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1CHAPTER

Introduction

Mathematical models may treat populations structured in many ways. A structure

by age is one of the most simple, as age evolves linearly with time, which allows one

to rewrite PDEs containing age and time in a simpler form.

Age-structures may be discrete or continuous: see [1], pp. 267-280, for a general

presentation of the discrete ones, while the continuous ones will be the main inter-

est of this thesis.

According to Keyfitz [27], there are four ways of modelling the evolution in time of

an age-structured problem: the Lotka integral equation, the Leslie matrix, the re-

newal difference equation approach and the McKendrick PDE. In the recent years,

mathematician have re-discovered this last one, which was used by McKendrick in

epidemiology to take into account births and deaths of members of a population:

denoting by x(t , a) the density of a population of age a at time t , the McKendrick

PDE is

∂t x(t , a)+∂a x(t , a) =−µ(t , a)x(t , a)

where µ(t , a) is the force of mortality or instantaneous death rate of an individual

of age a at time t . Such an equation may be solved through the method of charac-

teristics, being t −a ≡ const a characteristic line.

Age-structured problems are studied in a variety of situations, including harvesting
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6 INTRODUCTION

([28], [29], [30], [31]), birth control ([32], [33], [34]), epidemic disease control and

optimal vaccination ([35], [36], [37]), investment economic models ([39], [40], [41],

[42], [43], [44]) and a variety of models in the social area ([45], [46]).

Here, the main topic is marketing, specifically a distributive channel. There are the

manufacturer and the retailer of a certain product, who are planning to introduce

it into the market. They both want to maximize their profit from the sales of that

product; in order to do this, the manufacturer invests his money on advertising,

while the retailer on promotion. If "big" enough, the manufacturer may also de-

cide to pay for part of the promotion.

The natural way to treat this problem is to define an appropriate differential game

(see [10], page 110). That’s due to the main features of marketing channels: the set

of players is easy to identify, and each’s payoff depends on the actions taken by the

other players. So, the advertising A and the promotion P will be the manufacturer’s

and the retailer’s controls, respectively. In chapter 3, a brief resume about differen-

tial games is given. In particular, linear state games and Open-Loop Nash Equilibria

(OLNE) are recalled.

This specific model was introduced in [13]. The authors, Buratto and Grosset, sim-

plified the situation proposed by Jørgensen, Taboubi and Zaccour in [47], by show-

ing that the same results about coordination between manufacturer and retailer

could be obtained by considering a linear-state game, instead of a linear-quadratic

one.

This thesis starts from that work; it introduces an age-structure in the population

to whom the product will be proposed. People will have age between 0 and a fixed

ω, while time will go from 0 to +∞. The choice of an infinite time horizon is be-

cause of the calculations, which are by far simpler in this context: indeed, the state

equation is of McKendrick’s type∂tG(t , a)+∂aG(t , a) = A(t , a)−µ(a)G(t , a), a ∈ [0,ω]

∂tξ(t , a)+∂aξa(t , a) = (µ(a)+ρ)ξ(t , a)−πM (a)γ(a)
,

where µ(a) is the decay rate of the function G(t , a) (which is called Goodwill), ρ is a

positive constant called discount rate, and ξ(t , a) is the adjoint function of G(t , a).

Hence, these equations may be solved via the method of characteristics, and in the

infinite time-horizon case one has to take into account just the intersection of the

characteristic line with [0,+∞)× {ω}.

The aim is to determine whether an optimal strategy (A?,P?) exists. Necessary

conditions, as well as sufficient ones, for such a couple to be an OLNE are provided.

Explicitly, the necessary conditions are a version of the Pontryagin’s maximum prin-

ciple, while the sufficient ones are of Arrow’s type. That’s why in Chapter 2 a brief

resume about these general theorems and other concepts in Optimal Control the-

ory is provided.
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Fundamental works about the aforementioned necessary and sufficient conditions

are the one by Feichtinger, Tragler and Veliov ([11]), and by Krastev ([19]), respec-

tively. Krastev’s sufficient conditions are here re-framed in terms of the current-

value Hamiltonian, which is a commonly used function in the infinite-time horizon

setting. The first part of Chapter 4, then, is dedicated to exposing these conditions

and their adaptation; the second part, instead, explicitly presents and treats the

model.

Several situations will be considered:

• calculations will be started when the functions appearing in the equations

(such as µ(a)) have a generic form; in particular, this will be the case for µ(a)

and for the marginal profit πM (a) of the manufacturer on people aged a;

• secondly, computations will be deepened for two specific forms of πM (a)

("rectangular" and "triangular", i.e. the characteristic function of a certain

interval and a modulus, respectively), when all the other parameter functions

(such as µ(a)) are constant;

• the results of the second part will be re-discussed when a further effect is con-

sidered. Indeed, Krastev’s results may be applied also when the Hamiltonian

function takes into account the following "interaction term" in the popula-

tion: for every age a, people who are older than a talk about the product with

people younger than a, so that they have an impact on its sales.

The results are summarized in Chapter 5.
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Age-structured Optimal

Control Theory

Optimal control

In this section, a quick review of the basic notions and the useful results in the Cal-

culus of Variation theory is given. Specifically, it’s important to recall the Maximum

Principle, the Mangasarian and Arrow theorems, in the general context of an infi-

nite horizon problem. This will be important in the following chapters, where these

results will be re-framed and proved for age-structured problems. See [4], [17] and

[12] as references to this part.

Standard terminology

First of all, it’s necessary to introduce the basic concepts in Calculus of Variations.

These will be first written for the finite horizon case, and then for the infinite one.

Be [a,b] an interval, n,m ∈N, f : [a,b]×Rn ×Rm → Rn the dynamics function, U ⊆
Rm a set called the control set. A control is a measurable function u : [a,b] →U . The

state corresponding to the control u is the solution x of the following initial-value

problem, called the state equation:

ẋ = f (t , x(t ),u(t )), t ∈ [a,b]

x(a) = x0

(1)

9



10 AGE-STRUCTURED OPTIMAL CONTROL THEORY

where x0 is the prescribed initial condition. One hopes that there exists - and, if

so, to find - a couple (x,u), called process, minimizing the following objective func-

tional:

J (x,u) =
∫ b

a
Λ(t , x(t ),u(t ))dt +λ(x(b)) (2)

where Λ and λ are two given functions, called the running and endpoint cost, re-

spectively. The endpoint x(b) is asked to be in a prescribed set E ⊆ Rn , called the

target set.

What has just been described is the Optimal control problem (OC) and, for the ex-

pression of J (x,u), it is said to be in the Bolza form; obviously, such form won’t

be adapt for the infinite horizon case. An admissible process for OC is a couple

(x,u) satisfying the constraints of the problem and for which the objective func-

tional J (x,u) is well defined.

The usual regularity conditions are the following: λ is asked to be continuously dif-

ferentiable, f ,Λ continuous and admit continuous derivatives with respect to x,

∂x f (t , x,u), ∂xΛ(t , x,u).

The Hamiltonian function associated to the OC problem is

Hη : [a,b]×Rn ×Rn ×Rm →R, Hη(t , x, p,u) = 〈p, f (t , x,u)〉+ηΛ(t , x,u) (3)

where p is called co-state variable, η= 1 (normal case) or η= 0 (abnormal case). The

maximized Hamiltonian is Mη(t , x, p) = supu∈U Hη(t , x, p,u).

Necessary conditions: the Maximum Principle

The following result is known as Pontryagin maximum principle. It gives a nec-

essary condition for a process (x,u) to be a local minimizer of the objective func-

tional. The principle will be first stated for the finite horizon case, where the follow-

ing notion is needed, and then it will be generalized to the infinite horizon context.

For every x ∈ E the closed set N L
E (x), called the limiting normal cone to E at the

point x, is defined as such:

N L
E (x) =

{
ξ= lim

i→+∞
ξi : ξi ∈ N P

E (xi ), xi
i→+∞−→ x, xi ∈ E

}

and N P
E (xi ) is the proximal cone to E at the point xi :

N P
E (xi ) = {ξ ∈Rn : ∃σ=σ(ξ, xi ) ≥ 0 suchthat 〈ξ, y −xi 〉 ≤σ|y −xi |2, ∀y ∈ E }

An example of proximal cone to a set S at a point x is given in figure (1), see [4] for

an extensive presentation of their properties.
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Figure 1: Proximal cone to a set S (in grey) at a point x.

Theorem 2.2.1: Pontryagin Maximum Principle

Let (x?,u?) be a local minimizer for the OC problem, under the classical

regularity hypotheses, where the control set U is bounded. Then there exists

a co-state variable p : [a,b] → Rn and η ∈ {0,1} satisfying the nontriviality

condition

(η, p(t )) 6= 0n+1, ∀t ∈ [a,b], (4)

the transversality condition

−p(b) ∈−η∇λ(x?(b))+N L
E (x?(b)),

the adjoint equation

− ṗ(t ) = ∂x Hη(t , x?(t ), p(t ),u?(t )) (5)

and the maximum condition

Hη(t , x?(t ), p(t ),u?(t )) = M(t , x?(t ), p(t )) (6)

Morever, if the problem is autonomous (i.e., f and λ do not depend on t ), the

Hamiltonian in equation (6) is constant in time.

The co-state variable satisfying the adjoint equation will also be called adjoint func-

tion. Observe that, in the normal case, the nontriviality condition is automatically

satisfied.

Equivalently (see [4], Prop. 22.5), this theorem also holds if one change the transver-

sality condition with the following: there exist η≥ 0 and a continuous piecewise C 1

function p satisfying η+‖p‖ = 1 and the other conclusions of the theorem.

More straightforwardly, as [17] introduces the problem at the beginning, the transver-

sality condition may be re-stated as follows. Let x1
1 , ..., xr

1 ∈R be r ≤ n fixed parame-
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ters. If the components of the state x satisfy the following conditions, together with

the ones in system (1): 
xi (b) = xi

1, i = 1, ..., l ,

x j (b) ≥ x j
1 , j = l +1, ...,r,

xk (b) ∈R, k = r +1, ...,n.

(7)

for some l ≤ r , then the components of the vector p must satisfy:


p i (b) ∈R, i = 1, ..., l ,

p j (b) ≥ 0 and p j (b)
(
x j
?(b)−x j

1

)
= 0, j = l +1, ...,r,

pk (b) = 0, k = r +1, ...,n.

(8)

Sufficient conditions: the Mangasarian and Arrow theorems

Mangasarian and Arrow’s theorems give sufficient conditions for a process (x,u) to

be a local minimizer of the objective functional.

Consider the OC problem in the Lagrange form, that is equation (2) with λ= 0.

Theorem 2.3.1: Mangasarian

Let (x?(t ),u?(t )) be an admissible process. Suppose that the control set

U ⊆ Rm is convex and that the dynamics function f admits derivatives with

respect to the control u, and such derivatives are continuous. Let η= 1 in (3)

and suppose that there exists a continuous and piecewise C 1 p : [a,b] → Rn

such that it holds the following:

ṗ i (t ) =−∂H 1(t ,x?(t ),p(t ),u?(t ))
∂xi , fora.e. t ∈ [a,b], i = 1, ...,n,∑m

j=1
∂H 1(t ,x?(t ),p(t ),u?(t ))

∂u j

(
u j
?(t )−u j

)
≥ 0, ∀u ∈U , t ∈ [a,b],

p i (b) ≥ 0 and p i (b)
(
xi
?(b)−xi

1

)= 0, i = l +1, ...,r,

p j (b) = 0, j = r +1, ...,n;

H 1(t , x, p(t ),u) is convex in(x,u), ∀t ∈ [a,b].

Notice that the first, third and fourth equations are respectively (5) and (8)

and equation (4) is automatically satisfied.

Then, (x?(t ),u?(t )) is a local minimizer of the objective functional J (x,u) in

(2) and both equations (1) and (7) hold.

See [17], pp. 102-103 for the proof.
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Theorem 2.3.2: Arrow

Be (x?(t ),u?(t )) an admissible process. Let λ = 0 in (2) and η = 1 in (3) and

suppose that there exists a continuous and piecewise C 1 p : [a,b] →Rn such

that:

ṗ i (t ) =−∂H 1(t ,x?(t ),p(t ),u?(t ))
∂xi , a.e. t ∈ [a,b], i = 1, ...,n;

H 1(t , x?(t ), p(t ),u?(t )) = M 1(t , x?(t ), p(t )), ∀t ∈ [a,b]

p i (b) ≥ 0 and p i (b)
(
xi
?(b)−xi

1

)= 0, i = l +1, ...,r,

p j (b) = 0, j = r +1, ...,n,

M 1(t , x(t ), p(t )) iswelldefinedandconcavew.r.t. x, ∀t ∈ [a,b].

Then, (u?(t ), x?(t )) is a local minimizer of the objective functional and sat-

isfies both (1) and (7). If M 1(t , x(t ), p(t )) is strictly concave in x, ∀t ∈ [a,b],

then (x?(t ),u?(t )) is the only process for which these conclusions hold.

See again [17], pp. 106-107, for the proof.

Notice that Mangasarian and Arrow theorems differ one from the other only for the

maximization assumption, and they are almost the same if U is open, by Fermat

theorem.
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Infinite horizon

Infinite-horizon optimal control problems are still challenging, even for systems of

ordinary differential equations. This is one reason for which often optimal control

problems are considered on a truncated time-horizon, although the natural formu-

lation is in the infinite horizon. The key issue is to define appropriate transversal-

ity conditions, which allow one to select the right solution of the adjoint system

for which the Pontryagin maximum principle holds. The usual notion of optimal-

ity, in which the optimal solution maximizes the objective functional, is not always

appropriate, when considering infinite-horizon problems, especially for economic

problems with endogenous growth. That’s because the objective value can be in-

finite for many (even for all) admissible controls, while they may differ in their in-

tertemporal performance. For this reason, Skritek and Veliov adapted the notions

of weakly overtaking, catching up, and sporadically catching up optimality [18]. Of

course, in the case of a finite objective functional, this notion coincides with the

usual one. See [23] as a reference for this section.

Consider the state equation (1), where now f : [0,+∞) ×Rn ×Rm → Rn . As be-

fore, suppose f continuous and that, for every couple (t , x), there exists a com-

pact subset U (t , x) ⊂ Rm s.t. the map (t , x) 7→U (t , x) is upper semicontinuous. As-

sume that there exists a finite number M > 0 s.t. ‖ f (t , x,u)‖ ≤ M(1+‖x‖), for all

(t , x,u) ∈ [0,+∞)×Rn ×U (t , x).

A process [0,+∞) → Rn ×Rm , t 7→ (x(t ),u(t )) is called admissible if t 7→ x(t ) is ab-

solutely continuous and satisfies the state equation (1) a.e. on [0,+∞), t 7→ u(t ) is

measurable and u(t ) ∈ U (t , x(t )) for a.e. t ∈ [0,+∞). Denote by A∞ the set of all

admissible process.

Now, consider the objective functional (2) with λ = 0, a = 0 and write it Jb(x,u) to

underline the dependence on b. Suppose Λ : [0,+∞)×Rn ×Rm → R continuous.

The following criteria of optimality can be given for a state x?(·) satisfying (1):

• overtaking optimality . x?(·) is overtaking optimal at x0 if it is generated by a

control u?(·) such that

J∞(x?,u?) := lim
b→+∞

Jb(x?,u?) <+∞ (9)

and, for any other state x(·) satisfying (1) generated by u(·), it holds

J∞(x?,u?) ≥ limsupb→+∞ Jb(x,u).

• catching up optimality . x? is catching up optimal at x0 if

liminfb→+∞[Jb(x?,u?)− Jb(x,u)] ≥ 0 (10)
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Figure 2: Catching up optimality.

for any other state x(·) satisfying (1) generated by u(·). Equivalently, ∀ε >
0, ∃b(ε,u(·)) such that b > b(ε,u(·)) =⇒ Jb(x?,u?) > Jb(x,u)−ε. See also figure

(2).

• sporadically catching up optimality . x? is sporadically catching up optimal

at x0 if equation (10) holds with limsup instead of liminf. See also figure (3).

• finite optimality . x? is finitely optimal at x0 if, ∀b > 0, for every state x(·)
solving (1) and generated by the control u(·) such that x(b) = x?(b), one has

Jb(x?,u?) ≥ Jb(x,u).

One can show that these definitions are ordered in a chain of implications, that is:

overtaking optimality =⇒ ... =⇒ finite optimality

Now, set W := sup{Jb(x,u) : (x,u) is an admissible process}. Let x(·) be a state solv-

ing (1) and be A (x(·),ϑ) the set of the processes (y(·), v(·)) such that y(·) satis-

fies equation (1) and x(·) = y(·) on [0,ϑ). Also, set W (b, x(·),ϑ) := sup{J (y(·), v(·)) :

(y(·), v(·)) ∈ A (x(·),ϑ)}. Then, one can give the following definitions: a state x?(·)
satisfying (1) is said to be

• decision horizon optimal if, ∀ϑ> 0, there exists b̄ = b̄(ϑ) ≥ 0 such that, ∀b ≥ b̄,

one has W (b, x?(·),ϑ) =W ;

• agreeable if, ∀ϑ> 0, one has limb→+∞(W −W (b, x?(·),ϑ)) = 0;

• weakly agreeable if, ∀ϑ> 0, one has liminfb→+∞(W −W (b, x?(·),ϑ)) = 0.
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Figure 3: Sporadically catching up optimality.

As before, one has

decision horizon optimal =⇒ ... =⇒ weakly agreeable.

It holds the following necessary optimality condition:

Theorem 2.3.3: Optimality principle

If the pair (x?(·),u?(·)) ∈ A∞ is optimal, according to any one of the defini-

tions previously given, then, for any b ≥ 0, the restriction xb
?(·) of x?(·) (asso-

ciated with the restriction ub
?(·) of u?(·)) maximizes the objective functional

J on the set A?b := {(x(·),u(·)) : x(0) = x0, x(b) = x?(b)}, and thus (x?(·),u?(·))

is finitely optimal.

Proof. If the result is not true for some T̂ > 0, then for some (x̂(·), û(·)) ∈ A?
T̂

one has∫ T̂

0
Λ(t , x̂(t ), û(t ))dt >

∫ T̂

0
Λ(t , x?(t ),u?(t ))dt , x̂(T̂ ) = x?(T̂ ),

thus ∃ε> 0 such that∫ T̂

0
Λ(t , x̂(t ), û(t ))dt >

∫ T̂

0
Λ(t , x?(t ),u?(t ))dt +ε.

If one defines the process

(x̃(t ), ũ(t )) =
(x̂(t ), û(t )), if t ∈ [0, T̂ )

(x̃(t ), ũ(t )), if t ≥ T̂
,

then it holds ∫ T

0
Λ(t , x̃(t ), ũ(t ))dt >

∫ T

0
Λ(t , x?(t ),u?(t ))dt +ε,

for any T > 0, contradicting all the definitions of optimality given before.
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From this, one can get the following:

Theorem 2.3.4: Infinite Horizon Maximum Principle

If (x?,u?) ∈A∞ is optimal, according to any one of the definitions previously

given, then there exists a non-negative number η and a continuous piecewise

C 1 function p : [0,+∞) →Rn , called adjoint function, satisfying the nontriv-

iality condition

‖(η, p)‖Rn+1 = 1, (11)

the adjoint equation

ṗ(t ) =− ∂

∂x
Hη(t , x?(t ), p(t ),u?(t )) a.e. t ∈ [0,∞), (12)

and the maximum condition

Hη(t , x?(t ), p(t ),u?(t )) = Mη(t , x?(t ), p(t ),u(t )) ∀t ∈ [0,+∞), ∀u ∈U

Proof. Consider a strictly increasing and upperly-unbounded sequence {τ j } j∈N ⊂
[0,+∞). By the previous theorem, the restriction (x

τ j
? ,u

τ j
? ) maximizes the objective

functional J on the set A
τ j
? = {(x(·),u(·)) : x(0) = x?(0), x(τ j ) = x?(τ j )}. From the

Pontryagin’s maximum principle for the finite case, one gets that, ∀ j ∈ N, there

exist a scalar η j ≥ 0 and a continuous piecewise C 1 function p j : [0,τ j ] such that:

•

η j +‖p j‖ = 1

•

ṗ j (t ) =−∂x Hη(t , x
τ j
? , p j ,u

τ j
? )

•

Hη j (t , x
τ j
? , p j ,u

τ j
? ) = Mη(t , x

τ j
? , p j )

Up to an appropriate subsequence, one may suppose that there existη := lim j→+∞η j

and p(t ) := lim j→+∞ p j (t ), which in particular imply η+‖p‖ = 1. By regularity, one

concludes that η and p satisfy the properties of the theorem.

Arrow Theorem can be easily generalized to the infinite horizon context:
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Theorem 2.3.5: Arrow for the infinite horizon case

Suppose that:

• the control set U is compact and that there exists a compact set X , such

that the interior
◦
X of X contains every state x(·) which solves (1) and is

generated by an admissible control;

• the function M(t , x, p,η) := supu∈U H(t , x, p,u,η) is well-defined for ev-

ery x ∈ ◦
X and every t , p,η, and it is a concave function of x, for every

t , p,η;

• there exists a state x?(·) generated by an admissible control u?(·) satis-

fying the necessary conditions of the previous theorem for an η> 0;

• the adjoint function p(·) satisfies the asymptotic transversality condi-

tion limt→+∞ ‖p(·)‖ = 0.

Then, the state x?(·) is catching up optimal at x0.

Proof. Since Mη is a concave function of x,

Mη(t , x, p) ≥ Mη(t , x?, p)+ (x −x?)∂x Mη(t , x?, p).

Using equations (11) and (12), one may show that this implies

η[Λ(t , x?(t ),u?(t ))−Λ(t , x(t ),u(t ))] ≥ d

dt

{
[x?(t )−x(t )]p(t )

}
for any x(·) emanating from x0 and generated by a control u(·). Integrating the

previous inequality from 0 to T > 0, one gets

η[JT (x?,u?)− J (x,u)] ≥ p(T )[x?(T )−x(T )]

because x?(0) = x(0). Then, being X compact, η > 0 and using the asymptotic

transversality condition, one concludes by taking the lim infT→+∞ of both the sides

of the last inequality:

lim infT→+∞[JT (x?,u?)− J (x,u)] ≥ 0

The concavity requirement can be relaxed: see [24].

Now, when talking about economics, the Hamiltonian and the objective functional

usually take a specific form.

In particular, one needs to introduce the discount rate and the current value Hamil-

tonian .
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The discount rate in economics assume different meanings, depending on the con-

text. In this field, it is defined as the interest rate to charge in order to transfer a cer-

tain amount of money "at the time 0", which will be given back in a future moment

t . For some assumptions one usually make in economics, this rate is a decreasing

exponential function of the time. Precisely, the objective functional takes the form

J (x,u) =
∫ +∞

0
e−ρtΛ(t , x(t ),u(t ))dt

(notice that, being usually Λ a polynomial in x, u and t , this guarantees the con-

vergence of the integral). Moreover, the conditions in (7) are more appropriately

replaced by the following:
limt→+∞ xi (t ) = xi

1, i = 1, ..., l ,

limt→+∞ x j (t ) ≥ x j
1 , j = l +1, ...,r,

xk (b) ∈R, k = r +1, ...,n.

The current value Hamiltonian is defined as

Hη
c : [0,+∞)×Rn ×Rn ×Rn →R, H c (t , x, p,u) = 〈p, f (t , x,u)〉+ηΛ(t , x,u)

Notice that it only seems like the definition in equation (3), because it neglects the

discount rate.

What’s important is to underline that the adjoint equation, in this context, changes

its form: equation (12) becomes

ṗ(t ) =−∂x H c (t , x?(t ), p(t ),u?(t ))+ρp(t ),

that is, a ρp(t ) term is added. The other conditions in the Infinite Horizon Maxi-

mum Principle don’t change: one has just to consider the current-value Hamilto-

nian H c instead of Hη.
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Age-structured models

The concepts recalled in the previous pages will now be used while introducing the

main notion of this thesis: age structures. While studying a model involving some

kind of a population, one may need to take the evolution of the profile of its age into

account. The reason why it is interesting for this thesis, and the works it is based on,

is that the product one wants to introduce in the market may be more interesting

for people of a certain age and less for another, and the age profile of the population

changes with time.

An age structure in a population is far simpler to treat than another kind of struc-

ture, as one by size, for instance. That is because the age of a person increases

linearly over time, while other structures may evolve in a more complicated way. In

the following pages, a simple presentation of the linear discrete and linear contin-

uous models is given. See [1] and [7] for further references.

Linear discrete models

Suppose that the age profile of the population is divided into a finite number of

classes, counted from 0 to m. Let ρn
j , j ∈ {0, ...,m}, n ∈N, be the number of members

in the j -th class at the time n.

Assume that the chance of surviving depends only on the age, it is fixed for every

member of the population and it doesn’t change over time: call σ j > 0, j = 0, ...,m,

the chance of surviving for the members of the j -th class.

Moreover, assume that the fecundity rate has the same features as the survival rate,

so denote by β j ≥ 0, j = 0, ...,m, the fecundity rate of the j -th class. Hence,ρn+1
0 =∑m

j=0β jρ
n
j

ρn+1
j =σ j−1ρ

n
j−1, j = 1, ...,m

This model is called Leslie matrix model. It may be re-written using matrices: set

A =


β0 β1 ... βm−1 βm

σ0 0 ... 0 0

0 σ1 ... 0 0

0 0 ... σm−1 0

 , ρn =


ρn

0

...

ρn
m

 ,

so ρn+1 = Aρn . By induction, one gets ρn = Anρ0.

In the simplest case, where A admits m + 1 distinct eigenvalues, {λ j } j=0,...,m , with

the respective eigenvectors {v j } j=0,...,m , one may expand

ρn = Anρ0 =
m∑

j=0
〈ρ0

j , v j 〉λn
j v j .
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Now, suppose that {λ j } j=0,...,m is ordered in a decreasing way, so thatλ0 is dominant

with respect to the other eigenvalues. Then, one may write ρn = λn
0 〈ρ0

0, v0〉v0 +un ,

where λ−n
0 un n→+∞−→ 0.

Define P n :=∑m
j=0ρ

n
j (total population at time n) and B n :=∑m

j=0β jρ
n
j = ρn+1

0 (births

into population at time n). Then

P n =λn
0 〈ρ0

0, v0〉
m∑

j=0
v0

j +
m∑

j=0
un

j ,

and
ρn

P n
= λn

0 〈ρ0
0, v0〉v0 +un

λn
0 〈ρ0

0, v0〉∑m
j=0 v0

j +
∑m

j=0 un
j

n→+∞−→ v0∑m
j=0 v0

j

Thus, the fraction of population within each age class tends to a limit quantity,

which is proportional to the dominant eigenvector v0. In other words, one gets

a stable age distribution.

A more general analysis, which comprehends the other cases for the matrix A, may

be found in [1].

Linear continuous models

Let ρ(a, t ) be the density of individuals of age a at time t . So, the number of in-

dividuals of age between a − ∆a
2 and a + ∆a

2 at time t is ρ(a, t )∆a, hence the total

population is
∑+∞

a=0ρ(a, t )∆a. "As ∆a → 0+", one has that the total of the popula-

tion at time t is

P (t ) =
∫ +∞

0
ρ(a, t )da

In practice, one may assume that ρ(a, t ) = 0 for a big enough.

Age and time are obviously related: people born at time c, at the time t > c will

be of age a = t − c. As before, suppose that there is an age-dependent death rate

µ(a) (called mortality function or death modulus) which is the only way people may

leave the population. This means that:

• between time t and t +∆t a fraction µ(a)∆t of the people with age between a

and a +∆a at time t die.

• At time t , there are ρ(a, t )∆a individuals in that age cohort.

• hence, the number of deaths in that age cohort at time t is ρ(a, t )∆aµ(a)∆t .

• the remainder survives to the time t +∆t , being of age between a +∆t and

a +∆a +∆t .

• Hence, ρ(a +∆a, t +∆t ) ' ρ(a,∆a)−ρ(a, t )∆aµ(a)∆t .
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If ρ(a, t ) is differentiable for any t and a, then, dividing both sides by ∆a∆t and

taking the limit ∆a → 0+, ∆t → 0+, one gets the McKendrick equation

∂ρ(a, t )

∂a
+ ∂ρ(a, t )

∂t
+µ(a)ρ(a, t ) = 0

If y(α) is the number of people who survive at least until age α, then

y(α+∆α)− y(α) =−µ(α)y(α)∆α
∆α→0=⇒ y ′(α) =−µ(α)y(α)

which implies, ∀α1 <α2,

y(α2) = y(α1)e−∫ α2
α1

µ(α)dα

In particular, the probability of surviving from birth to age α is

π(α) = e−∫ α
0 µ(a)da (13)

From an intuitive perspective, (13) makes sense: µ(a) is the mortality rate, hence

one would expect that it doesn’t vanish as a →+∞; this means that
∫ α

0 µ(a)da
α→+∞−→

+∞, thus π(α) → 0 as α→+∞, which makes sense, for the meaning of π(α). Now,

as in the discrete case, suppose that the birth process is governed by a function

β=β(a), which depends only on the age, called birth modulus.

• The offspring for members of age between a and a +∆a in the time interval

[t , t +∆t ] is β(a)∆t .

• Thus, the total number of newborn children in the time interval [t , t +∆t ] is

∆t
∑
ρ(a, t )β(a)∆a, which, "as ∆a → 0+, becomes" ∆t

∫ +∞
0 ρ(a, t )β(a)da.

• In the time interval [t , t +∆t ], such number is ρ(0, t )∆t , thus one gets the

renewal condition

B(t ) := ρ(0, t ) =
∫ +∞

0
β(a)ρ(a, t )da

In order to complete the model, one has to specify the age distribution at time

0: ρ(a,0) =ϕ(a). Then, the analogous of the Leslie model for the continuous

case is 
∂ρ(a,t )
∂a + ∂ρ(a,t )

∂t +µ(a)ρ(a, t ) = 0

ρ(0, t ) = ∫ +∞
0 β(a)ρ(a, t )da

ρ(a,0) =ϕ(a)

(14)

See [1], pp. 275-277 for an analysis of this model through the method of the char-

acteristics.

An alternative analysis is the following, based on the fact that, in the infinite hori-

zon case, one is interested in a so-called stable age distribution, that is, a solution
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of (14) of the form ρ(a, t ) = A(a)T (t ), ∀(a, t ) ∈ [0,+∞)× [0,+∞), for some functions

A,T ∈ L1([0,+∞)).

Since in the discrete case there was actually a stable age distribution, one hopes to

find it also in the continuous case. If so, such a solution satisfies:
A′(a)T (t )+ A(a)T ′(t )+µ(a)A(a)T (t ) = 0

A(0) = ∫ +∞
0 β(a)A(a)da

A(a)T (0) =ϕ(a)

(15)

By dividing the first equation by A(a)T (t ), one gets

A′(a)

A(a)
+ T ′(t )

T (t )
+µ(a) = 0

which is equivalent to the system
A′(a)
A(a) +µ(a) = c

T ′(t )
T (t ) =−c

for c ∈ R. Of course, up to rescaling, one may assume
∫ +∞

0 A(a)da = 1. Then, the

total population at the time t ≥ 0 is

P (t ) =
∫ +∞

0
ρ(a, t )da = T (t ).

In particular, system (15) becomes

A′(a)
A(a) +µ(a) = c

P ′(t )
P (t ) =−c

A(0) = ∫ +∞
0 β(a)A(a)da

A(a)P (0) =ϕ(a)

=⇒



A(a) = A(0)π(a)eca

P (t ) = P (0)e−ct

A(0) = ∫ +∞
0 β(a)A(a)da

A(a)P (0) =ϕ(a)

By putting the first equation in the third one, one gets:

A(0) = A(0)
∫ +∞

0
β(a)π(a)eca da,

hence

1 =
∫ +∞

0
β(a)π(a)eca da

which is known as Lotka-Sharpe equation. One can show that this equation has a

unique real root c, which is positive if R := ∫ +∞
0 β(a)π(a)da > 1, null if R = 1 and

negative if R < 1. Then, the stable age solution is:

ρ(a, t ) = A(a)P (t ) = A(a)P (0)e−ct =ϕ(a)e−ct
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If R = 1, the total population is constant,

P (t ) =
∫ +∞

0
ϕ(a)da,

as well as the birth rate,

B(t ) =
∫ +∞

0
β(a)ϕ(a)da.

For a more general analysis of a general linear age-dependent model, a simple text

which will be taken as reference for the rest of this section is [2].

Choose L1([0,+∞)) as the mathematical setting for the model, as it is done for many

population problems.

The following assumptions will be made:

1. β ∈ L∞([0,∞)), β(a) ≥ 0, ∀a ≥ 0, which corresponds to the idea that every age

cohort has a bounded fertility rate;

2. µ ∈ L1
loc([0,+∞)), µ(a) ≥ 0, ∀a ≥ 0; notice that, intuitively, one shouldn’t ask

the integrability on all the interval [0,+∞), as µ(a) isn’t supposed to vanish as

a →+∞ (see, indeed, assumption 6).

3. ϕ ∈ W 1,1([0,+∞)), ϕ(a) ≥ 0, ∀a ≥ 0. Remember that this means that ϕ is an

absolutely continuous function: it makes sense, as ϕ is a distribution of the

population (in particular, the initial one), whose integral from 0 to a certain

age a must be the total population with age between 0 and a at time 0.

4. µϕ ∈ L1([0,+∞))

5. ϕ(0) = ∫ +∞
0 β(a)ϕ(a)da, which is the initial renewal condition.

6.
∫ +∞

0 µ(a)da =+∞ (which has already been interpreted).

By a solution of (14), one means a function ρ ∈ L∞([0,+∞);L1([0,+∞))), absolutely

continuous along every characteristic line (which has equation a− t = const., a, t ∈
[0,+∞)), such that

∂ρ(a,t )
∂a + ∂ρ(a,t )

∂t +µ(a)ρ(a, t ) = 0

limε→0+ ρ(ε, t +ε) = ∫ +∞
0 β(a)ρ(a, t )da, fora.e. t ∈ [0,+∞)

limε→0+ ρ(a +ε,ε) =ϕ(a), fora.e. a ∈ [0,+∞)

(16)

The last two conditions are expressed in the limit form, because the regularity of ρ

is assumed only along the characteristic lines.

One has the following:
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Theorem 2.5.1: Uniqueness of solutions

Using only assumptions 1,2 and 3, the problem (16) has at most one solution.

Such solution is non-negative. Actually, assumption 3 may be weakened, by

just asking ϕ ∈ L1([0,+∞)).

Proof. Here only the idea of the proof will be given: see [2], pp. 17-20, for the details.

First of all, by integration along the characteristic lines, a solution of (16) must have

the form

ρ(a, t ) =
B(t −a)e−∫ a

0 µ(α)dα = B(t −a)π(a), if t ≥ a

ϕ(a − t )e−∫ t
0 µ(α−t+a)dα, t < a

(17)

where B(t ) = ∫ +∞
0 β(a)ρ(a, t )da. By inserting (17) into the expression of B , one

finds

B(t ) =
∫ +∞

0
β(a)ρ(a, t )da

=
∫ t

0
β(a)B(t −a)π(a)da +

∫ +∞

t
β(a)ϕ(a − t )e−∫ t

0 µ(α−t+a)dαda, (18)

thus, B satisfies the following Volterra equation

B(t ) =
∫ t

0
K (a)B(t −a)da +F (t ), (19)

where K (a) =β(a)π(a) ≥ 0 and F (t ) ≥ 0 is the second term in the last line of (18). It

follows that K ,F ∈ L∞([0,+∞)). Now, via the Banach fixed point theorem, one may

prove that equation (19) has a unique solution. Indeed, it holds the estimate:

‖F [B1](t )−F [B2](t )‖ =sup. ess.t∈[0,+∞)

[
e−λt

∫ t

0
K (a)|B1(t −a)−B2(t −a)|

]
≤ 1

λ
‖K ‖L∞([0,+∞)) · ‖B1 −B2‖,

where F [B ](t ) = ∫ t
0 K (a)B(t−a)da+F (t ), hence one has a contraction ifλ> ‖K ‖L∞([0,+∞)).

To show that the solution is non-negative, one needs to remember that the Banach

fixed-point theorem states that the solution is found through the iteration:B0(t ) = F (t )

Bn+1(t ) = F (t )+∫ t
0 K (a)Bn(t −a)da,

which converges to the solution in L∞([0,+∞)), and every Bn is non-negative.

Theorem 2.5.2: Regularity of solutions

Under the assumption 1-6, the solutionρ of (14) is continuous and the partial

derivatives ∂aρ and ∂tρ exist almost everywhere.
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Proof. Using the same notation as in the previous theorem, one may easily verify

that F ∈ W1,∞([0,+∞)) and, by (19), that B ∈ W1,∞([0,+∞)) and

B ′(t ) = F ′(t )+K (t )B(0)+
∫ t

0
K (t −α)B ′(α)dα,

where B ′ and K ′ are meant to be the weak derivatives of B and K respectively.

Hence, equation (17) implies that ρ ∈ C ([0,+∞)× [0,+∞)) and its partial deriva-

tives exist almost everywhere in [0,+∞)× [0,+∞).

Notice that the solution ρ ∈ L∞((0,+∞),L1(0,+∞)) of (14) is also a weak solution,

in the following sense:∫ +∞

0

∫ +∞

0
{−Dψ(a, t )+µ(a)ψ(a, t )−β(a)ψ(0, t )}ρ(a, t )da dt =

=
∫ +∞

0
ψ(a,0)ϕ(a)da

where ψ is any absolutely continuous function along almost every characteristic

line and satisfies 

ψ ∈ L∞([0,+∞)]

Dψ ∈ L1([0,+∞))

Dψ−µψ+βψ(0, ·) ∈ L∞([0,+∞))]

lima→+∞ψ(a, t ) = 0, a.e. t ∈ [0,+∞),

limt→+∞ψ(a, t ) = 0, a.e. a ∈ [0,+∞)

Then one has the following

Theorem 2.5.3: Uniqueness of weak solutions

Under the assumption 1-4, the system (14) has a unique weak solution.

See [2], pp. 27-29, for the proof.
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Useful concepts about

Differential Games

The model treated in this work of thesis is characterised by two figures: the manu-

facturer and the retailer of a product, whose promotion campaign is being planned.

As such, every one of them aims to maximize his earnings when the product will be

introduced in the market. Also, the retailer’s price towards the consumers depends

on the transfer paid to the manufacturer, and it affects the quantity of the product

sold as well as the one bought by the manufacturer. So, it is reasonable to define a

differential game and to use the relative techniques.

This is not a case. Indeed, one has two inherent characteristics that make market-

ing channels meaningful to be studied via differential games theory: first, it’s easy

to identify the players of the game; second, each player’s payoff will depend on the

actions taken by the other players.

In this chapter, a brief review of the fundamental notions needed for this thesis is

given. For further references about Differential Games and Economy, see [5], [10],

[16], [17] and [21].

Nash equilibrium

Consider a differential game with N players over the time interval [0,∞), X a set

which will be called the space set of the game. The state of the game is a vector

27
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x(t ) ∈ X , t ∈ [0,+∞), with x(0) = x0 the initial state. For each player i ∈ {1, ..., N },

write

u−i (t ) := {u1(t ), ...,ui−1(t ),ui+1(t ), ...,uN (t )},

that is the set of the control variables of the other players. Choose for each player a

control ui (t ) ∈U (x(t ),u−i (t ), t ) ∈Rmi .

Consider an N−tuple φ(t ) = (φ1(t ), ...,φN (t )). The player i ’s decision problem is

Maximize J i
φ−i (ui (·)) =

∫ +∞

0
e−ρi tΛi

φ−i (t , x(t ),ui (t ))dt

subject to


ẋ(t ) = f i

φ−i (t )
(x(t ),ui (t ), t )

x(0) = x0

ui (t ) ∈U i
φ−i (t )

(t , x(t ))

(20)

where the subscriptφ−i is a short form to say that each function with such subscript

depends on the values φ1, ...,φi−1,φi+1, ...,φN .

The N−tuple (φ1, ...,φN ) of functions φi : X × [0,+∞) → Rmi , is called Markovian

Nash equilibrium or feedback Nash equilibrium, if, for each i ∈ 1, ..., N , a control

ui (·) generating an optimal (in one of the senses described in conditions (9) and

following) state for the problem (20) exists and is given by the Markovian strategy

ui (t ) =φi (x(t ), t ).

The N−tuple (φ1, ...,φN ) of functions φi : [0,+∞) → Rmi , i ∈ {1, ...,n}, is called an

open-loop Nash equilibrium if, for each i ∈ {1, ..., N }, a control generating an optimal

(in one of the senses described in conditions (9) and following) state for (20) exists

and is given by the open-loop strategy ui (t ) =φi (t ).

In general,

{open− loop Nash equilibria} ⊆ {Markovian Nash equilibria}

Sub-game perfectness and time consistency

Denote by Γ(x0,0) the game discussed in the previous section. For each pair (x, t ) ∈
X × [0,+∞), define a sub-game Γ(x, t ) by replacing the objective functional for the

player i in equation (20) with∫ +∞

t
e−ρi (s−t )Λi

φ−i (t , x(t ),ui (t ))dt

and the condition x(0) = x0 in the related state equation with x(t ) = x.

Let (φ1, ...,φN ) be a Markovian Nash equilibrium for the game Γ(x0,0), and denote

by x(·) the unique state generated by this equilibrium. The equilibrium will be said

time consistent if, ∀t ∈ [0,+∞), the sub-game Γ(x(t ), t ) admits a Markovian Nash
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equilibrium (ψ1, ...,ψN ) such that ψi (y, s) = φi (y, s) holds for any i ∈ {1, ..., N } and

all (y, s) ∈ X × [t ,+∞).

In other words, a Markovian Nash equilibrium is time-consistent if it is a Markovian

Nash equilibrium of every sub-game along the state x(·). Notice that this notion of

time-consistency may be given for generic Nash equilibria of differential games,

not only for the Markovian Nash ones.

In order to do this, one has to properly define a particular regular and non-anticipating

information structure H (the letter stands for "History"). This implies that H (u(·), t )

depends only on the restriction of u(·) to the time interval [0, t ); call such restriction

"the t−truncation of u(·)", and denote it by ut (·). One may define an equivalence

in the set of the t−truncations by stating that ut (·) ≡ vt (·) iif {s ∈ [0, t ) : ut (s) = vt (s)}

has null Lebesgue measure. Then, the information structure H can be defined by

saying that, ∀i ∈ {1, ..., N } and ∀t ∈ [0,+∞), H i (u(·), t ) is the equivalence class to

which ut belongs. It is common to denote H i (u(·), t ) just by ut (·), and to refer to

it as the t−history of the game. A differential game which uses this information

structure is called a differential game with history-dependent strategies, and in this

case the subscript H will be used. Now one can generalize the notion of time-

consistency.

Let ΓH (x0,0) be a differential game with history-dependent strategies, and let φ =
(φ1, ...,φN ) be a Nash equilibrium, with correspondent N−tuple control paths u(·).

The Nash equilibrium φ is called time-consistent if, ∀t ∈ [0,+∞), φ is also an equi-

librium for the sub-game ΓH (ut (·), t ).

One may show (see [5], pp. 100-101) that every Markovian Nash equilibrium of a

differential game is time consistent.

Now, another important notion will be given, first for Markovian Nash equilibria

and then generalized to generic Nash ones.

Let (φ1, ...,φN ) be a Markovian Nash equilibrium for the game Γ(x0,0). Such equi-

librium is called sub-game perfect if, ∀(x, t ) ∈ X × [0,+∞), the sub-game Γ(x, t ) ad-

mits a Markovian Nash equilibrium (ψ1, ...,ψN ) such that ψi (y, s) = φi (y, s) holds

for all i ∈ {1, ..., N } and all (y, s) ∈ X × (t ,+∞). A Markovian Nash equilibrium which

is sub-game perfect is also called a Markovian perfect equilibrium . As for time-

consistency, the notion may be generalized in the following way. Denote by Ut the

set of all the possible t−histories of the differential game Γ(x0,0). Then, the Nash

equilibrium φ is called sub-game perfect if, ∀t ∈ [0,+∞) and ∀ũ(·) ∈Ut , φ is also a

Nash equilibrium for the sub-game ΓH (ũt (·), t ).

Of course, the definitions given imply that a sub-game perfect Markovian Nash

equilibrium is also time-consistent. The following are sufficient conditions for a

Markovian Nash equilibrium to be sub-game perfect:
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Theorem 3.0.1:

et (φ1, ...,φN ) be a given N−tuple of functions φi : X × [t ,+∞) → Rmi
and

make the following assumptions:

• for every pair (y, s) ∈ X × [0,+∞), there exists a unique absolutely con-

tinuous solution xy,s : [s,+∞) → X of the initial value problemẋ(t ) = f (x(t ),φ1(x(t ), t ), ...,φN (x(t ), t ))

x(s) = y

• for all i ∈ {1, ..., N }, there exists a continuously differentiable function

V i : X ×[0,+∞) →R such that the Hamilton-Jacobi-Bellman equations

r i V i (x, t )−∂t V i (x, t ) =
=max

{
Λi
φ−i (x,ui , t )+∂xV i (x, t ) f −i

φ−i (x,ui , t )|ui ∈U i
φ−i (x, t )

}
(21)

are satisfied for all (x, t ) ∈ X × [0,+∞);

• ∀i ∈ {1, ..., N }, either V i is a bounded function and r i > 0

or bounded V i is bounded below and not above, r i > 0 and

limsupt→+∞e−r i t V i (xy,s(t ), t ) ≤ 0 must hold ∀(y, s) ∈ X × [0,+∞).

Denote byΦi (t , x) the set of all ui ∈U i
φ−i (x, t ) which maximize the right-hand

side of (21). If φi (t , x) ∈ Φi (t , x) holds ∀i ∈ {1, ..., N } and almost all (x, t ) ∈
X × [0,+∞), then (φ1, ...,φN ) is a Markov perfect Nash equilibrium (where

optimality is meant to be the sporadically catching up optimality).

The following section introduces another well-known kind of equilibrium, which is

not time-consistent, in general.
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Stackelberg games and equilibria

The previous section dealt with differential games in which all players make their

moves simultaneously. Sometimes - and this is often the case in economics - one

has to deal with a situation in which some players have priority of moves over other

players. For the sake of simplicity, only two players will be considered: the first will

be called leader (L) and the latter follower (F).

Let x ∈ Rn denote the vector of state variables, uL ∈ RmL
the vector of the control

variables of the leader, and uF ∈RmF
the vector of control variables of the follower.

The evolution of the state variables is given by

ẋi (t ) = fi (x(t ),uF (t ),uL(t ), t ), xi (0) = xi ,0 (22)

with i = 1, ...,n and xi ,0 is given.

At time 0, the leader announces the control path uL(·). The follower, taking this

path as given, chooses his control path uF (·) to maximize his integral of utility:

J F =
∫ +∞

0
e−ρF tΛF (x(t ),uF (t ),uL(t ), t )dt .

The leader, having observed what’s the follower’s best response function, chooses

the expression of his control uL which maximizes his utility J L .

What has just been described is a Stackelberg game. A Stackelberg equilibrium is a

couple (uL,?,uF,?) of outputs, such that uF? = R(uF,?) is the best response function

to uL evaluated in uL = uL,? and uL,? ∈ argmax{J L(uL ,R(uL))}.

Now, a procedure to find Stackelberg equilibria is going to be described.

Denote by p(·) the vector of co-state variables for this maximization problem, the

follower’s current value Hamiltonian is

H F (x,uF ,uL , p, t ) =ΛF (x,uF ,uL , t )+〈p, f (x,uF ,uL , t )〉

In what follows, it is assumed that the controls are unconstrained. Then, assum-

ing a sufficient regularity of the controls and given the path uL(·), the optimality

conditions for the follower’s problem are

∂ΛF (x(t ),uF (t ),uL(t ), t )

∂uF
j

+
〈

p,
∂ f (x,uF ,uL , t )

∂uF
j

〉
= 0, (23)

for j = 1, ...,mF , and

ṗi (t ) = ρF p(t )− ∂ΛF (x(t ),uF (t ),uL(t ), t )

∂xi
−

〈
p,
∂ f (x,uF ,uL , t )

∂xi

〉
, (24)

for i = 1, ...,n. Assume H F is jointly concave in the variables x and uF . Then the

above conditions are sufficient for the optimality of uF (·). If H F is strictly concave in
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uF , then the condition (23) uniquely determines the value of each control variable

uF
j (·) as a function of x(t ), p(t ), uL(t ) and t , that is

uF
j = g j (x(t ), p(t ),uL(t ), t ), j = 1, ...,mF . (25)

Substituting (25) in (24), one obtains

ṗi (t ) =ρF pi (t )− ∂ΛF (x(t ), g (x(t ), p(t ),uL(t ), t ),uL(t ), t

∂xi
+

−
〈

p,
∂ fk (x(t ), g (x(t ), p(t ),uL(t ), t ),uL(t ), t )

∂xi

〉
(26)

with i = 1, ...,n.

These equations characterize the follower’s best response to the leader’s control

uL(·). The leader, knowing the follower’s best response for each uL(·), then pro-

ceeds to choose a uL? to maximize the integral of his utility.

As Dockner points out in [5], pp. 115-116, the specific structure of the problem at

hand determines whether the initial value p?(0) of the adjoint function depends on

the announced leader’s control uL or not. Hence, p?(·) will be said noncontrollable

if p?(0) doesn’t depend on uL , and vice-versa.

The leader’s optimization problem is to choose a control uL(·) to maximize

J L =
∫ +∞

0
e−ρL tλL(x(t ),uF (t ),uL(t ), t )dt

where uF (t ) = g (x(t ), p(t ),uL(t ), t ). The maximization is subject to (22) and (26). In

this optimization problem, the co-state variables pi , i = 1, ...,n, of the follower’s op-

timization problem are treated as state variables in the leader’s optimization prob-

lem (in addition to the original state variables xi , i = 1, ...,n). Notice that, while the

initial value xi (0) is fixed at xi 0, the initial value pi (0) is fixed if and only if it is non-

controllable.

The Hamiltonian function for the leader is

H L(x, p,uL , y, q, t ) =ΛL(x, g (x, p,uL , t ),uL , t )+〈
q, f (x, g (x, p,uL , t ),uL , t )

〉+
+〈

y,k(x, p,uL , t )
〉

where k(x, p,uL , t ) denotes the right-hand side of [26]. The variables q and y are the

co-state variables associated with p and x respectively. One then has the optimality

conditions: 
∂H L(x(t ),p(t ),uL(t ),ψ(t ),π(t ),t )

∂uL
j

= 0

ẏ(t ) = ρL y(t )− ∂H L(x(t ),p(t ),uL(t ),ψ(t ),π(t ),t )
∂xi

q̇(t ) = ρL q(t )− ∂H L(x(t ),p(t ),uL(t ),ψ(t ),π(t ),t )
∂pi

,

(27)

with i = 1, ...,n and j = 1, ...,mL . If the Hamiltonian H L is jointly concave in the

state variable xi and pi , i = 1, ...,n, and the control variables uL
j , j = 1, ...,mL , then

the conditions (22) and (26)-(27) are sufficient for the optimality of uL .
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Linear state games

The model treated in this thesis is a linear state game, meaning something that will

be explained in the following pages.

A linear state game is such if its system dynamics and the utility functions are poly-

nomials of degree 1 on the state variables and satisfy a certain property (described

below) concerning the interaction between control variables and state variables.

As Dockner points out in [5], pp. 187-192, their open-loop Nash equilibria are sub-

game perfect. Moreover, in the finite horizon case, if the final state is free, then their

Stackelberg equilibria are sub-game perfect (see [25]). Whereas, if the final state

has some constraints, then one way to deal with the time-consistency of Stackel-

berg equilibria is to give weaker definitions of sub-game perfectness (see [14]). As

the reader may see, many things may be said about linear state games, but there

are some other kinds of games that are not so difficult to discuss. For a complete

review of those, see [3].

Consider a two-person differential game, with state equation

ẋ(t ) = f (x(t ),u1(t ),u2(t ), t ),

where u1 ∈ Rm1
and u2 ∈ Rm2

are the control variables of players 1 and 2 respec-

tively, and x(t ) ∈ Rn is an n−dimensional vector of state variables. The objective

functional of player i is given by

J i =
∫ +∞

0
e−ρi tΛi (x(t ),u1(t ),u2(t ), t )dt

One defines the function H̃ i :Rn+m1+m2 × [0,+∞) →R, by

H̃ i (x,u1,u2, p i , t ) =Λi (x,u1,u2, t )+p i f (x,u1,u2, t )

where p i ∈ Rn is a vector of costate variables. A differential game is referred to as a

linear state game if the conditions

H̃ i
xx(x,u1,u2, p i , t ) = 0

and

H̃ i
ui (x,u1,u2, p i , t ) = 0 =⇒ H̃ i

ui x
(x,u1,u2, p i , t ) = 0 (28)

hold for i = 1,2 and all (x,u1,u2, p i , t ) ∈ R2n+m1+m2 × [0,+∞). Notice that (28) is

automatically satisfied if

H̃ 1
ui x

(x,u1,u2, p1, t ) = H̃ 2
ui x

(x,u1,u2, p i , t ) = 0 (29)

holds for i = 1,2 and all (x,u1,u2, p1, p2, t ) ∈R3n+m1+m2 × [0,+∞).

Condition (29) implies that there is no multiplicative interaction at all between the
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state and the control variables in game. In terms of the state equations, the objec-

tive functionals and the salvage value term this implies:

f (x,u1,u2, t ) = A(t )x + g (u1,u2, t )

Λi (x,u1,u2, t ) =C i (t )x +k i (u1,u2, t ),

where A : [0,+∞) →Rn·n , g :Rm1+m2×[0,+∞) →Rn , C i : [0,+∞) →Rn , k i :Rm1+m2×
[0,+∞) →R and W i ∈Rn .

Now, this notion will be specified for age-structured models.

Consider the following maximization problem:

maxui∈Ui Ji (u1(t , a),u2(t , a)) =
∫ +∞

0
dt

∫ ω

0
Λi (t , a, x(t , a), p(t , a),u1(t , a),u2(t , a))da,

subject to the state equation
(∂t +∂a)x(t , a) = f (t , a, x(t , a), p(t , a),u1(t , a),u2(t , a))

x(0, a) =ϕ(a)

x(t ,0) = 0

(30)

where the non local variable p is defined as follows:

p(t , a) =
∫ ω

0
g (t , a,α, x(t ,α),u1(t ,α),u2(t ,α))dα (31)

Such a differential game is said to be linear state if

Λi (t , a, x(t , a), p(t , a),u1(t , a),u2(t , a)) = L̄i (t , a)x + L̃i (t , a)p + L̂i (t , a,u1,u2)

and

f (t , a, x(t , a), p(t , a),u1(t , a),u2(t , a)) = f̄ (t , a)x + f̃ (t , a)p + f̂ (t , a,u1,u2)

g (t , a,α, x(t ,α),u1(t ,α),u2(t ,α)) = ḡ (t , a,α)x + ĝ (t , a,α,u1,u2) (32)

Grosset and Viscolani, in [26], follow Dockner’s approach ([5], p. 188) to prove the

following:

Theorem 3.0.2: Subgame perfectness of OLNEs in linear state AS games

Let (u?1 (t , a),u?2 (t , a)) be an open-loop Nash equilibrium for the aforemen-

tioned linear age-structured differential game. If U1 and U2 are convex sets,

then such equilibrium is sub-game perfect.

Now, sufficient conditions for the existence and uniqueness of the solution of (30)

will be provided.
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Suppose f , g ∈ L∞ ([0,+∞)× [0,ω]) and that g has a little more specific form than

the one in (32):

g (t , a,α, x(t ,α),u1(t ,α),u2(t ,α)) =χ[a,ω](α)[ḡ (t , a,α)x + ĝ (t , a,α,u1,u2)],

where χ[a,ω](α) is the characteristic function of the interval [a,ω]. Thus, equation

(31) becomes

p(t , a) =
∫ ω

a
g (t , a,α, x(t ,α),u1(t ,α),u2(t ,α))dα

and, if one can show that ∂a p exists, it holds

x(t , a) =−∂a p(t , a)+ ĝ (t , a,u1(t , a),u2(t , a))

ḡ (t , a)

Now, given (t , a) ∈ [0,+∞)× [0,ω], by using the characteristic line λ(τ) = a − t +τ
(which intersects [0,+∞)× {0} in τ̂ = −a + t ), one may rewrite the first equation in

(30) as

Dx(τ,λ(τ))− f̄ (τ,λ(τ))x(τ,λ(τ)) = f̃ (τ,λ(τ))p(τ,λ(τ))+ f̂ (τ,λ(τ),u1(τ,λ(τ)),u2(τ,λ(τ)))

Then,

x(τ,λ(τ)) =e
∫ τ

0 f̄ (σ,λ(σ))dσ
∫ τ

t−a
e−∫ σ

0 f̄ (σ1,λ(σ1))dσ1 [ f̃ (σ,λ(σ))p(σ,λ(σ))+

+ f̂ (σ,λ(σ),u1(σ,λ(σ)),u2(σ,λ(σ)))]dσ

and, by using λ(t ) = a, one gets

x(t , a) = x(t ,λ(t )) =e
∫ t

0 f̄ (τ,a−t+τ)dτ
∫ t

t−a
e−∫ τ

0 f̄ (τ,a−t+τ)dτ[ f̃ (τ, a − t +τ)p(τ, a − t +τ)+

+ f̂ (τ, a − t +τ,u1(τ, a − t +τ),u2(τ, a − t +τ))]dτ (33)

By substituting (33) in equation (31), where g is given by (32), one gets the following

Lotka-Volterra equation:

p(t , a) =F (t , a)+
∫ ω

a
ḡ (t , a,α)e

∫ t
0 f̄ (τ,α−t+τ)dτdα·

·
∫ t

t−a
e−∫ τ

0 f̄ (σ,α−t+σ)dσ f̃ (τ,α− t +τ)p(τ,α− t +τ)dτ (34)

with

F (t , a) =
∫ ω

a
ĝ (t , a,α,u1(t ,α),u2(t ,α))dα

∫ ω

a
ḡ (t , a,α)e

∫ t
0 f̄ (τ,α−t+τ)dτdα·

·
∫ t

t−α
e−∫ τ

0 f̄ (σ,a−t+σ)dσ f̂ (τ, a − t +τ,u1(τ, a − t +τ),u2(τ, a − t +τ))dτ
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Now, consider L∞ ([0,+∞)× [0,ω]) endowed with the following norm:

‖ f ‖ = ess.sup.t∈[0,+∞),a∈[0,ω]e
−λ1t−λ2a | f (t , a)|

Introduce on (L∞ ([0,+∞)× [0,ω]) ,‖ ·‖) the operator

F : L∞ ([0,+∞)× [0,ω]) −→ L∞ ([0,+∞)× [0,ω]) ,

defined as

F [p](t , a) =F (t , a)+
∫ ω

a
ḡ (t , a,α)e

∫ t
0 f̄ (τ,α−t+τ)dτdα·

·
∫ t

t−a
e−∫ τ

0 f̄ (σ,α−t+σ)dσ f̃ (τ,α− t +τ)p(τ,α− t +τ)dτ

Then,

‖F [p1](t , a)−F [p2](t , a)‖ ≤ ‖ḡ‖∞ ‖ f̃ ‖∞·

·ess.sup.t∈[0,+∞),a∈[0,ω]e
−λ1t−λ2a

∫ ω

a
e

∫ t
0 f̄ (τ,α−t+τ)dτdα·

·
∫ t

t−a
e−∫ τ

0 f̄ (σ,α−t+σ)dσ|p1(τ,α− t +τ)−p2(τ,α− t +τ)|dτ≤

≤ ‖ḡ‖∞ ‖ f̃ ‖∞ ess.sup.t∈[0,+∞),a∈[0,ω]e
−(λ1−‖ f̃ ‖∞)t−λ2a ·

·
∫ ω

a
dα

∫ t

t−a
e‖ f̄ ‖∞τ|p1(τ,α− t +τ)−p2(τ,α− t +τ)|dτ≤

≤ ‖ḡ‖∞ ‖ f̃ ‖∞ ess.sup.t∈[0,+∞),a∈[0,ω]e
−(λ1−‖ f̃ ‖∞)t−λ2a ·

·
∫ ω

a
dα

∫ t

t−a
eλ1τe

(‖ f̄ ‖∞−λ1
)
τ|p1(τ,α− t +τ)−p2(τ,α− t +τ)|dτ≤

≤ ‖ḡ‖∞ ‖ f̃ ‖∞
λ1

ess.sup.t∈[0,+∞),a∈[0,ω]e
−(λ1−‖ f̃ ‖∞)t−λ2a ·

∫ ω

a
e‖ f̄ ‖∞t |p1(t ,α)−p2(t ,α)|dα=

= ‖ḡ‖∞ ‖ f̃ ‖∞
λ1

ess.sup.t∈[0,+∞),a∈[0,ω]e
−λ1t−λ2a ·

∫ ω

a
|p1(t ,α)−p2(t ,α)|dα≤

≤ ‖ḡ‖∞ ‖ f̃ ‖∞
λ1

ess.sup.t∈[0,+∞),a∈[0,ω]e
−λ1t−λ2a

∫ ω

a
e−λ2αeλ2α|p1(t ,α)−p2(t ,α)|dα≤

≤ ‖ḡ‖∞ ‖ f̃ ‖∞
λ1λ2

‖p1(t , a)−p2(t , a)‖

Hence, if λ1λ2 > ‖ḡ‖∞ ‖ f̃ ‖∞, one has that the operator F is a contraction. By

Caccioppoli-Banach’s theorem, it admits a unique fixed point, i.e.

∃p(t , a) ∈ L∞ ([0,+∞)× [0,ω]) s.t. p(t , a) =F [p](t , a),

which is evidently a solution of (34). Moreover, that theorem states that such solu-

tion is given by the reiterative procedure:p0(t , a) = F (t , a)

pn+1(t , a) =F [pn](t , a)
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Now, differentiable functions are not dense in L∞, and one would like to prove a

regularity result in order to show that the existence of the solution p implies the

existence (at least, a.e. on [0,+∞)× [0,ω]) of x(t , a) by formula (32). Unfortunately,

the Sobolev space L∞ is quite a difficult one to treat as for regularity problems (see

[48], p. 318); this needs further research.
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4CHAPTER

An Age-structured model

for a distributive channel

As Jørgensen and Zaccour say in [10],

"A marketing channel is formed by independent firms: a manufacturer, wholesalers,

retailers and other agents who play a financial or informational facilitating role in

contracting and moving the product to the final consumer. [...]

The optimal design of marketing channel members’ strategies depends on how the

channel members make their marketing decisions. It is usual to distinguish two sit-

uations: the coordinated and the uncoordinated case. In game-theoretic terms, these

are respectively called cooperative and noncooperative cases."

In the introduction of the previous section, a brief explanation of why it makes

sense to study marketing channels through differential games theory was given.

In the following pages, it will be first given a quick resume of the fundamental con-

cepts from economics, as well as of the basic results as far as the age-structured

linear-state differential games theory is concerned. Then, a model of a marketing

channel with such structure is discussed.

39
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Basic notions about distributive channels in an infinite

horizon setting

What has been said until now was a rapid review of the basic mathematical notions

needed to discuss this thesis. Now a brief presentation of the economic concepts

is going to be given. One was already met in the first chapter: the discount rate ρ,

which is strictly related to the following.

Goodwill

The returns, that the manufacturer and the retailer will have from the product, obvi-

ously depend on the public image of the product itself and of the firm. Heuristically

speaking, such public image is the (goodwill) . Nerlove and Arrow in 1962 (see [22])

gave this definition of it:

"One possibility of representing the temporal differences in the effects of advertising

on demand [...] is to define a stock, which we shall call goodwill and denote by G(t ),

and which we suppose summarizes the effects of current and past advertising out-

lays on demand. The stock of advertising goodwill G(t ) evolves according to the

Nerlove-Arrow dynamics:
(∂t +∂a)G(t , a) = A(t , a)−µ(a)G(t , a)

G(0, a) =ϕ(a), a ∈ [0,ω]

G(t ,0) = 0, t ∈ [0,+∞)

where A(t , a) is the advertising, i.e. the manufacturer’s control, and µ(a) is a posi-

tive function that accounts for the depreciation of the goodwill stock as time goes

by. Such decay may be caused by several factors, as the competition of other pro-

ducers for instance, but, in any case, these factors are not discussed in the model.

The derivation of the Nerlove-Arrow dynamics is similar to the one showed for the

linear continuous model in the last sections of the first chapter.
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Necessary and sufficient conditions

Starting from the concepts introduced in the first chapter, in the context of age-

structured problems one has to formulate necessary and sufficient conditions for a

control to be an equilibrium of some kind.

Necessary conditions

A set of Pontryagin-type conditions for age-structured infinite horizon problems is

given in [18].

Consider the following maximization problem:

maxA

∫ +∞

0

∫ ω

0
ΛM (t , a,G(t , a), A(t , a),P (t , a))dadt (35)

maxP

∫ +∞

0

∫ ω

0
ΛR (t , a,G(t , a), A(t , a),P (t , a))dadt (36)

subject to: 
∂tG(t , a)+∂aG(t , a) = A(t , a)−µ(a)G(t , a), a ∈ [0,ω]

G(0, a) =ϕ(a), a ∈ [0,ω]

G(t ,0) = 0, t ≥ 0

(37)

Here,

• ω> 0 is fixed and it represents a sort of "maximum age that an individual can

grow up to", (t , a) ∈ [0,+∞)× [0,ω];

• G is the goodwill;

• P is the promotion, i.e. the retailer’s control;

• A is the advertising, i.e. the manufacturer’s control.

The Hamiltonian functions are given by

HM (t , a,G ,ξM , A,P ) =ΛM (t , a,G , A,P )+ξM (t , a)(A(t , a)−µ(a)G(t , a)) (38)

HR (t , a,G ,ξR , A,P ) =ΛR (t , a,G , A,P )+ξR (t , a)(A(t , a)−µ(a)G(t , a)) (39)

The fundamental solution of the first equation in system (37) is the solution ofD X (τ,λ(τ)) =−µ(λ(τ))X (τ,λ(τ))

X (0, a − t ) = X (ω−a + t ,ω) = 1

where λ(τ) = a − t +τ is the characteristic line through (t , a) ∈ [0,+∞)× [0,ω]. In

other words,

X (t , a) = e−∫ min(t ,a)
0 µ(a−t+τ)dτ
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Define the following functions

ξ̂M (t , a) =
[∫ ω

a
∂GΛM (t , a,G , A,P )(t −a +α)X (t −a +α,α)dα

]
X −1(t , a)

ξ̂R (t , a) =
[∫ ω

a
∂GΛR (t , a,G , A,P )(t −a +α)X (t −a +α,α)dα

]
X −1(t , a)

Make the following assumptions:

1. the functionsµ, A, P andΛ, together with the partial derivatives ∂GΛM ,∂GΛR ,

are locally bounded, measurable in t and a and locally Lipschitz-continuous,

for any fixed value of the other variables.

2. there exists two measurable functions σ1,σ2 : [0,+∞) → [0,+∞) such that

|∂GΛM (t , a,G ,P, A)| ≤σ1(t ),

|∂GΛR (t , a,G ,P, A)| ≤σ2(t ),

∀(t , a) ∈ [0,+∞)× [0,ω].

Denote by ξM = ξM (t , a) and ξR = ξR (t , a) the adjoint function of the manufacturer

and of the retailer, respectively, corresponding to the goodwill G , so that they satisfy

− (∂t +∂a)ξM (t , a) =−µ(a)ξM (t , a)+∂GΛM (t , a,G ,P, A) (40)

− (∂t +∂a)ξR (t , a) =−µ(a)ξR (t , a)+∂GΛR (t , a,G ,P, A) (41)

and ξM (t ,ω) = ξR (t ,ω) = 0 for any t .

The following necessary optimality condition holds:

Theorem 4.2.1: Pontryagin’s principle for infinite horizon AS problem

Suppose that the two aforementioned assumptions are satisfied. Let

(P?, A?,G?) be catching up optimal for the given problem. Then, the func-

tion ξ̂M , ξ̂R are in L∞
loc([0,+∞)× [0,ω]), they are absolutely continuous along

the characteristic line t − a ≡ const. and they satisfy the adjoint equations.

Moreover, the following maximization conditions hold:

HM (t , a,G?, A?,P?,ξM ) = supA Hc (t , a,G?, A,P?,ξM )

HR (t , a,G?, A?,P?,ξR ) = supP Hc (t , a,G?, A,P?,ξR )

Proof. Only the idea will be given: see [18], section 5, for the details. First, one can

show that the adjoint functions ξ̂M (t , ·) and ξ̂R (t , ·) give the main term of the effect

of a disturbance δ = δ(a) of the state Ĝ(t , ·) on the objective values. Therefore, for

an arbitrary τ ∈ [0,+∞), one considers a disturbance δ = δ(a) of the state Ĝ(τ, ·).
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The perturbation of the objective values in the interval [τ,T ] (T > τ) may be then

linearized as

∫ ω

0
ξT

M (t , a)δ(a)da +"rest terms",

∫ ω

0
ξT

R (t , a)δ(a)da +"rest terms",

for some ξT
M ,ξT

R whose representations, in terms of the fundamental matrix X , may

be found. Then, using the third of the aforementioned assumptions, one shows

that ξT
M (t , ·) and ξT

R (t , ·) converge to ξ̂M and ξ̂R , respectively.

Afterwards, one apply a needle-type variation of the controls on [τ−α,τ], which

results in a specific disturbance δ of Ĝ(τ, ·). One represents the direct effect of this

variation on the objective value (that is, on [τ−α,τ]) and the indirect effect (re-

sulting from δ) in terms of the Hamiltonians HM and HR . Finally, one uses the

definition of catching up optimality to get the maximization conditions in the the-

orem.

Sufficient conditions

In [26], Grosset and Viscolani formulate the notion of age-structured and linear

state games, and prove that the sufficient conditions in infinite time horizon prob-

lems, proposed by Krastev in [19], apply. In the following lines, these results are

showed in the particular case of a linear state game.
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Theorem 4.3.1: Arrow-type conditions for infinite-horizon AS problems

Let (G?(t , a),P?(t , a), A?(t , a)) be a triple where the first is an admissible state

and the last two are admissible controls for the age-structured control prob-

lem (35)-(37). Suppose that there exist ξM and ξR solutions of (40) for this

triple. Assume that this triple satisfies the necessary conditions described in

the previous section, with the same notation used there. Also, assume that

the maximized Hamiltonians HM (t , a,G ,P?,ξ) := supAH (t , a,G , A,P?,ξM )

and HR (t , a,G ,P?,ξ) := supAH (t , a,G , A,P?,ξR ) are jointly convex with re-

spect to G ,P,ξM and ξR . Then, (G?(t , a),P?(t , a), A?(t , a)) is:

• overtaking optimal, if we add the assumption that, for each admissible

triple (G ,P, A), there exists a finite number τ′ such that

ξM ,R (τ, a)(G(τ, a)−G?(τ, a)) ≥ 0, (42)

for a.e. a ∈ [0,ω], τ≥ τ′;

• catching up optimal, if one adds, instead of (42), the assumption

liminft→+∞
∫ ω

0
ξM ,R (t , a)(G(t , a)−G?(t , a))da ≥ 0; (43)

• sporadically catching up optimal if, instead of (42) or (43), the following

assumption is made:

limsupτ→+∞
∫ ω

0
ξM ,R (t , a)(G(t , a)−G?(t , a))da ≥ 0 (44)

See [19], Section 4, for the proof. Notice that equations (43) and (44) are satisfied,

for example, if all the admissible G are bounded and limt→+∞ξM ,R (t , a) = 0 uni-

formly w.r.t. a ∈ [0,ω].

Here, it is useful to observe that the following holds: suppose that G?,P?, A?,HM

and HR satisfy the conditions in the previous theorem, and that there exists ξM ,s(a),ξR,s(a)

bounded solutions of the following system
∂aξM ,s(a) = (µ(a)+ρ)ξM ,s(a)−∂GΛM (t , a,G ,P?, A?)

∂aξR,s(a) = (µ(a)+ρ)ξR,s(a)−∂GΛR (t , a,G ,P?, A?)

ξM ,s(ω) = ξR,s(ω) = 0

(45)

associated to the current-value Hamiltonians

H c
M (t , a,G ,P,ξM ,s) =ΛM (t , a,G ,P, A)+ξM ,s(a)[A−µ(a)G]

H c
R (t , a,G ,P,ξR,s) =ΛR (t , a,G ,P, A)+ξR,s(a)[A−µ(a)G]
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Then, the functions ξM (t , a) := e−ρtξM ,s(a) and ξR (t , a) := e−ρtξR,s(a) satisfy (40).

Indeed, by equations (38),

e−ρt H c
M ,R (a,G , A,P,ξM ,s) =e−ρt (ΛM ,R (t , a,G ,P, A)+ξM ,R,s(a)[A−µ(a)G]) =

=e−ρtΛM ,R (t , a,G ,P, A)+ξM ,R (t , a)[A−µ(a)G] =
=HM ,R (t , a,G , A,P,ξ)

Being e−ρt positive and independent on A and P , to maximize H c
M with respect to

A and H c
R with respect to P is the same as maximizing HM and HR with respect to

the same variables. Hence, optimal A? and P? are the same for the two couple of

Hamiltonians. Now, assume that the triple (G?,ξM ,s ,ξR,s) solve (37) and (45). Then,

being ξM ,s(a) and ξR,s(a) bounded by hypothesis, one has

limt→+∞ξM ,R (t , a) = 0

and ξM ,R (t , a) satisfies (40), so one can conclude that (42) and the followings hold.
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A "strategy" to find OLNEs

In [26], Section 3, one may find a nice resume of the main steps to take in order to

find a OLNE, when facing a linear-state age-structured differential game. Such a

scheme is structured as follows, for a two-player game:

1. find the best response of the retailer, which is assumed to be well-defined, by

maximizing H c
R (t , a,G , A,P,ξR ) with respect to P :

P?(t , a,G , A,ξR ) := argmaxP {H c
R (t , A,G ,P,ξR )};

do the same for the manufacturer, by maximizing H c
M with respect to A, so

as to get

A?(t , a,G ,P,ξM ) := argmaxA{H (t , A,G ,P,ξM )};

2. Find a solution (P?, A?) ofP = P?(t , a,G , A,ξR )

A = A?(t , a,G ,P,ξM )
,

assuming the existence and uniqueness of such solution.

3. Solve the following equation:

∂tG(t , a)+∂aG(t , a) = A?(t , A)−µ(a)G(t , a)

∂tξM (t , a)+∂aξM (t , a) =µ(a)ξM (t , a)−∂GΛM (t , a,G ,P?, A?)

∂tξR (t , a)+∂aξR (t , a) =µ(a)ξR (t , a)−∂GΛR (t , a,G ,P?, A?)

G(t ,ω) =Gω

ξM (t ,ω) = ξR (t ,ω) = 0

If one can find a unique solution to the last systems, then the sufficient conditions

imply that the couple (A?,P?) is an open-loop sub-game perfect Nash equilibrium.
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The model

The considered model is a marketing channel where the retailer promotes the man-

ufacturer’s product, while the manufacturer spends on advertising to build a stock

of goodwill. Sales will depend on goodwill and promotion.

The problem will be formalized both à la Nash and à la Stackelberg.

The starting point is the finite horizon model discussed in [13]. An age structure is

introduced, as both the advertising and the promotion strategy are assumed to be

dependent on the age of the consumers.

Let ω ∈ R>0 be fixed. The goodwill is controlled by the manufacturer’s advertising

effort A = A(t , a) at time t for people of age a, and it follows the dynamics described

in equation (37), which is here recalled:∂tG(t , a)+∂aG(t , a) = A(t , a)−µ(a)G(t , a), a ∈ [0,ω]

G(t ,ω) =Gω, a ∈ [0,ω]

Assume that the sales function is linear with respect to the goodwill, i.e.

Q(a,P,G) =β(a)P +γ(a)G .

Here, P = P (t , a) is the promotion effort and represents the retailer’s control (β =
β(a) > 0, ∀a ∈ [0,ω], stands for the marginal sales with respect to promotion). Sup-

pose that both the advertising and promotion cost are quadratic:

CM (t , a) = kM (a)
A2(t , a)

2

CR (t , a) = kR (a)
P 2(t , a)

2
The advertising costs are sustained by the manufacturer, while the promotion costs

are sustained by the manufacturer for a fraction r ∈ (0,1) and by the retailer for the

remaining 1− r part.

Under these assumptions, the manufacturer’s profit is

JM (A,r ) =
∫ +∞

0

∫ ω

0
e−ρt

{
πM (a)[β(a)P (t , a)+γ(a)G(t , a)]+

−kM (a)

2
A2(t , a)− r

kR (a)

2
P 2(t , a)

}
dadt (46)

while the retailer’s one is

JR (P ) =
∫ +∞

0

∫ ω

0
e−ρt {πR (a)[β(a)P (t , a)+γ(a)G(t , a)]+

−(1− r )
kR (a)

2
P 2(t , a)}dadt ,

where
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• πM is the manufacturer’s marginal profit, gross to the market expenditure;

• πR is the retailer’s marginal profit, gross to the market expenditure;

• kM (a) is the advertising cost parameter;

• kr (a) is the promotion cost parameter.

The current-value Hamiltonian for the manufacturer is

H c
M (t , a,G , A,P,ξ) =πM (a)[β(a)P +γ(a)G]− kM (a)

2
A2+

−r
kR (a)

2
P 2 +ξM [A−µ(a)G]

while the one of the retailer is

H c
R (t , a,G , A,P,ξ) =πR (a)[β(a)P +γ(a)G]+

−(1− r )
kR (a)

2
P 2 +ξR (A−µ(a)G)

So, the best response function for the manufacturer is:

A?(r, a,G ,P,ξM ) = argmaxA{H c
M (t , a,G , A,P,ξM )} = ξM

kM (a)
(47)

while the one for the retailer is

P?(t , a,G , A,ξR ) = argmaxP {H c
R (t , a,G , A,P,ξ)} = πR (a)β(a)

(1− r )kR (a)
(48)

This shows that the goodwill and the objective functional don’t depend on ξR . Being

ξM the only adjoint function to have an impact in the following calculation, for the

sake of simplicity the subscript M for ξM will be just omitted:

ξM =⇒ ξ

Hence, one needs to solve:

∂tG(t , a)+∂aG(t , a) = ξ(t ,a)
kM (a) −µ(a)G(t , a)

∂tξ(t , a)+∂aξ(t , a) = (µ(a)+ρ)ξ(t , a)−πM (a)γ(a)

G(t ,ω) =Gω

ξ(t ,ω) = 0

(49)

Suppose thatµ is integrable along any characteristic lines t−a ≡ cost . Given (t , a) ∈
[0,+∞)×[0,ω], the characteristic lineλ(τ) = a−t+τ through (t , a) intersects [0,+∞)×
{ω} for τ̂=ω−a+t . Then, the second equation in (49) may be re-written as the ODE :

Dξ(τ,λ(τ)) = (µ(λ(τ))+ρ)ξ(τ,λ(τ))−πM (λ(τ))γ(λ(τ))
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Hence

ξ(τ,λ(τ)) =−e
∫ λ(τ)

0 µ(σ)dσ+ρτ
∫ τ

τ̂
πM (λ(σ1))γ(λ(σ1))e−∫ λ(σ1)

0 µ(σ2)dσ2−ρσ2) dσ1

As the characteristic line passes through (t , a), one eventually finds

ξ(t , a) = ξ(t ,λ(t )) =e
∫ a

0 µ(α)dα+ρt ·

·
∫ ω+t−a

t
πM (a − t +τ)γ(a − t +τ)e−∫ a−t+τ

0 µ(σ)dσ−ρτdτ (50)

From equation (47), one gets:

A?(t , a) = e
∫ a

0 µ(α)dα+ρt

kM (a)

∫ ω+t−a

t
πM (a − t +τ)γ(a − t +τ)e−∫ a−t+τ

0 µ(σ)dσ−ρτdτ (51)

Thus, the first equation in (49) becomes

∂tG(t , a)+∂aG(t , a) =−µ(a)G(t , a)+

+e
∫ a

0 µ(α)dα+ρt

kM (a)

∫ ω+t−a

t
πM (a − t +τ)γ(a − t +τ)e−∫ a−t+τ

0 µ(σ)dσ−ρτdτ

Using again the aforementioned characteristic λ(τ), one may re-write this equation

as

DG(τ,λ(τ))+µ(λ(τ))G(τ,λ(τ)) =

= e
∫ λ(τ)

0 µ(σ)dσ+ρτ

kM (λ(τ))

∫ τ̂

τ
πM (λ(σ))γ(λ(σ))e−∫ λ(σ)

0 µ(σ1)dσ1−ρσdσ

Thus

G(τ,λ(τ)) =e−∫ λ(τ)
0 µ(σ)dσ

∫ τ

τ̂

e2
∫ λ(σ)

0 µ(σ1)dσ1+ρσ

kM (λ(σ))
·

·
∫ τ̂

σ
πM (λ(σ1))γ(λ(σ1))e−∫ λ(σ1)

0 µ(σ2)dσ2−ρσ1 dσ1 dσ

so

G?(t , a) =G(t ,λ(t )) = e−∫ a
0 µ(σ)dσ

∫ t

ω+t−a

e2
∫ a−t+τ

0 µ(σ)dσ+ρτ

kM (a − t +τ)
·

·
∫ ω+t−a

τ
πM (a − t +σ)γ(a − t +σ)e−∫ a−t+σ

0 µ(σ1)dσ1−ρσdσdτ (52)

By equation (46), the manufacturer’s profit is

JM (r ) =
∫ +∞

0

∫ ω

0
e−ρt

{
πM (a)

β2(a)πR (a)

(1− r )kR (a)
− rπ2

R (a)β2(a)

2kR (a)(1− r )2+

+πM (a)γ(a)e−∫ a
0 µ(σ)dσ

∫ t

ω+t−a

e2
∫ a−t+τ

0 µ(σ)dσ+ρτ

kM (a − t +τ)
·

·
∫ ω+t−a

τ
πM (a − t +σ)γ(a − t +σ)e−∫ a−t+σ

0 µ(σ1)dσ1−ρσdσdτ

− e2
∫ a

0 µ(α)dα+2ρt

2kM (a)

[∫ ω+t−a

t
πM (a − t +τ)γ(a − t +τ)e−∫ a−t+τ

0 µ(σ)dσ−ρτdτ

]2 }
dadt
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Now, in order to maximize this quantity, one derives it with respect to r and equals

the result to 0:

1

(1− r )2

∫ ω

0
πM (a)

β2(a)πR (a)

kR (a)
da − 1+ r

(1− r )3

∫ ω

0

π2
R (a)β2(a)

2kR (a)
da = 0

and finds this way the optimal r :

r =
∫ ω

0 πM (a)β
2(a)πR (a)

kR (a) da −∫ ω
0

π2
R (a)β2(a)
2kR (a) da∫ ω

0 πM (a)β
2(a)πR (a)

kR (a) da +∫ ω
0

π2
R (a)β2(a)
2kR (a) da

=
∫ ω

0
πR (a)β2(a)

kR (a)

(
πM (a)− πR (a)

2

)
da∫ ω

0
πR (a)β2(a)

kR (a)

(
πM (a)+ πR (a)

2

)
da

Finally, one should show that the triple (G?, A?,P?), given by equations (52), (51)

and (48), is a catching-up optimal solution of the given differential game. As seen

in Section "Sufficient conditions" in this chapter, it is enough to show that all the

admissible G’s are bounded and that limt→+∞ξ(t , a) = 0 uniformly w.r.t. a ∈ [0,ω].

As for the second condition, it is useful to notice that, through a change of variable

a − t +τ 7→α1, equation (50) may be rewritten as

ξ(t , a) = e
∫ a

0 µ(α)dα
∫ ω

a
πM (α1)γ(α1)e−∫ α1

0 µ(α2)dα2−ρ(α1−a) dα1 (53)

Equation (53) shows that, actually, the adjoint function doesn’t depend on the time

t , but only on the age a. For this reason, for the rest of the thesis, the adjoint func-

tion in (53) will be denoted by ξs(a), the subscript s standing for "stable age". As

seen in section "Sufficient conditions", it is enough to prove that ξs(a) is bounded.

But this is indeed the case: ξs is a continuous function on the compact interval

[0,ω]. So, in order to prove that the triple (G?, A?,P?) is catching up optimal, it is

enough to show that any admissible state G is bounded. By re-writing equation (52)

with the same change of variables used before, one gets:

G?(t , a) =−e−∫ a
0 µ(α)dα

∫ ω

a

ξs(α)

kM (α)
e

∫ α
0 µ(α1)dα1 dα+Gωe

∫ ω
a µ(α)dα (54)

Equation (54) shows that also G? doesn’t depend on time. As it was said for the

co-state function, for the rest of the thesis the goodwill will be denoted with G?
s (a),

where the subscript "s" stands for "steady state" and remarks the aforementioned

dependence.

So, Gs and ξs just satisfy the system:

∂aGs(a) = ξs (a)
kM (a) −µ(a)Gs(a)

∂aξs(a) = (µ(a)+ρ)ξs(a)−πM (a)γ(a)

ξs(ω) = 0

Gs(ω) =Gω

(55)
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Notice that, for any strategy (A,P ), Gs is a continuous function with compact sup-

port [0,ω], thus it is bounded. The conclusion is that (G?
s , A?,P?) is a catching-up

optimal solution of the differential game.

These were the results if the game is treated à la Nash. Now, it’s immediate to see

that the analysis is the same when looking for a Stackelberg equilibrium.

Stackelberg equilibrium

Suppose that at time t the manufacturer announces his control A(t , a) for the indi-

viduals of age a. Then, the retailer best response function is

P?(t , a) = argmaxP H c
R (t , a,G , A,P,ξ),

that is

P?(t , a) = πR (a)β(a)

(1− r )kR (a)
,

The adjoint function ξ satisfies

(∂t +∂a)ξ(t , a) =−πR (a)γ(a)+ (µ(a)+ρ)ξ(t , a)

Hence, the manufacturer has to maximize

JM (A,r ) =
∫ +∞

0

∫ ω

0
e−ρt

{
πM (a)

[
β(a)

πR (a)β(a)

(1− r )kR (a)
+γ(a)G(t , a)

]
+

−kM (a)

2
A2(t , a)− r

π2
R (a)β2(a)

2(1− r )2kR (a)

}
dadt

The current-value Hamiltonian function for the manufacturer is

H c
M (t , a,G ,ξ,Γ,ζ) =πM (a)

[
β(a)

πR (a)β(a)

(1− r )kR (a)
+γ(a)G(t , a)

]
+

−kM (a)

2
A2(t , a)− r

π2
R (a)β2(a)

2(1− r )2kR (a)
+

+Γ(A(t , a)− (µ(a)+ρ)G(t , a))+
+ζ[−πR (a)γ(a)+ξ(t , a)(µ(a)+ρ)],

where Γ and ζ are the co-state variables associated to G and ξ respectively. Hence,

the manufacturer will choose the control

A?(a, t ) = arg.max.AH c
M (t , a,G ,ξ, A,Γ,ζ) = Γ(t , a)

kM (a)
, (56)

where Γ satisfies

(∂t +∂a)Γ(t , a) =−∂H
c
M

∂G
=−πM (a)γ(a)+ (µ(a)+ρ)Γ(t , a)

This shows that ξ and Γ satisfy the same PDE, so they are equal. Equation (56), then,

proves that A? is the same as the one in the open-loop equilibrium. Being the same

consideration evident for P?, one concludes that the Stackelberg equilibrium is the

same as the open-loop Nash one.



52 AN AGE-STRUCTURED MODEL FOR A DISTRIBUTIVE CHANNEL

Simulations

Constant marginal profits

Now, consider again the system of state and adjoint equations in (55). The manu-

facturer’s marginal profit (as well as the one of the retailer) is often non-null only

for a certain segment of the population: for the sake of simplicity, one considers

πM (a) =χ[ω1,M ,ω2,M ](a)

πR (a) = Rπχ[ω1,R ,ω2,R ](a)

where χ[ω1,i ,ω2,i ] is the characteristic function on the interval [ω1,i ,ω2,i ] and 0 <
ω1,i < ω2,i < ω, i = M ,R, and Rπ is a positive constant (which is needed to take

into account that the two profits are generally different in amplitude). These are

non-continuous functions, so one in general cannot use the stable age solution

found before. Thus, one considers (55) and treats separately the cases a ∈ [0,ω1),

a ∈ [ω1,M ,ω2,M ] and a ∈ (ω2,M ,ω]. Hence:

∂aGs(a) = ξs (a)
kM (a) −µ(a)Gs(a)

∂aξs(a) = (µ(a)+ρ)ξs(a)

lima→ω−
1,M
ξs(a) = ξs(ω1,M )

lima→ω−
1,M

Gs(a) =Gs(ω1,M )

a ∈ [0,ω1,M ),



∂aGs(a) = ξs (a)
kM (a) −µ(a)Gs(a)

∂aξs(a) = (µ(a)+ρ)ξs(a)−γ(a)

ξs(ω2,M ) = lima→ω+
2,M
ξs(a)

Gs(ω2,M ) = lima→ω+
2,M

Gs(a)

a ∈ [ω1,M ,ω2,M ]

and 

∂aGs(a) = ξs (a)
kM (a) −µ(a)Gs(a)

∂aξs(a) = (µ(a)+ρ)ξs(a)

ξs(ω) = 0

Gs(ω) =Gω

a ∈ [ω2,M ,ω].

Then,

ξs(a) =


e

∫ a
0 µ(α)dα+ρa

∫ ω2,M
ω1,M

e−(
∫ α

0 µ(α1)dα1+ρα)γ(α)dα, a ∈ [0,ω1,M ),

e
∫ a

0 µ(α)dα+ρa
∫ ω2,M

a e−(
∫ α

0 µ(α1)dα1+ρα)γ(α)dα, a ∈ [ω1,M ,ω2,M ],

0, a ∈ (ω2,M ,ω]
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and

Gs(a) =−e
∫ a

0 µ(α)dα
∫ ω1,M

a

e2
∫ α

0 µ(α1)dα1+ρα

kM (α)

∫ ω2,M

ω1,M

e
−

(∫ α1
0 µ(α2)dα2+ρα1

)
γ(α1)dα1 dα+

−e−∫ a
0 µ(α)dα

∫ ω2,M

ω1,M

e2
∫ α

0 µ(α1)dα1+ρα

kM (α)

∫ ω2,M

α
e
−

(∫ α1
0 µ(α2)dα2+ρα1

)
γ(α1)dα1 dα+

+Gωe
∫ ω

a µ(α)dα,

if a ∈ [0,ω1,M ),

Gs(a) =Gωe
∫ ω

a µ(α)dα+

−e−∫ a
0 µ(α)dα

∫ ω2,M

a

e2
∫ α

0 µ(α1)dα1+ρα

kM (α)

∫ ω2,M

α
e
−

(∫ α1
0 µ(α2)dα2+ρα1

)
γ(α1)dα1 dα,

if a ∈ [ω1,M ,ω2,M ], and

Gs(a) =Gωe
∫ ω

a µ(α)dα,

if a ∈ (ω2,M ,ω].

The best response functions for the retailer and for the manufacturer are given by

(48) and (47), respectively:

P?(t , a) = β(a)Rπχ[ω1,R ,ω2,R ](a)

(1− r )kR (a)

and

A?(t , a) = ξs(t , a)

kM (a)
=

=


e

∫ a
0 µ(α)dα+ρa

kM (a)

∫ ω2,M
ω1,M

e−(
∫ α

0 µ(α1)dα1+ρα)γ(α)dα, a ∈ [0,ω1,M ),

e
∫ a

0 µ(α)dα+ρa

kM (a)

∫ ω2,M
a e−(

∫ α
0 µ(α1)dα1+ρα)γ(α)dα, a ∈ [ω1,M ,ω2,M ],

0, a ∈ (ω2,M ,ω]

Thus, the manufacturer’s profit is maximized by r?, satisfying:

1

(1− r?)2

∫ ω2,M

ω1,M

e−ρt Rπβ
2(a)χ[ω1,R ,ω2,R ](a)

kR (a)
da = 1+ r?

(1− r?)3

∫ ω2,R

ω1,R

R2
πβ

2(a)

2kR (a)
da,

that is,

r? = max

0,

∫ ω2,M
ω1,M

β2(a)χ[ω1,R ,ω2,R ](a)

kR (a) da −∫ ω2,R
ω1,R

Rπβ2(a)
2kR (a) da∫ ω2,M

ω1,M

β2(a)χ[ω1,R ,ω2,R ](a)

kR (a) da +∫ ω2,R
ω1,R

Rπβ2(a)
2kR (a) da


Notice that, if the manufacturer and the retailer are interested into the same age

segment, that is, if ω1,M = ω1,R and ω2,M = ω2,R , then r? = max
{

0, 2−Rπ
2+Rπ

}
. This

shows that the optimal r? is a strictly decreasing function of Rπ (see figure (4)):

the higher is the marginal profit of the retailer with respect to the manufacturer
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one, the lower is the participation fraction that is convenient for the manufacturer

to spend. Moreover, by asking r? > 0, one has the upper bound for the value of Rπ:

Rπ <
∫ ω2,M
ω1,M

β2(a)χ[ω1,R ,ω2,R ](a)

kR (a) da∫ ω2,R
ω1,R

β2(a)
2kR (a) da

= 2,

if the retailer and the manufacturer are interested into the same age segment.

Now, in order to make further considerations about the results, suppose thatµ,β,γ,kM

Figure 4: r? as a function of Rπ. Notice that Rπ and r? must be positive by defini-

tion.

and kR are constant with respect to the age a. As for kM and kR , this might be rea-

sonable: these quantities are the cost for the manufacturer and the retailer, so they

might actually be independent of age, even non-null for an age outside the ranges

[ω1,M ,ω2,M ] and [ω1,R ,ω2,R ].

The adjoint function becomes

ξs(a) =


γ

µ+ρ
[
e(µ+ρ)(a−ω1,M ) −e(µ+ρ)(a−ω2,M )

]
, a ∈ [0,ω1,M ],

γ
µ+ρ

[
1−e(µ+ρ)(a−ω2,M )

]
, a ∈ (ω1,M ,ω2,M ),

0, a ∈ [ω2,M ,ω]

and the stable-age goodwill is:

Gs(a) = γ

kM (µ+ρ)(2µ+ρ)

[
e(µ+ρ)(a−ω1,M ) −e(µ+ρ)(a−ω2,M ) −eµ(ω1,M−a)

]
+

+ γ

kM (µ+ρ)

[
eµ(ω1,M−a) −eµ(ω2,M−a)

µ
+ eµ(ω2,M−a)

2µ+ρ
]
+Gωeµ(ω−a) (57)

if a ∈ [0,ω1,M ),

Gs(a) = γ

kM (µ+ρ)

[
1−eµ(ω2,M−a)

µ
− e(µ+ρ)(a−ω2,M ) −eµ(ω2,M−a)

2µ+ρ
]
+Gωeµ(ω−a),

if a ∈ [ω1,M ,ω2,M ], and

Gs(a) =Gωeµ(ω−a),
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if a ∈ (ω2,M ,ω]. Notice that Gs(a) and ξs(a) are both bounded; one may analytically

compute the maximum value of ξs(a):

0 ≤ ξs(a) ≤ γ

µ+ρ
(
1−e(µ+ρ)(ω1,M−ω2,M ))

The behaviour of the goodwill Gs on the age segment [0,ω1,M ] strongly depends on

Gω, i.e. on the desired goodwill at a =ω: if Gω is "high", then Gs(a) has a minimum

in [0,ω1,M ]; instead, for low values of Gω, Gs is strictly increasing on [0,ω1,M ]. See

figures (5), (6) and (7), where ω1,M = 25,ω2,M = 35, ω = 50, µ = 0.3, ρ = 0.05 and

γ= kM . Now, the best response functions are

Figure 5: Gs(a) for low values of Gω.

Figure 6: Gs(a) for an almost threshold

value of Gω.

Figure 7: Gs(a) for high values of Gω.

P?(a) = βRπ

(1− r )kR
χ[ω1,R ,ω2,R ](a) (58)

and

A?(a) =


γ

kM (µ+ρ)

[
e(µ+ρ)(a−ω1,M ) −e(µ+ρ)(a−ω2,M )

]
, a ∈ [0,ω1,M ],

γ
kM (µ+ρ)

[
1−e(µ+ρ)(a−ω2,M )

]
, a ∈ (ω1,M ,ω2,M ),

0, a ∈ [ω2,M ,ω]

Notice that A? is non-null on [0,ω1,M ]: this means that, even if the manufacturer

has no marginal profit in that segment age, it is also (increasingly) convenient to

spend on advertising there. This is obvious: people will grow older, as time goes by,

and progressively get into the segment age [ω1,M ,ω2,M ]. Instead, A? decreases in
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the interval [ω1,M ,ω2,M ] and vanishes on [ω2,M ,ω]: this can be explained with the

same arguments used before. See figure (8) for the graph of A? = A?(a).

Then, if one defines

Figure 8: Optimal advertising as a functions of the age. Here µ+ρ = 0.2, kM = 0.5,

γ= 1, ω1,M = 20 and ω2,M=50.

l ([ω1,R ,ω2,R ]∩[ω1,M ,ω2,M ]) =
0, if ω2,R <ω1,M or ω1,R >ω2,M

min{ω2,M ,ω2,R }−max{ω1,M ,ω1,R }, otherwise.

as the length of the overlap between the two age segments [ω1,M ,ω2,M ] and [ω1,R ,ω2,R ],

one has that the optimal r? satisfies

β2Rπ

kR (1− r )2 l ([ω1,R ,ω2,R ]∩ [ω1,M ,ω2,M ]) = 1+ r

(1− r )3

β2R2
π(ω2,R −ω1,R )

2kR
,

that is

r? =max

0,

β2Rπ
kR

l ([ω1,R ,ω2,R ]∩ [ω1,M ,ω2,M ])− β2R2
π(ω2,R−ω1,R )

2kR

β2Rπ
kR

l ([ω1,R ,ω2,R ]∩ [ω1,M ,ω2,M ])+ β2R2
π(ω2,R−ω1,R )

2kR

=

=max

{
0,

2l ([ω1,R ,ω2,R ]∩ [ω1,M ,ω2,M ])−Rπ(ω2,R −ω1,R )

2l ([ω1,R ,ω2,R ]∩ [ω1,M ,ω2,M ])+Rπ(ω2,R −ω1,R )

}
(59)

Notice that r? > 0, if and only if

l ([ω1,R ,ω2,R ]∩ [ω1,M ,ω2,M ])

ω2,R −ω1,R
> Rπ

2
,

This means that it will be convenient for the manufacturer to bear part of the cost

of the promotion, only if he and the retailer focus at least partially on the same age

segment. Moreover, one notices that the higher is Rπ, the higher must be the over-

lap, and that (as seen above) Rπ cannot be greater than 2: if the retailer’s marginal

profit is much greater than the one of the manufacturer, it won’t be convenient for

this last one to cover part of the retailer’s expenditures on promotion. Equation (59)
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also shows that, in the constant case here examined, the optimal r? depends only

on Rπ and on the overlap ratio

s := l ([ω1,R ,ω2,R ]∩ [ω1,M ,ω2,M ])

ω2,R −ω1,R
,

while it doesn’t depend neither on kR , nor on β. Obviously, in the more general

case (β= β(a) and kR = kR (a)), this is false, while there’s still a certain dependence

on the overlap ratio (as already pointed out, indeed). In the end, notice that the

optimal participation rate r? is an increasing function of the overlap ratio s (see

figure (9)): in particular, if the common age segment of interest is small, then the

manufacturer won’t find convenient to take on part of the retailer’s expenditures on

promotion.

By inserting equation (59) in the expression of the promotion function P? (equa-

Figure 9: r? as a function of the overlap ratio s (remember that s ∈ [0,1]), with Rπ =
1.

tion (58)), one gets

P?
s (a) = βχ[ω1,R ,ω2,R ](a)

kR
·
Rπ, if 0 ≤ s ≤ Rπ

2 ,(
s + Rπ

2

)
, if Rπ

2 < s ≤ 1

See figure (10) for the dependence of P?
s on s, when a ∈ [ω1,R ,ω2,R ] and ω1,R and

ω2,R are fixed (hence the variation of the overlap ratio s depends only on ω1,M and

ω2,M ).

As pointed out earlier, A? is non-null on the interval [0,ω1,M ], which is outside of

the support of πM (a) = ξ[ω1,M ,ω2,M ](a). This is reasonable: as people grow old, the

new-born children get into the age segment on which the manufacturer is focused,

hence the manufacturer has to invest also on the younger people. But the optimal

advertising on the young ages may be much smaller than the one on the age seg-

ment [ω1,M ,ω2,M ]. So, it makes sense to conclude this section by computing and

comparing the average value of the advertising A in the segment [0,ω1,M ), the one

on [ω1,M ,ω2,M ] and the one (ω2,M ,ω] (the last one being obviously null).
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Figure 10: The optimal promotion P?
s as a function of s ∈ [0,1]. Here, Rπ = 1 and

β = kR . Notice that P? is constant exactly in the region where r? = 0 (0 < s < Rπ
2 ),

while it increases with the overlap ratio s in the same region where r? is strictly

positive. Thus, the promotion is maximum when [ω1,R ,ω2,R ] and [ω1,M ,ω2,M ] are

fully overlapped (i.e. one contained into the other, no matter which one).

One has

Ā?1 := 1

ω1,M

∫ ω1,M

0

e
∫ a

0 µ(α)dα+ρa

kM (a)

∫ ω2,M

ω1,M

e−(
∫ α

0 µ(α1)dα1+ρα)γ(α)dα=

= γ

kM (µ+ρ)2

[
1−e−(µ+ρ)ω1,M −e(µ+ρ)(ω1,M−ω2,M ) +e−(µ+ρ)ω2,M

]

Ā?2 = 1

ω2,M −ω1,M

∫ ω2,M

ω1,M

e
∫ a

0 µ(α)dα+ρa

kM (a)

∫ ω2,M

a
e−(

∫ α
0 µ(α1)dα1+ρα)γ(α)dα=

= γ

kM (µ+ρ)2(ω2,M −ω1,M )

[
e(µ+ρ)(ω1,M−ω2,M ) −1− (µ+ρ)(ω1,M −ω2,M )

]
Thus, the wanted ratio is

Ā?2
Ā?1

= ω1,M

ω2,M −ω1,M

∫ ω2,M
ω1,M

e
∫ a

0 µ(α)dα+ρa

kM (a)

∫ ω2,M
a e−(

∫ α
0 µ(α1)dα1+ρα)γ(α)dα∫ ω1,M

0
e

∫ a
0 µ(α)dα+ρa

kM (a)

∫ ω2,M
ω1,M

e−(
∫ α

0 µ(α1)dα1+ρα)γ(α)dα
=

= ω1,M

ω2,M −ω1,M

e(µ+ρ)(ω1,M−ω2,M ) −1− (µ+ρ)(ω1,M −ω2,M )[
1−e(µ+ρ)(ω1,M−ω2,M )

][
1−e−(µ+ρ)ω1,M

]
Then, figure (11) shows that the ratio is an increasing function of µ+ρ and of the

width of the interval [ω1,M ,ω2,M ]. Notice that the ratio does not diverge neither as

ω2,M →ω+
1,M , nor as µ+ρ→ 0: indeed, one has respectively

limω2,M→ω+
1,M

Ā?2
Ā?1

= (µ+ρ)ω1,M

2
[
1−e−(µ+ρ)ω1,M

]
and

limµ+ρ→0
Ā?2
Ā?1

= 1

2

This last result is important: it shows that, independently of the values ω1,M and

ω2,M , the ratio is smaller than 1, for µ+ρ small enough. That is, if the goodwill de-

cays at a small enough rate µ, and if the discount rate ρ is small enough, then the
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average optimal advertising on the age segment [0,ω1,M ) will be higher than the

one on [ω1,M ,ω2,M ], even though the manufacturer doesn’t profit on the first inter-

val. Shortly said, if people remember about the product for quite a long time, then

the aforementioned anticipating effect makes convenient for the manufacturer to

invest just on young people.

Also, notice that the ratio does not diverge even when ω2,M →+∞ (though, in this

model one must have ω2,M ≤ω):

lim
ω2,M→+∞

Ā?2
Ā?1

= (µ+ρ)ω1,M

1−e−(µ+ρ)ω1,M

Figure (11) and (12) sum up these results.

Figure 11: The ratio
Ā?2
Ā?1

as a function of the amplitude ω2,M −ω1,M . Remember that

this quantity must be smaller than ω−ω1,M . Here, ω1,M = 10 and µ+ρ = 0.35.

Figure 12: The ratio
Ā?2
Ā?1

as a function of µ+ρ. Here, ω1,M = 10 and ω2,M = 15.

Triangular marginal profits

Now, the same computations will be made for a different kind of πM and πR . Sup-

pose that the manufacturer and the retailer aim at two (generally different) specific

ages, aM and aR , and their interest for the other ones linearly decreases to zero:

πM (a) = max{0,− fM |a −aM |+1} = (1− fM |a −aM |)χ]
aM− 1

fM
,aM+ 1

fM

[(a)

πR (a) = max{0,(− fR |a −aR |+1)Rπ} = Rπ(1− fR |a −aR |)χ]
aR− 1

fR
,aR+ 1

fR

[(a)

with fM , fR > 0 positive constants that express how much the manufacturer and

the retailer are focused on addressing people aged aM and aR , respectively, and Rπ
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positive constant that express how big is the retailer’s marginal profit with respect

to the manufacturer’s one. Notice that πM and πR have compact support in [0,ω] if

and only if

0 < ai − 1

fi
< ai + 1

fi
<ω,

with i = M ,R.

One has to solve



∂aGs(a) = ξs (a)
kM (a) −µ(a)Gs(a)

∂aξs(a) = (µ(a)+ρ)ξs(a)+ ( fM |a −aM |−1)γ(a)χ]
aM− 1

fM
,aM+ 1

fM

[(a)

ξs (ω) = 0

Gs (ω) =Gω

Then, one gets

ξs(a) =e
∫ a

0 µ(α)dα+ρa
∫ aM− 1

fM

a
e−(

∫ α
0 µ(α1)+ρα)(1+ fMα− fM aM )γ(α)dα+

+e
∫ a

0 µ(α)dα+ρa
∫ aM

aM− 1
fM

e−(
∫ α

0 µ(α1)dα1+ρα)(1+ fMα− fM aM )γ(α)dα+

+e
∫ a

0 µ(α)dα+ρa
∫ aM+ 1

fM

aM

e−(
∫ α

0 µ(α1)dα1+ρα)(1+ fM aM − fMα)γ(α)dα, (60)

if a ∈
[

0, aM − 1
fM

]
,

ξs(a) =e
∫ a

0 µ(α)dα+ρa
∫ aM

a
e−(

∫ α
0 µ(α1)dα1+ρα)(1+ fMα− fM aM )γ(α)dα+

+e
∫ a

0 µ(α)dα+ρa
∫ aM+ 1

fM

aM

e−(
∫ α

0 µ(α1)dα1+ρα)(1− fMα+ fM aM )γ(α)dα,

if a ∈
(
aM − 1

fM
, aM

)
,

ξs(a) = e
∫ a

0 µ(α)dα+ρa
∫ aM+ 1

fM

a
e−(

∫ α
0 µ(α1)dα1+ρα)(1− fMα+ fM aM )γ(α)dα

if a ∈
[

aM , aM + 1
fM

)
, and

ξs(a) = 0
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if a ∈
[

aM + 1
fM

,ω
]

.

Thus, the stable-age goodwill is

Gs(a) =Gωe
∫ ω

a µ(α)dα+

+e−∫ a
0 µ(α)dα

∫ aM− 1
fM

a

e2
∫ α

0 µ(α1)dα1+ρα

kM (α)

∫ α

aM− 1
fM

e
−

(∫ α1
0 µ(α2)dα2+ρα1

)
( fM aM −1− fMα1)γ(α1)dα1α+

e−∫ a
0 µ(α)dα

∫ aM− 1
fM

a

e2
∫ α

0 µ(α1)dα1+ρα

kM (α)

∫ aM

aM− 1
fM

e
−

(∫ α1
0 µ(α2)dα2+ρα1

)
(1− fM aM + fMα1)γ(α1)dα1 dα+

+e−∫ a
0 µ(α)dα

∫ aM− 1
fM

a

e2
∫ α

0 µ(α1)dα1+ρα

kM (α)

∫ aM+ 1
fM

aM

e
−

(∫ α1
0 µ(α2)dα2+ρα1

)
(− fMα1 + fM aM +1)γ(α1)dα1 dα+

+e−∫ a
0 µ(α)dα

∫ aM

aM− 1
fM

e2
∫ α

0 µ(α1)dα1 +ρα
kM (α)

∫ aM

α
e
−

(∫ α1
0 µ(α2)dα2+ρα1

)
(− fMα1 + fM aM −1)dα1 dα+

+e−∫ a
0 µ(α)dα

∫ aM

aM− 1
fM

e2
∫ α

0 µ(α1)dα1+ρα

kM (α)

∫ aM+ 1
fM

aM

e
−

(∫ α1
0 µ(α2)dα2+ρα1

)
( fMα1 − fM aM −1)γ(α1)dα1 dα+

+e−∫ a
0 µ(α)dα

∫ aM+ 1
fM

aM

e2
∫ α

0 µ(α1)dα1+ρα

kM (α)

∫ aM+ 1
fM

α
e
−

(∫ α1
0 µ(α2)dα2+ρα1

)
( fMα1 − fM aM −1)γ(α1)dα1 dα

if a ∈
[

0, aM − 1
fM

]
,

Gs(a) =Gωe
∫ ω

a µ(α)dα+

+e−∫ a
0 µ(α)dα

∫ aM

a

e2
∫ α

0 µ(α1)dα1+ρα

kM (α)

∫ aM

α
e
−

(∫ α1
0 µ(α2)dα2+ρα1

)
(−1− fMα1 + fM aM )γ(α1)dα1 dα+

+e−∫ a
0 µ(α)dα

∫ aM

a

e2
∫ α

0 µ(α1)dα1+ρα

kM (α)

∫ aM+ 1
fM

aM

e
−

(∫ α1
0 µ(α2)dα2+ρα1

)
( fMα1 −1− fM aM )γ(α1)dα1 dα+

+e−∫ a
0 µ(α)dα

∫ aM+ 1
fM

aM

e2
∫ α

0 µ(α1)dα1+ρα

kM (α)

∫ aM+ 1
fM

α
e
−

(∫ α1
0 µ(α2)dα2+ρα1

)
( fMα1 − fM aM −1)γ(α1)dα1 dα

if a ∈
]

aM − 1
fM

, aM

[
,

Gs(a) =Gωe
∫ ω

a µ(α)dα+e−∫ a
0 µ(α)dα

∫ aM+ 1
fM

a

e2
∫ α

0 µ(α1)dα1+ρα

kM (α)
·

·
∫ aM+ 1

fM

α
e
−

(∫ α1
0 µ(α2)dα2+ρα1

)
( fMα1 − fM aM −1)γ(α1)dα1 dα

if a ∈
[

aM , aM + 1
fM

)
, and

Gs(a) = e
∫ ω

a µ(α)dαGω,

if a ∈
[

aM + 1
fM

,ω
]

.

The best response functions are

P?(a) = β(a)

(1− r )kR (a)
Rπ(1− fR |a −aR |)χ]

aR− 1
fR

,aR+ 1
fR

[(a) (61)
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and

A?(a) =e
∫ a

0 µ(α)dα+ρa

kM (a)

∫ aM− 1
fM

a
e−(

∫ α
0 µ(α1)+ρα)(1+ fMα− fM aM )γ(α)dα+

+e
∫ a

0 µ(α)dα+ρa

kM (a)

∫ aM

aM− 1
fM

e−(
∫ α

0 µ(α1)dα1+ρα)(1+ fMα− fM aM )γ(α)dα+

+e
∫ a

0 µ(α)dα+ρa

kM (a)

∫ aM+ 1
fM

aM

e−(
∫ α

0 µ(α1)dα1+ρα)(1+ fM aM − fMα)γ(α)dα, (62)

if a ∈
[

0, aM − 1
fM

]
,

A?(a) =e
∫ a

0 µ(α)dα+ρa

kM (a)

∫ aM

a
e−(

∫ α
0 µ(α1)dα1+ρα)(1+ fMα− fM aM )γ(α)dα+

+e
∫ a

0 µ(α)dα+ρa
∫ aM+ 1

fM

aM

e−(
∫ α

0 µ(α1)dα1+ρα)(1− fMα+ fM aM )γ(α)dα, (63)

if a ∈
(
aM − 1

fM
, aM

)
,

A?(a) = e
∫ a

0 µ(α)dα+ρa

kM (a)

∫ aM+ 1
fM

a
e−(

∫ α
0 µ(α1)dα1+ρα)(1− fMα+ fM aM )γ(α)dα (64)

if a ∈
[

aM , aM + 1
fM

)
, and

A?(a) = 0,

if a ∈
[

aM + 1
fM

,ω
]

.

The manufacturer’s profit is, then, maximized by the following optimal r?:

r? =

∫ aR+ 1
fR

aR− 1
fR

β2(a)
kR (a) (1− fR |a −aR |)[(1− fM |a −aM |)χM (a)−Rπ(1− fR |a −aR |)]da

∫ aR+ 1
fR

aR− 1
fR

β2(a)
kR (a) (1− fR |a −aR |)[(1− fM |a −aM |)χM (a)+Rπ(1− fR |a −aR |)]da

(65)

where χM (a) :=χ]
aM− 1

fM
,aM+ 1

fM

[(a).

Now, as done before, suppose that kM ,kR ,β,γ and µ are constant, in order to make

further considerations about the results.

Then, equation (60) becomes:

ξs(a) = fMγe
(µ+ρ)

(
a−aM+ 1

fM

)1−e
−µ+ρ

fM

µ+ρ

2

(66)

if a ∈
[

0, aM − 1
fM

]
,

ξs(a) = γ

µ+ρ
(
1− fM aM + fM a + fM

µ+ρ
)
+ fMγe(µ+ρ)(a−aM )

(µ+ρ)2

(
e
−µ+ρ

fM −2

)
,



63

if a ∈
(
aM − 1

fM
, aM

]
,

ξs(a) = γ(1+ fM aM − fM a)

µ+ρ +
fMγ

(
e

(µ+ρ)
(
a−aM− 1

fM

)
−1

)
(µ+ρ)2 ,

if a ∈
(
aM , aM + 1

fM

)
and

ξs(a) = 0

if a ∈
[

aM + 1
fM

,ω
]

. Observe that ξs is a bounded function, just as for the rectangular

case:

0 ≤ ξs(a) ≤ γ

µ+ρ
[

1− fM

µ+ρ log

(
2−e

−µ+ρ
fM

)]
Also, it is interesting to point out that

limµ+ρ→0+ξs(a) = γ

fM
,

i.e., as µ+ρ→ 0+, this maximum tends to the positive value γ
fM

, and decreases with

µ+ρ (see figure (13)), while the maximum point increases to aM as µ+ρ increases.

Figure 13: The maximum advertising as a function of µ+ρ. Notice that it is positive

for µ+ρ→ 0+, and that it is decreasing with µ+ρ.

The stable-age goodwill is

Gs(a) =
fMγ

(
1−e

−µ+ρ
fM

)2

(µ+ρ)2

e
(µ+ρ)

(
a−aM+ 1

fM

)
−e

µ
(
aM− 1

fM
−a

)
2µ+ρ − fMγρe

µ
(
aM− 1

fM
−a

)
µ2(µ+ρ)2

[
1−e

µ
fM

]
+

+Gωeµ(ω−a) +e
µ
(
aM− 1

fM
−a

)
fMγ

(µ+ρ)2

(
e
−µ+ρ

fM −2

)
e
−µ+ρ

fM −e
µ

fM

2µ+ρ +

+ fMγ

µ2(µ+ρ)
e
µ
(
aM− 1

fM
−a

) (
e

µ
fM −e

2 µ
fM

)
+ fMγ

(µ+ρ)2 eµ(aM−a)

e
−µ+ρ

fM −e
µ

fM

2µ+ρ − 1−e
µ

fM

µ
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Figure 14: The maximum point of the function A?(a), shown with respect to µ+ρ.

Here, aM = 30 and fM = 0.05.

if a ∈
(
0, aM − 1

fM

)
,

Gs(a) = γ

µ(µ+ρ)

[
1− fM aM + fM a + fM

µ+ρ
(
1−eµ(aM−a))]− fMγ

µ2(µ+ρ)

[
1−eµ(aM−a)]+

+Gωeµ(ω−a) +
fMγ

(
e
−µ+ρ

fM −2

)
(µ+ρ)2

e(µ+ρ)(a−aM ) −eµ(aM−a)

2µ+ρ +

+ fMγ

µ2(µ+ρ)

[
eµ(aM−a) −e

µ
(
aM+ 1

fM
−a

)]
+ fMγeµ(aM−a)

(µ+ρ)2

e
−µ+ρ

fM −e
µ

fM

2µ+ρ − 1−e
µ

fM

µ


if a ∈

(
aM − 1

fM
, aM

)
,

Gs(a) = γ

µ(µ+ρ)

(
1+ fM aM − fM a

)+Gωeµ(ω−a) + fMγ

µ2(µ+ρ)

[
1−e

µ
(
aM+ 1

fM
−a

)]
+

+ fMγ

(µ+ρ)2

e
(µ+ρ)

(
a−aM− 1

fM

)
−e

µ
(
aM+ 1

fM
−a

)
2µ+ρ − 1−e

µ
(
aM+ 1

fM
−a

)
µ


if a ∈

[
aM , aM + 1

fM

)
, and

Gs(a) = eµ(ω−a)Gω,

if a ∈
[

aM + 1
fM

,ω
]

.

First, notice that, contrary to what happens for the adjoint function ξs , here the

goodwill depends effectively on the value of µ and ρ, not only on the sum µ+ρ
(that is, the age structure that introduces the function µ hasn’t only the effect of

"reparameterizing" ρ).

As it happened in the rectangular case, the behaviour of the goodwill strongly de-

pends on the value of Gω: for "high" values of Gω, Gs is strictly decreasing (see fig.

(17)); instead, for "low" values of Gω, Gs vanishes on an interval of the form [0, a1),

it is increasing on an interval of the form [a1, a2], and then decreases on [a2,ω] (see

fig. (15)). The manufacturer’s best response function is given by
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Figure 15: The goodwill for "low" val-

ues of Gω.

Figure 16: The goodwill for Gω nearly

equal to the "critical" value.

Figure 17: The goodwill for "high" values of Gω.

A?(a) = fMγe
(µ+ρ)

(
a−aM+ 1

fM

)
kM

1−e
−µ+ρ

fM

µ+ρ

2

if a ∈
[

0, aM − 1
fM

]
,

A?(a) = γ

kM (µ+ρ)

(
1− fM aM + fM a + fM

µ+ρ
)
+ fMγe(µ+ρ)(a−aM )

kM (µ+ρ)2

(
e
−µ+ρ

fM −2

)
,

if a ∈
(
aM − 1

fM
, aM

]
,

A?(a) = γ(1+ fM aM − fM a)

kM (µ+ρ)
+

fMγ

(
e

(µ+ρ)
(
a−aM− 1

fM

)
−1

)
kM (µ+ρ)2 ,

if a ∈
(
aM , aM + 1

fM

)
and

A?(a) = 0

if a ∈
[

aM + 1
fM

,ω
]

.

Notice that A?(a) is increasing in the interval
[

0, aM − 1
fM

]
, decreasing in the inter-

val
[

aM , aM + 1
fM

]
; it has a maximum for a certain a? ∈

(
aM − 1

fM
, aM

)
and that it
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is non-zero even outside the interval
]

aM − 1
fM

, aM + 1
fM

[
(that is, it is observed the

same "anticipating effect" as the one in the constant marginal profit case).

As done in the previous section, it may be interesting to calculate the average op-

Figure 18: The advertising A? as a function of the age a. Here, µ+ ρ = 0.2, γ =
kM , fM = 0.2 and aM = 20: the blue line holds for a ∈ [0,15], the green one for

a ∈ (15,20], the orange one for a ∈ (20,25). A? vanishes on [25,ω].

timal advertising on the intervals
[

0, aM − 1
fM

]
,
(
aM − 1

fM
, aM

)
and

[
aM , aM + 1

fM

)
.

One gets, respectively:

A?1 = fMγ

kM

(
aM − 1

fM

)
1−e

−µ+ρ
fM

µ+ρ

2
1−e

−(µ+ρ)
(
aM− 1

fM

)
µ+ρ ,

A?2 = γ

kM (µ+ρ)

(
1− fM aM + fM

µ+ρ
)
+ f 2

Mγ

kM (µ+ρ)

a2
M −

(
aM − 1

fM

)2

2
+

+ f 2
Mγ

kM (µ+ρ)3

(
e
−µ+ρ

fM −2

)(
1−e

−µ+ρ
fM

)
,

A?3 = γ

kM (µ+ρ)
(1+ fM aM )− f 2

Mγ

kM (µ+ρ)

(
aM + 1

fM

)2 −a2
M

2
+

− fMγ

kM (µ+ρ)2 + f 2
Mγ

kM (µ+ρ)3

(
1−e

−µ+ρ
fM

)
The dependence of the two ratios

A?2
A?1

and
A?2
A?3

on the quantityµ+ρ is shown in figures

(19) and (20), respectively.

The retailer’s best response function is

P?(a) = β

(1− r )kR
Rπ(1− fR |a −aR |)χ]

aR− 1
fR

,aR+ 1
fR

[(a)

By using equation (65), one finds that the manufacturer’s profit JM is maximized by

the participation rate

r? = max


∫ aR+ 1

fR

aR− 1
fR

(1− fR |a −aR |)[χM (a)(1− fM |a −aM |)−Rπ(1− fR |a −aR |)]da

∫ aR+ 1
fR

aR− 1
fR

(1− fR |a −aR |)[χM (a)(1− fM |a −aM |)+Rπ(1− fR |a −aR |)]da

,0

 ,
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Figure 19: The graph of the function µ+ρ 7→ A?2
A?1

(µ+ρ). Notice that, as in the case of

constant marginal profits, one has that this ratio can be lower than 1, for µ+ρ small

enough. Here fM = 0.2, γ= kM and aM = 20.

Figure 20: The graph of the function µ+ρ 7→ A?2
A?3

(µ+ρ). Notice that this quantity is

always bigger than 1, and asymptotically tends to 1, as µ+ρ→+∞. This, again, is

a consequence of the fact that, as time goes by, people aged aM will grow older and

will be less interesting for the manufacturer.

where χM (a) =χ[
aM− 1

fM
,aM+ 1

fM

](a).

Notice that the intersection between
[

aM − 1
fM

, aM + 1
fM

]
and

[
aR − 1

fR
, aR + 1

fR

]
must

be non-empty, otherwise r = 0.

Set M :=
[

aM − 1
fM

, aM + 1
fM

]
, R :=

[
aR − 1

fR
, aR + 1

fR

]
, M− :=

[
aM − 1

fM
, aM

]
, M+ :=(

aM , aM + 1
fM

]
, R− :=

[
aR − 1

fR
, aR

]
, R+ =

]
aR , aR + 1

fR

]
. Depending on the values of

aM , aR , fM and fR , these sets change their expression and they may even be void.

The simplest case is when aM = aR =: aC , where the previous expression may be

simplified, so as to get:

r? = max,

{
0,

3 fR −2Rπ fR + fM

3 fR +2Rπ fR − fM

}
,

which doesn’t depend neither on aM , nor on aR , as one might expect. In order to
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have 0 < r? < 1, one has to ask

fM

2
< Rπ < 3

2
+ fM

2 fR

that is: the more narrow is the age segment on which the manufacturer focus, the

higher must be the maximum marginal profit of the retailer with respect to the one

of the manufacturer. Moreover, notice that r? is a decreasing function of fR , when

fM is fixed, and

lim fR→+∞ r?( fR ) = 3−2Rπ

3+2Rπ
> 0 ⇐⇒ Rπ < 3

2

Instead, for a fixed value of fR , r? is an increasing function of fM (see figure (22)).

Now, consider the case aM < aR . The values of fM and fR give eight different situa-

Figure 21: The optimal participation

rate r? as a function of fR , for aM = aR .

Here Rπ = 2
3 and fM = 0.2.

Figure 22: The optimal participation

rate r? as a function of fM , for aM = aR .

Here Rπ = 2
3 and fR = 0.2.

tions, illustrated in figure (23).
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Figure 23: Possible superpositions between the sets M =
[

aM − 1
fM

, aM + 1
fM

]
(in

red) and R =
[

aR − 1
fR

, aR + 1
fR

]
(in green), when aM < aR .

Then, referring to the enumeration in figure (23), one has respectively:

1. R−\M =
(
aM + 1

fM
, aR

)
, R+\M =

[
aR , aR + 1

fR

]
, M−∩R =;, M+∩R− =

[
aR − 1

fR
, aM + 1

fM

]
,

M ∩R+ =;;

2. R− \ M =
[

aR − 1
fR

, aM − 1
fM

)
∪

(
aM + 1

fM
, aR

)
, R+ \ M =

[
aR , aR + 1

fR

]
, M−∩R =[

aM − 1
fM

, aM

]
, M+∩R− =

[
aM , aM + 1

fM

]
, M ∩R+ =;;
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3. R− \ M =
(
aM + 1

fM
, aR

]
, R+ \ M =

[
aR , aR + 1

fR

]
, M−∩R =

[
aR − 1

fR
, aM

]
, M+∩

R− =
[

aM , aM + 1
fM

]
, M ∩R+ =;;

4. R− \ M = ;, R+ \ M =
(
aM + 1

fM
, aR + 1

fR

]
, M−∩R =

[
aR − 1

fR
, aM

]
, M+∩R− =

[aM , aR ], M ∩R+ =
[

aR , aM + 1
fM

]
;

5. R−\M =;, R+\M =;, M−∩R =
[

aR − 1
fR

, aM

]
, M+∩R− = [aM , aR ], M∩R+ =[

aR , aR + 1
fR

]
;

6. R−\M =
[

aR − 1
fR

, aM − 1
fM

)
, R+\M =

[
aM + 1

fM
, aR + 1

fR

]
, M−∩R =

[
aM − 1

fM
, aM

]
,

M+∩R− = [aM , aR ], M ∩R+ =
[

aR , aM + 1
fM

]
;

7. R− \ M = ;, R+ \ M = ;, M− ∩ R = ;, M+ ∩ R− =
[

aR − 1
fR

, aR

]
, M ∩ R+ =[

aR + 1
fR

]
;

8. R− \ M =;, R+ \ M =
(
aM + 1

fM
, aR + 1

fR

]
, M \∩R =;, M+∩R− =

[
aR − 1

fR
, aR

]
,

M ∩R+ =
[

aR , aM + 1
fM

]
.

Hence, for instance, in case 7 one has

r? = max

{
0,1− 4Rπ

1+ fM aM + 2
3 Rπ− fM aR

}
(67)

In order to have r? ∈ (0,1), one has the condition

3

2

[
(aR −aM ) fM −1

]< Rπ < 3

10

[
1+ fM (aM −aR )

]
Notice that, by equation (67), r? is a decreasing function of Rπ (see figure (24)): the

greater is the retailer’s marginal profit with respect to the manufacturer’s one, the

lesser it is necessary to the manufacturer to take on part of the retailer’s expendi-

tures. Moreover, r? is a decreasing function of fM (see figure (25)): the more narrow

is the age segment on which the manufacturer focuses, the lower it is convenient

to be the participation rate of the manufacturer in the retailer’s expenditures. Also,

notice that the participation rate doesn’t depend on how narrow is the age segment

on which the retailer focuses (i.e., r? doesn’t depend on fR ): the only constraint is

that fR has to be such that the situation in case 7 (fig. (23)) holds. Now, in order to

see the dependence of r? with respect to aM and aR , it may be interesting to com-

pare the case aM = aR =: aC with the 5th or the 6th case in figure (23).
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Figure 24: The optimal participation rate r? as a function of Rπ for the 7th case, with

aM < aR . Here, aM = 30, aR = 40 and fM = 0.05.

Figure 25: The optimal participation rate r? as a function of fR . Here aR = 30, aM =
40 and Rπ = 0.1.

Consider, for instance, the fifth case, where r? results:

r? = max

{
0,1− 4Rπ

3 fR

[
2 fM aM aR − fM a2

M − fM fR aM a2
R + fM fR a2

M aR

+ 1

fR
+ 2Rπ

3 fR
+2Rπ fR aR − 1

3
fM fR a3

M+

− fM a2
R + fM fR

3
a3

R −2Rπ fR a2
R − fM

3 f 2
R

]−1}

In order to have r? ∈ (0,1), it has to be Rπ ∈ (λ1,λ2), where

λ1 :=
−2 fM aM aR + fM a2

M + fM fR aM a2
R − fM fR a2

M aR − 1
fR
+ fM fR

3 a3
M + fM a2

R − fM fR
3 a3

R + fM

3 f 2
R

2
3 fR

+2 fR aR −2 fR a2
R

and

λ2 :=
2 fM aM aR − fM a2

M − fM fR aM a2
R + fM fR a2

M aR + 1
fR
− fM fR

3 a3
M − fM a2

R + fM fR
3 a3

R − fM

3 f 2
R

2
3 fR

−2 fR aR +2 fR a2
R
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As already pointed out in case 7, r? is a decreasing function of Rπ (see figure (26)).

See figure (27) for the graph of r? as a function of aM : it is a decreasing function of

aM , which means that r? is maximized when aM = aR =: aC , i.e., when the manu-

facturer and the retailer have people of the same age as their main aim. Obviously,

Figure 26: The optimal participation rate r? is a decreasing function of Rπ in case 5

(as well as it was in case 7). Here aM = 30, aR = 35, fM = 0.05 and fR = 0.1.

Figure 27: The participation rate r? as a function of aR , in the fifth case of figure

(23). Here aM = 30, fR = 0.1, fM = 0.05 and Rπ = 0.02. Notice that, in order to

actually be in such a case, one has to ask aM ∈ (30,40).

one may consider the expression of r? when aM > aR , and the possible situations

as for the overlap between the intervals M and R become the ones in figure (28).
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Figure 28: Possible overlaps between M =
[

aM − 1
fM

, aM + 1
fM

]
and R =[

aR − 1
fR

, aR + 1
fR

]
, when aM > aR . They are, obviously, specular with respect to the

ones in the case aM < aR .
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Introducing an interaction term in the model

In the population, it generally happens the following: people talk about the prod-

uct, whose introduction on the market is being planned, so that there’s an "interac-

tion" term as for the state equation describing the goodwill.

Models with such an interaction term were analysed by Feichtinger, Tragler and Ve-

liov in [11] as for the necessary conditions, and by Krastev in [19] as for the sufficient

conditions for the existence of an OLNE.

In the following pages, the model is going to be modified, so that, for any age a, the

goodwill among people younger than a will be affected by how people older than

a talk about the product. In particular, at any time t and for any age α ∈ [a,ω], the

impact of people aged α on people younger than a is quantified as coldGs(α), for a

certain real constant cold; this means that the higher (in modulus) is cold, the higher

is the impact. Moreover, if cold > 0, one is assuming that the "old" people are posi-

tively influencing the Goodwill of the firm, and vice-versa.

The state equation for the goodwill G(t , a), then, will be an integro-differential equa-

tion:
∂G(t , a)

∂t
+ ∂G(t , a)

∂a
=−µ(a)G(t , a)+ A(t , a)+

∫ ω

a
coldG(t , a′)da′ (68)

If ξ is the adjoint function of the stable-age goodwill G and

p(t , a) :=
∫ ω

a
coldG(t , a′)da′,

then the current-value Hamiltonian is given by

Hc (a, A,P,G ,ξ) =πM (a)[β(a)P +γ(a)G]− kM

2
A2 − r kR

2
P 2+

+ξ(−µ(a)G + A+p(t , a)
)+∫ ω

a
η(t , a′)G(t , a′)da′

for a certain function η.

Thus
∂

∂t
ξ(t , a)+ ∂

∂a
ξ(t , a) =−πM (a)γ(a)+ (µ(a)+ρ)ξ(t , a)

which shows that the adjoint function is the same as the one in the no-interaction

case, and

η(t , a) = ∂Hc

∂p
(a) = ξ(t , a)

Notice that in the current-value Hamiltonian no new terms containing A,P, or r

appeared. This means that the optimal strategy (A?,P?) is the same as the one

in the "no interaction" case. Moreover, in the current-value Hamiltonian, no new

terms depending on t appeared; this implies that the Goodwill, as well as all the

other aforementioned functions, will depend just on a and not on t . For this reason,
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the same subscript "s" will be used in this chapter: G(t , a) → Gs(a),ξ(t , a) → ξs(a),

and so on. Equation (68) becomes

∂Gs(a)

∂a
=−µ(a)Gs(a)+ A(a)+

∫ ω

a
coldGs(a′)da′ (69)

Now, consider equation (69): if one asks Gs and A to be C 1, then the member on

the right is a C 1 function: this implies that ∂aGs(a) (the member on the left of the

same equation) is a C 1 function, hence Gs is C 2.

Notice that, in the triangular case of the previous section, A was indeed C 1, while

in the "rectangular" case A was C 1 everywhere but in a =ω1,M ,ω2,M .

Triangular marginal profits

For the triangular case, one may just derive equation (68) with respect to the age a.

If so, one gets

∂2

∂a2
Gs(a)+µ(a)

∂

∂a
Gs(a)+

(
∂

∂a
µ(a)+ cold

)
Gs(a) =−πM (a)γ(a)

kM (a)
+

+ξs(a)
(µ(a)+ρ)kM (a)−∂akM (a)

k2
M (a)

(70)

where it was used the relationship A?(a) = ξs (a)
kM (a) .

Notice that, if µ = µ(a) constant, then (70) is a second-order ODE with constant

coefficients. In particular, if the member on the right has the form

ec1a(P1(a)cos(c2a)+P2(a)sin(c2a)) (71)

for some constant c1,c2 and polynomials P1(a),P2(a), then one may analytically

solve the equation.

In the previous section, calculations were deepened in the hypothesis µ(a) ≡ µ

(constant), and, if also γ(a) ≡ γ and kM (a) ≡ kM , the adjoint function ξs was given

by equations (66) and following:

ξs(a) = fMγe
(µ+ρ)

(
a−aM+ 1

fM

)1−e
−µ+ρ

fM

µ+ρ

2

if a ∈
[

0, aM − 1
fM

]
,

ξs(a) = γ

µ+ρ
(
1− fM aM + fM a + fM

µ+ρ
)
+ fMγe(µ+ρ)(a−aM )

(µ+ρ)2

(
e
−µ+ρ

fM −2

)
,

if a ∈
(
aM − 1

fM
, aM

]
,

ξs(a) = γ(1+ fM aM − fM a)

µ+ρ +
fMγ

(
e

(µ+ρ)
(
a−aM− 1

fM

)
−1

)
(µ+ρ)2 ,
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if a ∈
(
aM , aM + 1

fM

)
and

ξs(a) = 0

if a ∈
[

aM + 1
fM

,ω
]

.

Thus, equation (70) becomes

∂2

∂a2
Gs(a)+µ ∂

∂a
Gs(a)+ coldGs(a) =

= fMγ

kM
e

(µ+ρ)
(
a−aM+ 1

fM

) (1−e
−µ+ρ

fM

)2

µ+ρ

if a ∈
[

0, aM − 1
fM

]
,

∂2

∂a2
Gs(a)+µ ∂

∂a
Gs(a)+ coldGs(a) =

= fMγ

kM (µ+ρ)

[(
e
−µ+ρ

fM −2

)
e

(µ+ρ)
(
a−aM− 1

fM

)
+1

]
if a ∈

(
aM − 1

fM
, aM

)
,

∂2

∂a2
Gs(a)+µ ∂

∂a
Gs(a)+ coldGs(a) =

fMγ

(
e

(µ+ρ)
(
a−aM− 1

fM

)
−1

)
kM (µ+ρ)

,

if a ∈
[

aM , aM + 1
fM

)
, and

∂2

∂a2
Gs(a)+µ ∂

∂a
Gs(a)+ coldGs(a) = 0 (72)

if a ∈
[

aM + 1
fM

,ω
]

.

The homogeneous equation associated to these second-order ODEs is the same for

every a ∈ [0,ω], and it coincides with (72). The characteristic polynomial relative to

it is

z2 +µz + cold = 0,

hence one has three different possibilities:

• if cold < µ2

4 , then the solution of the homogeneous equation is

Gs,0 = c1e−
(
µ+
p

µ2−4cold

)
a

2 + c2e−
(
µ−
p

µ2−4cold

)
a

2 , (73)

for some real constants c1,c2;

• if cold = µ2

4 , then the solution of the homogeneous equation is

Gs,0 = e−µa
2 (c1 + c2a), (74)

for some real constants c1,c2;
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• if cold > µ2

4 , then the solution to the homogeneous equation is

Gs,0 = e−µa
2

c1 cos

a

√
cold −

µ2

4

+ c2 sin

a

√
cold −

µ2

4

 (75)

for some real constants c1,c2.

Denote by Gω :=Gs(ω), so that, by equation (68), one has ∂aGs(ω) =−µGω. Notice

that the manufacturer’s payoff JM depends just on what happens in the interval[
aM − 1

fM
, aM + 1

fM

]
: thus, it is interesting to compute the solution Gs just on the

interval. It results:

• for cold < µ2

4 ,

Gs(a) =Gωe
µ
2 (ω−a)

cosh

√
µ2

4
− coldω−a

+ µ

2
√

µ2

4 − cold

√
µ2

4
− cold(ω−a)


+

− 2 fMγ

kM (µ+ρ)cold
cosh

√
µ2

4
− cold(aM −a)

+

+
fMγe

−µ+ρ
fM

(
3−e

−µ+ρ
fM

)
kM

√
µ2

4 − cold(µ+ρ)
[(3

2µ+ρ
)2 + cold − µ2

4

][
cosh

√
µ2

4
− cold(aM −a)

+
−

(
3

2
µ+ρ

)
sinh

√
µ2

4
− cold(aM −a)

]
+

+ fMγe
µ
2

(
aM+ 1

fM

)
kM

((3
2µ+ρ

)2 + cold − µ2

4

)[
cosh


√

µ2

4 − cold

fM

 ( 3
2µ+ρ

cold
cosh

√
µ2

4
− cold(aM −a)

+
−

3
4µ

2 + ρµ
2 − cold√

µ2

4 − coldcold

sinh

√
µ2

4
− cold(aM −a)

)
+

+ sinh


√

µ2

4 − cold

fM

(cosh

(√
µ2

4 − cold(aM −a)

)
√

µ2

4 − cold

+

−
(

µ

µ2 −4cold
−

3
2µ+ρ

cold

)
sinh

√
µ2

4
− cold(aM −a)

)]
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if a ∈
(
aM − 1

fM
, aM

)
;

Gs(a) = e
µ
2 (ω−a)Gω

cosh

√
µ2

4
− cold(ω−a)

+ µ

2
√

µ2

4 − cold

sinh

√
µ2

4
− cold(ω−a)


+

+ fMγe
µ
2

(
aM+ 1

fM

)
kM

[(3
2µ+ρ

)2 + cold − µ2

4

][ 3
2µ+ρ

cold
cosh

√
µ2

4
− cold

(
aM + 1

fM
−a

)+
+ 1√

µ2

4 − cold

sinh

√
µ2

4
− cold

(
aM + 1

fM
−a

)]
+ fMγ

kM (µ+ρ)

 e
(µ+ρ)

(
a−aM− 1

fM

)
(3

2µ+ρ
)2 + cold − µ2

4

− 1

cold



for a ∈
[

aM , aM + 1
fM

)
,

• for cold = µ2

4 ,

Gs(a) =Gωe
µ
2 (ω−a)

[
1+ µ

2
(ω−aM )+ µ2

2
(a −aM )

(µ
2
−1

)
(ω−aM )

]
+

+ γe
µ
2

(
aM+ 1

fM
−a

)
kM (µ+ρ)

[
− 2

µ
+µ(a −aM )

]
+ fMγe

µ
2 (aM−a)

kM
(3

2µ+ρ
)2

{
e

µ
2 fM

(
aM + 1

fM

)
+

+ µ2

2
(a −aM )

e
µ+ρ
fM

(
e
−µ+ρ

fM −2

)(
1

µ+ρ − 2

µ

)
−

e
µ

2 fM

(
µ

2 fM
−1

)
µ+ρ

}

if a ∈
(
aM − 1

fM
, aM

)
,

Gs(a) = e
µ
2 (ω−a)Gω

[
1+ µ

2
(ω−a)

]
+

+ fMγe
µ
2

(
aM+ 1

fM
−a

)
kM

−1+ µ
2

(
aM + 1

fM
−a

)
(3

2µ+ρ
)2

(µ+ρ)
+

4
(
1+ µ

2

(
a −aM − 1

fM

))
µ2(µ+ρ)

+
aM + 1

fM(3
2µ+ρ

)2



if a ∈
[

aM , aM + 1
fM

)
;
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• for cold > µ2

4 ,

Gs(a) =e
µ
2 (ω−a)

−cos

√
cold −

µ2

4
(aM −a)

− µ

2
√

cold − µ2

4

sin

√
cold −

µ2

4
(aM −a)


 ·

·

cos

√
cold −

µ2

4
(ω−aM )

+ µ

2
√

cold − µ2

4

sin

√
cold −

µ2

4
(ω−aM )


+

e
µ
2 (aM+ 1

fM
−a)

fMγsin


√

cold−µ2

4

fM


kM (µ+ρ)

√
cold − µ2

4

 3
2µ+ρ(3

2µ+ρ
)2 + cold − µ2

4

− µ

2cold

 ·

·

cos

√
cold −

µ2

4
(aM −a)

− µ

2
√

cold − µ2

4

sin

√
cold −

µ2

4
(aM −a)


+

+
fMγ

(
e
−µ+ρ

fM −2

)
e
−µ+ρ

fM

kM (µ+ρ)
·
[
−cos

√
cold −

µ2

4
(aM −a)

+
+

3
2µ+ρ√
cold − µ2

4

sin

√
cold −

µ2

4
(aM −a)

+e(µ+ρ)(a−aM )
]
+

+ fMγ

kM cold(µ+ρ)

[
−cos

√
cold −

µ2

4
(aM −a)

+
+ µ

2
√

cold − µ2

4

sin

√
cold −

µ2

4
(aM −a)

+1

]
+

−e
µ
2 (ω−aM )sin

√
cold −

µ2

4
(aM −a)

[
sin

√
cold −

µ2

4
(ω−aM )

+
− µ

2
√

cold − µ2

4

cos

√
cold −

µ2

4
(ω−aM )

]
+

+ µ

2
e
µ
2 (ω−aM ) sin

√
cold −

µ2

4
(aM −a)

[
cos

√
cold −

µ2

4
(ω−aM )

+
+ µ

2
√

cold − µ2

4

sin

√
cold −

µ2

4
(ω−aM )

]
+

+ fMγe
µ

2 fM

kM (µ+ρ)
√

cold − µ2

4

 3
2µ+ρ(3

2µ+ρ
)2 + cold − µ2

4

− µ

2cold

 ·

·

−µ
2

sin


√

cold − µ2

4

fM

−
√

cold −
µ2

4
cos


√

cold − µ2

4

fM
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if a ∈
(
aM − 1

fM
, aM

)
;

Gs(a) =e
µ
2 (ω−a)

cos

√
cold −

µ2

4
(ω−a)

+ µ

2
√

cold − µ2

4

sin

√
cold −

µ2

4
(ω−a)


+

+
fMγ

(3
2µ+ρ

)
e
µ
2

(
aM+ 1

fM
−a

)
sin

(√
cold − µ2

4

(
aM + 1

fM
−a

))
kM

√
cold − µ2

4 (µ+ρ)
[(3

2µ+ρ
)2 + cold − µ2

4

] +

−
fMγµe

µ
2

(
aM+ 1

fM
−a

)
sin

(√
cold − µ2

4

(
aM + 1

fM
−a

))
2kM (µ+ρ)cold

√
cold − µ2

4

if a ∈
[

aM , aM + 1
fM

)
Notice that, as it should be, the stable-age goodwill Gs tends to the "no-interaction"

case, as cold → 0+. Moreover, the solutions in the two cases are very similar one

another if cold < µ2

4 : for instance, for a ∈
[

aM + 1
fM

,ω
]

, see figure (29).

Figure 29: The stable-age goodwill Gs in the no-interaction case (blue line) and

in the with-interaction case (green line), for a ∈
[

aM + 1
fM

,ω
]

. Here Gω = 5 · 10−7,

ω= 80, µ= 0.2 and cold = 0.001.

The same holds for cold = µ2

4 (see figure (30)), where one has the ratio between the

two expressions of the goodwill which is

Gs,no int

Gs,int
= e

µ
2 (ω−a)

1+ µ
2 (ω−a)

' 1+ µ2

8
(ω−a)2

for a →ω−. For a →
(
aM + 1

fM

)+
, that ratio is just

Gs,no int

Gs,int
= e

µ
2

(
ω−aM− 1

fM

)
1+ µ

2

(
ω−aM − 1

fM

)
which is a strictly increasing function of µ

2

(
ω−aM − 1

fM

)
; in particular, the higher

is µ, the higher is the goodwill in the no-interaction case with respect to the with-

interaction case.
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Figure 30: The stable-age goodwill Gs in the no-interaction case (blue line), vs. the

one in the with-interaction case (green line), for a ∈
[

aM + 1
fM

,ω
]

and cold = µ2

4 .

Instead, if cold > µ2

4 , then the two solutions Gs,no int and Gs,int may significantly differ

in their behaviour (see figure (31)), while they keep being similar for a →ω−:

Gs,no int

Gs,int
= e

µ
2 (ω−a)

cos

(
(ω−a)

√
cold − µ2

4

)
+ µ

2

√
cold−µ2

4

sin

(
(ω−a)

√
cold − µ2

4

)

'1+
(
cold − µ2

4

)
(ω−a)2

2

Figure 31: The stable-age goodwill Gs in the no-interaction case (blue line), vs. the

one in the with-interaction case (green line), for a ∈
[

aM + 1
fM

,ω
]

and cold > µ2

4 .

Rectangular marginal profits

For the rectangular case, one may find the Goodwill in the same way as the one

adopted for the triangular case, by asking a 6=ω1,M ,ω2,M ; otherwise, one may actu-

ally apply the Fourier (or the Laplace) transform to every member of equation (68),

with no problems about regularity. If one follows the first way, the equation to solve
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is:

∂2
aGs(a)+µ∂aGs(a)+ coldGs(a) = γ

kM

(
e(µ+ρ)(a−ω1,M ) −e(µ+ρ)(a−ω2,M )) ,

if a ∈ [
0,ω1,M

)
;

∂2
aGs(a)+µ∂aGs(a)+ coldGs(a) =− γ

kM
e(µ+ρ)(a−ω2,M ),

if a ∈ (
ω1,M ,ω2,M

)
;

∂2
aGs(a)+µ∂aGs(a)+ coldGs(a) = 0,

if a ∈ (
ω2,M ,ω

)
. As before, one has different solutions depending on cold. For rea-

sons that will be clear in the following pages, it is enough to compute Gs(a) only in

the interval [ω1,M ,ω]:

• for cold < µ2

4 , by equation (73), one has

Gs(a) =Gωe
µ
2 (ω−a)

[
cosh

√
µ2

4
− cold(ω−a)

+ µ

2
√

µ2

4 − cold

senh

√
µ2

4
− cold(ω−a)

]
+

+
γe

µ
2 (ω2,M−a)

cosh

(√
µ2

4 − cold(ω2,M −a)

)
−

3
2µ+ρ√
µ2

4 −cold

senh

(√
µ2

4 − cold(ω2,M −a)

)
kM

[(
3µ
2 +ρ

)2 + cold − µ2

4

] +

− γe(µ+ρ)(a−ω2,M )

kM

[(
3µ
2 +ρ

)2 + cold − µ2

4

]
if a ∈ (

ω1,M ,ω2,M
)
, and

Gs(a) =Gωe
µ
2 (ω−a)

cosh

√
µ2

4
− cold(ω−a)

+ µ

2
√

µ2

4 − cold

sinh

√
µ2

4
− cold(ω−a)




if a ∈ [
ω2,M ,ω

]
;

• for cold = µ2

4 , by equation (74),

Gs(a) =e
µ
2 (ω−a)Gω

(
1+ µ

2
(ω−a)

)
+

+
γ

(
1

3
2µ+ρ

+a −ω2,M

)
kM

(3
2µ+ρ

) − γe(µ+ρ)(a−ω2,M )

kM
(3

2µ+ρ
)2

if a ∈ (
ω1,M ,ω2,M

)
and

Gs(a) = e
µ
2 (ω−a)Gω

[
1+ µ

2
(ω−a)

]
if a ∈ [

ω2,M ,ω
]
;
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• for cold > µ2

4 , by equation (75),

Gs(a) =max

{
0,Gωe

µ
2 (ω−a)

[
cos

√
cold −

µ2

4
(ω−a)

+
+ µ

2
√

cold − µ2

4

sin

√
cold −

µ2

4
(ω−a)

]
− γe(µ+ρ)(a−ω2,M )

kM

[(3
2µ+ρ

)2 + cold − µ2

4

]+
+ γe

µ
2 (ω2,M−a)

kM

[(3
2µ+ρ

)2 + cold − µ2

4

][
cos

√
cold −

µ2

4
(ω2,M −a)

+
−

3
2µ+ρ√
cold − µ2

4

sin

√
cold −

µ2

4
(ω2,M −a)

]}
(76)

if a ∈ (
ω1,M ,ω2,M

)
and

Gs(a) =max

{
0,Gωe

µ
2 (ω−a)

[
cos

√
−µ

2

4
+ cold(ω−a)

+
+ µ

2
√

−µ2

4 + cold

sin

√
−µ

2

4
+ cold(ω−a)

]}
(77)

if a ∈ [
ω2,M ,ω

]
.

As in the triangular case, one may observe that the behaviour of Gs,int is very similar

to the one of Gs,no int (given by equation (57) and following), when cold < µ2

4 :

Gs,no int

Gs,int
= e

µ
2 (ω−a)

cosh

(
(ω−a)

√
−cold + µ2

4

)
+ µp

−4cold+µ2
sinh

(
(ω−a)

√
−cold + µ2

4

)
'1−

(
µ2

4
− cold

)
(ω−a)2

when a →ω−, and Gs,int →Gs,no int as cold → 0+.

As for the cases cold = µ2

4 and cold > µ2

4 , the discussion is the same as the one done

for the triangular marginal profits.

Further details in the comparison will be provided below, but first one needs to be

more precise about the goodwill for high values of cold.

Indeed, one has to see whether Gs(a) is strictly positive. Analytically, this is far sim-

pler for the expression (77): one gets Gs(a) > 0, ∀a ∈ [ω2,M ,ω], if and only if

tan

√
cold −

µ2

4
(ω−a)

≥−
2
√

cold − µ2

4

µ
(78)
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Notice that the member on the left always vanishes at a = ω; while, if cold is high

enough, the argument of the tangent becomes greater than π
2 , thus one has to check

(78) for many branches of graph of the tangent. Precisely, the threshold value is

cold,t =
µ2

4
+ π2

4ω2
(79)

Now, if cold is high enough, equation (76) tends to (77); that is, if the impact of old

people is high enough, then the advertising has a negligible effect on the goodwill,

and for the manufacturer it is unnecessary to invest on it.

Hence, the condition (78) can be studied also for a ∈ [ω1,M ,ω2,M ]. Set:

k1 := max
{

k ∈N : −π
2
+kπ<ω1,M

}
=

⌊
ω1,M

π
+ 1

2

⌋
and, if

ω2,M −ω1,M >π, (80)

set also

k2 := max
{

k ∈N : −π
2
+kπ<ω2,M

}
=

⌊
ω2,M

π
+ 1

2

⌋
Then, the solution of equation (78) is

ω−
π
2 +kπ√
cold − µ2

4

< a <ω+
arctan

2

√
cold−µ2

4

µ

−kπ

√
cold − µ2

4

(81)

for all k ∈ {k1, ...,k2}, and, if

ω2,M >ω+
arctan

2

√
cold−µ2

4

µ

−k2π

√
cold − µ2

4

,

then (78) is satisfied also for

a ∈

ω+
arctan

2

√
cold−µ2

4

µ

−k2π

√
cold − µ2

4

,ω2,M

 .

Instead, if (80) is not satisfied (i.e., ω2,M −ω1,M <π), then (78) is satisfied for

a ∈

ω+
arctan

2

√
cold−µ2

4

µ

−k1π

√
cold − µ2

4

,ω2,M
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These results will be used in a few lines.

In order to compare Gs,int and Gs,noint more effectively, it is meaningful to compute

the difference in the profit JM of the manufacturer in the two situations. By looking

at the expression of JM (equation (46)), one defines

∆JM := γ
∫ ω2,M

ω1,M

(
Gs, int(a)−Gs,noint(a)

)
da (82)

Then, one gets

• for cold < µ2

4 ,

∆JM

γ
= Gω√

µ2

4 − cold

[
e
µ
2 (ω−ω1,M ) sinh

√
µ2

4
− cold(ω−ω1,M )

+
−e

µ
2 (ω−ω2,M ) sinh

√
µ2

4
− cold(ω−ω2,M )

]
+

+ γ

kM

[(3
2µ+ρ

)2 + cold − µ2

4

][
− 2µ+ρ

cold
+

+ 2µ+ρ
cold

cosh

√
µ2

4
− cold(ω2,M −ω1,M )

e
µ
2 (ω2,M−ω1,M )+

− µ2 + ρµ
2 − cold

cold

√
µ2

4 − cold

sinh

√
µ2

4
− cold(ω2,M −ω1,M )

e
µ
2 (ω2,M−ω1,M )+

+ e(µ+ρ)(ω1,M−ω2,M ) −1

µ+ρ
]
− γ

kM (µ+ρ)

[
ω2,M −ω1,M

µ
+

+ 1−eµ(ω2,M−ω1,M )

µ2
− 1−e(µ+ρ)(ω1,M−ω2,M )

(µ+ρ)(2µ+ρ)
+

− 1−eµ(ω2,M−ω1,M )

µ(2µ+ρ)

]
+Gω

eµ(ω−ω2,M ) −eµ(ω−ω1,M )

µ

• for cold = µ2

4 ,

∆JM

γ
=Gω

[
e
µ
2 (ω−ω1,M )(ω−ω1,M )−e

µ
2 (ω−ω2,M )(ω−ω2,M )

]
+

+ 2γ

kMµ
(3

2µ+ρ
) [

− 2

µ
+e

µ
2 (ω−ω1,M )

(
ω1,M −ω2,M + 2

µ

)]
+

+ 4γ

kMµ
(3

2µ+ρ
)2

[
cosh

(µ
2

(ω2,M −ω1,M )
)
−1

]
−Gω

eµ(ω−ω2,M ) −eµ(ω−ω1,M )

µ
+

− γ

kM (µ+ρ)

[
ω2,M −ω1,M

µ
+ 1−eµ(ω2,M−ω1,M )

µ2
+ e(µ+ρ)(ω1,M−ω2,M ) −1

(2µ+ρ)(µ+ρ)
+ eµ(ω2,M−ω1,M ) −1

µ(2µ+ρ)

]
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• for cold > µ2

4 , calculations must take into account when Gs(a) vanishes. As

said before, this always happens when cold is strictly greater than the thresh-

old value cold,t in equation (79). Thus, if µ
2

4 < cold ≤ cold,t , then

∆JM

γ
= 2√

−µ2

4 + cold

[
e
µ
2 (ω−ω2,M ) sin

√
−µ

2

4
+ cold(ω−ω2,M )

+
−e

µ
2 (ω−ω1,M ) sin

√
−µ

2

4
+ cold(ω−ω1,M )

]
−Gω

eµ(ω−ω2,M ) −eµ(ω−ω1,M )

µ
+

− γ

kM (µ+ρ)

[
ω2,M −ω1,M

µ
+ 1−eµ(ω2,M−ω1,M )

µ2
+

+ e(µ+ρ)(ω1,M−ω2,M ) −1

(2µ+ρ)(µ+ρ)
+ eµ(ω2,M−ω1,M ) −1

µ(2µ+ρ)

]

Instead, if cold > cold,t , one has to count the (finitely many) branches of the

tangent (see equation (78)) in which the goodwill is non-null. This was done

in equation (81), which may be used to find:

∆JM

γ
= 2√

−µ2

4 + cold

k2∑
k=k1

e
µ
2 (ω−a) sin

√
−µ

2

4
+ cold(ω−a)

∣∣∣∣∣∣
a=ω+

kπ+arctan

 2

√
−µ

2
4 +cold
µ


√
−µ

2
4 +cold

a=ω−
π
2 +kπ√

−µ
2

4 +cold

+

2√
−µ2

4 + cold

e
µ
2 (ω−a) sin

√
−µ

2

4
+ cold(ω−a)

∣∣∣∣∣∣
ω2,M

ω+
k2π+arctan

 2

√
−µ

2
4 +cold
µ


√

−µ
2

4 +cold

·

·max


0,ω2,M −ω−

k2π+arctan

2

√
−µ2

4 +cold

µ


√
−µ2

4 + cold


−Gω

eµ(ω−ω2,M ) −eµ(ω−ω1,M )

µ
+

− γ

kM (µ+ρ)

[
ω2,M −ω1,M

µ
+ 1−eµ(ω2,M−ω1,M )

µ2
+ e(µ+ρ)(ω1,M−ω2,M ) −1

(2µ+ρ)(µ+ρ)
+ eµ(ω2,M−ω1,M ) −1

µ(2µ+ρ)

]

Notice that, in everyone of the previous cases,∆JM tends to a positive quantity even

if kM → +∞. This is equivalent to say that, no matter how much is the marginal

cost for the manufacturer, he profits from the effect of the people’s talking to each

other about the product.
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Figure 32: ∆JM as a function of cold, for cold < µ2

4 . Here Gω = 2 ·10−10, µ = 0.3, ω =
25, ω1,M = 10, ω2,M = 15, ρ = 0.05, γ

kM
= 1. Then, the domain of the function is

−0.2725 =−(µ+ρ)(2µ+ρ) < cold < µ2

4 = 1.

Also, as expected, ∆JM → 0 as cold → 0 (see fig. (32)), being this situation exactly the

same as the no-interaction one.

Also, it’s interesting to point out that ∆JM tends to a finite quantity as cold → +∞
(see figure (33)): this quantity is

limcold→+∞∆JM (cold) =Gω
eµ(ω−ω1,M ) −eµ(ω−ω2,M )

µ
+

− γ

kM (µ+ρ)

[
ω2,M −ω1,M

µ
+ 1−eµ(ω2,M−ω1,M )

µ2
+

+1−e(µ+ρ)(ω1,M−ω2,M )

(µ+ρ)(2µ+ρ)
+ 1−eµ(ω2,M−ω1,M )

µ(2µ+ρ)

]

Figure 33: The variation in the profit ∆ jM as a function of cold, for cold > µ2

4 . It is

a strictly increasing function, with an horizontal asymptote as cold → +∞. Here

Gω = 2 ·10−10, µ= 2, ω= 25, ω1,M = 10, ω2,M = 15, ρ = 1, γ
kM

= 1. Then, the domain

of the function is cold > µ2

4 = 1.
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Conclusions

In this thesis, the distributive channel proposed by Buratto and Grosset in [13] was

equipped with an age structure. Following the line of thought presented in the para-

graph "Linear continuous models" in Chapter 2, the state equation about the Good-

will G and the adjoint equation have the form of a McKendrick PDE. By using the

method of the characteristics, these equations were solved; the solutions assumed

explicit shapes, when the decay rate µ(a) and the marginal costs kM (a) and kR (a)

were supposed to be constant, for the two chosen expressions of the marginal profit

πM (a) (i.e. the rectangular and the triangular ones). For any strategy (P, A), Gs(a) is

a bounded function: in particular, such is in the rectangular and triangular cases.

Moreover, the adjoint function ξs(a) is a bounded function. By the necessary and

the sufficient conditions introduced in Chapter 4, this means that (Gs , A?,P?) is

catching up optimal for the considered problem.

When the manufacturer’s and the retailer’s marginal profits, πM (a) and πR (a), are

assumed to be constant on two intervals (specifically, πM (a) = χ]ω1,M ,ω2,M [(a) and

πR (a) = Rπχ]ω1,M ,ω2,M [(a), for a positive constant Rπ), one observes the following:

• the optimal advertising A? is non-null and increasing on the interval [0,ω1,M ]

(see figure (8)), though πM (a) vanishes on such interval. In other words,

there’s an anticipating effect, due to the age structure of the population: it

89
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is convenient for the manufacturer to invest on advertising towards people

younger thanω1,M , even though his product isn’t thought for that age, just be-

cause these people will eventually grow up and get into the segment
]
ω1,M ,ω2,M

[
.

For the same reason, A?(a) is decreasing on
]
ω1,M ,ω2,M

[
, even though the

marginal profit is constant on that age segment.

• A?(a) is bounded: it assumes its maximum in ω1,M , where it is A?(ω1,M ) =
γ

µ+ρ
[
1−e(µ+ρ)(ω1,M−ω2,M )

]
.

• In order to better understand how much it is convenient for the manufacturer

to invest on the age segment
[
0,ω1,M

]
, with respect to how much he should do

on
]
ω1,M ,ω2,M

[
, the average value of A? on the age segments

[
0,ω1,M

]
(called

A?1 ),
]
ω1,M ,ω2,M

[
(A?2 ) and

[
ω2,M ,ω

]
was computed. The ratio

A?2
A?1

is repre-

sented in figure (11) as a function of the width of the interval
]
ω1,M ,ω2,M

[
,

and in figure (12) as a function of µ+ρ. In particular, the greater are the de-

cay rate µ of the goodwill or the discount rate ρ, the greater is A?2 with respect

to A?1 ; for fixed value of ω1,M , the same holds when ω2,M increases. So, it is

true that there’s an anticipating effect on the optimal advertising A?, but it

may be negligible for big values of µ+ρ or ω2,M −ω1,M .

• As for the participation rate r ∈ [0,1), i.e. the part of the retailer expenditures

on promotion that it is convenient for the manufacturer to take on, it was

shown that it is non-null if and only if the ratio Rπ isn’t too high (that is, iif the

retailer’s marginal profits aren’t too high with respect to the manufacturer’s

ones) and there’s at least a partial overlap between the intervals
]
ω1,M ,ω2,M

[
and

]
ω1,R ,ω2,R

[
(see equation (59)). Furthermore, r is an increasing function

of such overlap, for any fixed value of Rπ (see figure (9)).

When πM and πR are assumed to have triangular shape, i.e.

πM (a) = (1− fM |a −aM |)χ]
aM− 1

fM
,aM+ 1

fM

[(a)

πR (a) = Rπ(1− fR |a −aR |)χ]
aR− 1

fR
,aR+ 1

fR

[(a)

one gets the following:

• the optimal advertising A?(a) is bounded, just as it was for the rectangular

case. It’s interesting to point out, though, that in the rectangular case the

maximum point for A?(a) was ω1,M , i.e. where the marginal profit πM (a)

started to be non-null. Instead, in the triangular case, A?(a) assumes its max-

imum value on a value of a smaller than aM (which is the maximum point of

πM (a)). Precisely, A? has its maximum point for

a = aM − 1

µ+ρ log

(
2−e

−µ+ρ
fM

)
,
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which is an increasing function of µ+ρ (see figure (14)). The maximum value

of A?, instead, is a decreasing function of µ+ρ (see figure (13)), and

limµ+ρ→0+ A?(a) = γ

kM fM
.

In other words, the lower are the discount rateρ or the decay rateµ, the "more

anticipated" is the maximum point and the higher is the maximum optimal

advertising A?.

• the advertising is non-null and increasing on
[

0, aM − 1
fM

]
, even thoughπM (a)

vanishes on such interval, and rapidly decreases on
[

aM , aM + 1
fM

[
, until it

vanishes on
[

aM + 1
fM

,ω
]

.

• as for the rectangular case, the average value of A? on the intervals
[

0, aM − 1
fM

]
,]

aM − 1
fM

, aM

[
and

[
aM , aM + 1

fM

[
was computed, and called respectively A?1 , A?2

and A?3 . It turns out that A?2 may be lower than A?1 , forµ+ρ small enough (see

figure (19)), while A?2 is always bigger than A?3 (see figure (20)). This means

that, if µ+ρ is small enough, it may be more convenient for the manufacturer

to invest on people younger than aM − 1
fM

, then on the one aged between

aM − 1
fM

and aM .

• the analysis of the optimal participation rate r? requires a bit more attention

than in the rectangular case. First, one notices that r? = 0 if the manufacturer

and the retailer focus on two completely different intervals. Now, depending

on aM , aR , fM and fR , the intervals
]

aM − 1
fM

, aM + 1
fM

[
and

]
aR − 1

fR
, aR + 1

fR

[
are overlapped in a different way. Figures (23) and (28) show all the possi-

ble superpositions: among them, three interesting configurations were fur-

ther analyzed. In particular, when aM = aR , r ∈ (0,1) if and only if Rπ ∈(
fM
2 , 3

2 +
fM

2 fR

)
. That is, one has a lower and an upper bound for Rπ, and not just

an upper one, as it was in the rectangular case. Moreover, r? is an increasing

function of fM and a decreasing one of fR , and

lim fR→+∞r?( fR ) = 3−2Rπ

3+2Rπ
.

Analogous observations are made for two other possible configurations, and

the dependence of r? on Rπ is shown in figures (26) and (27).

In the end, an interaction term in the population was introduced. Specifically, for

any age a, it was considered the effect produced by people older than a talking

about the product with people younger than a. This makes the state equation an

integro-differential one (see formula (68)). The impact of "old" people is expressed

through a constant cold: the higher it is, the higher is such impact. If cold > 0, older
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people interact with younger people in a favourable way for the firm, and vice-

versa.

The Hamiltonian function modifies accordingly, but no new terms containing A or

P were introduced. This means that the optimal advertising and promotion are the

same as the ones in the no-interaction case; and they are still an OLNE, being the

adjoint function ξs(a) the same. So, the new term contributes only to modify the

goodwill Gs(a).

Equation (68) was solved just by deriving it with respect to the age a. This is reason-

able in the triangular case: the regularity of A?(a) ensures that Gs(a) is twice differ-

entiable. Instead, in the rectangular case, A? is just continuous, hence Gs(a) is just

C 1: this means that either one repeats the previous way, and asks a 6= ω1,M ,ω2,M ,

or one applies the Laplace transform to (68), with no stronger assumptions on the

regularity of Gs(a). Calculations are just easier by using the first method, especially

because the Laplace’s anti-transform is not so simple to compute, hence this way

was followed.

Thus, equation (68) becomes a linear second-order ODE (equation (70)), with con-

stant coefficients, one of which is cold. Thus, the explicit form of Gs(a) depends

on cold, both in the triangular and the rectangular case: specifically, the threshold

value is cold = µ2

4 .

Again, Gs, int(a) is bounded, as well as it is for any strategy (P, A); being ξs the same

as the "no interaction" case, it follows that (Gs, int, A?,P?) is catching up optimal.

The solutions Gs,int(a) and Gs,noint - when the interaction term in the Hamiltonian is

present or not, respectively - were then compared, by computing the difference∆JM

in the profit of the manufacturer (see equation (82)). Notice that such difference

depends only on the behaviour of the two solutions on the interval
[
ω1,M ,ω2,M

]
.

Then, ∆JM was plotted as a function of cold (see figures (32) and (33)). In particular,

∆JM results ever increasing and positive for cold > 0; it is obviously null for cold = 0,

and it is negative for cold < 0. It’s also interesting to point out that ∆JM tends to a

finite quantity as cold →+∞.

These calculations may be re-done for different shapes of the marginal profitπM (a).

Also, they are easily applicable for a non-constant marginal cost kM (a) and γ(a), if

they produce a term as (71) in equation (70). In such a case, obviously, one has

to re-compute the adjoint function ξs(a) and to check if it keeps being a bounded

function of a.

In the end, it may be a good starting point for further research the following ob-

servation. ∆JM < 0 is a rather undesirable condition for the manufacturer. So, one

may imagine that he has a "security plan": to intervene in the promotion, so as to

raise the sales Q = γA+βP and take back∆JM on a positive value. This may be done

by modifying the expression of β, for example, writing it as a function of cold: this
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way, it keeps being constant with respect to the age a, and calculations don’t get too

complicated.
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