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Abstract

Vision Transformer (ViT) architecture has become a de-facto standard in computer vision,
achieving state-of-the-art performances in various tasks. This popularity is given by a remark-
able computational efficiency and its global processing self-attentionmechanism [1]. However,
in contrast with convolutional neural networks (CNNs), ViTs require large amounts of data
to improve their generalization ability. In particular, for small datasets, their lack of inductive
bias (i.e. translational equivariance, locality) can lead to poor results. To overcome the issue,
SSL techniques based on the understanding of spatial relations among image patches without
human annotations (e.g. positions, angles and euclidean distances) are extremely useful and
easy to integrate in ViTs architecture. The correspondent model, dubbed RelViT, showed to
improve overall image classification accuracy, optimizing tokens encoding and providing new
visual representation of the data [2]. This work proves the effectiveness of SSL strategies also
for object detection and instance segmentation tasks. RelViT outperforms standardViT archi-
tecture onmultiple datasets in themajority of the related benchmarkingmetrics. In particular,
training on a small subset of COCO, results showed a gain of +2.70%, +2.20% in mAP for
instance segmentation and object detection respectively.
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1
Introduction

The Vision Transformer is a fairly recent model designed to address computer vision tasks. It
is based on the Transformer model, which is state-of-art in natural language processing, and
adapts it for image processing [1]-[3]. The key innovation of Vision Transformer is to treat
patches of the image in a similarway aswords are treated in sentences. Unlike othermodels, rely-
ing only on convolutional layers, Vision Transformer is based on the self-attentionmechanism,
allowing any of the elements of a sequence to interact with both itself and all the others. These
elements, called tokens, are the vectors obtained from the non-overlapping patches of the input
image, plus an extra one called classification token. During the training process, all the tokens
in the sequence are passed and processed through the layers of the Vision Transformer, how-
ever for classification tasks only the correspondent token is passed to the final supervision for
prediction, i.e. the head. Although ViT architectures have shown to achieve results compara-
ble to those of convolutional neural networks in various vision tasks, they requires a significant
amount of labeled data to reach SOTA performances. Yet, the process of creating and label-
ing such large datasets is not practical as it requires a significant amount of time and resources,
which couldmay led in unwanted biases. To overcome these limitations, it is crucial to explore
new ways to improve the generalization abilities of the Vision Transformer across domains.
As an alternative, one potential solution could be to use self-supervised learning techniques,
similar to the ones used in the BERT model [4]. Self-supervised learning is an approach that
leverages the advantages of both supervised and unsupervised learning techniques. With this
method, models are trained using labeled data, where labels are generated from the data itself
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as unsupervised signals. In models like BERT, self-supervision is used in a pre-training phase
to acquire a solid background knowledge, where the model gain a broad understanding of the
data, which is then fine-tuned using standard supervised learning. Currently, the exploration
of self-supervised techniques integrated with Vision Transformer is limited, but the studies
and experiments that have been conducted show a promising direction to pursue [5]-[6]. A
recent study demonstrated that by incorporating self-supervised learning techniques in image
classification tasks through relational heads, the overall accuracy is improved across multiple
datasets, e.g. CIFAR10 and CIFAR100 [2]-[7]-[8]. This newmodel, dubbed RelViT, worked
especially well in small-sized datasets, showing its ability of improved generalization. In light
of this, the current thesis work aims to extend the same analysis also for object detection and in-
stance segmentation tasks. To further prove the effectiveness of these techniques, experiments
were carried out using also different ViT-based architectures, such as Swin-ViT and T2T-ViT
[9]-[10]. The choice of these two models arises naturally from the fact that they share similar
characteristics with the plain Vision Transformer, but being more accurate in detection tasks.
The self-supervision adopted in this work, can be easily integrated into the Vision Transformer
architecture, its inspiration arises from the Jigsaw Puzzle task. This task has been previously
studied as a way to enhance a model’s ability to understand visual representations [11]-[12].
The core idea is to use patches, cropped from an input image, to try to learn the spatial relations
between each other, thanks to self-attention mechanism. This solution could be beneficial for
many reasons:

• The self-supervised tasks generated can be solved using the same backbone network as
the ViT model, making transfer learning straightforward. This also extends easily to
backbones for detection tasks.

• The proposed approach also enables the ViT model to learn the relationships between
patches by considering the tokens obtained from them. As a result, all tokens, not just
the classification token, are optimized during the training process, which offer themodel
new visual representations of the data.

• Learning effective self-supervised relations, could also be beneficial by reducing the total
training time at the fine-tuning stage of a given task.

The thesis is organized as follows:

• Chapter 2 describes the general architecture and elements for the Vision Transformer
model, presenting also other twoViT-based architectures (i.e. Swin-ViT,T2T-ViT) used
in order to support the results obtained with the plain ViT.
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• Chapter 3 describes detection problems such as object detection and instance segmenta-
tion, providing at the same time the description of the main frameworks used in SOTA
research. It introduces the metrics used in this work, as well as explaining the architec-
tural integration of Vision Transformer as a backbone for detection models.

• Chapter 4 explains self-supervision and Jigsaw Puzzle as a solving tasks. Moreover, fo-
cuses on the created self-supervised tasks based on spatial relations between patches and
their detailed integration into ViT architecture, i.e. Relvit model.

• Chapter 5 presents the experiments and results carried out during these thesis work ei-
ther for object detection and instance segmentation. It also discuss the datasets used and
their correspondent properties.

• Chapter 6 reports the concluding remarks of the work.

3
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2
Vision Transformer

Vision Transformer (ViT) architecture is a recent development in the field of computer vision
which offers an efficient and powerful alternative to convolutional neural networks (CNNs)
[1]. This architecture builds up from the Transformer model, which is SOTA for natural lan-
guage processing (NLP). In terms of computational efficiency, the Vision Transformer is sig-
nificantly more efficient than CNNs, however, it requires a large amount of data to achieve
high levels of generalization. This chapter aims to provide a detailed description of the Vision
Transformer architecture, with a focus on the self-attention mechanism, which is the basis of
the model itself. Additionally, it will present two other ViT-based architectures such as Hier-
archical Vision Transformer using ShiftedWindows (Swin-ViT) and Tokens-To-Token Vision
Transformer (T2T-ViT), important for supporting the results of this work achieved with the
plain ViT [9]-[10].
The chapter is specifically divided into four sections:

• Section2.1provides a detaileddescriptionof theVisionTransformermodel architecture,
with a focus on the self-attention mechanism.

• Section 2.2 discusses the other ViT-based architectures cited before. It is worth notic-
ing that, since their mechanisms is similar to the Vision Transformer, some architectural
details will be skipped. Still, it will provide the necessary understanding of their func-
tioning.

• Section2.3 explores some results ofViTmodels in SOTAresearch, both for classification
and detection tasks.
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• Section 2.4 will briefly discuss about the integration of self-supervised techniques in the
Vision Transformer to improve the overall generalization capability of the model. Yet, a
more detailed analysis will be presented in Chapter 4.

2.1 Model Architecture

ViTs architecture is shown in Figure 2.1, it follows the original Transformer architecture as
closely as possible, adapting it for vision tasks. It can be divided into four main elements:

• Converting 2D patches to 1D vectors: the input image is divided into fixed-size patches.
The patches are obtained by dividing the original image into non-overlapping squares,
whose number is determined either by the size of the image and the chosen patch size
(which both are hyperparameters of the model).

• Classification token andpositional embeddings integration: a classification token is added
to the sequence of patches, to indicate the beginning and end of the sequence. Positional
embeddings are added, instead, to indicate the spatial position of each patch in the orig-
inal image.

• A Transformer Encoder: the sequence of patches is fed into the Transformer Encoder,
which uses self-attention mechanism to learn the relationships among the patches and
produce a representation of the image. This is repeated all along the L encoder blocks
of the model.

• Final prediction layers: additional layers are added on top of the Transformer Encoder,
to produce the final prediction. These layers are intended as simple linear layers for clas-
sifications tasks, while for object detection and segmentation tasks they are integrated as
large framework heads. This will be examined in depth in Chapter 3.

Let’s now unfold each step of the list above in a more precise way, as well as in mathematical
terms. Vision Transformer model essentially starts by flattening each 2D patch into a 1D vec-
tor, i.e. by linearly projecting the patch matrix to a dmodel dimensions vector which can vary in
length depending on the type of ViT. The dmodel in fact, is a constant sized latent vector defined
throughout the whole Transformer Encoder layers, and each layer provides a (dmodel,Npatches)

vector as output. The linear projections of the flattened patches (called embedded patches) are
arranged in a sequence following their natural order. This is necessary because the plain ViT
itself does not have a sense of the patch order, and this may affect the results when trained.
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Figure 2.1: Vision Transformer model overview. The algorithm divides an input image into fixed‐size patches, linearly
embeds each of them, integrates a classification token to the sequence, adds positional embedding and feeds the resulting
sequence of vectors to a standard Transformer encoder. The illustrative picture is taken from [1].

The second step is to introduce the classification token and positional embeddings. The classi-
fication token is a learnable random vector of size dmodel, which is inserted at the beginning of
the sequence of embedded patches. It plays a crucial role in the final prediction. Essentially, for
classifcation tasks, only the first element of the sequence output of the Transformer Encoder
is passed to the final head layer.
On the other hand, the positional embeddings are a sequence of 1D vectors, which is summed
up to the sequence of the classification token plus embedded patches. They are learned during
the training phase and aim to acquire positional information about each patch of the original
image.
The third step starts when, the projected patches, combined with the classification token and
encodedpositions, are passedon to theEncoder stage. TheTransformerEncoder is constructed
with an L number of encoder blocks. Each block is composed of layers that alternate between
Multi-Head Self-Attention (MSA) and Multi-Layer Perceptrons (MLP). Before every layer a
Normalizationmodule is applied, as well as residual connections after each layer. This is shown
in Figure 2.1. Basically, throughout every block of the Transformer Encoder the input has the
same shape of the output.
At the end of the Transformer computation, in the case of image classification, the first output
of the last encoder block (i.e. the classification token) is then passed through an MLP layer
called the MLP head, responsible for making the final predictions.
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In mathematical terms, given an input image x ∈ RH×W×C, where (H,W) is the resolution
of the image and C is the number of channels, a sequence of flattened 2D patches is extracted
as xp ∈ RN×(P2×C). In this case (P,P) is the resolution of each image patch and N = HW

P2 is
the resulting number of patches, which also acts as the effective input sequence length for the
Transformer. The set of flattened patches x0 = [x1P, x2P, ...., xNP ] is linearly projected to zLP such
that:

zLP = [x1PE, x2PE, ...., xNP E], E ∈ R(P2·C)×dmodel (2.1)

The classification token xclf is added at the beginning of each zLP tensor, resulting in:

z′LP = [xclf, x1PE, x2PE, ...., xNP E], xclf ∈ R1×dmodel (2.2)

The positional embedding is then added to z′LP in a way such that:

z0 = z′LP + Epos Epos ∈ R(N+1)×dmodel (2.3)

and the resulting z0 is passed on to the Transformer Encoder. At this point, each encoder
block computes the output zl as follows:z′l = MSA(LN(zl−1)) + zl−1 l = 1, .....,L

zl = MSA(LN(z′l−1)) + z′l−1 l = 1, .....,L
(2.4)

Finally, in the case of classification, the first output of the Transformer encoder blocks, is
passed on to the MLP head:

logits = MLPhead
(
z0L
)

(2.5)

and the final prediction is done using the obtained logits.

2.1.1 Self-AttentionMechanism

The self-attentionmechanism is a core component of transformer-basedmodels, it allows each
element of the input sequence to interact with both itself and all the remaining n− 1 elements.
It then learns which elements to pay more attention to, and where. This is accomplished by
constructing all the elements of the input sequence into three vectors called query, key, and
value. These vectors are then mapped to the corresponding element in the output sequence.
In particular, the output element is calculated by performing a weighted average of the values,

8



Figure 2.2: On the left, Scaled Dot‐Product Attention. On the right, Multi‐Head Attention consists of several attention
layers running in parallel. The illustrative picture is taken from [3].

with the weights determined by a function of the query and key vectors, called the “score”. A
visual example of this process is shown in Figure 2.2.

In natural language processing, the self-attentionmechanism allows themodel to selectively
attend to different parts of the input, in order to extract important features. For example, in
machine translation, the model needs to understand the meaning of each word in the input
sentence and how it relates to the other words to be able to translate the sentence. The self-
attention mechanism allows the model to do this by computing a weighted sum of the hidden
states of all the words in the input sentence, where the weights are determined by the relation-
ship between the words. This allows the model to focus on different words in the input sen-
tence based on their relevance, which is fundamental for the task of translation.

The self-attention mechanism used in Transformer architecture is based on the so-called
Scaled Dot-Product Attention, chosen to optimize speed and for being space-efficient. Mathe-
matically speaking, taking a sequence of n vectors as input such that:

x = [x1, x2, ...., xn], x ∈ Rn·dmodel (2.6)

The idea is to first create three sequences of n tensors: Query, Key and Value (V,Q,K). These
matrices are computedmultiplying the input x for three parameters, respectivelyWQ,WK and
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WV, learned during the training process.
Q = x ·WQ where WQ ∈ Rdmodel×dk ,Q ∈ RN×dk

K = x ·WK where WK ∈ Rdmodel×dk ,K ∈ RN×dk

V = x ·WV where WV ∈ Rdmodel×dv ,V ∈ RN×dk

(2.7)

It is important to note that Q and K vectors must belong to the same space RN×dk , where
dk can be smaller, equal or larger than dmodel. Meanwhile, the V vector can belong to a differ-
ent space RN×dv , where dv can also be smaller, equal or larger than dk. The second step is to
calculate the score S, a sequence of n vectors, which provides information about how much
each element of x is important in relation to a fixed input xi. This allows the model to identify
the most important relationships between an input vector xi and all elements of x. The score
S is calculated by multiplying the query Q by the transpose of the key K, using the following
equation:

S = Q · KT, S ∈ Rnxn (2.8)

Finally the model has to compute the weights in order to get the weighted sums. To achieve
more stable gradients, the score matrix S is divided by

√
dk, and a softmax function is applied

over the rows to estimate the weights. The resulting weights matrix is obtained through scalar
multiplication with the value matrix V to compute the final output z = [z1; z2; ...; zn]. In
mathematical form:

z = Attention(Q,K,V) = softmax
(
Q · KT
√
dk

)
· V, z ∈ Rn×dk (2.9)

2.1.2 MultiHead Self-Attention

TheMulti-Head self-attentionmechanism improves upon the standard self-attention by intro-
ducingmultiple attentionmatrices, referred to as heads, allowing themodel to focus on various
combinations of elements in the input sequence. Additionally, it allows the model to gather
information from different representation subspaces. Each head is calculated using a unique
set of weights matrices

(
WQ,WK,WV

)
initialized randomly. The final output is obtained by

concatenating the heads together andmultiplying by amatrix,Umsa, whose weights are learned
through training. All this, results in capturing more complex relationships between different
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parts of the input data. This is a simple, yet very powerfulmechanism at the core of the achieve-
ments of Transformer basedModels.

z = [h1; h2; ....; hh] · UMSA, UMSA ∈ Rh·dv×dmodel (2.10)

2.1.3 Positional Embedding

Tipically, Convolutional neural nets (CNNs) process inputs as a grid of pixels and learn to rec-
ognize patterns and features using convolutional filters. In contrast, Vision Transformers pro-
cess inputs as a sequence of imagepatches and identify patterns and features using self-attention
mechanisms. This enables the network to weigh the importance of different regions of the im-
age when making predictions. To better understand the overall structure of the input data
and how different patches are related to each other, positional embeddings are added into the
model. This provides information about the position of each patch in the input sequence.
There are several ways to encode positional information, such as sinusoidal positional embed-
dings and learnable positional embeddings. Sinusoidal embeddings are pre-computed and
added to the input data, while learnable embeddings are learned by the network during train-
ing. The work in question uses learnable positional embeddings where a vector of size dmodel

is assigned to each patch as previously explained. A graphical representation of Transformers
positional embedding is shown in Figure 2.3.

Figure 2.3: Left: Filters of the initial linear embedding of RGB values of ViT‐L/32. Right: Similarity of position embeddings
of ViT‐L/32. Tiles show the cosine similarity between the position embedding of the patch with the indicated row and
column and the position embeddings of all other patches. The image is taken from [1].
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2.1.4 Model Variants

There are several variants of the Vision Transformer (ViT) model, based on the number of
parameter used [1]-[? ]. Some of these variations are listed in Table 2.1. The variables involved
are:

• Blocks: the L number of Transformer encoder blocks, which extend throughout the
entire architecture.

• Hidden size dmodel: the constant sized latent vector through all Transformer Encoder’s
layers.

• Heads: The number of heads in the Multi-Head Self-Attention (MSA) layers within
each block.

Model Blocks Hidden size dmodel Heads Params
ViT-Tiny 12 192 6 5.8M
ViT-Small 12 384 6 21.5M
ViT-Base 12 512 12 86M
ViT-Large 24 1024 16 307M
ViT-Huge 32 1024 16 632M

Table 2.1: Details of Vision Transformer model variants. The last two bigger models are deprecated for this thesis work,
given the limited computational resources.

The number of learnable parameters of the architecture increaseswith the increase of the val-
ues above. Themodel names “Tiny”, “Small”, “Base”, “Large” and “Huge” are directly related
to the model complexity as shown in the last column of Table 2.1. A brief notation is generally
used to indicate the model size and the input patch size, which is a short model name followed
by the patch size. For example, ViT-L/8 stands for the “Large” model variant (ViT-Large in
Table 2.1) with 8 × 8 input patch size. This notation will be used throughout this work. It’s
worth noting that the Transformer’s sequence length is inversely proportional to the square of
the patch size, thus models with smaller patch sizes are computationally more expensive. The
reason for this is that the number of patches, fed as input to the model, scales asN = HW

P2 .
The main ViT variant used in the thesis is ViT-S/16, i.e. ViT-small with patch size equal to
16 and a input image of size 224 × 224. This choice was due to the limited computational
resources available during the experiments, which prohibited the training of ViT-B and bigger
models.
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2.2 ViT based Architectures

In this thesis work, experiments were performed using also different Transformer based archi-
tectures. We in fact provide some study on detection tasks using Swin-ViT and T2T-ViT to
prove the effectiveness of the self-supervised learning techniques presented inChapter 4. These
two models proved to achieve state-of-the-art results, improving upon the plain ViT on differ-
ent tasks [9]-[10]. This section describes their functioning and the reasons behind their im-
provement upon the plain Vision Transformer. However, the explanation will not be fully
detailed since they were used only as a support for the results of the VisionTransformer (which
is the core of the work).

2.2.1 Swin-ViT

“Hierarchical Vision Transformer using ShiftedWindows” is a successor to the popular Vision
Transformer architecture, able to achieve SOTA results in tasks such as object detection and
semantic segmentation [9]. The key idea behind Swin Transformer is constructing a hierar-
chical representation by starting from small-sized patches and gradually merging neighboring
patches in deeper Transformer layers. As shown in Figure 2.4, with these hierarchical feature
maps, Swin Transformer model can conveniently leverage dense prediction techniques such
as feature pyramid networks (FPN) achieving great results on detection problems. Another
key design element of Swin Transformer is the introduction of the shift in the window par-
tition between consecutive self-attention layers. This shifted strategy bridge the windows of
the preceding layer, providing connections among them that significantly enhance modeling.
Computation wise, the number of patches in each window is fixed, thus the complexity be-
comes linear to image size, making it very efficient. It is important to note that regardless of its
great scalability, Swin-ViT requires a little bit more training steps than the plain ViT. Still, this
architecture could be also beneficial to find a bridge between computer vision and natural lan-
guage processing, facilitating the integration of the fields and modeling knowledge from both
domains [9].

Summarizing, in contrast with the plain ViT having only a single-scale feature map, Swin-
ViT is composedofhierarchical featuremaps that enables efficientprocessingofhigh-resolution
images as well as state for the art results in different tasks. Hence, the choice of this architec-
ture for detection tasks arises naturally. Table 2.2 illustrates the different model variants of the
Swin-ViT architecture. The variants Swin-T, Swin-S and Swin-L, are versions of about 0.25×,
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Model C N° layers Params
Swin-Tiny 96 {2,2,6,2} 28M
Swin-Small 96 {2,2,18,2} 50M
Swin-Base 128 {2,2,18,2} 88M
Swin-X 192 {2,2,18,2} 235M

Table 2.2: Model variants regarding Swin Transformer model. C is the channel number of the hidden layers in the first
stage.*Note that the numbers of parameteres could vary a bit depending on the implenetation used. In this work the
implementation used was the one of the original paper [9].

Figure 2.4: Example of the difference between the two Transformers models. Swin Transformer is able to build hierar‐
chical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to
input image size due to computation of self‐attention only within each local window (shown in red). It can thus serve as a
general‐purpose backbone for both image classification and dense recognition tasks. (b) In contrast, plain ViTs produce a
single low resolution feature map and have quadratic computation complexity to input image size due to computation of
self‐attention globally. The image is taken from [9]

.

0.5× and 2× in size and computational complexity with respect to the base model Swin-B.Mo-
rover, the complexity of Swin-T and Swin-S is similar to those of ResNet-50 and ResNet-101,
respectively.

2.2.2 T2T-ViT

To overcome the limitations of simple tokenization and the redundant attention backbone de-
sign of ViTs, researches proposed an alternative architecture called “Tokens-to-Token Vision
Transformer” (T2T-ViT) which can progressively tokenize the image to tokens improving re-
sults of vanilla ViT on mid-sized datasets. In particular, it is able to achieve more than a 3.0%
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improvement when trained from scratch on ImageNet with respect to the plain VIT. It also
outperformsResNets and achieves comparable performancewithMobileNets bydirectly train-
ing on ImageNet [10]. Morover, T2T-ViT reduces the parameter count of a vanilla ViT by half
as shown in Figure 2.5.
The model consists of two main components:

• A layer-wise “Tokens-to-Tokenmodule” (T2Tmodule) able toundestand the local struc-
ture information of the fed image, while at the same time reducing the lenght of the
tokens progressively.

• An efficient “T2T-ViT backbone” able to draw the global attention relation on tokens
from the previousmodel, this choice wasmotivated by looking at CNN architecture de-
sign after some empirical study as discussed in [10]. This leads to an optimizedmemory
usage, allowing the model to be trained and deployed on devices with limited memory
resources.

Since it is a ViT based architecture, T2T-ViT uses the same multi-head self-attention to en-
able the model to attend to different parts of the input image. This allows the model to cap-
ture long-range dependencies and learn represent Overall, this deep-narrow structure for the
backbone is adopted to reduce redundancy and improve the feature extraction richness. This
approach has shown to be effective for image classification tasks, achieving SOTAperformance
on the ImageNet benchmark.

Figure 2.5: Comparison between T2T‐ViT with ViT, ResNets and MobileNets when trained from scratch on ImageNet. Left:
performance curve of MACs vs. top‐1 accuracy. Right: performance curve of model size vs. top‐1 accuracy. The image is
taken from [10]

.

15



Figure 2.6: Illustration of T2T process. The T2T transformer can be a normal Transformer layer or other efficient trans‐
formers like Performer layer at limited GPU memory. The image is taken from [10]

.

2.3 Vision Transformer Benchmarks

This section presents the performance results of transformer-based architectures for various
computer vision tasks, specifically focusing on ViT and Swin-ViT architectures. The objective
is to showcase how these models can be used effectively for different tasks in computer vision
while achieving SOTA performance.

To showcase the effectiveness of ViT-based architectures, the section provides results for
classification and detection tasks. Table 2.3 shows results for classification tasks, which reach
cutting-edge accuracy in standard image classification datasets, such as ImageNet and CIFAR-
100 [1].
On the other hand, for detection tasks; the section presents the results for Swin-ViT, a variant
of ViT that has shown promising performance in object detection. Specifically, Tables 2.5 and
2.4 show the mean average precision (mAP) results on the COCO dataset, improving on the
previous CNNs based architectures [9].

2.3.1 Classification

Transformers are now widely used for classification purposes, given their remarkable perfor-
mances on widely used datasets, as Table 2.3 confirms.
Research results suggest that the Vision Transformer (ViT) model outperforms the ResNet

model on all of the datasets tested, requiring also significantly fewer computational resources
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Dataset ViT-H/14
JFT

ViT-L/16
JFT

ViT-L/14
I21K ResNet152x4

ImageNet 88.55 87.76 85.30 87.54
ImageNet Real 90.72 90.54 88.62 90.54
CIFAR-10 99.50 99.42 99.15 99.37
CIFAR-100 94.55 93.90 93.25 93.51
Oxford-IIIT Pets 97.56 97.32 94.67 96.62
Oxford Flowers-102 99.68 99.74 99.61 99.63
VTAB (19 tasks) 77.63 76.28 72.72 76.29
TPUv3-core-days 2.5k 0.68k 0.23k 9.9k

Table 2.3: Comparison between Vision Transformer and ResNet on popular image classification benchmarks. The results
are obtained pre‐training the model with bigger dataset. Vision Transformer models pre‐train on the JFT‐300M dataset
outperform ResNet‐based baselines on all datasets, while taking substancially less computational resources to pre‐train.
On the other hand, ViT pre‐train on the smaller public ImageNet‐21k dataset performs well but does not outperform
ResNet.

while training [1]. This is evident from the last row in Table 2.3. Furthermore, when con-
sidering the relationship between transfer performance and total pre-training compute, ViTs
excels overResNets in performance-compute trade-off, using 2-4 times less compute to achieve
the same level of performance. However, a significant limitation is their necessity to have high
data volumes to perform well. They in fact achieve excellent results when pre-trained on large
scale datasets, such as JFT-300Mor ImageNet-21k, and fine-tuned on smaller datasets (e.g. CI-
FAR10, CIFAR100). However, if trained directly from scratch on small-sized datasets, perfor-
mance may decrease [2]. In this context, test accuracy in ViT models is tightly connected to
the creation of bigger and bigger labeled datasets.

2.3.2 Object Detection & Instance Segmentation

It is challenging to adapt Transformer models from natural language processing to computer
vision due to the inherent differences between the two domains, including the vast range of
scales of visual elements and the significantly higher pixel density of images compared to words
in text. Still, Transformers based architecture are now widely used also for instance segmenta-
tion and object detection SOTA research purposes, as a good backbone for feature extraction.
This works by feeding the backbone output information to the detection head which outputs
the bounding boxes and masks output for each object detected in the image, with a correspon-
dent confidence score.
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There are variousmethods tomerge the transformer outputswith the correspondent detection
head. This adaptation can be just a simple reshape of the outputs of specific encoder blocks, as
well as further integrating themwithCNNs (i.e. themodel’s “neck”) [13]. The latter turns out
tobebetter and is referred as themain architectureused for the analysis inChapter 5. ViT-based
models regarding Tables 2.5 & 2.4 use this same data flow process: backbone −→ neck −→
head.

Various frameworks

Method Backbone APbox APbox
50 APbox

75 Params FLOPs FPS
Cascade

MASKR-CNN R-50 46.3 64.3 50.5 82M 739G 18.0

Swin-T 50.5 69.3 54.9 86M 745G 15.3
ATSS R-50 43.5 61.9 47.0 32M 205G 28.3

Swin-T 47.2 66.5 51.3 36M 215G 22.3
RepPointsV2 R-50 46.5 64.6 50.3 42M 274G 13.6

Swin-T 50.0 68.5 54.2 45M 283G 12.0
Sparse
R-CNN R-50 44.5 63.4 48.2 106M 166G 21.0

Swin-T 47.9 67.3 52.3 110M 172G 18.4

Table 2.4: Results on COCO object detection using different methods as head of the model. R‐50 stands for Resnet50,
while Swin‐T stands for Swin‐Tiny. The last two columns corresponds to the computational complexity of the model and
the frame‐rate per second during evaluation stage, respectively. The table is taken from [9].

Various Backbones & Cascade Mask R-CNN

APbox APbox
50 APbox

75 APmask APmask
50 APmask

75 Params FLOPs FPS
DeiT-S 48.0 67.2 51.7 41.4 64.2 44.3 80M 889G 10.4
R50 46.3 64.3 50.5 40.1 61.7 43.4 82M 739G 18.0

Swin-T 50.5 69.3 54.9 43.7 66.6 47.1 86M 745G 15.3
X101-32 48.1 66.5 52.4 41.6 63.9 45.2 101M 819G 12.8
Swin-S 51.8 70.4 56.3 44.7 67.9 48.5 107M 838G 12.03
X101-64 48.3 66.4 52.3 41.7 64.0 45.1 140M 972G 10.4
Swin-B 51.9 70.9 56.5 45.0 68.4 48.7 145M 982G 11.6

Table 2.5: Results on COCO object detection and instance segmentation, using Cascade Mask R‐CNN as head and only
comparing different backbones model. The last two columns corresponds to the computational complexity of the model
and the frame‐rate per second during evaluation stage, respectively. The table is taken from [9].
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2.4 The Importance of SSL for Vision Transformers

Transformershavedemonstratedoutstandingperformanceonnatural languageprocessing (NLP)
tasks. The reason for their exceptional improvements over recurrent neural networks (RNNs)
is not only due to their scalable properties, but also from the incorporation of self-supervised
pre-training (SSL) methods (as discussed in further detail in Chapter 4). BERT, for example, a
transformer-basedmodel for NLP, introduced the concept of dividing the task into two stages:
pre-training on a self-supervised upstream task with a large amount of data, and then fine-
tuning on a supervised downstream task with less data. Using this approach, BERT achieved
new state-of-the-art results on 11 NLP tasks [4]. Currently, applications of self-supervised
techniques in vision transformers for computer vision tasks are quickly increasing. Some exper-
iments have been conducted using techniques such as masked patch prediction or knowledge
distillation. In the case of Dino, this model pre-trains a Vision Transformer through a process
called self-distillation. It uses two networkswith the same architecture: a student and a teacher,
working in parallel. The teacher receives an image as input, while the student receives a patch
of the same image. This allows the student to learn how to predict global features from local
patches, with the constraint that the student’s output distribution should be the same as the
teacher’s. This approach shows that self-supervised learning could be a key factor to develop
a BERT-like model based on vision transformers. As such, investigating new unsupervised
signals extracted from images for pre-training vision transformer models is an important and
necessary step in overcoming the limitations of the architecture and making vision transform-
ers the new state of the art in the computer vision field [2]. This thesis builds upon previous
work, done for classifications tasks, trying to investigate the use of SSL techniques also for ob-
ject detection and instance segmentation.
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3
Frameworks for Object Detection and

Instance Segmentation

Instance segmentation and object detection are a core problem in the computer vision with
numerous applications in various industrial fields such as autonomous driving, surveillance,
and robotics. The ability to accurately and efficiently detect objects (eventually masking them)
in images and videos is essential for enabling machines to understand and interact with the
world around them. In recent years, detection tasks have been revolutionized by deep learning-
based approaches, which have achieved state-of-the-art performance on various benchmarks.
However, they remain quite challenging, especially when dealing with complex scenes and oc-
clusions. This chapter aims to introduce how these tasks are accomplished, illustrating the
architectures and frameworks which are most commonly used for research and industry stan-
dards, as well as the main metrics used to evaluate the model results.
The chapter will be divided into four main sections:

• Section 3.1 illustrates what are these detection problem and how they differ between
each other.

• Section 3.2 describes the most popular detection frameworks used in computer vision
nowadays, providing an in depth discussion of the architectures details of the ones used
for this thesis work.

• Section 3.3 explains how these models are evaluated given such tasks.
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• Section 3.4 will give an example of how ViTs can be implemented for such detection
tasks. Describinghow to integrate themas “good” feature extractionbackbones for these
frameworks.

3.1 Problem Statement

Instance segmentation, as well as object detection became very popular after the great success
that CNNs had in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [14].
In past research, they were treated as two different tasks. However, with the recent advances
in the field, researchers found that both tasks can be performed simultaneously at the cost of
a small increase in the amount of computation required. Compared with the simpler object
detection, the result of instance segmentation brings more practical significance to the final
prediction. In other words, instance segmentation not only detects the presence of objects but
also provides a detailed understanding of their spatial extent within the image, by further refin-
ing their borders, separating the foreground and background at a pixel level.
Another core tasks of computer vision is semantic segmentation, referring to the process of par-
titioning an image into multiple regions or segments, each of which corresponds to a different
object or region of interest. The “semantics” arises from the fact that the final goal is labeling
each pixel in an imagewith a category label, without distinguishing between different instances
of the same category. This provides amore fine-grained understanding of the underlying struc-
ture of an image where also the background is annotated. For example, in a street scene image,
semantic segmentation would label all pixels corresponding to cars as “car” without differen-
tiating between individual car objects. Figure 3.1 gives a great visual example of the difference
between these detection tasks.

Generally speaking, the steps in order to accomplish the detection tasks described above fol-
lows this path:

• Location: solves the problem related to determining the position of the object. The goal
is to locate the actual position of each object.

• Classification: solves the problem of understanding the class of each object in the scene.

• Score: assigns a confidence level to the predicted object class. In real world application,
only scores that are above 0.5 are addressed as usable predictions.
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Figure 3.1: Comparison example between Object Detection and Instance Segmentation. The image is taken from COCO
dataset.

• Segmentation: (for segmentation tasks) divided into instance level and scene level seg-
mentation, trying to mask the interior of the borders of the predicted object.

3.2 Detection Frameworks

Over the years, multiple architectures have been developed to tackle detection problems. The
main problem to solve, is finding a good way to extract the relevant features of the image and
objects inside it. Without entering the details of all the architectures since not all of them are
used in this thesis work, here are some general approaches and algorithms that are used:

• Convolutional Neural Networks: some simple CNNs stacked on top of each other cre-
ates an architecture particularly well-suited for image classification and object detection
tasks, because of their ability to generalize well and extract relevant feature information.
The following frameworks are all CNN-based architectures.

• Region-based CNNs (R-CNNs): are a family of algorithms that use CNNs to detect
and classify objects in images. They use a two-stage approach, where object proposals
are generated in the first stage and classification and localization are performed in the
second stage. This is the base for Fast R-CNN, as well as Faster R-CNN which builds
on top of the previous [15]-[16].

• YouOnly LookOnce (YOLO): a fast object detection algorithm that uses a single convo-
lutional network to predict object bounding boxes and class probabilities directly from
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full images, without the need of the division in sub-regions. This architecture is com-
monly used in real world application because of its processing efficiency despite not
having the best accuracy results. It is worth noticing that its results can still somewhat
compare with SOTA architectures [17].

• MaskR-CNN: is an extension of theR-CNNfamily of algorithms that adds the capabil-
ity of instance segmentation, which involves identifying and segmenting out individual
objects within an image. It can improve the shortcomings of Faster R-CNN in small
object detection, adding an overall small computational cost to the model[18].

• RetinaNet: a one-stage object detection architecture that uses a focal loss function to
address the class imbalance problem in object detection. This loss assigns higher weights
to hard examples, i.e. examples that are misclassified with high confidence, helping the
model to focus on learning the hard examples and improves the detection performance
of rare objects [19].

This is a brief explanation of the some examples of frameworks that could be use for detec-
tion tasks. This chapter will focus only on two of these frameworks, Faster R-CNN andMask
R-CNNwhich are the oneused in the thesiswork and serve as heads for theVisionTransformer
backbone. This choice is due to the fact that they are the most commonly used in the field and
in practical applications. They divide into two main components: the backbone which is re-
lated to the feature extraction and information encoding; the head which takes the backbone
outputs, and performs the detection tasks. As discussed in Chapter 4 this frameworks heads
are jointly integrated with the SSL heads of RelViT architecture. The following sections will
discuss in detail how this R-CNN head works.

3.2.1 Faster R-CNN

In 2016, researches formMicrosoft proposed a novel framework called Faster R-CNN, for ob-
ject detection tasks. It achieved state-of-the-art results on COCO dataset and differed from
standard region based methods which typically relied on inexpensive features extraction and
economical inference schemes [15]-[20]. The main achievement, consisted in feeding the in-
put image into a novel module, called Region Proposal Network (RPN), as well as in the de-
tection branch simultaneously. This resulted in a higher computational efficiency compared
to the SOTA methods used before (e.g. Fast R-CNN). As shown in Figure 3.2, the network
structure of Faster R-CNN is mainly composed of three modules: feature extraction, RPN,
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and classification regression. Mathematically speaking, during the training stage the total loss
is expressed as the sum of the losses regarding the different detection modules:

L = Lobj + Lcls + LRPN + Lbox (3.1)

Region Proposal Network

The Region Proposal Networks (RPN) is a key component of the Faster RCNN object de-
tection model. It is responsible for generating a set of region proposals, or regions of interest
(RoIs), that are likely to contain objects. The RPN is trained to generate these regions by us-
ing a sliding window approach, where it slides a small network over the entire image, and for
each location, generates a set of rectangular object proposals, each of which is represented by a
bounding box and a corresponding objectness score. These scores are used to filter out unlikely
regions, leaving a smaller set of high-confidence regions that are passed on to the next stage of
the model for further processing. The RPN is designed to be computationally efficient and
able to process images in real-time, making it a valuable component for object detection in in-
dustrial applications.

Figure 3.2: Faster R‐CNN head architecture overview. Illustration of how the RPN regions generates the proposal bound‐
ing boxes for each relevant feature extracted by the backbone. The backbone is assumed to be a CNN‐based architecture.
The image is taken from [15].
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RoI Pooling

RoI (Region of Interest) pooling is a technique used to extract a fixed-size feature map from
each of the regions proposed by the RPN. The RoI pooling layer is responsible for resizing the
region proposals, which may have different scales and aspect ratios, to a fixed size, typically a
square feature map. This is accomplished by dividing the region proposal into a fixed grid of
sub-regions, and for each sub-region, themaximumvalue of the activations is chosen as the out-
put feature. This operation is designed to retain the most important information from each
region proposal, while also making the feature maps of each region proposal have equal sizes.
RoI pooling is another key element for the efficiency of the whole framework, allowing the
model to process multiple regions at once and reducing the spatial dimension of the features,
i.e. reducing the computation required by the next layers.

Generally we can summarize the flow of data of the entire model as follows:

• A backbone is used to get the feature maps relative to the input image. Typically, the
backbone is a CNN-based architecture (e.g. ResNet50), but also Swin-ViTs proved to
be a good SOTA competitor [9]-[21].

• Then, the RPN is used to tentatively classify the foreground and background and gen-
erate proposed regions and scores for the bounding boxes of each object.

• Like in Fast R-CNNmodel, here the ROI pooling layer is then used to produce a fixed-
size feature map, taking both the RPN and feature maps outputs.

• Finally, the classification confidence score of the object is obtained in the classification
branch, and thepositioning of the coordinate of the object is carried out in the regression
branch. For practical use, the output should return a dictionary, where each key is a
tensor containing: boxes, labels, scores of each image in the batch. Labels with scores
< 0.5 are usually deprecated.

3.2.2 Mask R-CNN

An even more general model for detection problems is Mask R-CNN, an instance segmenta-
tion framework able to detect objects while also generating the corresponding segmentation
masks. It builds on its predecessors Faster R-CNN, taking the same exact architecture but
adding a novelRoiAling blockwhich is a simple quantization-free layer that faithfully preserves
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exact spatial locations a mask branch in the final stages [18]. Moreover, Mask R-CNN is easy
to generalize to other tasks still utilizing the same framework, e.g. allowing to estimate human
poses keypoints. The data flow follows the same steps as its predecessors with a little addition
in the end. In fact, Mask R-CNN also includes a separate branch for predicting object masks,
which takes the feature maps from the RoI pooling layer as input and generates a binary mask
for each object in the image. The mask branch uses a similar architecture as the classifier and
bounding box regressor, but with a different output. The output of the mask branch is com-
bined with the output of the classifier and bounding box regressor to generate the final output
of the model, which includes: class labels, bounding box coordinates, and object masks for
each detected object. Hence, the loss in the training phase extends naturally from the Faster
R-CNN one by adding only a new terms correspondent to the masks output:

L = Lobj + Lcls + LRPN + Lbox + Lmask = LFasterR−CNN + Lmask (3.2)

Figure 3.3: The Mask R‐CNN framework for instance segmentation [18]. The output is composed of bounding boxes, as
well as mask instances for targets in the image (in this case a group of people). The mask prediction is done in parallel with
all the object detection tasks. The image is taken from [18].

ROI Align

RoIAlign is an improvement over the traditional RoI pooling used in Faster R-CNN. In fact,
RoI pooling works by dividing the RoI image into a fixed grid of sub-regions, taking the maxi-
mum activation value for each sub-region as the output feature. This unfortunately can cause
a loss of spatial accuracy, especially for small objects or objects with complex shapes. RoIAlign
instead, addresses this problemby using bilinear interpolation to align theRoIwith the feature
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map, allowing the model to retain more precise spatial information and generating more accu-
rate object masks. Morover, RoIAlign uses a higher resolution feature map than RoI pooling,
which helps to retain more detailed information about the objects. Overall, this tecnique im-
proves the accuracy of instance segmentation by providingmore precise spatial information to
the model, which allows it to generalize better than its predecessor.

Figure 3.4: Example of how RoI Align works. The dashed grid represents a feature map, the solid lines an RoI (with 2×2
bins in this example), and the dots the 4 sampling points in each bin. RoIAlign computes the value of each sampling point
by bilinear interpolation from the nearby grid points on the feature map. No quantization is performed on any coordinates
involved in the RoI, its bins, or the sampling points. The picture is taken from [18].

3.3 Model Evaluation

In computer vision, several indexes are used to evaluate the model performance in detection
tasks. The research standard metric is the mean-average precision (mAP), which have to be
calculated both for the predicted objects box (mAPbox) and mask (mAPmask) in the case of in-
stance segmentation. Many object detection algorithms, such as Faster R-CNN, MobileNet
SSD, and YOLO, use mAP to evaluate their models for publishing their research. mAP in
fact,is particularly well-suited for evaluating predictions in scenarios where there are multiple
objects of interest andwhere detecting all the objects in the scene is important. Another reason
of the usefulness of this metric is the ability to incorporate the trade-off between precision and
recall considering both false positives (FP) and false negatives (FN) for the final prediction ac-
curacy. This section aims to explain how the mAP is computed giving detailed insights about
the evaluation of the model used in the thesis work.
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3.3.1 Mean Average Precision

The mean of average precision (mAP) values are calculated over recall and precision scores,
ranging from 0 to 1. The following explanation of the computation of the metric is given tak-
ing into account only object detection tasks, e.g. bounding boxes, but an analogous reasoning
could be also applied for segmentation problems. The main steps for the calculations are:

• IoU (Intersetion over Union): the first step to classify the predictions accuracy, is by
estimating the intersection between the predicted and ground truth area for each ob-
ject in the image. A predicted bounding box is considered a true positive if this ratio is
above a certain threshold (e.g. 50, 75, 90) which defines the mAP. This is done for each
predicted box which is correctly labeled, given the ground truth correspondent annota-
tion. Eventually, the predicted bounding boxes are sorted by their confidence score in
descending order and all the scores below a certain threshold aren’t considered in the
final computation. An example is shown in Figure 3.5.

IoU =
Area of Overlap
Area of Union

(3.3)

• Recall & Precision: the second step consists in computing precision and recall values for
each class. {

Precision = TP
TP+FP

Recall = TP
TP+FN

(3.4)

where True Positives (TP) are detections that match a ground truth box with an IoU
above the threshold, False Positives (FP) are detections that do not match any ground
truth box, and False Negatives (FN) are ground truth boxes that do not have a corre-
sponding detection.

• ROC curve: we then plot precision-recall curves for each threshold value, calculating
also the area of these curves for each class in the dataset, giving the different average pre-
cisions (APs) values. This is usually done by using the simple trapezoidal rule:

APIoU =

∫ 1

0
p(r)dr (3.5)

where p(r) is the interpolated precision at recall r.

• AP: we have to average the APs of all the N classes. This results in a single number for
each IoU threshold chosen. This threshold ranges from 0.1 to 0.95 with 0.05 intervals,
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Figure 3.5: Visual example of the IoU coefficient used to evaluate a bounding box prediction.

giving 17 equal intervals.

mAPIoU =
1
N

N∑
i=1

APIoU
i , where IoU ∈ [0.1, 0.95] (3.6)

• mAP is the simple mean of all the mAPIoU, giving the overall performance of the model.

Depending on the threshold of the IoU set a priori, AP splits into different variants: AP50

andAP75. The first one is the AP value when the IoU threshold is at least 0.5, while the latter is
the AP value when the IoU threshold is at least 0.75 which is a more strict metric, as it requires
a higher degree of overlap between predicted and ground truth bounding boxes to count as a
correct detection.
For a practical usage all these calculations are not very efficient, this is why for the evaluation of
eachmodel validation set we calculated the AP coefficients only at certain stages of the training
process (i.e. every n epochs).

3.4 ViTs as backbone for Detection tasks

As explained before, frameworks used in detection problems typically rely on a backbone able
to extract relevant information about the input image. In practice, themost easy way to do this
is to attach a simple ResNet architecture, pretrained on Imagenet-22k, to the (Mask)Faster R-
CNNhead. This gives the model a very powerful set of CNNs to encode the different features
of the objects. As shown in recent years, also the use of Vision Transformer based architectures
can improve detection results in the standardCOCOdataset overCNN-basedmodels [9]-[10].
Hence, this section describes how tomodify a plainViT architecture, in order to use it as a good
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Figure 3.6: An example of the metric precision, given the IoU threshold for object detection. For example if IoU threshold
= 0.8 then the precision in detecting all the cars is 66.67%, while if the IoU threshold = 0.2 then precision results in 100%
accuracy. If we take the standardmAP50 then we would have 83.33% precision.

backbone feature extractor. This process is carried out implementing, between the backbone
and the head, a so called Feature Pyramid Network.

3.4.1 Feature Pyramid Networks

Feature Pyramid Network (FPN) is a neural network architecture that is commonly used in
object detection and semantic segmentation tasks. FPN is designed to address the problem of
scale variation in images, which can make it difficult to detect objects at different sizes [22]. It
works by creating a pyramid of featuremaps with different spatial resolutions and semantic lev-
els, simultaneously. The lowest level of the pyramid contains high-resolution featuremaps that
capture fine details, while higher levels of the pyramid contain lower-resolution feature maps
that capture the global context of the image. FPNs also use a top-down pathway and lateral
connections to create the pyramid of featuremaps. The top-down pathway involves downsam-
pling the feature maps from higher levels of the pyramid and upsampling them to match the
resolution of lower levels feature maps. The lateral connections then merge the features from
different levels, giving the model the ability to capture both fine details and global context. In
addition, this architecture is computationally efficient. Overall, the FPN architecture has be-
come an important tool in the field of computer vision, enabling a range of applications that
require robust and accurate object detection and segmentation. A visual example is given by
Figure 3.7.
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Figure 3.7: (a) Using an image pyramid to build a feature pyramid. Features are computed on each of the image scales in‐
dependently, which is slow. (b) Recent detection systems have opted to use only single scale features for faster detection.
(c) An alternative is to reuse the pyramidal feature hierarchy computed by a ConvNet as if it were a featurized image pyra‐
mid. (d) the Feature Pyramid Network (FPN) is fast like (b) and (c), but more accurate and is the one used in the thesis work.
In this figure, feature maps are indicate by blue outlines and thicker outlines denote semantically stronger features.The
image is taken from [22].

3.4.2 ViT Backbone for Detection

Vision Transformers can achieve SOTA results in image classification and became a standard
over the years for that particular tasks. Unfortunately, on the contrary of Swin-ViTs, plainViTs
are very inefficient when used as a feature extractor for detection tasks. This is due to the fact
that the output of all the transformer encoders has the same shape at each i− th block and the
final output produces a single feature map, which is not convenient for our problem. Since we
are working mainly with Vision Transformer, in this thesis we modified their output in order
to extract multiple features, to better improve the final results. Inspired by [13]-[23], this is
addressed taking the output of the i − th encoder, every four transformer blocks. The final
output will then be a dictionary with 4 different feature maps of the same shape.

For example, given an image of shape (B, 3, 224, 224) the output of the i − th ViT block
would have a shape of (B,Edim,NP) (where B is the batch size, Edim is the embedding dimen-
sion of the ViT andNP is the number of patches). This output is then reshaped by taking the
fraction between the image size and patch size to create a 4-dimensional vector which becomes
a featuremap of shape (B,−1, 224P , 224P ) (whereP is the patch size, and -1 is given by the reshape
applied to automat). A visual example is shown in Figure 3.8. The same process was used also
when working with different ViT-based architectures such as T2T-ViT and Swin-ViT, where
the only difference was the shape of the feature maps produced.
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Figure 3.8: Visual example of how the i − th output of the transformer blocks (left) is extracted to form multiple stages
then processed by the FPN (right). In this case the chosen patch size is 16. The blocks regard only the Vision Transformer
model, even if the same idea can be extended also for Swin‐ViT and T2T‐ViT. The image is taken from [23].

33



34



4
Self-Supervised Patches Spatial Relations for

Vision Transformer

Chapter 2 introduced Vision Transformer architecture, focusing on its dependency on self-
attention mechanism. This process makes the model able to relate the elements of a sequence
both to themselves and all the others. The last section of the same chapter also emphasized
the potential benefits of researching new self-supervised tasks in order to improve ViTs perfor-
mances. In the recent years in fact, self-supervised learning has emerged as a groundbreaking
technique for learning new representations from unlabeled data, providing a powerful tool to
advance the SOTA in various domains of artificial intelligence.
In this context, the aim of this thesis is to explore the potential of self-supervised learning for
Vision Transformers in the domains of object detection and instance segmentation. This ne-
cessity arises from the poor performances regarding ViTs on small-sized datasets, when trained
entirely from scratch, i.e. without relying on a “good” pretrain on a large scale dataset such as
Imagenet.
This work builds on top of the results achieved in [2], where self-supervised learning was uti-
lized in order to learn spatial relations between image patches in classification contexts. Hence,
this chapter aims to illustrate the correspondent model, named RelViT, giving a detail descrip-
tion of its implementation as well as explaining its simple integration into ViTs architecture.
Before digging into RelViT, the following section will introduce the main paradigms of ma-
chine learning and their characteristics.
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The chapter is divided into four main sections:

• Section 4.1 describes the concept of learning paradigm, explaining both supervised and
unsupervised ways models learn. Eventually, introducing self-supervised tasks.

• Section 4.2 gives a general introduction on self-supervised techniques and how they can
improve deep learning models.

• Section 4.3 explains which are the self-supervised labels used in this thesis work.

• Section 4.4 introduces RelViT architecture and all the correspondent relational heads,
as well as their integration in ViT models for detection tasks.

4.1 UnderstandingHowMachines Learn

Amachine learning algorithm follows a specific learning paradigm to acquire knowledge from
data. Different learning paradigms are designed to suit the characteristics of the available data,
and to extract valuable information to solve the task at hand. Among the various learning
paradigms, two of the most common ones are supervised learning and unsupervised learning.
While supervised learning involves learning from labeled data with known outputs, unsuper-
vised learning deals with unlabeled data and seeks to identify underlying patterns and struc-
tures. The next sections enters the details of these two approaches, introducing also a different
paradigm known as self-supervised learning. This last one is the core foundation of these thesis
work and plays a crucial for RelViT model.

4.1.1 Supervised and Unsupervised Learning

Supervised and unsupervised learning are two widely used techniques in the fields of machine
learning andAI. In supervised learning, algorithms are trained using data that consists of input-
output pairs (x, y). The algorithmobjective is to learn a function that describes the relationship
between the input x and the output y, and to be able to generalize to new, unseen data. The
term “supervised” refers to the fact that a human has to observe the input data and establish its
corresponding output y, also known as the target or label, which is not inherently present in
the data. In computer vision, supervised learning is commonly employed for tasks like classifi-
cation, object detection, and segmentation. However, supervised learning has its limitations,
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Figure 4.1: Picturesque example on the difference between various learning paradigms.

such as the need to create larger and larger labeled datasets in order to have better test results,
as well as the difficulty to avoid possible biases due to the large amounts of data. The latter has
also some ethical implications that are challenging to address, due to the limited interpretability
that neural networks models have.
On the contrary, unsupervised learning uses unlabeled data that only provides the input x.

The objective is to identify patterns or regularities in the data, which can be achieved using
large amounts of unlabeled data without any inductive biases. Nonetheless, many unsuper-
vised techniques may not be suitable in order to provide background knowledge for conven-
tional supervised tasks. Thus, newmethods are required, such as self-supervised learning, that
can leverage unlabeled data to learn visual representations without human supervision.

4.1.2 Self-Supervised Learning

Self-supervised learning, in the recent years, has emerged as a promising approach in the field of
machine learning and AI models. Its increasing popularity is due to its ability to combine the
advantages of unsupervised and supervised learning. In this technique, labeled data is utilized,
but the target is obtained through an unsupervised signal within the data itself, thereby elimi-
nating labeling biases and providing a robust background knowledge for standard supervision.
This method has significantly impacted natural language processing (NLP) through a transfer
learning approach that uses a pre-training and fine-tuning scheme. During pre-training, the
algorithm learns useful representations of the data using self-supervision. This knowledge is
then transferred to the fine-tuning phase, which is trained using labeled data for the supervised
task. In computer vision, this technique is increasingly being used to acquire visual representa-
tions from vast amounts of unlabeled images or videos. Various self-supervised tasks have been
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proposed and investigated, such as predicting theRGBchannels of an image given the grayscale
version of the same colored image, or predicting the correct orientation of a rotated image [24].
Some works propose contrastive methods using a siamese architecture [25]. Finally, the core
work of these thesis is based on self-supervised approaches which try to learn spatial relations
between image patches [2]. The next sections will describe some of these self-supervised tasks
that utilize patches of the input image to solve a sort of jigsaw puzzles.

4.2 Self-supervised patches spatial relations

Jigsaw puzzles are a popular game among children that is known to help develop various skills,
including problem-solving and concentration. Additionally, the game requires a high spatial
knowledge of the object in the picture in order to be reassembled, which helps children develop
sophisticated visual generalization abilities. These abilities are also critical for solving tasks in
computer vision. Consequently, the jigsaw puzzle task has been introduced in computer vision
to provide context to the algorithm and enhance its generalization abilities across different do-
mains. The primary advantage of using the jigsaw puzzle task is that it can be employed as a
self-supervised technique by leveraging an unsupervised signal within the input image.

As in the original game, in this context the jigsaw puzzle is applied simply by dividing the in-
put image into non-overlapping patches (as ViTs inherently do). With the known positions of
the patches, several self-supervised tasks can be created, which can label data by exploring their
spatial properties. For instance, in Figure 4.2, the input image is divided into 9non-overlapping
patches, that may be randomly shuffled into one of P possible permutations. Both the original
image and the shuffled one can be passed to a machine learning algorithm that aims to learn
simultaneously a specific vision task and the applied permutation during the training process.
Another way to apply self-supervision is to use two different stages: a pre-training phase, where
themodel learns the spatial patches properties, followedbyfine-tuning on a specific task. These
two approaches are called “downstream-only” and “Upstream+ Fine-Tune”, respectively. The
latter will be simply referred as Upstream throughout this thesis. They both demonstrated to
improve classification results, with respect to the ones obtained by training ViTs from scratch
[2]. The present thesis aims to provide evidence that SSL can also improve on detection tasks,
such as object detection and instance segmentation.
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Figure 4.2: Jigsaw puzzle example for computer vision. The image is decomposed in patches (a). This patches can be
shuffled (b) and then sent to the model which has to learn to encode the spatial information of the input and reorder it
(c).

4.2.1 The Relations Label

This thesis work investigates a self-supervisedmethod that is able to understand the underlying
spatial relations between each couple of patches in the original image. To obtain this result a
label has to be defined, prior to the training process, for each input image. This is done by
creating a so called, 2D “relation” matrix. The idea, step by step, is as follows:

• First of all we have to choosewhat kind of relation to implement, defining a rule for relat-
ingpairs of patches. Basedon this rule, a set of predetermined relationsR = {R1,R2, ...}
among the patches can be established.

• To encode the type of relationshipbetween eachpair of patches, a 2Dmatrix is generated.
This matrix is constructed such that its rows and columns represent the patches, and
each element in the matrix captures information about the relation between the two
corresponding patches from a set of possibilitiesR. Since the order in which the patches
are related matters, the 2Dmatrix has dimensions ofN×N, where N is the number of
patches. It is important to note that the question of “What is the relation of patch xwith
respect to patch y?” is distinct from “What is the relation of patch y with respect to patch
x?” due to the order of the patches. Hence, the relationA→ Bmay differ from the one
A← B. An example is shown in Figure 4.3.

4.3 Self-Supervised Labels in This Study

The last section illustrated the so-called matrix label, a label created so that each image could
work as a self-supervised signal input . This matrix label contains information about the kind
of relations between couples of image patches, following a set of rules chosen a priori. This
section presents which are the four patches spatial relations presented in [2] and studied also
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Figure 4.3: Example of Relations Matrix (on the right) starting from an image divided into 9 patches (on the left). It is a
9× 9 matrix with a row and a column for each patches to take into account the relations between each ordered couple.

in this work. They are called: relative positions matrix, distances matrix, angle matrix and ab-
solute position matrix. It is noteworthy that previous findings indicated that only relative and
absolute positions relations yield the best combination, hence the remaining ones were not
used. In Chapter 5 we provide a little ablation experiment to search for the best combination
of these four labels.

4.3.1 Relative PositionMatrix

Relative Positions Matrix is a label created with the aim to learn relative positions between
patches, i.e. to determinate where a patch x with respect to a patch y is. This type of relation
has been defined using a set of 9 fixed classes to fill the matrix label, as follows:

• CC: Center-Center, meaning that patch x is exactly in the same position of patch y in the
no shuffle image. In other words, x and y are the same patch.

• LC: Left-Center, meaning that the position of patch x is on the same horizontal line and
on the left with respect to the position of patch y.

• RC: Right-Center, meaning that the position of patch x is on the same horizontal line
and on the right in relation to the position of patch y.

• CU: Center-Up, meaning that the position of patch x is on the same vertical line and in
the upper horizontal line with respect to the position of patch y.

• CD: Center-Down, meaning that the position of patch x is on the same vertical line and
in lower horizontal line in relation to the position of patch y.
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• LU: Left-Up, meaning that the position of patch x is on the left and upper line with
respect to the position of patch y.

• LD: Left-Down, meaning that the position of patch x is on left and lower line in relation
to the position of patch y.

• RU: Right-Up, meaning that the position of patch x is on the right and upper line with
respect to the position of patch y

• RD: Right-Down, meaning that the position of patch x is on the right and lower line in
relation to the position of patch y.

Figure 4.4: Each figure illustrates 8 of the 9 possible classes of relations to fill the Relative Positions Matrix. Each image
describes the relation between the blue‐colored patch and the pink‐colored one. The remaining one is the “trivial” class,
where x and y are the same element.

4.3.2 DistanceMatrix

The Distance Matrix is a label designed to facilitate the learning of the spatial relationships
between pairs of patches, with the focus on determining whether a patch x is closer to a patch
y or a patch z. The distance between two points is computed by taking the center of every
patch. It is noteworthy that this matrix is symmetric, reflecting the fact that distance is defined
as the Euclidean distance between the centers of patches (scaled to range from -1 to 1). Further
details and clarification can be found in Figure 4.5, which illustrates the whole rule definition
procedure.
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Figure 4.5: On the left, the original input image divided into 4 non‐overlapping patches. In the middle, the distance matrix.
On the right, the scaled version.

4.3.3 AnglesMatrix

An Angles Matrix is generated as a label to determine the angle between two patches, x and
y. The resulting labels are defined taking the angle between two vectors that originate from
the origin and end at the centers of the patches, as illustrated in Figure 4.6. Mathematically
speaking, the vector u⃗x connects the originO to the center of patch x, and the vector v⃗x connects
the originO to the center of patch y. Hence, the correspondent angle θ can be calculated as:

θ = arccos
(

u⃗x · v⃗x
∥u⃗x∥∥u⃗x∥+ ε

)
(4.1)

where ∥ · ∥ is the euclidean norm and ε is a small positive constant used to avoid numerical
problems during the training stage. It is worth noticing that even in this case the matrix is
eventually scaled between -1 and 1.

Figure 4.6: Frame of reference (F.O.R.) for the Angle matrix. As we can see the vectors are defined starting from the origin
O and connecting to the centre of each patch. θ is the angle between the two vectors that connects the origin to the
centers of x and y patches.
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Figure 4.7: The distance matrix in the center and on the right the scaled version. The original image is divided into four
non‐overlapping patches.

4.3.4 Absolute Position

The final type of relation utilized in this study regards the absolute position matrix. As illus-
trated in Figure 4.3, a sequential alphabetical order is assigned to each patch, which can be
simply transformed in a numerical ordering ranging from 1 to the total number of patchesN.
Unlike the previous relational matrices which are of sizeN × N, this matrix is represented by
a vector containing the position of each patch in the original image. For instance, if the image
is divided into four patches, the corresponding positions of patches [A,B,D,C] are [1, 2, 3, 4],
respectively. This label, ideally, enables the model to locate each object in the image, making
it more robust for vision tasks. In general, it also provides the ability to encode spatial context,
which is essential for the overall understanding of images structure.

Abspos =
[
1, 2, . . . , N

]
(4.2)

4.4 RelViT Architecture

As previously said, the four relational labels, aim to understand the spatial relations between
image patches. This improves Vision Transformer ability to generalize much better than the
same model trained from scratch [2]. This section gives a detailed explanation of how these
relations are integrated in ViTs architecture.

The integrationof self-supervisedpatches spatial relations tasks inVisionTransformermodel
is achieved with the addition of different attention based heads, each one predicting a given
spatial feature. Figure 4.8 illustrates the overall architecture, depicting how the Vision Trans-
former encoder output, i.e. the n − 1 processed flattened patches, are fed to the heads. It is
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Figure 4.8: A simple visualization of RelViT during pre‐training. The picture is taken from [2].

worth noticing that, in the case of object detection and segmentation the classification token
isn’t considered as it doesn’t bring value to the final results.
In simple terms, RelViTmodel is a composition of a backbone, i.e. the plain ViT, plus four dif-
ferent heads. During the learning process, all the heads run in parallel. Hence, the total loss of
the entire process is computed by summing up the losses of each head involved in the process,
in order to update the models weights. Mathematically speaking:

Ltot = αLRel−Pos + βLAbs−Pos + γLAngle + δLDist (4.3)

where LRel−Pos, LAbs−Pos, LDist and LAngle are the loss related, respectively, to the relative posi-
tions matrix task, absolute position matrix task, distances matrix task and angles matrix task.
Since for the majority of the experiments we are not taking into account the last two heads:α, β = 1 for LRel−Pos,LAbs−Pos

γ, δ = 0 for LDist,LAngle

4.4.1 Training Phases

Before delving into the description of the heads architecture it isworth describingRelViT train-
ing process. This small section illustrates how the learning is carried out during experiments.
There two approaches are called “Upstream + Fine-tune” and “Downstream-only”. The first
one divides the learning in two phases: pretraining, where the goal is to learn only the spatial
relations depicted above and minimize the related objectives; fine-tuning, where the model is
trained only on a specific tasks (in this case object detection and instance segmentation), start-
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ing from the weights obtained by the previous phase. This is accomplished by simply loading
the pretrained weights directly into the ViT backbone used for the task. The latter approach is
used when pretraining and finetuning are done in parallel, starting from scratch.

4.4.2 Heads Composition and Loss

Head for relative positions

The2-dimensional relativepositionsmatrixprovides information about thepositions ofpatches
in relation to each other. The corresponding output tensor is 3-dimensional and contains class-
related values. To predict each class, a logit vector is computed for each entry in the matrix.
The correspondent Headrel−pos is constructed as aMulti-Head self-attention with a number of
heads equal to the number of classes used to define the relative positions. This study uses the 9
classes introduced in the previous section. The process then ends after the computation of the
set of scores S = {S1, S2, . . . , Sc=9}. Eventually, these scores are scaled and stacked to form the
final output. For instance, given an input sequence x ∈ RN×dmodel and c classes, c scaled scores
matrices are calculated as follows:

Sk =

(
x ·Wk

Q

)
·
(
x ·Wk

K
)T

√
dk

, where

k ∈ 1, 2, . . . , c x ∈ RN×dmodel

Wk
Q,Wk

K ∈ Rdmodel×dk
(4.4)

Themean cross-entropy is used as the loss function to assess the final predictions, which are
estimated for each entry in the output tensor corresponding to the 9 classes. In practice, given
the true matrixM with entriesmij and the predicted tensor T with elements defined as Tijk, a
softmax function is initially applied over the classes to transform the tensor T as follows:

T′

ijk =
eTijk∑c
k=1 Tijk

, for

k ∈ 1, 2, . . . , c = 9

i, j ∈ 1, 2, . . . ,N
(4.5)

Hence, the final loss is defined as:

Lrel−pos = −
1
N2

N∑
i=1

N∑
j=1

c=9∑
k=1

pij(c = k)log2(T
′

ijk) (4.6)

where N is the number of patches while pij (c = k) is the probability that the class in the
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Figure 4.9: Relative Positions Head overview. The head takes as inputs the tokens processed, creating the relative posi‐
tions Tensor as output and eventually calculating the correspondent loss value.

entrymij is the class k.

Head For Distances

The distances matrix is a 2-dimensional matrix that contains information about the distances
between each pair of patches. In contrast to the relative position head, the output objective
for the Headdist block is a 2-dimensional tensor. This is accomplished by building the corre-
spondent block as a scaled dot-product self-attention layer. Specifically, the input sequence
x, which consists of N vectors with dimension dmodel, is linearly transformed to produce two
matrices, Q and K, both ∈ RN×dk . Subsequently, Q is multiplied by the transpose of K, and
the resulting matrix is divided by

√
dk. Thus:

HEADdist(x) =

(
x ·Wk

Q

)
·
(
x ·Wk

K
)T

√
dk

, where

x ∈ RN×dmodel

Wk
Q,Wk

K ∈ Rdmodel×dk
(4.7)

Figure 4.10 illustrates thewholemechanism. In this context, the loss used to evaluate the pre-
dictions is theMSE-loss, computed as themean of the distances between each truematrix entry
and predicted one. Mathematically speaking, given the true distances matrixDwith entries dij
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Figure 4.10: Distances Head overview. The head takes as inputs the tokens processed, creating the distance Tensor as
output and eventually calculating the correspondent loss value.

and the predicted oneDwith entries dij, the distances loss is estimated as:

Ldist =
1
N2

N∑
i=1

N∑
j=1

(
dij − d̂ij

)2
(4.8)

Head For Angles

The anglematrix is a 2-dimensionalmatrix that contains information about the angles between
each couple of patches. The core technical implementation is the same as of the distance head.
Hence, we could refer to Figure 4.10 for a visual explanation. In the same way:

HEADangle(x) =

(
x ·Wk

Q

)
·
(
x ·Wk

K
)T

√
dk

, where

x ∈ RN×dmodel

Wk
Q,Wk

K ∈ Rdmodel×dk
(4.9)

The loss function used to evaluate the predictions is theMSE-loss, which is calculated as the
average of the angles between each truematrix entry and the corresponding predicted entry. In
mathematical terms, let A be the true angles matrix with entries aij, and let Â be the predicted
angles matrix with entries âij. The angles loss is computed as follows:

Langle =
1
N2

N∑
i=1

N∑
j=1

(
aij − âij

)2 (4.10)
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whereN represents the number of patches in the original image.

4.4.3 Head for Absolute Position

The final head is the absolute position head, which assigns an absolute position target to each
token zi (i.e. each patch) by simply taking its corresponding position in the patch embedding of
the image. The model then performs a classification task over the predicted absolute positions
{1, 2, . . . ,N}. For this head, the loss function is a standard cross-entropy loss, same to the one
used for the relative position head:

LAbs−Pos = −
1
N

N∑
i=1

CE
[
φabs−pos(zi), i

]
(4.11)

where CE stands for Cross-entropy, φ(z) is the relation used and each class i corresponds to
the ordered value of the patches in the original image as explained in Section 4.3.4:

φ(z) = zW+ b where i ∈ 1, ....,N

4.5 RelViT backbone for Detection tasks

InChapter 3we described howVisionTransformer can be integrated in a detection framework
by using it as a backbone for feature extraction. The same idea can be applied analogously to
RelViT: we take the ViT backbone and attach to it the four relational heads, plus an extra head
which is the detection one. This last head has to be intended as a large CNN based model,
e.g. Mask R-CNN, able to further process the extracted information and output the bound-
ing boxes and/or binary masks. A visual example of the entire architecture is depicted in Fig-
ure 4.11.
The implementation is fairly modular, henceUpstream andDownstream-only tasks can be per-
formed in a relatively simple way. The goal is to prove that the inclusion of the four relational
heads, in the final model, allow the capture of additional spatial information between patches,
which can be useful for detection tasks in small-sized datasets.
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Figure 4.11: Illustration of the RelViT archtiecture integrated with the detection head. The ViT backbone (in orange) out‐
puts are fed in parallel to the relational heads (in green) and to the FPN module (in blue). The FPN adds a pooling layer to
the processed information. Finally, the outputs follows from the detection head (in purple).
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5
RelViT Experiments on Object Detection

and Instance Segmentation

Previously, we introduced RelViTmodel, describing in detail the architecture and objective of
the heads. This chapter instead is focused on presenting all the experimental results conducted
in this thesis work. To ensure a fair comparison the upstream approach was used, i.e. a self-
supervised pretraining plus a fine-tuning to learn detection tasks. In this context, the outcomes
will be defined as “pretrain” results, while those obtained from the standard ViT trained from
scratch only on detection tasks will be referred to as the “baseline”. Moreover, from now on
when stating “RelViT” achievements we will refer to the model given by the backbone, the
relational heads as well as the detection head.
Ablation studies were carried out using a downstream-only approach, instead.
The goal of this thesis work is to enhance the performance of the Vision Transformer model
through the utilization of a set of self-supervised tasks. To evaluate the efficacy of the relational
heads, experimentswere conducted using standard vision benchmarks for object detection and
instance segmentation. Hence, the metrics used are mAP, mAP50 and mAP75.
This chapter is divided into three sections:

• Section 5.1 provides a detailed overview of the datasets used in the experiments.

• Section 5.2 describes the hyperparameter configurations used in both the upstream and
fine-tuning stages, respectively.
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• Section 5.3 reports the final experimental results, comparing the performance ofRelViT
with that of the standardViT taken as the baseline. In addition, it presents the outcomes
of ablation studies that were conducted.

5.1 Datasets and Configurations

To assess the performance of RelViT in detection tasks, we first utilized some of the most
widely used datasets in the field, such as COCO and PASCAL-VOC. Object detection was
performed on all datasets, while instance segmentation was only performed on two of them,
namely COCO and Oxford-Pet. Each used dataset and further details are reported below:

5.1.1 Datasets
• COCO: the MS COCO dataset is widely used to benchmark object detection, image
segmentation, and captioningmodels. It contains nearly 330,000 training images across
91 categories, as well as 5,000 validation images [20]. The dataset is highly challenging
and is considered the standard benchmark for detection tasks in SOTA research. Fig-
ure 5.1 shows an example of image-annotation pairs in COCO. It is worth noting that
it is highly unbalanced in favor of the “person” class, which is present in over 60,000
images. This poses a challenge for models to learn to detect other objects accurately. In
order to test RelViT in relatively small-sized datasets, for this workwe are taking a subset
of COCO containing 50,000 training images and 3,000 validation images. From now
on, it will be referred as COCO50k.

• PASCAL-VOC: the PASCAL Visual Object Classes 2007 is a well-known dataset that
includes 20 object categories such as vehicles, household items, animals, and more [26].
Each image contains bounding box annotations and object class annotations, with a to-
tal of about 11,000 images. Before the rise in popularity of COCO this dataset was
the standard benchmark for detection model evaluation, due to its high-quality annota-
tions.

• KITTI: the KITTI dataset is popular in the autonomous driving platforms field, offer-
ing various vision tasks such as stereo, optical flow, and visual odometry [27]. It pro-
vides standard object detection annotations, including monocular images and bound-
ing boxes. In this context, we utilized the annotations of 7480 training images to extract
bounding boxes for 8 different object classes including car, pedestrian, truck, and so on.
However, similar to COCO, it is important to note that this dataset is significantly un-
balanced towards “car” and “pedestrian” classes.
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• SVHN: the Street View House Numbers dataset is popular for classification tasks. It
pose a hard real-world problem of recognizing digits and numbers in natural scene im-
ages, providing at the same time a large amount of labeled data [28]. It is divided into
two data formats: the first containing MNIST-like 32-by-32 images centered around a
single character, to perform classification; the second having about 30,000 training sam-
ples with character-level bounding boxes. Experiment-wise, in order to perform object
detection the second format was chosen.

• Oxford-Pet: Oxford-Pet is very simple dataset widely used for classification tasks, con-
taining 37 category pet dataset with roughly 200 images for each class [29]. Since all the
images have an associated ground truth annotation of breed, head ROI, and pixel level
trimap segmentation, it is possibile to perform either object detection and instance seg-
mentation. The first one for the heads of the pets, while the latter for the entire body.
In the experiments the tasks will be referred to the datasets: Oxford-pet and Oxford-Pet
Mask, respectively.

Notably, all the datasets described above are relatively small, ranging from 3,000 to 50,000
training images. This choice is due for two critical factors: the limited computational avail-
able; the investigation of the extent to which self-supervised techniques enhance ViT’s capabil-
ities in handling small datasets for detection tasks. This research direction has the potential to
yield valuable insights into the behavior andperformance of transformermodels in this context,
thereby contributing to the advancement of the field.

Figure 5.1: Example images taken from COCO dataset. Each object in the image has its own bounding box as its own
segmentation mask. The image is taken from [9].
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5.2 Configurations

5.2.1 Upstream Stage

Various backbone models were employed in the experiments conducted in this work. Never-
theless, the configurations of the upstream phase with RelViT remained as consistent as pos-
sible throughout the whole analysis. To ensure a fair comparison between the models, all the
backbones yield a similar number of parameters. In particular the chosen architectures were:
ViT-S/16, Swin-Tiny and T2T-14 as listed in Table 5.1.

Model Params
ViT-S 22.3M
Swin-T 28M
T2T-14 21.5M

Table 5.1: Backbone used for detection tasks. All the models yield similar number of parameters.

Hyperparameters

The upstream phase is carried out using the same set of default hyperparameters defined in [2],
with a few exceptions. The setup used for all training tasks is described:

• Initialization: all the weights are random initialized using a seed equal to 2023. Both
classification token and positional embeddings, if used, are initialized as zero vectors.

• N-epochs: the number of training epochs defines the amount of time spent to learn
the self-supervised tasks. The default value was 100 epochs, but for some datasets, i.e.
Oxford-Pet and PASCAL-VOC, the value has to be respectively increased to 500 and
200 in order to learn effectively the given tasks.

• Image augmentation: the data augmentation applied to each image is composed of a
random horizontal flip. In addition, each image is normalized to have mean equal to 0
and standard deviation equal to 1 over channels in the training set.

• Patch augmentation: all the patches, obtained from the augmented image, are ran-
domly resized-cropped and both a color shift with color-jittering and a gray-scale are
randomly applied to avoid chromatic aberration issue, with probability 0.8, 0.2 respec-
tively [25].
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• LearningRate: the default Pytorch implementation of theAdamWoptimizerwas used
in this work. The weight decay was set to 0, and the learning rate had a linear warm-up
starting from 0, reaching a value of 5 · 10−4 after 10 epochs and slowly decaying back
to 0 at epoch 100. The choice of this learning rate was based on previous experiments,
demonstrating that both ViT and RelViTmodels significantly improved their accuracy
when switching from SGD to AdamW [1]-[2].

• Patches Shuffling: in order to prevent the model from learning trivial solutions and
facilitate the acquisition of meaningful features, the input image patches were shuffled
randomly during the experiments. This approach was necessary for models other than
the plain Vision Transformers. Hence, for the latter patch shuffling was not utilized.

5.2.2 Fine-tuning Stage

The fine-tuning stage, which uses Faster R-CNN or Mask R-CNNmodels, typically requires
more training time than the upstream phase due to the integration of the backbone with the
detection heads. This integration results in a substantial increase in the number of model pa-
rameters, as shown in Table 5.2. Moreover, the model’s “neck” component for feature extrac-
tion, consisting in a feature pyramid network (FPN) with multiple convolutional layers, also
contributes to the total parameter count.

Object Detection

Backbone Head Params
ViT-S Faster R-CNN 59.4M
Swin-T Faster R-CNN 66.7M
T2T-14 Faster R-CNN 60.6M

Instance Segmentation

ViT-S Mask R-CNN 63.2M

Table 5.2: Models parameter size for the fine‐tuning stage, for both object detection and instance segmentation. Instance
segmentation was performed using only a single architecture, i.e. ViT‐S/16.

Hyperparameters

The configurations settings of this phase mainly regards the final detection heads. All the mod-
els were implemented using the same hyperparameters described in the corresponding papers
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Figure 5.2: Visual example of the data augmentation used for this work, during the fine tuning stage. The images is taken
from COCO and displays the object masks together with their bounding boxes. (a) the original image, (b) is the flipped
version. (c) & (d) are two example of IoU crop augmentation. The final augmentation is a combination of both.

[9]-[10]-[23]. The setup of the detection heads for both the baseline and the pretrain are the
same. Additionally since the frameworks for object detection and instance segmentation share
very similar characteristics, the head’s hyperparameters didn’t change for the two models. A
detailed list is described as follows:

• Number of Epochs: the number of training epochs was set to 100 and to ensure fair
comparison, it remained constant throughout all the experiments.

• Image Size: image size was set to be (224, 224) for all datasets. This was kept constant
also regardless of the backbone used in the experiments.

• Learning Rate: the learning rate used was AdamW, which proved to achieve better re-
sults than SGDwithmomentum for ViT based architectures. The starting value was set
to be 10−4 with a stepsize decay of 0.1 after 80 epochs.

• Weights decay: weights decay was initialized to 10−4 for the plain ViT and T2T-ViT
models, while for Swin-ViT the choice was 0.05. These choices follow the setup of the
original papers.

• Augmentation: the augmentation usedwas chosen to be “ssdlite”, which is popular for
detection tasks. It is a composition of a random horizontal flipping and a random IoU
crop, bothwith a probability of 0.5. Figure 5.2 gives a visual example. No augmentation
was used for the validation set.

• Batch size: the batch size was set to be 16 and 8 for the training and validation sets,
respectively.

• Head parameters: other R-CNNmodels parameters were set to the ones of the default
implementation of Pytorch, both for object detection and instance segmentation frame-
works.
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5.3 Results

In this section, we will analyze the results of the experiments on object detection and instance
segmentation. According toTable 5.3, the results show thatRelViTconsistently outperformed
the baseline on all datasets, which is evidence of its effectiveness in detection tasks. The exper-
iments were conducted using the same backbone, ViT-S/16. Figure 5.6 illustrates some quali-
tative results obtained on PASCAL-VOC.
Impressively, RelViT achieved a substantial improvement of 9.39% in mean average precision
(mAP) for object detection in the Oxford-Pet dataset, representing the most significant en-
hancement observed in the study. This can be attributed to two factors: firstly, the high num-
ber of training epochs during the upstream phase, which were in total 500; secondly, the small
size of the dataset, a domain in which RelViT performs well.

Regarding also instance segmentation,RelViTachieved anoteworthy improvementof2.20%
and 2.70% in mean average precision (mAPbox and mAPmask) compared to the baseline in the
COCO50k dataset. This dataset has a pronounced bias towards the ”person” class, prompting
the calculation of metrics specifically for this class. In this regard, RelViT achieved improve-
ments of 2.85% and 2.21% in the mAPperson

box and mAPperson
mask benchmarks, respectively.

Furthermore, in order to establish the general efficacy of self-supervised techniques, a com-
parative analysis was conducted using different backbones. Table 5.4 presents the outcomes

Object Detection

Dataset ↑ mAPbox ↑ mAPbox
50 ↑ mAPbox

75
Baseline Pretrain Improv. Baseline Pretrain Improv. Baseline Pretrain Improv.

COCO50k 14.93 17.63 +2.70 24.95 27.70 +2.75 14.00 17.64 +3.64
VOC-2007 17.91 19.24 +1.33 35.24 37.14 +1.90 15,70 17.39 +1.69
KITTI 26.81 29.39 +2.58 51.67 57.39 +5.72 25.04 25.93 +0.89
SVHN 24.20 25.25 +1.05 56.01 58.51 +2.50 16.11 16.51 +0.40
O-Pet* 32.77 42.16 +9.39 58.29 71.15 +12.86 33.74 44.53 +10.79
O-Pet*Mask 29.99 34.75 +4.76 49.49 56.95 +7.46 30.65 37.18 +6.53

Instance Segmentation

↑ mAPmask ↑ mAPmask
50 ↑ mAPmask

75
COCO50k 13.53 15.73 +2.20 28.02 30.85 +2.83 13.09 15.56 +2.47
O-Pet*Mask 33.86 42.22 +8.36 50.26 58.73 +8.47 38.84 51.31 +12.47

Table 5.3: Detection benchmarks comparison between different datasets using Upstream + Fine‐tune schedule. The met‐
rics used are mAP, mAP50, mAP75. In the case of instance segmentation tasks, the mAPmask is also added. In all cases
RelViT successfully achieved better results than the baseline trained from scratch. All results were evaluated using the
same model, i.e. using ViT‐S/16 backbone, which yields∼ 22Mln parameters. *O‐Pet stands for Oxford‐Pet.
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of this analysis for the KITTI dataset, indicating that the baseline was outperformed across
all measures. In particular, RelViT approach results in an improvement of+2.58%,+5.72%
for the mean average precisions (mAP, mAP50) using the plain ViT backbone. These suggests
that utilizing the simpleVisionTransformer as the underlying architecture for object detection,
as opposed to utilizing diverse ViT based architectures, yields the most significant and notable
enhancement in performancemetrics, when comparingRelViT against its corresponding base-
line. However, additional experiments on different datasets are needed to confirm this final
statement.

Object Detection

Backbone ↑ mAPbox ↑ mAPbox
50 ↑ mAPbox

75
Baseline Pretrain Improv. Baseline Pretrain Improv. Baseline Pretrain Improv.

ViT-S/16 26.81 29.39 +2.58 51.67 57.39 +5.72 25.04 25.93 +0.89
Swin-T 34.13 34.94 +0.81 64.33 64.91 +0.58 33.09 33.67 +0.58
T2T-14 32.14 33.75 +1.61 59.74 61.99 +2.25 28.59 31.74 +3.15

Table 5.4: Object detection benchmarks comparison between different ViT based architectures on KITTI using Upstream +
Fine‐tune schedule. The metrics used are mAP, mAP50, mAP75. In all cases RelViT successfully achieved better results than
the baseline trained from scratch. All models consist of a backbone plus a Faster‐RCNN head, yielding similar number of
parameters for comparison, i.e. ∼ 60Mln.

5.3.1 Ablation Studies

Figure 5.3: mAP50 benchmark comparison, using Downstream‐only approach and experimenting with different patch sizes
for ViT‐S (left) and ViT‐B (center). mAP50 benchmark comparison, using Downstream‐only approach and experimenting
with different image sizes (right). RelViT always outperforms the baseline trained from scratch.

The performance of RelViT model, for object detection tasks, varying the patch size has
been studied. In this case, RelViT was trained following a downstream-only task scheme. The
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main metric is the mAP50, since the dataset chosen is PASCAL-VOC. The specific selection
of this dataset was due to its popularity and moderate size, which provided an advantageous
opportunity to assess the efficacy of the models across a range of complexity levels.
Each image have been uniformly resized to dimensions of (224, 224) in accordance with prior
experimentalmethodologies. This image size gives the possibility to study three different patch
sizes, i.e. 8, 16 & 32. As explained in chapter 2, the lower the patch size the higher will be the
model complexity as well as the computation required.
Figure 5.3 compares the final accuracy levels obtained using RelViT downstream-only (green
curve) with the baseline trained from scratch (blue line). The comparison is done both for ViT-
S and ViT-B models. The two colored curves share the same trend for both ViT models when
varying the patch sizes. In fact, throughout the plot the improvement remains overall constant,
which is in contrast with results found for classifications tasks [2]. Moreover the improvement
of RelViT for the base model is more than double with respect to the small one (from 1.9% to
4.2% for patch size= 16). This is probably due to the number of parameters that are optimized
through RelViT self-supervised learning. In fact the ViT-Bmodel contributes with more than
half of the total model parameters (ViT plus Faster R-CNN), while ViT-S contributes for only
a third of the total parameter count. Hence suggesting, that for detection tasks, the larger the
Vision Transformer the higher will be the accuracy improvement with RelViT. It is also inter-
esting to see how the baseline accuracy of ViT-B is worse than the one of ViT-S baseline.

Furthermore, the performance of RelViT using downstream-only approach were evaluated

(a) (b)

Figure 5.4: ViTs backbone positional embeddings comparison between the baseline (a) and the downstream‐only approach
(b). The image size is set to 224 and patch size to 16. RelViT helps with the correct learning of the embeddings by provid‐
ing some spatial information of the input patches to the model.
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Method SpRel AbsPos Ang Dist ↑ mAP50

Baseline 7 7 7 7 35.24
Upstream ✓ ✓ 7 7 37.14

Downstream ✓ ✓ 7 7 37.08
Downstream ✓ ✓ ✓ 7 38.43
Downstream ✓ ✓ 7 ✓ 38.83
Downstream ✓ ✓ ✓ ✓ 38.58

Table 5.5: Ablation experiments varying the Self‐supervised tasks on PASCAL‐VOC dataset using ViT‐S/16. Upstream
results in the table refers to the fine‐tuning stage. All tasks combination improve the baseline, with the best being the use
of absolute, relative positions and distance heads.

using different image sizes. As for the previous ablation study, the model utilized for the exper-
iments was ViT-S/16. Before being fed to the Vision Transformer, the input image is resized to
three different values, i.e. 224, 384 and 512. Then, the detection head output is subsequently
resized to the original image size in order to evaluate the mAPmetrics.
Figure 5.3 (right) illustrates the outcomes of the analyses, indicating that a higher image size
has a positive influence on RelViT. ViT-S/16, with an image resized to 512, demonstrates the
highest improvement of+4.60%. This is most likely because, as shown in Figure 5.4, RelViT
enhances the learning of positional encoding, which is significantly optimized for larger images.

An ablation study on VOC dataset was conducted to test the effectiveness of different self-
supervised relations defined in chapter 4. The experiments utilized a ViT-S/16 as the backbone
for the model. Previous research has demonstrated that the combination of absolute and rel-
ative positions is the most effective out of the four relational heads in classification tasks [2].
Therefore, these two were chosen as the default for all the experiments reported.
According to the results displayed in Table 5.5, the inclusion of the distance relation in object
detection tasks results in an enhancement of +1.75% in the outcomes. Conversely, incorpo-
rating also the angle attention head, to the three previous ones, does not provide any benefit to
RelViT and leads to a decrease in overall performance.
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Baseline RelViT
Success cases

Failure cases

Table 5.6: Qualitative comparison between the baseline and RelViT results on PASCAL‐VOC dataset, using ViT‐S/16. On
the upper part the success cases in which RelViT improves over the baseline, on the lower part the failure cases of both
models. The images display only predictions with the correspondent confidence score above 0.5.
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6
Conclusion

This thesis work focuses on the investigation of self-supervised techniques, based on spatial re-
lations among patches of the input image. The goal is to improve Vision Transformer results
specifically for object detection and instance segmentation. This necessity arises form the poor
performing benchmarks of ViTs when trained form scratch on small-sized datasets. The un-
derlying model used is RelViT, which consists in four relational heads that are attached to the
plain ViT backbone. Only two heads, named relative position and absolute position, are used
to learn the self-supervised input signals through a MSA layer. The first head objective is to
learn where a patch x with respect to a patch y. The second learns the numerical order of the
patches in the original image. RelViT has been shown to outperform the plain ViT baseline
trained from scratch in classification tasks [2].
In order to extend the same analysis for detection tasks, specific frameworks must be added,
i.e. Faster R-CNN or Mask R-CNN, in a way such that the ViT serves as the backbone for
feature extraction. The detection head, then learns to identify regions of interest within the
image, assigning objectness, scores to those regions, and performing bounding box regression
to precisely localize each object.
The experiments conducted in this study highlight the advantages of using self-supervised tasks
during a pre-training phase, followed by transferring the acquired knowledge to a supervised
fine-tuning task. This approach can ultimately lead to improved performance and reduced re-
liance on large labeled datasets.
Evaluating RelViT model on multiple detection benchmarks, brings significant improvement
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across all the datasets considered. Specifically, on a subset of the COCO dataset, RelViT ex-
hibited an increase of +2.70% and 2.20% in terms of mean average precision (mAPbox) and
mean average precision for mask prediction (mAPmask), respectively.
The performance of RelViTwas also evaluated using different ViT based architectures, such as
Swin-ViT and T2T-ViT. Results again demonstrated a consistent improvement with respect
to the baseline, thereby underscoring the efficacy of the RelViT strategy in diverse contexts.
Ablation studies were conducted to investigate the impact of different patch sizes for detection
tasks, showing that the overall improvement achieved by RelViT remains constant for both
ViT-S and ViT-B models across multiple patch size values. Additionally, the improvement in
performance for the ViT-B model is observed to be twice that of the ViT-S model, suggesting
that the efficacy of RelViT increases with the size of the Vision Transformer backbone.
Finally, experiments were conducted to determine the optimal combination of relational heads
to employ. The analysis revealed that the best overall performance is attained by utilizing the
distance head in conjunction with the two primary positional heads.
In conclusion, although RelViT outperforms the baseline in all detection tasks, it does not
quite match state-of-the-art results when using an already pretrained model as the initial start-
ing point. Thus, further investigation is necessary to enhance RelViT’s performance and com-
petitiveness with the current state-of-the-art models. Furthermore, it may be worthwhile ex-
tending the same analysis to video benchmarks by transforming spatial relation tasks into tem-
poral relation tasks. This would provide an avenue for exploring RelViT in video-related appli-
cations and make a meaningful contribution to the current knowledge of the effectiveness of
self-supervised techniques.
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