Initial Considerations
	Test implementation and results
	Information gathering
	Directory traversal
	Dictionary and Bruteforce attacks
	SQL injections
	NoSQL injections
	DoS and DDoS
	Clickjacking

	Countermeasures

	Security analysis of the third 5G Core: OpenAirInterface
	Environment
	Initial Considerations
	Test implementation and results
	Information gathering
	Database permission leakage
	SQL injections
	DoS and DDoS

	Countermeasures

	Comparisons and Conclusions
	Final considerations
	Future Work

	References

