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Introduction

General Relativity (GR) provides our deepest understanding of gravitational physics at the classical
level. A hundred years after its original formulation, the gravitational waves, the last missing piece
of GR predictions, have been discovered. Einstein’s insight on the Equivalence Principle (in all its
different formulations) and, more in general, GR have passed all the experimental tests with extremely
high accuracy [1]: even the familiar technology we use, such as the GPS, is a daily confirmation of
Einstein’s theory.
At the present time there are no experimental evidences that GR should be modified. This is good
for Einstein, but bad for us. There are, in fact, strong theoretical reasons for believing that GR is not
the ultimate theory of gravity: however, because there are no experimental evidences of this, we do
not have hints on which is the right way to go and we are blind to what Nature might tell us about
more fundamental gravitational physics. The need of modifying GR can be justified at different levels:
these can be summarized in the fact that GR is a classical theory and is mutually inconsistent with
quantum mechanics.

It is generally believed that the correct, fundamental description of all physical fields should undergo
the general framework of quantum mechanics. At a first stage this is an assumption we make: there
cannot be two worlds, one quantum and one classical, but the quantum theory should contain the
classical one as a certain limiting case. Gravitational physics should make no exception: thus, we have
to look for a theory of quantum gravity that falls to GR in the infrared. As we will see, this is far
from being an easy task.
It is useful to understand at which scale we expect GR to breakdown because the quantum effects
become important. To make a parallel with other theories, for example, we know that Galileo’s
Relativity gives way to Special Relativity when the velocities are close to the speed of light c, or that
classical mechanics has to be replaced with quantum mechanics when the variations of the action are of
order the (reduced) Planck’s constant ~, etc. In general, the breakdown of a theory is connected with
the appearance of some fundamental scale which, in the above examples, is invisible in the effective
theory, i.e. at scales far away from the fundamental one. By means of dimensional analysis, it is
possible to combine c, ~ and the gravitational constant GN and identify a fundamental length scale
in Nature, the Planck length

lP =

√
~GN
c3
∼ 10−33cm

We expect the quantum gravity effects to become important at this scale1.
The smallness of lP is closely related to the weakness of the gravitational force: indeed, it is about
40 orders of magnitude weaker than the Electromagnetic force. The only reason why we experience
it at our scales is that it is always attractive: gravity couples universally to all forms of energies and
makes like charges to attract; the usual requirement from quantum mechanics that the local energy
density should be positive makes the gravitational fields of a bound state of particles to add up, so
that gravity can dominate over all other forces at macroscopic scales.
The fact that the lP is so remote makes it difficult to gain any experimental evidence of quantum gravity
effects: at the present time, we are able to probe physics up to a scale of 10−17 cm. Moreover, this
makes it seem unlikely that quantum gravity may be relevant to any presently observable phenomena.

1Note that this does not discard the possibility that new gravitational physics could appear already at scales higher
than lP .
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INTRODUCTION

However, there are at least two reasons for believing that this is not the case, i.e. that a quantum
theory of gravity might have consequences on the theoretical discussion on the physics at the scales
we can probe. The first one has to do with the unification of the forces of Nature. No one ensures
us that all the forces are different aspects of a single entity, i.e. that they should undergo a unified
framework. However, this assumption would be in continuity with the history of physics of the
last 150 years: in the second half of the XIX century, Maxwell has unified the classical theories of
electricity and magnetism; in the sixties, Weinberg-Salam theory has done something similar with
the weak and electromagnetic interactions. More recently, grand unification models suggest that the
strong and electroweak interactions can be embedded into a unique simple gauge group: remarkably,
the gauge coupling constants of the Standard Model, when extrapolated to high energy using the
(supersymmetric) renormalization group, match each others at the grand unification scale 1016 GeV.
The unification of the gravitational force with the strong-electroweak interactions would be the next
logical step. Such an unified theory would yield new predictions of phenomena at presently observable
scales in the same way as grand unification models, for example, predict the protons decay.
The second reason arises directly from GR: spacetime singularities occur in solutions of GR relevant
to the gravitational collapse and cosmology. In this situations, GR predicts its own failure, and one
expects the classical description of spacetime structure to break down. In particular, this has to do
with the Big Bang singularity: one cannot expect that the description of our universe undergoes
the equations of GR in the regime where these predict the curvature to be of order l−2

P , i.e. at time
comparable with the Plack time tP ∼ 10−43s. At this regime, quantum effects would be important, and
it is possible that phenomena which occur in the very early universe (and thus should be understood
in the framework of quantum gravity) lead to observable predictions about the structure of the resent
universe.

This issue is also related with black hole physics. Black holes are singular solutions of Einstein’s
equations that have an event horizon, i.e. a one-way membrane that causally divides spacetime into
the external universe and the black hole interior. The analysis of black holes in GR reveals interesting
(and sometimes even surprising) properties.
First of all, black holes are protected by uniqueness theorems: they are uniquely fixed in term of the
conserved charges they carry, i.e. the mass M , the angular momentum J and the electric charge Q.
This is quite surprising. If we consider, for instance, a star, the metric it produces is affected by its
shape, its chemical composition, the distribution of the mass, the charge, etc. (you got the idea) so
that, if we decompose the metric into multipole moments, an infinite number of coefficients should be
specified to express the field exactly. If the star collapses into a black hole, this property no longer
holds and the metric is fixed once the charges M , J and Q are given. Heuristically, we can motivate
this by thinking that the formation of the event horizon causally cuts off the interior region from the
external universe and thus soften all the particular characteristics of the starting condition but those
that, being conserved, cannot disappear. Wheeler expressed this idea with the phrase: “black holes
have no hair”.
Another important feature of black holes is that they obey mechanical laws, which follow from Ein-
stein equations, that are analogous to the 3 laws of classical thermodynamics; in this view, one can
assign to a black hole a temperature TBH and an entropy SBH that depend only on some features of
the event horizon (the surface gravity and the area respectively) and not on what lies in its interior.
This behavior makes some questions rise: black holes, as the name suggest, are black so it is not clear
what it means to assign them a temperature; moreover, because of the uniqueness theorems, their
classical phase space is trivial and cannot account for the entropy. One could argue that, perhaps, the
entropy receives contributions from the quantum mechanical states that are hidden behind the horizon
(indeed, entropy is hidden information), but yet one is to face the puzzle that the entropy scales with
an area instead of a volume2; against the typical picture for which the entropy is an extensive quantity.
Therefore one would be tempted to consider the correspondence between black hole mechanics and
thermodynamics as nothing more than a vague analogy.
However, taking into account quantum mechanical effects on the curved (classical) background, Hawk-

2As we will discuss in this thesis, this has been taken as a hint of a fundamental property of quantum gravitational
theories: namely that they are holographic.
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ing has shown that black holes emit a black-body radiation at a temperature TBH : classically, black
holes are black, but semi-classically they thermally radiate.
This fact enforces the case for taking seriously the analogy between black hole laws and thermody-
namics and searching for an underlying statistical explanation of this thermodynamic behavior. This
picture, as we now discuss, gives rise to puzzling situations. In statistical mechanics, a macroscopic
state is viewed as a a coarse grained description of a number N of microstates, which are all compatible
with the macroscopic state, in the sense that the macroscopic observables cannot distinguish between
them: in this view, the entropy is the logarithm of the number of microstates. In the case of black
holes, what/where are the eSBH microstates? This is the entropy puzzle.
Furthermore, the thermal nature of Hawking’s radiation has led to one of the biggest recent problems
in theoretical physics: the information paradox. We can think of Hawking’s radiation as a consequence
of pairs creation near the event horizon: it is possible that one member of the pair falls into the hole
(reducing its mass) while the other particle escapes to infinity (giving the thermal radiation). This
process makes the black hole to evaporate and, eventually, to disappear: the ingoing and outgoing
members of the pair are in an entangled state and, when the black hole has vanished (togheter with
the infalled particle), the radiation quanta left outside are entagled with nothing, i.e. we started with
a pure state and ended up with a state that must be described by a density matrix.
This violates unitarity. Because the conservation of the information, i.e. the unitary temporal evolu-
tion of quantum mechanics, is one of the pillars of theoretical physics, one may search for a failing in
the above argument. In particular, since we are using GR and quantum theory in the same problem
(i.e. Hawking’s computation is semi-classical), one may imagine that a theory of quantum gravity
should shed light upon these paradoxes. This is, however, not obvious a priori as near the horizon,
in general, the curvature is small with respect to l−2

P and the semi-classical approximation should be
reliable. Therefore, understanding if and how information is conserved in a quantum theory of gravity
turns out to be a very difficult task. In this sense, black hole physics opens a window on quantum
gravity: indeed, many physicists consider black holes the analogous of the hydrogen atom for quantum
mechanics.

As we have acquainted above, a consistent formulation of a theory of quantum gravity is a difficult
task. The canonical quantization approach to GR fails, being it a non-renormalizable theory. The
lack of observations to guide us, moreover, makes the formulation of quantum gravity a search without
lighthouses and has led to many different approaches: string theory, loop quantum gravity, asymptot-
ically safe gravity (just to name a few), driven by underlying different guiding ideas.
String theory is still a theory under construction and we have not figured out all the rules that governs
it, nonetheless it seems to be the most promising approach and the aim of this thesis is to study some
of the recent progresses in our understanding of black hole physics within string theory.

String theory revolutionizes what the things are made of: it pretends that the fundamental objects of
Nature are not point-like particles, but one dimensional objects, namely the strings. Their oscillations
give rise to a spectrum that contains a massless spin-2 field, the graviton: in this sense, it is a theory
of quantum gravity.
Strings are not the only fundamental objects in string theory; there are also D-branes: multidimen-
sional objects on which open strings can end. They are massive objects, so they source the gravitational
field curving spacetime. Thus, a black hole in string theory is understood as a bound state of strings
and D-branes: we call n-charge black hole the one composed of n different types of branes and strings.
To be more precise, changing the gravitational strength (i.e. the coupling constant of the theory) one
can interpolate between the black hole regime and the bound state description of the system.
With this point of view, for a class of supersymmetric black holes, string theory enables an exact
agreement between the degeneracy of the microstates (which are essentially the different possible vi-
bration modes of the strings and D-branes) and the thermodynamic entropy: one can compute the
degeneracy in the bound state description and, thanks to supersymmetry, extrapolate this result to
the black hole regime. These developments not only show that, indeed, the gravitational entropy has
a statistical origin, but represent also a non trivial test on the consistency of string theory.
However, being this essentially an extrapolation from weak to strong couplig, it leaves us with some

3



INTRODUCTION

questions: how do these microstates manifest themselves at the gravitational regime? How do they
help to solve the information paradox?

The explicit solutions generated by these microstates have been constructed in some simple cases
and they all show some important features: they are horizonless and non-singular geometries (well
described in the supergravity limit, the low energy limit of superstring theory), which resemble the
classical black hole asymptotically but deviate from it already at the horizon scale; in particular, the
interior region contains informations on the particular microstate (and thus permit to distinguish one
microstate from another).
This result has motivated the fuzzball proposal: according to this conjecture, associated with a black
hole with entropy SBH , there are eSBH horizonless, non-singular solutions that asymptotically look like
the black hole but generically differ from it up to the horizon scale. These solutions, called fuzzballs,
are considered to be the microstates responsible for the entropy, while the original black hole represents
the coarse grained description3 of the system.
The absence of an horizon corroborates the idea that these are indeed microstates: if they had an
horizon one could associate an entropy to them, and they would not be pure states. Moreover, the
fuzzball proposal implies that quantum gravity effects are not confined at scales comparable with lP ,
but extend up to the horizon scale which, in general, is a macroscopic scale.
This modification opens to the possibility that Hawking radiation does manage to carry out the
information of the collapsing matter. The reason is that, while Hawking’s calculation assumes that
the microstates are not distinguishable near the horizon, according to this conjecture a microstate
and the coarse-grained black hole differ already at the horizon scale. This means that the creation of
particle pairs near the horizon is sensible to the precise form of the microstate: the modification of the
black hole interior allows the emitted quanta to carry information about the microscopic configuration.
We shall stress, however, that the fuzzball proposal is a conjecture and it is not entirely accepted.
To establish its validity it would be important to develop a precise map between microstates and
geometries.
Moreover, we shall clarify that, by solutions, we mean in general solutions of the full string theory: only
a subset of these fuzzball will solve the low energy equations of motion, i.e. will be visible (or reliably
distinguishable) in the supergravity limit. The majority of the microstates, instead, are likely to be
stringy fuzzballs: this imposes many technical obstacles to establish the validity of the conjecture.

Progresses have been made with the AdS/CFT duality, which is (conjectured to be) an exact equiva-
lence between a string theory in a (d+ 1)-dimensional Anti de Sitter spacetime and a conformal field
theory on the boundary. The black holes that we will consider (i.e. the 2- and 3- charge black holes)
have a near-horizon region that is asymptotically AdS3×S3, so that AdS/CFT correspondence is ap-
plicable. The microstates, thus, can be understood as certain supersymmetric states of the dual CFT.
This duality provides powerful tools to study black holes microstates, as it enables to gain insight on
the gravitational physics from the CFT side of the duality.

In particular, it has been shown that, given a CFT state |s〉 (whose gravitational dual is well described
in supergravity), the expectation values of some operators in |s〉 are encoded in the asymptotics of the
dual AdS geometry: roughly speaking, the VeVs of these operators determine a particular deviation
of the geometry of the microstate from AdS3 × S3.
The precise dictionary VeVs/geometry expansion has been established for operators of conformal di-
mension 1, providing that the expectation value of such operators are controlled by the first non trivial
correction around AdS3 × S3. It is an aim of this thesis to discuss its generalization to operators of
higher dimension: in particular, we will focus on operators of dimension 2, whose VeVs are controlled
by corrections up to the second non trivial order around AdS3 × S3.
It is important to work out further the CFT/gravity dictionary mainly for two reasons. The first one
is that not all the geometries that have the same asymptotic charges of the black hole are microstates;

3The coarse-graining is a procedure borrowed from statistical mechanics: averaging microscopic degrees of freedom,
the macroscopic properties of the system (for example the event horizon and, thus, the entropy) emerge. Because black
hole physics undergoes a statistical mechanic description, this procedure should apply also to our systems; however, it is
not clear how it analytically works in this case, i.e. it is not clear how to coarse-grain (average) geometries.

4



discussing their dual states in the CFT would help to confirm whether they indeed contribute to the
entropy of the black hole. The second reason concernes the fact that the construction of gravity solu-
tions is usually a difficult task (this is true also in General Relativity): developing the CFT/geometries
dictionary further could provide a guide to construct more general dual geoemtries. Moreover many
microstates have a vanishing expectation value of dimension 1 operators; thus, the results already
known in the literature do not allow to gain any insight on the gravitational physics from the CFT
side of the duality.
The strategy to extend the dictionary will be to consider microstates with known geometry and state
on the dual CFT; we will compute the VeVs of the dimension 2 operators and compare them with the
geometry expansion.
This generalization presents some new features compared to the case of operators of dimension 1. The
extended dictionary should take into account the possible mixings between dimension 2 operators:
this means that a linear combination of the coefficients of the geometry expansion around AdS3 × S3

encode the VeVs of a linear combination of dimension 2 operators. Determining the dictionary means
to provide the precise linear combinations.
In particular mixing between single- and multi-trace operators occurs. The action of the double-traces
on a CFT state, however, is subtle and we will not consider it this thesis. This is done examining only
states in which the double-trace operators cannot play any role, so that their contribution is invisible.
Clearly, such a restriction is a limit of our discussion and it would be very interesting to extend the
analysis further.
Note, moreover, that the geometry expansion gives different answers in different coordinate systems,
so that, in general, the VeV/geometry dictionary depends on the gauge choice. Such a dependence
is not visible in the case of dimension 1 operators, because their expectation values are controlled by
the first non trivial order in the geometry expansion. This is not the case for dimension 2 operators,
and it is likely that the dictionary we provide is valid only in our coordinate choice.

The work is organized as follows.
In Chapter 1 we introduce black hole solutions in General Relativity and, in particular, the analogy
between black hole physics and thermodynamics. The puzzling consequences that arise when one
takes this correspondence seriously are discussed, as well as the need for a quantum gravity theory in
order to solve them.
In Chapter 2 we introduce string theory, supersymmetry and supergravity, reviewing the main tools
and properties that will be needed in the following discussion. Moreover, we will see how black holes
are described in supergravity theories.
In Chapter 3 we will treat Black holes in string theory showing how it successfully accounts for the
microscopic count of states. The problem of the microstates construction will be addressed for a
particular simple case (the D1-D5 black hole, i.e. a 2-charge system composed of 1-dimensional and
5-dimensional D-branes): this will lead to the discussion of the Fuzzball proposal.
As we have mentioned above, the AdS/CFT correspondence provides powerful tools for the discussion
of black hole physics: the motivation and the content of the duality will be discussed in Chapter 4.
The D1-D5 CFT, the conformal field theory relevant for the D1-D5 system, will be introduced.
In Chapter 5 we will state the precise dictionary between D1-D5 states and dual geometries for the
2- and 3-charge black holes. We will also review the VeVs/geometry expansion correspondence for
operators of dimension 1.
In Chapter 6 we will discuss the extension of the above dictionary for operators of dimension 2, fixing
some constraints on the relations between VeVs and dual geometry.
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Chapter 1

General Relativity and Black Holes

1.1 General Relativity

Einstein’s insight that gravity emerges from the curvature of spacetime led to the most predictive
classical theory of gravitation: General Relativity. The field content of the theory is the gravitational
field gµν (i.e. the metric of spacetime that encondes its dynamics) and all the other matter and gauge
fields that, having energy, source the gravitational field. The total action is the sum of the so-called
Einstein-Hilbert action SEH , that governs the dynamics of spacetime, and the action for all the other
fields but the metric SM :

S = SM + SEH = SM +
1

16πGN

∫
d4x
√
−gR (1.1)

where R = gµνR
µν is the Ricci scalar and GN is the Newton constant. The principle of stationary

action yields to the following equations of motion:

Rµν −
1

2
gµνR = 8πGNTµν (1.2)

where the stress-energy tensor Tµν is defined as Tµν = − 2√
g
δSM
δgµν .

The non-linearity of Einstein’s equations reflects the back-reaction of gravity: the gravitational field,
having energy, couples to itself. This is a direct consequence of the Equivalence Principle: if gµν
did not interact with itself, a gravitational atom (two particles bound through their mutual gravita-
tional attraction) would have a different inertial mass than gravitational mass. From a mathematical
point of view, the non-linearity of the equations makes complicated the purpose of saying anything
general about the properties of the solutions, therefore it is usually necessary to make some simpli-
fying assumptions endowed with a high degree of symmetry. We will now turn to the study of these
situations.

1.1.1 Schwarzschild Black Hole

The simplest case one can consider is a spherically symmetric vacuum spacetime. Birkhoff’s theorem
ensures that an isotropic metric is also static. The unique solution is called Schwarzschild metric, by
the name of its discoverer, and in Schwarzschild coordinates (t, r, θ, φ) the line element reads [2]:

ds2 = −
(

1− 2MGN
r

)
dt2 +

(
1− 2MGN

r

)−1
dr2 + r2dΩ2

2 (1.3)

7



CHAPTER 1. GENERAL RELATIVITY AND BLACK HOLES

where dΩ2
2 is the differential area element of S2 and M is the mass of the body, in the following we will

usually express formulae in terms of the reduced mass m = MGN . This is the metric for spacetime
outside a spherical massive object, and is relevant to describe the gravitational field created by the
Earth or a star (to a good approximation). The metric coefficients of (1.3) become infinite at r = 0
and at the Schwarzschild radius r = 2m ≡ rs.
The hypersurface r = rs is called event horizon. As the Schwarzschild solution makes sense only
in vacuum, when dealing with the singularity r = rs we are interested only in the case in which
the massive body has a smaller radius than rs. Such an object is called a black hole. Being gµν a
tensor, its components are coordinate dependent and its breakdown does not tell us whether we are
considering a physical singularity or if the singularity lies in the coordinatization and the underlying
spacetime manifold remains perfectly smooth. Distinguishing between these cases in generality turns
out to be a difficult task, and entire books have been written about the nature of singularities in
General Relativity. Analizing this issue in detail is beyond the puropuse of thesis. For the following
discussion it is enought to say that if any scalar constucted from the curvature goes to infinity as
we approach some point, then we are dealing with a singularity of the curvature. Considering the
invariant quantity [2]

RµνρσR
µνρσ =

48G2
NM

2

r6
(1.4)

we see that at r = 0 the geometry is singular, while computing all the possible curvature invariants,
one could check that the Schwarzschild radius is actually non singular and the breakdown of the
metric has to do with a bad choice of coordinates. Physically, it reflects the fact that Schwarzschild
coordinates are adapted to an observer standing still outside the hypersurface r = rs and to stand still
at r = rs one should have an infinite acceleration. Choosing a coordinate system adapted to ingoing
light rays, defined by the change of coordinates

v = t+ r + 2m log |r − 2m

2m
| (1.5)

one gets the Schwartzshild metric in ingoing Eddington-Finkelstein coordinates (v, r, θ, φ)

ds2 = −
(

1− 2m

r

)
dv2 + 2dvdr + r2dΩ2

2 (1.6)

which is smooth at r = rs.
Even though the singularity r = rs has to do with the coordinatization, it leads to important physics.
The causal structure of (1.6) shows that the event horizon is tangent to a light cone and no future-
directed timelike or null worldline can reach r > 2m from r ≤ 2m: it act as a one-way membrane
separating those spacetime points that are connected to infinity by a timelike path from those that
are not. It is also an infinite redshift surface: the wavelength of the radiation received by a distant
observer increase as the source approaches the event horizon. Those two aspects are the essence of
the invisibility of a black hole.
There is another notion of horizon in GR: if a Killing vector field ξµ is normal to a null hypersurface Σ,
than Σ is called Killing horizon. Even thought the notion of a Killing horizon is logically independent
from that of an event horizon, for spacetimes with time-traslational symmetry the two are closely
related: every event horizon Σ in a stationary, asymptotically flat spacetime is a Killing horizon for
some Killing vector ξµ, and if the spacetime is also static ξ = ∂t. To every Killing horizon we can
associate a quantity called surface gravity. Because ξµ is normal to Σ, along the Killing horizon it
obeys [3]

ξµDµξ
ν |Σ = kξν (1.7)

8



1.1. GENERAL RELATIVITY

where k is the surface gravity. We see from (1.7) that its definition is in principle arbitrary because
if Σ is a Killing horizon of ξµ with surface gravity k, then it is also a Killing horizon of cξµ with
surface gravity ck, for any contstant c. There is no natural normalization of ξµ on Σ, as ξ2 = 0 there.
Yet there is a natural normalization for asymptotically flat spacetime at spatial infinity, e.g for the
time-translation Killing vector field ξ = ∂t we choose

ξ2(r =∞) = −1 (1.8)

This fixes k. The evaluation of (1.7) for the Schwarzshild metric (1.6) with ξµ = (1, 0, 0, 0) gives a
non vanishing result only for the component ν = v :

ξρDρξ
v = Γvvv =

m

r2
|r=2m =⇒ k =

1

4m
=

1

4MGN
(1.9)

We can interpret k as the acceleration experienced by a test particle on the horizon as measured by
infinity, and we will see in the following that it is closely related to the temperature of the black hole.

1.1.2 Reissner-Nordstrom Black Hole

Let’s now consider the solution to Einstein’s equations for a spherically symmetric charged black hole,
i.e. when gµν couples with the stress-energy tensor produced by an U(1) gauge field. The metric
reads [4]:

ds2 = −
(

1− 2mGN
r

+
GNQ

2

r2

)
dt2 +

(
1− 2mGN

r
+
GNQ

2

r2

)−1
dr2 + r2dΩ2

2
(1.10)

where M is once again the mass of the body and Q is the total electric charge. Beside the geometrical
singuarity r = 0, the metric blows up when grr = 0; this reflects the presence of event horizons located
at

1− 2GNM

r
+
GNQ

2

r2
= 0 =⇒ r± = GNM ±

√
G2
NM

2 −GNQ2 (1.11)

There are 3 cases to consider:

� When GNM
2 < Q2, grr = 0 has no real roots and the metric is completely regular in the

(t, r, θ, φ) coordinates all the way down to r = 0, which is therefore a naked singularity. This
situation is however forbidden from the cosmic censorship hypothesis, which states that naked
singularities cannot form in gravitational collapse. The unphysicality of this setting can be
understood by the following argument based on newtonian gravity and incorporating the equiv-
alence of inertial mass with total energy (Special Relativity) and of inertial and gravitational
mass (General Relativity). The total mass is equal to the sum of the rest energy, the coulombian
energy and the gravitational binding energy:

M = M0 +
Q2

r
− GNM

2

r
(1.12)

This is a quadratic equation for M, whose solution with M(r =∞) = M0 is
M(r) = 1

2GN
(
√
r2 + 4GNM0r + 4GNQ2− r). The shell will undergo gravitational collapse if M

decreases as R decreases (this allows Kinetic Energy to increase). So

dM

dr
=
GNM

2 −Q2

2MGNr + r2
> 0 =⇒ GNM

2 > Q2 (1.13)

and the attracting gravitational force wins the repulsive electric force.
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CHAPTER 1. GENERAL RELATIVITY AND BLACK HOLES

� When GNM
2 > Q2 the metric has two coordinate singularities at r± corresponding to two event

horizons. The one at r+ is just like r = 2m for Schwarzschild metric (the physical phenomena
an observer outside the horizon witnesses, like the increasing redshift, are just like those outside
an uncharged black hole): at r+, r switches from being a spacelike coordinate to a timelike
coordinate, and an infalling observer is forced to move in the direction of decreasing r untill it
reaches r = r−, where r switches back to a spacelike coordinate. Here one can choose whether to
fall in r = 0 or reverse the orientation, go across the region between r− and r+ and re-emerge in
an outside region which is actually different from the starting region: from this point of view of
the Reissner–Nordstrom black hole behaves as a white hole. Both the event horizons at r± are
Killing horizons for the Killing vector ξ = ∂t. Mooving to Eddington-Finkelstein coordinates [3]
and using (1.7) one gets the following result for the surface gravities:

k± =
r+ − r−

2r2
±

(1.14)

Note that in the limit Q → 0, we have that r+ → 2m, r− → 0 and k± → 1
4m , recovering the

structure of the Schwarzschild black hole.

� In the case GNM
2 = Q2 the solution is said to be extremal. In this situation the event horizon

is located at r+ = r− = m: here the r coordinate becomes null, but it is never timelike,
it is spacelike on both sides. An important feature of extremal black hole is that, roughtly
speaking, the mass is exactly balanced by the charge: two extremal black holes attract each other
gravitationally but repell each other electrically, and the two effects precisely cancel. This allows
to find exact solutions of multicentered extremal black holes in a stationary configuration [4].
In supergravity theories, as we will see later, the case of extremal solutions are of particular
interest as they might1 reflect the presence of supersymmetry, which is a considerable aid in the
calculations. Let’s note that (1.14) evaluated for an extremal black hole gives k = 0.

1.1.3 Kerr Black Hole

Let’s now move to the vacuum solution of Einstein’s equations generated by a stationary rotating
black hole. The metric has been discovered by Kerr in 1963, about 40 years after the discovery of
Schwarzshild and Reissner-Nordstrom metrics. This elapsed time gives the feeling of the mathematical
difficulties related to this solution, as now the metric is stationary but no more static and presents an
axial symmetry around the axis of rotation instead of a spherical symmetry. The result reads:

ds2 =−
(

1− 2GNMr

ρ2

)
dt2 − 2GNMar sin2 θ

ρ2
(dtdφ+ dφdt) +

ρ2

∆
dr2

+ ρ2dθ2 +
sin2 θ

ρ2

[
(r2 + a2)2 − a2∆ sin2 θ

]
dφ2

∆ = r2 − 2GNMr + a2 ρ2 = r2 + a2 cos2 θ a =
J

M

(1.15)

The solutions are parametrized by the mass M and the angular momentum J of the black hole. It’s
possible to include the electric charge just by replacing 2GNMr → 2GNMr −GNQ2, however, as we
are interested now in the physical phenomena due to the presence of J , we will keep Q switched off.
The manifold singularity occurs at ρ = 0, which means r = 0 and θ = π/2 (it forms a disk of radius
a). The event horizons occur for grr = 0, and one gets

∆(r) = r2 − 2GNMr + a2 = 0 =⇒ r± = GNM ±
√
G2
NM

2 − a2 (1.16)

1Extremality is a necessary but not sufficient condition for supersymmetry.
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1.1. GENERAL RELATIVITY

The analysis of these null surfaces procedes analogously with Reissner-Nordstrom metric. As all the
coefficients of the metric are independent of the coordinates t and φ, there are two manifest Killing
vectors: K = ∂t and R = ∂φ. Because Kerr is stationary but not static, the event horizons are
Killing horizons associated to a linear combinations of K and R: ξµ = Kµ + ΩHR

µ. Imposing
ξµξµ = Ω2

Hgφφ + 2ΩHgtφ + gtt = 0 on r+, and using ∆(r+) = 0 one gets:

ΩH =
−gtφ ±

√
g2
tφ − gttgφφ

gφφ
|r+ =

−gtφ ±
√

∆ sin2 θ

gφφ
|r+ =

a

r2
+ + a2

(1.17)

Mooving to Eddington-Finkelstein coordinates [3] and using using (1.7) one gets the following result
for the surface gravities:

k± =
r+ − r−

2(r2
± + a2)

(1.18)

The Killing vector associated to time translation invariance becomes null before the event horizon
(except for the poles θ = 0, π). K2 = gtt = 0 occurs at

r̃± = GNM −
√
G2
NM

2 − a2cos2θ (1.19)

The region between r̃+ and r+ is known as ergoregion2.
A static observer moves on a timelike worldline with tangent vector proportional to Kµ, so that on its
worldline dr = dθ = dφ = 0. Because inside the ergosphere Kµ becomes spacelike, a static observer
cannot exist there: an observer inside the ergosphere cannot stay still, but is forced to move, dragged
along with the black hole rotation .

1.1.4 No-Hair Theorem

In Section 1.1.1 we have seen that the unique vacuum solution of Einstein’s equation generated by
a spherically symmetric charge is also static (Birkhoff’s theorem) and is given by (1.3), this means
that the metric is characterized by a single parameter M. Yet, this is not too surprising: an analogous
statement hold also, for example, in classical electromagnetism where the only spherically symmetric
field configuration in a free charge region is given by Coulomb’s field. A stronger statement has
been proved by Israel in 1967, who has shown that the gravitational field of a static vacuum black
hole, even without further symmetry assumptions, is necessarily given by the spherically symmetric
Schwarzschild metric. Holding stationarity but giving up spherical symmetry, however, one might
expect that many more black hole configurations occur: if we take a non spherically-symmetric planet
and decompose the metric into multipole moments, an infinite number of coefficients should be specified
to express the field exactly. Surprisingly enough, black holes do not share this property: assuming that
electromagnetism is the only long-range non gravitational field, black hole solutions are protected by
a ”no-hair theorem”. It states that stationary, asymptotically flat black hole solutions to GR coupled
to electromagnetism that are nonsingular outside the event horizon are fully characterized by their
mass, electric charge and angular momentum (which we will call, generically, charges of the black
hole). This means that it does not matter how complicated the collection of matter that collapse into
a black hole is, eventually we will end up with a configuration completely specified by 3 parameters,
the charges of the black hole. Not only in quantum theories, but even classically information cannot
be lost; in GR, however, we can think of the information as hidden behind the horizon rather then
truly been lost. We will see that in QFT, instead, black holes evaporate and eventually disappear,
leaving us with a puzzling paradox.

2Ergon means work in ancient greek. The etymology of this word will become clear while studying the Penrose process
in Section 1.2.2.
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CHAPTER 1. GENERAL RELATIVITY AND BLACK HOLES

1.2 Black Hole thermodynamics

In GR, black holes obey laws that look analogous to the laws of thermodynamics, and follow di-
rectly from Einstein’s equations. In this Section we will derive these laws and examine their physical
consequences.

1.2.1 Black Hole temperature as surface gravity

In order to talk about the thermodynamical properties of a black hole, we shall firstly associate
a temperature to it. We will do it examining the properties of the Euclidean black hole solution,
obtained by analytically continuing the metric form Lorentzian to Euclidean signature. We will show
that regularity of the metric requires time to be periodic in the imaginary direction, and this periodicity
assigns a temperature to the black hole which is proportional to its surface gravity. Let’s first show
that QFT at a finite temperature T , to be well defined, has to be periodic in the imaginary time, with
periodicity

t ∼ t+ iβ β =
1

T
(1.20)

The thermal Green’s function for a field operator φ is

Gβ(τ, x) ≡ −Tr ρβTE [φ(τ, x)φ(0, 0)] = − 1

Z
Tr e−βHTE [φ(τ, x)φ(0, 0)] (1.21)

where τ = it is the euclidean time, ρβ is the thermal density matrix and TE denotes time ordering.
Then, we have (τ > 0)

Gβ(τ, x) = − 1

Z
Tr e−βHφ(τ, x)φ(0, 0) = − 1

Z
Trφ(0, 0)e−βHφ(τ, x)

= − 1

Z
Tr e−βHφ(β, 0)φ(τ, x) = − 1

Z
Tr e−βHTE [φ(τ, x)φ(β, 0)]

= Gβ(τ − β, x)

(1.22)

where we have used the cyclic property of the trace and the time evolution of the operators in the
Heisenberg picture:

φ(t+ t0) = eiHtφ(t0)e−iHt (1.23)

Let’s now examine the properties of the Euclidean Schwarzshild solution. With this purpose we shall
expand Schwarzshild metric near the horizon, focusing our attention just to the (t, r) coordinates
in (1.3) (the coordinates of S2 do not play any role in this discussion and we can just ingnore them).
Introducing the new coordinate r̃ = r − 2m that measures the coordinate distance from rs, (1.3)
reads:

ds2 = −
( r̃

r̃ + 2m

)
dt2 +

( r̃ + 2m

r̃

)
dr̃2 (1.24)

The near horizon expansion means r̃ << rs = 2m, so

ds2 = − r̃

2m
dt2 +

2m

r̃
dr̃2 (1.25)

12



1.2. BLACK HOLE THERMODYNAMICS

Introducing the new radial coordinate

dρ2 =
2m

r̃
dr̃2 =⇒ ρ =

√
8mr̃ (1.26)

one gets

ds2 = − 1

16m2
ρ2dt2 + dρ2 = −k2ρ2dt2 + dρ2 (1.27)

where k is the surface gravity, recovering Rindler’s metric in hyperbolic coordinates. Wick rotating
τ = it, one finds

ds2 = ρ2d(kt)2 + dρ2 (1.28)

If one requires this metric to be regular, this is the 2 dimentional euclidean metric in polar coordinates
ds2 = dr2 + r2dθ2, where θ ∼ θ + 2π. Hence we can assign to τ the periodicity β = 2π

k . Thus, every
continuous function defined on this background (and in particular every Green’s function) is periodic.
Using eq. (1.20), we have that to a Schwarzshild black hole with massM we can associate a temperature

T =
~

8πkBGNM
(1.29)

where we have reintroduced the constants ~, GN and the Boltzmann constant kB. Some observation are
in order. The dependence of the temperature on the surface gravity k, that in the previous computation
occurs through eq. (1.27), is not a coincidence: the proportionality between the temperature and the
surface gravity of a black hole

T =
~k

2πkB
(1.30)

holds also for Reissner-Nordstrom’s and Kerr’s solutions. It can be shown [3] that the surface gravity is
constant on the Killing horizon and that k ≥ 0 always (where the equality sign holds for extremal black
holes). The first property reminds the zeroth law of thermodynamics (that states that the temperature
of a system in equilibrium is constant) and the latter reassures us that (1.30) is a consistent definition of
temperature. Let’s also note that if a black hole absorbs radiation its mass increases but, as eq. (1.29)
shows for the Schwarzshild case, its temperature decreases, leading to a negative specific heat.
It may seem just a speculative effort to associate a non zero temperature to a black hole because GR
tells us that it is an object that can only absorb and not emit particles. It turns out that this is not
true once one considers QFT in the background of a stationary black hole: this is what Hawking did [5]
demonstrating that black holes are unstable objects that emit black-body radiation at infinity. Let
us just sketch the essential features needed to understand the Hawking radiation, without reporting
the details (a complete derivation of Hawking radiation can be found, for example, in [6]). The
generalization of the equations of motion of QFT in a non-Minkoskian spacetime can be obtained
imposing the minimal-coupling principle. For example, the equation for a massless, non interacting
scalar field φ reads:

gµνDµDνφ = 0 (1.31)

where Dµ are the covariant derivatives. What one would do now is to introduce a set of positive and
negative frequency modes forming a complete basis for the solutions of (1.31), expand the field φ in
these modes, interpret the Fourier coefficients as creation and annihilation operators and quantize
them imposing the commutation relations. At this point, in general, our prescription breaks down:
in a spacetime with no global timelike killing vector field (and this is the case in presence of a black
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CHAPTER 1. GENERAL RELATIVITY AND BLACK HOLES

hole) there is no global notion of positive and negative frequency modes, and we cannot give a precise
notion of particle. Still, if a spacetime is asymptotically flat, we can define positive frequency modes
in the regions where it approaches Minkowski spacetime. Let us consider, for instance, a spacetime
with two asymptotically flat regions: the ingoing and the outgoing one . We can define particles and
vacuum states in each region, but those definitions need not to coincide. In the case of a black hole,
Hawking showed that if we start with the incoming vacuum, the expectation value of the number of
outgoing particles with frequency ω is

Nω ∼
1

e
2π~ω
kkB − 1

(1.32)

So, starting with the vacuum in the background of a black hole, we end with a planckian distribution
of outgoing particles corresponding to a black body with temperature consistent with (1.30). The
energy of the emitted particles is compensated by the negative energy particles that cross the event
horizon of the black hole, decreasing its mass. Thus, black holes are quantum mechanically unstable
and will eventually disappear (evaporate), even thought slowly.

1.2.2 First and second law of Black Holes thermodynamics

In this section two laws that remind the first and second law of classical thermodynamics will be
derived for black holes. With this purpose, let’s show that energy not only can flow into black holes,
but there are physical processes by which one can extract energy out of them. Let’s focus our attention
to a massive particle (with four-momentum pµ = mdxµ

dτ ) in Kerr’s metric. Two conserved quantities
along the geodesics are ensured by the presence of the axial rotation Killing Rµ and the time-traslation
Killing Kµ : those are the angular momentum of the particle L = Rµpµ and the energy of the particle
E = −Kµpµ (the minus sign is required in order to have E > 0 at spatial infinity: there both Kµ

and pµ are timelike, so their inner product is negative). Inside the ergosphere, however, Kµ becomes
spacelike, and we can immagine particles for which E = −Kµpµ < 0: this does not bother us, as our
physical request should be that all the particle must have a positive energy ouside the static limit
surface. Therefore a particle with negative energy inside the ergosphere either remains there, or needs
to be accelerated until its energy becomes positive if it is to escape.

Let’s start with a particle 0 outside the ergosphere (so that E(0) = −Kµp
(0)
µ > 0) that, moving along

its geodesic, falls into the ergosphere. Suppose now that particle 0 decades into particle 1 and 2: at
that istant the four-momentum is conserved, and the contraction with Kµ gives E(0) = E(1) +E(2). It
is possible that the decay occurs in such a way that particle 2 has E(2) < 0 and falls across the horizon
while particle 1 (that has to have E(1) > E(0)) escapes to infinity: the particle that emerges form the
ergosphere has more energy than the one that has fallen. This procedure is known as Penrose Process.
Nothing is free, however, and the energy gained must come at the expense of something, that is the
rotational energy of the black hole by decreasing its angular momentum. The statement that particle
2 crosses the event horizon means that

p(2)µξµ = p(2)µ(Kµ + ΩH Rµ) = −E(2) + ΩHL
(2) ≤ 0 (1.33)

Since we have arranged E(2) < 0, then L(2) ≤ E(2)

ΩH
< 0 and we see that particle 2 must be emitted

against the hole’s rotation. Once particle 2 crosses the horizon, the black hole mass and angular
momentum are changed by δM = E(2) and δJ = L(2), and eq. (1.33) becomes

δJ ≤ δM

ΩH
(1.34)

The meaning of this relation is clear: the more the black hole is slowed down, the larger the energy
that can be extracted out of them. Using eq. (1.17) , eq. (1.34) can be rewritten as
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δ
(
M2 +

√
M4 − J2

G2
N

)
= δ
(r2

+ + a2

2G2
N

)
≥ 0 (1.35)

We already glimpse a loose connection with thermodynamics: the decreasing of the mass and angular
momentum of the black hole must occur in such a way that the quantity in (1.35) remains constant or
increases. The physical meaning of this quantity can be understood computing the area of the outer
event horizon: the induced metric on the horizon is

γijdx
idxj = ds2(dt = dr = 0, r = r+)

= (r2
+ + a2 cos2 a)dθ2 +

((r2
+ + a2)2 sin2 θ

r2
+ + a2 cos2 a

)
dφ2

(1.36)

The horizon area is then the integral of the induced volume element

A =

∫ √
|γ|dθdφ = 8πG2

N

(
M2 +

√
M4 − J2

G2
N

)
(1.37)

Hence eq.s (1.35) and (1.37) give

δA ≥ 0 (1.38)

From the foregoing it follows that energy extraction from a black hole is maximally efficient when the
horizon area does not change, and processes that increase the area are irreversible as it cannot be
decreased: the analogy with thermodynamics is strinking, with the area playing the role of entropy.
This correspondence can be formalized stating the following two laws:

� Using eqs. (1.35), (1.17) and (1.18) it follows

δM =
k

8πGN
δA+ ΩHδJ (1.39)

So far, we have considered only electrically neutral Kerr solutions. If a black hole is electrically
charged one can extract energy from it by neutralizing it. See [7] for the description of this case,
here we just state that, taking into account this process, (1.39) generalizes as

δM =
k

8πGN
δA+ ΩHδJ + ΦδQ (1.40)

where Φ is the electrostatic potential difference between the horizon and infinity. This is the
first law of black hole thermodynamics.

� The parallel between the thermodynamical quantities temperature and entropy with surface
gravity and area of the black hole, as well as eq. (1.40) suggests the correspondence
k

8πGN
dA = TdS. Using eq. (1.30) we associate to a black hole the Bekenstein-Hawking entropy

SBH =
kBA

4~GN
(1.41)

Let’s note that the entropy of a black holes grows with the area of the horizon and not with the
volume, as one would expect for typical physical systems: this fact, as we will see more closely
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later, is one of the hints for the AdS/CFT correspondence. From (1.38) and (1.41) follows that
black hole entropy is separately non decreasing, while in thermodynamics only the total entropy
is non decreasing. Moreover, we have seen that a black hole radiates as a black body with
temperature T given by eq. (1.30): the Hawking emission determines a decrease of the black
hole mass and, thus, its area decreases (in contrast with eq. (1.38)). To solve this problem, in [8]
Bekenstein conjectured the generalized second law of black hole thermodynamics, which states

δ(Soutside + SBH) ≥ 0 (1.42)

where Soutside is the entropy outside the black hole.
In a Penrose process, however, it seems to be possible to violate (1.42): the inequality δSBH ≥ 0
can be saturated in this process if the particle is released from the horizon with zero radial
velocity and once it crosses the horizon the entropy of the exterior has decreased. As we have
learned from Hawking radiation (and as the presence of ~ in eq.s (1.30) and (1.41) suggests us),
a full understanding of the thermodynamical behaviour of black holes should take into account
QFT. Applying quantum mechanics, we see that in the Penrose process we cannot locate the
particle (with ṙ = 0) exactly at r = r+: there is an uncertainty in the position of the order of
its Compton wavelenght. Therefore the process cannot be reversible and there is a minimum
amount of area increasing. Its computation gives a result that is consistent with (1.42).

1.2.3 The entropy puzzle and the information paradox

We have seen that a correspondence can be established between the laws of black hole mechanics and
thermodynamics. If we take this analogy seriously, and Hawking’s calculations suggests we should,
some problems arise: the entropy puzzle and the information paradox. In eq. (1.41) we have associated
an entropy to a black hole, but what does it mean that an exact solution of GR (a classically funda-
mental theory), furthermore protected by a no-hair theorem, has an entropy? Statistical mechanics
tells us that entropy is the logarithm of the number of microstates that have the same macroscopic
properties of the macroscopical system. From a classical point of view, however the no-hair theorem
tells us that there is no phase space for a black hole, as it limits the number of possible solutions one
can consider; furthermore, one should not expect these microstates to be perturbations of the black
hole solution because they would have an horizon, and therefore an entropy (while microstates should
be pure states, i.e. states without entropy). So, what are the eSBH microstates? This is the entropy
puzzle.
The other problem is directly connected with Hawking’s semiclassical computation, that showed that
black holes emit radiation and therefore lose mass. The relevant property of Hawking radiation is
not merely its existence, but rather the thermal nature of the radiation. If we start with a pure
quantum state |φ〉IN that collapse into the horizon, once the black hole has evoporated, we are left
with a thermal radiation, a mixed state that can be described only by a density matrix. Moreover, the
emitted radiation is entangled with negative energy particles that fall into the black hole and, once
the black hole disappears, the emitted radiation is entagled with nothing. This picture goes against
the unitary time evolution of QFT. Non-unitary evolution from pure states to mixed stated is what
we call information loss: two state that are in principle distinguishable, evolve into states that are not
distinguishable any more. This is the information paradox.
These problems, however, have been stated in a semiclassical contest, which means considering QFT
on a classical, curved spacetime, neglecting quantum gravity corrections. It is commonly belived that
a consistent theory of quantum gravity should shed light upon these paradoxes, and indeed every
claimant quantum theory of gravity must confront with black hole physics.

1.2.4 Quantum gravity

It is generally believed that the fundamental description of all physical fields should be given in term
of quantum physics. This confidence rises from the assumption that there cannot be two worlds, a
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quantum and a classical one, but quantum mechanics should contain classical physics in the form of
a certain limiting case. One of the arguments [9] relies on the postulate that quantum mechanical
processes are described by probability amplitudes: it cannot be that a particle that is described by a
probability amplitude interacts classically at the microscopical level.
The first attempt to give a quantum description of gravity would be to apply one of the quantization
procedures to GR, starting from eq. (1.1). This approch leads to fundamental difficulties, an account
of which can be found, for example, in [6]. The essential difference between GR and other field theories
is that, in order to quantize the dynamical degrees of freedom of gµν , one must also give a quantum
mechanical description of the spacetime structure: this reflects the dual role played by the metric
in GR, both as the quantity that describes the dynamical aspects of gravity and the quantity that
describes the background spacetime. The other quantum field theories, instead, are formulated on a
fixed background, which is treated classically. For example, causality leads us to expect that, at the
quantum level, the metric (which becomes an operator) satisfies the commutation relation:

[ĝµν(x), ĝρσ(x′)] = 0 (x− x′)2 > 0 (1.43)

The problem is that this equation makes no sense because we do not know whether x and x′ are
spacelike related untill we know the metric, and eq. (1.43) is an operator equation that, if valid, must
hold independently of the (probabilistic) value of the metric. Another difficulty arises when treating
the gravitational interaction as a perturbation of the free theory (which is the typical approach to
quantize interacting theories ): the coupling constant is

√
GN , which has dimension [

√
GN ] = mass−1,

so the theory is not renormalizable.
Non-renormalizable field theories should not be simply viewed as ill defined quantum theories, but as
effective descriptions at low energy regimes. The canonical example is Fermi weak theory. From this
point of view it is important to note that, attempting to canonically quantize Einstein’s equations, we
have done an implicit assumption, which is that GR is a fundamental theory rather then a low energy
approximation. But this is not always the case: if one quantizes Maxwell theory discovers the photon,
while if one tries to quantize, for instance, Navier-Stokes equations gets no hint of the microscopical
physics. This justifies the search for a quantum theory of gravity, looking for a high-energy theory
that flows to GR in the infrared, rather than trying to quantize GR as it is.3 String theory seems to
be one of the most promising approaches, and will be studied in the next Chapter along with its low
energy limit, supergravity.

3This is not the only possibility, of course. There are other theory that mantain the first prospective, interpreting the
non-renormalizability not as a failure of the theory but of the perturbative expantion. This is the case, for example, for
loop quantum gravity that attempts to quantize gravity directly, without splitting the metric into a background and a
small perturbation.
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Chapter 2

String Theory, Supergravity and Black
Holes

2.1 An Introduction to String Theory

String theory is a quantum theory of interacting strings: it assumes that the fundamental objects of
Nature are not point-like particles, but 1-dimensional strings of length ls. Their quantized harmonics
represent particles of various masses and spin. The spectrum of the (closed) string contains a massless
spin-2 particle, the graviton. In this sense, string theory is a quantum theory of gravity. Thus, it is
possible to address black hole physics within string theory, and in the past decades dramatic progresses
have been made in this direction. Before analyzing them, in this Section we will briefly describe, with
no claim to be exhaustive, string theory and its properties that will be needed in the following.

2.1.1 Action for the Bosonic String

We can describe the classical motion of a string, through a D-dimensional spacetime, by giving its path
with the coordinate Xµ = Xµ(σ, τ), with µ = 0, ..., D−1. The parameters σ and τ are the coordinates
for the worldsheet (the 2-dimensional manifold the string sweeps out mooving in spacetime). The
action for a point particle is proportional to the lenght of its worldline

Spointparticle = −m
∫
ds = −m

∫
dτ

√
−dX

µ

dτ

dXν

dτ
ηµν (2.1)

where s is the proper time and τ is a generic parametrization of the worldline of the particle. Its
natural generalization for a string is the Nambu-Goto action (which is now proportional to the area
of the worldsheet)

SNG = −T
∫
dτdσ

√
−det(∂aXµ∂bXν)gµν (2.2)

Here a and b denote either σ or τ and the constant of proportionality T is the string tension, which
is related to the Regge slope parameter α′ or to the string lenght ls via

T =
1

2πα′
α′ = l2s (2.3)

The square-root in the Nambu-Goto action makes the quantization of the theory difficult; moreover
eq. (2.2) is defined in term of a 2-dimensional integral, and one may want to rewrite the action to
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make it look more like a conventional 2-dimensional field theory. This can be done at the expense of
introducing another field γab, which acts as the dynamical metric on the worldsheet [10]:

Sp = − 1

4πα′

∫
dσdτ

√
−γγab∂aXµ∂bX

νgµν (2.4)

This is Polyakov action and it is equivalent to Nambu-Goto action, as one can check integrating away
γab. The action has the Poincaré invariance (i.e. the global symmetry Xµ → ΛµνXν + cµ), as well as
worldsheet diffeomorphism and the conformal (or Weyl) symmetries. The diffeomorphism symmetry
is the invariance under reparametrization on the worldsheet

(σ, τ)→ (σ̃(σ, τ), τ̃(σ, τ)) (2.5)

with Xµ transforming as a scalar and γab as a two index tensor. This symmetry is a consequence of
the string being a fundamental object: it look the same on all scales. Another consequence of this
fact is that it does not have longitudinal vibrations: a longitudinal deformation means that the profile
does not change, but what would change is the distance between different “parts” of the string. But
there is nothing as a “part” of a string, being the string a fundamental object. Thus, the physical
degrees of freedom describe only traverse oscillations of the string (this is a constraint that can be
formally derived from the theory as in [10]). The Weyl symmetry is the invariance of the action under
position dependent rescaling of the worldsheet metric

γab → e2ω(σ,τ)γab (2.6)

with arbitrary ω(σ, τ) andXµ not transforming. This rescale of the metric preserves the angles between
all lines, but changes the distances between distinct points in the worldsheet. It is a consequence of
the theory being defined on a 2 dimensional worldsheet.
Using the above symmetries, we can choose a flat metric on the worldsheet γab = ηab. Imposing this
gauge choice and introducing lightcone coordinates σ± = τ ± σ the equations of motion for Xµ read

∂+∂−X
µ = 0 (2.7)

The most general solution is

Xµ(σ, τ) = Xµ
L(σ+) +Xµ

R(σ−) (2.8)

where Xµ
L and Xµ

R describe left-moving and right-moving waves respectively.

There are essentially two types of strings, closed and open, depending on the conditions on its end-
points. A closed string is parametrized by a coordinate σ in a compact domain, which is conventionally
chosen to be [0, 2π]. An open string has insted two non-coinciding ends, and can be parametrized by
the coordinate σ ∈ [0, π]. The derivation of the equations of motion for the open string requires appro-
priate boundary conditions. We consider the evolution of the open string from some configuration at
initial time τi to some final configuration at τf ; the variation of the Polyakov action (in the harmonic
gauge γab = ηab) is

δS = δ
(
− 1

4πα′

∫
dσdτ∂aX

µ∂aXµ

)
= − 1

2πα′

∫
dσdτ∂a∂

aXµδX
µ + total derivative (2.9)

The total derivative determines the boundary conditions

1

2πα′

∫
dσ∂τXµδX

µ

∣∣∣∣∣
τ=τf

τ=τi

− 1

2πα′

∫
dτ∂σXµδX

µ

∣∣∣∣∣
σ=π

σ=0

(2.10)
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The first term is the one we are used to when dealing with the principle of stationary action (it vanishes
by requiring δXµ = 0 at τi and τf ). The second term is novel, and vanishes requiring

∂σX
µδXµ = 0 at σ = 0, π (2.11)

This condition can be satisfied in two different ways, corresponding to two different boundary condi-
tions:

� Neumann boundary conditions: ∂σX
µ = 0 at σ = 0, π. Because there is no restriction on δXµ,

with this condition the ends of the string move freely at the speed of light.

� Dirichlet boundary conditions: δXµ = 0 at σ = 0, π. This means that the ends of the string are
confined at some constant position Xµ = cµ

In order to understand the meaning of these conditions, let’s consider Dirichlet boundary conditions
for some coordinates, and Neumann for the others; so that, at both end-points of the string, we have

∂σX
a = 0 for a = 0, ..., p

XI = cI for I = p+ 1..., D − 1
(2.12)

This fixes the ends of the string to lie in a (p+1)-dimensional hypersurface in spacetime. Those
hypersurfaces are called Dp-branes (where D stands for Dirichlet and p are the spatial dimensions of
the brane). Those are dynamical objects of the theory on which open strings may end. The action
for p-branes is the higher dimensional generalization of the Nambu-Goto action, where the tension of
the brane is [11]

Tp =
mass

p-volume
=

1

(2π)pα′
p+1

2 gs
(2.13)

We will not discuss the quantization procedure of the Polyakov action, standard references are [10]
and [12]. It turns out that a consistent quantum theory of strings is possible only if the dimension of
spacetime is D = 26.
The quantization of the theory gives rise to quantized harmonics of the string that are particles of
various masses and spins. The masses are typically integral multiples of 1

ls
. Since we have not yet

observed stringy behaviour in any experiment, we must assume that the string length is much smaller
than the smallest distances probed so far. At distances greated than ls only the massless modes are
relevant. We will generally work in this regime, focusing only on the massless excitations of the string.
When one quantizes the closed string, one finds a tachyonic vacuum state (i.e. characterized by
M2 < 0); the presence of this tachyon is a problem of the bosonic string theory, we will see later that
it can be resolved introducing supersymmetry. The first excited states are massless particles that live
in the 24⊗ 24 of the little group SO(24). Those decompose into three irreducible representations:

symmetric traceless⊕ anti-symmetric⊕ trace

We associate to each representation a massless field in spacetime such that the string oscillation can
be identified with a quantum of these fields. These fields are:

� gµν(X), a massless spin two field, which we interpret as the metric1.

1There is an argument by Feynman [9] that shows that any theory of interacting massless spin two particle must be
General Relativity. Briefly, it works as follows. Gravity is a long range force, hence its mediator must be a massless
particle. Moreover, it cannot have half-integer spin otherwise the resulting force would not be static. Odd spins must
be descarded, as they would give rise to a theory in which like-charges generate a repulsive force [14]. A closer analysis
shows that the mediator cannot be a scalar, but has to be a spin 2 particle.
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� Bµν(x), which goes by the name of Kalb-Ramond field.

� Φ(X), a scalar field called dilaton.

Regarding the open string, the first excited states are again massless, and can be classified as follows:

� Excitations polarized along the brane are described by a spin 1 gauge field Aa (with a = 0, ..., p)
living in the Dp-brane’s (p+1)-dimensional worldvolume. We will see later that this U(1) gauge
theory plays a major role in the AdS/CFT duality.

� Excitations polarized perpendicular to the brane are described by scalar fields φI (with I =
p+1, ..., D−1). They can be interpreted as fluctuations of the brane in the transverse directions,
this gives us a hint that the D-brane is a dynamical object.

2.1.2 String Interactions

So far we have discussed the free theory, we shall now consider interactions. Much of what we can
presently do (as in all quantum field theories) involves treating this interaction in perturbation theory.
As a Feynman diagram represents the worldlines of in- and out-going particles, a string diagram
represent the worldsheet of interacting strings. Let’s firstly consider closed strings: their spectrum
contains massless bosonic fields which can condensate and acquire a vacuum expectation value. Let’s
consider string physics when just the dilaton field has a non trivial VeV. We shall extend the Polyakov
action by [10]:

Sstring = SP +
1

4π

∫
dσdτ

√
γRΦ(X) (2.14)

If we write the dilaton as

Φ(X) = Φ0 + δΦ(X) Φ0 = lim
X→∞

Φ(X) (2.15)

eq.(2.14) becomes

Sstring = S′P + Φ0χ ≡ S′P +
Φ0

4π

∫
dσdτ

√
γR (2.16)

The new term χ looks like the Einstein-Hilbert action, but we shall not deceive ourselves: we have
seen that all the degrees of freedom associated to the worldsheet metric γab can be gauged away by a
conformal transformation. It turns out [10] that χ is a topological invariant of the worldsheet, known

Figure 2.1: An illustration of the sum over all possible topologies.

as Euler number, and it counts the number of genus g of the surface and the number of initial and
final states (boundaries of the worldsheet) b via

χ = 2− 2g − b (2.17)
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The partition function is thus obtained expanding in topologies as

Z =
∑
χ

(eΦ0)−χ
∫
D[X]D[γ]e−S

′
P (2.18)

This is a series expansion in eΦ0 , which suggests that eΦ0 ≡ gs plays the role of the string coupling.
Thus, the string coupling is not an independent parameter of string theory: it is the asymptotic
expectation value of the exponential of the dilaton, and thus it can be determined dynamically.
Every loop in a closed string diagram introduce a factor g2

s . Suppose now that the 1 genus diagram

Figure 2.2: A 1 loop correction to the graviton propagator. For excitations well below the string scale Ms = 1
ls

strings behave like pointlike particles ans we recover Feynman diagrams.

in Figure 2.2 involves in- and out-going graviton states. In Section 1.2.4 we have seen that the

coupling constant of gravitational interactions is G
1
2
N , thus this diagram should contribute with a

factor GN ∼ lD−2
P , where lP is the Planck length. Computing this diagram in string theory, one

finds a factor of g2
s l
D−2
s , where the gs factor follows form (2.17) and the ls dependence follows from

dimensional analysis (ls is the only length scale in string perturbation theory). Thus we have

gs ∝ (
lP
ls

)
D−2

2 (2.19)

From this we see that gs controls the hierachy of scales in string theory. The perturbation expansion
is valid when gs << 1, which means that stringy exitations are much less massive than the Planck
scale.

Figure 2.3: Open string perturbation theory is an expansion in gsN .

Regarding open strings, we have seen that they stretch between D-branes, and their end points are
labeled by the brane they end on. Thus, open string perturbation theory gains an additional factor N
(the number of D-branes) from the degeneracy considered in any scattering process. The perturbative
series for open string is, therefore, a power series in Ngs (Figure 2.3).
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2.1.3 Supersymmetry

Until now we have described only bosonic degrees of freedom in string theory; and yet, the world
is made of fermions as well. Moreover the bosonic string theory suffers the presence of tachyonic
states. Both these problems can be solved introducing supersymmetry. A supersymmetric theory is
defined in terms of N fermionic generators QIα (with α a spinor index and I = 1, ..., N), acting on
the Hilbert space of the theory. The Q’s are called supercharges and generate rotations that map
fermionic degrees of freedom F into bosonic degrees of freedom B, and viceversa. The transformation
can be schematically written as [15]

δεB = ε̄F δεF = εγµ∂µB (2.20)

where ε is the infinitesimal parameter (the ε anticommute because, for the spin-statistics theorem,
fermions must be anticommuting) of the rotation and the γµ’s are matrices satisfying the Clifford
algebra {γµ, γν} = 2ηµν . The set of states that transform into each other under supersymmetry
transformations is called supermultiplet. The commutator of two such transformations for a bosonic
field reads

[δε1 , δε2 ] ∝ (ε̄1γ
µε2)∂µB (2.21)

Eq. (2.21) indicates that composing two supersymmetry transformations one gets a spacetime trans-
lation (the momentum operator Pµ = −i∂µ generates the translation along the physical directions).
Thus, we can deduce that a supersymmetric theory must also be invariant under spacetime transla-
tions. This suggests that there is a link between supersymmetry and Poincaré invariance, and one may
think the supersymmetry algebra as an extension of the Poincaré algebra [16]. The Poincaré algebra
is formed by generators of translation Pµ and boosts Mµν satisfying the commutation relations

[Mµν ,Mρσ] =− iηµρMνσ − iηνσMµρ + iηµσMνρ + iηνρMµσ

[Mµν , Pρ] =− iηρµPν + iηρνPµ

[Pµ, Pν ] =0

(2.22)

and, schematically, its supersymmetric extension is2

[P,Q] = 0 [M,Q] ∼ Q {Q, Q̄} ∼ P (2.23)

There are essentially two parameters characterizing a supersymmetry theory: the dimension of space-
time D (since spinorial representations get bigger the more the dimensions) and the number of super-
charges N . Notice that an interacting theory of massless particles is consistent only if the particles
have spin less than or equal to two3: this is a constraint on the number of possible supersymmetry
theories one can construct. It turns out [17] that, for example, in D = 4 one has the bound N ≤ 8
(more supersimmetries would lead to higher spin fields in the graviton supermultiplet) and that the
biggest dimension for a supergravity theory is D = 114. The total number of supercharges QIα is N
times the (real) dimension of the irreducible spinorial representation in D dimensions. A discussion of
the dimensionality of spinorial representation can be found, for example, in [15]. Here, we just report
the results in Table 2.1.

2We restrict to the case of vanishing central charge.
3Higher spin particles can be introduced until they do not interact; switching on the interaction requires the intro-

ducion of an infinite tower of fields, and the resulting theory would not be physical.
4These two statement are actually equivalent [17]: one can obtain D = 4 and N = 8 supersymmetry by dimensional

reducing D = 11 and N = 1.
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D 2 3 4 5 6 7 8 9 10 11

dirrep 1 2 4 8 8 16 16 16 16 32

Table 2.1: The dimension (dirrep) of the irreducible spinor representation in D spacetime dimensions.

2.1.4 Superstring theories

The key difference between bosonic string theory and superstring theories is the addition of fermionic
modes on the worldsheet. While the bosonic string theory is unique, there are a number of discrete
choices that one can make when adding fermions. The most important one is whether to add fermions
in both left-moving and right-moving sectors (obtaining Type II superstring), or allow them to move
in only one direction (obtaining Heterotic strings). However, later developments have shown that
they are all parts of the same framework, which goes by the name of M-Theory. In this thesis we
will discuss and use only Type II superstring. We introduce D Majorana spinors ψµ = (ψµa ) (where
µ = 0, ..., D − 1 is the spacetime index and a = ± is a worldsheet spinor index), with action

Sψ =
i

4πα′

∫
dτdσ

√
−γψ̄µρa∂aψµ (2.24)

where ρa are the gamma matrices in two dimensions. With the gauge choice γab = ηab, using null
cordinates σ± = τ ± σ, the fermionic equations of motion read

∂+ψ− =0 → ψ− = ψ−(σ−)

∂−ψ+ =0 → ψ+ = ψ+(σ+)
(2.25)

The analysis of the boundary conditions of the fermionic fields shows that one must impose periodic
(ψµ±(σ+2π) = ψµ±(σ)) or antiperiodic (ψµ±(σ+2π) = −ψµ±(σ)) boundary conditions, which correspond
to the R-sector and to the NS-sector respectively.
Let’s now combine the Polyakov action with eq. (2.24) and introduce the gravitino χα, the super-
symmetric partner of γab, in such a way that the resulting action is supersymmetric. The resulting
action possesses reparametrization and conformal invariance. These symmetries can be used to fix
some degrees of freedom: a useful choise is the so-called superconformal gauge, in which γab = ηab and
χa = 0. With this gauge choice, the action for Type II superstring reads [18]

SII = − 1

4πα′

∫
dτdσ

√
−γ
[
∂aX

µ∂aXµ − iψ̄µρα∂αψµ
]

(2.26)

The quantization of the theory procedes analogously with the bosonic string case. One can project
out of the spectrum the tachyonic state that is present in the NS sector. This can be done with the
GSO projection, which keeps just the states constructed applying an odd number of fermionic creation
operators to a vacuum state and projects out the others. This operation removes the tachyonic state
from the Fock space, as it has an even fermionic number. It turn out that the GSO prjection has to
be applied also to the R sector: in this case, whether to keep the states with even or odd fermionic
number is a matter of choice, and this choice gives rise to two different theories. Consistency requires
that the dimension of spacetime must be D = 10. The massless spectrum can be classified in 4 sectors
according to the different possible boundary conditions:

� NS-NS sector: the field content is identical to the bosonic string. It consists in the dilaton Φ,
the Kalb-Ramond antysimmetric tensor field Bµν and the graviton gµν .

� The NS-R sector contains two fermionic fields: the spin-1
2 dilatino and the spin-3

2 gravitino
(supersymmetric partners of the dilaton and of the graviton respectively)
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� The R-NS sector contatins the same spectrum of the NS-R sector

� R-R sector: it contains bosonic fields, but its spectrum depends on the way one makes the GSO
projection. Two different theories arise: Type IIA and Type IIB supergravity teories. The
former contains a 1-form and a 3-form; the latter a 0-form, a 2-form and a self dual 4-form.

2.1.5 Kaluza-Klein Mechanism

We have seen that a consistent quantization of superstring theory requires that the dimension of
spacetime to be D = 10. And yet, our experience suggests us that we live in D=4, nor there are
any experimental indications of the presence of extra-dimensions. How can such theories in D > 4
describe our 4-dimensional world? The point is that all of the dimensions need not to be infinitely
extended: some of them can be compact. Consider, for instance, a 5-dimensional spacetime in which
4 directions are flat (with coordinates xµ, µ = 0, ..., 3) while the fifth direction is a circle of radius R
(whose coordinate y is periodic: y = y + 2πR).
Consider now a massless scalar field φ(x, y); we can decompose it as

φ(x, y) =
∑
n

φn(x)e
iny
R (2.27)

where the integer-valued n labels the quantized momenta in the compact direction. This is a usual
consequence of quantum mechanics on compact domains: it is derived by requiring that the wavefunc-
tion is single valued. The equation of motion ∂M∂

Mφ(x, y) = 0 (where M = 0, ..., 4 is the index of the
5-dimensional spacetime) gives:

∑
n

(∂µ∂
µ − n2

R2
)φn(x)e

iny
R = 0 =⇒ (∂µ∂

µ − n2

R2
)φn(x) = 0 ∀n (2.28)

Thus, a single field in higher dimensions becomes an infinite tower of massive fields in the noncompact
world, with mass mn given by mn = |n|

R . At energies much lower then 1
R , only the n = 0 mode can be

excited, and at this scale φ(xM ) = φ0(xµ).
The same analysis cannot be naively applied to a 5-dimensional metric field g̃MN : the Fourier modes
of a 5-dimensional scalar field can be interpreted as scalar fields in 4 dimensions, but the Fourier
modes of the 5-dimensional metric cannot be interpreted as 4-dimensional metrics because they are
5× 5 matrices. What is non trivial is that, applying the same mechanism to the metric, the effective
lower-dimensional world contains a metric as well as a vector gauge field and scalar matter field. In
order to check this let’s consider pure gravity in 5 dimensions. The action is:

S =
1

2k2
5

∫
d5x
√
−g̃R5 (2.29)

Let’s now decompose the 5-dimensional metric g̃ in the following ansatz5

ds2 = gµνdx
µdxν + e2σ(dy +Aµdx

µ)2 (2.30)

where gµν is the metric in the noncompact directions of spacetime, Aµ is a vector and σ a scalar field.
The vector field Aµ is an honest gauge field, with gauge symmetry descending form diffeomorphisms

5This is the ansatz one obtains requiring that all the fields of the decomposition behaves correctly under D-dimensional
diffeomorphisms [12].
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in D = 5. Under a transformation δxM = VM , the metric transforms as g̃MN = DMVN + DNVM .
One can check using eq. (2.30) that diffeomorphisms on the compact direction δy = Λ(x, y) turn into
δAµ = ∂µΛ. The action written in term of the new fields reads [10]

S =
1

2k2
5

∫
d5x
√
−g̃R5 =

2πR

2k2
5

∫
d4x
√
−geσ(R4 −

1

4
e2σFµνF

µν + ∂µσ∂
µσ) (2.31)

where F = dA and R4 is the Ricci scalar of gµν . From eq.(2.31) one obtains a relation between Newton
constants in different dimension6:

2πR

k2
5

=
1

k2
4

=⇒ G
(5)
N = 2πRG

(4)
N (2.32)

where G
(D)
N is Newton constant in D dimensions. It is worth saying that compactification preserves

the supersymmetries7.
Let’s now consider the Kaluza-Klein reduction from the prespepctive of a (bosonic) string. We want
to study a string moving in the background R1,D−2 × S1. One effect of the compactification is that
the momentum along the circle direction py is quantized in integer units

py =
n

R
n ∈ Z (2.33)

Another consequence of the compactification is that the boundary conditions become

Xy(σ + 2π)−Xy(σ) = 2πmR m ∈ Z (2.34)

The integer m is the winding number of the string: it is the number of times the string wraps the
circle. The presence of a quantized momentum and winding number contribute to the mass of the
string: beside the 1

ls
contributions, it receives the correction [10]

δM2 =
n2

R2
+
m2R2

l4s
(2.35)

This equation tells us that a string with n > 0 units of momentum receives a contribution to its mass
of n

R (in agreement with eq. (2.28)); and that a string wrapping the circle picks up a contribution
2πmRT to its mass, where T is the tension of the string.

2.2 Supergravity

Supergravity theories are supersymmetric extensions of General Relativity and have a natural embed-
ding in superstring theories, as supergravity corresponds to their low energy limit. The low-energy
string effective action describes the low-energy dynamics of a given string theory: by low energies we
mean the limit α′ → 0 (the limit in which the string scale can be ignored and a theory of particles
is recovered). Moreover, at low energies only the massless modes are relevant and their dynamics is
descrived by a theory of the corresponding massless fields. The low energy theory can be obtained
expanding in powers of α′ the action for the massless spectrum and keeping only the lowest term
(the terms of higer order in α′ are also in higer order in derivatives). Actually, for some superstring
theories, it is possible to arrive at the effective theory using supersymmetry arguments: one can con-
struct a theory that contains only the massless modes of the superstring theory in such a way that

6We have cheated slightly here. In order to make such an identification one should first put the Einstein-Hilbert term
on the r.h.s. of eq. (2.31) in its canonical form, and then rescale the metric so that it looks asymptotically flat (see [19])

7This is true, at least, for some compact manifolds, such as the torus. We will consider only manifolds for which this
statement is true.
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the resulting effective theory is supersymmetric.
Historically, however, supergravity and superstring theories were discovered independently. Before the
advent of strings as a theory of quantum gravity, in fact, there was an attempt to control loop diver-
gences in gravity by making the theory supersymmetric. The greater the number of supersymmetries,
the better was the control of divergences. In four dimensions, as we have seen, the maximal number
of supersymmetries is eight. Such D = 4 N = 8 supersymmetric theory appears complicated but can
be obtained in a simple way from a D = 11 N = 1 theory or a D = 10 N = 2 theory via the process
of dimensional reduction explained above. In this Section we will introduce D = 11 supergravity, as
well as Type IIA and Type IIB supergravity. Since our final interest is studying black hole physics,
we will mainly restrict to the bosonic content of these theories.

2.2.1 Eleven-dimensional Supergravity

This theory is the low energy limit of M-Theory; its bosonic fields are:

� The eleven-dimensional metric GMN , this is a symmetric traceless tensor (44 d.o.f.)

� The antisymmetric 3-form A3 = AMNPdx
M ∧dxN ∧dxP (84 d.o.f.), with field strength F4 = dA3

The fermionic content is given by:

� The gravitino ψαM (128 d.o.f)

with M,N,P = 0, ..., 10. The bosonic part of the action is given by8

S =
1

2k2
11

∫
d11x
√
−G
(
R− 1

2
|F4|2

)
− 1

12k2
11

∫
A3 ∧ F4 ∧ F4 (2.36)

The first term contains the Einstein-Hilbert action and the kinetic term for A3. The second one is
called Chern-Simons term, and is required by supersymmetry; note that it does not contain the metric:
it is a topological term. The eleven-dimensional gravitational coupling constant k11 is related to the

Planck length via k2
11 ∼ G

(11)
N ∼ l9P . This theory has no free dimensionless parameters: there is only

one scale, lP .

2.2.2 Ten-dimensional Supergravity and Dualities

Type IIA Supergravity

Type IIA supergravity can be obtained from eleven-dimensional supergravity by compactifying a
coordinate, say y ≡ x10, on a circle of radius R (which is a new lenth scale of the theory). The eleven

dimensional metric can be written in terms of a ten-dimensional metric gµν , a 1 form C
(1)
µ and a scalar

field σ (or, equivalently, the dilaton Φ ≡ 3
2σ, whose value at spatial infinity is related to the string

coupling via eΦ∞ = gs) as

ds2
11 = ds2

10 + e2σ(dy + C(1)
µ dxµ)2 (2.37)

where µ, ν = 0, ..., 9. The eleven-dimensional gauge fields can be decomposed into a 2-form B(2) and
a 3-form C(3) via

A3 = B(2) ∧ dy + C(3) (2.38)

8The fermionic part is fixed by supersymmetry
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Note that this is exactly the massless field content of Type IIA superstring: g, B(2) and Φ are the
fields in the NS-NS sector; C(1) and C(3) are the fields in the R-R sector. The action for Type IIA
supergravity can be obtained using (2.36), (2.37) and (2.38):

SIIA =
1

2k2
10

∫
d10x
√
−g10

(
eσR10 + eσ∂µσ∂

µσ − 1

2
e3σ|F (2)|2

)
+

− 1

4k2
10

∫
d10x
√
−g10

(
e−σ|H(3)|2 + eσ|F̃ (4)|2

)
− 1

4k2
10

∫
B(2) ∧ F (4) ∧ F (4)

(2.39)

where we have introduced the field strengths F (p+1) = dC(p), H(3) = dB(2), and F̃ (4) = dC(3)−C(1) ∧
F3. Written in this frame, (2.39) has an Einstein-Hilbert term that is not written in the canonical
form

√
−gERE . To get it in its canonical form we shall move in the so-called Einstein frame via

(gE)µν = e
Φ
6 (g10)µν (2.40)

This is the frame one shall use when derives physical results, such as the horizon area (i.e. the entropy
of a black hole). Another usefull frame, the string frame, is given by

(gE)µν = e−
Φ
2 (gs)µν (2.41)

With this choice the Einstein-Hilbert term reads
√
−gse−2ΦRs; this is the frame one obtains when

derives the action SIIA as the low energy limit of Type IIA superstring theory.

T-Duality and Type IIB Supergravity

We have seen that Type IIA supergravity can be obtained by dimensional reducing the eleven-
dimensional theory. There is another ten-dimensional supergravity theory that is the low energy
limit of Type IIB superstring, Type IIB supergravity. This theory cannot be derived via compacti-
fication, but it is related to Type IIA supergravity thanks to a duality between the fields of the two
theories: the T-duality. As we have seen in Section 2.1.5, if we wrap a IIA string on a circle of radius
R it receives a mass contribution in units of R

l2s
from the winding number and in units of 1

R from the

momentum modes. We can do the same for a Type IIB string wrapping a circle of radius R̃. It turns

out that if R̃ = l2s
R the two theories not only have exactly the same spectra (momentum modes map to

winding modes and vice versa) but they are also equivalent at the interacting level. To T-dualize the
bosonic fields of Type IIA supergravity into those of Type IIB, it is convenient to rewrite the fields as

ds2 = gyy(dy +Aµdx
µ)2 + ĝµνdx

µdxν

B(2) = Bµydx
µ ∧ (dy +Aµdx

µ) + B̂(2)

C(p) = C(p−1)
y ∧ (dy +Aµdx

µ) + Ĉ(p)

(2.42)

The fields of the corresponding Type IIB supergravity are [21]

ds′2 = g−1
yy (dy +Bµydx

µ)2 + ĝµνdx
µdxν

e2Φ′ = g−1
yy e

2Φ

B′(2) = Aµdx
µ ∧ dy + B̂(2)

C ′(p) = Ĉ(p−1) ∧ (dy +Bµydx
µ) + C(p)

y

(2.43)
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The NS-NS sector has the same fields in Type IIA and Type IIB supergravity; the R-R sector is again
made of p-forms but, in Type IIB, p takes only even values (p = 0, 2, 4). Thus the NS-NS term in the
action (2.39) is valid also for Type IIB supergravity; while the actions, in the string frame, for the
R-R fields and the Chern-Simon term become [21]

SR−R = − 1

4k2
10

∫
d10x
√
−gs

(
|F (1)|2 + |F̃ (3)|2 +

1

2
|F̃ (5)|2

)
SCS = − 1

4k2
10

∫
C(4) ∧H(3) ∧ F (3)

(2.44)

where we have introduced the field strengths F̃ (3) = F (3) − C(0) ∧ H(3), F̃ (4) − C(1) ∧ H(3) and
F̃ (5) = F (5) − 1

2C
(2) ∧H(3) + 1

2B
(2) ∧ F (5).

S-Duality

An important issue is to consider the strong coupling limit of Type II theories. Regarding Type IIA,
the fact that it is the dimensional reduction of D=11 supergravity leads to a KK interpretation of the
dilaton as a measure of the radius R of the compact 11th dimension, as one can see from eq. (2.37).
Because of the connection between gs and the dilaton, there is a connection between the string coupling

constant and R: R ∼ g
2
3
s . In the strong coupling limit, thus, R11 →∞ and the theory decompactifies:

the strong coupling limit of Type IIA is M-theory. Obviously, the same argument does not apply to
Type IIB as it cannot be obtained through dimensional reduction. It turns out that its strong coupling
limit is still a Type IIB theory, and it can be seen with S-duality. S-duality is a duality under which
the coupling constant changes non-trivially, it relates different Type IIB theories. It maps the content
of one theory with coupling constant gs into a dual theory of coupling constant 1

gs
: it is important

to study the strong coupling limit of Type IIB theory and to generate solutions (one can S-dualize a
solution, obtaining another one). The set of transformations is

Φ′ =− Φ

g′µν =e−Φgµν

B′(2) =C(2)

C ′(2) =−B(2)

(2.45)

2.2.3 Branes

The fields are not the only fundamental objects of supergravity theories: there are also multidimen-
sional objects, called branes, that couple with the p-forms of the theory and play the role of electric
and magnetic charges.
Let’s review Maxwell theory: the 1-form A(1) couples to a point-particle (which is a 0-dimensional
object) with worldline xµ(σ) and charge q through the interaction lagrangian:

Lint = q

∫
dσA(1)

µ

dxµ

dσ
= q

∫
γ
A(1)

(2.46)

where γ is the path of the particle. The electric charge of a particle can be computed integrating the
hodge dual of the field strength F̃ (2) = ∗F (2) over a 2-sphere surrounding the charge:

qe =

∫
S2

∗F (2) (2.47)

One can also introduce magnetic charges that are monopole sources for the magnetic field. They can
be defined as

qm =

∫
S2

F (2) (2.48)
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In supergravity we have p-forms, thus we have to generalize this discussion to multidimensional objects.
The interaction lagrangian of eq.s (2.46) becomes

Lint = q

∫
γp

A(p)
(2.49)

where γp is a p-dimensional worldvolume of a (p− 1)-dimensional object: a (p− 1)-brane. The analog
of eq.s (2.47) and (2.48) can be obtained computing the field strength of A(p), F (p+1) = dA(p) and
its hodge dual F̃ (D−p−1) = ∗F (p+1): thus, each p-form couples electrically to a (p − 1)-brane (with
electric charge Qe) and magnetically to a (D− p− 3)-brane (with magnetic charge Qm). The charges
can be computed as

Qe =

∫
SD−p−1

F̃ (D−p−1) Qm =

∫
Sp+1

F (p+1) (2.50)

In Table 2.2 we write down all the branes in M-theory, Type IIA and Type IIB supergravity theories.

Theory M-Theory Type IIA Type IIB

Fields A3 B(2) C(1) C(3) B(2) C(0) C(2) C(4)

Electric M2 F1 D0 D2 F1 D1 D3

Magnetic M5 NS5 D6 D4 NS5 D5 D3

Table 2.2: Coupling of branes to p-forms in M-Theory, Type IIA and TYpe IIB supergravity.

It is natural to include these multidimensional objects in supergravity theories: there must be sources
the p-forms couple to. What about the interpretation of these objects in string theory? Also in
superstring theories we have p-forms in the R-R sector: what do they couple to? It turns out that they
are sourced by the D-branes where open strings end. Thus, we can interpret the content of Table 2.2
from a stringy point of view. The D-branes are exactly the Dirichlet-branes we have encountered when
studying open string boundary conditions. The F1-brane is the fundamental string. The NS5-brane
is a fundamental different object: it should be considered as the magnetic dual of the fundamental
string (the analogous of a magnetic monopole).
We can see from eq.s (2.42) and (2.43) how T-duality exchanges the branes. The exchange of the
NS-NS fields gµy and Bµy corresponds to the transformation of the string winding number (F1) into
momentum (P) along the string in the T-duality direction. From the transformation of the R-R fields
C(p) we see that the dimension of the Dp-brane changes under T-duality depending on whether it is
performed on a circle parallel or perpendicular to the brane worldvolume. To summarize we have:

F1↔ P Dp
‖−→ D(p− 1) Dp

⊥−→ D(p+ 1) (2.51)

The presence of a brane breaks some supersymmetries. This is not surprising: the vacuum is invariant
under all the supersymmetry transformations. The important feature [13] is that, if the brane is not
excited, it breaks half of the supersymmetries. If there are no branes, the left and right movers are
independent; if one adds a brane boundary conditions occur and they impose constrains between left
and right movers that halve the supersymmetries.
They are thus Bogomolny-Prasad-Sommerfield (BPS) states. The relevance of BPS states will be
clear when we will deal with the microscopic computation of black hole entropy. For now, let’s see
in a simple contest what a BPS state is. Consider a theory with a simple supercharge Q = Q†, with
Hamiltionian given by {Q,Q} = H. The energy of any state cannot be negative as

E = 〈ψ|H|ψ〉 = 〈ψ|Q2|ψ〉 = 〈Qψ|Qψ〉 ≥ 0 (2.52)

where the equality sign holds for supersymmetric states, i.e. states such that Q|ψ〉 = 0. As we have
seen, non supersymmetric states occur in supermultiplets containing bosonic |B〉 and fermionic states
|F 〉. Because |B〉 and |F 〉 are connected by a supersymmetric transformation and [Q,H] = 0, they
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are states of the same energy. Supersymmetric states, instead, have E = 0 and need not to be paired.
Consider now a theory with two real supercharges Q1 = Q†1 and Q2 = Q†2 such that:

Q2
1 = H Q2

2 = H {Q1, Q2} = Z (2.53)

where Z is the central charge. Now we have that

〈ψ|(Q1 ±Q2)2|ψ〉 = 2E ± 2Z ≥ 0 (2.54)

Thus, if (Q1±Q2)|ψ〉 = 0 then E = |Z|. To fix the ideas let’s consider a state such that (Q1−Q2)|ψ〉 = 0
(with Q1|ψ〉,Q2|ψ〉 6= 0). As Q2|ψ〉 = Q1|ψ〉 and Q2Q1|ψ〉 = E|ψ〉, these states fall into a short
multiplet described, for example, by the basis

{|ψ〉, Q1|ψ〉} (2.55)

The size of the multiplet is determined by the number of supersymmetries that are broken. States not
annihilated by any linear combination of Q1 and Q2 form a long multiplet

{|ψ〉, Q1|ψ〉, Q2|ψ〉, Q2Q1|ψ〉} (2.56)

Finally, states that are killed by both Q1 and Q2 are supersymmetric states (with E = Z = 0) and
live in the singlet representation of the supersymmetry algebra. The states in the short multiplet are
called BPS states, and saturate the bound E ≥ |Z|.
Here we have analyzed BPS states as states of a quantum system. In 10-dimensional supergravity a
brane in an unexcited configurations retains a half of the supersymmetries and have maximal charge
for a given mass: this is the analog of the extremality condition we have encountered when studying
classical black holes. In presence of different branes, each type of brane halves the number of super-
symmetries of the solution: we will refer to the one charge solution (1 type of brane) as 1

2 -BPS, to the
two charges solution as 1

4 -BPS, an so on.

2.3 Supergravity Solutions

In this Section we will consider the problem of finding solutions in supergravity theories for given
p-brane configurations. The p-branes, as all physical object, have energy (given by eq. (2.13)); thus
they couple to the metric curving spacetime. Furthermore, having an electric or magnetic charge,
they source the associated q-form as in eq. (2.50). We will focus only on BPS solutions. There are
two different methods to derive solutions:

� The first one consists in solving the equations of motion of the supergravity theory. As it
happens for Einstein equations, this is difficult in general. However, the presence of symmetries
in the brane configuration and supersymmetry simplify the task. In this contest, BPS solutions
are obtained imposing constrains on the supersymmetry transformations of the fields. If we
require that the configuration of the fields is supersymmetric, the fields should be invariant
under a supersymmetry transformation δε. Bosonic fields transform into fermionic ones and,
when the latter are set to zero, bosonic fields are invariant. Consistency requires that also the
supersymmetric variation of the fermions vanishes, leading to the BPS solutions.

� The second method starts from some trivial solution, and derives other solutions by means of
T-duality and S-duality. One can add charges to the solution making boosts along a compact
direction. The resulting metric is still a supergravity solution because the supergravity action
is Lorentz invariant; but yet it is another solution because the boost direction is compact: the
boost is not a globally defined change of coordinates and we are constructing a different solution.
We will see later that, in this contest, a BPS solution can be obtained imposing the extremality
condition (i.e. taking the so called BPS-limit).
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Review of the first method can be found, for example, in [22] and [23]. We will use the second method
to derive 1

2 -BPS, 1
4 -BPS and 1

8 -BPS supergravity solutions. Let’s consider a 10-dimensional spacetime,
with topology R1,4×S1×T 4. Let’s denote with (t, xi) the coordinates on the non-compact directions,
with y the coordinate on the circle and with za the coordinates on the 4-dimensional torus. The
starting point is the Schwarzshild metric in the R1,4 directions

ds2 = −
(

1− 2M

r2

)
dt2 +

(
1− 2M

r2

)−1
dr2 + r2dΩ3 + dy2 +

∑
a

(dza)2
(2.57)

where G = 1 and we have used polar coordinates in the 4 noncompact spatial direction:

x1 = r sin θ cosφ x2 = r sin θ sinφ x3 = r cos θ cosψ x4 = r cos θ sinψ (2.58)

with θ ∈ [0, π2 ] and φ, ψ ∈ [0, 2π]. This is solution a of Einstein’s equations in vacuum and, therefore,
a supergravity solution when the gauge fields are switched off.

2.3.1 The 1-charge geometry

Let’s now perform a boost along the circle:

y′ = y coshα+ t sinhα t′ = t coshα+ y sinhα (2.59)

where α is the boost parameter. Renaming y′ ≡ y and t′ ≡ t, the metric becomes

ds2 =
(

1 +
2M sinh2 α

r2

)
dy2 +

(
− 1 +

2M cosh2

r2

)
dt2 + 2 coshα sinhα

2M

r2
dydt+

+
(

1− 2M

r2

)−1
dr2 + r2dΩ3 + dy2 + (dza)2

(2.60)

This is a solution of Type IIA supergravity generated not by a brane configuration, but by a wave
carrying momentum. We have thus introduced a charge Py (the momentum of the wave). Let’s now
apply a T-duality, the result will be a solution of Type IIB supergravity describing a fundamental
string wrapping the circle, F1y. Rewriting the metric in the form of eq. (2.42) and applying the
correspondence of eq. (2.43) one obtains

ds2 =S−1
α

(
dy2 +

(
− 1 +

2M

r2

)
dt2
)

+
(

1− 2M

r2

)−1
dr2 + r2dΩ3 + dy2 + (dza)2

e2Φ =S−1
α B(2) =

2M

r2
coshα sinhαS−1

α dt ∧ dy

Sα ≡
(

1 +
2M sinh2 α

r2

) (2.61)

This is not BPS. To obtain a BPS solution we have to impose the extremality condition, i.e. take the
BPS limit

M → 0 α→∞ such that Me2α = 2Q (2.62)

where Q is the charge of F1. Hence, the 1
2 -BPS solution, in the string frame, reads

ds2 =Z1(r)−1(−dt2 + dy2) + dr2 + r2dΩ3 + (dza)2

e2Φ =Z(r)−
1
2 B(2) = −Z(r)−1dt ∧ dy Z(r) = 1 +

Q

r2

(2.63)

The metric is singular only at r = 0, so, if any, the horizon should be located there. In order to
calculate the area of the horizon we can take two equivalent approches:
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� We can find the Einstein metric in the noncompact directions via dimensional reduction, compute
the area A5 in this metric and obtain the black-hole entropy (1.41) using the 5-dimensional
Newton constant.

� We can compute the area of the horizon A10 in the 10-dimensional Einstein metric and obtain
the black-hole entropy (1.41) using the 10-dimensional Newton constant.

As we will see in Section 2.3.3, the two approches are equivalent. This should not surprise us since
the entropy is a physical quantity.

Let’s follow the first method: we shall evaluate the determinant of the metric in the Einstein frame,
and perform the integral:

A10 = V5

∫ 2π

0
dψ

∫ 2π

0
dφ

∫ π
2

0
dθ
√
−gE |r=0 (2.64)

where V5 = VS1VT 4 is the volume of the compact space, given by the product of the volume of the circle
VS1 = 2πR and the volume on the torus VT 4 = (2π)4V . Using (2.41) and (2.63) one gets gE |r=0 = 0
and the horizon area vanishes. Thus, it is impossible to interpret this solution as a black hole with
thermodynamical properties: let’s add another charge.

2.3.2 The 2-charge geometry

Let’s make another boost along y, with boost parameter β, proceeding from eq. (2.61) (the extremal
limit should be taken once, only at the end of the computation, because a boost acts trivially on a
BPS state). The result describes a string F1y wrapped in the y direction carrying momentum Py:

ds2 =S−1
α Sβ

(
dy +

2M coshα sinhα/r2

1 + 2M sinhβ/r2
dt
)2

+ S−1
α S−1

β

(
− 1 +

2M

r2

)
dt2+

+
(

1− 2M

r2

)−1
dr2 + r2dΩ3 + dy2 + (dza)2

e2Φ =S−1
α B(2) =

2M

r2
coshα sinhαS−1

α dt ∧ dy

(2.65)

where Sβ is defined with the same structure of Sα. The BPS limit gives

ds2 =Z1(r)(−dt2 + dy2 +K(r)(dt+ dy)2) + dr2 + r2dΩ3 + (dza)2

e2Φ =Z(r)−
1
2 B(2) = −Z(r)−1dt ∧ dy

Z1(r) =1 +
Q1

r2
K(r) = ZP − 1 =

QP
r2

(2.66)

Again the solution is singular at r = 0, and the horizon area vanishes9.
Before adding another charge, it is usefull to give the 1

4 -BPS solution in an other duality frame: the
D1yD5yT 4 . This configuration is summarized in Table 2.3.

0 1 2 3 4 5 6 7 8 9

D1 − • • • • − • • • •
D1 − • • • • − − − − −

Table 2.3: D1D5 configuration. The • symbol indicate that the object is pointlike in the corresponding direction,
the − indicates that the brane extends in the corresponding direction. The 0 direction is time; the 1-4 are the
non compact spatial directions; the 5 direction is the circle and the remaining are T 4.

9Note that at r = 0 the curvature blows up, and we cannot trust anymore the supergravity answer. The supergravity
action, in fact, is the low energy limit of Superstring theory: its action can be obtained keeping the first order expansion
of the Type II supergravity action in l2sR. When R→∞, higher order corrections become relevant, and we cannot trust
the semiclassical limit.
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Starting from the F1yPy, the D1D5 frame can be reached performing a chain of dualities. They are
schematically:

(F1yPy)
S−→ (D1yPy)

T along T 4

−−−−−−−→ (D5yT 4Py)
S−→ (NS5yT 4Py)

T along y−−−−−−→ (NS5yT 4F1y)
T along z1 and S−−−−−−−−−−→ (D5yT 4D1y)

(2.67)

Note that the D5-brane has been constructed out of the fundamental string F1 and thus its charge
Q′5 is related to the charge Q1 in eq. (2.66) (and to the boost parameter α). Analogously the charge
of D1 Q′1 derives from QP . Using eq.s (2.42), (2.43) and (2.45), the solution gets the form

ds2 =Z1(r)−
1
2Z5(r)−

1
2 (dy2 − dt2) + Z1(r)

1
2Z5(r)

1
2 (dr2 + r2dΩ3) + Z1(r)−

1
2Z5(r)

1
2 (dza)2

e2Φ =Z1(r)−1Z5(r) C(2) = −Q′5 sin2 θdφ ∧ dψ + (1− Z5(r)−1)dt ∧ dy

Z1(r) =1 +
Q′1
r2

Z5(r) = 1 +
Q′5
r2

(2.68)

2.3.3 The 3-charge geometry

We have seen that the 1-charge and the 2-charge solutions do not give rise to a black hole with
thermodynamical properties because their horizon area (and thus their entropy) vanishes. We will
now add a third charge, obtaining the Strominger-Vafa black hole.
The explicit derivation of this solution is given by applying the chain of dualities (2.67) to eq. (2.65)
and performing another boost along the y direction. Doing so, one arrives to a solution describing a
bound state of D1, D5 branes with momentum: the D1D5P solution. The calculation is quite long
(see [23]), we just state that the result, once the BPS limit is taken, is

ds2 =Z
− 1

2
1 Z

− 1
2

5 (−dt2 + dy2 +K(dt+ dy)2) + Z
1
2
1 Z

1
2
5 (dr2 + r2dΩ3) + Z

1
2
1 Z
− 1

2
5 (dza)2

e2Φ =Z1Z
−1
5 C(2) = −Q5 sin2 θdφ ∧ dψ + (1− Z5(r)−1)dt ∧ dy

Z1,5 =1 +
Q1,5

r2
K(r) = ZP − 1 =

QP
r2

(2.69)

where Q1, Q5 and QP are respectively the charges of D1, of D5 and the momentum charge. We want
to derive the entropy of this black hole. The solution takes the form of (2.69) in the string frame,
using eq. (2.41) one gets that the metric in the Einstein frame reads

ds2 = Z
− 3

4
1 Z

− 1
4

5 (−dt2 + dy2 +K(dt+ dy)2) + Z
1
4
1 Z

3
4
5 (dr2 + r2dΩ3) + Z

1
4
1 Z
− 1

4
5 (dza)2 (2.70)

The solution is singular at r = 0 and the event horizon is located there. Let’s calculate the area of
the black hole in 10 dimensions, using eq. (2.64). We have that

√
−gE = r3 sin θ cos θ

√
Z1Z5ZP (2.71)

and the area of the horizon is

A10 = 2π2V5

√
Q1Q5QP (2.72)

The non-vanishing of the area gives rise to a non trivial entropy, that (in units ~ = kB = 1) is

S =
A10

4G10
=
π2V5

√
Q1Q5QP

2G10

(2.73)

where G10 is Newton constant in 10 dimensions.
Now, we want to compute the entropy of the 5-dimensional black hole and show that the two results
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coincide. Let’s follow the recipe in [19]. The first step is the dimensional reduction of the metric gT 4 on
the torus: no off diagonal blocks are present, thus (as one can see from eq. (2.30)) the 6-dimensional
metric is just the R1,4 × S1 block in (2.70), but with a subtlety: as one can see from eq. (2.31), the
ansatz (2.30) does not yield to the Einstein-Hilbert action in its canonical form. Thus, one has to
rescale the 6-dimensional metric by a factor

|det(gT 4)|
1
d−2

∣∣∣
d=6

= Z
1
4
1 Z
− 1

4
5 (2.74)

obtaining the 6-dimensional metric GMN , with line element:

ds2 = GMNdx
MdxN = Z

− 1
2

1 Z
− 1

2
5 (−dt2 + dy2 +K(dt+ dy)2) + Z

1
2
1 Z

1
2
5 (dr2 + r2dΩ3) (2.75)

We can now perform the Kaluza-Klein reduction on S1. We define the 6-dimensional Vielbein êÂM
(where Â, B̂... = 0, ..., 5 are the 6 flat indices raised and lowered with the 6 dimensional Minkowski

metric ηÂB̂), so that GMN = êÂM ê
B̂
NηÂB̂. The (t, y) block is the only one with off diagonal components.

Using local Lorence invariance we can put the 6-dimensional Vielbein in triangular form. Restricting
ourselves to the (t, y) block, we get

[
êÂM

]
=

[
ê0
t ê1

t

0 ê1
y

]
=

[
Z
− 1

4
1 Z

− 1
4

5 (1 +K)−
1
2 KZ

− 1
4

1 Z
− 1

4
5 (1 +K)−

1
2

0 Z
− 1

4
1 Z

− 1
4

5 (1 +K)
1
2

]
(2.76)

Let’s now introduce the 5-dimensional metric gµν with Vielbein eAµ (A,B... = 0, ..., 4 are the flat indices
and µ, ν = t, x1, ..., x4 are the curved indices) and the metric gαβ on S1 with Vielbein Eaα (a, b = 1 are

the flat indices and α, β... = y are the curved indices). We can write êÂM in terms of the above as[
êÂM

]
=

[
e0
t AytE

1
y

0 E1
y

]
(2.77)

Using eq. (2.76) one gets:

E1
y = ê1

y = Z
− 1

4
1 Z

− 1
4

5 (1 +K)
1
2 e0

t = ê0
t = Z

− 1
4

1 Z
− 1

4
5 (1 +K)−

1
2 (2.78)

The 5-dimensional metricm gµν is obtained from the Vielbein eAµ as gµν = eAµ e
B
ν ηAB, with the rescaling

|det(gyy)|
1
d−2

∣∣∣
d=5

= Z
− 1

6
1 Z

− 1
6

5 (1 +K)
1
3 (2.79)

and the line element reads

ds2 = gµνdx
µdxν = −(Z1Z5ZP )−

2
3dt2 + (Z1Z5ZP )

1
3 (dr2 + r2dΩ3) (2.80)

It describes a 5-dimensional extremal, supersymmetric black hole with non zero horizon area. In this
coordinate system, the event horizon is again located at r = 0, and its entropy is

A5 = 2π2
√
Q1Q5QP =⇒ S =

A5

4G5
=
π2
√
Q1Q5QP
2G5

(2.81)

Some considerations are in order. Using (2.32) one can check that this result agrees with eq. (2.73).
This is no coincidence: the entropy is a physical quantity, and its value does not depend on whether
we compute it in 10 dimensions or if we dimensional reduce the black hole to 5 dimensions and then
make the calculation.
The fact that we have found a non vanishing area (and therefore a black hole with thermodynamical
properties) depends on the number of charges, as well as on the number of non compact dimensions
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of spacetime. If we consider BPS black holes, in 5 non compact dimensions the minimum number
of charges in order to have a non vanishing entropy is 3. If we had worked with 4 non compact
dimensions, a forth charge would have been necessary: this is why, even though for phenomenological
reasons we might prefer 4 dimensions, we have worked in 5 dimensions (the less the charges, the
simpler the state).

Note, moreover, that we are interested in macroscopic black holes. Different (or same) kinds of branes
can form bound states, and if they are not excited, the binding energy is zero. Roughly speaking, in
an extremal configuration the gravitational attraction and electrical repulsion precisely cancel. Thus,
we can consider black holes in supergravity that are constructed as bound states of many branes; the
degeneracy Ni of each type of brane is proportional to the corresponding charge of the black hole and
the macroscopic (or thermodynamic) limit occurs when one sends N →∞. Thus, there is a mapping
between black hole solutions written in terms of macroscopic quantities (Qi) and solutions written in
terms of the microscopical quantities (such as the brane’s degeneracy Ni). This can be seen observing
that M ∼

∑
iQi and M ∼

∑
iNiTi, where Qi is the macroscopical charge of the brane, Ni is its

degeneracy and Ti is its tension. Let’s quote form [24] the precise relation between the charges of the
D1D5P system and the integer charges:

Q1 =
gsα
′3

V
n1 Q5 = gsα

′n5 QP =
g2
sα
′4

V R2
nP (2.82)

Using G10 = 8π4g2
sα
′4 and eq.s (2.73), (2.82) we get the entropy of the 1

8 -BPS black hole in term of
the integer charges:

S = 2π
√
n1n5nP (2.83)

From eq. (2.83) we find that the entropy does not depend on any of the continuous parameters like
coupling constant or size of the internal circles. This is crucial to the possibility of reproducing this
entropy by some microscopic calculation, and depends on the fact that we are considering supersym-
metric black holes (as we will see in the next chapter). It is also symmetric under interchange of Q1,
Q5 and QP : this is because a set of dualities can interchange the role of the charges (as emphasized
in [24]).

In conclusion, we have derived supergravity solutions corresponding to some configurations of branes.
As supergravity is the low energy limit of superstring theory, one might think that these solutions as
superstring solutions (at least in the low energy limit). This prospective will be discussed in the next
Chapter.
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Chapter 3

Black Holes microstates and the
Fuzzball proposal

In the previous Chapter we have found supergravity solutions and we have interpreted some of them
as black holes with thermodynamical properties. It is important to note that we have derived such
solutions using the symmetries of supergravity, which are different from those of superstring theory;
therefore, it is not obvious that the corresponding singularity is allowed in string theory: it is possible
that there is no microscopic source that can generate these solutions. We will analyze this issue when
discussing the 2-charge system. The aim of this Section is to give a stringy interpretation of these
solutions: this approach has been suggested by Susskind in [25], where he proposed that there is
a correspondence between excited string states and black holes. This prospective will allow us to
turn to a microscopical computation of the entropy. Bekenstein-Hawking entropy of eq. (1.41) is a
“macroscopic” entropy: it arises from the thermodynamical behaviour of the black hole and can be
computed by means of the macroscopic variables (like mass and charges) that enter in the equation of
state. From the statistical mechanics point of view, the thermodynamic properties of a system emerge
as a coarse graining of a more microscopic description, so that states with similar macroscopic behavior
are lumped into a single thermodynamic state. With this prospective, Boltzmann has thought us that
the entropy of a system is the logarithm of the number N of microscopic states that have been lumped
into one thermal state

Smicro = ln(N) (3.1)

This is the “microscopic” entropy (in unity of kB = 1). It is a task of string theory, as a candidate
theory of quantum gravity, to reproduce the Bekenstein-Hawking entropy with a microscopic count of
states so that Smicro = SBH .

3.1 Why BPS?

The goal is to give a stringy description of black hole solutions, compute the microstates degeneracy,
calculate the microscopical entropy through eq. (3.1) and compare it with the macroscopic one.
However, we are able to count states only in the free theory, i.e when gs → 0 and the theory reduces to
a manageable field theory. In this regime, however, gravity is switched off because GN ∼ g2

s and our
system is not a black hole. On the other hand, SBH is the entropy of a true black hole. Because we
are comparing systems at different values of gs, a priori, there is no reason for which the microscopic
and macroscopic computation should match each other. And, indeed, in general we obtain different
answers. To see this, let’s recall that Smicro can be obtained out of the partition function

Z = e−βF = TrH e
−βH (3.2)
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where H is the Hilbert space, via

S = −∂F
∂T

(3.3)

Because energy levels shift as we change gs, one can see from eq. (3.2) and (3.3) that the partition
function and, thus, the entropy change as we move in the moduli space. This makes it incorrect to
directly compare degeneracies at different gs.

In the theory there are quantities, called indices, that are protected by supersymmetry and do not
change as we change the coupling constant from small to large values. The simplest example of a
supersymmetric index is Witten index [26]

IWit = TrH[(−1)F e−βH ] (3.4)

where the operator (−1)F is defined as follows

(−1)F |Boson〉 = |Boson〉 (−1)F |Fermion〉 = −|Fermion〉 (3.5)

We have seen in Section 2.2.3 that if we consider a theory with a single real supercharge Q and
hamiltionian H = Q2, non supersymmetric states are organized into doublets containing a bosonic
and a fermionic state that have the same energy, while supersymmetric states need not to be paired and
have zero energy. As we vary the coupling constant, the non supersymmetric states move around in the
energy space; but they move in Bose-Fermi pairs. It is possible that some E 6= 0 pairs move down to
E = 0 or zero energy states gain a non zero energy. What is not possible is that a supersymmetric state
acquires a non-zero energy alone: as soon as it has a non-zero energy it must have a supersymmetric
partner. This means that the difference

IWit = (#bosonic zero energy states)− (#fermionic zero energy states) (3.6)

does not change as we changes gs. It is possible to apply this idea to BPS states: one can construct
a generalization of Witten index so that it receives a non vanishing contribution only from the short
multiplets (BPS states):

IBPS = (#bosonic BPS states)− (#fermionic BPS states) (3.7)

This index, again, will be protected from corrections as we vary the moduli.

One may wonder our interest in indices since Boltzmann relations of (3.1) counts the absolute degen-
eracy of states, and

NBPS = (#bosonic BPS states) + (#fermionic BPS states) > IBPS (3.8)

In other words IBPS can only give us a lower bound on the number of BPS states: a priori index and
absolute degeneracy are not the same. It can be shown, however, that in the interacting theory and
large charge limit the two coincide at the leading order. This justifies our interest in BPS solutions: we
can compute their microscopic degeneracy in the free theory, calculate the entropy through eq. (3.1)
and compare it with the macroscopic entropy. We cannot do the same for non-BPS solution because
their microscopic degeneracy is not protected by supersymmetry: this is why we have no analytic
control of the microscopic counting of, say, the Schwarzshild black hole.

3.2 The microscopic count of states

In this Section we will give a stringy interpretation of the 1
2 -BPS, 1

4 -BPS and 1
8 -BPS solutions and

count the number of microstates of the system in the limit in which the coupling constant gs is very
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small.

Entropy for the 1-charge solution

Let’s consider Type IIA superstring theory, where we label the compact direction S1 (with radius
R) with the coordinate y that has periodicity 0 ≤ y < 2πR. The 1-charge solution corresponds to a
fundamental string F1 wrapped n1 times around the circle. From eq. (2.63) we read the expression
of the metric for this solution:

ds2 =Z1(r)−1(−dt2 + dy2) + dr2 + r2dΩ3 + (dza)2

Z(r) =1 +
Q1

r2

(3.9)

As n1 ∝ Q1, with n1 large this will give a BPS state with large mass. The singularity is located at
r = 0; from the stringy point of view this mirrors the fact that, because every brane has a tension along
its worldvolume directions, the string, wrapping the circle, causes it to shrink, collapsing at r = 0.
Let’s recall that the horizon area vanishes and, thus, SBH = 0. This result agrees with the microscopic
count. BPS solution means that the string is in an oscillator ground state: the degeneracy comes from
the zero modes of the string, which give 128 bosonic and 128 fermionic states. Thus, Smicro = ln(256)
does not grow with n1. In the thermodynamical limit n1 →∞, we write Smicro = SBH = 0.

Entropy for the 2-charge solution

Let’s now consider the 2-charge solution in the duality frame in which it arises as an F1-P bound
state: a string wrapping the circle n1 times and carring np units of momentum. The degeneracy is due
to the fact that we can partition the momentum along different harmonics of vibration of the string,
where each harmonic describes a Fourier mode. The total lenght of the F1 is LT = 2πRn1. The total
momentum of the string can be written as

P =
np
R

=
2πn1np
LT

(3.10)

where each excitation of the Fourier mode contributes with momentum

pk =
2πk

LT
(3.11)

Let’s now focus just on one direction of vibration. The state will be described by the quanta (mi, ki),
where mi are the units of the Fourier mode ki, satisfying∑

i

miki = n1np (3.12)

This equation shows that the degeneracy is given by counting the partitions of the integer n1np. The

number of such partitions is given asymptotically by ∼ e2π
√
n1np

6 .
So far we have just considered one direction of vibration: we must take into account that the mo-
mentum is partitioned among 8 bosonic and 8 fermionic vibrations, since we are in D = 10 and the
longitudinal vibrations are forbidden. Because, statistically, a fermionic degree of freedom counts a
half a bosonic one, there are a total of 8 + 4 = 12 bosonic vibrations. Thus we are interested in the
partitions of

n1np
12 and, as all the directions are independent, we have to multiply the deceneracies of

each mode. Thus we get

Smicro = 2
√

2π
√
n1np (3.13)
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Note that we have obtained a non vanishing microscopical entropy and this is not in agreement with
the macroscopic entropy: the macroscopic computation, in this case, is SBH = 0 (the area of the
horizon vanishes and we have a naked singularity). It is believed that this inconsistence is due to the
fact that the supergravity regime is not reliable at r = 0: the curvature blows up there and higher
derivative corrections become important. It can be shown that, if one starts from a spacetime topology
R1,4 × S1 ×K3 (i.e. replaces the T 4 with a K3) and includes the higher derivative corrections in the
action, the corresponding solutions develops an horizon, and the area of this horizon correctly repro-
duces the microscopic entropy. We will further discuss this issue when dealing with the construction
of microstates in Section 3.3.

Entropy for the 3-charge solution

Let’s now consider the 3-charge solutions in the duality frame of NS5yT 4F1yPy. The microscopical
entropy for this system1 was first obtained by Strominger and Vafa in [27]. Let’s first consider the
system with NS5 − F1: the two branes are bound if the string lies along the NS5, so that it can
vibrate only in the direction parallel to the NS5 and transverse to the F1. This frame can be reached
from the F1− P using the chain of dualities in eq. (2.67) and the charges are mapped as

F1(n1)P (np)→ NS5(n1)F1(np) (3.14)

As the two systems are mapped into each other by dualities, their microscopical entropy must coincide
and it is given by eq. (3.13). We have seen in the previous Section that, in the F1 − P frame, the
total lenght of the string wrapping the circle n1 times is 2πRn1 and, thus, the momentum comes in
units of ∆p = 1

n1R
. The total momentum is

np
R = n1np∆p: this means that we have n1np units of

momentum that can be partitioned in different ways, giving rise to the entropy of (3.13). Let’s now
give an explanation of the degeneracy for the NS5(n1)−F1(np) bound state. If we have just one NS5
(n1 = 1) we expect the degeneracy to be the number of different state that can occur partitioning
the number np. Pictorially, we can say that the F1 lives in the NS5, but can be joined up to make
multiwond strings in different ways: we can have mi multiwound strings, each one with winding ki,
with the constrain ∑

i

miki = np (3.15)

If n1 > 1, we have n1np strands in all and they can be joined in various ways, so that the total number
of states one can construct is ∑

i

miki = n1np (3.16)

Let’s now return to the 3-charge system. We have seen that a bound state of n1 F1 branes and n5

NS5 branes gives rise to states composed of mi multiwound strings with winding ki, according to
eq. (3.16). If we now add the momentum charge P , we can take the F1-NS5 bound state in any
of the configuration in eq. (3.16) and distribute the np units of momentum among the strings. The
leading contribution comes from the configurations m = 1, k = n1n5, i.e. when we consider the
maximally wounded effective string. The degeneracy can be computed as in the previous case, with
the difference that now the momentum comes in units of ∆p ∼ 1

n1n5
and the string can oscillate only

in 4 transverse directions. Therefore, the total number of states goes as ∼ e2π
√
n1n5np , and we get that

the microscopical entropy is

Smicro = 2π
√
n1n5np (3.17)

Remarkably, the microscopic entropy eq. (3.17) agrees with the macroscopic entropy (2.83).

1The system, actually, was slightly different: they took the compactification R1,4 × S1 ×K3. The case of K3 repaced
by T 4 (that is our compactification choice) was done soon after in [28].
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3.3 Microstates construction

String theory allows for a microscopical count of states which agrees with the macroscopic entropy.
However the counting we have described leaves us with the question of how the microstates manifest
themselves at the gravitational regime, i.e. when the coupling is strong and the system forms a
black hole. Before dealing with the structure of the microstates, let’s pause on the problem we have
encountered in Section 3.2: for the 2 charge system the microscopic computation gives a non zero
microscopic entropy, while the supergravity solution (2.66) has a vanishing entropy. This is strange,
as the entropy (3.13) arose in a similar way to (3.17).
Note, however, that the metric (2.66) is a solution of supergravity (the low energy approximation
of string theory) and is not reliable near r = 0 because the curvature blows up there: the fact that
such a solution exist in supergravity does not mean that it is allowed in string theory. The F1-P
system is generated by a fundamental string wrapping S1 and the momentum P is carried as traveling
waves along the string. Because there are no longitudinal vibrations on the fundamental string, the
momentum must be carried by transverse vibrations. This makes the string bend away from its central
axis, and will not be confined at r = 0. We thus conclude that the metric (2.66) cannot be generated
in string theory. We will refer to this metric as the “naive” metric for the F1-P system.
We may ask what solution is produced by a fundamental string carrying momentum. The F1 has many
strands, as it is multiwound; when a strand carries a wave described by the transverse displacement
profile ~F (t− y), the metric produced is [24] (u = t+ y v = t− y)

ds2 = H(−dudv +Kdv2 + 2Aidx
idv) + dxidxi + dzadza

H−1(~x, y, t) = 1 +
Q

|~x− ~F (t− y)|2
K(~x, y, t) =

Q| ~̇F (t− y)|2

|~x− ~F (t− y)|2

Ai(~x, y, t) = − Q1Ḟi(t− y)

|~x− ~F (t− y)|2
e2Φ = H

(3.18)

The metric is singular along the curve xi = Fi(t−y). We are interested in multiwound strings (n1 > 1)
where each strand carries a vibration profile2 ~F (t−y). In this way the strands are mutually BPS, and
the solution for n1 > 1 can be obtained superposing the harmonic functions H−1, K and Ai. Moreover
we are interested in the thermodynamic limit n1, np → ∞ and, when this limit is performed, we can
approximate the sums with integrals. The structure of the metric is still the one in (3.18), while the
functions are

H−1 = 1 +
Q1

L

∫ L

0

dv

|~x− ~F (t− y)|2
K =

Q1

L

∫ L

0

dv| ~̇F (t− y)|2

|~x− ~F (t− y)|2

Ai = −Q1

L

∫ L

0

dvḞi(t− y)

|~x− ~F (t− y)|2

(3.19)

where L = 2πRn1 is the total range of the y coordinate on the multiwound string.
For the following, it is useful to express this solution in D1-D5 duality frame. This can be done
applying the chain of dualities given in eq. (2.67) to the solution in eq.s (3.19) and (3.18). The D1
and D5 charges are denoted, respectively, by Q1 and Q5, their values in terms of the integer charges
are given in eq. (2.82). The metric in the D1D5 frame is [23]

ds2 = (Z1Z2)−
1
2 (−(dt−Aidxi)2 + (dy +Bidx

i)2) + (Z1Z2)
1
2dxidxi + (Z1)

1
2 (Z2)−

1
2dzadza

Z1 = 1 +
Q5

L

∫ L

0

dv| ~̇F (t− y)|2

|~x− ~F (t− y)|2
Z2 = 1 +

Q5

L

∫ L

0

dv

|~x− ~F (t− y)|2

Ai = −Q5

L

∫ L

0

dvḞi(t− y)

|~x− ~F (t− y)|2
dB = − ?4 dA

(3.20)

2All the strands must carry momentum in the same direction of y for the state to be supersymmetric: the profiles
can depend on t+ y or t− y, but there must be no mixing.
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where ?4 denotes the Hodge dual operator in the non-compact space, L = 2πQ5

R and the total D1

charge is given by Q1 = Q5

L

∫ L
0 |Ḟ |

2dv.

Figure 3.1: On the left, there is the naive geometry of extremal D1D5 black hole. On the right, the geometry
of the microstates is represented.

Let’s discuss the geometrical structure of this solution, and compare it with the naive geometry (2.68);
a pictorial representation is given in Figure 3.1.

� For r2 >> Q1,5 we recover the asymptotically flat regime: the constant term in the Z1 and Z2

functions cause the geometries of both the naive black hole and the microstates to be Minkowski
spacetime at infinity.

� For r2 ∼ Q1,5 >> |~F |2, where |~F | is the characteristic length of the profile, we have that

Z1 ∼ 1 + Q1

r2 , Z2 ∼ 1 + Q5

r2 and the contribution of the functions A and B can be neglected: the
microstate and the naive geometry are still indistinguishable.

� When |~F |2 << r << Q1,5 we are in the decoupling (or near horizon) limit. Here the functions

Z1, Z2 etc. receive contributions in the form of higher negative powers of r: the shape of ~F
gives the deviation of the microstate geometry from that of the black hole. The important fact
is that the constant term in Z1 and Z2 can be neglected: because they cause the geometry to
be asymptotically flat, in the decoupling limit asymptotic flatness is lost. In fact, if we take the
r →∞ limit we get

ds2 =
r2

√
Q1Q5

(−dt2 + dy2) +

√
Q1Q5

r2
dr2 +

√
Q1Q5dΩ3 +

√
Q1√
Q5

dzadza (3.21)

Introducing the new coordinate r̃ = r√
Q1Q5

, the metric becomes

ds2 =
√
Q1Q5

[dr̃2

r̃2
+ r̃2(−dt2 + dy2)

]
+
√
Q1Q5dΩ3 +

√
Q1√
Q5

dzadza (3.22)

This is AdS3 × S3 × T 4, with the AdS term written in Poincar coordinates and with radii
RAdS = RS3 =

√
Q1Q5. Note that the asymptotic limit is the same for both the naive geometry

and the microstate, as terms with O(r−3) in the microstate expansion are subleading as r →∞.
As we will see later, the AdS3 factor is crucial for the holographic construction to hold.

� As r decreases we do not encounter any singularity: this is remarkable as, at first sight it seems
that the metric is singular on the profiles (the functions in (3.20) blow up at ~x = ~F (v)). However,
it turns out [24] that this is just a coordinate singularity and the geometries are completely
smooth. This is a peculiarity of the D1D5 frame. To summarize, the metric is horizonless, it is
regular on the profile F and as r → 0 the geometry remains smooth, and ends with a cap.

3.4 The Fuzzball proposal

In the previous Section we have constructed the microstates for the D1D5 black hole: they are hori-
zonless, non singular solutions of string theory that look like the naive black hole in the asymptotic
region, while deviate from it already at the horizon scale. The fuzzball proposal [24] [29] states that,
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for a given black hole with entropy S, there are eS microstates that behave like those we have con-
structed. In this picture, the original black hole emerges as an averaged description of the system.
This proposal would not only account for the entropy of the black hole, but could also solve the
information paradox. The reason is that, while Hawking’s calculation assumes that the microstates
are not distinguishable near the horizon, according to this conjecture two microstates (or a microstate
and the naive geometry) differ already at the horizon scale. This means that the creation of particle
pairs near the horizon is sensible to the precise form of the microstate: the modification of the black
hole interior allows the emitted quanta to carry information about the microscopic configuration.

Another important feature of these microstates is that they are horizonless. For a long time people
believed that if one takes a free string and increases gs an horizon forms around the string (as its size
becomes smaller than its Schwarzschild radius) and it ends up being a black hole [25]. It is generally
believed that if we find any horizon in GR we should associated an entropy to it. Does it make sense
to associate an entropy to a microstate? A microstate is any one of the possible states in an ensemble
that share the same macroscopic parameters of the black hole: if we consider the macroscopic system
the entropy is a measure of the hidden information (i.e. the microscopic configuration of the system), if
we consider a microstate we have a full description of the state and we should not associate an entropy
to it. In our picture, indeed a microstate has no horizon and for this to happen the geometry must
change all through the interior region of the horizon. It is commonly accepted that quantum gravity
effects should become important at some size comparable with some microscopical fixed length scale
(e.g. the planck scale lp or the string length ls). With this proposal, the classical solution should be
modified long before: corrections occur already at the horizon scale which, in general, is a macroscopic
scale.

Note, however, that the fuzzball picture is a conjecture and it is not entirely accepted. So far we
have a good understanding of all the microstates responsible for the entropy of the 2-charge extremal
black hole and all off them have the properties required by the fuzzball proposal. However we do not
have the complete family of microstates for the 3-charge case and, so, it has not been proved that
all the microstates are horizonless smooth solution. Moreover, general microstates might not be well
described in supergravity: this is a property of the 2-charge solutions, but to describe general 3-charge
microstates string theory might be needed. Another point that is not well understood is what happens
when we give up extremality. Thus, to establish the validity of the fuzzball conjecture it would be
important to provide a full gravitational description of the microstates. In the next Chapter, we will
introduce the AdS/CFT correspondence, which provides powerful tools to extend our understanding
on the geometry of microstates.
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Chapter 4

The AdS/CFT Conjecture and the
D1D5 CFT

The AdS/CFT correspondence states that string theory in a d + 1-dimensional anti-de Sitter (AdS)
spacetime is dual to a d-dimensional conformal field theory. This is one of the most important recent
ideas that arose in theoretical physics. The power of the correspondence lies in the fact that when
one theory is strongly coupled (and, thus, it is difficult to treat) the dual one is weakly coupled, and
vice versa. In this Chapter we will introduce the conjecture and we will study the dual theory of the
D1D5 geometries: the D1D5 CFT.

4.1 Motivating the conjecture

Although the AdS/CFT correspondence was originally discovered [30] [31] by studying D-branes and
black holes in string theory, the fact that such an equivalence may exist can be heuristically motivated
from certain aspects of gauge theories and gravity.

We have seen that the entropy of a black hole scales with the area of the event horizon. Eq. (1.41) is
not only the entropy of a black hole but it is also a bound on the maximal entropy that can be stored
in a region of space (that contains gravity).
The argument works as follows: consider a region of space Γ that contains a thermodynamic system
with more entropy than A

4GN
, where A is the area of ∂Γ. The total mass of the system cannot exceed

the mass of a black hole of area A, otherwise it would be bigger than the region Γ. Now imagine we
throw in some extra matter so that we form a black hole which just fills the region, i.e. the area of the
event horizon is A. The entropy in the exterior of Γ has obviously decreased, as well as the entropy
inside the region, because now its entropy is just A

4GN
which is smaller than the initial entropy by our

assumption. So, the second law has been violated. Therefore, unless the second law is untrue, the
entropy of any system that includes gravity is limited by

Smax =
A

4GN
(4.1)

This bound implies that the number of degrees of freedom inside some region that contains gravity
grows as the area of the boundary and not like the volume of the region. In standard quantum field
theories this is certainly not possible. Attempting to understand this behavior led Susskind to the
“holographic principle” [32], which states that in a quantum gravity theory all physics within some
volume can be described in terms of some non gravitational theory on the boundary of the volume.

A second indication that a gauge theory could be dual to a string theory1 comes from the ’t Hooft
large N limit. A pure 4-dimensional SU(N) gauge theory, beside the dimensionless coupling gYM

1The relation between gauge theories and string theories may not surprise: after all, string theory was first invented
to describe strong interactions. Different vibration modes of a string provided an economical way to explain many
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(which is dimensionally transmuted in the scale ΛQCD), has another dimensionless parameter: the
number of colors N . ’t Hooft’s idea was to treat the number of colors N of a non-Abelian gauge
theory as a parameter, take it to be large, and expand physical quantities in 1

N . With this aim, we
have to impose the scaling of gYM as we take N → ∞: a natural choice is to impose a scaling such
that ΛQCD remains constant. The β-function for pure SU(N) Yang-Mills theory is [33]

µ
dgYM
dµ

=
11

2
N
g3
YM

(4π)2
+O(g4

YM ) (4.2)

and we find that the leading terms are of the same order if we take the combination N → ∞ while
keeping ’t Hooft coupling λ = g2

YMN fixed. Now, consider the partition function:

Z =

∫
DAµ exp

(
− 1

4g2
YM

∫
dx4 TrF 2

)
(4.3)

It turns out that the generating functional can be written as an expansion in 1
N as [33]

logZ =

∞∑
g=0

N2−2gfg(λ) (4.4)

where fg(λ) are functions of the ’t Hooft coupling only and they include the contributions of all
the diagrams that can be drawn on a 2-dimensional surface with g genus without crossing any line.
Because the topology of a two-dimensional compact surface is classified by its number of holes, the
expansion (4.4) can be considered as an expansion in term of the topology of Feynman diagrams. In
the large N limit we see that any computation will be dominated by the diagrams with minimal genus:
these “planar diagrams” give a contribution of order N2, while all other diagrams will be suppressed
by powers of 1

N2 .
This is in remarkable parallel with the perturbative expansion of a closed string theory. Comparing
eq.s (2.18) and (4.4) one could identify the string coupling constant as something proportional to 1

N .
This analogy suggests that, indeed, gauge and string theories may be related in such a way that, in
the large N limit, the string theory is weakly coupled.

One of the strongest motivations for believing the AdS/CFT correspondence is to consider it as a
realization of the open/closed string duality. We have seen that superstring theories contain multidi-
mensional objects: D-branes. D-branes are non perturbative objects: since they have mass propor-
tional to the inverse of the string coupling 1

gs
they do not arise in the perturbative expansion (one

cannot scatter two strings and get a D-brane, at least for small gs). However, if a D-brane is present
in spacetime one can do a perturbative expansion around this background.
We have seen that D-branes play a double role in the theory. In the closed string description they
are charged objects with respect to the Ramond-Ramond fields and, since they are massive objects,
they curve the spacetime geometry in which closed string propagate. In the open string description
D-branes are multidimensional objects where an opens string can end.

Let’s first consider D-branes from the open string prospective. As we have seen in Section 2.1.1,
the quantization of the theory gives an open string spectrum that can be identified with fluctuations
of the brane. For a single D-brane, the massless spectrum consists in scalar field φi that describe
fluctuations of the brane in the transverse direction and a U(1) gauge field Aµ that lives on the brane.
The remarkable feature is the possible appearance of a non-Abelian gauge theory when one considers
multiple parallel D-branes. If one has N D-branes, open strings that have both endpoints on the
same brane form a U(1) gauge field as before, so that we have an overall gauge group U(1)N ; we will

resonances discovered in the sixties which obey the so-called Regge behavior (i.e. the relation M ∝ J between the mass
and the angular momentum of a particle). Later it was discovered that there is another description of strong interactions:
QCD (an SU(3) gauge theory).
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Figure 4.1: Open strings stretching between (a) single, (b) separated, (c) coincident D-branes.

denote the gauge fields with (Aµ)aa, where the upper (lower) index labels the brane on which the
string starts (ends). We can also have strings that have endpoints on different branes (as in Figure
4.1 ): if they are separated by a distance r, the corresponding field (Aµ)ab (with a 6= b) have a mass
given by the tension of the string times the separation of the branes m = r

2πα′ . If the branes are on
top of each other (r = 0) all the (Aµ)ab are massless and the resulting theory is a non-Abelian gauge
theory with gauge group U(N). Similarily one finds that the massless scalars become N ×N matrices
(φi)

a
b, which transform in the adjoint representations of the gauge group.

To be more specific, let’s treat the most studied case: consider N D3-branes in Type IIB superstring.
In the low energy limit, the effective action of the massless modes will be

S = Sbulk + Sbranes + Sbulk-branes (4.5)

where Sbulk is the ten-dimensional supergravity action (plus some higher derivative corrections), Sbranes

is the brane action and Sbulk-branes describes the interactions between the brane modes and the bulk
modes. Let’s consider each term separately.
Sbranes describes the theory on the brane: in the low energy limit it contains the gauge fields (Aµ)ab
(µ = 0, ..., 3) and the scalar fields (φi)

a
b (i = 1, ..., 6) which all live in the adjoint representation of

U(N). As a D-brane breaks one half of the 32 supersymmetries of theD = 10N = 2 superstring theory,
Sbranes describes an N = 4 super-Yang-Mills theory with gauge group U(N) in (3 + 1)-dimensions.
The bosonic lagrangian can be written as [34]

L = − 1

g2
YM

Tr(
1

4
FµνFµν +

1

2
Dµφ

iDµφi +
∑
i,j

[φi, φj ]) (4.6)

with the Yang-Mills coupling is given by

g2
YM = 4πgs (4.7)

The presence of supersymmetry makes the theory conformally invariant. At the classical level, Yang-
Mills theories in 4-dimensions are scale invariant: the coupling constant is dimensionless so that there
are no mass scales in the theory. This invariance does not extend at the quantum level: the renor-
malization group introduces a scale dependence and gYM runs with the energy scale. Supersymmetry
makes the β-function to vanish exactly, restoring conformal invariance.
The U(N) gauge group is equivalent to U(1)×SU(N) (up to some ZN identification that affects only
global issues and not the Lie algebra). The diagonal U(1) degree of freedom describes the motion of
the branes’ center of mass (i.e. rigid motion of the entire system of branes); we are not interested in
this trivial type of motion and we will focus only on the SU(N) gauge group left after removing the
U(1).
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The full action (4.5) contains also closed string modes which can interact among themselves (Sbulk) and
with open strings (Sbulk-brane): since gravity couples universally to all form of matter, the interaction
will always be proportional to some power of

√
GN ∼ gsα

′2. Let’s take the low energy limit sending
ls → 0 while keeping the energy and all the dimensionless parameters (e.g. gs and N) fixed. In this
limit the coupling

√
GN → 0 and all the interactions vanish (gravity is free at large distances). Thus,

we have two decoupled systems: free gravity in the bulk and a 4-dimensional gauge theory on the
brane.

Let’s now change prospective (closed string description), considering the fact that the D3-branes are
massive and charged objects which act as sources for the various supergravity fields. Denoting with xi
the three spatial directions in which the branes are extended, the D3-brane supergravity metric takes
the form [33]

d2
s = H−

1
2 (−dt2 + dx2

1 + dx2
2 + dx2

3) +H
1
2 (dr2 + r2dΩ2

5)

H = 1 +
R4

r4
R4 = 4πgsα

′2N
(4.8)

For r >> R we recover Minkowsky spacetime. In the near horizon limit, r << R, we have H ∼ R4

r4

and the geometry becomes AdS5 × S5, with AdS radius equal to R.
Because gtt is not constant, the energy Ep of an object as measured by an observer at a constant

position r and the energy E measured by an observer at infinity are related by E = (H)−
1
4Ep. This

means that the closer the object to r = 0 the lower the energy measured at infinity.
Let’s now consider the low energy limit, there are to kinds of low energy excitations from the point of
view of an observer at infinity: we can have massless particles in the bulk region with large wavelengths
or we can have a generic excitation very close to r = 0. In the low energy limit these two types of
excitations decouple. The bulk particle decouples from the near horizon region because, roughly
speaking, if its wavelength is large compared to the typical gravitational size of the brane (∼ R)
it will not be absorbed. Similarly, the excitations that live near r = 0 find it hard to climb the
gravitational potential and escape to the asymptotic region. Note, moreover, that the strength of the
interactions between closed string is proportional to the Newton constant GN , which has dimension
[GN ] = lenghtd−2, so the dimensionless coupling constant at energy E is GNE

8: in the low energy limit
the interactions vanish. Thus, the low energy modes in the Minkowski region decouple from each other;
this does not happen in the throat, because massive string excitations survive there. Therefore, in the
closed string description the interacting sector at low energies reduces to closed string in AdS5 × S5.

We have seen two different descriptions for treating the D3-brane: the open string and the closed
string description. However, superstring theories are invariant under worldsheet reparametrizations
(2.5): this allows to exchange the proper time τ and the proper length σ on the worldsheet. With this

Figure 4.2: Exchanging τ and σ we can interpret the process as an exchange of a closed string between D-branes
(left), or as an open string loop diagram (right).

prospective, tree level closed string processes are equivalent to open string loop diagrams, as shown
in Figure 4.2. This is the so-called open/close string duality. How does this duality manifest itself in
the effective theory? Are Sbulk and Sbrane dual to each other?
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4.2 AdS/CFT correspondence

In the previous Section, we have discussed the system composed of N D3-branes. We have seen that
both from the point of view of the field theory of open strings living on the brane, and from the point
of view of the supergravity description, we have two decoupled systems in the low-energy limit. In
both cases one of them is supergravity in flat space. In [30] Maldacena has identified the other systems
in the two descriptions. This led to the conjecture that

{N = 4 SU(N) super-YM in 3+1-dimensions} = {Type IIB superstring in AdS5 × S5} (4.9)

The relation between the parameters of the two sides of (4.9) can be obtained from eq.s (4.7) and
(4.8) (R

ls

)4
= λ = Ng2

YM

(R
lp

)4
=

√
2

π2
N (4.10)

The above identifications are part of what is called the dictionary of the correspondence. From
the relations in eq. (4.10) it follows that the two descriptions are tractable in different parameters
regimes. When the t’Hooft coupling g2

YMN ∼ gsN << 1 we have R << ls: this regime consists in the
weakly coupled Yang-Mills theory, where the perturbative expansion is reliable; however, because the
radius charactering the gravitational effect becomes small in string units, the closed string description
becomes intractable since one has to deal with highly stringy behaviors.
On the other hand, when g2

YMN >> 1 we have R >> ls, the geometry becomes weakly curved and
the supergravity description is reliable; instead, the Yang-Mills theory is strongly coupled and one
cannot control the loop expansion. Thus, we see that the supergravity regime and the gauge theory
are perfectly incompatible: this is the reason why this correspondence is called a “duality”. The two
theories are conjectured to be exactly the same, but when one is weakly coupled the other is strongly
coupled and vice versa. This makes the correspondence useful (we can treat a strongly coupled gauge
theory via classical supergravity or a stringy system using the tools provided by weakly coupled Yang-
Mills theories) but, at the same time, hard to prove.
In this sense, it remains a conjecture even though supported by a large number of evidences [35]. So
far, we have implicitly assumed N →∞: this is the case in which we are most interested, because it
corresponds to the thermodynamical limit for macroscopic black holes2.

4.3 D1D5 CFT

In this Section we will apply the above correspondence to the D1D5 system: the basic setup is a
spacetime with topology R1,4 × T 4 × S1 with N5 D5-branes wrapping the hole compact space and N1

D1-branes wrapping S1. We want to consider the region of parameters in which the radius of S1 is
much bigger than (V4)

1
4 ∼ ls.

In the low energy limit E << 1
ls

, because the T 4 has a size of order the string length we conclude,

using eq. (2.35), that the masses of the winding and the momentum modes on the T 4 can be neglected.
On the other hand, because the radius of the circle is much larger than the string scale, we have to
retain all the momentum modes in this direction.
We have seen in Section 3.3 that the supergravity description, in the near horizon limit, becomes
AdS3 × S3 × T 4. We want to find the description that arise from the low energy behavior of open
string modes. We expect the dual theory to be a two-dimensional conformal field theory with 8
supercharges (as the D1D5 breaks 1

4 supersymmetries).

Such a description can be obtained with two different approaches, which we now summarize (for a
more exhaustive treatment see, for example, [11] and [36]). The first one consists in explicitly consider

2There are, however, different forms of the conjecture: the strong form is to assume that the two theories are exactly
the same for all values of gs and N .
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the gauge theory that arise from open strings: because they can begin and end on either a D1 or a
D5, there are three sectors we have to consider:

� The 5-5 strings have both endpoints on D5 and give rise to a U(N5) gauge theory in 5 + 1-
dimensions with 16 supercharges.

� The 1-1 strings have both endpoints on D1 and give rise to a U(N1) gauge theory in 1 + 1-
dimensions, again with 16 supercharges.

� The 5-1 (and 1-5) strings are fundamental under U(N5) (U(N1)) and antifundamental under
U(N1) (U(N5)) and break the supersymmetries of the theory down to 8.

Because we have taken the size of the T 4 to be on the string scale, we can dimensional reduce the
theory down to 1 + 1 dimensions, parametrized by the time and the S1 coordinate y.
Because we are discussing the low energy limit, we are interested in the supersymmetric minima of
the theory. It turns out that there are two classes of minima, that select two different regions of the
moduli space of the theory.

� In the first one, the so-called Coulomb branch, the state of the (1, 1) and (5, 5) string along the
transverse directions acquire a non vanishing expectation value; this makes the brane to separate
from each other, breaking the gauge group down.

� In the second one, the so-called Higgs branch, the states of the (1, 5) and (5, 1) strings acquire a
non zero Vev, and all the branes remain on top of each other. We are interested in this branch,
which truly describes a bound state. Studying the theory in this way, however, is complicated.

Nonetheless, there is an alternative but equivalent approach to the problem. It consists in considering
the D1 branes as instantonic solutions of the 6-dimensional U(N5) gauge theory on the D5 branes:
these are strings wrapping S1 but localized in T 4. From the above discussion, we conclude that we
are interested in N1 instantons in the D5 theory: these form a family of solution whose corresponding
parameters form the instanton moduli space. The effective description of the Higgs branch, thus, is a
1 + 1-dimensional sigma model with target space the moduli space of N1 U(N5) instantons on T 4. In
general, this space is complicated; however, for particular values of the closed string moduli, it reduces
to

(T 4)N1N5

SN1N5

(4.11)

where Sn is the symmetric group of degree n. This is the so-called orbifold point.
To summarize, the proposed correspondence is between Type IIB superstring theory defined on an
asymptotically AdS3×S3 space and the D1D5 conformal fields theory, a 1 + 1-dimensional N = (4, 4)
sigma-model with target space given by (4.11) at the orbifold point. Throughout all the discussion,
we will work at the orbifold point (the free point), in which all the couplings vanish and the CFT
reduces to a collection of free bosons and fermions. At the orbifold point the target space is the
symmetric product of N1N5 copies of the manifold T 4: thus, we can visualize the CFT as a collection
of N1N5 strings wrapping the circle with target space T 4; the Sn identification is required as there is
no physical distinction between permutations of the strings.
However, different configurations can occur. We can have that all the strings wrap the circle once,
i.e. if we cirle S1 once we end up on the same string: this is the untwisted sector of the theory. We
can join up k different strings to form an effective string wrapping the circle k times, we will call such
objects strands: this is the twisted sector of the theory (see Figure 4.3). Thus, we can have a generic
configuration formed by mi strands with winding ki; with the constrain

∑
i kimi = N1N5.

Let’s now discuss the agreement of the symmetries of the two theories. On the gravity side we have
AdS3 × S3 × T 4 that enjoys an SO(2, 2) ' SL(2,R)× SL(2,R) isometry group of AdS3, an SO(4)E
isometry group of S3 and an SO(4)I of the torus that is broken by compactification. When we consider
the matching with the CFT side we become quite confused: the conformal group in 2-dimensions is
infinite-dimensional, with Virasoro generators Ln, L̄n (n ∈ Z), while we would like to identify the
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Figure 4.3: (a) We have N copies of singly wound strands k = 1. (b) As we will see, a twist operator can glue
k singly wound strands into a single multy wound strand with length k.

conformal group with the isometry group of AdS3. However, only the subalgebra spanned by n = 0,±1
is well-defined globally [33]: this subalgebra generates an SL(2,R)×SL(2,R) group of transformations
which we identify with the isometries of AdS3. The CFT also has an SO(4) R-symmetry which we
identify with SO(4)E and another SO(4) symmetry which we identify with SO(4)I . We write the
non simple group SO(4) as the product of its simple subgroups as: SO(4)E ' SU(2)L × SU(2)R and
SO(4)I ' SU(2)1 × SU(2)2.

4.3.1 Field content

In this Section we will state the main ingredients of the CFT relevant to the D1D5 microstates and
we will follow the conventions of [38]. Appendix A contains a brief review on conformal field theories
in 2 dimensions. The D1D5 CFT can be visualized, at the free orbifold point, as a collection of N1N5

strands, each one with 4 bosons and 4 doublets of fermions(
XAȦ

(r) (τ, σ), ψαȦ(r) (τ + σ), ψ̃α̇Ȧ(r) (τ − σ)
)

(4.12)

where r = 1, ..., N1N5 labels the different copies, (τ, σ) are the timelike and spacelike directions on the
cylinder base space (which corresponde to the (t, y) coordinates on the bulk side), and the spinorial
indices A, Ȧ, α, α̇ = 1, 23live in the following internal spaces:

α, β fundamental of SU(2)L α̇, β̇ fundamental of SU(2)R

A,B fundamental of SU(2)1 Ȧ, Ḃ fundamental of SU(2)2

(4.13)

We can Wick rotate to Euclidean space by taking τE = iτ and we can then map the theory from the
cylinder to the complex plane via

z = eτE+iσ z̄ = eτE−iσ (4.14)

Writing the fields in the complex plane, we have that the bosons’ derivatives with respect to z (∂ ≡ ∂z)
and z̄ (∂̄ ≡ ∂z̄) and the fermions break into holomorphic (left-movers) and antiholomorfic (right-
movers) functions:

∂XAȦ
(r) (z), ∂̄XAȦ

(r) (z̄), ψαȦ(r) (z), ψ̃α̇Ȧ(r) (z̄) (4.15)

Each of the N1N5 copies of the CFT contribute with ccopy = 6 to the central charge (corresponding
to 4 free bosons and 4 free fermions); the total central charge is the sum of ccopy over all the N1N5

copies, so that c = 6N1N5. From eq. (4.11) we see that all the states must be invariant under the
permutations of the N1N5 strands.

3We will sometimes use the notation α, α̇ = ±, with the identifications 1 ≡ + and 2 ≡ −.
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4.3.2 The untwisted (k = 1) sector

The untwisted sector is composed of singly wound strands: thus, we have a collection of N1N5 inde-
pendent strands with length (winding) k = 1. From now on, we will mainly focus our attention on
the holomorphic (left) sector, as the discussion for the antiholomorfic sector works analogously. The
OPE for the fermions and the bosons are respectively

ψ1Ȧ
(r)(z)ψ

2Ȧ
(s)(w) =

εȦḂδrs
z − w

+ [reg.] ∂XAȦ
(r) (z)∂XBḂ

(s) (w) =
εABεȦḂδrs
(z − w)2

+ [reg.] (4.16)

where, in our conventions ε12 = ε1̇2̇ = −ε12 = −ε1̇2̇ = 1.
Since we are dealing with singly wound strands, the boundary conditions have to be imposed so that,
taking σ → σ + 2π on the cylinder (or z → e2πiz on the complex plane), we return back on the same
copy. For the bosons we have

∂XAȦ
(r) (e2πiz) = ∂XAȦ

(r) (z) ∂XAȦ
(r) (z) =

∑
n∈Z

αAȦ(r)nz
−n−1

(4.17)

For fermions we can have either Ramond (R) or Neveu-Schwartz (NS) bounadry conditions, which
correspond, respectively, to periodic and antiperiodic boundary conditions on the cylinder. When one
maps to the complex plane, there is a Jacobian (−1) factor that switches the periodicity: periodic
fermions on the cylinder correspond to antiperiodic fermions on the complex plane and vice versa. The
boundary conditions are reflected in the mode expansions of the fields. In the z-plane for fermions in
the R sector we have

ψαȦ(r) (e2πiz) = −ψαȦ(r) (z) ψαȦ(r) (z) =
∑
n∈Z

ψαȦ(r)nz
−n− 1

2 (4.18)

while for the NS sector

ψαȦ(r) (e2πiz) = ψαȦ(r) (z) ψαȦ(r) (z) =
∑

n∈Z+ 1
2

ψαȦ(r)nz
−n− 1

2

(4.19)

The OPEs (4.16), as well as the mode expansions of the fields, yield to the following (non zero)
commutation relations

[αAȦ(r)n, α
BḂ
(s)m] = nεABεȦḂδn+m,0δrs {ψαȦ(r)n, ψ

βḂ
(s)m} = −εαβεȦḂδn+m,0δrs (4.20)

where the relations hold for both the fermionic sectors. Note that the boundary conditions (4.18) and
(4.19) select respectively integer and half integer modes and, thus, only the R-sector has zero modes
in the expansion.

Vacuum states

In each CFT copy the vacuum state is the tensor product of a vacuum state for the bosons and for the
fermions. To be precise, we should say that each one of them is also the tensor product of the vacuum
state for the holomorphic and antiholomorphic sector; however, the right-mover and left-mover modes
commute with each other and we will not distinguish between left and right vacua.
The bosonic vacuum state corresponding to the (r) copy, |0〉(r), is annihilated by all the non negative
bosonic modes and we assume the following normalization

αAȦ(r)n|0〉(r) = 0 ∀n ≥ 0, A, Ȧ

(r)〈0|0〉(s) = δrs
(4.21)
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Analogous rules hold for the NS sector: the NS vacuum state, denoted with |0〉(r)NS , is annihilated
by all the positive modes

ψαȦ(r)n|0〉(r),NS = 0 ∀n > 0, A, α

NS,(r)〈0|0〉(s),NS = δrs
(4.22)

In the R sector, instead, things work differently: we still have that the vacuum state is annihilated
by the positive modes, but the presence of the zero modes in the expansion (4.18) give rise to a de-
generacy of vacuum states. Considering the zero modes, the anticommutation relation (4.20) becomes

{ψαȦ(r)0, ψ
βḂ
(s)0} = −εαβεȦḂδrs. This is the Clifford algebra (with reference to SU(2)L) in 2-dimensions,

and its irriducible representation has dimension 2. Thus, in this representation , there should be two
vacuum states that can be expressed (using the rising and lowering generators) as a “spin-up” and a
“spin-down” state. We will come back on this issue when discussing the currents operators.
We can define a Ramond vacuum state |++〉r such that:

ψαȦ(r)n|++〉r = 0, ψ̃α̇Ȧ(r)n|++〉r = 0 ∀n > 0, A, α, α̇

ψ1Ȧ
(r)0|++〉r = 0, ψ̃1̇Ȧ

(r)0|++〉r = 0

ψ2Ȧ
(r)0|++〉r 6= 0, ψ̃2̇Ȧ

(r)0|++〉r 6= 0

(4.23)

where ψ̃α̇Ȧ(r)n are antiholomorphic R sector modes. Again, we choose a normalization such that:

(r)〈+ + |+ +〉(s) = δrs (4.24)

Note that the degenerate vacua can be obtained from the vacuum state |++〉r only acting with zero
modes: acting with negative modes would rise the energy of the state.
The topology of the gravitational theory selects the periodicity of the fermions in the CFT. If we have
global AdS3 space, the conformal field theory has fermions with antiperiodic boundary conditions
around the circle4. The reason is that the circle is contractible in AdS3 and going around the S1 at
the boundary looks like a 2π rotation close to the center of AdS. Because fermions are invariant under
4π, a 2π rotation gives a minus sign and the D1D5 CFT is in the NS-NS sector. The D1D5 geometries,
instead, must have an asymptotically flat extension, and this is possible only if the vacuum energy is
zero. This selects the R sector in the CFT: in this way fermions and bosons have the same periodicity
and supersymmetry makes their contribution to the vacuum energy precisely to cancel. Therefore,
the R sector will be our building block for the discussions in the next Chapter. The total vacuum for
the R sector of the CFT is the tensor product of the vacua of each copy.

Other operators

The theory contains other operators beside the bosonic and fermionic fields. For each copy of the
CFT, we have two current operators associated to the SU(2)L × SU(2)R symmetry5:

Jαβ(r) (z) =
1

2
ψαȦ(r) εȦḂψ

βḂ
(r)

J̃αβ(r) (z̄) =
1

2
ψ̃α̇Ȧ(r) εȦḂψ̃

β̇Ḃ
(r)

(4.26)

4The boundary of AdS3 is a cylinder, so the conformal field theory is naturally defined there: its topology constrains
the periodicity of fermions on the cylinder.

5By operator on the r-th copy O(r), we mean that it acts non trivially in the r-th copy while it is just the identity on
the other copies:

O(r) ≡ I(1) ⊗ ...⊗ I(r−1) ⊗O(r) ⊗ I(r+1) ⊗ ...⊗ I(N1N5) (4.25)
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where, from now on, normal ordering with respect to the |++〉r vacuum is understood. The conformal
dimensions of the operators are (h, h̄) = (1, 0) and (h, h̄) = (0, 1) respectively. The total currents are
just the sum of the currents (4.26) on the N1N5 copies

Jαβ(z) =

N1N5∑
r=1

Jαβ(r) (z) J̃αβ(z̄) =

N1N5∑
r=1

J̃ α̇β̇(r) (z̄) (4.27)

In terms of the standard SU(2) generators we have

J+
(r) =

1

2
ψ1Ȧ

(r)εȦḂψ
1Ḃ
(r) ≡ J

1
(r) + iJ2

(r)

J−(r) = −1

2
ψ2Ȧ

(r)εȦḂψ
2Ḃ
(r) ≡ J

1
(r) − iJ

2
(r)

J3
(r) = −1

2
(ψ1Ȧ

(r)εȦḂψ
2Ḃ
(r) − 1)

(4.28)

Analogous definitions hold for the antiholomorphic currents. The constant term in J3
(r) has been fixed

in such a way that the state |++〉r has quantum number (1
2 ,

1
2) under (J3

(r), J̃
3
(r)).

The mode expansion, the OPE rules and the mode algebra for the currents are:

Ja(r)(z) =
∑
n∈Z

Ja(r)nz
−n−1

Ja(r)(z)J
b
(s)(w) =

δrs
z − w

iεabcJc(r)(w) + [reg.]

[Ja(r)n, J
b
(s)m] = iεabcJc(r)n+mδr,s +

ccopy

12
nδabδr,sδm+n,0

(4.29)

Where a = 1, 2, 3 or a = ±, 3 is an SU(2) triplet index. We use the zero modes of the current operators
to define the R vacua with different spin

J−(r)0|++〉(r) ≡ |−+〉(r) J̃−(r)0|++〉(r) ≡ |+−〉(r) J̃−(r)0J
−
(r)0|++〉(r) ≡ |−−〉(r) (4.30)

Another important family of operators is

Oαα̇(r)(z, z̄) ≡
−i
2
ψαȦ(r) εȦḂψ̃

α̇Ḃ
(r) =

∑
n,m∈Z

Oαα̇(r)nmz
−n− 1

2 z̄−m−
1
2 (4.31)

They have conformal dimension (h, h̄) = (1
2 ,

1
2) and the conjugation relations are (O11̇)† = O22̇ and

(O12̇)† = −O21̇.
The action of this operator on the state |++〉(r) produces another R vacuum that carries spin (0, 0)

under (J3
(r), J̃

3
(r)).

|00〉(r) ≡ O
22̇
(r)00|++〉(r) (4.32)

The normalizations of the R vacua are derived from the normalizations of |++〉(r) and from the
commutation relations of the operators; one gets

(r)〈s|s′〉(s) = δs,s′δr,s (4.33)

where s, s′ = (±±) or (00).

Supersymmetry generates the (holomorphic) supersymmetry currents

GαA(r) = ψαȦ(r) εȦḂ∂X
AḂ
(r) =

∑
n

Gαa(r)nz
−n− 3

2 (4.34)
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where n ∈ Z (n ∈ Z + 1
2) in the R sector (NS sector). These operators have conformal dimension

(h, h̄) = (3
2 , 0), and the modes form the algebra:

{GαA(r)m, G
βB
(s)n} =− ccopy

6
(m2 − 1

2
)εABεαβδm+n,0δr,s+

+ (m− n)εABεβγ(σ∗a)αγJ
a
m+nδr,s − εABεαβLm+nδr,s

(4.35)

The right sector has the corresponding anti-holomorphic supercurrents. The stress energy operator of
the theory receives a contribution from the bosons TB and from the fermions TF as

T(r)(z) = TB(r)(z) + TF(r)(z) =
∑
n∈Z

L(r)nz
−n−2

TB(r)(z) =
1

2
εABεȦḂ∂X

AȦ
(r) ∂X

BḂ
(r)

TF(r)(z) =
1

2
εαβεȦḂψ

αȦ
(r) ∂ψ

βḂ
(r)

(4.36)

This is the current associated to conformal invariance, and its modes generate the Virasoro algebra
on each copy of the CFT

[L(r)n, L(s)m] = (n−m)L(r)n+mδr,s −
ccopy

12
n(n2 − 1)δn+m,0δr,s (4.37)

4.3.3 The twisted (k > 1) sector

In the previous section we have discussed the untwisted sector: a collection of N1N5 independent
strands of winding k = 1. This was obtained imposing boundary condition such that circling the
point z around the origin (or transforming σ → σ + 2π on the cylinder) we return on the same CFT
copy.
As we have seen, this is not the only possibility: we may have mi strands of winding ki so that∑

imiki = N1N5. In this case the boundary conditions are non trivial. Consider a strand of length k:
as we circle the origin one copy of the CFT gets mapped into the adjacent

∂XAȦ
(r) (e2πiz) = ∂XAȦ

(r+1)(z) ∂̄XAȦ
(r) (e−2πiz̄) = ∂̄XAȦ

(r+1)(z̄)

ψαȦ(r) (e2πiz) = ψαȦ(r+1)(z) ψ̄α̇Ȧ(r) (e−2πiz̄) = ψ̄α̇Ȧ(r+1)(z̄)
(4.38)

where r = 1, ..., k. Note that, because z̄ is the complex conjugate of z, if the boundary conditions
for the holomorphic fields are imposed circling the point z anticlockwise (z → e2πiz), the boundary
conditions for z̄ must be taken clockwise (z̄ → e−2πiz̄).
This conditions hold both for the R and the NS sector. The distinction between the two fermionic
sector comes from the identifications

Bosons: ∂XAȦ
(k+1) = ∂XAȦ

(1) ∂̄XAȦ
(k+1) = ∂̄XAȦ

(1)

R sector: ψαȦ(k+1) = ψαȦ(1) ψ̄α̇Ȧ(k+1) = ψ̄α̇Ȧ(1)

NS sector: ψαȦ(k+1) = (−1)k+1ψαȦ(1) ψ̄α̇Ȧ(k+1) = (−1)k+1ψ̄α̇Ȧ(1)

(4.39)

From eq. (4.38) we see that the boundary conditions expressed in terms of the copies labeled by (r)
are non trivial. A natural choice is to diagonalize these conditions: this can be done performing a
change of basis (r) = 1, ..., k → ρ = 0, ..., k − 1. For the bosons this is
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∂X11̇
ρ (z) =

1√
k

k∑
r=1

e−2πi rρ
k ∂X11̇

(r)(z) =
∑
n∈Z

α11̇
ρ,n− ρ

k
z−n−1+ ρ

k

∂X22̇
ρ (z) =

1√
k

k∑
r=1

e2πi rρ
k ∂X22̇

(r)(z) =
∑
n∈Z

α22̇
ρ,n+ ρ

k
z−n−1− ρ

k

∂X12̇
ρ (z) =

1√
k

k∑
r=1

e2πi rρ
k ∂X12̇

(r)(z) =
∑
n∈Z

α12̇
ρ,n+ ρ

k
z−n−1− ρ

k

∂X21̇
ρ (z) =

1√
k

k∑
r=1

e−2πi rρ
k ∂X21̇

(r)(z) =
∑
n∈Z

α21̇
ρ,n− ρ

k
z−n−1+ ρ

k

(4.40)

The antiholomorphic sector works analogously, upon taking (z, i) → (z̄,−i). The bosonic modes in
the ρ-basis satisfy the following commutation relations

[αAȦρ1,n, α
BḂ
ρ2,m] = εABεȦḂnδn+m,0δρ1,ρ2

(4.41)

For the R sector, the change of basis (r)→ ρ gives

ψ1Ȧ
ρ (z) =

1√
k

k∑
r=1

e2πi rρ
k ψ1Ȧ

(r)(z) =
∑
n∈Z

ψ1Ȧ
ρ,n+ ρ

k
z−n−1− ρ

k

ψ2Ȧ
ρ (z) =

1√
k

k∑
r=1

e−2πi rρ
k ψ2Ȧ

(r)(z) =
∑
n∈Z

ψ1Ȧ
ρ,n− ρ

k
z−n−1+ ρ

k

(4.42)

and the modes satisfy the following nonzero anticommutation relations

{ψ1Ȧ
ρ1,n, ψ

2Ȧ
ρ2,m} = εȦḂδn+m,0δρ1,ρ2

(4.43)

Note from eq.s (4.40) and (4.42) that only the ρ = 0 terms contain the zero modes. Analogous rela-
tions hold for the right sector. In the NS sector things work differently because of the identifications
in (4.39), see [38] for an exhaustive treatment.

Vacuum states

The discussion of the vacua and the operators in the twisted sector is analogous to the discussion in
the untwisted sector, with the difference that now the natural basis is the one that diagonalizes the
boundary conditions, i.e. the ρ-basis.
The bosonic vacuum for a strand of length k, |0〉k, is annihilated by all the non negative bosonic modes
in the ρ-basis given in eq. (4.40). Analogously one generalizes eq. (4.22) for the NS sector. In the R
sector we have vacua |±±〉k and |00〉k, and

ψαȦρ,n|++〉r = 0, ψ̃α̇Ȧρ,n|++〉r = 0 ∀n > 0, A, α, α̇

ψ1Ȧ
ρ,0|++〉r = 0, ψ̃1̇Ȧ

ρ,0|++〉r = 0
(4.44)

and the other vacua are obtained acting on |++〉k with the generalization of the operators J−, J̃−

and O−− in the twisted sector.
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Other operators

We want now to discuss operators in the twisted sector. To fix the ideas, consider the case we have N
k

strands of length k. In the untwisted sector, an operator O is the sum of the operators O(r) defined
on each copy of length k = 1. We can defined it on a strand of length k splitting the summation on
the different copies and performing a change of basis (r)→ ρ as

O =

N
k∑
I=1

k∑
r=1

OI(r) =

N
k∑
I=1

k−1∑
ρ=0

OIρ (4.45)

where the index I = 1, ..., Nk runs on the different strands. Restricting our attention on a single strand
of winding k (i.e. neglecting the sum over I), the current operators become

J+ =
1

2

k∑
r=1

ψ1Ȧ
(r)εȦḂψ

1Ḃ
(r) =

1

2

(
ψ1Ȧ
ρ=0εȦḂψ

1Ḃ
ρ=0 +

k−1∑
ρ=1

ψ1Ȧ
ρ εȦḂψ

1Ḃ
k−ρ

)

J− = −1

2

k∑
r=1

ψ2Ȧ
(r)εȦḂψ

2Ḃ
(r) = −1

2

(
ψ2Ȧ
ρ=0εȦḂψ

2Ḃ
ρ=0 +

k−1∑
ρ=1

ψ2Ȧ
ρ εȦḂψ

2Ḃ
k−ρ

)

J3 = −1

2

k∑
r=1

(ψ1Ȧ
(r)εȦḂψ

2Ḃ
(r) − 1) = −1

2

k−1∑
ρ=0

(ψ1Ȧ
ρ εȦḂψ

2Ḃ
ρ − 1)

(4.46)

where we have used the inverse relations of eq. (4.42) (which are obtained just inverting the sign of
the phases) and the orthonormality condition

k∑
r=1

e2πi r
k

(ρ1+ρ2) = kδρ1+ρ2,0 (4.47)

Analogously, one can define the operator Oαα̇ on a strand of winding k: for instance, the (+,+) spin
component becomes:

O++ =
−i√

2

k−1∑
ρ=0

ψ+Ȧ
ρ ψ̃+Ḃ

ρ εȦḂ (4.48)

As in the case k = 1 (4.30) and (4.32) we can define different R vacua acting with the zero modes as

J−0ρ=0|++〉k = |−+〉k J̃−0ρ=0|++〉k = |+−〉k

J−0ρ=0J̃
−
0ρ=0|++〉k = |+−〉k O−−|++〉k =

−i√
2
ψ−Ȧ0ρ=0ψ̃

−Ḃ
0ρ=0εȦḂ|++〉k = |00〉k

(4.49)

4.3.4 The Twist operator

The untwisted and twisted sector of the CFT are not disconnected: there are operators, the twist
operators, that merge k untwisted vacua to give a single twisted one with length k. There are twist
operators for the bosonic vacua as well as for the fermionic vacua in the NS and in the R sectors. We
will focus on the latter, discussions about the formers can be found in [38].
We have seen that a configuration in the CFT can be labeled by the positive integers (mi, ki), where
mi is the number of strands of length ki, with the constrain

∑
imiki = N1N5. The untwisted sector

corresponds to take m = N1N5 and k = 1. If we forget about the degeneracy of the R ground states,
(mi, ki) characterizes completely the configuration because of the symmetrization on the copies (i.e.
the fact that all the copies are identical). Thus, there is a bijection between the configurations and
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the representations in terms of cycles of the permutation group SN1N5 . The untwisted sector can be
represented as the product of N1N5 1-cycles (the identity permutation):

(1)(2)...(r)...(s)...(N1N5) (4.50)

while a configuration in the twisted sector will be something like

(12...)...(r...s)...(...N1N5) (4.51)

Acting with a k-cycle (or a product of k-cycles) one can pass from one equivalence class of SN1N5 to
another, and this is exactly what a twist operator does.
Suppose we start from the untwisted configuration and we have a set of fields Xi

(a) defined on each

copy (where a = 1...N1N5 is the copy index); if we act with the n-cycle (1...n), the fields Xi
(a) are

mapped as

Xi
(1) → Xi

(2) → ...→ Xi
(n) → Xi

(1) (4.52)

while the other copies of Xi
(a) are left unchanged. These are precisely the boundary conditions we

have imposed when defining the twisted sector in eq.s (4.38) and (4.39).
The twist operator for the R sector will be denoted with Σs1ṡ2

k (z, z̄): the index k is the length of the
k-cycle, the indices s1 and ṡ2 transform in the representation of (k−1

2 , k−1
2 ) under SU(2)L × SU(2)R.

This operator has conformal dimension (k−1
2 , k−1

2 )6.

Because there are many vacuum states in the R-sector and Σs1ṡ2
k (z, z̄) carries spin (j, j̃) = (k−1

2 , k−1
2 ),

we have to be careful to the spin conservation: not all the actions of Σs1ṡ2
k (z, z̄) give a non vanishing

result on a certain configuration.
To fix the ideas, and because we will primarily use this special case, let’s set k = 2. The spin indices
transform in the fundamental representation of SU(2)L × SU(2)R and we have Σαα̇

2 , with α, α̇ = ±:
this operator carries spin (j, j̃) = (1

2 ,
1
2). The conjugacy relations are(

Σ11̇
2

)†
= Σ22̇

2

(
Σ12̇

2

)†
= −Σ21̇

2 (4.53)

Let’s consider the following example: we have N strands of length k = 1, in the vacuum state |++〉(r),
so that the total state is just the tensor product of the N vacua

|s〉 =
N⊗
r=1

|++〉(r) = |++〉(1) ⊗ ...⊗ |++〉(r) ⊗ ...⊗ |++〉(N)
(4.54)

and we act with the twist field Σ±±2 . Because of the symmetrization on the copies of the CFT, all
the states (or dually the operators) must be invariant under permutations of the copy subscript: thus,
the action of Σ±±2 generates the sum af all possible states obtained from (4.54) gluing any two singly
wound strands into a strand of length k = 2. So, we shall write

Σ±±2 =
N∑
r=1

∑
r<s

Σ±±(rs)
(4.55)

where the operators Σ±±(rs), acting on the state (4.54), can merge together the copies (r) and (s).

In order to understand for which value of (α, α̇) = (±,±) this process can be carried out, we must
apply the angular momentum conservation. Let’s focus on any two copies in (4.54), to fix the ideas

6We have cheated slightly here. This is the conformal dimension when we consider the twist operator as the product
of the bosonic and fermionic twist operators. The vacuum state is the product of the vacua of the fermionic and bosonic
sectors of the CFT: because the fields live on strands of length k, it would not make sense to have different lengths for
the bosons and the fermions. In this view, the twist operator has to merge both the bosonic and fermionic vacua to
produce a strand of length k. The sum of the conformal dimensions of the bosonic and fermionic twist operators gives
the above result. For more details on this, see [38]
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let’s take |s′〉 = |++〉(1) ⊗ |++〉(2). Because |++〉 is an eigenstate of (J3, J̃3) with eigenvalues (1
2 ,

1
2),

both J3 and J̃3 are diagonal on |s′〉, and its total left (right) spin is the sum of the left (right) spin of
the two k = 1 vacuum states

J3
(
|++〉(1) ⊗ |++〉(2)

)
= |++〉(1) ⊗ |++〉(2)

J̃3
(
|++〉(1) ⊗ |++〉(2)

)
= |++〉(1) ⊗ |++〉(2)

(4.56)

If we act with Σ±±(12) on |s′〉 the left (right) spin of the state produced will be the sum of the left

(right) spin of |s′〉 and Σ±±(12). We have seen in Section 4.3.3 that the k = 2 vacuum state cannot have

eigenvalues greater than 1
2 under (J3, J̃3). The only non zero possibility is to act with Σ−−(12), which

gives a state with spin (2× 1
2 −

1
2 , 2×

1
2 −

1
2) = (1

2 ,
1
2)

Σ−−(12)

(
|++〉(1) ⊗ |++〉(2)

)
= |++〉(12) (4.57)

From the permutations point of view, we can interpret the action of the operator Σ−−(rs) on the state

|s〉 as the action of the k-cycle (rs) on the untwisted configuration (4.50)

Σ−−(rs)|s〉 → (rs) (1)...(r)...(s)...(N) = (1)...(rs)...(N) (4.58)

The action of Σ−−2 will thus be the sum of all the possible permutations on the r.h.s. of (4.58): because
Σ−−2 can form a strand of winding k = 2 gluing any two strands out of the N , the result will be the
sum of

(
N
2

)
states

Σ−−2 |s〉 → (12)(3)...(N) + [permutations] (4.59)

This is just a pictorial representation that does not naturally takes into account whether the action
of the twist operator on a state is allowed or not (one has always to impose the spin conservation to
obtain a physically consisten result); however, it is useful to compute the combinatorial factors in the
CFT.
The operator Σ±±2 does not only glue strands, but it can also split a strand of winding k into (the
symmetrization of) two strands of winding k1 and k2 = k − k1. In the language of permutations, we
can have for instance

(rs) (12...)...(rs)...(...N) = (12...)...(r)(s)...(...N)

(rs) (12...)...(...rs...)(...N) = (12...)...(r)...(s...)(...N)
(4.60)

As in the previous example, when one considers the splitting process due to the action of the twist
operator, the spin conservation gives constrains on the allowed values of α, α̇.

4.3.5 Spectral Flow

The D1D5 superconformal algebra is generated by (the modes of) the local operators {Ja(z), GαA(z),
T (z)}: these are the currents associated to the R-symmetry, supersymmetry and conformal invariance
respectively. There are, however, different inequivalent ways to satisfy the superconformal algebra: in
particular one can make the following z-dependent, 1-parameter (ν) transformation on the operators
[11]:

T (z)→ Tν(z) = T (z)− 2ν

z
J3(z) +

cν2

6z2

J3(z)→ J3
ν (z) = J3(z)− cν

6z
J±(z)→ J±ν (z) = z∓2νJ±(z)

G±A(z)→ G±Aν (z) = z∓νG±A(z)

(4.61)
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which gives rise to the modes transformation

Lm → Lm − 2νJ3
m +

cν2

6
δm,0

J3
m → J3

m −
cν

6
δm,0

J±m → J±m∓2ν

G±Am → G±Am∓ν

(4.62)

This set of transformations is the so-called spectral flow.
From the transformation rule of the supercharges we see that, depending on the value of ν, spectral
flow provides an interpolation between the NS and R sector. If we start from the NS sector (where
the fermions, and thus the supercurrents, are half-integrally moded), for ν = 0 we are left in the NS
sector while for ν = ±1

2 spectral flow maps the theory in the R sector, where the supercurrents are
integrally moded. Spectral flow also acts on states: suppose we start from the NS sector and let’s set
ν = −1

2 . A state with (left) conformal dimensions hNS and spin jNS3 is mapped, under spectral flow,
into a state in the R sector with dimension and spin given by

hR = hNS + jNS3 +
c

24
jR3 = jNS3 +

c

12
(4.63)

Spectral flow acts independently on the left and right sector; for the antiholomorphic sector anologous
rules hold.

A representation of the spectral flow is naturally defined in the context of bosonized fermions: this is
a technique, called bosonization, that enables to realize the properties of the fermions in terms of a
set of bosons.
We will introduce this technique in the untwisted sector, and use it to provide a representation of the
spectral flow; the generalization to the twisted sector can be found in [38]. We introduce the bosons
H(r)(z), K(r)(z) in the holomorphic sector and H̃(r)(z̄), K̃(r)(z̄) in the anitholomorphic sector: they
are defined on strands of length 1 and obey to the OPE rules

H(r)(z)H(s)(ω) = K(r)(z)K(s)(ω) = −δr,s log(z − ω) + [reg.]

H̃(r)(z̄)H̃(s)(ω̄) = K̃(r)(z̄)K̃(s)(ω̄) = −δr,s log(z̄ − ω̄) + [reg.]
(4.64)

The fermions can be written in terms of the bosons as

ψ11̇
(r) = i : eiHr : ψ22̇

(r) = i : e−iHr : ψ12̇
(r) =: eiKr : ψ21̇

(r) =: e−iKr :

ψ̃1̇1̇
(r) = i : eiH̃r : ψ̃2̇2̇

(r) = i : e−iH̃r : ψ̃1̇2̇
(r) =: eiK̃r : ψ̃2̇1̇

(r) =: e−iK̃r :
(4.65)

It turns out that the operator eiαX(z) (where X(z) is a bosonic operator that satisfies the OPE

rules (4.64)) has conformal dimension (h, h̄) = (α
2

2 , 0) and spin (j3, j̃3) = (α2 , 0) (if X had been an
antiholomorphic boson the left and right dimension and spin would have been exchanged). Knowing
this, one can check that the definitions (4.65) satisfy (4.16) as a consequence of (4.64).

The operators H and K and their antiholomorphic partners can be used to define the operator that
maps the NS vacuum |0〉(r)NS to the R ground state |++〉(r):

|++〉N =
N⊗
r=1

|++〉(r) =
N⊗
r=1

[
lim
z,z̄→0

e
i
2

(H(r)(z)+K(r)(z)+H̃r(z̄)+K̃r(z̄))|0〉(r)NS
]

(4.66)

Because the left and right conformal dimension (spin) of the spectral flow operator (4.66) is the sum
of the left and right conformal dimension (spin) of each term in the tensor product, and since the NS
vacuum has zero dimension and spin, we conclude that the R ground state |++〉N has dimension and
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spin

h = h̄ =
N∑
r=1

1

2

(1

2

)2
2 =

c

24

j3 = j̄3 =
N∑
r=1

1

2

(1

2

)
2 =

c

12

(4.67)

Note that this result is consistent with (4.63). Because R ground states can be obtained acting on
|++〉N with fermion zero modes, they all have conformal dimension h = h̄ = c

24 .
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Chapter 5

Holographic dictionary for D1D5 states

In the previous Section we have introduced the AdS/CFT duality and we have discussed the D1D5
CFT: the CFT relevant for the D1D5 microstates. The duality implies that, given a state |s〉 in the
CFT, there is a corresponding asymptotically AdS spacetime; moreover, it can be shown that the
VeVs 〈s|Oi|s〉 of some operators Oi computed in the CFT state capture the coefficient of the dual
geometry expansion around AdS3 × S3. In this Section we will discuss this correspondence in detail:
this point of view was pioneered by [40] [41] for the 1

4 -BPS geometries and then extended in [42] for
the 1

8 -BPS geometries constructed in [43].

5.1 Chiral Primaries

We have introduce the D1D5 CFT at the free orbifold point, i.e. at a special point in the moduli
space where the theory is made up of free bosons and fermions. We have also seen that the AdS/CFT
duality relates the moduli spaces of the two sides of the correspondence in a non trivial way. It turns
out that the region of moduli space of the CFT dual to the low-energy supergravity regime in the bulk
is distant from the solvable free orbifold point, and would require to work in a strongly interacting
point in the CFT.
In general, if we compute quantities (such as VeVs) at the free orbifold point and move in the moduli
space of the CFT, these quantities will receive corrections: this makes it seem difficult to gain any
information about the gravitational physics from the CFT side of the duality. Once again, however,
supersymmetry simplifies the task: if we focus on quantities that are protected by supersymmetry (i.e.
which do not vary as we change the couplings of the theory) we can reliably compare the computation
at the free point of the CFT with the bulk physics in the supergravity regime.
With this aim, let’s introduce some representation theory of the NS sector of the D1D5 CFT1. We
choose a representation in which the generator L0 is diagonal; and we will call Virasoro primary a
state |ψ〉 such that

L0|ψ〉 = h|ψ〉 Ln|ψ〉 = 0 ∀n > 0 (5.1)

This is the highest weight state of the representation space, and it is the asymptotic state created by
applying a primary field operator ψ(0) of dimension h on the NS vacuum [39]. From eq. (4.35), we
have that the D1D5 superconformal algebra includes the anticommutators

{G−A
+ 1

2

, G+B
− 1

2

} = εAB(J3
0 − L0)

{G+A
+ 1

2

, G−B− 1
2

} = εAB(J3
0 + L0)

(5.2)

1Here we just restrict our attention to the left sector, as the right sector works analogously.
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Let’s consider a generic state state |ψ〉 with quantum numbers (h, j2,m) under (L0, (J
a
0 )2, J3

0 ); taking
the expectation value of the anticommutators (5.2) on |ψ〉 one gets∑

B

∣∣∣G+B
− 1

2

|ψ〉
∣∣∣2 +

∑
B

∣∣∣G−B1
2

|ψ〉
∣∣∣2 = 2(h−m)

∑
B

∣∣∣G−B− 1
2

|ψ〉
∣∣∣2 +

∑
B

∣∣∣G+B
1
2

|ψ〉
∣∣∣2 = 2(h+m)

(5.3)

Because in any unitary theory the left hand sides of (5.3) are the sum of two non negative quantities,
we obtain the following bound on any physical state of the theory

h ≥ |m| ⇒ h ≥ j (5.4)

Let’s now restrict our attention to a state |φ〉 that saturates the bound h = m. This state has the
following properties

G±An |φ〉 = Ln|φ〉 = 0 ∀n > 0

G+A
− 1

2

|φ〉 = 0
(5.5)

The first row can be derived noting that, if these operators did not annihilate the state, the inequality
(5.4) would be violated; the second row saturated the bound h = m. We call chiral primary state a
state that satisfies (5.5) and chiral primary operator the operator dual to a chiral primary state. We
call antichiral primary state (or, dually, operator) a state that satisfies h = −m. From the bound
h = m = j, we see that chiral primaries are highest weight state with respect to both the Virasoro
algebra and the SU(2)L algebra.
It turns out that the VeVs of chiral primary operators (and their descendants, obtained acting with
L−1 and J−0 on the chiral primary) computed on Ramond ground states are protected when one moves
in moduli space. To be more precise, the three point functions of chiral primaries (and descendants)
are protected by a non-renormalization theorem, which ensures that they do not receive corrections
as one changes the couplings of the theory. From the spectral flow eq. (4.63) one can check that
antichiral primary operators are in one to one correspondence with Ramond vacua. Therefore, the
VeVs of chiral primary operators computed on Ramond ground states are protected. Thus, we can
compute the VeVs of these operators on states that are dual to the 1

4 -BPS and 1
8 -BPS microstates and

reliably use the results to extract informations about the bulk physics in the supergravity regime.

5.2 Holographic map between geometries and CFT states

The aim of this Section is to describe the mapping between microstate geometries and CFT states.
We first discuss the geometric setting of the gravitational theory for 1

4 -BPS microstates in order to
introduce the notations that will be followed throughout this Chapter. We then identify the CFT
dual states. We also briefly outline the recipe to construct (some) 1

8 -BPS microstates starting from
2-charge geometries and identify their CFT duals. We will just report the results that will be used in
the following discussion, with reference to [43] and [44].

5.2.1 1
4
-BPS Sector

The geometric side

The general BPS solution of type IIB supergravity on a spacetime with topology R1,4 × S1 × T 4,
assuming invariance under T 4 rotations, that preserves the same supercharges as the D1-D5-P system
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is described, in the string frame, by the 10-dimensional metric

ds2
(10) = −2

√
α√
P

(dv + β)
[
du+ ω +

F

2
(dv + β)

]
+
√
P
√
αds2

4 +

√
Z1

Z2
dŝ2

4

e2Φ =
Z2

1

P
α ≡ Z1Z2

Z1Z2 − Z2
4

P ≡ Z1Z2 − Z2
4

(5.6)

where ds2
4 corresponds to a (generically non trivial) Euclidean metric in the 4 spatial non compact

directions that reduces asymptotically to flat R4; dŝ2
4 denotes the flat metric on T 4 and Φ is the

dilaton. We have introduced light-cone coordinates

u =
t− y√

2
v =

t+ y√
2

(5.7)

where t is the time coordinate and y is the coordinate on S1. The metric ds2
(10) depends on the

following objects: four scalar functions Z1, Z2, Z4 and F; two 1-forms on R4 β and ω. The naive
3-charge geometry (2.69) has the form of (5.6) with

Z1 = 1 +
Q1

r2
Z2 = 1 +

Q5

r2
F = −2QP

r2

Z4 = 0 β = ω = 0 ds2
4 = dxidxi

(5.8)

where the relations between the macroscopic charges Q1, Q5 and QP and the integer charges are given
by (2.82). Note that in the 2 charge geometry QP = 0 and, thus, F = 0.

It is useful to think of the 3-charge solution as obtained by adding momentum to some 2-charge solu-
tions, so let’s start discussing the latter. In Section 3.3 we have constructed microstates corresponding
to a D1D5 bound state: we started with a duality frame where the system is described in terms of
a fundamental string carrying momentum; we have parametrized the profile of the string by a curve
F I(v) in the 4 non compact directions I = 1, ..., 4 and then we applied a chain of dualities on the
known solution in the F1-P frame to rewrite the solution for the D1D5 configuration (i.e. in a duality
frame where the profiles do not have a direct geometric meaning).
These are not the more general 2 charge microstates. From a geometrical point of view, to discuss
the most general case, we should have started giving 8 functions gA(v) transverse to the fundamental
string in order to describe its profile; these functions can be split into four R4 components (A = 1, ..., 4)
and four T 4 components (A = 5, ..., 8). When the latter are non-vanishing, invariance under rotation
in the T 4 directions is broken. However, when one applies the chain of dualities (2.67), one of the T 4

direction (which we take to be x5) plays a special role: it turns out that, in the D1-D5 frame, geome-
tries that have non trivial values of the profiles gA(v) (for A = 1, ..., 5) preserve rotational symmetry
in the T 4 directions. Thus, these solutions fall into the class of eq. (5.6). Generalizing eq. (3.20),
we will now give the expressions of the functions and 1-forms in (5.6) in terms of the profiles gA(v).
Defining

h1(v) ≡ g1(v) + ig2(v) h2(v) ≡ g3(v) + ig4(v) (5.9)

we have

Z1 = 1 +
Q5

L

∫ L

0
dv
|ḣ1|2 + |ḣ2|2 + |ġ5|2

|xi − gi|2
Z2 = 1 +

Q5

L

∫ L

0
dv

1

|xi − gi|2

Z4 = −Q5

L

∫ L

0
dv

ġ5

|xi − gi|2
A = −Q5

L

∫ L

0
dv

ġjdx
j

|xi − gi|2
dB = − ?4 dA

β ≡ −A+B√
2

ω ≡ −A−B√
2

F = 0 ds2
4 = dxidxi

(5.10)

where the dot on the profiles denote a derivative with respect to v, ?4 is the hodge dual with respect
to the flat metric ds2

4 and the denominator |xi − gi|2 is a short hand for

|xi − gi|2 ≡
4∑
i=1

(xi − gi)2 = |(x1 + ix2)− h1|2 + |(x3 + ix4)− h2|2 (5.11)
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The length of the curve L and the D1 charge are given by

L =
2πQ5

R
Q1 =

Q5

L

∫ L

0
dv(|ḣ1|2 + |ḣ2|2 + |ġ5|2) (5.12)

The CFT side

In the previous Chapter we have seen that the relevant Sector of the CFT for the 1
4 -BPS microstates is

the Ramond Sector. We will denote the RR ground states of a strand of length k with |s〉k ≡ |j3j̄3〉k,
where j3, j̄3 = 0,±, so that (j3j̄3) denote the left and right spin carried by the state. A generic ground

state configuration can be labeled by the integers {N (s)
k }, where N

(s)
k is the number of strands |s〉k,

with the constraint ∑
s,k

kN
(s)
k = N1N5 ≡ N (5.13)

and we will denote it as

ψ{N(s)
k }

=
∏
k,s

(|s〉k)
N

(s)
k

(5.14)

We now identify the state/geometry dictionary for the 1
4 -BPS microstates (5.10). The basic idea is

that the Fourier expansion of the profiles entering in the geometry encodes the informations about the
dual CFT state: in particular, the 5 components of profiles gA(v) determine the quantum numbers
(j3j̄3) of the strands under the SU(2)L × SU(2)R R-symmetry generators; the Fourier mode numbers
correspond to the winding of the strands and the Fourier coefficients are related to the number of
strands of each type.
To be more precise, let’s consider the Fourier expansion of the profiles:

g1 + ig2 =
∑
k>0

(a++
k

k
e

2πik
L

v +
a−−k
k
e−

2πik
L

v
)

g3 + ig4 =
∑
k>0

(a+−
k

k
e

2πik
L

v +
a−+
k

k
e−

2πik
L

v
)

g5 = −Im
(∑
k>0

a00
k

k
e

2πik
L

v
)

(5.15)

The presence of a non vanishing coefficient a
(s)
k signals the presence of strands |s〉k in the CFT dual

state. Note that eq. (5.12) imposes the following constraint on the Fourier coefficients

∑
k

[
|a++
k |

2 + |a+−
k |

2 + |a−+
k |

2 + |a−−k |
2 +

1

2
|a++
k |

2
]

=
Q1Q5

R2 (5.16)

We introduce new dimensionless coefficients A
(s)
k that are related to a

(s)
k through

A±±k ≡ R

√
N

Q1Q5
a±±k A00

k ≡ R

√
N

2Q1Q5
a00
k (5.17)

in terms of which eq. (5.16) becomes ∑
k,s

|A(s)
k |

2 = N (5.18)
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The profiles gA(v) determine a geometry and a set of coefficients {A(s)
k } and the CFT state dual to

this geometry is given in terms of {A(s)
k } by

ψ({Ask}) =

′∑
{N(s)

k }

(∏
k,s

A
(s)
k

)N(s)
k
ψ{N(s)

k }
=

′∑
{N(s)

k }

∏
k,s

(
A

(s)
k |s〉k

)N(s)
k

(5.19)

where the superscript over
∑′

{N(s)
k }

denotes that the sum is constrained by eq. (5.13). Note that the

dual CFT states are coherent states: microstate geometries do not correspond to a state like (5.14),
where the degeneracies of the strands are fixed.
In the supergravity description of black holes we take the thermodynamic limit N → ∞; the super-

gravity side is well described only by states in which the average number of each type of strand (N̄
(s)
k )

is large: N̄
(s)
k >> 1 (in the thermodynamic limit, variations of order one in N̄

(s)
k are invisible on

the gravity side). Eq. (5.19) shows that the state ψ({Ask}) receives contribution from all the possible

configurations {N (s)
k } compatible with eq. (5.13); however, in the above limit, the sum is peaked over

the average number N̄
(s)
k .

Let’s now describe how the magnitude of A
(s)
k determines the average degeneracy of the correspond-

ing strand. With this aim, we have to introduce the norm of the state ψ({Ask}) and show that its

(constrained) maximum is determined by A
(s)
k . By convention we define the norm of the state ψ{N(s)

k }

in terms of the number of ways, N({N (s)
k }), the configuration {N (s)

k } can be reached starting from
|++〉N :

〈ψ{N(s)
k }
|ψ{N(s)

k }
〉 = δ{N(s)

k },{N
(s)
k }

N({N (s)
k }) (5.20)

In order to compute the factor N({N (s)
k }) we have to generalize the discussion on the combinatorics

that arises when one considers the action of the twist operator Σk on a state. We start from |++〉N ,
i.e. from the untwisted Sector of the CFT; to produce a single strand with winding k, the twist
operator can choose k singly wound strands among N , giving rise to the combinatorial factor

(
N
k

)
.

However, this does not uniquely determines a k-cycle: we can still permute k − 1 copies out of the
k forming the multy wound strand and obtain a different k-cycle. So we obtain the combinatorics(
N
k

)
(k − 1)!. The configuration {N (s)

k } can be reached acting repeatedly with the twist operator;
iterating the combinatorial computation one gets that the total number of terms produced is

N !

(N − k1)!k1

(N − k1)!

(N − k1 − k2)!k2
... =

N !∏
k,s k

N
(s)
k

(5.21)

Because all the copies are identical, for strand with degeneracy N
(s)
k > 1, the order by which the twist

operator acts is immaterial: thus, one should divide by N
(s)
k !. The final result is

N({N (s)
k }) =

N !∏
k,sN

(s)
k !kN

(s)
k

(5.22)

The norm of the CFT states dual the 1
4 -BPS geometries, then, is

|ψ({Ask})|2 =

′∑
{N(s)

k }

N({N (s)
k })

∏
k,s

|A(s)
k |

2N
(s)
k ≡

′∑
{N(s)

k }

eS({N(s)
k }) (5.23)

We now consider the maxima N̄
(s)
k of |ψ({Ask})|2. Because we are dealing with the large charge limit,

we can expand S({N (s)
k }) using Stirling approximation logN

(s)
k ! ∼ (N

(s)
k + 1

2) logN
(s)
k − N (s)

k . The
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result is

S({N (s)
k }) =

∑
k,s

N
(s)
k log |A(s)

k |
2 −N (s)

k logN
(s)
k +N

(s)
k −N

(s)
k log k (5.24)

Using the method of Lagrange multipliers, we can evaluate the stationary points of S({N (s)
k }), with

the constrain (5.13). We obtain that the sum in (5.19) is peaked over the average degeneracy

N̄
(s)
k =

|A(s)
k |

2

k
(5.25)

5.2.2 1
8
-BPS Sector

The geometric side

In the 1
8 -BPS Sector, a complete construction on the gravity side of the microstates has not been

achieved yet. However, there are solution generating techniques that enable to construct some classes
of 3-charge geometries starting from particular 2-charge solutions (the so-called “seed solutions”).
Roughly speaking, this procedure adds momentum to the D1D5 geometry. We will now briefly review
these techniques, with no aim of being exhaustive, trying to highlight the underlying idea that will
help us to identify the CFT states that are dual to these 3-charge geometries.

Consider the circular profile in the (x1, x2) plane:

g1(v) + ig2(v) = ae
2πiv
L g3(v) = g4(v) = g5(v) = 0 (5.26)

Parametrizing the non compact space with coordinates

x1 + ix2 =
√
r2 + a2 sin θeiφ x3 + ix4 = r cos θeiψ (5.27)

and using eq. (5.10), one obtains the following 2-charge geometry

ds2
4 = Σ

( dr2

r2 + a2
+ dθ2

)
+ (r2 + a2) sin2 θdψ2 + r2 cos2 θdψ2

Z1 = 1 +
Q1

Σ
Z2 = 1 +

Q5

Σ
Z4 = F = 0 Σ ≡ r2 + a2 cos2 θ

β =
Ra2

√
2Σ

(sin2 θdφ− cos2 θdψ) ω =
Ra2

√
2Σ

(sin2 θdφ+ cos2 θdψ)

(5.28)

Eq. (5.16) links the parameter a with the radius R of S1 and the charges by a =
√
Q1Q5

R . Let’s now take
the decoupling limit so that we can use the tools that the AdS/CFT duality provides: the geometry
reduces to pure AdS3×S3×T 4, and this can be made explicit performing the coordinate redefinition

φ→ φ+
t

R
ψ → ψ +

y

R
(5.29)

We can interpret this result from the CFT point of view: from the discussion in Section 5.2.1, we con-
clude that the profile (5.26) generates a CFT state that is proportional to |++〉N . On the other hand,
pure AdS3 is just the NS-NS vacuum. The change of coordinates (5.29), thus, maps |++〉N → |0〉NNS :
using (4.66) we conclude that this is the geometrical representation of the spectral flow transformation
that maps the R-R sector to the NS-NS sector. The advantage of working in the NS sector is that
pure AdS3×S3 enjoys an SL(2,R)L×SL(2,R)R×SU(2)L×SU(2)R isometry group and one can use
the corresponding generators to produce 3-charge solutions.
With this aim, let’s consider a perturbation of the system, obtained adding a non vanishing g5(v)
profile to (5.26); this will be our seed solution

g1(v) + ig2(v) = ae
2πiv
L g5(v) = − b

k
sin(

2πkv

L
) g3(v) = g4(v) = 0 (5.30)
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The corrensponding geometry can be found in [43] (eq. (3.11)). If one takes the decoupling limit and
performs the change of coordinate (5.29), one obtains a 2-charge geometry that is a fluctuation around
the AdS3 × S3 × T 4 background geometry. Because the background is rotationally invariant, acting
with the SU(2)L generators2 one produces a new fluctuation: the resulting geometry, written in the
original R-R coordinates, has a non-vanishing momentum charge.
The CFT state generated by (5.26) represents a R-R ground state (composed of strands of type |++〉1
and |00〉k) so, when one performs the change of coordinates (5.29), it is mapped to an antichiral
primary in the NS sector. Because an antichiral primary is annihilated by the lowering operator J−0 ,
new states can be generated only acting with J+

0 . In particular we can act mk times with J+
0 , with

mk ≤ k: the reason is that the action of (J+
0 )k generates a chiral primary, which is annihilated by

any further action of J+
0 . From eq. (4.62) we see that the operator J+

0 in the NS sector is mapped to
J+
−1 via spectral flow; thus, we conclude the state dual to the freshly produced 3-charge geometry is

composed of strands |++〉1 and
(
J+
−1

)mk |00〉k.
As it will be used in the following, here we just quote from [43] the structure of the function Z4

entering in the 3-charge geometry

Z
(k,mk)
4 = Rb

∆k,mk

Σ
cos
(
mk

√
2v

R
+ (k −mk)φ−mkψ

)
∆k,mk ≡

( a√
r2 + a2

)k
sink−mk θ cosmk θ

(5.31)

These 1
8 -BPS states are, by construction, descendants of 1

4 -BPS states. Exploiting the linearity of the
BPS equations (the supergravity equations of motion when the BPS condition has been imposed), one
can construct 3-charge geometries that are not descendants of a 2-charge microstate taking arbitrary

linear combinations of the functions Z
(k,mk)
4 . Doing so, the function Z4 reads

Z4 = R
∞∑
k=1

k∑
mk=0

bk,mk
∆k,mk

Σ
cos
(
m

√
2v

R
+ (k −mk)φ−mkψ + ηk,mk

)
(5.32)

The CFT side

Let’s now discuss the CFT states dual to the 1
8 -BPS geometries. A generic configuration of the theory

can be labeled by the integers {N (s)
k,mk
} ≡ {N (±±)

k , N
(00)
k,mk
}, where N

(s)
k,mk

denotes the number of strands
|s〉k, and we allow the ground state |00〉k to carry (left-moving) momentum number mk ≤ k. Again,

{N (s)
k,mk
} must satisfy the constrain

4∑
s=1

∑
k

kN
(s)
k +

∑
k,mk

kN
(00)
k,mk

= N (5.33)

Generalizing (5.14), we will denote the state in the configuration {N (s)
k,mk
} as:

ψ{N(s)
k,mk

} =

4∏
s=1

∏
k

(|s〉k)
N

(s)
k

∏
k,mk

((J+
−1)mk

mk!
|00〉k

)N(00)
k,mk (5.34)

where s = 1, ..., 4 denotes the ground state with spin (±,±).

The norm of the state is a generalization of (5.20): in this case, however, N({N (s)
k,mk
}) takes into

account not only the combinatoric factor (5.22) that arises from the action of the twist operators, but

2In order to preserve supersymmetry, one can act either with the right SL(2,R)R×SU(2)R or with the left SL(2,R)L×
SU(2)L generators, not both at the same time. Here, we just restrict our attention to the (left) R-symmetry generators.
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also an extra factor due to the presence of the operators (J+
−1)mk . Using the commutation relation for

k twisted CFT copies

[Jam, J
b
n] = iεabcJcm+n +

k

2
mδm,−nδ

ab (5.35)

which can be derived form (4.29), one can compute the norm of the state (J+
−1)mk |00〉k. Consider the

state

J−1 (J+
−1)mk |00〉k =

(
− 2J3

0 + k + J+
−1J

−
1

)
(J+
−1)mk−1|00〉k = ... =

=
(
− 2

mk−1∑
j=0

j +mk
)

(J+
−1)mk−1|00〉k = m(k − (k − 1))(J+

−1)mk−1|00〉k
(5.36)

where we have used the fact that (J+
−1)j |00〉k has eigenvalue j under J3

0 . Iterating (5.36), one finds
the following norm

k〈00|(J−1 )mk(J+
−1)mk |00〉k = mk!(k − (mk − 1))(k − (mk − 2))...k =

= (mk!)
2

(
k

mk

)
(5.37)

Taking into account the normalization factor 1
mk! in (5.34), one gets

N({N (s)
k,mk
}) =

( 4∏
s=1

∏
k

N !

N s
k !kN

s
k

)( ∏
k,mk

1

N00
k,mk

!k
N00
k,mk

) ∏
k,mk

(
k

mk

)N00
k,mk

(5.38)

For 3-charge systems the coefficient bk,mk in (5.31) plays the same role as a00
k for the 2-charge mi-

crostates (indeed, if the momentum charge is switched off, bk,0 = a00
k ). The dual CFT states are

ψ({A(s)
k , Bk,mk}) =

′∑
{N(s)

k,mk
}

4∏
s=1

∏
k

(
A

(s)
k |s〉k

)N(s)
k
∏
k,mk

(
Bk,mk

(J+
−1)mk

mk!
|00〉k

)N(00)
k,mk

(5.39)

where the dimensionless coefficients A
(s)
k (with s = (±±)) are related to the Fourier coefficients a

(s)
k

as in (5.17) and Bk,mk is defined as

Bk,mk ≡ R

√
N

2Q1Q5

(
k

mk

)−1

bk,mke
iηk,mk (5.40)

The norm of ψ({A(s)
k , Bk,mk})

|ψ({A(s)
k , Bk,mk})|

2 =

′∑
{N(s)

k,mk
}

N({N (s)
k,mk
})

4∏
s=1

∏
k

|A(s)
k |

2N
(s)
k

∏
k,mk

|Bk,mk |
2N

(00)
k,mk (5.41)

is peaked over the average degeneracy N̄
(s)
k and N̄

(00)
k,mk

of the strands (±,±) and (0, 0) respectively.
The computation is analogous to the one for the 2-charge system, and the result reads:

kN̄
(s)
k = |A(s)

k |
2 kN̄

(00)
k,mk

=

(
k

mk

)
|Bk,mk |

2 (5.42)
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5.3 Holography for operators of dimension 1

In the previous Section we have discussed the dictionary between geometries and dual CFT states.
It has been shown in [40] [41] [42] that the geometries of 1

4 - BPS and 1
8 - BPS microstates encode

informations about the VeVs of chiral primary operators in the dual state: one can extract these
3-point functions from the fluctuations around AdS3×S3 of the 6D metric in the Einstein frame. One
can take advantage of the fact that 3-point functions of chiral primaries are protected as one moves
in the moduli space, to argue that the VeVs extracted from the geometry match those computed at
the free orbifold point.
The 6D metric in the Einstein frame for D1-D5-P microstates can be obtained from eq. (5.6) by
dimensional reduction; it reads

ds2
(6) = − 2√

P
(dv + β)

[
du+ ω +

F

2
(dv + β)

]
+
√
Pds2

4 (5.43)

The expansion around AdS3 × S3 has the form:

Z1 =
Q1

r2

(
1 +

∑
k

k
2∑

mk,m̃k=− k
2

f1
k(mk,m̃k)

rk
Y mk,m̃k
k

)

Z2 =
Q5

r2

(
1 +

∑
k

k
2∑

mk,m̃k=− k
2

f5
k(mk,m̃k)

rk
Y mk,m̃k
k

)

Z4 =

√
Q1Q5

r2

(∑
k

k
2∑

mk,m̃k=− k
2

Ak(mk,m̃k)

rk
Y mk,m̃k
k

)
F = −2QP

r2
+O(r−3) ds2

4 = dxidxi +O(r−4)

A = −Q5

r2

( 4∑
j=1

(A1j)iY
j

1

r
+O(r−2)

)
dxi

(5.44)

where xi are the non compact space directions (i, j = 1, ..., 4). We then define

aα± =

√
Q5√
Q1

∑
i>j

e±αij(A1j)i (5.45)

where α = 1, 2, 3 is an adjoint index of SU(2). The relevant properties the of spherical harmonics for
the following discussion and the definition of the coefficients e±αij are reviewed in Appendix B.
It is always possible to choose coordinates such that

f1
1(m1,m̃1) + f5

1(m1,m̃1) = 0 (5.46)

and, from now on, we will work in this gauge.
The VeVs of operators of dimension 1 are encoded in the first non-trivial corrections around the
asymptotic background, i.e. in the functions f1

1(m1,m̃1),A1(m1,m̃1), a
α± (note that f5

1(m1,m̃1) is not

an independent degree of freedom, because of the gauge choice (5.46)). We will see that higher
order corrections control the VeVs of higher dimension operators. In Section 4.3 we have introduced
chiral primary operators of dimension 1: they are the SU(2)L × SU(2)R currents Jα and J̃α (with
(h, h̄) = (j, j̄) equal to (1, 0) and (0, 1) respectively); the twist field Σαα̇

2 and the operator Oαα̇ (both
with (h, h̄) = (j, j̄) = (1

2 ,
1
2)).
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The relation between the VeVs of these operators on a state |s〉 and the dual geometry expansion is

〈s|O++|s〉 =−
√

2CO1A1(−−) 〈s|O+−|s〉 = −
√

2CO1A1(−+)

〈s|O−+|s〉 =
√

2CO1A1(+−) 〈s|O−−|s〉 =
√

2CO1A1(++)

〈s|Σ++
2 |s〉 =−

√
2CΣ2f

1
1(−−) 〈s|Σ+−

2 |s〉 = −
√

2CΣ2f
1
1(−+)

〈s|Σ−+
2 |s〉 =

√
2CΣ2f

1
1(+−) 〈s|Σ−−2 |s〉 =

√
2CΣ2f

1
1(++)

〈s|Jα|s〉 =CJa
α+ 〈s|J̃α|s〉 = CJ̃a

α−

(5.47)

Note that the coefficient coupled to the spherical harmonic Y m1,m̃1
1 controls the component (−m1,−m̃1)

of the corresponding operators. The coefficients entering in the dictionary are given by:

CO1 =

√
2NR√
Q1Q5

CΣ2 =
N

3
2R√

Q1Q5
CJ = −CJ̃ =

NR√
Q1Q5

(5.48)

They depend only on the moduli of the theory, but not on the particular state |s〉 taken in consideration.
It is difficult to determine the values of these coefficients a priori, what one usually does is to compute
the VeVs at the orbifold point, take advantage of the fact that it is protected, and compare it with
the coefficients of the asymptotic expansion of the dual geometry.
Before discussing the generalization of the above dictionary to operators of dimension 2, let’s clarify
the meaning of the correspondence with an example.

5.3.1 Example on a 2-charge microstate

Let’s consider a 2-charge state composed of N
(++)
1 ≡ p strands |++〉k=1 and N00

1 = N − p strands
|00〉k=1 (where we have used the constrain (5.13)). We have seen in Section 5.2.1 that a microstate

geometry is determined by a set of coefficients {A(s)
k } (related to the profiles gA(v)), which, in general,

identify a multiplicity of configurations {N (s)
k } compatible with the constrain (5.13) (the only exception

being when only a single A
(s)
k does not vanish). The dual geometry is a coherent state obtained

superposing all the possible ψ({N (s)
k }). Renaming A

(++)
1 ≡ A and A

(00)
1 ≡ B, we consider the coherent

state

ψ(A,B) =

N∑
p=1

(A|++〉1)p(B|00〉1)N−p (5.49)

Eq. (5.18) fixes

|A|2 + |B|2 = N (5.50)

and from the general result (5.25) we conclude that the average degeneracy of the strands is given by

N̄
(++)
1 = p̄ = |A|2 N̄

(00)
1 = N − p̄ = |B|2 (5.51)

which is consistent with (5.50).
Among the dimension 1 operators, Σαα̇

2 is the only one that has a vanishing VeV on the state (5.49)
because it is composed only by singly wound strands.
The operator O−− transforms a strand |++〉 into |00〉 (and O++ viceversa), thus it acts non trivially
on this state; the VeVs of O+− and O−+, instead, have a vanishing VeV for angular momentum
conservation. Let’s consider the VeV of O++: its action on the state ψ(A,B) gives the relevant
contribution

O++((|++〉1)p(|00〉1)N−p) = (p+ 1)((|++〉1)p+1(|00〉1)N−p−1) (5.52)

The factor p + 1 on the r.h.s. is a combinatorial factor that arises when one considers the different
possible actions of the operator on the state and requires that the states on the l.h.s. and on the r.h.s.
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are composed of the same number of terms. In this case, O++ can act on any of the N − p copies of
|00〉1; p+ 1 is the factor that satisfies the equality

(N − p)N(p) = (p+ 1)N(p+ 1) (5.53)

Thus, the VeV of O++ on the state ψ(A,B) is

〈O++〉 =|ψ(A,B)|−2〈s|O++|s〉

=|ψ(A,B)|−2
N∑
p=1

ĀpB̄N−pAp−1BN−p−1p =
B

A
p̄ = ĀB

(5.54)

where in the last line we have used eq. (5.51). The VeV of O−− can be computed analogously, or

simply noticing that
(
O−−

)†
= O++ and thus

〈O−−〉 = 〈O++〉∗ = AB̄ (5.55)

Let’s consider the R-currents: for angular momentum conservation the only operators that have a non
vanishing VeV on ψ(A,B) are J3 and J̃3. These operators are diagonal on the state: each strand
|++〉1 contributes to the total left and right spin by (1

2 ,
1
2) while |00〉1 by (0, 0). Thus, the VeVs are

only sensitive to the average number of strands N̄
(++)
1 :

〈J3〉 = 〈J̃3〉 =
1

2
p̄ =
|A|2

2
(5.56)

Let’s now consider the gravitational side. From the dictionary between geometries and CFT state, we
conclude that the dual geometry is generated by the profile in (5.26), with k = 1; the relation between
the coefficients a and A and between b and B are given by eq. (5.17) and read

A = R

√
N

Q1Q5
a B = R

√
N

2Q1Q5
b (5.57)

We are interested in the function Z4 and in the 1-form A as they encode the VeVs of Oαα̇ and Ja,
J̃ ȧ respectively. Using eq. (5.10), and expanding the geometry up to the first non trivial correction
around AdS3 × S3 we get

Z4 =
Rab sin θ cos θ√

r2 + a2(r2 + a2cos2θ)
∼
√
Q1Q5

r3

Rab

2
√

2
√
Q1Q5

(Y ++
1 − Y −−1 )

A1 ∼ −
Q5

r2

(Ra2Y 2
1

2Q5r

)
A2 ∼

Q5

r2

(Ra2Y 1
1

2Q5r

) (5.58)

the coefficients a and b are taken to be real. Using the formalism in (5.44) and (5.45) we recognize:

A1(++) = −A1(−−) =
Rab

2
√

2
√
Q1Q5

a3± = ± R2

√
Q1Q5

a2

2
(5.59)

Using the dictionary in (5.47) and the coefficients CO1 , CJ and CJ̃ in (5.48) one verifies that the
VeVs (5.54), (5.55) and (5.56) computed in the CFT agree with the holographically derived val-
ues (5.59).
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Chapter 6

Holography for operators of dimension
2

The aim of this Section is to discuss the generalization of the holographic dictionary VeVs/geometry
for operators of higher dimension: in particular we will focus on operators of dimension 2, whose VeVs
are controlled by the coefficients of the geometry expansion up to the second non trivial correction.
Following [40], we will consider an ansatz that generalizes the dictionary (5.47) and, as it has been
suggested in [45], we will assume a mixing between single- and multi-trace operators. We will compute
their VeVs on particular states at the free orbifold point and compare them with the dual geometry
expansion: this will allow to fix constrains on the analogous to the linear coefficients in (5.48).

6.1 Single-trace and Multi-trace operators

There are two types of dimension two operators: single-trace and multi-trace operators. All the
operators we have encountered so far are single-trace operators: their action on the D1D5 CFT can
be written just as the sum of the corresponding operator defined on each copy. A multi-trace operator
is the off-diagonal product of single-trace operators.
Let’s clarify this point with an example: consider an operator O(r) defined on the (r)-th copy of the
CFT; the total operator is given by O =

∑
r O(r), this is a single-trace operator. We can also consider

the product of two O(r), in this case we have

single-trace:

N∑
r,s=1

δrs : O(r)O(s) :=

N∑
r=1

: O(r)O(r) :≡
N∑
r=1

Õ(r)

multi-trace:
∑
r 6=s

: O(r)O(s) :

(6.1)

where we have defined Õ(r) ≡: O(r)O(r) :. Note, that when one considers the VeV

〈s|
N∑

r,s=1

O(r)O(s)|s〉 (6.2)

it receives contribution form both the single- and the multi-trace: however, the contribution of the
former scales with N while the contribution of the latter with N2.
For the following discussion we are interested only in dimension two operators whose VeV on a R-
R state is protected as we move in the moduli space, so that we can compute it explicitly at the
free orbifold point and argue that it matches the computation in a region of the moduli dual to the
supergravity regime. Therefore, for what concerns the single-trace, we are interested only in chiral
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primary operator and descendants (in particular, those obtained acting with the generators J±0 or
J̃±0 ). Multi-trace operators, instead, are protected if the “single trace” constituents are both chiral
or anti-chiral primary operators; if not their anomalous dimension scales as 1

N and thus vanish in the
large charge limit N →∞ (and we are working in this regime).

6.2 The operator O2

The first operator of dimension two we are going to consider is Oαα̇ββ̇2 ≡: Oαα̇Σββ̇
2 :, it has dimension

(h, h̄) = (1, 1). This is the product of two fundamental representations of SU(2)L and two of SU(2)R,
so both split into two irreducible representations: a symmetric triplet and an antisymmetric singlet.
As explained above, we are interested in chiral primary operators and descendants, i.e. in the triplet
representation which is characterized by (h, h̄) = (j, j̄). We will denote them with Oaȧ2 , where
a = −1, 0, 1 and ȧ = −1, 0, 1 are indices in the triplets of SU(2)L and SU(2)R respectively.
The highest weight state is

O11
2 = O++Σ++

2 (6.3)

and its descendants can be obtained acting upon it with the lowering operators J−0 and J̃−0 .
In the following we will consider CFT states in which both Oαα̇ and Σαα̇

2 have a vanishing VeV, this
will allow to consider only the single-trace operator∑

r<s

(
O(r)Σ(rs)

)aȧ
(6.4)

neglecting the mixing with the double-trace. Following the formalism introduced in Section 5.3, we
consider the ansatz:

〈s|Oaȧ2 |s〉 = CO2A2(−a,−ȧ) (6.5)

6.2.1 Switching on the O2’s VeVs

In order to fix the coefficient CO2 we will consider 1
4 -BPS and 1

8 -BPS microstates whose dual geometry
is given by (5.31). In particular, we will focus our attention on states characterized by k = 2 and
m = 0, 1, 2:

Z
(m)
4 = Rb

∆m

Σ
cos
(
m

√
2v

R
+ (2−m)φ−mψ

)
∆m ≡

a2

r2 + a2
sin2−m θ cosm θ

(6.6)

where the coefficients a and b are taken to be real. Note that, since the coefficient of the Z4 expansion
at order r−3 vanishes, we can conclude, using eq. (5.47), that this geometry describes a state where
the VeV of the operator Oαα̇ is zero.

The case k = 2, m = 0

The CFT state contains two types of strands: there are N
(00)
2 ≡ p strands |00〉2 and, using the

constrain (5.13), N
(++)
1 ≡ N − 2p strands |++〉1. Renaming the only non vanishing coefficients

entering in the coherent state as A
(++)
1 ≡ A and A

(00)
2 ≡ B, we get

ψ(A,B) =

N
2∑

p=1

(A|++〉1)N−2p(B|00〉2)p (6.7)
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The average degeneracy of the two types of strand follows from (5.25)

p̄ =
|B|2

2
N − 2p̄ = |A|2 (6.8)

which is consistent with the constraint given by (5.18). By conservation of angular momentum, we
conclude that the only componets of Oaȧ2 that have a non-vanishing VeVs on the state ψ(A,B) are

O−1,−1
2 and, obviously, its conjugate O11

2 =
(
O−1,−1

2

)†
. Let’s consider the former: its action on the

state can be split into the following two relevant processes:

� The operator Σ−−2 joins two singly wound strands |++〉1 into the strand of winding 2 |++〉2.
This process gives

Σ−−2 ((|++〉1)N−2p(|00〉2)p) = ((|++〉1)N−2(p+1)(|00〉2)p|++〉2) (6.9)

The operator Σ−−2 can choose any two among the N − 2p strands |++〉1 contributing to the
l.h.s. number of terms with a factor

(
N−2p

2

)
: no further combinatorial factor is required for the

l.h.s and r.h.s. number of terms to match.

� Next, the operator O−− converts the freshly produced strand |++〉2 into a |00〉2 strand, this
contribution is represented by:

O−−((|++〉1)N−2(p+1)(|00〉2)p|++〉2) = (p+ 1)((|++〉1)N−2(p+1)(|00〉2)p+1) (6.10)

The operator O−− can act only on the freshly produced |++〉2 strand so it carries no combinato-
rial factor: imposing the matching of the total number of terms on the two sides of the equation
the factor p+ 1 arises.

Proceding as in eq. (5.54), one finds the VeV of O−1,−1
2 is

〈O−1,−1
2 〉 =

|A|2

B
p̄ =
|A|2B̄

2
=

R3N
3
2

2
√

2(Q1Q5)
3
2

a2b (6.11)

where we have used (6.8) and the relations (5.17) between the dimensionless coefficients A and B and
the coefficients a and b entering in the geometry. The dual geometry (6.6) expansion is

Z
(m=0)
4 ∼

√
Q1Q5

r4

Ra2b

2
√

3
√
Q1Q5

(Y 1,1
2 + Y −1,−1

2 ) (6.12)

and we read the relevent coefficients

A2(±1,±1) =
Ra2b

2
√

3
√
Q1Q5

(6.13)

Inserting the VeV (6.11) and the geometric coefficient (6.13) into the ansatz (6.5), we obtain:

〈s|O−1,−1
2 |s〉 = CO2A2(1,1) CO2 =

√
3R2N3/2

√
2Q1Q5

(6.14)

Note that, as in the case of dimension one operators, the coefficient depends on the moduli of the
theory but carries no information about the precise state considered.

The case k = 2, m = 1

A consistency check of the result in (6.14) can be obtained considering other states. With this purpose,
let’s switch on the third charge, and discuss a 1

8 -BPS state. In particular, we consider a state with
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N
(00)
2,1 ≡ p strands of type |00〉p acted upon by the operator J+

−1 once and N − 2p strands |++〉1.

Renaming the dimensionless coefficients A(++) ≡ A and B2,1 ≡ B, we consider the state

ψ(A,B) =

N
2∑

p=1

(A|++〉1)N−2p(BJ+
−1|00〉2)p (6.15)

We can borrow the general result (5.42) to claim that the average numbers of strands in the state
ψ(A,B) is

p̄ = |B|2 N − 2p̄ = |A|2 (6.16)

Because the strands |++〉1 and J+
−1|00〉2 carry spin (1

2 ,
1
2) and (1, 0) respectively, by angular momentum

conservation we conclude that only O0,−1
2 (and its hermitian conjugate) has non zero VeV on the

state. This descendant is obtained acting with J−0 (J̃−0 )2 on the highest weight state (6.3): imposing
the proper normalization one gets

O0,−1
2 = − 1√

2

(
O+−Σ−−2 +O−−Σ+−

2

)
= − 1√

2

(
O+−−−

2 +O−−+−
2

)
(6.17)

where the minus sign has been introduced for later convenience.
Because |00〉2 is acted upon by J+

−1, to determine the VeV of Oaȧ2 on the state ψ(A,B) we will need
the commutation relations of Oαα̇ and the twist operator with the SU(2)L current algebra. These are:[(

J in
)αβ

, Oβα̇(u, v)
]

=
1

2
ein
√

2v
R (σi)αβOβα̇(u, v)[(

J in
)αβ

,Σβα̇
2 (u, v)

]
=

1

2
ein
√

2v
R (σi)αβΣβα̇

2 (u, v)

(6.18)

Both O+−−−
2 and O−−+−

2 contribute to the VeV of the operator O0,−1
2 : let’s first consider the former.

As in the previous case, it is useful to split the action of O+−−−
2 into the following two processes

� The operator Σ−−2 joins two |++〉1 strands into |++〉2; as it can choose any two strands among
the N−2p this process carries a

(
N−2p

2

)
factor. Requiring that both sides of the equality contain

the same number of terms on gets

Σ−−2 ((|++〉1)N−2p(J+
−1|00〉2)p) = ((|++〉1)N−2(p+1)(J+

−1|00〉2)p|++〉2) (6.19)

Note that in this case the total number of terms on the two sides of the equation is given
by (5.38).

� Let’s now consider the action of O+−(v, u) on (6.19). Note that we have to insert it at a
generic worldsheet point (v, u), otherwise the action of O+− on the strand |++〉2 is zero. In
particular, using the commutation relations in eq. (6.18), as well as the fact that the ground
state is annihilated the positive modes of the current operator, we obtain the following VeV for
an individual strand

2〈00|J−+1O
+−(v, u)|++〉2 = ei

√
2v
R (6.20)

Taking into account the proper combinatorial factor, one gets

O+−(v, u)((|++〉1)N−2(p+1)(J+
−1|00〉2)p|++〉2) =

= ei
√

2v
R
p+ 1

2
((|++〉1)N−2(p+1)(J+

−1|00〉2)p+1)
(6.21)

Because the state J+
−1|00〉2 has norm 2 as a consequence of eq. (5.37), the VeV of O+−−−

2 (v, u) on
ψ(A,B) is

〈O+−−−
2 (v, u)〉 = ei

√
2v
R
|A|2

2B
p̄ = ei

√
2v
R
|A|2B̄

2
= ei

√
2v
R

R3N
3
2

4
√

2(Q1Q5)
3
2

a2b (6.22)
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where we have used eq.s (5.17) and (5.40) to obtain the relations between the dimensionless parameters
A, B and the coefficients a, b that enter in the geometry:

A = R

√
N

Q1Q5
a B =

1

2
R

√
N

2Q1Q5
b (6.23)

The computation of 〈O−−+−
2 (v, u)〉 proceeds analogously to the previous case, here we just report the

result:

〈O−−+−
2 (v, u)〉 = 〈O+−−−

2 (v, u)〉 = ei
√

2v
R

R3N
3
2

4
√

2(Q1Q5)
3
2

a2b (6.24)

The dual geometry expansion up to the first non trivial correction is

Z4 ∼
√
Q1Q5

r4

Ra2b

2
√

6
√
Q1Q5

(−ei
√

2v
R Y 0,1

2 + e−i
√

2v
R Y 0,−1

2 ) (6.25)

Inserting the results (6.17), (6.22), (6.24) and (6.25) into the ansatz (6.5) one obtains

〈s|O0,−1
2 |s〉 = CO2A2(0,1) CO2 =

√
3R2N3/2

√
2Q1Q5

(6.26)

in agreement with eq. (6.14).

The case k = 2, m = 2

As a last consistency check, we consider a state made up of strands of type |++〉2 and of type |00〉2
acted upon by J+

−1 twice, so that |00〉2 carries the maxima allowed units of momentum. Thus, we
consider the coherent state

ψ(A,B) =

N
2∑

p=1

(A|++〉1)N−2p(B(J+
−1)2|00〉2)p (6.27)

where we have renamed A
(++)
1 ≡ A, B2,2 ≡ B and N

(00)
2,2 ≡ p and we have used the constraint (5.33)

to claim that N
(++)
1 = N − 2p. The average degeneracy of the strands is

p̄ =
|B|2

2
N − 2p̄ = |A|2 (6.28)

The strand (J+
−1)2|00〉2 carries spin (2, 0), thus, by conservation of angular momentum, we conclude

that the only non trivial processes on individual strands are

2〈00|(J−+1)2O1,−1
2 (v, u)|++〉1|++〉1 = 2〈00|(J−+1)2O+−Σ+−

2 (v, u)|++〉1|++〉1 (6.29)

and its inverse, which is given by O−1,1
2 . The expression of O1,−1

2 in terms of Oαα̇ and the twist
operator is obtained acting twice on the highest weight state (6.3) with J̃−0 . Note that, as in the

previous case, the operator Oa,ȧ2 (v, u) needs to be inserted at a generic worldsheet point, otherwise it
would kill the state. Using the commutators (6.18), one obtaines that (6.29) is

2〈00|(J−+1)2O+−Σ+−
2 (v, u)|++〉1|++〉1 =

= 2ei
2
√

2v
R 2〈00|O−−Σ−−2 (v, u)|++〉1|++〉1

(6.30)

The complete action of the operator O+−+−
2 on the state is obtained implementing the appropriate

combinatorial factor:
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O+−Σ+−(v, u)((|++〉1)N−2p((J+
−1)2|00〉2)p) =

= ei
2
√

2v
R (p+ 1)((|++〉1)N−2(p+1)((J+

−1)2|00〉2)p+1)
(6.31)

This gives rise to the VeV

〈O1,−1
2 (v, u)〉 = ei

2
√

2v
R p̄
|A|2

B
= ei

2
√

2v
R
|A|2B̄

2
= ei

2
√

2v
R

R3N
3
2

2
√

2(Q1Q5)
3
2

a2b (6.32)

Expanding the dual geometry (6.6) around AdS3 × S3 up to the first non trivial order, one gets

Z4 ∼
√
Q1Q5

r4

Ra2b

2
√

3
√
Q1Q5

(ei
2
√

2v
R Y −1,1

2 + e−i
2
√

2v
R Y +1,−1

2 ) (6.33)

Using the holographic dictionary (6.5), along with (6.32) and (6.33) we obtain

〈s|O1,−1
2 |s〉 = CO2A2(−1,1) CO2 =

√
3R2N3/2

√
2Q1Q5

(6.34)

which is consistent with (6.14) and (6.26).

6.3 The operators Ω, Σ3 and the associated multi-traces

The aim of this Section is to consider more dimension 2 operators and fix constrains on the corre-
sponding holographic dictionary.

We first consider the operator Ωαβα̇β̇
(r) = Jαβ(r) J̃

α̇β̇
(r) . The highest weight state

Ω++ =
N∑
r

J+
(r)J̃

+
(r) =

1

4

N∑
r

ψ+1
(r)ψ

+2
(r) ψ̃

+1
(r) ψ̃

+2
(r) (6.35)

and descendants we will be denoted with Ωaȧ. The associated multi-trace operator is

N∑
r 6=s

Ja(r)J̃
ȧ
(s) (6.36)

These operators have (h, h̄) = (j, j̄) = (1, 1).
Consider now the twist fields. The operator Σa,ȧ

3 has dimension (h, h̄) = (1, 1); in terms of the
permutation group, this field acts as a 3-cycle on a strand configuration: it can glue into an effective
string of length k three strands of winding k1, k2 and k3 = k − k1 − k2.
We should also consider the associated multi-trace: this is given by the product of two k = 2 twist
operators: ∑

r 6=s 6=p6=q
(Σ(rp)Σ(sq))

a,ȧ (6.37)

The constraints r < p and s < q, as in eq (4.56), are understood in the summation. The summation
restrictions can be understood recalling that the operator Σ(rp) act as a 2-cycle from the point of
view of the permutation group: the above summation means that, when dealing with the multi-trace
operator, we have to consider disjoint 2-cycles. If the 2-cycles had a copy index in common, then
they would represent a 3-cycle and the operator would fall into the category of Σ3; if the 2-cycles had
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both copy indices in common, instead, they would just be the identity permutation. Again, we should
restrict our attention on the highest weight state∑

r 6=s 6=p 6=q
(Σ(rp)Σ(sq))

11 =
∑

r 6=s 6=p6=q
Σ++

(rp)Σ
++
(sq) (6.38)

and descendants.

We now discuss the holographic dictionary for these operators. In [40], with reference to eq. (6.4), it
has been proposed the following ansatz(

〈ΣI
3〉

〈ΩI〉

)
=
n1n5

4π

( √
6(f1

2I − f5
2I)√

2(−(f1
2I + f5

2I) + 8aα−aβ+fIαβ)

)
(6.39)

In [45], with reference to eq.s (1.6) and (1.7), the above dictionary has been modified, taking into
account the mixing between the single-trace and multi-trace operators and claiming that the r.h.s. of
(6.39) should be rotated by some SO(2) matrix.
Following the above suggestions, we impose the ansatz:〈α

1
NΣa,ȧ

3 + β 1
N2

∑
r 6=s 6=p 6=q

(Σ(rp)Σ(sq))
a,ȧ + γΩa,ȧ + δ 1

N

∑
r 6=s

(J(r)J̃(s))
a,ȧ〉

〈α̃ 1
NΣa,ȧ

3 + β̃ 1
N2

∑
r 6=s 6=p 6=q

(Σ(rp)Σ(sq))
a,ȧ + γ̃Ωa,ȧ + δ̃ 1

N

∑
r 6=s

(J(r)J̃(s))
a,ȧ〉

 =

=

( √
6(f1

2(−a,−ȧ) − f
5
2(−a,−ȧ))√

2(−(f1
2(−a,−ȧ) + f5

2(−a,−ȧ)) + 8aα−aβ+f
(2)
(−a,−ȧ)αβ)

)
≡
(
g(−a,−ȧ)

g̃(−a,−ȧ)

) (6.40)

where α, β, γ,δ, α̃, β̃, γ̃, δ̃ are constants (that we expect to depend only the moduli of the theory) to

be determined and f
(2)
(aȧ)αβ is defined in (B.12). The 1

N factors in front of the operators makes them
to have the same large N scaling behavior.
This is the most general ansatz that generalize [40] and includes the suggestions in [45]. The linear
combination on the l.h.s. not only takes into account all the possible mixing among the single- and
multi-trace operators, but, at the same time, includes all the possible rotated versions of the r.h.s..
In fact, rotating the r.h.s. by some SO(2) matrix M is equivalent to rotating the l.h.s. by the inverse
matrix M−1 which just changes the coefficients of the linear combination.
Note from eq.s (6.5) and (6.40) that the operator O2 does not mix with the twist operator Σ3 and Ω
(and the associated multi-trace operators). The reason is that the operator O2 is associated with the
profile g5(v) which selects a privileged direction on the T 4: the only one that does not break invariance
under rotations in the T 4 direction.

The strategy to fix constrains on the unknown coefficients is analogous to the one to fix the dictio-
nary (6.5): we will compute the VeVs of the dimension two operators and compare them with the
geometry expansion. The action of the double-traces, however, is subtle and we will not consider it in
this thesis: we will examine only states and angular momentum components in which the double-trace
operators cannot play any role, as we have done in Section 6.2.1. This will be enough in order to fix
constrains on the coefficients α, γ, α̃ and γ̃ in (6.40).

6.3.1 The state composed of strands of type |++〉1 and |−−〉1

We consider a state that allows for a fixing of γ and γ̃: the simples case is obtained considering strands
of type |++〉1 and |−−〉1: the coherent state is

ψ(A,B) =
N∑
p=1

(A+|++〉1)N−p(A−|−−〉1)p (6.41)

83



CHAPTER 6. HOLOGRAPHY FOR OPERATORS OF DIMENSION 2

where we have renamed A
(++)
1 ≡ A+, A

(−−)
1 ≡ A− and N−−1 = p so that N++

1 = N − p. The average
degeneracy of the strands in terms of the dimensionless coefficients A+ and A− is

p̄ = |A−|2 N − p̄ = |A+|2 (6.42)

The general discussion in Section 5.2.1 implies that the geometry dual to the state ψ(A,B) is generated
by the profiles

h1(v) ≡ g1(v) + ig2(v) = a+e
2πiv
L + a−e

− 2πiv
L h2(v) = g5(v) = 0 (6.43)

where

A+ = R

√
N

Q1Q5
a+ A− = R

√
N

Q1Q5
a− (6.44)

Using eq. (5.10) one gets that at the first non trivial order in the expansion

Z1 ∼
Q1

r2

(
1− R2

Q1Q5

(a4
+ + a4

−) cos 2θ

r2
+

2a+a− cos 2φ sin2 θ

r2

)
Z2 ∼

Q5

r2

(
1− R2

Q1Q5

(a4
+ + 2a2

+a
2
− + a4

−) cos 2θ

r2
+

4a+a− cos 2φ sin2 θ

r2

)
A1 ∼ −

Q5

r2

(R(a2
+ − a2

−)Y 2
1

2Q5r

)
A2 ∼

Q5

r2

(R(a2
+ − a2

−)Y 1
1

2Q5r

)
A3 = A4 = 0

(6.45)

The non-vanishing coefficients extracted from this geometry and encoding the VeVs of the operators
are

f1
2,00 = − R2

Q1Q5

(a4
+ + a4

−)
√

3
f5

2,00 = − R2

Q1Q5

(a4
+ + 2a2

+a
2
− + a4

−)
√

3

f1
2,+1+1 = f1

2,−1−1 =
a+a−√

3
f5

2,+1+1 = f5
2,−1−1 =

2a+a−√
3

a3± = ± R√
Q1Q5

a2
+ − a2

−
2

(6.46)

and it is straightforward to compute

g(00) =2
√

2
R2

Q1Q5
a2

+a
2
− g̃(00) = 2

√
6
R2

Q1Q5
a2

+a
2
−

g(±1±1) =−
√

2a+a− g̃(±1±1) = −
√

6a+a−

(6.47)

Let’s now discuss the CFT side. The expectation value of Σ3 is zero because all the strands have
winding k = 1. The VeV of Σ2Σ2 is zero as well: the process that glues two singly wound strands
into a strand of winding 2 and then splits it back into two singly wound strands is just the identity
permutation, and we do not consider it.
Among the operators Ωa,ȧ and 1

N

∑
r 6=s

(J(r)J̃(s))
a,ȧ , for angular momentum conservation, the a, ȧ = 0

component have non trivial VeV. Moreover, the double-trace
∑

r 6=s
(
J(r)J̃(s)

)±1,±1
has a vanishing

expectation value: the reason is that the two current operators have to act on different copies of the
CFT, and there are no strands of type |+−〉1 or |−+〉1 in ψ(A,B). We shall thus focus on the angular
momentum components (a, ȧ = ±1): in this case, only Ω has a non trivial VeV and this will allow us
to fix γ and γ̃.
The operator Ω+1,+1 transforms a |−−〉1 strand into |++〉1, giving the main contribution:

Ω+1,+1((|++〉1)N−p(|−−〉1)p) = (N − p+ 1)((|++〉1)N−p+1(|−−〉1)p−1) (6.48)
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The combinatorial factor rises observing that Ω+1,+1 can act on any of the p copies of |−−〉1 in the
state ((|++〉1)N−p(|−−〉1)p), which is made of N(p) terms, and imposing the matching of the total
number of terms on the l.h.s and on the r.h.s.. This process gives rise to the VeV

〈Ω1,1〉 =
(N − p̄)A−

A+
= A−Ā+ =

R2N

Q1Q5
a+a− (6.49)

Using the dictionary (6.40), along with eq.s (6.47) and (6.49) one obtains

γ = −
√

2
Q1Q5

R2N
γ̃ = −

√
6
Q1Q5

R2N
(6.50)

6.3.2 Switching on the VeV of Σ3

The operator Σaȧ
3 glues three strands of windings k1, k2 and k3 into a strand of winding k = k1+k2+k3;

if, for instance, we focus on the spin component (a, ȧ) = (−1,−1), the following process can occur

Σ−1,−1
3 |++〉k1

|++〉k2
|++〉k3

= ck1k2k3 |++〉k1+k2+k3
(6.51)

where ck1k2k3 is some unknown factor that depends on the windings of the initial strands. In the case
of the operator Σ2, the analogous coefficient ck1k2 is given by ck1k2 = k1+k2

2k1k2
; note that, in the case of

singly wound strands, c11 = 1 and thus its effect was invisible in the computations in Section 6.2.1.

We now analyze the simplest 2-charge state in which the VeV of Σaȧ
3 is non-zero: the one composed

of strands of type |++〉1 and |++〉3. This will allow us to fix constrains on α and α̃ in the dictio-
nary (6.40). Because the value of ck1k2k3 is for us unknown, we will just keep track of it. Renaming

A
(++)
1 ≡ A, A

(++)
3 ≡ B and N

(++)
3 ≡ p, we consider the coherent state

|s〉 =

N
3∑

p=1

(A|++〉1)N−3p(B|++〉3)p (6.52)

where we have used the constrain (5.13) to fix N
(++)
1 ≡ N − 3p. The average number of strands of

each type in this case reads

N̄
(++)
1 = N − 3p̄ = |A|2 N̄

(++)
3 = p̄ =

|B|2

3
(6.53)

Let’s first consider the r.h.s. of eq. (6.40). The geometry dual to the state (6.52) can be constructed
using the following profiles as seeds:

h1(v) ≡ g1(v) + ig2(v) = ae
2πiv
L +

b

3
e

6πiv
L h2(v) = g5(v) = 0 (6.54)

where the coefficients a and b are taken to be real and are related to the coefficients A and B
through (5.17). Using the general result in (5.10), we obtain that the relevant functions to the r.h.s.
of the ansatz (6.40) are given by

Z1 ∼
Q1

r2

(
1− R2

Q1Q5

((9a4 + 16a2b2 + b4) cos(2θ) + 18a3b cos(2φ) sin2 θ

9r4

))
Z2 ∼

Q5

r2

(
1− R2

Q1Q5

((9a4 + 10a2b2 + b4) cos(2θ)

9r4

))
A1 ∼−

Q5

r2

(R(3a2 + b2)Y 2
1

6Q5r

)
A2 ∼

Q5

r2

(R(3a2 + b2)Y 1
1

6Q5r

)
A3 = A4 = 0

(6.55)
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Hence, one reads out:

f1
2,00 = − R2

Q1Q5

(9a4 + 16a2b2 + b4)

9
√

3
f5

2,00 = − R2

Q1Q5

(9a4 + 10a2b2 + b4)

9
√

3

f1
2,+1+1 = f1

2,−1−1 = − R2

Q1Q5

a3b√
3

a3± = ± R√
Q1Q5

3a2 + b2

6

(6.56)

The coefficients that encodes the VeVs of the operators are

g(00) = −6
√

2
R2

Q1Q5
a2b2 g̃(00) =

14
√

6

27

R2

Q1Q5
a2b2

g(11) = g(−1−1) = −
√

2
R2

Q1Q5
a3b g̃(11) = g̃(−1−1) =

√
2√
3

R2

Q1Q5
a3b

(6.57)

By angular momentum conservation, we conclude that the only processes that contribute to the VeVs
of Σaȧ

3 are the one in eq. (6.51) and its inverse. Considering the (−1,−1) component one gets

Σ−1,−1
3

(
(|++〉1)N−3p(|++〉3)p

)
= c111

p+ 1

2

(
(|++〉1)N−3p−3(|++〉3)p+1

)
(6.58)

The operator Σ−1,−1
3 can act on any group of 3 strands of length 1 out of N − 3p and, thus, carries a(

N−3p
3

)
combinatorial factor; as usual, the factor p+1

2 arises requiring that the total number of terms
on the two sides of (6.58) match each other. This gives rise to the VeV

〈Σ−1,−1
3 〉 = c111

A3

B

p̄

2
= c111

A3B̄

6
= c111

R4N2

6(Q1Q5)2
a3b (6.59)

Using the ansatz (6.40), along with eq.s (6.57) and (6.59), one obtains the following constrains on the
coefficients α and α̃

αc111 = −6
√

2
Q1Q5

R2N
α̃c111 = 2

√
6
Q1Q5

R2N
(6.60)
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Conclusions

In this work we have studied some of the recent progresses that have been made in understanding
black hole physics in string theory. We have devoted particular attention to the holographic tools
that the AdS/CFT conjecture provides in this sense, discussing the dictionary between 1

4 -BPS and
1
8 -BPS gravitational solutions and states of the dual CFT, the dictionary between VeVs and geometry
expansion for dimension 1 operators and its extension to operators of dimension 2.

We first discussed the basic features of black holes in General Relativity, their thermodynamic behavior
and the puzzles that arise when one takes this behavior seriously (and Hawking’s computation suggests
that, indeed, we should): the entropy puzzle and the informations paradox. We have also discussed
why their solution requires a formulation of a consistent theory of quantum gravity.
After reviewing some of the main properties of string theory, one of the leading candidates as a theory
of quantum gravity, and supergravity, its low energy limit, we discussed how to deal with black hole
physics in these theories. With this point of view, black holes are bound states of branes and strings,
possibly carrying momentum. Restricting our attention to supersymmetric solutions, we have shown
how string theory allows an exact matching between Bekenstein-Hawking entropy and the microscopic
degeneracy of the microstates. The discussion of the properties of the microstates led us to the fuzzball
proposal, a promising idea which has the potential to resolve the longstanding puzzles related to black
hole physics.
We have discussed some of the recent results that support the interpretation of the fuzzball geometries
as black holes microstates and the holographic technology provided by the AdS/CFT conjecture that
could further corroborate the fuzzball proposal. With this aim, we have introduced the conformal field
theory relevant for the D1-D5 microstates, the D1D5 CFT, at a point in the moduli space, the free
orbifold point, in which it is just a collection of free bosons and fermions. Even thought this solvable
point is distant from the regions of the moduli space admitting a low-energy supergravity description
(so that in general one cannot relate states at the free orbifold point with supergravity solutions), one
can take advantage of the fact that certain quantities are protected by supersymmetry: this allows
to gain informations about the gravitational physics from the CFT side of the duality. We have thus
provided the dictionary between microstate geometries and particular CFT states in the RR sector
of the CFT (both for 1

4 -BPS and some 1
8 -BPS microstates) and we have discussed how the geometry

expansion around AdS3 × S3 of these microstates encode the VeVs of dimension 1 operators in the
dual CFT state.
Finally, we have analyzed what predictions can be made for VeVs of higher dimension operators.
Having an analytic control of higher dimension operators would be important because they give
informations on higher order corrections around AdS3×S3: indeed, many microstates have trivial VeVs
of operators of dimension 1. In particular, we have restricted our attention to operators of dimension
2. This case involves some technical difficulties compared to the case of operators of dimension 1,
because of the mixing between dimension 2 operators. We have avoided part of these difficulties by
considering particular CFT states in which the VeVs of the double-trace operators vanish: this has
allowed us to give constrains on the coeffients in front of the single-trace operators in the ansatz (6.40).
Nonetheless, this restriction is an evident limit of our results: it would be very interesting to extend
this discussion in order to prove the full linear combination in (6.40).

To conclude, the fuzzball proposal is a concrete idea that has the potential to shed light upon black
hole issues; however, substantial work and technical progress is still needed to show its validity. For
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example, it would we important to understand how the black hole thermal properties emerge from
the microstates, i.e. how to coarse-grain geometries. Moreover, we shall note that the microstates
we have considered are well described in supergravity: however, as we have already emphasized, we
expect that they are only a subset of the fuzzball solutions. To develop the fuzzball proposal further
one should also understand more deeply the stringy fuzzballs.
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Appendix A

Conformal Field Theories

Symmetries play a major role in our understanding of physics. So far we have encountered field theories
that are invariant under the scale transformation xµ → λxµ. Examples are string theory and classical
Yang-Mills theories in 4 dimensions. The importance of scale transformations is evident in the study
of critical phenomena and it leads to the renormalization group equations. Generally, this invariance
does not extend to the quantum theory because renormalization introduces a scale dependence and
the parameters of the theory (such as the coupling constant) run with the energy scale; however there
are exceptions, such as D = 4 N = 4 super-Yang-Mills theories.

Under a scale transformation, the metric rescales as gµν(x)→ g′µν(x′) = |λ|2gµν(x). The generalization
of this transformation leads to the conformal group. In this Appendix we will review some basic aspects
of Conformal Field Theories (CFTs), i.e. theories that are invariant under the action of the conformal
group. In particular, we will focus on theories in 2-dimensions. The content of this Appendix is
far from being exhaustive as we will just report some of the features used in the thesis; a standard
reference is [39].

A.1 CFT in 2 dimensions

The conformal group is the group of transformations that leave invariant the metric up to some local
rescaling

gµν(x)→ g′µν(x′) = Ω2(x)gµν(x) (A.1)

It can be viewed as the minimal extension of the Poincaré group containing the inversion symmetry
xµ → xµ

x2 . In D dimensions, the conformal group is generated by the scale transformation and the
special conformal transformations

xµ → λxµ xµ → xµ + aµx2

1 + 2aνxν + a2x2
(A.2)

and the Poincaré transformations. The generators of the conformal group form an algebra isomorphic
to SO(D, 2).

The case D=2 is special: if we start with euclidean coordinates (x1, x2) and define the complex
coordinates z, z̄ = x1± ix2, the two dimensional conformal transformations coincide with the analytic
coordinate transformations

z → f(z) z̄ → f̄(z̄) (A.3)

In fact, under (A.3) the metric transforms as

ds2 = (dx1)2 + (dx2)2 = dzdz̄ →
∣∣∣∂f
∂z

∣∣∣2dzdz̄ (A.4)

89
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and we recognize the scale factor in Ω2 =
∣∣∂f
∂z

∣∣2. The local algebra that generates (A.3) is infinite
dimensional, with generators

Ln = −zz+1∂z L̄n = −z̄n+1∂z̄ (A.5)

They satisfy the algebra

[Ln, Lm] = (m− n)Lm+n [L̄n, L̄m] = (m− n)L̄m+n [Ln, L̄m] = 0 (A.6)

The generators of the local conformal algebra (A.5) are not well defined globally: in order to form a
group, the mappings (A.3) must be invertible and must map the hole complex plane (or more precisly,
its compactification obtained adding the point at infinity) into itself. Because the conformal trans-
formations are generated by the vector fields v(z) = −

∑
n anLn =

∑
n anz

n+1∂z, the non singularity
of v(z) at z = 0 requires an = 0 for n < −1. Analogously, one can investigate the behaviour of
v(z) as z → ∞ performing the transformation z = − 1

w , and one obtains an = 0 for n > −1. The
same restrictions apply to antiholomorphic transformations. The globally defined algebra (restricted
conformal algebra) is thus generated by {L0,±, L̄0,±}. We can identify L−1, L̄−1 as the generators of
translations; L0 + L̄0 and i(L0− L̄0) as the generators of dilatations and rotations respectively and L1,
L̄1 as the generators of special conformal transformations. The finite form of these transformations is

z → az + b

cz + d
ad− bc = 1 a, b, c, d ∈ C (A.7)

These are called projective transformations, and are in one to one correspondence with invertible 2×2
complex matrices with unit determinant. Thus, the global conformal transformation is isomorphic to
SL(2,C).

The global conformal algebra is useful to characterize the physical properties of the states. A conformal
field theory contains an infinite set of fields, among which there are also derivatives of other fields.
A physically interesting representation of the conformal group involve fields (or operators) that are
eigenfunctions of the operators L0 and L̄0, with eigenvalues h and h̄ respectively: they are the so-called
conformal dimensions (or conformal weight). We call “quasi-primary field”, a field that under a global
conformal transformation (A.7) transforms as

φ(z, z̄)→
(∂z′
∂z

)h(∂z̄′
∂z̄

)h̄
φ(z′, z̄′) (A.8)

A field whose variation under any local conformal transformation is given by (A.8) is called “primary
field”.
It can be shown that this transformation property gives constrains on the structure of the n-point
functions of the fields. For example, the 2-point function for a scalar field with conformal dimensions
h and h̄ is

〈φ(z, z̄)φ(0, 0)〉 =
C12

z2hz̄2h̄
(A.9)

A.2 Quantization

The quantization procedure usually starts with Euclidean “space” and “time” coordinates1 (τ, σ). We
compactify the space direction σ = σ + 2π: this defines a cylinder. Next we consider the conformal
map

z = e(τ+iσ) z̄ = e(τ−iσ) (A.10)

1The distinction between time and space is natural in Minkowsky space-time, but somewhat arbitrary in Euclidean
space-time.
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which maps the cylinder to the compactified complex plane. Surfaces of equal time τ on the cylinder
become circles of equal radii on the complex plane; in particular the infinite past (τ = −∞) gets
mapped into the origin on the plane (z = 0) while the infinite future becomes z = ∞; time reversal
on the complex plane becomes z → 1

z∗ (= e(−τ+iσ)).
We have seen that the operator L0+L̄0 generates dilatations on the complex plane, which correspond to
time translation on the cylinder, and that i(L0−L̄0) generates rotations on the plane, which correspond
to spatial translation on the cylinder. Thus, we can identify the latter with the momentum operator
and the former can be regarded as the Hamiltonian for the system, and the Hilbert space is built up
on surfaces of constant radius. This procedure for defining a quantum theory on the plane is known as
radial quantization. Quantization assumes the existence of a vacuum state |0〉 upon which the Hilbert
space is constructed by application of creation operators.

For an interacting quasi primary field φ, the Hilbert space of the CFT can be described with the
standard formalism of in- and out-states of QFT: we assume that the interaction is attenuated as
τ → ±∞, so that the asymptotic field φin ∝ lim

τ→∞
φ(τ, σ) is free. With radial quantization, τ → −∞

corresponds to z → 0, so we define a in-state as

|φin〉 = lim
z,z̄→0

φz,z̄|0〉 (A.11)

In order to compute amplitudes, we must define a scalar product on the Hilbert space: this can be
done defining asymptotic out-states, together with hermitian conjugation. As time reversal on the
complex plane is z → 1

z∗ , we define the hermitian conjugation as

φ(z, z̄)† = z̄−2hz−2h̄φ(
1

z̄
,

1

z
) (A.12)

With this choice the out-state 〈φout| = |φin〉† has a well defined inner product with |φin〉, consistent
with eq. (A.9).
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Appendix B

Spherical harmonics S3

The spherical harmonics on S3 are a representation of the isometry group of the three-sphere SO(4) '
SU(2)L × SU(2)R. We will use spherical coordinates on the noncompact space, that are related to
the Cartesian coordinates via

x1 = r sin θ cosφ x2 = r sin θ sinφ

x3 = r cos θ cosψ x4 = r cos θ sinψ
(B.1)

where θ ∈ [0, π2 ] and ψ, φ ∈ [0, 2π]. With this coordinate choice, the line element ds2
3 and the volume

form η3 on S3 are

ds2
3 = dθ2 + sin2 θdφ2 + cos2 θdψ2 η3 = sin θ cos θdθ ∧ dφ ∧ dψ (B.2)

A degree k scalar harmonic transforms in the (k2 ,
k
2 ) representation of SU(2)L × SU(2)R and we will

denote it with Y m,m̃
k , where (m, m̃) are the spin charges under (J3, J̃3). They satisfy the following

equation

�S3Y m,m̃
k = −k(k + 2)Y m,m̃

k
(B.3)

We use normalized spherical harmonics such that∫
Y ∗m1,m̃1

k1
Y m2,m̃2

k2
= Ω3δk1,k2δ

m1,m1δm̃1,m̃2 (B.4)

where Ω3 = 2π2 is the volume of the three sphere.
The generators of the isometry group of S3, written in terms of the standard SU(2) generators, are

J± =
1

2
e±i(φ+ψ)(±∂θ + i cot θ∂φ − i tan θ∂ψ) J3 = − i

2
(∂φ + ∂ψ)

J̃± =
1

2
e±i(φ−ψ)(±∂θ + i cot θ∂φ + i tan θ∂ψ) J̃3 = − i

2
(∂φ − ∂ψ)

(B.5)

One can generate the degree k spherical harmonics acting with the raising and lowering operators in
(B.5) on the higher spin, degree k spherical harmonic which is

Y
± k

2
,± k

2
k =

√
k + 1 sink θe±ikφ (B.6)

In this thesis we make use of the degree k = 1, 2, normalized spherical harmonics, that are:

Y
+ 1

2
,+ 1

2
1 =

√
2 sin θeiφ Y

+ 1
2
,− 1

2
1 = −

√
2 cos θeiψ

Y
− 1

2
,+ 1

2
1 =−

√
2 cos θe−iψ Y

− 1
2
,− 1

2
1 = −

√
2 sin θe−iφ

(B.7)
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Y +1,+1
2 =

√
3 sin2 θe2iφ Y +1,0

2 = −
√

6 sin θ cos θei(φ+ψ)

Y +1,−1
2 =

√
3 cos2 θe2iψ Y 0,+1

2 = −
√

6 sin θ cos θei(φ−ψ)

Y 0,0
2 =

√
3 cos 2θ Y 0,−1

2 =
√

6 sin θ cos θe−i(φ−ψ)

Y −1,+1
2 =

√
3 cos2 θe−2iψ Y −1,0

2 =
√

6 sin θ cos θe−i(φ+ψ)

Y −1,−1
2 =

√
3 sin2 θe−2iφ

(B.8)

When useful, we use the cartesian representation of the spherical harmonics instead of the standard
SU(2) representation:

Y mk,m̃k
k ↔ Y Ik

k
(B.9)

where Y Ik
k is a (complex) linear combination of x

(i1 ...xik)

rk
, where the indices are not only symmetric but

also traceless (in the sense that tracing over any pair of indices gives zero.) The normalized, degree

1 spherical harmonics in the cartesian representation are given by Y i
1 = 2x

i

r , and the change of basis
reads:

Y
+ 1

2
,+ 1

2
1 =

Y 1 + iY 2

√
2

Y
+ 1

2
,− 1

2
1 = −(Y 3 + iY 4)√

2

Y
− 1

2
,+ 1

2
1 =− (Y 3 − iY 4)√

2
Y
− 1

2
,− 1

2
1 = −Y

1 − iY 2

√
2

(B.10)

We also introduce degree 1 vector spherical harmonics Y α±
1

Y α+
1 =

ηαijdx
ixj

r2
Y α−

1 =
η̄αijdx

ixj

r2

ηαij = δαiδ4j − δαjδ4i + εαij4 η̄αij = δαiδ4j − δαjδ4i − εαij4
(B.11)

where α = 1, 2, 3 is an index in the adjoint of SU(2).
We define the following triple integrals:∫ (

Y α±
1

)a
Y j

1 DaY
i

1 = Ω3e
±
αij

∫
Y

(mk,m̃k)
k

(
Y α−

1

)
a

(
Y β+

1

)a
= Ω3f

(k)
(mk,m̃k)αβ (B.12)

where a is an S3 index and Da is the covariant derivative with respect to the metric (B.2). The explicit
values for the overlaps e±αij are

e+
312 = −1 e−312 = 1 e+

334 = −1 e−334 = −1 e+
113 = 1 e−113 = 1

e+
124 = −1 e−124 = 1 e+

214 = −1 e−214 = −1 e+
223 = 1 e−223 = −1

(B.13)

Note that e±αij = −e±αji. The explicit value of the components of f
(k)
(mk,m̃k)αβ, defined in (B.12), that

have been used in this thesis are

f
(2)
(00)33 =

1√
3

f
(2)
(±1,±1)33 = 0 (B.14)
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