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Chapter 1

Introduction

The Schrödinger equation is a fundamental result of quantum mechanics because it governs the evolu-
tion of the wave function of any quantum system. We are interested in solving its easiest form, that is
the Schrödinger equation of a free particle in two dimensions, but in a very general scenario because
the space will not be the usual euclidean space R2 but a generic hyperbolic 2-orbifold X, that can be
thought as a generalization of a 2-manifold. The best ambition would be finding an analytical form for
eigenfunctions and a precise value for eigenvalues however, apart from the trivial value of the smallest
eigenvalue λ0 = 0, this problem is currently considered unsolvable. Therefore we will focus only on
the lowest non zero eigenvalue λ1, more specifically we are going to find an upper bound on λ1 that
holds for every given 2-orbifold.

We recall that a generic 2-orbifold can be seen as the quotient between the upper half complex plane H
and a discrete subgroup Γ of PSL(2,R) so we define X = H/Γ. The main idea of the work is that the
spectrum of the Laplacian on X is linked to the spectrum of the unitary irreducible representations of
G = PSL(2,R) on the Hilbert space L2(G/Γ) thanks to the action of the quadratic Casimir element.
In fact among all the representations there are the principal and complementary series which are linear
subspaces indexed by a real number ∆ and we will see how the action of the Casimir on some special
functions of X is both the simple multiplication by ∆(∆−1) and the action of the Laplacian ∇2, from
which it follows the important relation −λ = ∆(∆− 1). This implies that the problem of finding the
smallest eigenvalues becomes finding, among all the irreducible representations of G on L2(G/Γ), all
the values of ∆ and choose the one that minimizes λ. In addition on L2(G/Γ) there is a well-defined
associative and commutative product (which is the usual pointwise multiplication).

Another important element is the existence of a operator-product expansion that decomposes the
product of two functions of L2(G/Γ) on a given basis, that in our case will be the one made by all
the unitary irreducible representations. To constrain the possible values of ∆ we are going to define a
special class of functions on L2(G/Γ) that are called coherent states θn(z). Their peculiarity is that the
product expansion of two coherent states θn(z1)θn(z2) is particularly simple and it is constrained by
symmetry considerations. Moreover we will define the n-function correlator ⟨...⟩ which is an operator
that maps the product of n functions to a complex value. We will be interested in finding the correlator
of m coherent states ⟨θn(z1)...θn(zm)⟩, however for small m, due to the G-invariance of the function
correlator, the result is trivial and it is fixed up to a multiplicative constant. The smallest m such that
the result is non-trivial is m = 4, so we will focus on this case that is computing an expression that
involves the product of 4 coherent states ⟨θn(z1)θn(z2)θn(z3)θn(z4)⟩. The strategy will be expanding
the products before calculating the correlator and this can be done in two different ways: we can
either expand the products θn(z1)θn(z2) and θn(z3)θn(z4) or θn(z1)θn(z4) and θn(z2)θn(z3). So we
have two ways to compute the 4-function correlator that will apparently look different, but due to the
associativity and commutativity of the product they must be equal. Finally by matching those two
results we will get the so called crossing equation that after some manipulation will lead to the bound
on λ1.
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Chapter 2

Setting up the problem

2.1 The problem

Let us consider the upper half complex plane {H = x + iy | y > 0} with the Riemann metric of
constant curvature −1 :

ds2 =
dx2 + dy2

y2
, (2.1)

from which we can easily see that the Laplacian on H is:

∇2 = y2(∂2
x + ∂2

y). (2.2)

Let us also consider G = PSL(2,R) which is the group of isometries that preserves orientation on H
with action: (

a b
c d

)
· z =

az + b

cz + d
, z ∈ H. (2.3)

Given a discrete subgroup Γ of G we define the space X = H/Γ which is the quotient space built on
the equivalence relation:

x ∼ y if x = γ(y), with γ ∈ Γ and x, y ∈ H. (2.4)

Our goal is to study the Schrödinger equation of a free particle on X that is finding a complete set of
solution {(λi, fi) | i ∈ N≥0, 0 = λ0 < λ1...} of:

−∇2fi(x) = λifi(x), (2.5)

where fi are smooth functions on X, that are smooth functions on H that satisfy:

fi(x) = fi(γ · x), ∀γ ∈ Γ. (2.6)

The main idea is that the spectrum of the Laplacian on X is related to the spectrum of unitary
irreducible representations of G on the space L2(G/Γ).

2.2 The space L2(G/Γ)

To define the space L2(G/Γ) we recall that G can be parameterized with the Iwasava NAK decompo-
sition:

g(x, y, θ) = ±
(
1 x
0 1

)(√
y 0
0 1√

y

)(
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

)
, x ∈ R, y ∈ R>0, θ ∈ (0, 2π], (2.7)
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CHAPTER 2. SETTING UP THE PROBLEM 2.2. THE SPACE L2(G/Γ)

which means that every element of G can be seen as a composition of a translation of x a scaling of y
and a rotation of θ

2 . On G we can also define a measure µ invariant under left and right multiplication,
using the above coordinates and the normalization such that µ(G/Γ) = 1 it takes the form:

dµ(g) =
1

Vol(G/Γ)

dx dy dθ

y2
=

1

2π ·Vol(H/Γ)

dx dy dθ

y2
. (2.8)

From equation (2.7) it follows that we can see the upper half plane as H = G/K where

K = SO(2,R)/{±I}, (2.9)

and hence X can be seen as the double quotient X = (G/K)/Γ. This implies that the space G/Γ is
a fiber bundle with base X and fiber K. We can finally define the Hilbert space L2(G/Γ): it is the
space of functions F : G → C such that F (γg) = F (g) ∀ γ ∈ Γ, ∀ g ∈ G, the norm is induced from the
inner product:

⟨F1, F2⟩ =
∫
G/Γ

F1(g)
∗F2(g)dµ(g). (2.10)

We can use the µ invariance under right multiplication to find an unitary representation of G on the
space L2(G/Γ) with action:

g ∈ G : F (x) → F (x · g). (2.11)

In fact let us call the image of g ρ(g), it is trivial to see that equation (2.11) is a representation, to
prove the unitariness let us consider:

⟨ρ(g)F1, ρ(g)F2⟩ =
∫
G/Γ

F ∗
1 (x · g)F2(x · g)dµ(x) =

∫
G/Γ

F ∗
1 (y)F2(y)dµ(y) = ⟨F1, F2⟩. (2.12)

Where we substituted y = x · g and exploited the right invariance of the measure dµ(y · g−1) = dµ(y).

The representation we just defined is a valid representation of every subgroup of G, in particular for
K ⊂ G and we can use it to decompose L2(G/Γ) in:

L2(G/Γ) =
⊕
n∈Z

Vn, (2.13)

where F ∈ Vn transform as gθ ·F = e−inθF with gθ ∈ K. Moreover it can be proven that in the NAK
parametrization F ∈ Vn takes the form:

F (x, y, θ) = y|n|e−inθh(x, y). (2.14)

From which it follows that V0 consists of functions that don’t depend on the variable θ and therefore
V0 = L2(X). The next step is finding all the unitary irreducible representations of G and using them
to decompose L2(G/Γ).
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Chapter 3

Lie Groups

3.1 Lie algebra of PSL(2,R)

As defined in the previous chapter PSL(2,R) = SL(2,R)/{±I} where SL(2,R) is the group of 2x2
real matrices with unitary determinant. The corresponding Lie algebra psl(2,R) is generated by the
Lie group with the exponential map and from the identity det(exp g) = exp (Tr g) we conclude that the
Lie algebra is the vector space of 2x2 real matrices with null trace. A useful basis for the complexified
Lie algebra psl(2,C) is:

L−1 =
1

2

(
−i 1
1 i

)
, L0 =

1

2

(
0 −i
i 0

)
, L1 =

1

2

(
−i −1
−1 i

)
, (3.1)

with the commutation relations:
[La, Lb] = (a− b)La+b. (3.2)

In particular in the representation of equation (2.11) it can be proven, using the definition of expo-
nential map and an infinitesimal transformation that the basis (3.1) take the form:

L1 = −eiθ (y(∂x + i∂y) + ∂θ) ;

L0 = i∂θ;

L−1 = e−iθ (y(∂x − i∂y) + ∂θ) .

(3.3)

The quadratic Casimir element will also play an important role, to calculate it we first need to compute
the dual basis of the Killing form:

K(X,Y ) = Tr(ad(X)ad(Y )), (3.4)

where ad(X) is the adjoint operator of X ∈ g:

ad(X) · Y = [X,Y ], X, Y ∈ g. (3.5)

The dual basis {L̃−1, L̃0, L̃1} of (3.1) is defined in such a way that:

K(Li, L̃j) = δi,j . (3.6)

It can be easily shown that in this case the dual basis is:

L̃−1 = −1

4
L1, L̃0 =

1

2
L0, L̃1 = −1

4
L−1. (3.7)

The quadratic Casimir element C2 is defined, up to a multiplicative constant, as:

C2 =
1∑

k=−1

LkL̃k (3.8)
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CHAPTER 3. LIE GROUPS3.2. UNITARY IRREDUCIBLE REPRESENTATIONS OF PSL(2,R)

In our case it is useful to choose 4 as multiplicative constant and the Casimir takes the explicit form:

C2 = L2
0 −

L−1L1 + L1L−1

2
. (3.9)

In particular by direct substitution of equation: (3.3) we find that in the representation of equation
(2.11) the Casimir takes the form:

C2 = y2
(
∂2
x + ∂2

y

)
+ 2y∂x∂θ. (3.10)

3.2 Unitary irreducible representations of PSL(2,R)

It can be proven, see [3] for a proof, that the only unitary irreducible representations of PSL(2,R)
are:

• The trivial representation;

• The holomorphic discrete series Dn and anti-holomorphic discrete series Dn with n ∈ Z, n ≥ 1;

• The principal series P+
iν with ν ∈ R;

• The complementary series Cs with s ∈ (0, 12).

To define them explicitly we first identify PSL(2,R) with SU(1, 1) with the isomorphism τ : PSL(2,R) →
SU(1, 1):

τ(X) =

(
1 −i
i 1

)−1

·X ·
(
1 i
i 1

)
, X ∈ PSL(2,R). (3.11)

Remember that SU(1, 1) is the group of complex 2x2 matrices of the form:

u =

(
α β
β∗ α∗

)
, |α|2 − |β|2 = 1. (3.12)

Moreover for z ∈ C we define the action of SU(1, 1) as:

u · z =
αz + β

β∗z + α∗ , u ∈ SU(1, 1), z ∈ C. (3.13)

This action preserves the norm hence the unit circle ∂D = {z : |z| = 1 }, the unit disk D = {z : |z| < 1}
and D′ = {z : |z| > 1} are left invariant.

Unitary irreducible representations of PSL(2,R) can be constructed using functions on D,D′, ∂D:

Anti-holomorphic discrete series Dn: they are realized in the space of holomorphic functions on
D with finite norm:

∥f∥Dn
=

∫
|z|<1

|f(z)|2
(
1− |z|2

)2n−2
d2z. (3.14)

Using the notation of (3.12) the unitary action of G is defined as:

(u · f)(z) def
== (−β∗z + α)−2nf(u−1 · z). (3.15)

The action of L−1, L0, L1 can be easily found using the identification with SU(1, 1), and an infinitesimal
transformation:

(L−1 · f)(z) = −∂zf(z);

(L0 · f)(z) = − (∂z + n) f(z);

(L1 · f)(z) = −
(
z2∂z + 2nz

)
f(z).

(3.16)

We can now decompose Dn into irreducible representation of K. A good basis is fk = zk, k ∈ Z≥0

because we can see that L0 · fk = −(n + k)fk (and L0 generates K), this implies that the spectrum
of L0 is: {−n,−n − 1, ...} and L1, L−1 are respectively the creation and annihilation operators, in
particular there is a highest vector f0 annihilated by L−1.
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3.3. DECOMPOSING L2(G/Γ) CHAPTER 3. LIE GROUPS

Holomorphic discrete series Dn: they are realized in the space of holomorphic functions on D′,
we can define the norm in this way:

∥f∥2Dn
=
∥∥I−1f

∥∥2
Dn

. (3.17)

And same for the action:

(I(u · f)) (z) def
== (−β∗z + α)−2n (If) (u−1 · z), (3.18)

where I is a bijection between anti-holomorphic functions on D and holomorphic functions on D′:

(If)(z) = z−2nf
(
(z∗)−1

)
. (3.19)

We can decompose Dn in irreducible representation of K using the basis fk = z−2n−k, k ∈ Z≥0

because we can see that L0 · fk = (n + k)fk and hence the spectrum of L0 is: {n, n + 1, ...} and
L1, L−1 are respectively the destruction and creation operators, in particular there is a lowest vector
f0 annihilated by L1.

Principal series P+
iν : They are realized in the space L2(∂D) the norm of this space is:

∥f∥2
P+
iν

def
==

∫
|z|=1

|f(z)|2|dz|. (3.20)

And the group action is:

(u · f)(z) def
== |−βz∗ + α∗|−2∆f(u−1 · z). (3.21)

With ∆ = 1
2 + iν, a good basis for Piν that decomposes it in irreducible representation of K is

fk(z) = zk, k ∈ Z from which we find that the spectrum of L0 is Z. This time there is no lowest
or highest weight vector but the one dimensional subspace generated by f−n−1 is invariant under the
action of L0. At last using equation (3.16) (of course with the substitution n = ∆) it can be easily
found by direct substitution in equation (3.9) that the Casimir element has the form C2 = ∆(∆− 1)I.

Complementary series Cs: they are realized again in the space L2(∂D) this time with norm:

∥f∥2Cs
=

∫
|z|=1,|w|=1

f∗(z)f(w)

|z − w|2−2∆
|dz||dw|, ∆ =

1

2
+ s. (3.22)

And group action:

(u · f)(z) def
== |−βz∗ + α∗|−2∆f(u−1 · z), ∆ =

1

2
+ s. (3.23)

A good basis for Cs that decomposes it in irreducible representation of K is fk(z) = zk, k ∈ Z from
which we find that the spectrum of L0 is Z. Again there are no lowest or highest weight vector but
the one dimensional subspace generated by f−n−1 is invariant under the action of L0 and the Casimir
element has the form C2 = ∆(∆− 1)I.

3.3 Decomposing L2(G/Γ)

From the result of the previous section we know that the decomposition of L2(G/Γ) into unitary
irreducible representations will have the form:

L2(G/Γ) = C⊕
∞⊕
n=1

Dn ⊕
∞⊕
n=1

Dn ⊕
∞⊕
k=1

Cλk
. (3.24)

Notice that the decomposition is a discrete direct sum, for a proof see [2]. Moreover Cλk
unify the

complementary and principal series as we will see soon. Let us analyze in detail each addend:
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CHAPTER 3. LIE GROUPS 3.3. DECOMPOSING L2(G/Γ)

Trivial representation C: the trivial representation simply corresponds to constant functions
which have a finite norm since G/Γ has a finite volume.

Discrete series: To build Dn we recall from the previous section that there is a vector F annihilated
by L1, now using the explicit form of L1 (equation (3.3)) and the decomposition of L2(G/Γ) of
equations (2.13),(2.14) we must have that F ∈ Vn and by direct substitution:

L1 · F = 0 → (∂x + i∂y)h(x, y) = 0, (3.25)

and this mean that h(x, y) = h(z) is holomorphic (z = x+ iy). So we found the lowest weight vector
F (x, y, θ) = yne−inθh(z), to build the rest of Dn we can just apply iteratively the operator L−1. To
build Dn we can just notice that F ∗(x, y, z) = yneinθ(h(z))∗ is the highest weight vector for the anti
holomorphic discrete series Dn, in fact it is annihilated by L−1. Again to build the rest of the space
we just apply iteratively the operator L1.

Principal and complementary series: In the previous section we saw that each principal and
complementary space contains a one dimensional subspace that is invariant under the action of K,
now let F be a vector of this subspace, using the decomposition of L2(G/Γ) of equations (2.13),(2.14)
we must have that:

F ∈ V0 =⇒ F (x, y, θ) = F (x, y). (3.26)

To build the rest of the space we just apply iteratively the destruction and creation operators L1 and
L−1. Now recall that for those series the Casimir element C2 = ∆(∆ − 1) = −λ so λ ∈

[
1
4 ,∞

)
for

the principal series and λ ∈
(
0, 14
)
for the complementary series. Moreover if we apply the Casimir

element on a function F = h(x, y) of Piν or Cs invariant under the action of K, from equation (3.9)
we have that:

λh(x, y) = −C2h(x, y) = −y2
(
∂2
x + ∂2

y

)
h(x, y) = −∇2h(x, y). (3.27)

hence h(x, y) is an eigenfunction of the Schrödinger equation on X with eigenvalue λ and we can unify
the complementary and principal series with the notation Cλ. where λ ∈ (0,∞) is the corresponding
eigen value of the Casimir operator.
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Chapter 4

Finding the bound

4.1 Coherent states

To define coherent states we choose an orthonormal basis of lowest weight vectors in Dn {Fn,a ∈
Dn ∩ Vn} (the index a takes in consideration the multiplicity of the discrete series), then the coherent
state θn,a in the holomorphic discrete series representation is:

θn,a(z) = ezL−1 · Fn,a, z ∈ C, |z| < 1. (4.1)

In the same way, noticing that F ∗
n,a is an orthonormal basis of highest weight vectors in Dn we the

coherent state θn,a in the anti holomorphic discrete series representation is:

θn,a(z) = z−2ne−z−1L1 · F ∗
n,a, z ∈ C, |z| > 1. (4.2)

Using the definition the definition we can easily find a relation that will be useful later:

(θn,a(z))
∗ = (z∗)−2nθn,a((z

∗)−1). (4.3)

Moreover we define:

θn,a(∞) = lim
z→∞

z2nθn,a(z) = lim
z→∞

e−z−1L1 · F ∗
n,a = F ∗

n,a. (4.4)

We are interested in how the complexified Lie algebra psl(2,C) acts on coherent states, a nice way to
do this is using the commutation relations:

[L−1, L−1] = 0;

[L0, L−1] = L−1 =⇒ [L0, (L−1)
k] = k(L−1)

k;

[L1, L−1] = 2L0 =⇒ [L1, (L−1)
k] = 2k(L−1)

k−1L0 + k(k − 1)(L−1)
k−1.

(4.5)

So from the first commutation rule we find that:

L−1 · θn,a = L−1e
zL−1 · Fn,a =

∞∑
j=0

zj(L−1)
j+1

j!
· Fn,a = ∂zθn,a. (4.6)

From the second commutation rule:

L0 · θn,a =

+∞∑
j=0

zj(L−1)
jL0

j!
+

+∞∑
j=0

jzj(L−1)
j

j!

 · Fn,a = (n+ z∂z) θn,a, (4.7)

where we used that L0 · Fn,a = nFn,a. Finally from the third commutation rule:

L1 · θn,a =

∞∑
j=0

(
zj

j!
(L−1)

jL1

)
· Fn,a +

∞∑
j=1

(
2

zj

(j − 1)!
(L−1)

j−1L0 +
zj

(j − 2)!
(L−1)

j−1

)
· Fn,a. (4.8)

10



CHAPTER 4. FINDING THE BOUND 4.2. N-FUNCTION CORRELATOR

Moreover we know that L0 · Fn,a = nFn,a and L1 · Fn,a = 0 hence we conclude that:

L1 · θn,a =
(
z2∂z + 2nz

)
θn,a. (4.9)

In a similar fashion it can be proved that:

L−1 · θn,a = ∂zθn,a;

L0 · θn,a = (z∂z + n) θn,a;

L1 · θn,a =
(
z2∂z + 2nz

)
θn,a.

(4.10)

4.2 n-function correlator

Given F1, F2, ..., Fn ∈ C∞(G/Γ) we define the n-function correlator as:

⟨F1F2...Fn⟩ =
∫
G/Γ

F1(g)...Fn(g)dµ(g). (4.11)

Our goal is to calculate correlator for coherent states, sometimes the notation will be simplified by
omitting the second index, i.e θn,a ≡ θn. Correlator is G-invariant and this follows directly from the
invariance of the measure: in fact if we apply a transformation g̃, with the usual action defined in
equation (2.11), to the product (F1F2...Fn)(g) we have that:

⟨g̃ · (F1F2...Fn)⟩ =
∫
G/Γ

(F1...Fn) (gg̃)dµ(g) =

∫
G/Γ

(F1...Fn) (g
′)dµ(g′) = ⟨F1F2...Fn⟩, (4.12)

where we substituted g′ = gg̃ and used the invariance of the measure dµ(g) = dµ(gg̃). In particular if
we apply an infinitesimal transformation of the form ei(δs)Lj (with j ∈ {−1, 0, 1}) we have that:

⟨ei(δs)Lj ·(F1F2...Fn)⟩ = ⟨(I+ i(δs)Lj)·(F1F2...Fn)⟩ = ⟨F1F2...Fn⟩+i(δs)⟨Lj ·(F1F2...Fn)⟩ = ⟨F1F2...Fn⟩.
(4.13)

Where in the last equality we used equation (4.12), this in particular implies that:

⟨Lj · (F1F2...Fn)⟩ = 0. (4.14)

G-invariance fixes the form of n-function correlator for small n up to some constants:

1-function correlator: By applying equation (4.14) with j = −1 and j = 0 on F1 = θn(z) we find
that: ∫

G/Γ ∂zθn(z)dµ(g) = 0 =⇒ ∂z⟨θn(z)⟩ = 0;∫
G/Γ(∂z + n)θn(z)dµ(g) = 0 =⇒ (∂z + n)⟨θn(z)⟩ = 0.

(4.15)

By combining these two equations we conclude that ⟨θn(z)⟩ = 0 and in the same way it can be found
that ⟨θn(z)⟩ = 0.

2-function correlator: We choose F1 = θm,a(z1),F2 = θn,b(z2) and let us define

f(z1, z2) = ⟨θm,a(z1)θn,b(z2)⟩, (4.16)

if we apply equation (4.14) with j = −1 we find that:

∂z1f(z1, z2) + ∂z2f(z1, z2) = 0, (4.17)

and this is solved solved if

f(z1, z2) ≡ f(z1 − z2), (4.18)

11
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which means that f depends only on the difference of the two variables. Now if we apply equation
(4.14) with j = 0 we find that:

z1∂z1f(z1, z2) + z2∂z2f(z1, z2) + 2nf(z1, z2) = 0 = [(z1 − z2)∂z1 + 2n] f(z1 − z2). (4.19)

Which is solved for:

f(z1 − z2) =
Cn,m,a,b

(z1 − z2)2n
. (4.20)

We can see that in the limit z1 → z2 we have a singularity and hence Cn,m,a,b = 0 and we conclude
that:

⟨θm,a(z1)θn,b(z2)⟩ = 0. (4.21)

In the exact same way it can be proven that equation (4.20) holds with F1 = θm,a(z1),F2 = θn,b(z2)
but in this case there is no singularity because |z1| < 1 and |z2| > 1. The constant Cn,m,a,b however is
fixed from orthogonality and we have that Cn,m,a,b = δn,mδa,b and hence

⟨θm,a(z1)θn,b(z2)⟩ =
δn,mδa,b

(z1 − z2)2n
. (4.22)

3-function correlator: We choose F1 = θn(z1),F2 = θn(z2), F3 = θp,a(z3) and let us define

f(z1, z2, z3) = ⟨θn(z1)θn(z2)θp,a(z3)⟩, (4.23)

if we apply equation (4.14) with j = −1 we find that:

∂z1f(z1, z2, z3) + ∂z2f(z1, z2, z3) + ∂z3f(z1, z2, z3) = 0. (4.24)

We can generalize the case of 2-function correlator and this equation is solved if

f(z1, z2, z3) ≡ f(z1 − z2, z1 − z3, z2 − z3), (4.25)

now if we apply (4.14) with j = 0 we find that:

z1∂z1f(z1, z2, z3) + z2∂z2f(z1, z2, z3) + z3∂z3f(z1, z2, z3) + (2n+ p)f(z1, z2, z3) = 0. (4.26)

Now let us define zij ≡ zi − zj with i, j ∈ {1, 2, 3}, using the chain rule we can rewrite the equation
as:

z1 (∂z12f(z12, z13, z23) + ∂z13f(z12, z13, z23)) + z2 (−∂z12f(z12, z13, z23) + ∂z23f(z12, z13, z23))+

+ z3 (−∂z13f(z12, z13, z23)− ∂z23f(z12, z13, z23)) + (2n+ p)f(z12, z13, z23) = 0.
(4.27)

Which can be rearranged as:

z12∂z12f(z12, z13, z23)+z13∂z13f(z12, z13, z23)+z23∂z23f(z12, z13, z23) = −(2n+p)f(z12, z13, z23). (4.28)

This last equation is in general solved for:

f(z1, z2, z3) =
fn,p,a

zα12z
β
13z

γ
23

, α+ β + γ = 2n+ p. (4.29)

We can constrain it even more by applying (4.14) with j = 1:

z21 (∂z12f(z12, z13, z23) + ∂z13f(z12, z13, z23)) + z22 (−∂z12f(z12, z13, z23) + ∂z23f(z12, z13, z23))+

+ z23 (−∂z13f(z12, z13, z23)− ∂z13f(z12, z13, z23)) = − (2nz1 + 2nz2 + 2pz3) f(z12, z13, z23).
(4.30)

Using equation (4.29) we can rewrite it as:

(α(z1 + z2) + β(z1 + z3) + γ(z2 + z3)) f(z12, z13, z23) = (2nz1 + 2nz2 + 2pz3) f(z12, z13, z23). (4.31)

Which is solved if and only if

β = p, (4.32)

γ = p, (4.33)

α = 2n− p, (4.34)

hence we conclude that the 3-function correlator is fixed up to a constant:

⟨θn(z1)θn(z2)θp,a(z3)⟩ =
fn,p,a

z2n−p
12 zp13z

p
23

. (4.35)

12
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4-function correlator: This is the smallest n such that the n-function correlator is not uniquely
determined up to a constant, in fact it can be proven that, see [5]:

⟨θn(z1)θn(z2)θn(z3)θn(z4)⟩ =
g(z)

z2n12 z
2n
34

. (4.36)

Where g(z) is an unfixed single variable function and

z =
z12z34
z13z24

(4.37)

is the cross ratio of the four points.

4.3 Product expansion of coherent states

In section (2.2) we described the decomposition of L2(G/Γ) in unitary irreducible representations of
G from which we derive that every function F ∈ L2(G/Γ) can be decomposed as:

F = PC(F ) +
∞∑
n=0

(
PDn(F ) + PDn

(F )
)
+

∞∑
k=1

PCλk
(F ). (4.38)

Where PH is the projector onto the subspace H. In this section we want to constrain, using the
G-invariance, the decomposition of the product of two coherent states.

Expansion of θn(z1)θn(z2): We will prove that the θn(z1)θn(z2) has a non-trivial projection only
on Dn:

PH (θn(z1)θn(z2)) = 0, unless H = Dp, p even, p ≥ 2n. (4.39)

The proof is straightforward, we just compute the projection using G-invariance and all the results of
the previous section. We will also use, without giving a proof, that there are some well-defined projec-
tors that maps the irreducible unitary representations on L2(G/Γ) to their corresponding irreducible
unitary representations defined on H in section (3.2):

πDn : Dn → Dn

πDn
: Dn → Dn

πCλ
: Cλ → P+

iλ or Cλ

(4.40)

Let us begin from the projection on the trivial representation PC(θn(z1)θn(z2)): it is a G-invariance
function of z1, z2 ∈ D and we proved in the previous section that the only possible form is:

PC(θn(z1)θn(z2)) =
A

(z1 − z2)2n
(4.41)

But for z1 = z2 the projector is singular, hence A = 0 and

PC(θn(z1)θn(z2)) = 0. (4.42)

Now consider PDp
(θn(z1)θn(z2)) and its projection on Dp evaluated on a point z3:

PDp
(θn(z1)θn(z2)) → δz3

(
πDp

(
PDp

(θn(z1)θn(z2))
))

, (4.43)

it is a G-invariant holomorphic function of z1, z2, z3 and we have already seen in the previous section
that the only possible form is:

δz3

(
πDp

(
PDp

(θn(z1)θn(z2))
))

=
A

z2n−p
12 zp13z

p
23

(4.44)

13
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but for the anti-holomorphic discrete representation we have that z3 ∈ D, hence have a singularity for
z1 = z3 and this implies that A = 0 and

PDp
(θn(z1)θn(z2)) = 0. (4.45)

For the holomorphic discrete series it can be proven the exact same result:

δz3
(
πDp

(
PDp(θn(z1)θn(z2))

))
=

A

z2n−p
12 zp13z

p
23

(4.46)

and if p ≥ 2n there are no singularities since z3 ∈ D′. However for p odd the left hand side is even
under the permutation z1 ↔ z2 while the right hand side is odd, hence we conclude that in general

PDp(θn(z1)θn(z2)) ̸= 0 only for p ≥ 2n, p even. (4.47)

Finally let us consider PCλk
(θn(z1)θn(z2)), using again G-invariance and considering its projection

onto P+
iλk

or Cλk
evaluated in a point z3 it can be proven that:

δz3

(
πCλk

(
PCλk

(θn(z1)θn(z2))
))

=
Az∆k

3

z2n−∆k
12 z∆k

13 z∆k
23

(4.48)

Notice that the result is slightly different because in this case z3 ∈ ∂D and hence the function is not
holomorphic in z3. Again the function is singular for z1 = z3 and hence we conclude that:

PCλk
(θn(z1)θn(z2)) = 0 (4.49)

The explicit form of the expansion can also be calculated we have that:

θn(z1)θn(z2) =
∞∑

p=2n
p even

lp∑
a=1

fp,aτp(ea ⊗ Cp(z1, z2)). (4.50)

Where:

Cp(z1, z2) =

√
2n− 1

π

1

z2n−p
12 zp13z

p
23

. (4.51)

This explicit form of the expansion will not be formally proven, for a rigorous proof see [4], here we
will just give an idea: we already saw in section (3.3) that the space Dp contains many independent
copies of Dp, one for each linearly independent lowest weight vector. Hence if we call lp the number
of independent copies we have that Dp is isomorphic to Clp ⊗ Dp. Moreover it can be proven that
there exists an unitary isomorphism τp : Clp ⊗ Dp → Dp, so if we define an orthonormal basis
{ea, 0 < a ≤ lp} for Clp we can reverse the projector πDp of equation (4.46):

PDp(θn(z1)θn(z2)) =

lp∑
a=1

Ap,aτp

(
ea ⊗

1

z2n−p
12 zp13z

p
23

)
, p ≥ 2n, p even. (4.52)

Where Ap,a are just some unknown constants, the expansion follows directly from the substitution:

Ap,a = fp,a

√
2n− 1

π
. (4.53)

Expansion of θn(z1)θn(z2): We will prove that the θn(z1)θn(z2) has a non-trivial projection only
on C and Cλk

:
PH

(
θn(z1)θn(z2)

)
= 0, unless H = Cλk

or H = C. (4.54)

The proof is almost identical to the one used for the product expansion of θn(z1)θn(z2): for the trivial
representation we find that

PC(θn(z1)θn(z2)) =
A

(z1 − z2)2n
. (4.55)
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And this time there are no singularity since z1 ∈ D′, z2 ∈ D
′
.

For the holomorphic/anti-holomorphic discrete series representations we find that:

δz3

(
πDp

(
PDp

(θn(z1)θn(z2))
))

=
A

z2n−p
12 zp13z

p
23

,

δz3
(
πDp

(
PDp(θn(z1)θn(z2))

))
=

A

z2n−p
12 zp13z

p
23

.

(4.56)

But this time they are both singular: the first one is singular for z1 = z3, the second one for z2 = z3
and hence we conclude that:

PDp(θn(z1)θn(z2)) = PDp
(θn(z1)θn(z2)) = 0. (4.57)

Finally for the projection on Cλk
it can be shown that:

δz3

(
πCλk

(
PCλk

(θn(z1)θn(z2))
))

=
Az∆k

3

z2n−∆k
12 z∆k

13 z∆k
23

, (4.58)

and the projection is in general non-zero.

The expansion can be calculated explicitly:

(1) PC(θn(z1)θn(z2)) =
A

(z1 − z2)2n
,

(2) PCλk
(θn(z1)θn(z2)) =

dk∑
a=1

ck,aκk(ea ⊗ C̃k(z1, z2)).

(4.59)

Where C̃k(z1, z2)(z0):

C̃k(z1, z2)(z0) =
N∆k

z∆k
3

z2n−∆k
12 z∆k

13 z∆k
23

, (4.60)

and N∆k
is defined in such a way that C̃k(z1, z2)(z0) has unit norm in Piλk

or Cλk
. The explicit form

of the projection on C has already been proved, for the projection on Cλk
as in the previous case we

will just give an idea of the proof, a rigorous one can be found in [4]. Let H = P+
iλk

or H = Cλk
be

the appropriate irreducible representation for the value λk. We saw in section (3.3) that in general in
Cλk

there will be many copies of H, one for each linearly independent vector defined in (3.26). Hence
if we call dk the number of independent copies we have that Cλk

is isomorphic to Cdk ⊗H. Moreover
it can be proven that there exists an unitary isomorphism κk : Cdk ⊗ H → Cλk

, so by defining an
orthonormal basis {ea} for Cn we can find the inverse of the projector πCλk

of equation (4.58) up to
some unknown constants:

PCλk
(θn(z1)θn(z2)) =

dk∑
a=1

Ak,aκk

(
ea ⊗

z∆k
3

z2n−∆k
12 z∆k

13 z∆k
23

)
. (4.61)

Where Ak,a are some unknown constants, the expansion follows directly from the substitution:

Ak,a = ck,aN∆k
. (4.62)

4.4 Bootstrap

In section (4.2) we saw that the 4-function correlator ⟨θn(z1)θn(z2)θn(z3)θn(z4)⟩ is determined by a
single variable function g(z). In this section we want to use the product expansion and the cross-
ing symmetry to find two explicit forms for g(z): the first will be found by expanding the products
θn(z1)θn(z2) and θn(z3)θn(z4), while the second by expanding θn(z1)θn(z4) and θn(z2)θn(z3). Ulti-
mately by matching those two expressions we will find the bound on the lowest eigenvalue.
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Figure 4.1: Graphical interpretation of the bootstrap, ϕi = θn(zi) or θn(zi)

.

Using the constants fp,a and ck,a defined in the previous section (4.3) we have that the function g(z)
in equation (4.36) can be written as:

(1) s-channel expansion:

g(z) =

∞∑
p=2n
p even

lp∑
a=1

|fp,a|2Gp(z). (4.63)

With:

G∆(z) = z∆2F1(∆;∆; 2∆; z), (4.64)

where 2F1 is the Gauss hypergeometric function.

(2) t-channel expansion:

g(z) =

(
z

1− z

)2n
(
1 +

∞∑
k=1

dk∑
a=1

c2k,aH∆k
(z)

)
. (4.65)

With:

H∆(z) = 2F1

(
∆; 1−∆; 1;

z

z − 1

)
. (4.66)

Proof of part (1): As we anticipated we want to expand the products θn(z1)θn(z2) and θn(z3)θn(z4),
we don’t have a formula for expanding two coherent states in the anti holomorphic discrete series
representation, however we can exploit equation (4.1):(

θn(z3)θn(z4)
)∗

= (z∗3)
−2n(z∗4)

−2nθn((z
∗
3)

−1)θn((z
∗
4)

−1). (4.67)

Moreover given two functions F1, F2 ∈ C∞(G/Γ) we can transform their correlator in a scalar product:

⟨F1F2⟩ = ⟨F ∗
1 , F2⟩, (4.68)

with the usual inner product defined in (2.10). So using equation (4.67) and the relation between
correlator and scalar product we can rewrite the 4-function correlator as:

⟨θn(z1)θn(z2)θn(z3)θn(z4)⟩ = ⟨(z∗3)−2n(z∗4)
−2nθn((z

∗
3)

−1)θn((z
∗
4)

−1), θn(z1)θn(z2)⟩. (4.69)

Finally we can expand the two products θn((z
∗
3)

−1)θn((z
∗
4)

−1) and θn(z1)θn(z2) using equation (4.50):

⟨(z∗3)−2n(z∗4)
−2nθn((z

∗
3)

−1)θn((z
∗
4)

−1), θn(z1)θn(z2)⟩ =
∞∑

p=2n
p even

lp∑
a=1

|fp,a|2z−2n
12 z−2n

34 Gp(z). (4.70)

Where Gp(z) is defined as:

z−2n
12 z−2n

34 Gp(z) = z−2n
3 z−2n

4 ⟨Cp((z
∗
3)

−1, (z∗4)
−1), Cp(z1, z2)⟩. (4.71)
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Notice that we exploited that τp is a unitary isomorphism:

⟨τp(ea1 ⊗ Cp(z1, z2)), τp(ea2 ⊗ Cp((z
∗
3)

−1, (z∗4)
−1))⟩ = δa1,a2⟨Cp(z1, z2), Cp((z

∗
3)

−1, (z∗4)
−1)⟩, (4.72)

and that the subspaces Dp are orthogonal:

⟨τp1(...), τp2(...)⟩ = 0, for p1 ̸= p2. (4.73)

To conclude the proof we have to show that G∆(z) = z∆2F1(∆;∆; 2∆; z), the easiest way is to apply
the quadratic Casimir operator of Dp ⊗ Dp on both side of the equation: in fact it can be proven,
see [1], that the right hand side of the equation is an eigenfunction of that Casimir operator with
eigenvalue p(p − 1). Moreover remember that given two representations of a Lie Algebra g: (V1, π1)
and (V2, π2) the representation induced on the tensor product (V1 ⊗ V2, π) is:

π(X) = π1(X)⊗ I+ I⊗ π2(X), X ∈ g. (4.74)

In our case V1 = Dp and V2 = Dp and to calculate the quadratic Casimir equation (3.9) we only need
the images of L−1, L0, L1 which can be found by combining equation (3.16) and equation (4.74). The
result is a differential operator in the variables z1, z2 which applied to the left hand side of equation
(4.71) leads to:

z2(1− z)∂2
zGp(z)− z2∂zGp(z) = p(p− 1)Gp(z). (4.75)

This is a second order ordinary differential equation which for p ≥ 2n > 1 has general solution:

Gz
p = Azp2F1(p; p; 2p; z) +Bz1−p

2F1(1− p; 1− p; 1− 2p; z). (4.76)

For z → 0 the second term is singular hence B = 0, to find the value of A we set z1 = z2 = 0 and
z3 = z4 = ∞ such that z → 0 and 2F1(p; p; 2p; z) ≈ 1 which leads to Gp(z) ≈ Azp. With the same
substitution equation (4.71) becomes:

Gp(z) = zp⟨Cp(0, 0), Cp(0, 0)⟩. (4.77)

With Cp(0, 0)(x) =
√

2n−1
π x−2p, it can be proven that the scalar product ⟨Cp(0, 0), Cp(0, 0)⟩ = 1 which

implies that A = 1 and this ends the proof of part (1).

Proof of part (2): It follows the same idea of part (1) but this time we expand the products
θn(z2)θn(z3) and θn(z1)θn(z4). First of all we transform the 4-function correlator in a scalar product:

⟨θn(z1)θn(z2)θn(z3)θn(z4)⟩ = ⟨(θn(z2)θn(z3))∗, θn(z1)θn(z4)⟩. (4.78)

Then using (4.1) we rewrite θn(z2)θn(z3) as:(
θn(z2)θn(z3)

)∗
= (z∗2)

−2n(z∗3)
−2nθn((z

∗
2)

−1)θn((z
∗
3)

−1). (4.79)

So we substitute equation (4.79) into equation (4.78) and we use equations (4.54) and (4.59) to expand
the products:

⟨θn(z1)θn(z2)θn(z3)θn(z4)⟩ = z−2n
14 z−2n

23 +

∞∑
k=1

dk∑
a=1

c2k,az
−2n
2 z−2n

3 ⟨C̃k((z
∗
3)

−1, (z∗2)
−1), C̃k(z1, z4)⟩, (4.80)

which can be rewritten as:

⟨θn(z1)θn(z2)θn(z3)θn(z4)⟩ = z−2n
14 z−2n

23 +

∞∑
k=1

dk∑
a=1

c2k,az
−2n
12 z−2n

34

(
z

1− z

)2n

H∆k
(z). (4.81)

Where H∆k
(z) is defined as:

z−2n
12 z−2n

34

(
z

1− z

)2n

H∆k
(z) = z−2n

2 z−2n
3 ⟨C̃k((z

∗
3)

−1, (z∗2)
−1), C̃k(z1, z4)⟩. (4.82)
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Notice that we used that κk is a unitary isomorphism:

⟨κk(ea1 ⊗ C̃k((z
∗
3)

−1, (z∗2)
−1)), κk(ea2 ⊗ C̃k(z1, z4))⟩ = δa1,a2⟨C̃k((z

∗
3)

−1, (z∗2)
−1), C̃k(z1, z4)⟩, (4.83)

and that the subspaces Cλ are orthogonal:

⟨κk1(...), κk2(...)⟩ = 0, for k1 ̸= k2. (4.84)

Finally applying the Casimir operator to both side of (4.82) and using the same strategy of part (1)
it can be proven that:

H∆(z) = 2F1

(
∆, 1−∆, 1,

z

1− z

)
. (4.85)

4.5 Crossing equation

In the previous section we found two equivalent expressions for the function g(z) that can be matched
to get the crossing equation:

∞∑
p=2n
p even

lp∑
a=1

|fp,a|2Gp(z) =

(
z

1− z

)2n
(
1 +

∞∑
k=1

dk∑
a=1

c2k,aH∆k
(z)

)
. (4.86)

From this equation we want to find a bound on the lowest non-zero eigenvalue of the Schrödinger
equation on X (2.5). We begin by rewriting (4.86) in the following way:

∞∑
p=2n
p even

SpGp(z) =

(
z

1− z

)2n
(
1 +

∞∑
k=1

TkH∆k
(z)

)
. (4.87)

where we substituted

Sp =

lp∑
a=1

|fp,a|2, (4.88)

Tk =

dk∑
a=1

c2k,a. (4.89)

Now we can extract information by expanding both side of the crossing equation order by order around
z = 0, in such a way to write each Sp in function of Tk and eigenvalues data (which are stored in
H∆k

, remember that ∆k(1 − ∆k) = λk with λk eigenvalue). In particular we know that Sp = 0 for
p odd so we can constrain λk and Tk by simply considering the Taylor expansion for odd powers of
z. Moreover notice that the each addend of the left hand side of the crossing equation is symmetric
under the substitution z → z

z−1 while each term of the right hand doesn’t have this symmetry, so we
can find more constraints on λk and Tk by antisymmetrizing the crossing equation. An elegant way to
both antisymmetrize and find the Taylor expansion is to exploit the orthogonality of hypergeometric
functions:

1

2πi

∮
z−2G1−p(z)Gq(z) = δp,q. (4.90)

Where we are integrating on a loop that encloses z = 0 as only point of singularity. By applying this
to both sides of the crossing equation we find that:

− Sp + Fn
p (0) +

∞∑
k=1

TkF
n
p (λk) = 0, p ≥ 2n. (4.91)

Where we defined Sp = 0 for p odd and

Fn
p (λ) =

1

2πi

∮
z−2G1−p(z)

(
z

1− z

)2n

H∆(z). (4.92)
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In particular notice that using the residue theorem we only have to calculate the residue at z = 0 of
the function under the integral.

The easiest way to calculate a bound on the lowest eigenvalue is to compute equation (4.91) for
p = 2n+ 1 and p = 2n+ 3:

Case p = 2n+ 1: we want to find the residue at z = 0 of:

f(z) = z−2G−2n(z)

(
z

1− z

)2n

H∆(z). (4.93)

Expanding every function at the first order around z = 0 is enough:

G−2n(z) ≈ z−2n(1− nz), (4.94)

H∆(z) ≈ 1 + ∆(∆− 1)z = 1− λz, (4.95)(
z

1− z

)2n

≈ z2n(1 + 2nz), (4.96)

by direct substitution in (4.93) we find that the residue is

Res(f, 0) = Fn
2n+1(λ) = n− λ (4.97)

and hence we find the identity:

n−
∞∑
k=1

(λk − n)Tk = 0. (4.98)

Case p = 2n+ 3: this time we want to calculate the residue at z = 0 of the function:

f(z) = z−2G−2n−2(z)

(
z

1− z

)2n

H∆(z) (4.99)

the method is the same of the former case but this time we have to expand to the third order around
z = 0:

G−2n−2(z) ≈ z−2n−2

(
1− (n+ 1)z +

(n+ 1)(2n+ 1)2

8n+ 6
z2 +

n2(n+ 1)(2n+ 1)

12n+ 9
z3
)
, (4.100)

H∆(z) ≈ 1− λz − 1

4
λ(−λ+ 2)z2 − 1

36
λ(λ2 − 10λ+ 12)z3, (4.101)(

z

1− z

)2n

≈ z2n
(
1 + 2nz + n(2n+ 1)z2 +

2

3
n(2n2 + 3n+ 1)z3

)
. (4.102)

From which we can easily compute the residue Fn
2n+3(λ) and Fn

2n+3(0) and get an equation of the
form:

Fn
2n+3(0) +

∞∑
k=1

TkF
n
2n+3(λk) = 0. (4.103)

We want to find an equation in which the contribution of λ0 = 0 drops out and this can be easily
done by subtracting equation (4.103) multiplied by n and equation (4.98) multiplied by Fn

2n+3(0) the
result is:

∞∑
k=1

λk

(
λ2
k − (9n+ 1)λk + 12n2

)
Tk = 0. (4.104)

The polynomial λ2
k − (9n+ 1)λk + 12n2 has roots:

λk,± =
9n+ 1±

√
33n2 + 18n+ 1

2
, (4.105)

19



4.5. CROSSING EQUATION CHAPTER 4. FINDING THE BOUND

which are both positive for each n > 0 because

(9n+ 1)2 = 81n2 + 18n+ 1 > 33n2 + 18n+ 1, ∀n > 0. (4.106)

Since 0 = λ0 < λ1 < ... < λn < ... and Tk ≥ 0, see equation (4.88), we conclude that in order to satisfy
(4.104) λ1 can be at most the greatest root:

λ1 ≤
9n+ 1 +

√
33n2 + 18n+ 1

2
. (4.107)

Actually we just need the assumption that there is a β > 0 such that Tβ > 0 because in that case
equation (4.107) holds for the smallest λk such that Tk > 0 and we know that λk > λ1.

This bound holds for each orbifold X such that the subspace Vn defined in (2.13) is not empty. In a
more mathematical language it means that there must be a non zero modular form of weight 2n. In
particular it can be proven, see [6], that every hyperbolic 2-orbifold has a modular form of weight at
most 12. So by substituting n = 6 in equation (4.107) we find that:

λ1 ≤
55 +

√
1297

2
≈ 45.50694. (4.108)

This bound is valid for every hyperbolic 2-orbifold and in particular is close to the λ1 of the (2, 3, 7)
triangle orbifold which has the largest known eigenvalue λ1 ≈ 44.88835. However we exploited only
two of the infinite addends of the crossing equation (4.86), with a more sophisticated method that
includes the contribution of more terms of the crossing equation the bound can be improved and it
can be found, see [4] for a proof, that:

λ1 ≤ 44.8883537, (4.109)

which is up to many decimal digits indistinguishable from the λ1 on the triangle orbifold.

Figure 4.2: Drawing of (2, 3, 7), the hyperbolic 2-orbifold with smallest area
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