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Introduction

In 1801, Gauss presented several conjectures in his Disquisitiones Arithmeticae [11]. In
particular, articles 303 and 304 are focused on class numbers in the context of binary
quadratic forms. Today, we can rephrase these conjectures in the language of quadratic
fields.

In article 303 Gauss deals with complex quadratic fields, i.e. fields of the shape Q(\/g)
for d < 0, and surmises that the cardinality of the ideal class group h(d) — oo as d — —occ.
Moreover, he provides a list of complex quadratic fields of class number one, which supposes
to be exhaustive. The first fact was proven by Heilbronn in 1934, see [13]. In the same
year Heilbronn and Linfoot [I4] were able to conclude that beside the nine known complex
quadratic fields with class number one, there is at most another one. The nonexistence of
the tenth field was guaranteed by Baker [I] and Stark [22].

On the other side, in article 304 Gauss conjectures that there are infinitely many real
quadratic fields with class number one. This is still an open problem. However, the Cohen-
Lenstra heuristics [2] suggests that the probability a, of a real quadratic field having class
number divisible by an odd prime p is

o

apzl—H<1—plj).

=2

They predict that for real quadratic fields the probability of the odd part of the class group
being the identity is
[ - ap) =0.7544598...

p=>3

This implies that the above value should be the probability that h(d) = 1 for quadratic
fields such that the 2-part of the class group is trivial.

To conclude the theorem on primes in arithmetic progression, Dirichlet introduced L-
functions and discovered the correspondence between real primitive characters and quadratic
fields. This allowed him to produce his clagss number formula which establishes a relation
between the ideal class number and the fundamental unit of a quadratic field. The latter
is going to be our main interest.

This manuscript follows closely the paper by Etienne Fouvry and Florent Jouve A
positive density of fundamental discriminants with large regulator, see [7]. The aim of
this work is to develop the results contained therein to make them more accessible for an
interested reader.

In Chapter 1 we present some asymptotic estimates of arithmetic functions, which play
a central role in the subsequent discussions. We introduce the fundamental unit (D) of a
quadratic field and the fundamental solution €4 to the Pell’s equation. Roughly speaking,
let D be a positive fundamental discriminant, then the group of invertible elements of
the ring of integers of the real quadratic field Q(v/D) is essentially generated by (D).

5



6 INTRODUCTION

Similarly, let d be a nonsquare positive integer, then the solutions of the Pell’s equation
T? — dU? =1 are completely determined by ¢4.

Chapter 2 is focused on proving the class number formula in the quadratic case. Usually,
such result is deduced from the study of equivalence classes of binary quadratic forms since
historically this has been the first approach, see [[23], Ch. 5|. However, we try to give a
direct argument avoiding the treatment of quadratic forms.

It is widely believed that most of the time (D), €4 are huge compared to the size of
D or d and this fact is confirmed by numerical evidence. In this direction, Fouvry and
Jouve have proved that there is a positive density of positive fundamental discriminants
D such that the fundamental unit (D) of the field Q(v/D) is essentially greater than
D3. It is noteworthy that the fundamental discriminants with fundamental unit of large
size exhibited by the two authors satisfy a very particular divisibility condition, which is
pointed out in Chapter 3 while we reserve Chapter 4 for the proof of the main result.

It is well known that any information on the size of ¢(D) can be interpreted in terms
of the ordinary class number h(D) of the field Q(v/D). Indeed, Chapter 5 is devoted to
show an estimate of the class number average size applying the theory viewed in the fourth
chapter.

In the lines of the main result, we spend the last chapter to introduce a more general
conjecture due to C. Hooley, see [[16], Conj. 1].
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Chapter 1

Preliminaries

1.1 Arithmetic functions

Definition 1.1. An arithmetic function is a map f: N\ {0} — C.
An arithmetic function f is said to be multiplicative (resp. additive) if:

flnm) = f(n)f(m) (f(nm) = f(n)+ f(m))

for all n,m such that (n,m) = 1.
Moreover, we say f is completely multiplicative (resp. completely additive) if the same
holds in the case (n,m) # 1.

Example 1.2. Now we recall some examples needed in this work:

e The Moebius function is a multiplicative arithmetic function defined as follows:
1—1
n +— (—1)* if n is the product of k distinct primes
nr—0 if n is not squarefree.

e The Euler totient function o is a multiplicative arithmetic function defined as follows:

¢: N\ {0} — N
n+— #{me{0,...,n—1}: (m,n) = 1}.

In particular, let n = pi'...p;" be the prime factorization of n, then
-1 -1
p(n) =y p") = e@') - op}') = (1" —py' ). (ot — o)
e The Prime omega function is an additive arithmetic function defined as follows:
w: N\{0} — N
n+—> Z 1.
pln
pprime

Let k € RT, w gives rise to a multiplicative arithmetic function:

k“: N\ {0} — R

n—s k0.

11



12 CHAPTER 1. PRELIMINARIES

e The Divisor function is a multiplicative function defined as follows:

(Observe that this function is often denoted also by o or d.)
Notice that for all positive integers n

24" < 7(n). (1.1)

e Let K be a number field and O be its ring of integers. We can consider the
arithmetic function F' defined as follows:

F: N\{0} —N
n— #3(n)

where J(n) := {a <Ok : N(a) =n} and N(a) denotes the norm of the ideal a.
Lemma 1.3. The arithmetic function F is multiplicative.

Proof. We want to prove that if (a,b) = 1 then the following map is bijective.

J(a) x I(b) — TJ(abd)
(a,b) — ab

First we observe that the map is well defined by multiplicativity of N. If a is of norm «
and b is of norm b, then
N(ab) = N(a)N(b) = ab

and so ab is in the set J(ab).

The second step is to prove the injectivity. This follows from the coprimality of a,b. Indeed
if @ and b are coprime as integers then (a) and (b) are coprime as ideals. The ideals of
J(a) divide (a) and the ideals of J(b) divide (b), hence the ideals of J(a) are coprime with
the ideals of J(b). Therefore if a,a’ € J(a) and b,b" € J(b) are such that ab = a’b’ then a
divides a’b’ and o’ divides ab. Now it’s clear that the unique possibility is that a = a’ and
b=1"0.

The last step is to prove the surjectivity. Let ¢ be an ideal in J(ab). Set

We have
(ab)

a,b, = (c2,ac, be, (ab)) = ¢(c, (a), (b), .

)
and the coprimality of (a) and (b) implies

a,b; =c.

Now we have that N(a,) divides a? by definition of a, and in the same way N (b,) divides
b2. From
N(a,)N(b,) = ab, (a,b) =1

we conclude the proof. O
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Lemma 1.4. Let f be an arithmetic function. If f is multiplicative, then so is the arith-
metic function g defined by

o) = 3" 7(d).
dln

Proof. Let n,n’ be positive integers such that (n,n’) = 1. We see

g’y =Y fd) =) fled) =) f(e)f() = g(n)g(n'),
dnn/ cln c|n

c|n’ d|n’

where in the second equality we’ve used (n,n’) = 1 and in the third one (¢, ¢’) = 1 together
with the agsumption that f is multiplicative. O

1.1.1 Some average sizes of arithmetic functions

Lemma 1.5. Let n be a positive integer, then

1 ifn=1
> u(d) = .

0 ifn>1.

Proof. If n = 1,
> uld) = p(1) = 1.

d|1
If n > 1 then let n = p{*py? ... p* be its prime factorization. In >_djn 1(d), the divisors
such that u(d) # 0 are squarefree:

> uld) = p(1) + ppr) + -+ + plpr) + p(prpa) + -+ + ppr-1pr) + -+ + p(p1pa - pr)
dln

=p(1)=1
k
_ k n _ k _
_ <n> (—1) — (1-1)%=o.
n=0 Newton's formula

Remark 1.6. The above result proves that u is the inverse of

1: N\{0} — {1}
n+—1

in terms of Dirichlet’s convolution of arithmetic functions, see [[15], Ch. 1].

Corollary 1.7. Let n be a positive integer, then

w2m) = 3 u(d).

d2|n



14 CHAPTER 1. PRELIMINARIES

Proof. If n is squarefree then p?(n) = 1. The unique possibility for d s.t. d?|n is 1, so

D i(d) = p(l) = 1.
If n is not squarefree then pu?(n) = 0. We can factorize n as n = a?m, where o # 1 and
m is squarefree. Now if d?|n then d|a and conversely if d|a then d?|n, therefore by the

previous lemma;
D pud) =" pd) =
dla

d?|n

2

Lemma 1.8. Let n be a positive integer, then
n p(d)
n) = Z,u(d)g = nZT
din din

Proof. Lemma |l.4]implies that > dl is multiplicative since { is so. Thus, to prove the
formula is enough to check it on powers of prime numbers. Let p be a prime number and

k € N*, then
o(pF)  pF—pFt -
ok p
d 1
Md) _ L gy io=1t
d P

O

Remark 1.9. The above result can be restated as ¢ = p * Id, where * is the Dirichlet
convolution of arithmetic functions. Notice that following the same lines of this proof we
can present a different and simpler strategy to show also Lemma

Corollary 1.10. Let n,m be positive integers, then
S 1= 4 ogaem),
m

k<n
(k,m)=1

Proof. Using Lemma |1.5]

D 1=0 D ud)=) pd) 1

k<n k<n d|(k,m) dlm k<n
(k;m)=1 dlk
n p(d)
= Z p(d) LEJ =n2. g T Z,u(d)cd,
dlm dlm dlm

where |¢4] < 1. Notice that

‘ZM Cd‘<ZM ch\<2u = W

dlm dim we’ll see it later
Lemma

and hence we conclude using the above lemma. 0
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Lemma 1.11. Let = be a positive real number greater than 1 and k,l € Z>1 such that
(k,1) = 1. Let Q(x,k,l) be the cardinality of the set of squarefree positive integers m < x
and m =1 mod k. Then we have

z 1 1\ !
Qx, k1) = 0] g (1_}02) +O(x
pprime

D=

)

where the implied constant does not depend on k,l and ( is the Riemann zeta function.
Proof. Using Corollary we get

Q. k)= > pm= > Y ud

m<x m<zx dZ\m
m=l mod k m=l mod k

In order to switch the two summations observe that
(lLk)y=1= (m,k)=1= (d,k) =1

and hence

Q(x, k,1) Z Yooud= D pd) Y1

n<Z 1 n<-%

d<;p2 =42 d<z?2 d
(dk)=1d*n=l (k) (d,k)=1 d*n=l (k)
x 1
= 21 Md)(lwl? )Z Z 7—1—0 (x2).
d<z?2 d<x2
(dk)=1 (d,k)=1
Observe now that
p(d) p(d) 1 p(d) 1
2= 2 @ ol @)= X g o),
dSCE2 (ddk.z)l_l d>:l?% (ddk.z)l_l
(d,k)=1 R R
>~ pld) 1 1\t 1\ !
S e N5 T 0-5) —a T 0-5)
d=1 pprime plk plk
(d;k)=1 pprime pprime
Therefore )
z 1 1Y)\ 1 T _1
P
pprime
which concludes the proof. O

Remark 1.12. Let’s now compute the above formula 1n the particular case k = 4 and
[ =3, we will need it later. Recall that {(2) = n% = % then

Q(m,4,3)—1(1—4 ) ﬁ+0(x2)—ﬁx+0(x2).
Moreover, the following holds:
> (m) = Q(z,4,3) + Q(x,4,1) + Q(,4,2)

m<zx

4
:Q@Aﬂ%kﬁx+0@%.
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To get an asymptotic estimate of Q(x, 4, 2) we cannot use the previous result since (2,4) # 1
but trivially Q(z,2,4) < z, this allows to conclude

S ke m) = Ofa).

m<x

However, one can be more explicit and indeed

S 12 m) = g+ O,

m<x

see |[15], Th. 2.18|.

Corollary 1.13. Let t be an odd number then

2 1\ ! olt) b
> ,u2(m)—ﬁ 11 <1+p> x4+ 0(2 ).

m<x plt
m=3(4) pprime
(m,t)=1

Proof. Applying Corollary together with the fact (4,t) =1,

YooAm)y= >0 > pud) = Z o

mgx meE d2|m d<.’17§ _d%
m=3 (4) m=3 (4) d4)=1d?n=3 (4
(m,t)=1 (mt)=1 ((d t)):l (mt):(l)

= ¥ u( A o)) = 20T ¥ M) L ok

t
dgx% d<z?2
(d,4)=1 (d,4)=1
(d,t)=1 (d,t)=1

Similarly to what we’ve done in the previous proof we have that

P63 () o

d<z3 pprime pl4t
(d7_4):1 pprime
(d,t)=1
6 1 —1 —1
—w I (p) T(-p) rou
(4,t)=1 pl4 plt
pprime pprime
46 1\ ! _
t
ppﬂime

and hence
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To conclude, let t = p{*p3?...p%" be its prime factorization and observe that

a1 —L) . pam(1 -1
o ooy ) () ey gy
e H 1_7 = al, a2 Qan, 1_7 1—1—7
¢ p P1 Py P e} pi pi

2
plt i

pprime
n n -1 n -1
H 1 H 1 1
ey pi i—1 Di Y Di

O

Remark 1.14. Notice that in the previous proof the important thing is that ¢t and k =4
are coprime. Hence we could restate the previous corollary in a more general setting
requiring only (¢,k) = 1.

Lemma 1.15. Let n be any positive natural number, then

24 =" i*(a),

d|n
pe. 29 =p? 1.

Proof. If n =1 we have
w1) =0 = 2 =1

and

ST wAd) = (1) = 1.

dJ1

If n>1let n=p{*p3?...p%m be its prime factorization, we have
220 = #P({p1, .., pm})
and notice that there’s a bijective map

P{pi1,---,pm}) — {squarefree divisors of n}

S%Hp.

peES

We are done since clearly

#{squarefree divisors of n} = Z 12 (d).
din

O

Remark 1.16. Notice that, also in this case, we can provide an easier proof of Lemma,[1.15
using the multiplicativity of the involved functions and computing their values at prime
powers.

Lemma 1.17. Let n be a positive integer, then



18 CHAPTER 1. PRELIMINARIES

394 — r(n?)

dln
ie. 73 =29 %1, where 7 (n) := 7(n?);
2. assuming p?(n) = 1, we have also

T(n2) = 3w,

Proof. Notice that 7(?) is multiplicative since 7 is so and hence, as we did in Lemma
it’s enough to check equalities on powers of prime numbers.

1. Let p be a prime number and k any positive integer, then
S 2@ =g g o) o900t = 42 b2 =2k 41
d|p*

(™) = 1=2k+1.
d|p2k

2. In the second case we have to work only with squarefree integers and so we consider
just a prime integer p.

T(p®) = Z 1=3
d|p?
390 =3l = 3.

O

We recall without proof the Summation by part formula. A discussion of it can be
found on [[15], Ch. 2].

Theorem 1.18. Let a : N\{0} — C be an arithmetic function, let x > 1 be real number
and f: [1,2] = C a function with continuous derivative on [1,z]. Then we have

where A(x) =3, ., a(n).

Lemma 1.19. Let x be a positive real number greater than 1, then

Z 2w (n) — %:rlog:v + O(x).
T

n<x
Proof. Applying Lemma [I.15

PIEEEED S WO EDWHCOD I

n<z n<z dn d<zx n<lz
dn

T 2(d
:Zﬁ(d)(a+0(1)) :xz“é ) 4 0(a).

d<z d<zx




1.1. ARITHMETIC FUNCTIONS 19

Using Summation by part formula and Remark

2 T
SIS | (Zﬁ(d))tﬁdt

d<z d<z d<t

1
61 Ttz
:/1 7T2tdt+o</l t2dt>+0(1)

6 _1
= Plogw—i—O(m 2) +0(1).

Substituting this expression in the previous one, we conclude the proof. O

Corollary 1.20. Let x be a positive real number greater than 1, then

gw(n)
Z = % log® z + O(log z).
nlx " g

Proof. Applying Th. and the above lemma,

n<z n<x n<t
6 logt Tt
pu— — e R— 1
A dt+0</1 2 dt>+0(oga;)

3
=3 log? = + O(log z).

1.1.2 Legendre symbol and extensions

To conclude this section, we recall the definitions of the Legendre symbol and its extensions.
For an exhaustive treatment of its properties the reader can check [[23], Ch. 4].

Definition 1.21. For p an odd prime and a an integer, the Legendre symbol is defined by

1 if p1a, ais a square mod p

<a) 0 ifpl
— = 1 a
D p

—1 if a is not a square mod p.

Definition 1.22. For any integers a, b with b > 3 and odd, the Jacobs symbol is defined as
follows. Write b as a product of primes (they don’t have to be distinct) b =[]}, p; then

()1
(5)-1()

where on the right hand side is used a Legendre symbol.
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Definition 1.23. For any integers a,b with b even and positive and a = 0,1 mod 4, the
Kronecker symbol is defined as follows.

a 0 if 4a
(b) o (%) ifa=1 mod4

where (%‘) is a Jacobi symbol. In the case b odd and positive, the Kronecker symbol is
defined as the Jacobi symbol.

Lemma 1.24. Let k € {1,3}. We have that

d<zx

d=k mod 4

holds uniformly for x > 1 and for any positive odd nonsquare integer n.

Proof. Let C = {l € {0,...,n — 1}|(l,n) = 1}, observing that (%) =0if (d,n) # 1 we

rewrite

> o)=Y ¥ ()

d<z leC d<z
d=k mod 4 d=k mod 4
d=l modn
l
_ 2
->() X s
n
leC d<z
d=k mod 4
d=l modn

Since (4,n) = 1, we can apply the Chinese Remainder Theorem to get a unique solution
my; modulo 4n of the system

y=k mod4
y =10 mod n.

Notice that (myg;,4n) = 1 and so, by Lemma [L.11] there exists ¢(n) > 0 such that

o) =X X e

d<z leC d<z
d=k mod 4 d=my; mod 4n
=S (Yt + 0h)
leC
= c(n)a:Z(%) + Z(%)O(x%) = O(na:%)
leC leC

In the last equality we’ve used the fact that the Jacobi symbol has modulus less or equal
than 1 and that the sum of Jacobi symbols over a full set of representatives of reduced
classes modulo n vanishes (we will see it later in Lemma [2.3). O

1.2 Quadratic fields and fundamental unit

Definition 1.25. An integer D is called a fundamental discriminant if it is the discriminant
of a quadratic field K.
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Remark 1.26. Let us recall the following facts.

1. Let d be a squarefree integer, d ¢ {0,1}:

e if d=1 mod 4 then O 5 = Z[1+2\/3] and the discriminant of the quadratic
field Q(v/d) is D = d;

e if d=2,3 mod 4 then Ogy /3 = Z[\/d] and the discriminant of the quadratic
field Q(v/d) is D = 4d.

2. As a consequence, 0 and 1 are not fundamental discriminants. Moreover, if D is a
fundamental discriminant then either D =1 mod 4 squarefree or D =0 mod 4 and

% = 2,3 mod 4 squarefree.

3. If D is the discriminant of a quadratic field K then K = Q(v/D) = Q(+v/d) and an

integral basis of K is given by {1,w} where w = %. Indeed it’s immediate to see
that Zw] = Ok.

We recall now Dirichlet’s theorem on the structure of units in the particular case of
real quadratic fields. For the proof we refer to [[20], Ch. 5.

Theorem 1.27. Let Oy be the group of units of the ring of integers of a real quadratic
field K. Then there erists a unique element u > 1 such that

Ok = {+u* : k€ Z}.
O% is infinite and we call u the fundamental unit of the field K.

We will consider the case K = Q(v/D) a real quadratic field where D > 1 is the
discriminant. Let €(D) be the fundamental unit, we define the requlator as R(D) :=
loge(D). For instance, R(D) appears in the computation of the ideal class number h(D),
as we will see in the next chapter.

Definition 1.28. Let D be a fundamental discriminant of a quadratic field K. We define
the ideal class number h(D) as the cardinality of the ideal class group Clp i.e. the set of
equivalence classes of nonzero ideals of Ok under the relation

a~be Iz, ye Og\{0} s.t. za=yb.

Remark 1.29. e Recall that Clp is indeed a group and is finite. For the proof we
refer to [[20], Ch. 3 Cor. 1, Ch. 5 Cor. 2|.

e (Clp is isomorphic to the group Gp of fractional ideals of Ok modulo the subgroup
Pp of principal fractional ideals through the group homomorphism

Clp — Go/p,
[a]~ — aPp.

It’s immediate to prove that this map is a bijection since any fractional ideal is
equivalent to an integral ideal by clearing denominators.

o We define the narrow ideal class group Cp as Gp modulo PE, where PE is the
subgroup of Pp consisting of principal fractional ideals generated by an element of
positive norm.
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1.3 Pell’s equation and fundamental solution

The strategy to detect units in O is looking for elements of norm £1. In this direction a
similar but not completely equivalent problem is the study of the fundamental solution €4
to the Pell equation

T2 —dU* =1 (1.2)

where d is defined as in Remark and T,U are the unknowns. A solution (T,U) is
represented as T + UV/d.

The following result is the analogous of Th. for the Pell equation. An exhaustive
discussion of the proof can be found on [[4], Ch. 7].

Theorem 1.30. Let d be a nonsquare positive integer. Then there exists eq =T +UVd a
minimal solution of greater than 1. Then the set of solutions of s infinite and
has the shape:

{xej :n € Z}.

eq 18 called the fundamental solution.

Notice that if we consider D a positive fundamental discriminant and d = ﬁ, e(D)
and ¢4 can be different essentially because the fundamental unit allows —1 as norm and 2
as denominator. However, by Th. we get that e, is always a power of e(D) since it is
an invertible element in OQ( VD)

Lemma 1.31. Let d, D be as above. If 2% || D then £(D) has norm 1 and hence is equal
to gq.

Proof. Since 22 || D we have that d = 3 mod 4. This implies that there exists a prime p
such that p | d and p = 3 mod 4. Reducing the equation T2 — dU? = —1 modulo p we
obtain 72 = —1 mod p which has no solutions since —1 is a square modulo p if and only
if p=1 mod 4.

Therefore e(D) = T + U+/d must be an element of norm 1 and is equal to 4 since it is the

minimal solution greater than 1 of (1.2)). O
Remark 1.32. e The above proof says something more. If there exists a prime p = 3

mod 4 such that p | d then the negative Pell equation
T? —dU? = -1

admits no solutions.
The same holds also for T2 — dU? = —4.

e Observe also that in the case p =1 mod 4 the equation
Tl2 _ pU/2 T

always admits a solution. Let e, = T+ U,/p be the fundamental solution of T? —
pU? = 1.
2|7 = U?=-1 mod 4

which is impossible since —1 is not a square modulo 4. We deduce T odd and U even
since pU? = T? — 1. We have

T+1T-1 (U )2

B 59 p )
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therefore either

=0t {TQ—H:pUIZ
T3t =pU3 T =U3

In the first case
EfE:Ufprgzl

contradicts the minimality of €, since

(Ur + Uay/p)? = Ui + Uip + 2U1Ua/p = T + U /p.

In the second case we detect a solution of T'? — pU’? = —1 since
T—-1 T+1
e it

Lemma 1.33. Let d, D as before and let n be the positive integer such that (D)™ = &g4.
Then n < 6.

Proof. e If d =3 mod 4 then n =1 by the previous lemma.

e If d =2 mod 4 then (D) = T + U+/d could have norm —1, in this case we have to
compute its square to get 4 and therefore n < 2.

e If d =1 mod 4 and (D) has the shape T + U+Vd we can apply the same previous

reasoning. In the other case ¢(D) = %ﬂ, where a,b = 1(2), we are going to prove

that e(D)? € Z[v/d] and so, up to squaring, we are done.
1 1
£(D)? = g(a?’ + 3a%bV/d + 3ab’d + bPd/d) = g[a(a2 + 3b%d) + b(3a” + b2d)Vd]
Now we would see that a? + 3b%d and 3a® + b%d are divisible by 8. Notice that
a?,b? = 1(8), thus
a*+3b>=1+43d mod 8
3> +b°d=3+d mod 8.

If d = 5(8) then 1+ 3d,3 + d = 0(8). We conclude the lemma proving that in this
situation d cannot be congruent to 1 modulo 8.

Indeed (D) = %‘/3 is such that a® — b?d = +4. If we look at this modulo 8,
assuming d = 1(8), we get a? — b?> = 4(8) and this is absurd since a?,b? = 1(8).
0l

Example 1.34. One may wonder if the values of n presented in this proof are the minimal
ones. Indeed:

e if d = 10 then £(40) = 3 + v/10 and 19 = 19 + 64/10 = £(40)?;
e If d =5 then £(5) = 155 and 5 = 9 + 4v/5 = £(5)°.

Remark 1.35. Let d be any nonzero nonsquare integer which factorizes as d = o?d’
where d is squarefree. The fundamental solutions of the Pell equations 72 — dU? = 1 and
T2 — d'U"? = 1 are related as follows.

ca=T+UVd=T+UaNd
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We see that from ¢4 we get a solution of the equation 72 — d’U’?> = 1 and by Th.
there exists an integer n, which is positive since €4 > 1, such that g4 = €}},. The strategy
to detect this n is to write powers of ey as

eM e ™ e —eg ™
m __ “d d + d d /d/

Eq =
d 2 Wd

and look for the minimal m > 1 such that « | Ed;%’ . In fact, if such divisibility condition

holds we obtain a solution of 72 — dU? = 1 from e
Of course, we would relate more explicitly m and a. Let a = pJ*---p%» be its prime
factorization, we assume to know for each ¢ = 1,...,n the smallest integer v; such that

glig Vi
. e _d d
p’L | ul/i T 2\/@
from v;, §; we can immediately recover ¢; satisfying p
positive integers such that

and the exponent §; such that pfi||uyi. Let e; be any positive integer,
0;+€;

1

||ty,e,. Indeed, let 6 and 1 be two

we set

t+uvd = (0 +77\/J)l,

where | € Z~¢. Developing the above exponentiation, we have

[$1-1
l 4 4 ,
_ -1 3 27—2pl—25—1 317
u=mn0""l+n El <2j+1>77 0 d’.
J:

Observing that p 1 6 we get

PP e ifl=p

{pknu if (I,p) =1

and hence we deduce by iteration that

A | (O |12

max(0,a;

Therefore, to have p*|u,,e, we need to verify p, _61)‘61' and we conclude

-5 _
m = lcm<ylprlnax(07a1 1)’ o Vnprélax((),an §n)> )

Remark 1.36. Let D,d be as usual. Since (D), g4 > 1, it’s easy to show that if (D) =
%‘/E then a,b > 1 and in the same way if 4 = T+ Uv/d then T,U > 1.



Chapter 2

Analytic class number formula

In this chapter we present the main steps for a proof of the class number formula in the
quadratic case. We will follow basilcally [[18], Ch. 8] with some inputs from [[12], Ch. 7].

2.1 Dirichlet Characters and main statement

Definition 2.1. Let G be any group. A group homomorphism f : G — C* is called a
character of G.

Now let G = (Z/mZ)*' Corresponding to each character f of G we define an arithmetic
function x as follows.

f(n]) if (n,m) =1
xs(n) = .
0 if (n,m) > 1
A function x of this shape is called a Dirichlet character modulo m.
We will denote by xq the principal Dirichlet character modulo m corresponding to the map

f=1

Remark 2.2. An arithmetic function y is a Dirichlet character modulo m if and only if
satisfies for all a,b and for n not coprime to m

x(ab) = x(a)x(b)
x(a+m) = x(a)
x(n) =0.

Notice also that if x(n) # 0 it must be a root of unity and so |x(n)| = 1. This follows from
the fact that x corresponds to a group homomorphism f : G — C* and here G is finite
so there exists an e such that f([n])¢ = 1.

Lemma 2.3. If x is a Dirichlet character modulo m, then

- ~Jelm) if x =x0
2 X )_{0 if X # Xo-

n=1

Proof. The case x = xo is obvious from the definition. If x # xo then there exists a such
that x(a) # 1 and (a,m) = 1. We have
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and thus .
(x(a) =1) ) x(n) =0
n=1
which concludes the proof. O

Definition 2.4. Let x be a Dirichlet character modulo m. We define the conductor m*
of x as the smallest divisor of m such that x = xox™, where x¢ is the principal character
modulo m and x* is a Dirichlet character modulo m*.

If m = m* then x is said to be primitive.

Lemma 2.5. If (n,m) =1 and xn (resp. Xxm) s a primitive Dirichlet character modulo
n (resp. m), then the product xnXm is primitive modulo nm.

Proof. The duality between abelian groups and their character groups, see [[23], Th. 4.15],
implies that the group of Dirichlet characters modulo nm is isomorphic to (Z/nmz)* and

hence, by Chinese Remainder Theorem, to (Z/nZ)* X (Z/mz)* since (n,m) = 1. This
means that any character modulo nm can be written uniquely as a product of a character
modulo n with a character modulo m. By uniqueness of this factorization, we deduce the
statement. O

Example 2.6. e Let p be an odd prime number then the Legendre symbol (§> is a
primitive character modulo p.

e Let n be an odd squarefree positive integer then, applying the previous result, the
Jacobi symbol (E) is a primitive character modulo n. More generally, if n is an

odd positive nonsquare integer then (5) is a Dirichlet character modulo n but not

necessarily primitive.
For a more precise treatment of Dirichlet characters the reader can check [[I7], Ch. 3].

Definition 2.7. Let x be a non-principal Dirichlet character modulo m and let s be a
complex variable. We define the Dirichlet L-function attached to x by

L(S, X) = Z X(n) .

nS

n=1

Remark 2.8. L(s, x) is absolutely convergent for Re(s) > 1. However, it is also convergent
for s = 1 which is going to be our case of interest.

Lemma 2.9. Let x be a non-principal Dirichlet character modulo m. Then
L(1 )] < logm + 1.

Proof. By Th. we have

D DRORS -9 DL

n<x n<t

and by Lemma | > <z X(n)] < m, hence

L(1,x) = xlggloz Xizn) = AM;ZX(n) dt.

n<lx n<t
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Now

o

< Am;\Zx(m\dw/

n<t m

IL(1,x)| = '/1mt122x(n) dt

1
| x|
n<t

and since | Y, ., x(n)] <t for 1 <t < m, we get

™1 >~ 1
|L(1,X)|§/ dt+m/ — dt =logm + 1.
Lt Lt
O

Let D be a fundamental discriminant. In our discussion we will consider the non-
principal Dirichlet character modulo D, xp, given by the Kronecker symbol (Q) with its
attached L-function.

Now we are ready to state the main theorem.

Theorem 2.10. Let D be a fundamental discriminant and kp be the Dirichlet structure
constant defined as follows:

27
wy/| D]
2R(D)
VD

where w is the number of roots of unity in OQ(\@)' Then

if D <0
kp :=

if D >0,

L(1
h(D) _ ( 7XD)'
kp
Remark 2.11. We have that
6 ifD=-3
w=<4 ifD=-4
2 if D<—4.

Let d be a squarefree negative integer. The explicit values of w follow from the following
facts:

e the negative Pell equations T? — dU? = —1 and T? — dU? = —4 have no solutions
since d is negative;

e if d = 2,3(4) the unique Pell equation which has non trivial solutions is 72 + U? = 1.
It has 2 more solutions and corresponds to the case D = —4;

e if d = 1(4) the unique Pell equation which has non trivial solutions is T2 + 3U? = 4.
It has 4 more solutions and corresponds to the case D = —3.

The strategy for the proof of the class number formula is to count the ideals of O
with norm bounded by a certain ¢ > 0 in two different ways.
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2.2 First part of the proof

Definition 2.12. Let D be a fundamental discriminant, let C € Clp and t > 0. We define
H(C,t) as the number of distinct ideals a € C~! such that N(a) < t. We denote by G(a, )
the number of distinct principal ideals (o), where v € a is such that 0 < N((«)) < t.

Lemma 2.13. IfacC and t > 0 then
H(C,t) = G(a,tN(a)).

Proof. (>) Let a € a such that 0 < N((«)) < tN(a). Since («) is principal there exists
b € C~! such that () = ab and therefore

N((a)) = N(a)N(b) < tN(a) = N(b) < L.

(<) Let b € C~! such that N(b) < t. In particular there exists a such that ab = («) and
so N((a)) < tN(a).

Thus, every b € C~! of norm bounded by ¢ corresponds uniquely to a principal ideal
() C a with N((a)) < tN(a). O

We are going to present several technical lemmas which are needed to prove the first
important result.

Lemma 2.14. Let a be an ideal of OQ(\/E)' Then there exist a,c € Z~o and b € Z>q such
that a = aZ + (b + cw)Z, where w is defined in Remark[1.26, and N(a) = ac.

Proof. Omitted. See [[18], § 4.4]. O

Lemma 2.15. Let D > 0 be a fundamental discriminant. For any nonzero € OQ(\@)
there exists a unique o > 0 such that (5) = (o) and

o}
1 S )j‘ < E(D)Q,
Qa
where & denotes the Galois conjugate of a. We call o the primary associate to f3.

Proof. If B and ~ are associate, i.e. () = (v), then there exists n € Z such that v =
+e(D)"B. We get
log |y| = log|B| + nloge(D)

and

log |7] = log |B] + nlog |e(D)|.

We have also loge(D) + log|e(D)| = 0 since £(D)|e(D)
expressions we conclude that

= 1. Then by the previous

gl B
log‘j‘ = log‘t‘ + 2nloge(D).
7 5 (D)

Notice that (D) > 1 and so the quantity loge(D) is always positive.
Now let A =log|3//3|, then

y A
<1 H 2loge(D -2
0 <log 5 < 2loge(D) & n {ZIOgs(D)J

and we fix this value of n. To conclude the proof it remains to choose the sign in order to
have v > 0. 0l



2.2. FIRST PART OF THE PROOF 29

We need also a simple result which allows us to count lattice points in a certain region
of the plane.

Lemma 2.16. Let I' be a continuous arc with continuous derivative in R? such that the
radius of curvature R is greater or equal to r > 0. Suppose that at each point of I is drawn
a circle of radius r, we denote by T'(r) the resulting domain and by |U| the length of the
arc. Then the area |I'(r)| satisfies

|IT(r)| < 2r|T| + re.

Proof. Let (z,y) and (2/,y’) be two points on I". If (2/,y’) approaches (x,y) let ds be their
distance on I'. Since R > r the element of area dA is

dA = 2(r -ds) = 2rds.

Integrating along I' and adding the areas of the two semicircles at the end points of I', we
get

1
IT'(r)| < 2r|l| + 2§7rr2.
O

Corollary 2.17. Let A be a region bounded by a curve I' consisting of a finite number n of
arcs I'1, ... T, satisfying the conditions of the previous lemma with r; > /2 fori=1,...n.
Then if M(A) is the number of points of the lattice A := {(x,y) : x,y € Z} in A or on Ty,
then

M(A) = 4] + O(|T)

where |A| is the area of the region A.

Proof. We draw a circle of radius /2 around each point of I'. In this way, if there is a
point (z,y) of A close to the boundary of I' we are adding to our region the remaining
parts of all 1 x 1 squares described by elements in A in which (z,y) is contained. Therefore
applying the previous lemma we get

M(A) = |A]+ 0O (Z Fi(\@) =[Al+0 (Z |Fi|> = [A] + O(|T']).
=1 i=1

Theorem 2.18. Let D be a fundamental discriminant, t > 0 and C € Clp. Then
H(C,t) = kpt + O(V1).

Proof. Let a € C, we want to compute G(a,tN(a)). By Lemma[2.14] a = a1 Z+ asZ where
a1 =a, ag = b+ cw and N(a) = ac, with a,c € Zsg, b € Z>g and w = (D + V'D)/2.

Let o € a then there exist z,y € Z such that a« = ajz + gy, @ = a1z + ary. Putting
A:=o1a1 = a%, B = ajas + asay and C' 1= asdn, we get

N((@) = [ad| = [A2® + Bay + Cy).

Therefore, to determine G(a,tN(a)) we need to count the number of pairs (z,y) € Z? such
that
|Az? + By + Cy?*| < tN(a). (2.1)
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However, if 5 is an associate of a then (a) = () and so we have to count the pairs (z,y)
in such a way that avoids redundancies.

(1) Case D > 0.

By Lemma [2.15 we have to select only those values of a such that @ > 0 and 1 < |o/a| <
e(D)?, ie.

a1T + ay

1< = -
1T + oy

< e(D)?, a1z + agy > 0.

Let A be the region determined by the previous inequalities and (2.1)), then its surface area

1S
wz//@@

We do the following change of variables

§ =ar+ay
& =+ ay.
¢ and ¢ satisfy
|€€] < tN(a) =1 s, h§§’<dDV, £€>0.

These conditions in the £€-plane define two sectors of equal area of an hyperbola. We deal
with the sector defined by

E>E6>0, £E < s, §<5(D)2.

Iy

£€=¢

The jacobian of the trasformation (2.2)) is

D—+D D D
a0 — apay = ab + acf —ab— aci = —acV'D = —N(a)V'D,

thus

’A’:N@?Jﬁ//df_d{
2

~ N()VD </of </ i dg) o /;(D)ﬁ </Z dé) dg)

(D)2

_ 2sloge(D)  2R(D)t
- N@vD VD
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The length of the hyperbolic arc which bounds A is
e(D)v's
/ 1 + du f/

and also the lengths of the other two sides are trivially O(y/t). Therefore since the radius
of curvature increases with ¢, we get from Corollary

2R(D)t
vD

G(a,tN(a)) = +O0(V1).

(17) Case D < 0.
The region given by (2.1) describes an ellipse of area, see [[3], p. 160] for instance,

2 2rt B 2t
AC B2 V |D|
\/ |55 - wla L@ac - )|

where the second equality is determined by

4AC — B = 4o aodip — (041072 + a2d1)2
= a?[(20 4 ¢(D + VD))(2b + ¢(D — VD)) — (20 + ¢D)?]
= a?[(2b + ¢D)? — (¢v'D)? = (2b + ¢D)* = —a?¢*D.

There are only w associates to every « and the ellipse is clearly delimited by a curve of

length O(v/t), then Corollary implies

Gla, N (a)) = w%ytm + oW

which concludes the proof applying Lemma [2.13 O

Corollary 2.19. Let D be a fundamental discriminant and H(t) be the number of distinct
ideals a of Og /py such that N(a) <t then

H(t) = h(D)kpt + O(V1).

Proof. We have
H(t)= Y H(C,t)+0(1),

CeClp

where O(1) is determined by the fact that we are caring about N(a) < ¢ and not only
N(a) < t. The statement follows from the previous theorem and the finiteness of Cip. O
2.3 Second part of the proof

Remark 2.20. Let D be a fundamental discriminant and K = Q(v/D). We recall that
(see [[20], Th. 25]):

o if (%) = 0 then p ramifies in Og;

o if (%) = 1 then p splits completely in Ok;
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o if (%) = —1 then p is inert.

Lemma 2.21. Let p be a prime number, D be a fundamental discriminant and k € Z~g,
then the number of ideals of norm p* in OQ(\/E) 18

k k i
F<pk>:z(§) :1+z(§) |
=0 =1

Proof. o If (%) = 0 then (p) = p?, where p is a prime ideal. If N(a) = p* then a = p*
and u = k, hence F(pF) = 1.

o If (%) = 1 then (p) = pp’, where p,p’ are distinct prime ideals. If N(a) = p* then

a= p“p’u/ such that u + v’ = k. Therefore the k + 1 pairs (u,u — k), for u=0,...k,
produce exactly k + 1 distinct ideals a and so F(p*) = k + 1.

o If (%) = —1 then p is inert. If N(a) = p* we must have a = (p)* where 2u = k. In
particular

F(p*) =

1 if kis even
0 if kisodd

which concludes the proof.

Corollary 2.22. For each n € Z~qy we have

mln

Proof. Let n = p{*...p* be the prime factorization of n, since we've proved F' is multi-
plicative we have

F(n)=F(p")... F(p*)

(2]

i=0 ;=0

D D
- (2)-3(2)
31=0,er \P1 -+ P mn
jk=d,-~~€k

Remark 2.23. From the previous corollary we obtain another way to compute H (t).

HiE) =3 Foy= Y 2(2)

1<n<t 1<n<t m|n

Theorem 2.24. We have

lim Ht(t) = L(1,xp).

t—o00
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Proof. Let M (t, m) be the number of positive integers not exceeding %, here m is a positive

integer. Notice that
M(t,m)= ) 1= ) 1
1

<n< 1<n<t

t
m m|n

and if m >t we have M(t,m) = 0.

)i (t)

1<n<t m|n 1<m<t 1<n<t
mln
1 D = [ D\ M(t,m)
== — | M(t = - ==
t Z (m) (t,m) (m) t
1<m<t m=1

M(t,
Observe now that (tm) < % for all ¢, hence by

H(t = (D)1
(*) <>:L(1,XD)§10gD+1

t m|m
m=1

H(t)

and so —= converges uniformly in ¢.

i
Finally lim;_, M(tm)

= L therefore
m

tim 0 _ i <D> lim M(im) = L(1,xp)

t—oo t
m=1

which implies

O
proof of Theorem [2.10, Comparing Corollary and the previous result we conclude the

proof of the class number formula. O

2.4 A first bound on ¢(D)

Lemma 2.25. Let D be a positive fundamental discriminant, then there exists an absolute
constant C' such that

\/25 < ¢(D) < exp(CVDlog D).
Proof. (i) If D = 0(4) then D = 4d, d squarefree
e(D)=a+bVdst. a,b>1 = &(D) > Vd= \/25
If D =1(4) then D = d squarefree
e(D) = CH_;\/& st.a,b>1,a=b mod2 = (D) > \é& = \/25

(73) By the class number formula we have

L(1,xp)VD L(l,xp)\/E)

loge(D) = 21(D) e(D) = exp( 2h(D)
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Now, we have trivially A(D) > 1 and by Lemma

(log D + 1)\/5)

e(D) < exp( 5

which concludes the proof. O

Corollary 2.26. Let d be a positive squarefree integer, then there exists an absolute con-
stant C' such that
2Vd < e4 < exp(CVdlog d).

Proof. (i) We have g4 = t + uv/d where t,u > 1 and

t=vV1+du?>Vd = 4> 2Vd.
(#4) The second inequality follows from Lemma and the previous result. O

Remark 2.27. Notice that in the previous corollary the assumption d squarefree is not
needed to prove the first inequality. Indeed for any positive nonsquare integer d

Ed > 2\/&

Example 2.28. Let’s consider d = n? — 1 where n is a nonzero integer and can be assumed
positive. We claim that e =n + V.
We see immediately that n4-v/d represents a solution of T2 — (n? —1)U? = 1 and is strictly
greater than 1. Hence there exists an m € Zsg such that (e4)™ = n + Vd.
Let ¢4 = a + bV/d, if m > 1 then the coefficient of v/d in (g4)™ is strictly greater than 1
since a,b > 1. This does not fit with (e4)™ = n + V/d, therefore m = 1.

This example shows that the lower bound of the previous corollary is the best possible

since
cq—2Vd=n++n2—1-2yn2 -1

could get arbitrarily close to 0 by increasing the value of n.




Chapter 3

A divisibility property of ideal norms

Definition 3.1. Let D be a positive fundamental discriminant. We define D’ as the kernel
of D, i.e. the product of the distinct prime divisors of D. In particular

D=1 mod4
ifD=4d,d=3 mod 4
it D=4d,d=2 mod 4.

D' =

~lovls O

Finally, we denote by Fund™ the set of positive fundamental discriminants D such that
£(D) has norm 1.

Remark 3.2. Notice that if 22 || D then automatically D € Fund®. This follows from
Lemma

The aim of this chapter is the proof of the following result.

Theorem 3.3. For every D € Fund™ there exist exactly two distinct positive divisors of

D’ among the set of norms of principal ideals of OQ(\/EV both different from 1 and ﬁ.
We denote by ®(D) the minimum of these two distinct divisors of D'.
3.1 Legendre and Dirichlet’s transformation
Remark 3.4. Let d be a nonsquare positive integer. We rewrite (1.2)) as
T2 -1
T = U2, (3.1)

Now
d|T? -1 = d=(T?-1,d) = (T +1)(T —1),d)

and since (T'+ 1,7 — 1) € {1,2}, we are led to consider the two corresponding cases:

o If (T'+1,T—1)=11ie. T is even, then we deduce
d=(T+1,d)(T - 1,d)

35
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and we set dy := (T'+1,d), d2 := (T’ —1,d). Combining this splitting of d with (3.1
we obtain a system of equations

T+1=dU? d U2 — daU2 =2

T —1=dyU3 T =-1+dU?

d = dydsy — d = didsy (3.2)
U= U1U2 U= U1U2

(T'+1,T-1)=1 2tdiUy,

where 2t d;U; is needed to express the coprimality of '+ 1 and T — 1.
o If (T+ 1,7 — 1) = 2 we have to consider two subcases.

— If 41 d then U is even and (3.1)) can be written as

T+1  T-1
= kil <Q >2
d 2/
Now (%, %) =1. Weset dy := (%,d), dy = (%,d) and so applying the
previous reasoning we obtain the following system of equations.
(LTHL = 4, U2 diUZ — daU2 = 1
I=1 — 4,02 T = -1+ 24U}
d = didsy <~ d = didsy (33)
L=u0, U = 2U,Us
4t1d 41d.

— If 4]d then (3.1)) can be written as

T41  T-1
2 2 _ 772
- -U
4
Since (L3, I31) = 1 we factorize
d (T—i—l ii)(T—l g>
4\ 2 4 2 4
and we set dy := (L3, 9), dy := (L3, 4). Following the same previous idea,

we obtain a system of equations

TH = q,U3 AU — doU3 =1

T-—1 2 2

=1 — q,U. T=—1+2dU

dz—dd P e d = 4dyd 1 (34)
1= @102 = 20102

U:UlUQ U:U1U2‘

We summarize the above discussion in the following lemma.

Lemma 3.5. Let d,U € Z~q. Set

Ad,U):={T>1|T%-dU? =1}
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and

{(dl,dQ,Ul,UQ) c Zio ‘ U1U2 = U, dldg = d, d1U12 — d2U22 = 2} ifQJ[dU
B(d,U) := { {(dy,do, Uy, Un) € T4 | 200U = U, dydy = d, dyU? — doU2 = 1} if 2/dU, 44 d
{(dy,do, Uy, Un) € Z4 | UyUy = U, ddydy = d, diU? — dyU2 = 1} if 4| d.

Then in each case we have
#A(d,U) = #B(d,U) € {0,1}.
Proof. Clearly #.A(d,U) € {0, 1}.

e If 2 4 dU, to prove #B(d,U) € {0,1} we fix a quadruple (dy,da,Uy,Us) € B(d,U)
and we show that the values of d;, U; are prescribed by those of d,U. Observe that

U —1=dyU3 +1 = (dyU} —1)? = (d U — 1)(doU3 +1) = dU? 4 1,
thus d;U? — 1 is determined by d,U and the same holds for the ged (d1UZ,d). We

want to see that this ged is indeed dy. Let ¢ = (Uy,d2) then

QU2 — dyU2 = 2
{q’ 1V @20 — =1 = (U2 d) = d;.

24 dU

We've just seen that di and dy U} are completely determined by d, U. Thus the same
holds also for Uj.

e If 2 | dU,4 t d, to prove #B(d,U) € {0,1} we fix a quadruple (di,d2,U1,Uz2) €
B(d,U) and we proceed as before.

2d U — 1 =2dyU3 4+ 1 = (2d1U? — 1)% = (2d1U}E — 1)(2doU3 + 1) = dU? + 1,

thus 2d; U2 — 1 is determined by d, U and the same holds for the ged (d1UZ, d) which
is trivially dy since (U, d) | diUZ — doU3 = 1.

e If 4 | d the argument is precisely the same as in the previous case.
To conclude the proof we show both the implications

HAdU) =1 = #B(d,U)

1
#B(A,U) =1 = #Ad,U) >1

AV

hold. The first implication follows directly from the previous remark.
To prove the second one we notice that a quadruple (dy, d2, U1, Us) € B(d,U) gives rise to
an element

T:=dU} -1 if2¢dU
T :=2dU? —1 otherwise

belonging to A(d, U). O

To deal with the case D =1 mod 4 we will need a little variation of the above discus-
sion which takes care of the Pell Equation T? — dU? = 4.
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Lemma 3.6. Let d,U € Z~q such that 2t d. Let’s define

Ad,U) :={T >1|T? —dU? = 4}
B(d, U) Z:{(dl,dg, Ui, UQ) S Zio | U1Us = U, dydy = d, d1U12 — d2U22 = 4}.

Then we have
A(d,U)zzA(d,%) 2| U
#A(d,U) = #B(d,U) € {0,1} if 21 U.
Proof. Clearly #.A(d,U) € {0,1}.

To prove #B(d,U) € {0,1} we fix a quadruple (di,d2, Uy, Us) € B(d,U) and we show that
the values of dy, U; are prescribed by those of d,U. Observe that

U2 —2=dyU3 +2 = (dyU} —2)? = (dU? — 2)(doU2 + 2) = dU? + 4,
thus diUZ — 1 is determined by d,U and the same holds for the ged (d1UZ,d). Let ¢ =
(Ul, dg) then

U2 — dyU2 = 4
{Q| 171 — a2 — g=1 = (iU2d) = d,

and we conclude as before.
Let’s prove the two equalities.

e Case 2 |U.
(C)If T € A(d,U) then T? — dU? = 4 and reducing modulo 4 we get 2 | T. Hence

(G -aly) =11 = Seaa).

)T e A(d, %) then

~ 2 - - ~
T2—d(%) =1 = (272 —dU? =4 = 2T € A(d,U).

o Case 2{U.
(L) If T € A(d,U) then T? — dU? = 4 and so

(T+2)(T-2) _ o
d
Now since 2 1 dU we deduce 2 { T and hence (T'+ 2,7 — 2) = 1. We can factorize
d=(T+2,d)(T —2,d)

and set dy := (T'+ 2,d), do := (T — 2,d). Finally

Upi= /42 U\Uy = U )
1 \/E :>{ L = (dy,de, Uy, Us) € B(d,U).

U, = 5 d1U12 — d2U22 =4
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(>) If (dy, dy, Uy, Us) € B(d,U) then we set
T :=dyU3 +2=dUt -2
U:=UUy
and we conclude the proof computing
T? — dU? = (d U2 — 2)(daU? + 2) — dU?U?2
= dULUZ 4 2(d1U? — doU3) — 4 — dUZU3
= 2(d U — doU3) — 4 = 4.

Remark 3.7. Notice that the implicit decomposition of Lemma (3.5
(d,U) = (d1,d2,U1,Uz)

should be seen as a square rooting process. Indeed, a solution T4+ U Vd of (1.2) produces
via Lemma the algebraic integer Uy+/d; + Ua/d2 such that

Ui/ d1 + Ua\/d2)? = d1UE + doU3 + 2U1Uzv/d1d>
_JT+Uvd T odd
2T +UVd) i T even.

An analogous observation could be done easily also for Lemma [3.6]

Remark 3.8. Let’s consider now the special case where d = p = +1 mod 4 is a prime
number. In this case d can be only factored as d = didy in two ways: either

dy =1 dy=p
or
d2 =P dg =1.
Hence the study of (|1.2)) is reduced to the four equations
+2 if 21U
U2 _ pU2 —
. {jzl if2|U.

Since we are looking for nontrivial solutions we have Uy > 1, we deduce Uy > /p — 2 and
therefore U > y/p — 2 in any case. Let p be a solution of 7?2 — pU? = 1 then

p=VpU?+1+U\p
>plp—2)+ 1+ plp—2)

> 24/p(p —2) > p,

where the last inequality holds since p > 3. Hence, we deduce that the fundamental
solution

Ep > P
and, by Lemma if p=3 mod 4 the fundamental unit

£(4p) > p.
Notice that the same holds in the case p = 2:
e =3+2V2>2, 8 =1+V2>2
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3.2 Gauss’s theorem on the 2-rank of Cp

Recall from Remark the definition of the narrow ideal class group Cp.

Definition 3.9. Let K be a quadratic field of discriminant D. An element a € K* is said
to be totally positive if a” is positive for all embeddings o : N — R.

The totally positive elements of K form a subgroup KT of K* and we write Ug =UpNK™
for the subgroup of totally positive units (Up = OF).

Notice that if K is imaginary, i.e. has no real embeddings, then total positivity is no
restriction. Hence K™ = K*, U}, = Up and Clp = Cp.
Lemma 3.10. Let K be a quadratic field and suppose a € K is such that N /g(a) = 1.
Then there exists b € K* such that a = % where o denotes the non-trivial automorphism
of K/Q.
Proof. If a = —1 we take b = v/d. Otherwise we set b = (1 +a)~! and then

l+a (I+4+a)a (1+a)a

1+a° (1+4a%a a+1

O

Lemma 3.11. Let K be a quadratic field. Let o be the non-trivial automorphism of K/Q
and let a be a fractional ideal of Ok with the property that a° = a. Then a = rq where
r € Qso and q is a squarefree ideal divisible only by prime ideals lying over ramified primes.

Proof. Up to computing a greatest common divisors and keeping it in mind we can assume
a be an integral ideal.
Consider the prime factorization a = p,°! ... p,°", by multiplicativity of the norm we have

N(a)=N(p....pn™) = N(p)™ ... N(pn)™.

Let p be a prime ideal over a prime p then (N(p)) = (p) = pp? since the Galois group acts
transitively on primes above a prime integer p. We deduce that (N(a)) = aa“.

We can assume the pi’s are such that pipi” = (p;) # (p;) = pp;” for i # j and so in
particular we can assume p; # p;° for i # j. If it is so then we can write, wlog 7 < j,e; > e;,

_ €j e e;—e; 0
a=p; PRSI TR AN TR
~—
€Z>0

P (3.5)

and in order to reach our aim we can work without the factor (pjj ).
Suppose now that a = a%, we get

(N(a)) = aa? = a® =
=P (7)) = 2L

and by uniqueness of factorization p;? = p; for all 7 otherwise p; = p;” for some i # j and
this contradicts our assumption.
We immediately deduce that p;’s are lying over ramified primes since p;2 = (p;). In partic-

ular
!

a:n?“g?“gplll...pn”
where r; € Qsq is given by the first assumption, ro € Zs¢ is determined by (3.5) ,

‘1 en
r3;:p%2J...pTLL2J€Z>0andli€{0,1}. O
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Remark 3.12. Recall that the ramified primes p in a quadratic field of fundamental
discriminant D are exactly the ones dividing D.

Theorem 3.13. Let K be a quadratic field and let D be its discriminant. Let S be the
group of Ok -fractional ideals of the form Hj p;Y7, where the p;’s denote prime ideals lying
over ramified primes and v; € Z for oll j. We define the group homomorphism

I/:S—>CD
a+— [al.

Let Cpo:={g€Cp:g*>=1} and §? := {a? : a € S} then v induces a surjection
U 8/82 — CD72
whose kernel has order 2.

Proof. We split the proof in two parts.

e Let’s prove that imv = Cp ».
(C) As we've already noticed, if p denotes a prime ideal of Ok dividing a ramified
prime p then p? = (p) € Pg. This implies that S C ker v and hence imv C Cp».
(D) Let o be the non-trivial automorphism of K/Q and ¢ be an element of Cp.
Notice that ¢ has always an integral ideal a as representative.

thus

which implies the equalities

(3.6)

Cpa =ker(l—o0:Cp — Ch)
(Cp)* = (Cp)'—°.

Now suppose ¢> = 1 and choose an ideal a which is a representative of c. Then by
(3.6) there exists a € KT such that a'~7 = (a) and so

(Nicjg(a)) = (a'*) = alt=0+7) = (N(a)!=7) = O.

It follows that Nk g(a) = £1 and so, since a € KT, Ngg(a) = 1. Hence by Lemma
there exists b € K* such that a = b°~!. Since a € K, b and b° must have the
same sign and so, up to change the sign, we can assume b totally positive. Now

a7 =(a) ="' = Ve =ba
and so by Lemma [3.11
ba = ra,, r € Qsg,a, €8.
We conclude imv O Cp 2 showing

v(ay) = [a,] = [ray] = [a] = c.
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e The aim of the second part is to prove [kerv : S?] = 2.

First, we notice that if v € Ug then v!17 = Ngjg(v) = 1. Hence the identity

l-0 _ Ul+a+1—a — 22

v v

implies
UH)' =7 = (Up)*. (3.7)

Suppose a € kerv so a = (a) for some a € K™, since a € S we have clearly a = a.
Hence

Ok =a""=(")=d"7cUp = d7cU}.
a€K+

Given a, a is unique only up to a totally positive multiplicative unit; however (3.7))
implies that for v € Ug
a'™? = (av)'™7 mod (U})*.

Thus we deduce a well defined group homomorphism

k — Ug/
: T v
proie (U5)?

a—sa'°.

Let’s prove that ker p = S? and p is surjective.
— (2) Again, if a € S then a? = (a) for some a € Qs¢. So a? € ker v but also
a* = (a) — p(a®) = [0 7] = [1]

and so S? C ker p.

(C) Conversely, if a € KT with (a) € ker p, then by a'=% = v? = v for
some v € UZS. Then (av=1)? = av~! means that this element is fixed by the
action of the Galois group and so av™! € Qx,

— (a) € S2.

{av_l € Qo
(av 1) =(a) €S

This concludes that also ker p C S2.

— Let now v € U}5 s0 N g(v) = 1, thus by Lemma there exists a € K* such
that a'=% = v. As we said in the first part of the proof, we can assume a totally
positive. Moreover

(a)” = (a”v) = (a),

then applying Lemma we can write a = ray, where r € Qsg, a1 € KT and
(a1) € S (in particular is in ker v). Hence
a7 =a""" =v = p((a1)) =v mod (U})?

and this shows that p is surjective.
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So far we’ve proven
+
g = T
We conclude the proof of the theorem showing that one always has
Uh - (Uh)A =2.

If K is real then we deduce from Dirichlet’s unit theorem that UZS is infinite and
cyclic, therefore the previous equality holds. In the other case, if K is imaginary
then it follows from Remark that U}, = Up = up where pp is the cyclic group
of roots of unity in K and it’s of order w. Notice that w is always even and so the
number of squares in up is the half of w, therefore the previous equality holds.

O

3.3 Proof of the main statement

In this section we are going to prove Th. We will need a preliminary result that we
present without proof, see |[2I], § 3.3.5] for an exhaustive discussion of it.

Theorem 3.14. Let D be a positive fundamental discriminant. There exists a group F
such that one has a short exact sequence

1—F,—Cp—Clp—1,

in particular |Fs| = [Pp : PP] is at most 2.
Moreover |Fy| is exactly 2 if and only if (D) is of norm 1.

proof of Theorem [3.3. Let p;’s be the pairwise distinct ramified primes in OQ(\/E) for 1 <
i <t ,ie. the distinct prime divisors of D. We denote by p; < OQ(@) the prime ideal
above p; for all i and we define

M = {p,°" ...p | §; € {0,1} for all 4}

which is the set of ideals of norm dividing D’.
In the notation of Th. we notice that M generates the group S and one has the
surjection

v 8/82 — CD’Q

whose kernel has order 2. Hence each class in Cp o has exactly two representatives a, :=
P ™, = p % pPin S/Sz. Up to multiplying or diving by (p;) € S? for some
i we can assume «;, 3; € {0,1} and so a,,a, € M.

In particular P;}, which is the trivial class of Cp,2, has two representatives in M: (1) and
a non-trivial ideal a € M.

By definition of M we have N(a) | D’. We want to see that N(a) # 2. Assume

(D)
(a) =a=p,“...p* is such that N(a) = (DD,4)7 then

(N(a)) = pu* .. p®* = a® = (a?)
and we can assume a? = (D—%. We deduce that a = ( ﬁ) but this leads to a con-
tradiction since D positive and so (D% is of norm —ﬁ, which is negative, but a is

representative of the trivial class in Cp .
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Thanks to the Legendre-Dirichlet transformation presented in the previous section we
can describe explicitly the ideal a. To detect the ideal a, recall that it has to be different
from (1), principal and generated by an element of positive norm. These conditions auto-
matically imply that a is the ideal we’re looking for. We are going to split this discussion
in three cases, according to divisibility properties of D.

1. Case 22 || D,ie. D =4d,d=3 mod 4.
e(D) = T + U+/d is such that T? — dU? = 1 since D € Fund™.

e If T is even we consider the system of equations (3.2]). We see that the integer

2d; > 1 divides

D
D' = 5 = 2d = 2dyd2

and the algebraic integer d,U; + UsV/d is of norm
Nowpyo(diU1 + UaVd) = diUf — dU3 = di(d U — doU3) = 2d1 > 1.

Hence we set a := (d1U; + UN&). Observe also that U;v/d + Usdy is of norm
—2ds < 0.

e If T is odd we consider the system of equations (3.3). By Remark
€(D) =T+ U\/E = (le/ dy + Usv/ d2)2.

If di = 1 then d = dy and Uy\/di + Us/dy = U; + Usvd will be such that
U} — dU3 = 1 which contradicts the minimality of £(D), therefore d; > 1. The
algebraic integer d1U; + UsV/d is of norm

No(ypyoldiUt + U2Vd) = diU} — dU3 = di(diUf — doU3) = di > 1.
Hence we set a := (d U1 + Ug\/;i). Observe also that U;v/d + Usds is of norm
—d2 < 0.

2. Case 2¢D,ie. D=d,d=1 mod 4.
e(D) = T%m where T'=U mod 2. If T and U are both even we can argue as in

the previous case with % odd. Indeed, if % even then
T\2 U\?2 U\2
reducing mod 4

and this is not possible since —1 is not a square modulo 4. Assume now T, U both
odd and fix the notation as in Lemma T and U satisfy T? — dU? = 4 and

_ T+U\/g_ (U1\/E+U2\/d§)2
N 2 N 2 '

e(D)

As before, if d; = 1 this contradicts the minimality of e(D) since Ul%w becomes

d1U1 +UsVd
2

of norm 1, therefore d; > 1. The algebraic integer is of norm

d U2 — dyU2
_d].

_ —d; > 1.
4 4 !

N diUy + UsVdy  d2U% — dU2
awmre(T g ) =

Hence we set a := (M)_ Observe also that w is of norm —dy < 0.
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3. Case 23 | D, i.e. D =4d,d =2 mod 4.
e(D) = T 4+ U+/d and satisfies T? — dU? = 1. Rewriting it as

dU? =T? - 1= (T - 1)(T +1)
we deduce T odd and U even, since 2 || d. We consider the system of equations (3.3)

and by Remark
e(D) = (Ui\/dy + Usr/do)?.

As before we deduce dy > 1 and we set a := (d1Uy + UQ\/&). Again, the algebraic
number U1Vd + dsUs is of norm —ds < 0.

At this point we want to understand how the elements of Pp are represented in M. Th.
3.14} together with D € Fund™, implies [Pp : Pg ] = 2 and then Pp has four representatives
in M by the above discussion. We can give an explicit description of these four ideals.
Pp is the digjoint union of two cosets with respect to the subgroup PE. In the coset Pfg
we have already exhibited the two elements

We now investigate the last two elements coming from the other coset. In this coset has
to lie the ideal
(Va),

since the algebraic integer v/d has norm —d < 0 dividing D', in particular this implies that
(vV/d) € M. Let b be the fourth ideal we are looking for. From what we've observed during
the discussion of a, we realize that

(Ul\/;l—F dQUQ
b= 2
(U\Vd + dyUs)  otherwise.

) #¥D=d=1 mod4

Finally, if 22||D = 4d and (D) = T + U+v/d with T even, then

N(1)=1 N((Vd)=d
N(a = 2d1 N(b) = 2d2,

~—

otherwise

O

Remark 3.15. Observe that, in the notation of the previous proof, starting from the
ideals (a), (v/d) we can present a constructive way to detect the fourth ideal b.

In the decomposition of (av/d) as a product of prime ideals, the p; ’s are the only prime
ideals that may appear. Reducing the exponent of each p; modulo 2 and recalling that
pi? = (p;) for each i, we obtain a principal ideal

d
bi=p,% ... pd = <M> e M,

t
[Tica p;ﬁ
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where §; € {0,1} and 7; € N.
The generator of this ideal has negative norm and is different from (v/d), otherwise this
implies (a) = (1) which is not the case.

Recall now d = dids and a,(v/d) € M. In the cases N(a) = di, we have N(a) | d
therefore all primes appearing in the factorization of a appear also in the factorization of

the ideal (V/d), i.e. a| (Vd).

Vd)

a (
(a\/&) = a(a)(\/g) = a2T

— b:@
a

,N(b) =dy

Now, if N(a) = 2d; what we said in the previous case is true except for the prime ideal p
above 2, i.e. a|p(v/d). In the construction of b, multiplying (av/d) by (2) has no influence
since the last one is equal to p.

avil) =YD o= OV iy My,

24y
From the above proof, we deduce an explicit description of ®(D).

Corollary 3.16. Let D € Fund™ and d := %. Let d = didy be the coprime factorization

of d obtained from (3.2)), 3.3) or Lemmal[3.6f Then
o(D) min(2dy, 2ds) if 22 || p,T even
min(dy, d2) otherwise,
where in the first case e(D) =T + U+/d.

Remark 3.17. As a consequence

(D) VD if 22 || D, T even
Vd otherwise,

where in the first case (D) = T + U+/d.

Example 3.18. Let D = 12 then D' = 6 and d = 3, we have (D) = 2 + /3 and so we
are in the first case of the previous corollary /remark. In the notation of the main theorem

(\/g) = (\/3) N@(\/ﬁ)/Q(\/g) =-3|D,
a=(3B+V3)  NyymyeB+v3)=6|D.
To detect b we follow the constructive strategy:
a(Vd) = (3)(1+V3) = b= (1+V3),
since (3)(1 4 +/3) is congruent to (14 +/3) modulo squares. Notice that
Nyl +V3) =-2| D,

therefore

®(D) = min(2,6) =2 £ Vd = V3.

This example shows that one cannot extend the previous remark to assert that ®(D) < v/d
for any D € Fund®. One observes also that at most one of 2di,2ds is larger than d,
otherwise if 2dy, 2dy > d leads to a contradiction since d = djds.
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Remark 3.19. Let D be a positive fundamental discriminant which is not in Fund™ and

= (D—DA). In the notation of the proof of Th. we have Pp = PE and so the number
of representatives of Pp in M is two. Clearly the first representative is (1); we deduce the
second one from the fact that ¢(D) has norm —1 and so d is the norm of the totally positive
algebraic integer (D)v/d. Therefore, in this case we conclude that the only two divisors
of D’ among norms of integral principal ideals generated by totally positive elements are

1 and d.
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Chapter 4

Density of Fundamental
Discriminants

4.1 Density and main statement

Definition 4.1. Let S be a subset of positive integers, S is said to have positive density if

1 <n<
liminf#{nes <n<az} > 0.

T—00 €

The set S is said to be negligible if

:1<n<
limsup#{nes 1_’I’L_$}:

T—00 x

0.

Notation 4.2. The expression f(z) < g(x) means essentially f(z) < O(g(x)) as x — oo.

Remark 4.3. Let F be the set of positive fundamental discriminants and let x € Rs 1, we

want to estimate
#{D e F:1<D<uz}.

Any fundamental discriminant 1 < D < z corresponds to a unique squarefree integer

d= «TDD) such that 1 < d < x and, on the other hand, any squarefree integer 1 <d <

corresponds uniquely to a fundamental discriminant 1 < D < x. Then

S ) <#{DeF:1<D<a} <) pP(n)

ng% n<lz

By Remark |1.12] we deduce #{D € F : 1 < D < z} > z and therefore
D 1< D<

liming PP EF 1 D=2},

T—00 x

)

which means that the set of fundamental discrimants has positive density.

We are going to deal only with fundamental discriminants D such that e(D) has positive
norm, i.e. Fund™ C JF; one can see that this is not a "big restriction" in terms of density.
The evidence of this fact is represented by an important result from Landau, see [[5], §
7.5].

Theorem 4.4. Let x be a positive real number greater than 1, the set of integers 1 <n < x
that can be written as a sum of two squares has cardinality

l<n<z:n=a®+babeNsg} =0 o).
#{ SN>xin a” + , A, € >O} <V46§E>

49
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We need also an elementary number theory result, see [[19], § 18|.
Theorem 4.5. Let n be a positive integer, then
n=a®+b? da,b € Nyg

if and only if any prime p =3 mod 4 dividing n appears with even exponent in its factor-
1zation.

Remark 4.6. At this point, we are ready to investigate the density of the set F\ Fund™.
Remark implies that if D € F and (D) has norm —1, then D is in the set of special
discriminants. These are the positive fundamental discriminants only divisible by 2 or
primes congruent to 1 modulo 4. Therefore, applying Th.

{1<D<z:DeF\Fund"}c{1<D<z:DeF,(p|D=p=2orp=1(4))}
c{l<n<z:(pln=p=2orp=1(4))}
c{l<n<z:n=d>+b*3a,bec Nyl

Finally, Th. allows us to conclude that the set F\ Fund™ is negligible, since

=0.

D Fund® :1<n < 1<n<z:n=ad?+b
limsup#{ € F\ Fun _n_x}glimsup#{ <n<z:n=a*+b}

T—00 X T—00 X

The aim of this chapter is to prove that there is a positive density of fundamental
discriminants D > 0 with large regulator R(D). More precisely, the following theorem
says that the fundamental unit (D) is essentially greater than D3 for a positive density
of D’s.

Theorem 4.7. For every § > 0 there exists xo(0) > 0 and co(6) > 0 such that
#{D € Fund* : z < D < 2z,2%||D, ®(D) < D°,&(D) > D>} > ¢o(d)z (4.1)

for every & > x0(68), where ®(D) is defined in Th. [3.3
The condition 22||D can be replaced by 8 | D or 24 D.

Remark 4.8. One may object that there is some redundancy in imposing both conditions
D € Fund* and 22||D by Lemma [1.31} However the norm of the fundamental unit is of
course no longer automatically positive in the cases 21 D and 8 | D, as one can deduce
from Example

4.2 D € Fund®™ with small regulator
In this section we are going to deal only with the case 22||D.

Notation 4.9. The letter p always denotes a prime number. The condition n ~ N means
that the integer n has to satisfy the inequalities N < n < 2N. However, it will be clear
from the context when the symbol ~ denotes asymptotic behavior of functions.

Now, we recall a stronger version of the Dirichlet’s prime number theorem in arithmetic
progression which is a consequence of the Siegel-Walfisz Theorem, the reader can find a
complete treatment of it in |[24], Th. 8.17].
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Theorem 4.10. Let q,a be integers satisfying ¢ > 1 and (a,q) = 1 and x be a positive
real number. Define as w(x;q,a) the cardinality of the set of prime numbers congruent to a
modulo q and not exceeding x. For every constant A > 0, there exists a constant ¢ = c¢(A)

such that Li(2)
m(x;q,a) = 2(0) + O(x exp(—cy/log x)),

holds uniformly for x > 3 and for q < log” =, where Li(z f2 logt dt.

Remark 4.11. Applying integration by part

Li(z) =
i(@) log x log 2 / log t

log x log 2 / log t)?

- lozx +O<10g ;g)

Let D be a fundamental discriminant such that 22||D, hence d = % is squarefree and
congruent to 3 modulo 4. Let K be the quadratic field Q(v/D), as we said in the first
chapter

Ok = Z[Vd

and by Lemma [1.31
T+UVde O < T?—dUu? =1.

Our strategy is to construct a sequence of fundamental discriminants D with large
e(D) = g4 starting from,
d = pm,

where p = 3 mod 4 and m = 1 mod 4 is squarefree. We keep in mind that m will be
small compared to p, hence m is coprime with p.

Definition 4.12. Let m be a squarefree integer and = > 2 a real number, we define
Dim(x) :={pm :pm ~x,p>T7,p=3 mod 4}.

Let § = d(x) > 0, we define
Dy (z,90) := {pm € Dy, (x) : epm < (4pm)375}.

Notice that the condition p > 7 is not so restrictive and will be clear later. The set
Dy, (x,0) should be thought as the subset of D,,(x) of elements pm with small g,,.
Remark 4.13. Consider the cardinality of the set Dy, (x) and define the variable y := .-
We can assume y > 3 since m is fixed and we are interested in Dy, (z) as x — oo. It’s clear
from the definition that

#Dp(x) = 7(2y;4,3) — 7(y; 4,3).

Applying Th. .10 we get

_ 2y B Y Y
#Dm(x) - 90(4) log(2y) @(4) logy +0 (log2 y>
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where

2y B Y _ y( 1 B 1 )
p(4)log(2y)  »(4)logy log(2y) 2logy

log 2
(o g2y (1
2\ logy(log2 + logy) 2\ log2+1logy |

Therefore

Y Y
D =
7 () 2logy+0(log2y>

2 Hg — < O —)

Z T

#Dp () —

2mlog = log? =
holds uniformly for m < z°.

Remark 4.14. Let C' = (£) be a cyclic group of even order 2n. We recall that an element
g € C admits at most two square roots.

Suppose that a? = 2 = 42 = ¢, where «, 3, v are distinct elements of C. Without loss of
generality, we can assume that there exist 1 < ¢ < b < a < 2n integers such that

F=a=0=y = ===y

Then
{gQ(a—b):1:>2n>a—b:dn:>d:1

2l —1=m>b—c=dn=d =1,

hence we get a contradiction since
2ln>a—-c=a—-b+b—-—c=n+n=2n.
Theorem 4.15. For every k > 1 there exists c¢(k) > 0 such that the inequality
#Dp(x,0) < C(H)(?)“(m)m_lx% log? x + K3 213 log ),
holds for every x > 2, for every odd squarefree m < \/x and for every 6 = 6(x) > 0.
Proof. Counting also solutions that may not be fundamental produces the inequality
#Dpm(2,0) < #{(p,T,U) € N2 | pm € Dy (2), T? — pmU? = 1, T + U /pm < (4pm)*~°}.
We want to apply Lemma with the choice d = pm, where m satisfies
24 m, p?(m) = 1.

Notice that we are not requiring m =1 mod 4 up to now.
Let mimo = m be a decomposition of m. We consider the equation

iU — pmaeUs =1 for n € {+1,+2}. (4.3)
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By the starting inequality and using the values of T' appearing in (3.2)) and (3.3)) we get
#D,(2,8) < #{(p,T,U) € N2 |pm € D, (2), T? — pmU? = 1,T + U\/pm < (4pm)3=%}

=Y #{(p,T) e N2glpm € Dy (), T% — pmU? = 1,T + U /pm < (4pm)*~°}
U>1

= Z #{(pvm17m27U17 UQ) € Ni()|m1m2 = m,pm S Dm(x)leUQ = U7
U>1

miU? — pmoUs = £2, —1 + mUE + U U/ < (4pm)3_5}+

+ Z #{(p> m17m27U17 UQ) € Ni0|m1m2 =m,pm & Dm(x)72U1U2 = U7
U>1

miU2 — pmaU2 = £1, —1 + 2m U2 + 20, Uy /pimt < (4pm)3*5} -,

removing the condition in the product U;Us we can forget about the external sum indexed
by U,

= #{(p7m1;m27 Ula UZ) € Nio‘mlmz =m,pm S Dm($)7

miU? — pm2U22 =42, —1+mU? + U Uy /pin < (4pm)3_5}+
+#{(p7m1,m27 U1, Uz) € N2 |mimg = m,pm € Dy, (),

m1U12 — pm2U22 ==+1,-1+ 2m1U12 + 2U01Us/pm < (4pm)3*5}

= Y Y #H{eU0) e Nglpm € Dou(w),miUF — pmaUE =, (4.4)
mimo=m n==%2
-1+ m1U12 + U Us/pm < (4pm)3*5}+
+ > Y #{0.01,0:) e NLglom € Dy (), maUF — pmal3 =,
mimo=mn==%1
— 14 2m U + 2U,Us/pm < (4pm)3*‘5}.

To simplify the above inequality, we provide a bound for Uy, Uy in terms of x,m, 5. We
have

2 o — 2>
{mlUl n=pmaUs > 7 e U235

ne {1, +2}

and therefore

1 1 1
2m1U12 > m1U12 +5> m1U12 - :pmgUZ2 = §m1U12 + §m1U12 —-n> §m1U12.
>0

Multiplying these inequalities by 72

1(mln)? _ U2 < 2(mlUl)2 _ @mitn)?

2 pm pm pm
using the assumption pm ~ x and computing square roots, we obtain

1
§m1U1x_% § U2 S 2m1U1$_ .

From the inequalities defining the sets in the (4.4) we deduce

U1Us\/pm < 64(pm)376

SIS
—
e~
Ot
~—
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and so )
UyUs < 40022 9.

From the previous inequality and (4.5)), we have
U22 < 2m1U1U2x_% < 800m1x2_6 < 302m1:1:2_‘S

and so
19 1 1
Uy <30mia 2 U <2mj z2Us. (4.6)

Now we remove the condition that p is prime in (4.4). We deduce the inequality

#Dp(w,6) < D> > F(ma,ma,n), (4.7)

mime=mn==41,12
where F'(mi,mg,n) is the number of solutions to the congruence
U2 — 2
miU7 =n mod maU,,

with (Uy, Us) subject to (4.6)).
Let pym, (t) be the number of solutions 0 < u < t to the congruence

miu? —n=0 modt,

where n € {£1, £2} and m; is odd. Let t = plfl . .pfl be the prime factorization of ¢, the
Chinese Remainder Theorem allows us to reduce the study of p,m,, (t) to pmml(pf") with
pf7||t for all 1 <4 <. Observe that in any case (m,n) = 1 and this implies that, if the
previous congruence has a solution, we have (my,p;) = 1 for every i. Indeed, if p; | my
and myu? —n = 0(p;) we obtain p;|n which is absurd. Hence mj is invertible modulo pf"
for every i.

In the case p; odd, we have also (n,p;) = 1 and so the equation

2 _ 1

u” =nm;  mod pfi

*
has at most two solutions since (Z/p’?z) is cyclic of even order and we apply the previous
1

remark.
Let’s consider now the equation

u? = nmfl mod 2F

in the case p; = 2 for some i. Assume (n,2) = 2. If £ = 1 then we obtain a unique solution
for u=0. If £ > 1 then

2|17:>2\m1u2:>2|u:>4\u2:>4\77,

which is impossible since n € {£1,£2}. Finally, we can assume (n,2) = 1. If £ =1 the

*
above equation has only one solution else it has at most four solutions since (Z/ZkZ) is

cyclic of even order or the product of two cyclic groups of even order (see [[23], § 4.2] for
instance).
So we've just proven that pym, (2¥) < 4 and pym, (p¥) < 2 for any p odd, k > 1. Then

Pramy () < 29O for any ¢ > 1. (4.8)



4.2. D € Fund®™ WITH SMALL REGULATOR 295

Looking back at (4.7)), we have
F(ma, ma,n) = #{(U1,Us) € N2glmy U2 = n(maU3), Us < 30mia' ™%, Uy < 2my w3}
= Y #{U1 € NogJmiU? = g(maU3),Us < 2mi w2 Us).
U2§30m1%z1*%
We need to take care of the fact that if Uy is an element in the right hand side set and
1<U; + nm2U22 < 2m1_1x%U2 dn € Z,
then also this element is in the same set. Thus, we split the range of U in subintervals of

length myU3.

_q 1 1
2m11x2U2—1 <9 T2

1
1<U <2milz2U; =
== 1 2 m2U22 mimoUs

and so the number of subintervals is less than
D 1<2 s 1
\‘ mlmQUgJ Ti= mimaUs M

At this point
xs 2 2 2
F(my,mg,n) < E (27-5—1)#{(]1\7”1(]1 =n(maUy3),Ur < mpUs}

mimaUs

[SE

Ux<30m{ =

x
S 2 1) 2),
( mimaUs + 1) pnmi (MaU)

1
Us<30m2a'™ 2

Nl

o

Inserting (4.8) and the above inequality in (4.7)), noting also that n runs in a set of cardi-
nality 4, we obtain

1
HDy(2,6) <8 3 3 2°J<m2U2><2L+1)

mimaU:
L 1 s 1maUz
Up<30mZa' =2 (4.9)
1

€Tr2
< 16—31 + 83,
m

with
ow(U2)

Spe=o Yy 2N 0

mimo=m L
Up<30miz ~2

Yy = Z ow(m2) Z 2w(U2),

mima=m )

1
Ua<30mZa'™2

We used the fact that clearly w(mqUs) < w(msa) + w(Uz). Applying Lemma and
Corollary we get

M K E 2¢(m2) 1002 1 = 390m) 1og? 1,
mima=m Lemma
i (m)=1
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Keeping in mind m is odd and squarefree, by multiplicativity we see

guw(ma) ow(l)  gw(p) 2
5 n(E ) a3

ma|m plm plm

since p? t m for any p. If we fix any x > 1 we can find a prime p, such that

1+2</<;
N

This allows us to deduce

I - I ) T )
mam V2 G\ VP g VP S VP
P<px P2Pr
2
< H (1 + ) KO = (k) M)

P<pk \/ﬁ

Hence . 5
Yo <p kMm2z1 "2 log z,

putting everything together in (4.9), we conclude the proof. O

4.3 D € Fund®™ with large regulator

We are going to present the proof of the main theorem stated in Section

Proof of Th. case 2%||D. Let v be a constant satisfying 0 <y < % Let
D(x) = | Dim(@),
m

where the union is taken over the integers m satisfying
1<m< a7, p(m) =1, m=1 mod 4. (4.10)

Assume pm = p'm’ € Dy, (x) N Dy (x). We have pm,p'm’ ~ x and m,m’ < 27, hence for
x big enough we see m < p and m’ < p’. Looking at the factorization of pm = p'm’ we
deduce p = p’ and therefore m = m’. This reasoning shows that if m # m’ then D,,(x)
and D,/ (x) are disjoint. In particular, we have

D)= S #Du@)= S p2(m)#Du(x).
m satisfies 1<m<z?

m=1 mod 4

Using the uniform behavior we’ve see in (4.2)) and Th. [1.18], we get for z — oo

me
ELTFS ORI S LU LA R T —

2mlog £ 2mlog £
1<m<z” m 1<m<z? m
m=1 mod 4 m=1 mod 4
7
T 9 9 1 !
———0 > Em-a [ (X ) () @
227 log -5 o A W 2tlog 7

m=1 mod 4 m=1 mod 4
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and by Lemma [1.11

7
T x 1+logt
#D@) ~ f@) = r— =5 [ (X wm)
(1 —7)logz 2 | 1ot t*log” +
m=1 mod 4
Keeping in mind
(“ios7) = i
® 1) = 2
log tlog %
x !/
log 1 f) -
y <0g Ogt tlog%
2 1
2 _ 4 1
® Z K (m) - ﬂ_gt+0(t2)v
1<m<t
m=1 mod 4
we obtain
z [ 1+log L 1+1lo gf x
=2 e O(t2) at+0(——)
f(z) 7r2/1 tQIOg L / : t210 2t + log =
T T 1 1 1+logf T
= — 2 Tlog1 7—7] -2 owh)—Ea+o()
7r2[0g %87 log 11 2/1 (2)1521 : * log x
log(1 —7) Ty x log(1 —7)
-- o(g) ooy~
- x+712(fy—1)10g1:+ Tog + o(x) = x + o(x)

We deduce that for any 79 > 0 and for  — oo, one has

log(1 —
#DV(x) ~ Wm
uniformly for 79 <~ < % The definition of g allows us to conclude the uniformity since
it avoids the pathological case in which the coefficient log(1 —+) of the main term becomes
too small with respect to .
As we've already noticed if m # m’ then D, (z) and D, (z) are disjoint. Let § > 0,
we consider

E@8):= || (Dn@)\Dn(z,0)

m sat.
=D (z) D (x,0) ).
\(m sa‘!._l )

Every element pm € £(x,6) is squarefree and congruent to 3 modulo 4. Hence D := 4pm
is a fundamental discriminant which satisfies

epm = (D) > D379, dr < D < 8z.

We set v = g. In the notation of the proof of Th. and Corollary [3.16| we have
£ = dido, d1 = mq and do = pms. Therefore, up to multlply by 2, ®(D) = my | m and

m S 27 = 2. Thus the condition ®(D) < D is automatically satisfied since 21 is much
smaller than D°. We’ve just proven

4. 5(%,5) C {D e Fund* : z < D < 22,22||D, (D) < D®,e(D) > D).
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Applying Th. with the choice k = 2, the asymptotic formula for Dg(m) and recalling

Lemmoa [1.19] we deduce

#E(x,6) > —

T2

(1~ o(1))log(1 — 3)

(1-o(W)log1 =)

T2

(1 - o(1)) log(1 — §)

T2

which proves the main statement.

O

Remark 4.16. The proof in the other cases follows precisely the same lines of the case
22||D with some very little variations pointed out below.

. Case8]D,d:%.

In this case, the fact that D € Fund™ is no longer guaranteed which means that the
negative Pell equation 7% — dU? = —1 may be solvable. To avoid this inconvenience
we change the definition of the set

D (x) :={2pm : 2pm ~ x,p =3 mod 4}
and so, by Remark d € Dp(x) implies D € Fund™.

Case 21 D, d = D.

As in the previous case we have to modify the set D,,(z) with respect to the above
proof, in order to deal with D € Fund*. In particular, we wish that 7% — dU? = —4
admits no solutions and hence, we define

Dp(z) :={pm :pm ~z,p=3 mod 4,p > 19}.

Notice also that in this case Lemma is not enough and the missing parts are
covered by Lemma [3.6]



Chapter 5

Average size of the class number of

Q(vVD)

In this chapter we present a result related to ideal class number of real quadratic fields
applying what we’ve seen in Ch. 4 concerning the size of the fundamental unit.

Let D be the discriminant of a real quadratic field K := Q(v/D) and h(D) the ideal
class number of the same field. Recall that, from Th. we know

L(1,xp)
D)= =2222VD

where R(D) = loge(D) and xp is the Dirichlet character given by the Kronecker symbol
(Q) The aim of this chapter is the proof of the following estimation.

Theorem 5.1. Let Cy denote the converging Euler product:
p
Co = H (1 - 2 )
st DM —1)

There exists a constant 6 > 0 such that, for every sufficiently large x, the following in-
equality holds

Nl

E@p:}jh@ﬂg(zif%—éxix. (5.1)

D<x
22||D

5.1 Preparatory lemmas

We split the argument in some steps.

Lemma 5.2. Define the positive valued functions

R(D)
= D) :=L(1 D
(D)= 1 E(D) = (Lo
and £(D)
S(x) =) .
D<zx
22||D
Then to prove (5.1)) is enough to verify that
~ 8 3
< — 2,
S(z) < 2(217T2 Co 25)x2

29
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Proof. Applying Th.

L(1,xp) L(1 XD \FlogD 1
B(w) = Dz;x 2R(D) VD = Dz;z 2logD
22||D 22\|D

~ 1 * - 1\ ~ 1 ? 1
=% — 2(t dt =% Y(t)———dt
(x)Qlogx /4 ( )(Zlogt) (m)2logx +/4 ( )2t10g2t

Let C' := 2(21%2 Co— 25) by hypothesis we have
) z 1
Y(z) < (z) +/ dt
2logx 4 2t log“t
EY) \f

To conclude the proof we need to study individually the integral in the above sum.

1. Applying Remark to

3 2 vz 392 va y?
Lm:/ dt:/ d:/ Y gy+0
() o logt t:fy-; o4 log®) VT )y logy ™Y L),

we deduce
/\/”E y? r2 (a:g) 9 23 <x§>
0 = -
9 logy log(x2) log x 3log log x
2. Notice that 5 ) )
< y )’ 3y’logy —y* _ 3y y
logy logZy  logy log’y

and we get

VT y2 B VT 3y2 3y2 y2 B NG 3y2 NG y3 /
5—dy = - +—5—)dy = dy — dy
2 log”y 2 \ogy logy  log”y 2 logy 2 \logy

3

3 3
s ) .3 s s s
= 3Li(z3) - ——  to(1)=3-"2 o —|—0< v ):o( v )

w
w

log(z2) 3logx log x log x log x
Therefore ~ X s s
Y(x) x2 8 xz x2
Y(x) < ( ) < ( Co— 25) d
(z) < 2log to logz/) — \2172 0 log © + log x
which concludes the proof. O

Remark 5.3. Trivially, the above lemma is essentially an equivalence. Assume the esti-
mation (5.1)), then

- L(1,x 8 3
S@) =Y E%(D)D)\/DlogD < 2logaX(z) < 2(575Co — 6)a.
D<zx

22||D
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We state without proving the following result; the reader can check [[9], Prop. 12] to
find a good discussion of it.

Lemma 5.4. For every A > 0 there exists c(A) > 0, such that for every bounded
complezr sequences (cuy,), (Bn) and for every M, N satisfying the inequalities M, N >
max(2,log(MN)), one has the inequality

m _A
S anBum)en) (™) < e A)1(0)lcll() e MN o5 (M),
m~M n~N
Lemma 5.5. The following holds

>t 2H(1+ ) 1=H(1+(p+1)];pl)).

21t plt p>3

Proof. Let t be an odd integer and let t = p* - - - p%» be its prime factorization. We observe
that p;, >3 foralli=1,...n and

— 1 1 b1 Pn
t2||(1+ ) = ‘
p?‘“. p,%a" p1+1 pn+1

Let {pm }m be the sequence of odd primes, then

Seef(ier) = dm im0 Y

21t plt SC{1,..m} jES 1<i; <M pj “(pj +1)
m 1 1
= lim lim [1—1—( Pk )72+...+< Pk )W}
m—00 M—oo - pr+ 1/ py pr+1/ p?

m D M 1
= lm Jim JT[1+ (G22) > ]
m—00 M—ro0 - pr+1 Z pk%

ZA%H[”(pkpiﬁ( )] 10+ 555 -1)

p>3

O

Lemma 5.6. As y — oo, one has

4Cy 3
o WAL, xaa)Vd ~ ggy%
d<y
d=3 mod 4

where Cy is defined as in Th. and x4q ts the Dirichlet character defined by the Kronecker
symbol (4—fi).

Proof. Let n be a natural number,



62 CHAPTER 5. AVERAGE SIZE OF THE CLASS NUMBER OF Q(v/D)

Therefore, let Sp(y) be the sum we want to evaluate, we have the equality

Siy) = Y, V) % (%)
dE3dSrr?{od 4 7;)(2”1

which involves a Jacobi symbol. We want to express the infinite sum in n as a finite sum
with a small error term.

> =X )20

n>1 1<n<y? n>y?
2in 2in 2fn
1/d . 1/d
SR OIS
n\n Z—00 n\n
1<n<y? y?2<n<z
2tn 2tn

Using partial summation formula, we can express

I EED S ) B ID DI (R I ol 12
y2<fn§z 1S2?§z 1§rﬁ[gy2 Y ISZ?St
2tn n 2n, n

Recall that x4q is the Dirichlet character modulo 4d and so the sum over n varying in any
interval of length 4d of the symbols <%) is equal to zero. Hence, passing to the limit for

z — oo in the previous expression we obtain

D[ E s @a-5 5 (3

n>y 1<n<t 1§n§y2
2tn 2 2fn

and estimating the absolute value

8d
‘Z <4d‘/2 t2dt‘ _?’

n>y

2tn
we get that p p
1 1 _
> o= 2 () row™
o ol

uniformly for d < y. Observe also that y~! > i<y pd)Vd <y ty- y% Then, distin-
guishing the cases n square or not, we can write the sum &; as

Si(y) = Mt:1(y) + Eri(y) + O(y?),

where

Mt1<y) = Z Z

1<t<y
d= 3 mod 4 (t,2d)=

Enm = Y % 2<d>f(fl).

d<y 1<n<y?
d=3 mod 4 2{n n£0
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We are going to study Mt; and Er; individually.
We first consider Eri, we want to show that it behaves as an error term. We split the
double sum which defines Er; in subsums where the sizes of d and n are controlled. We

define
Er(D,N) = Z Z ( ).

d= 3 mod 42’mn7£[|

2

where D < 4 N < % Notice that the number of intervals of the shape D < d < 2D

(resp. N < n < 2N) to cover the interval 1 < d <y (resp. 1 <n < y?) is O(logy), hence
we are dealing with O(log? y) subsums Eri(D, N). Our purpose is to show

3
Eri(y) =o(y2) y—o0

and to do so, we want to prove that in all cases
Ery(D,N) = O(y2 log* ).

Observe that the trivial bound is

LECRUEIED S O VI« 3 S Y pvYP

d~D n~N
d= 3 m0d42Jm n;él]

then the desired estimation is proved when D < ylog=2y. From now on, we suppose
D > ylog~2y.

We decompose n as the product (?n’ where n’ is squarefree and we rewrite the double
summation:

IS SRUFUCED Sl S DR URCICEN

d= 3 mod 42)(71 n;éE\ l<2\)[/l7d 3 mod 4nN2J€Xl ’
=YL T T eeneea (@) (9)
Qfd z<\F gD | NI
21 =o MmO

Furthermore, splitting the sum according to { < N Torl>Niand applying Lemma
in the first case, the trivial bound in the second one; we obtain fo every A > 0

o< S o 55 e () (@l o5 5

l§N711 dcga) n'~NI~ N211<1S\/N n/d~7v]:z)—2
3 A 1 1 3 1
<aDilog ®(DNZ) }  +D: 5
I<NT Ni<I<VN
3 _A 3 _1
<4 Dz log 2(DN)+D2N 4

To verify that the first term of the above sum is the main one we have to see that

3.1 3. A 4 1
D2N"1 <4 D2log"2(DN) < log2 (DN) <4 Ni.
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Recall that D < y, N < 2, thus it’s enough to prove logg Yy <A N7 which is clearly true
for N large enough. For instance we can set A = 20 and N > log!? y: we have, for y > 1,

log10 y < log25 y < N%

and we conclude
3
|Er1(D,N)| < D2 log '°(DN).

It’s immediate to deduce that
|Eri(D, N)| < D? log °(DN) < y2 log 3 y.

Just an observation, to apply Lemma we need D, NI72 > max(2,logA(DNl_2)) and
indeed this condition is verified since, for y large enough,

D > ylog~2y > log?°(y?) > max(2,log (DNI~2)),
NI"2> Nz > log™ y > 1og? (y®) > max(2, log” (DNI~?)).
It remains to consider the case

D > ylog~2y, N < log!®y.

Lemma says that
d 1
> 2@)(5) =0mDh).

d~D
d=3 mod 4

Applying summation formula

2D
1
3 ;ﬁ(d)(g>\/3 = O0(nD?)Dz + | O(nt2)= dt = O(nD),
D n D t2
d=3 mod 4
then X
|Ery(D,N)| =) ~0(nD) = O(DN)
n~N

and thus

|Er (D, N)| < ylog'®y < y? log ™ y.

The proof of Erq(y) = o(y%) is now concluded.
Let’s investigate the term Mt;. Applying summation formula and Corollary we
estimate the following sum

Yy
1 1
Y. wAVd=yy Yo A - | Y pid)dz
d<y d<y 3 2?2 g<:
(dt)=1 (d,)=1 (dt)=1
d=3 mod 4 d=3(4) d=3(4)
2 1\ ! 1 1\t oy
:ﬁH<1+> y3 - <1+) / Vzdz +0(2¢0y)
ot b Pt b/ Js
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Now, swapping the double summation which defines Mt (y) and recalling Corollary

we see
M =35 3 7

t<y

2t (dt) 1
d=3(4)

9uw(t)

zn( 3) o)

3 Zt 2H(1+ > + o(ylog?y).

21t plt

This, together with the previous lemma and the estimation of FEry, concludes the
proof. O

We will need also a variation of the above result, we present all the details for com-
pleteness. The proof requires another consequence of Siegel- Walfisz Theorem, see [[17],
Cor. 5.29].

Lemma 5.7. Let ¢ > 2 be a positive integer. For any primaitive Dirichlet character x
modulo q one has

> x(p) <a Vazlog™*

p<z
for any x > 2 and for any A > 0.

Lemma 5.8. Let 0 < v < %, for any x > 0 we define
Fola) i={d:d = pm.p*(d) = Lpm ~ 5.m < a7,p = 3(4),m = 1(4)},
then there exists C > 0 such that for x — oo
3" L(1,xaa)Vd ~ Cra.
deFs(z)
The asymptotic is uniform for v < v < 3 5, whenever 0 < o < %.
Proof. Let Sa(z) be the sum we want to evaluate, we have
1/d
S@= Y VayY (5= X wm X vy x (™).
deFa(x) n>1 m<zx” PG n>1
2tn m=1 mod 4 p=3 mod 4 2tn
As in Lemma [5.6] we split the sum as
Sao(x) = Mta(z) + Era(z) + O(x%),

where

Mira) = Y Z > wm Y

m<ax?Y ~ e 1<t<x
m=1 mod 4 —3 mod 4 (t,2pm)=1

Ery(x) := Z Z Z Q(%)

m<a” P~gn  1<n<a?
m=1 mod 4 p=3 mod 4 2fn,n#£D
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We decompose Erg in O(logz) sums defined by

CEOED SED S o

m<z?Y n~N
m=1 mod 4 —3 mod 4 2fn,n#0

where N < x . We want to prove that in all cases
Ery(N) = O(x% log™2x).
Following closely the part of the previous proof in which we apply Lemma 5.4, we obtain
|Era(N)| < s logzlog %z 7'N) « 2 log~2x
uniformly for N > 1log!% 2. It remains to deal with the case
N < log!®

Let xo be the principal Dirichlet character modulo 4 and let x; be the (unique and
primitive) non-principal character modulo 4 defined by x1(3) = —1. It’s easy to check that

X0 — X1

1
I3 mod4a = =(x0(3)xo+x13)x1) = 5

2
notice that this follows also from a more general fact, i.e. the orthogonality of characters.
Let n be odd and nonsquare, we decompose it as the product I?n’ where n’ # 1,2 is
squarefree.

afz,n) =Y Z u2m) (22

m<z”

m=1 mod4p:3 m0d4

= Y p(m) (%) z; <%) (?)213 mod 4(P)

m<zx?Y p~2
m=1 mod 4 m

= Y 2 (™) [owm) +% > (%) —% > (Z)aw)]

m<x” p~E2 ~D
m=1 mod 4 m L

3o

Since n’ is squarefree then (W) is a primitive character modulo n’ and since (4,n') # 1 the

product (ﬁ))ﬁ is a primitive character modulo 4n’ by Lemma Applying the above
result we obtain, for any B > 0,

alz,n) <p Z {W(”)‘FmglOg_B( )_'_\F log™ (Zﬂ

m<z”
m=1 mod 4

< z'w(n) + vVn'Dlog=B(Dz~7)log x.

Moreover, recall that we are assuming D > zlog 3z, n < log!® z, v < % Therefore, for
any A > 0, we get
afz,n) <4 vnDlog™* D.
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We deduce

1
Ers(D,N) <4 D2log™ DY ~v/n
n
n~N

<A D2N2 log™ D <4 2 log~*(zlog ™ ) log™ «,

which concludes the proof of Ery(x) = o(a:%) choosing A large enough.
As regards Mto,

VACENED YD DR SR A

m<ax?Y 1<t<z P g
m=1 mod 4 (¢,2m)=1p=3 mod 4

(p,t)=1

=Y 5 X e Y

1<t<z m<axY pwﬁ
24t mz(yln t)riold 4 p=3 mod 4
’ (pt)=1

In the inner sum we can forget about the condition (p,t) = 1, up to consider an error
term O(w(t)) which is very small compared with the all summation since ¢ < z. Reasoning
as in Remark [4.2] we see that the inner sum runs over a set of primes of cardinality
~ z(16mlog £)~! uniformly for m < 27. Hence, as  — oo,

D, VB~ D> Vb

P~ P~
p=3 mod 4 p=3 mod 4
(pt)=1

and
X X
T/ 8m < Z \/25 < T\ Im
16mlog < ~ 16mlog -
P~gm
p=3 fnod 4

uniformly in m. We deduce that there exists a constant ﬁ <c < 3% such that

3 2(m
Mty(x) ~ crx2 Z %2 Z Ll

mlog -~

1<t<z m<zxY
21t m=1 mod 4
(m,t)=1

Observe that

I W2(m) W2(m) | W2 (m)
Z = Z mlog & = (1—7~)logx Z m

m<x” m<x” m<x”
m=1 mod 4 m=1 mod 4 m=1 mod 4
(m,t)=1 (m,t)=1 (m,t)=1

Fixing vy as in the statement and applying Th. to Corollary we obtain

—1
2
pe(m) 2 1
F) 2T+ =)
> WQPH(% Jloga

m<zxY
m=1 mod 4
(m,t)=1
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uniformly for 79 < v < % and t < x. Notice that the error term following from Corollary
can be ignored for t < z as we did in the previous proof. We deduce that there is a
constant % < < ﬂ%, since v < %, such that

-1
1
Mto(x) ~ clcgfyx% Z t2 H (1 + > ~ C’ym%
b

1<t<z  plt
21t

where C':= Cycycy is absolute and Cj is defined as in Lemma [5.6] In particular

1 1
— (g < C < —C().
164272 0=% = 42"

The proof is now concluded. O

5.2 Proof of the asymptotic estimate
We state without proof a result from [[8], Th. 1].
Theorem 5.9. For every positive €, one has
#{(d,eg) 2 < d<a,d+0,eq < dzt} = O (25 +1219)
uniformly for o > 0 and x > 2.
Putting everything together, we are ready to start the main proof.

Proof of Theorem[5.1 According to Lemma [5.2] our aim is to prove that

< 8
Y(x) < 2(21772 Co — 25):6%.

Let v, n, ' be small positive numbers and let £(x) := {D : D < z,2%||D, D fund disc}
be the set of indices over which our summation is performed. Writing down any D as the
product 4d, we see that D € £(x) if and only if d € F(x), where

F(z):={d: p>(d) =1,d=3 mod 4,d < Z}'
We consider the set F(z) as the disjoint union of three subsets defined as follows:

Fi(z) == {d € F(z) : k(4d) < Z — 17’}
Fala) = {d € Fla) : n(4d) > g

G(2) := F(@)\ (Fi2) U Fo(w).

—1n',d=pm,pm ~ %,p =3(4),m=1(4),m < x”}

We split further the set Fa(x) into the two disjoint subsets

Fy (@) = {d € Fola) : n(dd) < L}

Fi(z) = {d € Fo(z) : k(4d) > 24—?7}.
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Using this decomposition, we write

5(2) = 07, (1) + 05 (1) + 0.5 (1) + 0g(2),

where each term on the right-hand side is a sum over the corresponding subset of F(x).
We are going to consider each of these terms individually.

First, we investigate the cardinality of Fi(x) and the related summation. Avoiding
sufficiently small d’s, we have

#F1(z) = O(1) + #{d 2(d) = 1,d = 3(4), 427 2 < d <
Let S(z) be the the set defined on the right-hand side, it’s contained in the set
)= {d:d #0477 <d < e < (1) T

and so #F1(z) < #S(x). Theorem [5.9| says that, for any e > 0,

#{did# 04w <d <Dy <dite} = 0T

x
4 )
and we set o = % — %/, €= %. In particular, we notice that for any d in the above set

/

4245 o a% 248 o B (o) logyd
and so
5 77/ 7 ’ 5 /
o=i-3 2 (3= 7)lmadr g

This inequality implies that

and we deduce
#F(z) < #S(z) <. pStTiste = g%

We recall that if D = 4d is a fundamental discriminant such that 22||D then ¢4 = &(D)
and so, by Corollary r(4d) > 3. Applying also Lemma we obtain

1l q_n
Ly x2S logr==x

(NI

’
_n
8

o () = Z M log z.

deFi(x) H(4d)

In the notation of Th. we have, for any A > 0,

Dp(,\) = {pm :pm ~z,p=3 mod 4,p > 7,epm < (4pm)> 1,

_ x T 7
Fy (z) ={pm: u2(m) =1,pmn~ g,p =3(4),m=1(4),m <27, (4dpm)1™" < epm < (4pm)4+77}.

We set
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A >0 forn < g. Applying Th. , we see

#F @) <# U Dm(g,)\> -

x
> Pa(5)

mlx” m<x?
m=1(4) m=1(4)
w2 (m)=1 2 (m)=1

w(m N

< Z ( m?log  + 243 g1 510g:1;>
m<z”
m=1(4)
p?(m)=1

1 9 3“’(7”) 3.1
=z2log°x Z +ast2loga Z gw(m)
m<x” m

m<x”
m=1(4) m=1(4)
w2 (m)=1 p?(m)=1
< z2 7 log? z + ety log”
Now, setting v = %

and observing that for n small enough

3

sem o (n<g)
g =3

1 n
§+§
we get

-

#F, () < x2

313 log? .
In the same same way of the case Fj(x), we deduce

OF; (r) < zit3 log3 T
As a consequence of the definitions of G( ) and F, (z)

o Z (4d) + Z £(4d)
1 eFf (x) i- deg
1
=7 > g(4d) + ( dootd) - > 5(4d)>.
T e rt @) i deF(z dEF1 () UFs(x)
Let F2(x) be as in Lemma , we have clearly

Fy(x) C Fo(z) C Fi(x) U Folx)

deduce

and the class number formula, presented in the second chapter, guarantees that the values
of the L—function we are considering are positive, so the same is true for {(4d). We can

n+n
) toale) S D U - a2 S
1 def (1 +m(1 def( )
It remains to evaluate each of the above two sums. To do so, is enough to apply Lemma
to the first one and Lemma to the second with the choice v = 7. Therefore
2(2) = 054 (2) + 0g(x) + op () + 05 (2)
4C Cn+1n
(14 o(1)) - (m+n)n
3r2(3 — ')

o

i LURION RIS

)



5.2. PROOF OF THE ASYMPTOTIC ESTIMATE

Then by fixing 7 and 7’ small enough, we conclude that for x sufficiently large

~ 3 16C,
Z(.I')SKO(EZ, K0<m

71
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Chapter 6

On Hooley’s conjecture

The main theorem of the fourth chapter on a positive density of fundamental discriminants
with large regulator belongs to a family of results which goes in the direction of a conjecture
due to C. Hooley. This final chapter will be devoted to present the proven part of the
conjecture following [[16], § 2| and [[6], § 2].

6.1 One more arithmetic function

In this section we discuss a little variation of the multiplicative arithmetic function 2.
In the notation of the proof of Th. L.15] we set

p(u) = p11(u?), u € Zsg.
More precisely the arithmetic function u — p(u) denotes the cardinality of the set
R(u) :={Q modu?:0*=1 mod v?}.

The multiplicativity of p is guaranteed by the Chinese Remainder Theorem while its values
are completely determined by

p(2) =2
p(2¥) =4 fork>2
p(pl) =2 forp>3,01>1.

Lemma 6.1. Let x be a positive real number greater than 1. Then
8
Z p(u) = —zlogz + O(x).
u<lz g

Proof. The trivial relation

plu) = 29 if44u
2290 if 4|y

allows us to split the sum as follows

Z p(u) =2 Z ow(u) 4 Z gw(u) _ Z ow(u) 4 Z gw(u)

u<lzx u<lzx u<x u<x u<lzx
4|u Hu 4|u

73



74 CHAPTER 6. ON HOOLEY’S CONJECTURE

Remember that 2¢(%) = $° dlu p2(d), we investigate the first term of the above equation.

D20 =N Ad) =D pd)Y 1

ulzx u<z dlu d<z ulzx
4lu 4lu 4lu
dlu
S DEC) RS DIET) HES LB
d<z u<w d<z u<lwx d<z -0 u<x
2td 4d|u 2||d 2d|u 4]d dlu
2 2
. 1) @ u2(d)
=2 z 0
> i Ts 2 g Tow
d<z d<z
d=1,3 mod 4 d=2 mod 4

Following the last part of the proof of Lemma [I.19] and keeping in mind Remark [I.12] we
deduce

x4 T/ 2 2
; gw(u) — 1 <§ log :v) + B (; log $> +O0(z) = ﬁxlogaj + O(x).
4Tu
Therefore, applying Lemma we conclude

Zp(u) = (% + %)xlogm + O(z).

u<zx

Corollary 6.2. Let x be a real number greater than 1 and let o > 0. Then

Z plu) = iz log? z + O(log x)
u ™

u<z

and

1
ﬁ( W _ 6gxilogx+0((1+a2)xi).
“2a s

’LLSJ?U 2a

Proof. Both formulas follow directly from Th. and the above lemma. We have

ZP(UU): /tQZP

u<z u<x u<t
8 8 logt
= ﬁlog:c—&—O(l)—i-; . dt + O(log x)

4
== log? 2 + O(log z),

S - LS (1-5) [

u<lzx

8 8 1 * logt 1
= W—:z:m logx+0(x2a)+(l—2a>/l pra dt + O((1 4 a)z2)

8 8 1
= pxi logx + = (1 - %)2(1(3?% logx — /1 t2a—1 dt) +O((1+ a)zi)

16 1 L
=g logz + O((1 + a?)z2a).
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D=

6.2 Hooley’s conjecture for a <

Notation 6.3. Let’s consider again Pell’s equation T? — dU? = 1, we set as usual the
fundamental solution €4 and we let 14 be any solution. Let o > 0 and = > 2, we consider
the two sets

S(,a) == {(ng.d): 2 <d < x,d # O,eq < g < d2*+°}
Sl(z,0) = {(eg,d) : 2 < d < a,d # D,eq < dz o}
and
S(z,a) == #S(z,a), ST (z,a) == #87 (z,0).
Remark 6.4. e Observe that it doesn’t make sense to consider the above sets with the

value o = 0. Indeed Remarksays that e > 2v/d and so S(z,0) = S/ (x,0) = @.
e If d € 8/(z, ) then the same d appears in S(, o) with multiplicity | (5 + ) log,, d].
e If d' is such that d? | d, then any 7, is also an N, Thus distinct pairs of S(z, «)
may have the same first component.
Theorem 6.5. Let € be any real number satisfying 0 < € < % and x > 2. One has
40

T2

S(z,a) =5 (z,a) = :Célong—i—O(a:%log:c),

where e < a < %
We need a preliminary lemma to develop the argument of the proof.

Lemma 6.6. Let a > 0. Then there ezists a function u — Ay (u) defined for u > 1 such
that )
Aq(u)u — (Ag(u)u)"0+3) = 24y

which is of C*°-class and satisfies the inequalities
2 < Ag(u) <24 u ' (2u) (0Fa),
Proof. Let’s consider the function
Go: (0,002 =R
(x,y) — 2z —y + y_(l'%).

The analytic implicit function theorem implies that the set {(x,y) € (0,00)% : Go(x,y) =
0} can be represented as the graph of an analytic function y = f,(z). To be precise, the
theorem gives a local description of the above set of zeros but in this particular case one
sees that the description can be extended to the whole domain.

Moreover, for every fixed x the continuous function G, (z,-) is clearly decreasing and

Gaol(z,2z) = (22)"(Ha) > 0,
Golz, 22 + (22)0F2)) = —(22)~(H3) 4 (22 + (22)~(+2)))~(+2) < 0,

With the choice = u and writing f,(u) in the form A, (u)u, we deduce the existence of
the desired function A, which satisfies

2u < Ag(w)u < 2u + (2u)*(1+é).
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Proof of Theorem [6.5 Let
S(, ) == {(t,u,d) € Z3,[t2 — du® = 1,t + uvd < d2+*,d < z},
we observe that the following map is a bijection
S(z,0) — S(z, )
(d,t +uVd) — (t,u,d).

The condition v > 1 in the right-hand side guarantees that d is nonsquare.
The first part of the proof is devoted to replace the inequalities concerning d and

1
ng =t + uv/d in terms of t, u separately. The equality u = ndQ\;g allows us to produce

the bound

1
(da o dflfoz) < §($a o wflfa) —. Xon
where we may assume X, > 1 otherwise S(z,«a) is empty. Observe that, since d —
d® — d~17% is a strictly increasing function (in particular injective), we have

u <

N

1 1
ng < drte e u < S —d7, d<ae f(d—d ) < X
Applying the previous lemma, we define Y] (u, ) := (Aa(u)u)é satisfying
1
u=5(Mi(u, )" = Yi(u,0)" ")

and so

1
u< S - d 7 & Yi(u,0) <d.

The condition t? — du? = 1 implies that
d>Yi(u,a) &t > (Yi(u,a)u® +1)2 = Ya(u, ),
d<zel=t—d’>t? -z’ ot< (mu2+1)% =: Y3(u).
We’ve just proven that
S(x,a) = {(t,u,d) € Z3,|t* — du® = 1, Ya(u,a) <t < Yz(u)},

where the conditions on ¢ imply that u < X,.
Now, we are ready to investigate S(z,a). Let R(u) be as at the beginning of the

chapter, then
Sew=YY Y =Y Y

u>1d>1 Yo (u,a)<t<Yz(u) 1<u<Xa Y (u,0) <t<Y3(u)
t2—du?=1 t2—1=0 mod u?

=2 > > 1

1<uXo QER(u) Yo (u,0) <t<Y3(u)
t=Q mod u?

_ Z p(u)<Y3(u)_Y2(u’a)+O(l)).

u2
1<u<X,

Lemma [6.6] gives the inequalities 2 < A, (u) < 3, hence

Y3(u) — Ya(u,a) = ziu— Y1 (u, a)%u +O(1)
— iy — (Aa(u)u)iu +0(1) = z3u -+ O(u”i).
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Therefore, using the results of the previous section and recalling € < o < %,

S(m,a):x% Z p(:)—l-0< Z ﬁ(u2)+0< Z p(u))

1<u<Xeo 1<u<X, W 2@ 1<u<Xq

4 1
72
402

=— 22 log?x + O(a:% log z).
m

1
log2 X, + O(2% log Xa) + O(aX2% log Xa) + O(Xa log Xa)

The proof is now concluded since if 7y € S(x,a) is not a fundamental solution, we
necessarily have
Ng > 83 > 4d.

This implies S/ (z, &) = S(=, @) because o < 1. O

6.2.1 The full conjecture

In [I6] C. Hooley suggests an extension of Th. which covers all possible values of the
parameter «.

Conjecture 6.7. For any given a > %, we have

S (x,0) ~ B(a)x% log? 1, xr — 00,
where
4 1
=(e-3) Py=as!
4 1 1 9 . 5
B(a) = ﬁ(a_1)+18772(a_1) Zf1§a§§
4

( 1) + 1 ( 7)2 fa> )
2\ ) T2\ Ty YTy

E. Fouvry has worked on this conjecture investigating the case a < 1. He has been
able to produce the following lower bound, see [[6], Th. 1.1].

Theorem 6.8. As x — oo, we have the inequalities

ST (x,0) > %(1 +4<a - %) - 4(04— %)2>w% log? x
S(x,a) 2 %(l +4<a— %) — 3(a — %)2)37% log?

uniformly for % <a<l.

This result is now improved by P. Xi ;| see [[25], Th. 1.1], who provides a better
multiplicative constant with respects to the previous statement.
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