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Abstract

Quantum computing deeply relies on the generation of coherent dynamics and quantum entanglement.
Current quantum hardware is strongly affected by various noise sources, which ultimately result in a
loss of performance. As a consequence, having practical tools for evaluating hardware performance
has become a crucial challenge to benchmarking the progress of quantum processors. In this thesis,
we use the dynamical localization of the quantum sawtooth map, a highly sensitive coherent phe-
nomenon, as a tool to compare real quantum machines. We first present the quantum sawtooth map,
one of the simplest models where a periodically driven system exhibits dynamical localization. Then,
we describe the quantum algorithm for an efficient simulation of the quantum sawtooth map on a
quantum computer. Finally, we run the quantum simulation on hardware accessible through cloud
quantum programming and compare performance from different quantum devices.

La computazione quantistica dipende fortemente dalla possibilità di generare dinamica coerente ed
entanglement fra i quibit. Allo stato odierno i computer quantistici sono affetti da numerose fonti di
rumore, le quali in definitiva risultano in una perdita prestazionale. Avere a disposizione uno stru-
mento pratico con cui testarne l’efficienza è dunque di fondamentale importanza e il come ottenerlo
si è rivelata essere una delle principali sfide per definire il progresso nello sviluppo degli hardware
quantistici. In questa tesi abbiamo sfruttato il fenomeno della dynamical localization nella quantum
sawtooth map, ovvero un fenomeno altamente sensibile alla presenza di stati coerenti, come stru-
mento per comparare diversi processori quantistici. Innanzitutto presentiamo la quantum sawtooth
map, uno dei modelli più semplici dove un sistema periodicamente azionato mostra la presenza di dy-
namical localization. Dopodichè, descriviamo l’algoritmo che permette di simulare efficacemente tale
mappa su un computer quantistico. Presentiamo poi i risultati dell’implementazione di tale algorimo
su computer quantistici reali, accessibili attraverso cloud, ed infine riportiamo una confronto fra le
performance ottenute fra diversi processori quantistici.

iii





Contents

Abstract iii

Introduction 1

1 Quantum Computing 3
1.1 Qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Multiple qubit systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Mixed states and the density operator . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 State evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Non-unitary time-evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Hardware implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Quantum circuits on real hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Dynamical Localization 13
2.1 The sawtooth map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Classical sawtooth map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Quantum sawtooth map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 A quantum algorithm for the sawtooth map . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Dynamical localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Results 21
3.1 IBM quantum processors and simulators . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Dynamical localization on quantum hardware . . . . . . . . . . . . . . . . . . . . . . . 22

Conclusions 25

Bibliography 28

v



CONTENTS CONTENTS

vi



Introduction

Quantum computation is a rapidly evolving field of research that promises to revolutionize our un-
derstanding of computation. It is rooted in the principles of quantum mechanics, which enable the
manipulation of quantum bits, or qubits, to perform computationally hard tasks with improved ef-
ficiency [19]. The concept of quantum computation was first proposed by Richard Feynman in the
1980s as a means of simulating the behavior of quantum systems [8]. Since then, significant progress
has been made in the development of quantum algorithms, quantum correcting schemes, and quantum
hardware, culminating in the in the first demonstration of quantum supremacy by Google in 2019 [2].
However, significant challenges remain both in the development of new quantum algorithms and in
the realization of quantum hardware for implementing a universal scalable quantum computer. While
the Shor algorithm for factoring large numbers has been shown to be exponentially faster than clas-
sical algorithms [25], only a few of other quantum algorithms offer substantial computational gains
over classical computing, and many of these algorithms need an error corrected quantum computer to
properly perform. The issue of decoherence and various sources of noise hinder the amount of entangle-
ment that can be generated in actual prototypes of quantum computers. We are in the so-called Noisy
Intermidiate-Scale Quantum (NISQ) era, where devices are prone to errors and the number of qubits
ranges from tens to hundreds. This imposes a considerable challenge in achieving a quantum advan-
tage in practically relevant problems such as biological processes, new material design, and chemical
reactions. To gauge the progress of present devices, it is necessary to simulate less demanding, yet
significant physical tasks. For these reasons, at this stage, it is unlikely that quantum computers will
be able to outperform classical computers for general-purpose computations yet, they will be used to
accelerate the solution of specific tasks, similar to GPU in classical computers.
At the same time, the search for the best qubit platform for quantum computing is ongoing. Various
experimental platforms have shown promise as potential candidates for future quantum computers,
and many are implemented in commercial devices. Notably, IBM Quantum, Google, DWave and
Rigetti employ superconducting qubits technology [2] [9] [11] [21], while QuEra [14] and Pasqal [24]
utilize neutral atom technology. Xanadu Quantum Technologies employs photonic quantum comput-
ers [15]. IonQ’s hardware uses trapped ions in its platforms [7]. For this reason, it is essential to have
comparison tools to test different quantum hardware and evaluate their performance.
In this Thesis, we investigate the dynamical localization of the quantum sawtooth map [22]. Dy-
namical localization is a phenomenon that characterizes the quantum behavior of classically chaotic
systems, where quantum interference suppresses the diffusion in the underlying classical model, result-
ing in exponentially localized wave functions. More generally, localization is a common occurrence in
wave physics, as it arises from the interference between scattering paths. Dynamical localization was
first discovered in the quantum kicked-rotor model [4] and has since been experimentally observed in
microwave ionization of Rydberg atoms [13], atom-optic systems [16] [18] [6], and nuclear magnetic
resonance [10]. Recently, it has been established that in a quantum computer simulating dynamical lo-
calization, the degree of entanglement is related to the localization length of the simulated system [17].
Here, we implement the quantum sawtooth map as an efficient quantum algorithm and reproduce its
dynamics both on simulators and real devices. In order to do that, we used an algorithm that allows
reproducing its dynamics on simulators and real devices available through “IBM Quantum Experi-
ence”, the cloud-based service for quantum computation of IBM. By comparing the results obtained
from different devices, we compare their ability to detect dynamical localization. This can serve as a
benchmark for evaluating the ability of the device to maintain coherence and to perform under different
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INTRODUCTION INTRODUCTION

types of perturbations, ultimately providing a powerful tool for comparing different quantum machines.

In the first chapter, we introduce the basic concepts in quantum information and quantum com-
putation. We also present a description of the IBM architectures based on superconducting qubits,
and how this relates to the problem of transpilation of an ideal circuit to a circuit that matches the
hardware connectivity. In the second chapter, we focus on the quantum sawtooth map, a dynam-
ical system that is a prototype for the study of quantum chaos. Firstly we introduce the classical
version of it and its dynamic behavior. Then we discuss its extension to the quantum case. After
that, we explain how to simulate its dynamics on quantum devices, providing an algorithm easily
implementable on the computers we tested. The third chapter is focused on the quantum devices used
for simulations and the results obtained from them. We simulate dynamical localization with n ⩽ 10
qubits on real quantum hardware and provide a comparison with the results obtained in the noiseless
and noise-simulated cases.
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Chapter 1

Quantum Computing

In this Chapter, we review the main concepts of Quantum Information and Computation. Firstly, we
introduce the qubit, the fundamental unit of information in the quantum realm, and how to manipulate
qubits by using a sequence of quantum gates. Then, we consider a real hardware implementation with
superconducting circuits with its typical source of noise. Finally, we show how the connectivity of a
real quantum processing unit affects an ideal quantum circuit.

1.1 Qubit

The fundamental unit for carrying information in quantum computation is the qubit. Analogously
to the classical bit, it can assume only two values, which can be referred to as 0 and 1. These are
associated with two distinguished states of a quantum system. In general, to a quantum system it is
associated an Hilbert space H and all the possible physical states that it can assume are represented
by ray vectors defined as:

ψ̂ = {λψ with λ ∈ C, λ ̸= 0 ∧ ψ ∈ H }. (1.1)

For instance, we consider a qubit associated with a system with spin 1/2 and we want to characterize
its quantum states through the z-component of the spin observable. In quantum mechanics, each ob-
servable is associated with a self-adjoint operator in H . The possible measurements of this observable
are its operator eigenvalues, and that the Hilbert space can be decomposed in the eigenspaces associ-
ated to this operator, namely the spaces spanned by its eigenvectors. In this particular case we then
have the Ŝz operator, whose eigenkets |0⟩, |1⟩ ∈ H span a 2-dimensional space. These vectors compose
the so-called computational basis. The eigenvalues associated to these eigenkets are {+ℏ

2 ,−
ℏ
2}:

Ŝz|0⟩ =
ℏ
2
|0⟩

Ŝz|1⟩ = −ℏ
2
|1⟩
. (1.2)

The operator Ŝz can be written as ℏ
2 σ̂z, where σ̂z denotes the z-component of the Pauli operator. |0⟩

and |1⟩ are eigenvector for σ̂z as well, with eigenvalues 1 and -1 respectively. The general state of the
qubit |ψ⟩ would be a superposition of these two states:

|ψ⟩ = c0|0⟩+ c1|1⟩, (1.3)

where |c0|2 + |c1|2 = 1. The probability of measuring the value +ℏ
2 is equal to:

w(+ℏ/2) =
|⟨0|ψ⟩|2

∥ ψ ∥2
= |c0|2. (1.4)

When a measurement is performed, the physical state after the measurement “collapses” to its pro-
jection onto the eigenspace associated with the eigenvalue measured. If |ψ(0)⟩ is the state of the qubit

3



CHAPTER 1. QUANTUM COMPUTING 1.1. QUBIT

Figure 1.1: The Bloch Sphere. As shown in Equation (1.5) the ẑ unit vector represent the
|0⟩ state and −ẑ the |1⟩ state. The angles θ and ϕ identify the qubit state. Image from:
https://upload.wikimedia.org/wikipedia/commons/6/6b/Bloch sphere.svg

immediately before a measurement that results in +ℏ
2 , then the state immediately after it would be

|ψ(0+)⟩ = |0⟩. This guarantees that a measurement performed immediately after will certainly result
in +ℏ

2 again.

A useful way of representing the state of a qubit is the so-called Bloch Sphere: a unitary sphere
in a 3-dimensional space. As represented in Fig. 1.1, the qubit state is a vector pointing to the surface
of the sphere and is uniquely identified by the angles θ and ϕ, where 0 ⩽ θ ⩽ π and 0 ⩽ φ < 2π. We
have:

|ψ⟩ = cos
θ

2
|0⟩+ sin

θ

2
eiφ|1⟩. (1.5)

From Eq. 1.5 is evident that using a coherent superposition opens the possibility to encode an infinite
amount of information in a qubit state. However, each measurement will produce only one outcome,
|0⟩ or |1⟩, as for a classical bit.

1.1.1 Multiple qubit systems

A system composed of two or more distinct physical systems, is said to be a composite quantum
system. The state space of such a system is the tensor product of the state spaces of its subsystems.

H = H1 ⊗ H2 ⊗ · · · ⊗ HN . (1.6)

If we consider N multiple systems prepared in states labeled |ψi⟩, then the N-body state will be:

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψN ⟩. (1.7)
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An operator that acts only on a subsystem without affecting the others is said local operator. Formally,
let H be the Hilbert space associated with a composite quantum system that can be divided into
two subsystems, with corresponding Hilbert spaces H1 and H2. A local operator acting in the second
subspace can be written as:

A = I1 ⊗A2, (1.8)

where I1 is the identity operator in H1, so that this subsystem remains unaffected, and A2 is an
operator on H2.

One of the most interesting and puzzling phenomena associated with composite quantum systems
is quantum entanglement. As an example, we consider the state:

|ϕ⟩ = |00⟩+ |11⟩√
2

, (1.9)

called “Bell couple”. This state has the remarkable propriety that there are no single qubit states |ϕ1⟩
and |ϕ2⟩ in H such that |ϕ⟩ = |ϕ1⟩ ⊗ |ϕ2⟩. When a state of a composite system cannot be written
as a product of states of its component, the state is said to be entangled, in contrast to separable
ones. Entangled states contain purely quantum correlations between the subsystems that cannot be
explained in terms of classical physics. For instance, by performing a measurement on one subsystem
we can instantly obtain information on the other subsystem without actually measuring it. This
correlation does not violate special relativity since the information obtained must reach the second
subsystem via classical communication. It is worth noting that entanglement is considered to be a
resource for establishing the power of quantum computation compared to classical computation. This
is because entangled quantum states can exhibit exponentially greater complexity than classical ones,
and then can be used to perform certain computational tasks much faster than classical computers.

1.1.2 Mixed states and the density operator

When we have access to complete information about a quantum state, it is defined as pure state. In
the majority of cases, the quantum state of a qubit is coupled to the external environment so that
we can only have access to a portion of the information that it carries. It is then impossible to write
the state in the form of Eq. 1.5, and we need to introduce a new formalism, that extends the concept
of pure states to statistical mixtures of pure states, also known as mixed states. In order to describe
them, the idea of density operator was introduced. The density operator ρ is the density operator
associated with some ensemble {pi, |ψi⟩} if and only if it has trace equal to 1 and it is a positive
hermitian operator [19]. It is defined as:

ρ =
∑
i

pi|ψi⟩⟨ψi|. (1.10)

All the known results valid for pure states could then be rewritten in the density operator picture.
The expectation value of Â is:

⟨Â⟩ρ = tr
(
ρÂ

)
. (1.11)

If the system is described by the state ρ (normalized), the probability that a measurement of a generic
observable Â gives, as a result, its eigenvalue a is given by:

W (a) = tr(Â†
aÂaρ). (1.12)

When we consider a composite system, whose subsystems are numbered from 1 to N and with ρi
the state of the generic system numbered i, the joint state of the total system is given by the tensor
product of the subsystem’s states, explicitly ρ1 ⊗ ρ2 ⊗⊗ · · · ρN .

5



CHAPTER 1. QUANTUM COMPUTING 1.2. STATE EVOLUTION

1.2 State evolution

The evolution of a pure state is given by the Schrödinger equation:

iℏ
∂

∂t
|ψ⟩ = H|ψ⟩, (1.13)

where H is the Hamiltonian of the system.
Solving this equation allows us to determine the explicit form of the time-evolution unitary operator
U(t), which acts on the states of the system as |ψ(t)⟩ = U(t)|ψ⟩. For the case of a time-independent
Hamiltonian:

U(t) = e−
i
ℏHt. (1.14)

Thanks to the spectral theorem, the set {|n⟩} of eigenfunction of H with eigenvalues {En}, forms
an orthonormal base for H . This allows us to decompose a generic state as |ψ⟩ =

∑
n cn|n⟩, and

ultimately to write the action of the time-evolution operator onto the state |ψ⟩ as:

|ψ(t)⟩ =
∑
n

cne
− i

ℏEnt|n⟩. (1.15)

When considering the time evolution of a system described by the density operator ρ(t = 0), in turn,
we have:

ρ(t) = Uρ(0)U † =
∑
i

piU |ψi⟩⟨ψi|U †. (1.16)

1.2.1 Non-unitary time-evolution

The type of evolution described before is characteristic of unitary dynamics. When we deal with real
quantum systems we must consider the interaction with the environment. As a consequence non-
unitary effects are involved in the dynamics of the system. Since we cannot express such processes as
a unitary evolution, we must adopt the formalism of Kraus operators. As an example, we now discuss
the evolution of a subsystem in a 2-body system, where ρ = ρ1 ⊗ ρ2 is the generic state given by the
tensor product of ρ1, the state of the subsystem 1, and ρ2, the state of the subsystem 2. The evolution
of the first subsystem is characterized by the Kraus superoperator Ek so that:

ρ1 → ρ
′
1 = tr2(ρ(t)) =

dimH2∑
k=1

Ekρ1E
†
k with

∑
k

E†
kEk = I. (1.17)

In general, we define a map S : ρ1 → ρ
′
1 with the property of preserving the Hermiticity, the trace, and

the positivity of ρ. In addition to that, its inverse exists if and only if S is unitary and if ρ′ = S1(ρ)
and ρ′′ = S2(ρ

′) then ρ′′ = S2(S1(ρ))

The interaction between quantum systems and their environments is a fundamental source of non-
unitary effects, which can lead to the degradation of quantum information and the loss of coherence
between states. To model this interaction, quantum channels are commonly used. In the following,
we provide some of the main channels encountered when dealing with practical applications.
The amplitude damping channel describes the loss of energy from a quantum system to its environment.
It is characterized by a time constant T1, called relaxation time, which measures the rate of the
relaxation. The phase damping channel, in turn, describes the loss of coherence between different
states of the system, transforming the state 1

2(|0⟩ + |1⟩)(⟨0| + ⟨1|) into the state 1
2(|0⟩⟨0| + |1⟩⟨1|).

This arises due to fluctuations in the phase of the system’s wave function caused by interactions
with the environment. It is characterized by a time scale denoted T2, called coherence time. The
depolarizing channel is another common type of quantum channel, and it describes the randomization
of the system’s state. This acts on the system by randomly selecting one of several possible unitary
operations, effectively ”erasing” the original state. In particular, it decreases the projections of the
state over the axis x,y, and z over time, progressively causing the decay into the state |0⟩⟨0|+ |1⟩⟨1|.

6



CHAPTER 1. QUANTUM COMPUTING 1.3. GATES

In addition, there are two types of channels that describe the flipping of individual qubits: the bit flip
channel, which flips the state of a qubit from 0 to 1 or vice versa, and the phase flip channel, which
introduces a phase shift of π around the Z-axis of the Bloch sphere.
A thorough understanding of the effects of these channels is essential for developing strategies to protect
quantum systems from decoherence and other non-unitary effects. In particular, the characterization
of the time constants T1 and T2 is critical for the design and optimization of quantum error correction
codes and other techniques for mitigating the effects of noise and decoherence in quantum systems.

1.3 Gates

The circuit model of quantum computation is a direct generalization of classical circuits to the quan-
tum realm. The basic mechanism of information processing in these models is unitary evolution,
where quantum information is processed without measurement until the end. The results obtained
from measuring then allow us to convert quantum information into classical one, in order to read out
classical answers [5].

A classical computer is a physical object capable of calculating functions of the form f : {0, 1}n →
{0, 1}, where n represents the number of bits involved. Any function f can be expressed as a fi-
nite series of operations, called gates. The set of logical gates necessary to codify the computa-
tion of any function f is called universal set. A commonly used example of a universal gate set is
{AND,OR,NOT,COPY }.
Similarly, to manipulate the state of a qubit, quantum gates are defined. These are represented as
unitary operators acting on qubits to preserve the normalization of probability amplitudes and to
guarantee the reversibility of quantum operations.

Similarly to the classical case, any universal set of quantum gates counts single a two-qubit gates.
We discuss the action of some important single-qubit and two-qubit gates in the computational basis.
Each gate is represented as a 2x2 matrix that operates on the state of a qubit.
The first set of gates we discuss is single-qubit gates.

• Hadamard gate (H):
It is a fundamental gate in quantum computing that generates superposition states. It can
be visualized as a π/2 rotation of the state vector in the (x,z) plane around the y-axis. The

Hadamard gate acts on the computational basis as follows: [|0⟩, |1⟩] →
[
|0⟩+|1⟩√

2
, |0⟩−|1⟩√

2

]
The matrix representation of the Hadamard gate is:

H =
1√
2

(
1 1
1 −1

)
. (1.18)

• Phase shift (P (ϕ)):
It applies a relative phase shift to a qubit’s state. It can be visualized as a rotation of the state
around the z-axis. The phase shift gate adds a relative phase to the qubit’s state, taking the

state |0⟩+|1⟩√
2

to |0⟩+eiΦ|1⟩√
2

.

The matrix representation of the phase shift gate is:

Rz(Φ) =

(
1 0
0 eiΦ

)
. (1.19)

• Not (X):
It is a fundamental gate that flips the state of a qubit. It can be visualized as a π rotation of the
state on the x-axis. The Not gate acts on the computational basis as follows: [|0⟩, |1⟩] → [|1⟩, |0⟩].

7



CHAPTER 1. QUANTUM COMPUTING 1.4. HARDWARE IMPLEMENTATION

The matrix representation of the Not gate is:

X =

(
0 1
1 0

)
. (1.20)

The second set of gates we discuss is two-qubit gates.

• Control Not (CNOT):
It applies a Not gate to the target qubit if and only if the control qubit is in the |1⟩ state.
The matrix representation of the CNOT gate is:

CX = I1,2x2 ⊗X2 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (1.21)

Here, I2x2 is the 2x2 identity matrix, and O2x2 is the 2x2 zero matrix.

• Control Phase (CPHASE):
It applies a phase shift to the target qubit if and only if the control qubit is in the |1⟩ state.
The matrix representation of the CPHASE gate is:

CPHASE(θ) = I1,2x2 ⊗Rz(θ) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiΦ

 . (1.22)

• SWAP:
It exchanges the state of two qubits, explicitly:

SWAP (|j⟩ ⊗ |k⟩) = |k⟩ ⊗ |j⟩. (1.23)

It has been shown that a universal set of quantum gates is {H,Rz(π/4), CNOT}.

A quantum circuit is composed of a combination of quantum gates applied to a multi-quit system,
usually initialized in the state |0⟩. Any quantum circuit ends with a measurement. In context, a
quantum algorithm is a set instruction, provided as a specific sequence of gates, that specifies how to
manipulate and measure quantum states in order to solve a particular problem. The efficiency of a
quantum algorithm is measured in terms of the number of gates and qubits required, as well as the
number of measurements needed to obtain the desired output. We define the depth of a circuit as the
number of quantum gates it contains.

1.4 Hardware implementation

In this Section, we examine specific physical hardware developed by IBM, which we will use to produce
the results for this Thesis, as detailed in Chapter 3. IBM hardware uses superconducting circuits ad
qubits, therefore the name superconducting qubits.
A fundamental element in any superconducting qubit architecture is the Josephson junction, which
consists of two superconducting electrodes separated by a thin barrier made up of an insulating
material. One can compute the density of the superconducting charge carrier component and see
that, due to the presence of a phase that gives rise to interference phenomena, electron pairs are
formed, called Cooper pairs, of charge 2e and integer spin (0), thus behaving like bosons [1].
In a Josephson junction, the separation barrier is sufficiently thin to allow a weak coupling between
the two electrodes, leading to the tunneling of Cooper pairs across the insulator. When cooled down
to sufficiently low temperatures, Josephson junction circuits exhibit quantum proprieties, which is the

8



CHAPTER 1. QUANTUM COMPUTING 1.5. QUANTUM CIRCUITS ON REAL HARDWARE

Figure 1.2: Circuit diagram of the Cooper pair box. Charges tunnel onto the island through the Josephson
junction, represented by the crossed square. Image adapted from [26]

basis for turning superconducting circuits into qubits. A particular circuit of this type is the single
Cooper pair box (CPB), which couples a small superconducting island through a Josephson junction
to a gate electrode. In Figure 1.2 the related circuit diagram. The peculiarity of this system is that
it can be treated effectively as a two level system, whose associated states can be assumed as the two
characteristic states |0⟩ and |1⟩ of a qubit as seen in Section 1.1. When a shunt capacitance is added
between the gate and the island, we talk about trasmon, the actual types of qubits implemented in
the IBM’s quantum computer we investigated and present in Section 3.1. Increasing the capacitance
of the island lowers the charging energy, and one can see that this ultimately leads to a mitigation of
the problem of charge noise dephasing, improving coherence lifetime.
Superconducting qubits are subject to various sources of noise that can cause errors in their operations,
we now describe some of them as a point of reference. Charge noise is caused by random variations
in the charge on the surface of the qubit. Another example is the resonator noise, which results from
noise in the coupling resonators used to control and read out the qubits. In addition to them, we
can have noise that arises from defects in the materials used to fabricate the qubits and crosstalk.
This phenomenon occurs when qubits are placed close to each other, leading to unwanted interactions
between them.

One way to implement gates acting on single superconducting qubits is by applying microwave Rabi
pulses by means of magnetic flux to a superconducting ring. Each quantum gate applied to a qubit
causes a rotation of the qubit state around a specific axis on the Bloch sphere. However, due to
imperfections in the physical system, there is always some degree of error or deviation in the angle of
rotation. As a result, the gate may not produce the intended final state of the system, and we refer
to this error as the gate failure probability. In a quantum circuit, the total probability of a failure is
the product of the errors associated with each gate.
We stress that, for the decoherence phenomena seen in Section 1.2, when dealing with real imple-
mentations of quantum hardware, in addition to the gate-application error described above, we must
consider that each qubit has a specific gate failure probability. This is the probability that a gate
applied to the qubit may give as output an unexpected result because the state of the qubit is not the
one predicted due to noise effects in the interaction with the environment.

1.5 Quantum circuits on real hardware

When implementing quantum circuits on real hardware, specifically in the case of superconducting
qubits, it is essential to consider that the qubits are arranged in specific spatial positions that define
the computer’s connectivity. Since these positions are fixed, the physical architecture allows for only
a limited set of qubit pairs to interact with each other. In other words, applying a two-qubit gate to
a generic pair of qubits is not straightforward. Accommodating this constraint can be achieved in a
few ways. A common choice consists in the utilization of SWAP operations: by inserting chains of
SWAP gates, logical qubit states can be routed throughout the physical system, allowing the locality
constraint to be satisfied for all the two-qubit gates of the algorithm. This clearly increases the circuit

9



CHAPTER 1. QUANTUM COMPUTING 1.5. QUANTUM CIRCUITS ON REAL HARDWARE

depth, which increases the error rate of the circuit when run on real quantum hardware.
Another important aspect that must be considered is that different quantum computers can possess
different sets of fundamental gates. The choice of the fundamental gates associated with a computer
depends on the particular qubits architecture. The availability and performance of these gates impact
the efficiency and effectiveness of quantum algorithms and simulations, thus knowing that is funda-
mental for optimizing the performance.

Qiskit is the software developed by IBM for simulating quantum algorithms and running them on real
devices through cloud. In order to ensure that the ideal circuit can be implemented on the real device,
Qiskit performs all the transformations needed through a process called transpilation. This includes
the before-mentioned fix for limited connectivity as well as the decomposition of common gates into
sequences of U2 and CNOT gates (the actual gates typically available for IBM’s computers), where
U2 is a single-qubit rotation about the X+Z axis, whose matrix representation in the computational
basis is:

U2(Φ, λ) =
1

2

(
1 −eiλ
eiΦ ei(Φ+λ)

)
(1.24)

For instance let us consider an architecture such as the one depicted in Figure 1.3, which represents
the connectivity graph of IBM’s computer named ibmq guadalupe, and the circuit depicted in figure
1.4(a), composed by a single qubit gate H acting on q0 and a two qubits gate CNOT acting on two
physically unconnected qubits, namely q0 and q2. After applying the transpilation process we obtain
the circuit in figure 1.4(b), where we can see that Qiskit added three intermediate CNOT gates be-
tween qubits q1 and q2. These three gates swap the states of the two qubits they act on. Theoretically,
the resulting entangled state of qubits q0 and q2 in the simulator is the same as the entangled state
of qubits q0 and q1 in the physical implementation. In practice, however, it is expected to be slightly
different due to errors.
In summary, Qiskit’s transpiler changes the circuit in a way that allows for the physical limitations
of the quantum computer to be overcome while leaving the algorithm theoretically unaffected, but it
also introduces an unruly amount of CNOT gates into the circuit, which is subject to higher error
rates than single-qubit gates.

We conclude by saying that since there exist different quantum computers with different connectivity
and fundamental gates, physicists came up with the idea of a general parameter used to evaluate
the performance of quantum computers, which ultimately allows the comparison between all sorts of
quantum computers. This metric is named quantum volume and is defined as:

V Q = 2n · f, (1.25)

where n is the number of qubits and f is the depth of the circuit. By taking into account both the
number of qubits in a quantum computer and the quality of its quantum gates, we can say that it
measures the maximum size of a random quantum circuit that a quantum computer can successfully
execute. A high Quantum Volume indicates that it can handle a large number of qubits and execute
complex quantum circuits with a high level of accuracy and fidelity.

10



CHAPTER 1. QUANTUM COMPUTING 1.5. QUANTUM CIRCUITS ON REAL HARDWARE

Figure 1.3: Connectivity graphs of ibmq guadalupe (on the left) and ibmq lima (on the right). Physical qubits
are represented by the nodes and the edges correspond to the possible locations of two-qubit gates. A darker
color represents a smaller error, respectively the readout assignment error for the qubit and the CNOT error
between two qubits. The right one is called a linear arrangement while the one on the left is called a square
grid arrangement. https://quantum-computing.ibm.com/services/resources?tab=systems

Figure 1.4: Effect of transpilation on several representative circuits. (a) Base and (b) transpiled circuit that
entangles two qubits that are not physically connected directly. After each time the circuit is run, the qubits
are measured. The symbols q0 and c0 are the names of a qubit and a classical bit, respectively. In this and all
figures in this paper, qubits are initialized to the |0⟩ state, and classical bits are initialized to 0. Credit: [12]
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Chapter 2

Dynamical Localization

In this chapter, we discuss a possible implementation of a quantum algorithm that allows us to simulate
the dynamics of the so-called quantum sawtooth map. In particular, we describe the phenomenon of
dynamical localization, which we will exploit in the next chapter in order to compare the performances
of real quantum devices.

2.1 The sawtooth map

The sawtooth map is a prototype model in the studies of the dynamics of quantum and classical
systems as it exhibits a wide variety of physical phenomena, from chaos to integrability, from normal
to anomalous diffusion of momentum. Here we are specifically interested in the phenomenon named
dynamical localization, which we will define in the next sections. We start the description from the
classical perspective and then move to the quantum one.

2.1.1 Classical sawtooth map

The sawtooth map describes a periodically driven dynamical system, whose dynamics is related to the
Hamiltonian:

H(θ, I; τ) =
I2

2
+ V (θ)

+∞∑
j=−∞

δ(τ − jT ), (2.1)

where (I, θ) are conjugate momentum-angle variable, θ ranges in [0, 2π). The first term represents
the kinetic energy of a free particle moving on a circle. For our purposes, the potential energy is
defined as V (θ) = −k

2 (θ − π)2. It is associated with the force F (θ) = −dV (θ)
dθ , which acts on the

particle instantaneously every period T , therefore describing a dynamics periodically kicked, with kick
strength k. From Figure 2.1 it is obvious the origin of the name of this map, since the shape of the
F (θ) graph recalls a sawtooth.
The corresponding Hamiltonian equations are:{

İ = −∂H
∂θ = −F (θ)

∑+∞
j=−∞ δ(τ − jT )

θ̇ = ∂H
∂I = I

. (2.2)

Equations (2.2) are easily integrable over time. Considering the evolution from time lT− (prior to the
l-th kick) to time (l + 1)T− (prior to the (l + 1)-th kick) we have:{

Il+1 = Il + F (θ) = Il

θl+1 = θl + TIl+1

. (2.3)

We rewrite equations (2.4) rescaling I → J = TI, so that:{
Jl+1 = Jl +K(θ − π)

θl+1 = θl + Jl+1

, (2.4)
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Figure 2.1: m-Branch negative for the sawtooth map. Credit: A. Sahnoune, D. Berkani/ Allerton Press [23]

where K = kT is a parameter that characterizes the classical dynamics of the quantum sawtooth map.
From the periodicity of the position variable, we have that the cylindrical phase space can be repre-
sented on a torus by truncating the momentum space to length 2πL

T and applying a periodic boundary
condition.
Studying the dependence of the solutions of (2.4) on initial conditions, in particular for a fixed initial
momentum J = 0 and a randomized initial position, it is possible to demonstrate that the system is:

• Stable if −4 ≤ K ≤ 0
The phase space has a complex structure of elliptic islands, and one can observe anomalous
diffusion characterized by equation ⟨(∆J(t))2⟩ ∝ tα with α ̸= 1

• Chaotic if K < −4 ∪K > 0
This is due to the term K(θ−π) in equation (2.4), which gives a kick to the momentum at each
iteration of the map with a strength that can be approximated as a quasi-random sequence,
making the motion along the momentum direction in practice indistinguishable from a random
walk. This leads to diffusive broadening along the momentum dimension.
We define the diffusion coefficient as:

D = lim
t→∞

⟨(∆J(t))2⟩
t

, (2.5)

where ∆J(t) = J − ⟨J⟩ and ⟨...⟩ denotes the average over an ensable of trajectories.
It can be shown that, from a heuristic point of view, ⟨(∆J(t))2⟩ ≈ Dn, where D ≈ (π2/3)k2 for
the sawtooth map [3]. In other words, as the map is iterated, the diffusion continues indefinitely,
tending to a uniform probability distribution.

2.1.2 Quantum sawtooth map

The quantum version of the sawtooth map can be obtained by means of the usual quantization rules,
namely θ → θ̂ and I → Ĵ = −i ∂

∂θ , with commutation rule:

[θ̂, Ĵ ] = T [θ̂, Î] = iT = iℏeff , (2.6)

where we used ℏ = 1. Since we have a time-dependent Hamiltonian, in general, at different times
it does not commute. For this reason, a spectral representation of the evolution operator cannot be
derived. In the case of periodically driven systems, Floquet theory can be applied [20]. This has the
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great advantage that allows studying them with techniques similar to those used in time-independent
ones, by replacing the Hamiltonian operator with the so-called Floquet operator. This is simply the
propagator Û(t, t+ T ) over one period, defined as:

Û(t, t+ T ) = Te−i
∫ (l+1)T−

lT− H(θ̂,Î;τ) dτ , (2.7)

where T indicates that the ordered product is taken in the exponential. It can be seen that, if it is
computed at different times, it does not change thanks to the periodicity of the Hamiltonian.
In summary, for one iteration of the sawtooth map, we have:

ψl+1 = Ûψl = exp

[
−i

∫ (l+1)T−

lT−
H(θ̂, Î; τ) dτ

]
. (2.8)

Since the potential is switched on only at discrete times lT , the contribution from the angular coor-
dinate and the momentum can be factorized as:

ψt+1 = UtUkψt with UT = e−
iT Ĵ2

2 Uk = ei
k(θ̂−πÎ)2

2 . (2.9)

The quantum evolution depends not on a single parameter as the classical one, but on k and T
separately, as it can be seen from (2.9). The classical limit ℏeff → 0 is obtained by taking k → ∞
and T → 0, while keeping K = kT constant [3].
We set j and θm the eigenvalues related to the momentum and position basis so that:{

Ĵ |j⟩ = j|j⟩
θ̂|θm⟩ = θm|θm⟩

, (2.10)

where −N/2 ≤ j < N/2 and 0 ≤ m < N . If n is the number of qubits, we have N = 2n possible
states in the momentum basis, therefore N = 2πL

T for what we said about the toroidal phase space in
Section 2.1.1.
Since we will deal with quantum systems composed of n interacting qubits, it is useful to write each
eigenket as a function of the quantum states of these types of systems. For this reason, we define a
binary notation where the 0s and 1s are associated with the single states of the qubits that the system.
We have:

θ = 2π
n∑

j=1

αj2
−j → |θ⟩ = |αnαn−1..α1⟩

J = N
n∑

j=1

αj2
−j − N

2
→ |J⟩ = |βnβn−1..β1⟩,

(2.11)

where αj , βj ∈ {0, 1} ∀j.

2.2 A quantum algorithm for the sawtooth map

Using quantum computers we can efficiently simulate the time-evolution of a system that follows equa-
tions (2.9). This is possible thanks to the algorithm described in [22] [3] [10] and that we will briefly
discuss in the following. This algorithm is based on the forward/backward quantum Fourier transform
(QFT), a well-known quantum algorithm that has the action of toggling between the position and
momentum basis representation. It ultimately requires only phase-shift and control phase-shift gates,
so that it is easily implementable on superconducting-based quantum computers as the IBM ones that
we used.

One map iteration requires the following steps:
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1. After the system is initialized in the momentum basis state, we apply QFT, changing from the
J to the θ representation. It ultimately requires n Hadamard gates and 1

2n(n − 1) C-PHASE
gates.

2. We apply Ûk to the state of the system. Using the basis in which θ is expressed in binary
notation (see Eq. 2.11), the representation of Ûk is diagonal and it can be decomposed into
one- and two-qubit gates, as we will demonstrate in the following. By substituting the binary
decomposition of θ we firstly obtain:

(θ−π)2 =
(
2π

n∑
j=1

αj2
−j−π

)2

= 4π2
[ n∑
j=1

(
αj2

−j − 1

2n

)]2
= 4π2

n∑
j1,j2=1

(
αj12

−j1 − 1

2n

)(
αj22

−j2 − 1

2n

)
.

(2.12)

We then extend this result to the operator θ̂:

(θ̂ − πÎ)2 = 4π2
n∑

j1,j2=1

Î1 ⊗ · · · ⊗ Îj1−1 ⊗ Âj1 ⊗ Îj1+1

⊗ · · · ⊗Îj2−1 ⊗ Âj2 ⊗ Îj2+1 · · · ⊗Îjn

(2.13)

where Îj is the identity operator acting on the j-th qubit while Âj is an operator whose definition
comes from the result previously obtained, and that can be written as:

Âj =
1

2j
Îj − (σ̂z)j

2
− 1

2n
Îj (2.14)

From Eq.2.9 we then have:

Uk = ei
k(θ̂−πÎ)2

2 =

n∏
j1,j2=1

exp

[
i2π2k

(
Î1 ⊗ · · · ⊗ Îj1−1 ⊗ Âj1 ⊗ Îj1+1

⊗ · · · ⊗Îj2−1 ⊗ Âj2 ⊗ Îj2+1 · · · ⊗Îjn
)]
,

(2.15)

This is the product of n2 two-qubit gates, in particular C-PHASE shift gates, acting non-trivially
on every possible pair of qubits j1 and j2. We then consider a computational basis defined
as {|αj1αj2⟩} = {|00⟩, |01⟩, |10⟩, |11⟩}, which collects all of the possible states the subsystem
composed by j1-th and j2-th qubits can assume. In this basis the Ûk operator obtained in
Eq.2.15 can be rewritten in a simple form as a function of the Dj1,j2 diagonal matrices:

Ûk =
n∏

j1,j2=1

ei2π
2kDj1,j2 with Dj1,j2 =


1

4n2 0 0 0
0 − 1

2n

(
1
2j2

− 1
2n

)
0 0

0 0 − 1
2n

(
1
2j1

− 1
2n

)
0

0 0 0
(

1
2j1

− 1
2n

)(
1
2j2

− 1
2n

)


(2.16)

Neglecting a global phase factor, it can be shown that each operator ei2π
2kDj1,j2 can be further

decomposed into a product of two phase-gates, applied to qubit j1 and j2 respectively, and a C-
PHASE gate applied on both qubits if j1 ̸= j2 [22]. Namely we define this operators as Rz(θk,j)
and CRz(Φk,j1,j2) with phases:

θk,j = −2kπ2

2j
+

kπ2

22j−1
Φk,j1,j2 =

2kπ2

2j1+j2−1
, (2.17)

with j, j1, j2 ∈ {0, 1, .., N}.

3. The change from the θ to the J representation is obtained by application of the inverse quantum
Fourier transform (QFT †), which requires n Hadamard gates and 1

2n(n− 1) C-PHASE gates.
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Figure 2.2: Quantum circuit of sawtooth map with n=3 (from Qiskit)
The purple vertical lines correspond to CNOT gates while the P stands for phase gate. At the end of the circuit,
we measure the momentum state of the system, storing the information in three classical bits

4. We apply the ÛT operator. This has essentially the same form as the operator Ûk in the θ
representation and, for this reason, an analogous decomposition. In particular, after substituting
the binary decomposition 2.11 into 2.9, we obtain a product of n2 C-PHASE shift gates. This
can further be decomposed into a product of phase shift gates acting on each qubit of the circuit
and a series of C-PHASE gates acting on each possible pair of qubits if j1 ̸= j2, whose phases
are:

θT,j =
2N2T

2j + 2
− N2T

22j+1
ΦT,j1,j2 = − 2N2T

2j1+j2+1
, (2.18)

with j, j1, j2 ∈ {0, 1, .., N}

In Figure 2.2 we present the resulting circuit in the case of n = 3.

In summary, the quantum algorithm for the quantum sawtooth map requires O(n2) gates per iteration,
which is much faster than the O(nN) operations needed by classical computers using the fast Fourier
transform. Moreover, the resources required for quantum simulation are only logarithmic in system
size N . With the further decomposition into a series of phase-shift gates and control-phase-shift gates
we showed, one step of the quantum sawtooth map can be simulated using 2(n2−n) CP, 2n P, and 2n
H gates. For example, simulating n=3 requires 24 quantum gates (12 single-qubit and 12 two-qubit
gates) on IBM quantum hardware. We conclude that this circuit provides a simulation of the dynamics
of the quantum sawtooth map which is exponentially faster than any known classical algorithm. Even
though the gain in simulating the dynamics is exponential, it can be shown that the gain in extracting
useful information from the simulation on a quantum computer is only quadratic [3].

2.3 Dynamical localization

The quantum sawtooth map demonstrates strikingly different behavior from the classical sawtooth
map, particularly with respect to the diffusion of the momentum variable in the chaotic regime: after
a certain time the diffusion of the momentum that we described in 2.1.1 is suppressed due to quantum
interference, a phenomenon called Dynamical Localization.
We define t⋆ the break time, the time after which the quantum distribution reaches a steady state.
Associated with it, we can define n⋆ the number of iterations of the map required to have an evolution of
the system to time t⋆ (we remember that each iteration makes the system evolve to a time t→ t+T ).
For t > t⋆ the state decays exponentially over the components of the momentum eigenkets with a
distance major than a certain value, that we name l, from the initial momentum, which we call j0.
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Figure 2.3: Momentum distribution after 0, 5, 10, and 40 iterations of the classical (red, filled markers) and
quantum (blue, unfilled markers) sawtooth map (L = 7, K = 1.5, N = 8), chaotic regime, localization length is
less than 1 so that the state remains exponentially localized after a single iteration. We can see how the classical
distribution is diffused as the number of iterations of the algorithm, corresponds to an evolution of time. In
contrast, since we are considering a noiseless system, the quantum distribution is frozen and localized for every
possible iteration of the map. The classical distribution represents 20,000 realizations of the map, with initial
momenta j = 0 and random initial positions uniformly distributed over the phase space. Credit: Henry K. M.
et al./Physical Review [10]

Explicitly:

Wj = |⟨j|ψ⟩|2 ≈ 1

l
exp

[
−2|j − j0|

l

]
, (2.19)

where the j singles out the eigenstates of Ĵ . Therefore, for t > t⋆ only
√

⟨(∆j)2⟩ ≈ l levels are
populated.
It can be shown from Heisenberg’s principle that t⋆ is the time needed to resolve the particular energy
spacing which characterizes dynamical localization. From this, it is straightforward to obtain that:

t⋆ ≈ l. (2.20)

At the same time, from an analogy with classical diffusion for the quantum sawtooth map (see 2.1),
we have: √

⟨(∆m)2⟩ ≈
√
DmT

⋆ −→ t⋆ ≈ l ≈ Dm ≈ (π2/3)k2. (2.21)

From this heuristic approximation, we see how a theoretical prediction of the localization length can
be deduced from the kick strength k.
We stress the fact that in an ideal (noiseless) quantum system the time-evolution for t > t⋆ is “frozen”
(see Fig. 2.3). However, the degree to which a physical system becomes localized may be reduced by
noise effects, as we will deeply discuss in chapter 3.

After simulating the quantum sawtooth map dynamics on a quantum computer it is possible to extract
the localization length l by running the algorithm repeatedly, measuring the state of the system in
the momentum base, and storing the results which will ultimately be plotted on a histogram, as the
one of Fig. 2.3.
We need about t⋆ = O(l) map iterations to obtain the localized distribution. It is reasonable to use
a basis size N = O(l) to detect localization (so that the total number of states exceeds the local-
ization length and we can visualize it on the histogram). In such a situation a classical computer
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requires O(l2logl) operations to extract the localization length, while a quantum computer would re-
quire O(l(logl)2) elementary gates. Therefore, the quantum computer provides a quadratic speed up
in computing it.
We finally point out that this surprising interference effect requires the coherence of the quantum state.
Quantum noise in the interaction between qubits and the external environment involves quantum deco-
herence effects as described in 1.5. For this reason, the study of this algorithm and its implementation
on real quantum devices are very useful for determining how much quantum noise affects a certain
computer or comparing the performances obtained from different quantum computers.
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Chapter 3

Results

In this chapter we present the results obtained for the simulation of the quantum sawtooth map on
IBM simulators and real quantum processing units. First, we briefly characterize the quantum simula-
tors and real processors we used; then, we observe the emergence of dynamical localization with n ⩾ 3
qubits on real quantum hardware and provide a comparison with the results obtained in the noiseless
and noise-simulated cases. In the end, we discuss how the depth of the circuit and the number of itera-
tions of the algorithm affect the possibility of visualizing dynamical localization after the measurement.

All simulations reported in this Thesis are obtained according to the following protocol:

– The initial state is peaked in momentum space, ψ0(j) = δj,j0 , and centered on j0 = 0;

– Parameters in the Hamiltonian equations 2.4 are set to: k = 0.273 and K = kT = 1.5. In this
regime, the break time t⋆ ≈ k2 < 1, so that the distribution is already localized, namely it decays
exponentially in the momentum eigenbasis, after a single step of the dynamical map;

– To obtain significant statistics on the output distribution, the quantum algorithm is run 8192
times (shots);

– Results for the real quantum hardware are averaged over 10 repetitions, in order to average out
fluctuations due to different noise realizations, and different timing in calibration

Data were collected in the timeframe between 2023/02/18 and 2023/03/01.

3.1 IBM quantum processors and simulators

IBM provides access to various quantum hardware and simulators through “IBM Quantum Experi-
ence”, a cloud-based quantum computing service. Among the quantum devices available, we used
ibmq lima and ibmq guadalupe processors. Both of them use superconducting transmon qubits op-
erating at a temperature close to absolute zero (15 mK). The qubits of ibmq lima are arranged in a
linear array, while the ones of ibmq guadalupe in a square grid (see Figure 1.3). These devices have
different numbers of qubits and exhibit different levels of noise, making them suitable for studying the
dynamics of the quantum sawtooth map under different conditions. We report the technical descrip-
tion of these two processors in Table 3.1.
As a reference, we classically emulate the algorithm using the Aer simulator, an open-source high-
performance simulator that can simulate quantum circuits with up to 30 qubits in noiseless conditions.
Furthermore, “IBM Quantum Experience” also provides noise models, that can be used to account
for the noise present on each device. We use this feature to classically emulate the real dynamics on
the QPU, hereafter referred to as fake lima and fake guadalupe.
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Qubits QV Median CNOT error Median readout error Median T1 Median T2
ibmq lima 5 8 1.072e-2 1.980e-2 86.16 µs 108.96 µs

ibmq guadalupe 16 32 8.974e-3 1.565e-2 102.25 µs 121.53 µs

Table 3.1: Technical specifications of ibmq lima and ibmq guadalupe. The median CNOT error refers to the
probability of a failure in the application of a CNOT gate, which is a reference value for the error for a two qubits
gate. The median readout error is the median value of the error rate associated with the measurement process.
QV refers to quantum volume, a metric used to evaluate the performance of quantum computers, defined as
QV = 2n ∗ f where n is the number of qubits and f is the depth of the circuit. A high QV indicates that a
quantum computer can handle a large number of qubits and execute complex quantum circuits with a high level
of accuracy and fidelity. Credits: https://quantum-computing.ibm.com/services/resources?tab=systems

3.2 Dynamical localization on quantum hardware

In the following section, we present the results from the simulation of the dynamics of the quantum
sawtooth map on real quantum hardware and classical simulators using the algorithm described in 2.2.

In Figure 3.1 we compare the state probability distribution in the momentum space as obtained
from the simulation of dynamical localization with the Aer simulator, the fake lima simulator, and
the real quantum hardware ibmq lima. We observe a peak in the momentum distribution centered
on j = 0. The probability distribution is exponentially suppressed on the neighboring momenta as
expected in the localized phase. The height of this peak (W1(0)) decreases as we consider the effect
of noise: W1(0) ≈ 0.82 in the noiseless case, W1(0) ≈ 0.62 for the fakeLima, and W1(0) ≈ 0.5 on
Lima. These results reproduce those already present in the literature [22]. We notice that the noise
model underestimates some of the relevant noise channels: for this reason, fakeLima distribution is
more peaked than Lima. Interestingly, the distribution obtained in the presence of noise displays a
small peak on j = −4. This feature is due to the encoding of the momentum: j = −4 is encoded in
the |000⟩ state which is the target state of the noise channel (amplitude damping).

Figure 3.1: Height of the localization peak (W1(0)) in the quantum sawtooth map with n = 3 qubits, K = 1.5,
k ≈ 0.273 (T = 2πL

N , that gives L = 7). Data from the quantum processor lima are obtained after averaging
over 10 repetitions of 8192 experimental runs. Data were collected from 2023/02/18 to 2023/03/01.
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Figure 3.2: Height of the localization peak, namely W1(0) as a function of the number of map iterations. The
top-left figure refers to the case with n = 3 qubits, the top-right to n = 4 while the bottom one the case of
n = 5. The parameters used are K = 1.5 and k ≈ 0.273. From relation T = 2πL

N we have L ≈ 7 for n = 3,
L ≈ 14 for n = 4, L ≈ 28 for n = 5. Data are for ibmq lima (black) and ibmq guadalupe (green) and are
obtained after averaging over 10 repetitions of 8192 experimental runs. Data were collected from 2023/02/18
to 2023/03/01.

As discussed in Section 2.3, the quantum state in the localized regime (t > t⋆) preserves the localiza-
tion for successive applications of the dynamical map. We show this behavior for the three qubit case
in Fig. 3.2(top-left) (noiseless), by considering the height of the localization peak as a function of the
number of iterations. By contrast, the real quantum hardware behaves very differently: at every iter-
ation, there is a progressive loss in the localization peak, which ultimately becomes indistinguishable
from noise, for both devices. Despite the better specifics (see Table 3.1), ibmq guadalupe is more
prone to noise effects than ibmq lima. Nevertheless, the coherent dynamics is no longer observable
on both quantum devices after five applications of the map.
In Figure 3.2(top-right) and 3.2(bottom) we consider the case where the coherent localization phe-
nomenon involves a larger number of qubits (n = 4 and n = 5). The parameters in the Hamiltonian
are modified to preserve the same localization conditions. In these cases, the height of the peak is
hardly detectable on the real hardware even after the first map application. This feature affects sim-
ilarly both the devices regardless of the number of qubits available on the QPU. As for n = 3, the
noise simulators considerably underestimate the level of noise.

As discussed in Chapter 2.1, the quantum algorithm for the quantum sawtooth map requires all-to-all
connectivity which is very hard to implement on hardware with fixed connectivity. For this reason,
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we have to transpile the original circuit into a new one that matches the connectivity on the QPU.
Therefore, the same circuit has different depths depending on the QPUs. However, in this case, even
if the two QPUs have different connectivity graphs, the circuit depths are close when considering
the same number of qubits. In order to compare the performance of the two QPUs, we consider the
ratio between the localization peak (W1(0)) on the real device and the one in the noiseless case for
quantum circuits with different depths, each corresponding to a different number of qubits. Results
are shown in Figure 3.3. Using a logarithmic scale on both axes, we can highlight the polynomial
scaling of the localization peak with the depth, for both devices. From this comparison, ibmq lima

still performs better than ibmq guadalupe. However, this result is in disagreement with the specifics
for the two devices reported in Table 3.1, where ibmq guadalupe seems to outperform ibmq lima.
This discrepancy is probably due to the different nature of the metrics to assess the capability of a
quantum device, the quantum volume, as opposed to the localization effect, which is a truly many-body
phenomenon.

Figure 3.3: Decay of the localization peak with the circuit depth. In the right picture, the circuit depths point
to the cases for 3, 4, and 5 qubits, respectively. Data are obtained from the ibmq lima QPU after averaging
over 10 repetitions of 8192 experimental runs each. In the left picture, the circuit depths point to the cases
for 3, 4, 5, 7, and 10 qubits respectively. Data are obtained from the ibmq lima QPU after averaging over
10 repetitions of 8192 experimental runs each. Both vertical and horizontal scales are logarithmic. Data were
collected from 2023/02/18 to 2023/03/01.
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Conclusions

In this thesis, we have reproduced the dynamical localization phenomenon of the quantum sawtooth
map on real quantum hardware and simulators available through IBM Quantum Experience. Since
dynamical localization is extremely sensitive to noise, the simulation on actual quantum hardware
offers a suitable test case to prove the reliability of the present platforms. Furthermore, it allows
comparison in terms of performance between quantum processing units (QPU) with different connec-
tivity. To this aim, we have studied and implemented an efficient quantum algorithm [3] based on the
forward/backward Fourier transform, which requires O(n2) gates where n is the number of qubits.
Parameters in the model have been chosen in a way that a single application of the quantum map
allows the emergence of the localized phase. In agreement with [22], we have observed the localization
peak for the case of n = 3 qubits both on ibmq lima and ibmq guadalupe, although significantly
reduced with respect to the noiseless dynamics. Interestingly, the noise models available for the two
QPUs underestimate some of the relevant noise channels, thus poorly reproducing data from real
hardware.
The persistence of the localization phenomenon has been considered by subsequent applications of the
quantum map. By contrast with the noiseless case, the real quantum hardware shows a progressive
loss in the localization peak, which becomes indistinguishable from noise after five map applications,
for both devices. The same analysis has been extended to the case where the coherent localization
phenomenon involves n = 4, 5 qubits: the localization peak is reduced but still detectable. Finally,
in order to compare the performance of the two QPUs, we have considered the dependence of the
localization peak on the circuit depth, which highlights a polynomial scaling.
From our analysis, we conclude that ibmq lima performs better than ibmq guadalupe. However, this
result is in disagreement with the specifics reported for the two devices, where ibmq guadalupe out-
performs ibmq lima in terms of quantum volume. This discrepancy is probably due to the different
metrics used, the quantum volume as opposed to the localization test, which is a truly many-body
phenomenon. The results motivate further analysis also on different platforms where different connec-
tivities can be realized, as it happens with trapped ions or neutral atoms.
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