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Introduction

The modern perspective on Quantum Field Theory is to think of every model as an

effective field theory, describing physics consistently only up to a certain energy scale. Such

description characterizes successfully those processes whose typical energy is inside the given

range, but beyond it the spectrum of phenomena enlarges and eventually the theory fails

to be predictive. Famous examples of effective field theories are the Fermi theory of weak

interactions and the chiral Lagrangian describing the low-energy dynamics of quantum chro-

modynamics (QCD). In both cases we know that the underlying physics is richer: weak

interactions are mediated by the Z0 and W± bosons, though not present in the Fermi La-

grangian, and the pions, the degrees of freedom described by the chiral Lagrangian, are bound

states of quarks. Nevertheless, as long as one stays in the proper energy range it is difficult to

identify these fine structures and the relevant physics is equally (and more easily) described

via the effective field theory. It is important to stress that in the energy range in which it

holds, the effective field theory is predictive as well as the “complete” theory from which it

comes.

Going beyond its purely phenomenological meaning, quantum field theories are now re-

garded as effective field theories in the sense that we don’t expect a given theory to be

descriptive of all phenomena at all energy levels; we expect instead to have to deal with

different theories at different energy levels, seen all together as the various low-energy re-

alizations of the same, unifying theory. Following this perspective, we can look at the two

most relevant quantum field theories that have been established. On one side there is the

Standard Model, the theory of subatomic particles and their interactions that can be seen as

the effective field theory at the TeV scale. On the other there is String Theory, that is, so

far, the best theory of quantum gravity we have at our disposal and lives close to the Planck

scale. According to the effective field theory principles, we expect that it should be possible

to connect these two infrared (IR) and ultraviolet (UV) worlds. However, how to concretely

realize such connection is not at all clear. To understand this problem, we recall that String

Theory is a highly-constrained theory and self-consistency requires it to be defined in ten or

eleven spacetime dimensions. The contact with 4D-physics is then made via the compacti-

fication procedure, through which the extra dimensions are “wrapped” over special internal

manifolds. The richness and complexity of such operation produce an extremely large spec-

trum of low-energy effective field theories, called “string vacua”, coming from String Theory,

without clear indications as to which selection mechanism to follow in order to reach, in the

end, the Standard Model.

Although this connection is not clearly realizable following such top-down procedure from

String theory to the 4-dimensional models, one may wonder if it is instead possible to do so

following a bottom-up approach. This observation is the starting point of a research project

called Swampland program [1–3]. The idea of the Swampland program is in fact to track

back the path that leads to String Theory - or, more in general, to a theory of quantum
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gravity - by identifying which low-energy models are going to agree with String Theory in

the UV and which won’t. The set of all low-energy theories that admit a UV-completion

into a theory of quantum gravity is called the Landscape of quantum gravity; all the other

theories, well-defined in themselves but not consistent in the UV with quantum gravity, are

said to belong to the Swampland. This distinction between theories in the Landscape and in

the Swampland is made via the so called swampland conjectures. These are selection criteria

stating the properties that a theory should have in order to belong either to the Landscape

or to the Swampland. As the name suggests, these conjectures are not proven facts but

rather well-established arguments, supported by vast classes of examples and motivations.

The more the arguments come from different sources (e.g. String Theory, gauge/gravity cor-

respondence, black hole physics, etc.), the better a conjecture is supported. More concretely,

once a swampland conjecture has been established, it can be applied to study quantum field

theories in the following way. Starting from an effective field theory, its typical higher-order

extension is built as a series of irrelevant operators, which usually follows a perturbative

expansion in the number of derivatives these operators contain. The resulting Lagrangian is

then characterized by a set of coefficients, associated to the different higher-order operators,

that at the level of this construction are completely arbitrary. The swampland conjecture acts

precisely by restricting this set of parameters to the subgroup that realizes its prescriptions.

Then, according to the conjecture, it follows that the theories corresponding to this subset

of coefficients belong to the Landscape and all the others to the Swampland.

Among the various conjectures that have been established (see [2,3]), in this thesis work

we focus on the Weak Gravity Conjecture (WGC) [4]. This is probably the most studied

conjecture and for this reason has undergone several refinements and elaborations. In its

minimal formulation, called Electric WGC, it states that a theory coupling gravity and a

U(1) gauge field must describe a state for which the electric charge is (in proper units)

greater than its mass. In other words, it states that it must exist a state for which the

gravitational interaction is weaker than the electromagnetic one. One of the main motivation

for this property to be taken as a swampland conjecture comes from black holes physics.

Indeed, the Electric WGC coincides exactly with the condition that allows extremal black

holes to discharge without introducing naked singularities (see [4]). Moreover, its prescription

of having a state with charge-to-mass ratio greater than one can also be rephrased as the

possibility for an extremal black hole to decay into smaller black holes [2,3]. The reason why

a black hole should be able to discharge or decay is that otherwise we would end up with a

universe filled with a very large number of stable remnants and this clearly suspect picture

leads in fact to entropy inconsistencies [10].

This black hole-based arguments provide also a clear example of how the WGC can be

tested following the procedure described above: starting from a theory coupling gravity to a

U(1) gauge field, one can find its higher-derivative correction and study the charge-to-mass

ratio of an extremal black hole solution of the extended theory; the WGC will then constrain

the higher-order coefficients to the subset for which such correction results to be positive.

This Swampland-based study was carried out, in the case of Einstein–Maxwell theory and its

4-derivatives extension, for example in [11] and [18]. In particular, in [18] a strong evidence

supporting the WGC was pointed out. This key result is that the WGC is immediately

realized in Einstein–Maxwell theory if the positivity bounds on the scattering amplitudes of

the theory [20] are taken into account. This observation is very interesting because positivity

bounds are a set of constraints on the theory’s coefficients that come from applying the

properties of locality, Lorentz symmetry and S-matrix unitarity, so that these bounds are

essentially a consequence of requiring the theory to be self-consistent. The fact that the

viii



WGC points in the same direction of such structural requirements is indeed of great support

to the conjecture itself.

This equivalence, that holds exactly in Einstein–Maxwell theory, is though lost when the

field content of the theory becomes richer [33]. At the same time, it seems to be restored if we

make the additional requirement that the theory under examination preserves electromagnetic

duality [33,34]. Electromagnetic duality (EM duality) is the second main topic of this thesis

work and it’s the property of invariance of the set of equations of motion (EoM) and Bianchi

identities (BI) of gauge fields. This is the symmetry that, for instance, allows to exchange

the electric and magnetic fields in the free Maxwell equations leaving them invariant, but

indeed admits a very general definition, due to M. Gaillard and B. Zumino in their famous

paper [26]. The crucial characteristic of electromagnetic duality is that it is not a symmetry

of the Lagrangian, but rather of the EoM and the BI. The idea to make use of EM duality to

determine the higher-order extension of gauge theories comes from the fact it can be connected

with the duality symmetries that relates the different formulations of String Theory [14–16].

From this point of view, EM duality is a manifestation of a symmetry of the UV theory and

therefore it is expected to hold, in some form, at every perturbation order.

The main problem addressed by this work is precisely how to properly make use of EM

duality to constrain higher-derivatives extensions of effective gauge theories. This problem has

two main issues to be faced. The first one regards the nature of EM duality as a symmetry of

the EoM and the BI: to implement it, it’s not sufficient to construct exactly duality-invariant

operators because the Lagrangian itself should not be invariant. The second one concerns

instead one hypothesis of Gaillard and Zumino’s paper [26]. To derive the duality group and

the associated transformations of a generic Lagrangian they assume that it does not contain

operators involving derivatives of the gauge fields. While in their analysis this hypothesis is

essential to carry out the calculations, it results problematic when EM duality is applied to

constrain higher-derivatives theories. In fact, such problematic operators indeed appear in

this procedure, in greater number as the perturbative order is higher, and to exclude them a

priori from the discussion seems a too strict framework.

To deal with these issues, the strategy we follow is to rely on a model-based, perturbative

duality analysis, studying the duality group and the transformation of a specific Lagrangian

order by order in the higher-derivatives expansion. Although the results that one obtains

with this approach are limited to the model under consideration, the advantage is that there’s

no need to make any additional assumption on the structure of the full Lagrangian. This

allows then to include in the discussion in a natural way also the problematic operators with

derivatives on the gauge fields. More specifically, the theory we focus on in this work is the

so called axion-dilaton-Maxwell-Einstein theory :

L2 =
1

2
R− 1

2(Imτ)2
∂µτ̄ ∂

µτ − 1

4
IΛΣ(τ, τ̄)FΛ

µνF
Σµν +

1

4
RΛΣ(τ, τ̄)FΛ

µνF̃
Σµν , (1)

which couples, in a non-minimal way, gravity to two U(1) gauge fields (labelled by the capital

greek indices) and a complex scalar field. Starting from this Lagrangian, by applying the

procedure we outlined we were able to find its duality-preserving, 4-derivatives extension:

this is the main result of this thesis work. Once the higher-derivatives extension of the

theory has been found, we turn to the study of the WGC and of its claimed equivalence with

the positivity bounds in the case of a duality-preserving, beyond Einstein–Maxwell theory,

as our resulting theory indeed is. Following [34], we study the charge-to-mass ratio of an

extremal black hole solution of the 4-derivatives theory and we determine the set of values
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of its coefficients that realizes the WGC. Then, we compare this result with the positivity

bounds on the coefficients, showing that they indeed reproduce the WGC requirements.

The thesis is organized in the following way. In the first chapter we present in detail

the Swampland Program and the WGC, focusing on the motivation supporting its Electric

formulation, and we discuss how swampland conjectures constrain the coefficients of effective

field theories in the context of the 4-derivatives extension of Einstein–Maxwell theory. In

the second chapter we instead present the procedure through which positivity bounds on the

scattering amplitudes are computed and show that they exactly reproduce the WGC con-

straints on Einstein–Maxwell theory. Next, the third chapter is dedicated to the description

of EM duality: we first review Gaillard and Zumino analysis and then present an example

of how duality can be used to determine the higher-order extension of a theory taking again

Einstein–Maxwell one as benchmark. Chapters 4 and 5 are the core of the thesis work and

contain the entire duality analysis we applied to theory (1): in Chapter 4 we introduce the

model and then determine its duality group structure, in Chapter 5 we make use of these

results to fix the 4-derivatives extension of the theory. In Chapter 6 we then present the

discussion on the WGC. We conclude the thesis work by summarizing its main results and

discussing the possible future developments.
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Chapter 1

The Swampland Program and the

Weak Gravity Conjecture

The Swampland program is a research project which aims to distinguish between low-

energy effective field theories which admit a UV completion into a theory of quantum gravity

(e.g. String Theory) and those which do not. The former are said to belong to the Landscape

of quantum gravity, the latter to the Swampland. The problem of connecting the low-energy

physics and the high-energy one is well known: on the former side we have the Standard

Model, which successfully describes the physics of the TeV scale but needs to be extended (as

an effective field theory should be when coupled to gravity); on the latter one we have String

Theory, the beautiful, unifying theory that one longs to but whose low-energy realization is

extremely difficult to identify. The number of consistent low-energy theories that one obtains

from String Theory, the so called string vacua, is in fact very large and it is not at all clear

which is the selection mechanism to follow. The Swampland program addresses this problem

from a bottom-up point of view, trying to identify which effective field theories are consistent

with String Theory in the UV and which are not.

The tools to make this identification are the so called swampland conjectures, arguments

that establish some fundamental properties placing the theories that present them either

in the Landscape or in the Swampland. These arguments are indeed called “conjectures”

because they’re not proven facts but rather well-motivated statements, usually supported

by (large) classes of examples or gedankenexperiments. One of the first and most famous of

these conjectures is the Weak Gravity Conjecture (WGC) [4], which in its minimal formulation

states that a theory involving gravity and a U(1) gauge field should describe, in order to be

in the Landscape, a state for which the gravitational interaction is weaker than the gauge

one.

We can describe the typical Swampland-way of proceeding as follows. The first step is to

formulate a conjecture: this is done by finding some recursive structures and patterns, usually

in the context of String Theory or Black Hole physics, that the conjecture summarize. The

following step is testing the conjecture in different models and settings, in order to see if it

is truly reasonable to assume it and, in case, to make proper adjustments in its definition.

The more varied are the areas from which the supporting evidence comes (e.g String Theory,

black holes, AdS/CFT correspondence, etc.), the stronger is the conjecture. The final step is

to understand how the conjecture constraints various low-energy models, studying both the

theoretical and phenomenological outcomes.

The goal of the Swampland program is really ambitious: to guide our knowledge of fun-

damental physics up to the Planck scale, where quantum gravity shows up. This project is

important because it would understand how quantum gravity is realized at low energy scales

1



2 1. The Swampland Program and the Weak Gravity Conjecture

from both the formal and phenomenological points of view, and, in doing so, it would also

establish which are the crucial properties that a theory should have in order to be mean-

ingful. The true power of this conjectures-based procedure, which sometimes may appear in

some sense arbitrary and restrictive, lies in the fact that the various established swampland

conjectures, in particular the most general ones, like the Weak Gravity Conjecture, the Dis-

tance Conjecture [5] and the No Global Symmetry Conjecture [6,7], are actually related one

another: the existence of a connection between them reinforces their claims because it sug-

gests the idea that they are different realization of a common, underlying principle, pointing

towards quantum gravity along the same direction.

After describing the general settings and ideas of the Swampland Program, in this chapter

we first analyze the Weak Gravity Conjecture [4] in two of its formulations, the Electric (the

relevant one for this thesis work) and the Magnetic WGC, highlighting the main founding

motivations.

1.1 Electric WGC

The Weak Gravity Conjecture is one of the most studied swampland conjectures. Its

original formulation [4], which states that gravity should act as the weakest of the inter-

actions described by a theory in the Landscape of quantum gravity, has undergone various

developments and refinements: apart from the two of them that we describe in this section,

we can mention the extension to the case of multiple U(1) gauge fields [8] and to the one in

the presence of additional scalar fields [9].

The first formulation of the WGC that we present, the one that is more relevant for this

work, is the so called Electric WGC, which in 4 spacetime dimensions states the following:

Electric Weak Gravity Conjecture (4D). Consider a theory coupling gravity to a

U(1) gauge field of gauge coupling g. Such a theory must contain a state of mass M and

electric charge Q such that

M ≤
√

2gMPQ. (1.1)

It is important to notice that the conjecture does not specify which kind of state should

realize it. In [4], three possibilities are suggested:

1. the state of minimal charge;

2. the lightest charged particle;

3. the state with the minimal mass-to-charge ratio.

Depending on which of the option is taken into consideration we have a different approach to

the conjecture, because different are the supporting evidence and the frameworks to test it.

First of all, we see that the conjecture can in principle be satisfied not strictly by a

particle, which refers directly to the fields described by the theory under examination, but

also by a more generic “state”, as stated in (1.1), which can indeed by a particle but it could

also be a composite object.

This characterization is necessary because in order for (1.1) to be a well posed condition

the physical subject realizing the Electric WGC must be stable: otherwise, the meaning of

M in the charge-to-mass ratio defined by (1.1) wouldn’t be clear. From this observation it

follows that the subject of option 1 must be a generic state and not the particle of minimal

charge described by theory under examination, since the latter is not guaranteed to be stable.

Instead, option 2 is well posed when its subject is a particle because the lightest charged



1.1 Electric WGC 3

particle described by a theory is indeed stable, as well as option 3 is well posed if its subject

is a generic state.

Of the three, option 1 results to be the weakest one because there are String Theory

arguments against it (see [4]). Option 2 results instead to be the most stringent because it’s

a direct requirement on the particles’ spectrum of the theory, while according to option 3 the

conjecture could instead be realized also by a heavy state with the proper charge.

Moreover, option 3 can be seen as a subcase of option 2. To see this, let’s consider the

case of a theory describing a spectrum of particles, of mass and charge (mj , qj). Let’s suppose

then that the lightest of these particles satisfies the WGC according to option 2, so that in

proper units we have
m1

q1
≤ 1, m1 < mj ∀ j. (1.2)

Within this framework, set out by option 2, we can show that the state with minimal mass-

to-charge ratio satisfies the WGC. Indeed, among all the particles of the set different from

(m1, q1) we can identify the one that has the smallest mass-to-charge ratio and we call it

(m2, q2):
m2

q2
≤ mj

qj
∀ j 6= 1. (1.3)

Comparing now the mass-to-charge ratios of particles 1 and 2, we see that we have two

possibilities:

• m1

q1
≤ m2

q2
=⇒ the lightest charged particle, which realizes the WGC, is

also the particle with the smallest mass-to-charge ratio;

• m2

q2
≤ m1

q1
≤ 1 =⇒ the smallest mass-to-charge ratio results to be such that

the WGC is realized also by the corresponding particle.

Thus, in both cases we have that having the lightest charged particle realizing the WGC

implies that also the particle with smallest mass-to-charge ratio realizes the WGC as well.

Hence, option 3 is a subcase of option 2.

Despite its mild character, option 3 is particularly interesting because it offers the pos-

sibility for the conjecture to be realized not only from a particle but also by an extended

state. The conjecture in fact does not prevent the involved state to have an arbitrary large

mass, even larger than the Plank mass, as long as the associated charge guarantees that the

bound (1.1) is satisfied. A good example of such states are of course black holes: we’re going

to see in section 1.1.2 that a relevant motivation in favour of the Electric WGC, realized via

an extended state, is given by the study of the splitting process of a charged black holes into

smaller black holes and the conditions under which it is allowed.

Apart from this charged black hole instability, black holes physics represents an important

class of evidence supporting the Electric WGC, as discussed in section 1.1.1 for the process

of discharge of a black hole. Further evidence can also be found in Holography and string

compactification arguments (see [2, 3]).

1.1.1 Electric WGC and Charged Black Holes

Motivation for the Electric WGC can be found in charged black holes dynamics: the

constraint (1.1) is in fact the condition that allows extremal black holes to discharge. To

discuss this equivalence we consider now Einstein–Maxwell theory, i.e. the theory involving
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gravity and a U(1) gauge field Fµν , in 4 spacetime dimensions:

SEM =

∫
d4x

√
|g|
[
M2

P

2
R− 1

4
FµνF

µν

]
. (1.4)

A charged, spherically-symmetric and static black hole solution of the Einstein equations

associated to (1.4) is given by the famous Reissner–Nordström black hole [12]:

ds2 =− f(r)dt2 +
1

f(r)
dr2 + r2dΩ2

S2 ,

f(r) =1− 2GM

r
+
Q2G

4πr2
,

(1.5)

where Q = gq is the charge of the black hole, with g being the gauge coupling constant, and

M is its mass, which the Cosmic Censorship Principle constraints to be

M ≥
√

2QMP; (1.6)

the solution for which we have M =
√

2QMP is called extremal black hole because it’s the

black hole with minimum M for a given Q.

Let’s now explore the dynamics of the discharge process of a black hole. Calling (M,Q)

and (mj , qj) the mass and the charges of the initial black hole and of the discharge products

respectively, the conservation of energy and charge read

M ≥
∑
j

mj , (1.7)

Q =
∑
j

qj . (1.8)

Combining these two equations we can obtain an equivalent conservation constraint on the

mass-to-charge ratio:

M

Q
≥ 1

Q

∑
j

mj =
1

Q

∑
j

mj

qj
qj ≥

(
mj

qj

)
min

∑
j qj

Q
=

(
mj

qj

)
min

(1.9)

and specializing this bound to the extremal black hole case we obtain(
mj

qj

)
min

≤
(
M

Q

)
ext

=
√

2MP. (1.10)

The constraint (1.10) tells us that in order for an extremal black hole to discharge there must

exist a state with charge greater than its mass: this is precisely the Electric WGC as stated

in (1.1).

Therefore, asking for the Electric WGC to be realized is equivalent to requiring extremal

black holes to be able to discharge without creating a naked singularity. To understand

why we should ask for this condition, let’s make the opposite assumption and consider what

would happen if they could not discharge. According to this picture, any charged black hole

would evaporate until reaching the extremal condition, to which it stops. Thus, we would end

up with various extremal black holes, remnants of this “truncated” discharge process, that

appear to be stable; they can indeed have a mass of the planckian size, with associated charge

that should respect the bound (1.6). The spectrum of the allowed charges, and consequently

the (possible) number of such remnants, is as large as the gauge coupling is small. This
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Figure 1.1: Possible higher-derivatives corrections to the charge-to-mass ratio of an extremal black
hole and relation with the black hole decay process [2].

(potentially) highly-degenerate scenario, with an infinite number of stable remnants, seems

immediately problematic and leads in fact to entropy problems, as discussed in [10].

However, it is important to remark that this is not a theorem but rather an argument: in

fact it does not state that we necessarily end up with an infinite sets of stable remnants but

only that a large number of them is expected and it is not completely clear in which terms

this leads to inconsistencies (see [2]). However, it gives an effective description of what could

happen - and go wrong - if we do not assume the WGC (1.1). That’s why the Swampland

Program deals, or has to deal, with conjectures: it would not be necessary to assume them if

their statement were proven facts. Instead, we have arguments on the basis of a conjecture

and the problem of the discharge of extremal black holes is indeed an important motivation

for the WGC.

1.1.2 Black Holes as the states realizing the WGC

Proceeding further along the theme of the black hole dynamics as ground basis on which

to found the WGC, we can also investigate the possibility for a charged black hole to decay

into smaller black holes. In order for this process to be allowed, the charge-to-mass ratio of

the decaying black hole must be greater than one: such a starting point can be reached, in

the case of an extremal black hole, by taking into account higher-derivative corrections [11].

Extremal black holes appears in fact as the solution of the Einstein equations associated to

Einstein–Maxwell action (1.4) with charge equal to its mass, but if one starts to include in

the action also higher-order operators (e.g. (FµνF
µν)2) then the charge-to-mass ratio receives

corrections:

z ≡
√

2MPQ

M
=⇒ zext = 1 + δz(M). (1.11)

If δz > 0 then the decay process into smaller black holes is possible (see Figure 1.1), with

the starting black hole that represents the state satisfying the Electric WGC. We can notice

that in this case the conjecture would be realized by an extended state, as described at the

beginning of this section.

This realization of the Electric WGC, already suggested in [4], is particularly interesting

because it provides a well defined pattern to study the conjecture: one can start with a theory
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involving (at least) gravity and a U(1) gauge field, find its higher-derivative extension and

calculate the consequent correction to the charge-to-mass ratio for an extremal black hole

solution of the theory. Asking the WGC to hold produces a constraint on this correction,

which directly translates to the coefficients of the higher-derivative operator, on which the

correction depends. This is a clear example of how the Swampland Program works: the

models of this type with the coefficients that satisfying δz > 0 belong to the Landscape, all

the others to the Swampland. A more explicit discussion of this procedure is presented in

the following section.

1.2 Higher-derivative extension of Einstein–Maxwell theory

We now discuss more explicitly how we can test the WGC by looking at the higher-

derivative corrections to the charge-to-mass ratio of a charged black hole. The theory we

consider is the Einstein–Maxwell one (1.4) and we’re going to determine its extension up to

the 4-derivatives order [17, 18]. In the following, we denote with L2 the Einstein–Maxwell

Lagrangian (1.4) and with L4 its 4-derivative extension.

1.2.1 4-derivatives Lagrangian

The first thing to do when trying to find the extension of a theory follwing a bottom-up

approach is to list all the higher-order operators that are compatible with the symmetry of

the theory considered. In our case, all possible 4-derivatives operators are:

g : R2, (Rµν)2, (Rµνρσ)2;

g+ F : RF 2, RµνF
µαF ν α, RµνρσF

µνF ρσ;

F : (F · F )2, (F · F̃ )2, FµνF
νρFρσF

σµ,

(DµF
µν)2, (DµFνρ)

2, DµFνρD
νFµρ,

(1.12)

where F · F = FµνF
µν .

This set of operators can be reduced exploiting the following identities:

GB =R2 − 4(Rµν)2 + (Rµνρσ)2; (1.13)

(F · F̃ )2 =− 2(F · F )2 + 4FµνF
νρFρσF

σµ; (1.14)

(DµFνρ)
2 =2DµFνρD

νFµρ; (1.15)

(DµFνρ)
2 =− 2RµνF

µαF ν α +RµνρσF
µνF ρσ + 2(DµF

µν)2+ (1.16)

+ 2Dµ (FνρD
νFµρ − FµρDνFνρ) .

The first identity is the definition of the so called Gauss–Bonnet term [35], for which we can

exchange the operator (Rµνρσ)2. The second one is obtained by using the Levi-Civita tensor

contraction rules, while the third one is a consequence of Bianchi Identity

DµFνρ +DνFρµ +DρFµν = 0. (1.17)

The last one is obtained via an integration by parts. This quantity is topological and vanish

(together with the Dµ(. . . ) term in (1.16) in the action. Thus, a minimal set of independent
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operators becomes

g : R2, RµνR
µν ;

g+ F : RF 2, RµνF
µαF ν α, RµνρσF

µνF ρσ;

F : (F · F )2, (F · F̃ )2, (DµF
µν)2.

(1.18)

We can further reduce this set by exploiting a field redefinition, according to the following

scheme. The transformation of the fields is{
Aµ −→ Aµ

′ = Aµ + δAµ

gµν −→ g ′ µν = gµν + δgµν
, (1.19)

with δAµ and δgµν of order O(D2), i.e. they contain two derivatives. The corresponding

variation of the Lagrangian is

L = L2 +L4 −→
(√
|g|L

)′
=
(√
|g|L

)
+δ
(√
|g|L

)
=
√
|g|L+δ

(√
|g|L2

)
+O(D6), (1.20)

where
δ(
√
|g|L2)√
|g|

=
M2

P

2

[
Rµν −

1

2
gµνR− Tµν

]
δgµν + [DµF

µν ] δAν . (1.21)

Thus, we see that, with the choice of (1.19) as
δgµν =

α1

M4
P

gµνF 2 +
α2

M4
P

FµρF ν ρ +
α3

M2
P

gµνR+
α4

M2
P

Rµν ,

δAµ =
β

M2
P

DρFρµ,
(1.22)

we can remove from L4 the operators R2, (Rµν)2, RF 2, RµνF
µρF ν ρ and (DµF

µν)2 by prop-

erly setting the fields redefinition coefficients:

δ
(√
|g|L

)
√
|g|

=− 2α3 + α4

4
R2 +

α4

2
(Rµν)2 − 4α1 + 2α2 − α3

8M2
P

RF 2+

+
α2 − α4

2M2
P

RµνF
µρF ν ρ +

β

8M2
P

(DµF
µν)2+

+
3α2

8M4
P

(F · F )2 +
α2

8M4
P

(F · F̃ )2.

(1.23)

Therefore, introducing the Weyl tensor

Wµνρσ = Rµνρσ − gµ[ρRσ]ν + gν[ρRσ]µ +
1

6
Rgµ[ρgσ]ν , . (1.24)

to exchange the operator RµνρσF
µνF ρσ with1

WµνρσF
µνF ρσ = RµνρσF

µνF ρσ − 2RµνF
µρF ν ρ +

1

3
RF 2, (1.25)

1The extra operators in (1.25) can be re-adsorbed into a field redefinition of the type (1.22).
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the resulting 4-derivatives extension of Einstein–Maxwell theory (1.4) is

L4 =
c1

4M4
P

(F · F )2 +
c2

4M4
P

(F · F̃ )2 +
c3

2M2
P

FµνFρσW
µνρσ. (1.26)

1.2.2 Corrections to the charge-to-mass ratio

We now turn to the corrections to the charge-to-mass ratio that comes from the extended

Lagrangian (1.26) and to the consequent comparison with the WGC and its prescriptions.

The analysis that leads to the higher-order corrections to the relevant physical quantities is

far from obvious and we do not reproduce it, since the goal of this section is to have a first

contact with the procedure through which swampland conjectures are applied to constraint

higher-derivatives theories. The reader interested in the precise calculations that here we

only highlight may refer to [17].

As mentioned in Section 1.1.1, a black hole solution of the 2-derivatives Einstein–Maxwell

theory is given by the Reissner–Nordström black hole (1.5), that we rewrite as:

ds2 =− f0(r)dt2 +
1

f0(r)
dr2 + r2dΩ2

S2 ,

f0(r) =1− M

4πM2
Pr

+
Q2

32π2M2
Pr

2
.

(1.27)

In order not to have naked singularities, the charge-to-mass ratio of the black hole is con-

strained to satisfy

z ≡
√

2MP
Q

M
≤ 1 (1.28)

and the solution saturating this bound is called extremal black hole (z
(0)
ext = 1).

Once we correct the 2-derivative Einstein–Maxwell Lagrangian (1.4) with the higher-

order terms such (1.26), the Reissner–Nordström solution (1.27) does not hold anymore since

the EoM have of course changed. The solution of the new EoM can indeed be found starting

from:

ds2 = gtt(r) dt
2 + grr(r) dr

2 + r2dΩ2
S2 (1.29)

and exploiting a perturbative expansion by asking that the Reissner–Nordström solution is

recovered in the limit in which the coefficient ci of the extended Lagrangian (1.26) vanish :

gtt =− f0(r) + ∆gtt + O(c2
i ) with ∆gtt

ci→0−−−→ 0, (1.30)

1

grr
=f0(r) + ∆f + O(c2

i ) with ∆f
ci→0−−−→ 0. (1.31)

We’re interested especially in grr(r), since it’s the term from which we understand the

structure of the black hole horizons and, therefore, the extremality condition. Indeed, the

extremal black hole horizon can be written with a more general formula as

rH,ext = max
z

{
r ∈ R+ :

1

grr
= 0

}
. (1.32)

Thus, we need to solve this equation in order to understand how the extremal charge-

to-mass ratio gets corrected. Plugging the ansatz (1.29)–(1.31) into the corrected Einstein
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equations on obtains

1

grr
=f0(r)− Q4 c1

1280π4M6
P r

6
+
Q2 c3

M6
P r

6

(
5M r

384π3
− Q2

640π4
−
M2

P r
2

24π2

)
. (1.33)

A perturbative solution of (1.32) with (1.33) yealds the following result for the corrected

charge-to-mass ratio:

zext = 1 +
64π2M2

P

5M2
(2c1 − c3), (1.34)

which is compatible also with the results of [18].

1.2.3 Weak Gravity Conjecture

Summarizing, we started from the 2-derivative Einstein–Maxwell theory (1.4) and we

found its 4-derivative extension (1.26) following a bottom-up approach. This extension de-

pends on three different coefficients c1, c2 and c3, on which we have the only requirements to

be subdominant with respect to MP.

It is precisely on coefficients of this type that the Swampland Program explicitly wants

to act: following a given swampland conjecture, one would like to translate its prescription to

some conditions on these coefficients in order for the conjecture to be realized in the theory.

Then, according to the given conjecture, the set of theories with coefficients satisfying these

bounds belong to the Landscape, the others to the Swampland.

As previously mentioned, when specializing this general swampland procedure to the

Electric WGC (1.1), we can translate its prescription to the requirement that extremal black

holes, seen as extended states realizing the conjecture, are able to decay in smaller black holes

and still satisfy the Cosmic Censorship Principle. In this perspective, the Electric WGC can

be phrased as the requirement that extremal black holes have a charge-to-mass ratio greater

than 1:

Electric WGC: zext > 1. (1.35)

Thus, in the case of Einstein–Maxwell theory we can immediately understand which are

the higher-derivatives extensions that satisfy the Electric WGC. Indeed, from (1.34) we get

zext = 1 +
64π2M2

P

5M2
(2c1 − c3) > 1 ⇐⇒ 2c1 − c3 > 0. (1.36)

Therefore, according to the Electric WGC (1.1) extensions of the Einstein–Maxwell the-

ory of the type (1.26) with 2c1 − c3 > 0 belong to the Landscape, all the others to the

Swampland.

1.3 Magnetic WGC

We conclude this chapter presenting another version of the WGC, parallel - but not

identical - to the Electric WGC, which is called Magnetic WGC. If we now introduce also a

non-vanishing magnetic charge, we expect an statement analogous to (1.1) to hold as well.

We can state it as follows:
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Magnetic Weak Gravity Conjecture (4D). Consider a theory coupling gravity to a

U(1) gauge field of gauge coupling g. The cutoff scale Λ associated to this effective field

theory is such that

Λ . gMP, (1.37)

where g is, as before, the gauge coupling constant.

We can express this version of the conjecture as a bound on the effective field theory

cutoff scale because the mass of magnetic monopoles - the candidate particles to realize

the conjecture - is directly proportional to the associated magnetic field, which is linearly

divergent, so that

Mmag ∼
Λ

g2
. (1.38)

Thus, plugging this property into the magnetic version of equation (1.1), and the fact that

the magnetic coupling is the inverse of the electric one (i.e. gmag = 1/g), allows to write the

Magnetic WGC in the form (1.37):

Mmag .
1

g
MP =⇒ Λ . gMP. (1.39)

This conjecture can be stated also as the requirement that the magnetic monopoles

described by the theory are not black holes. This condition is in fact obtained by asking that

the mass of the monopole is smaller than the associated Schwarzschild radius RS,

Mmag ≤M2
PRS, (1.40)

which indeed provides an estimation of the energy scale at which the effective field theory

description breaks down:

RS ∼ Λ−1, (1.41)

so that we obtain again the Magnetic WGC constraint (1.37) by putting together equations

(1.40), (1.41) and (1.38).

Another argument supporting this Magnetic WGC can be found again in the problem of

the stable remnants. In the previous section we stated that the degeneracy of the spectrum

of charges that a black hole (that is forbidden to discharge beyond the extremal case) with

mass of the planckian size is as large as the gauge coupling is small. This is clearly seen from

the extremality bound (1.6):

Q = gq .
M√
2MP

' 1 =⇒ q .
1

g
. (1.42)

This equation clearly tells that any black hole with charge between 0 and g−1 is allowed.

The problem of an infinite set of stable remnants therefore shows up when the gauge coupling

is taken to be small, i.e. g → 0. The Magnetic WGC (1.37) represents then a solution to this

problem because now taking g → 0 implies also Λ → 0 and this is clearly inconsistent since

we wouldn’t be able to define the starting effective field theory in any energy range.

It is precisely its connection with the effective field theory cutoff scale Λ that makes the

Magnetic WGC (1.37) not just the dual counterpart of the Electric one (1.1). Assuming the

Magnetic WGC corresponds in fact to have well-defined energy scale in which our effective

field theory can live: such a connection with the foundation of a theory are not present in

the Electric WGC (1.1).
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Also, it is through the Magnetic version that we can appreciate the connection of the

WGC with the other Swampland conjectures (in particular with the No Global Symmetry

Conjecture, that we analyze in the following section), again because of its formulation in

terms of the cutoff scale Λ.





Chapter 2

Positivity Bounds

We have introduced the Swampland program and the concept of swampland conjectures

to constrain the effective field theories and their higher-order extensions. In particular, we

have seen how swampland conjectures are usually formulated on the basis of examples and ar-

guments coming from different sources, like the black hole arguments motivating the Electric

WGC (1.1).

In this second chapter we discuss instead an important class of evidence for swampland

conjectures, which are the so called positivity bounds on the scattering amplitudes described

by a theory. This is a set of constraints on the coefficients of an effective field theory -

usually the ones associated to higher-order operators - that are determined by the properties

of locality, Lorentz invariance and unitarity of the S-matrix that a theory must possess. For

example, arbitrary signs of the coefficients of higher-derivative operators may lead to the

production of superluminal signals (see [20]), which is clearly inconsistent with the causal

structure of a Minkowski-like spacetime.

The procedure to implement these consistency requirements, and obtain then the posi-

tivity bounds, is the following. The property of the S-matrix to be unitary is expressed via

the optical theorem (see [21, 22]), from which we deduce that the imaginary part of the am-

plitude of a forward elastic scattering must be positive. This property can then be translated

into constraints over the theory coefficients - the mentioned positivity bounds - because the

amplitude indeed depends on them. Such connection with the imaginary part of an elastic

scattering amplitude is made possible by the locality property of the theory. In fact, locality

makes this amplitude an analytic function of the kinematic invariants, which means that it

can be seen as the real boundary of an analytic function (with cuts and poles - see [20]).

Locality is indeed related to the mentioned causality issues: it is in fact the requirement that

commutators1 of fields operators vanish at spacelike distance and this means precisely that

there cannot be superluminal signals. Lorentz invariance is then applied by exploiting cross-

ing symmetries to reduce the number of independent components of the amplitudes under

examination.

It’s interesting to compare the bounds that these requirements produce on the coefficients

with the prescriptions of the swampland conjectures and see if the two are in agreement. These

constraints are in fact a key test for a conjecture to be well-defined because they are expression

of the structural properties that characterize a meaningful theory: they either represent an

important class of evidence supporting a swampland conjecture if they match the conditions

under which the conjecture is realized or, if they do not match, they point out the limits of

the conjecture itself and/or the need to refine it. Indeed, in the case of Einstein–Maxwell

1Commutators for bosonic fields, anticommutators for fermionic ones.

13
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theory (1.4) and its 4-derivatives extension (1.26), it has been shown in [18] that there is an

exact equivalence between the positivity bounds and the Electric WGC requirements (1.35),

(1.36).

After deriving, in the first section of this chapter, the optical theorem, in the second

section we present the procedure to obtain positivity bounds by explicitly applying it to

Euler–Heisenberg theory, which is the theory describing the interactions of a U(1) gauge field

to the 4-derivatives order. Finally, in the third section we discuss the relation between the

positivity bounds and the Electric WGC in the Einstein–Maxwell theory, together with the

general problems that arise in the computation of such bounds when gravity is involved.

2.1 The optical theorem

We start by presenting the optical theorem, which is a direct consequence of the unitarity

of the S-matrix. Calling it S, this property states that

S†S = 1. (2.1)

The S-matrix can also be written in terms of the so called transfer matrix T as

S = 1 + iT, (2.2)

so that the unitarity condition (2.1) becomes

i
(
T† − T

)
= T†T. (2.3)

This decomposition is useful because it establishes a connection with the scattering am-

plitudes. Considering a generic process leading from an initial state |A〉 to a final one |B〉,
the associated amplitude M(A→ B) is related to the transfer matrix by

〈B|T |A〉 = (2π)4 δ(4)(pA − pB)M(A→ B), (2.4)

where pA and pB are the initial and final momenta and δ(4)(x) is the four-dimensional Dirac

delta function. Applying therefore 〈B| and |A〉 on both sides of (2.3) we obtain

i (2π)4δ(4)(pA − pB) [M∗(B → A)−M(A→ B)] = 〈B|T†T |A〉 . (2.5)

To write also the right-hand side of (2.5) in terms of the amplitude we insert between T†

and T the completeness relation in the Hilbert space of multi-particle states, labelled by |n〉:∑
n

∫
dΠn |n〉 〈n| = 1, (2.6)

with

dΠn =
∏
j∈n

d3pj
(2π)3

1

2Ej
. (2.7)

Thus, inserting this completeness and applying again (2.4), equation (2.5) becomes:

M(A→ B)−M∗(B → A) = i (2π)4
∑
n

∫
dΠn δ

(4)(pn − pA)M∗(B → n)M(n→ A), (2.8)
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where ~pj and Ej are the three-momentum and the energy (pj = (Ej , ~pj)) of the jth particle

of the state |n〉.
This result is known as generalized optical theorem. We’re though interested in the

subcase of the elastic scattering, i.e. the case in which the initial and final state of the

process coincide: |B〉 = |A〉. In this configuration, equation (2.8) yields what is usually

called the optical theorem:

2Im [M(A→ A)] = (2π)4
∑
n

∫
dΠn δ

(4)(pn − pA) |M(A→ n)|2 . (2.9)

We notice that the right-hand side of this identity is positive, being a sum of positive

quantities: thus, also the left-hand side, namely the imaginary part of an elastic scattering

amplitude, must be positive:

Im [M(A→ A)] > 0. (2.10)

This is the constraint that will ultimately produce the positivity bounds on the coefficients

of an effective field theory.

2.2 Positivity bounds on Euler–Heisenberg theory

We now proceed by showing how to implement the optical theorem constraint (2.10) on

the coefficients of a theory. To do so, we choose the particular setup of the Euler–Heisenberg

Lagrangian

LEH = −1

4
F · F +

a

4m2
(F · F )2 +

b

4m2
(F · F̃ )2, (2.11)

where F · F ≡ FµνF
µν and m is the mass scale that drives the higher-derivative expansion.

a and b are instead the coefficients of the two independent higher-order operators: while at

this level they’re arbitrary scalar factors, they’re going to be constrained to be positive by

the bounds we now compute.

2.2.1 Amplitude and crossing symmetries

The process we take under consideration is the two photons elastic scattering:

where k1 and k2 are the initial, incoming momenta, k3 and k4 the final, outgoing ones and

the λi are the polarization indices.

Calling ε αiλi
(ki) the polarization vector associated to the i-photon, the amplitude of this

process has the following general expression in terms of the kinematic invariants s, t and u:

Mλ1λ2λ3λ4(s, t, u) = ε∗ α4
λ4

(k4)ε∗ α3
λ3

(k3)ε α2
λ2

(k2)ε α1
λ1

(k1)Mα1α2,α3α4(s, t, u). (2.12)

To simplify calculations, we set this process to be a forward scattering, which corresponds
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to the momenta configuration such that t = 0. In the centre-of-mass frame we have:

k1 = k3 =(k, 0, 0, k), k2 = k4 =(k, 0, 0, −k). (2.13)

The condition t = 0 implies that u = −s: thus, the dependence of the amplitude (2.12) on

the kinematic invariance reduces to the only s variable.

Further, the polarization of the photons can be chosen to be the linear one:

εx(k1) =(0, 1, 0, 0), εx(k2) =(0, −1, 0, 0),

εy(k1) =(0, 0, 1, 0), εy(k2) =(0, 0, 1, 0).
(2.14)

This is a simplifying choice because we notice that, because of Lorentz symmetry, the indices

of Mα1α2α3α4 in (2.12) can be carried only by the momenta ki or by the Minkowski metric ηµν .

With the choice (2.14) for the polarizations, all the k-terms in Mα1α2α3α4 are then irrelevant,

because each polarization vector in (2.14) is orthogonal to each momentum in (2.13).

We can then restrict the amplitude Mα1α2α3α4 in (2.12) to the only components that are

proportional to the Minkowski metric:

Mα1α2α3α4 = A(s) ηα1α3ηα2α4 +B(s) ηα1α4ηα2α3 + C(s) ηα1α2ηα3α4 , (2.15)

so that the full amplitude becomes, thanks to (2.14),

Mλ1λ2λ3λ4(s) = A(s) δλ1λ3δλ2λ4 +B(s) δλ1λ4δλ2λ3 + C(s) δλ1λ2δλ3λ4 . (2.16)

We can constrain the number of such independent amplitudes by exploiting the crossing

symmetries, which requires the amplitude to be invariant under exchanges of legs in the

associated diagram. If we swap the first and the third photon we have that s→ u = −s and

the identity the amplitude should satisfy is

Mλ1λ2λ3λ4(s) = Mλ3λ2λ1λ4(−s), (2.17)

which yields the following relations among the functions of s in (2.15):

A(s) =A(−s), C(s) = B(−s). (2.18)

The final result is that the amplitude (2.16) has only two independent components:

Mxx(s) ≡Mxxxx(s) = A(s) +B(s) +B(−s), (2.19)

Mxy(s) ≡Mxyxy(s) = A(s), (2.20)

such that

Mλ1λ2(s) = Mλ1λ2(−s). (2.21)

Computing explicitly these amplitudes from the Euler–Heisenberg Lagrangian (2.11), one

may see that Mxx(s) =a s2

Mxy(s) =b s2
⇐⇒


A(s) =b s2

B(s) =
a− b

2
s2

. (2.22)
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Figure 2.1: Domain of the analytic extension of Mλ1λ2
and contour of integration.

2.2.2 Analyticity and positivity bounds

To make connection between the two amplitudes (2.19) and (2.20) and the optical theorem

we now exploit the fact that, because of locality, the amplitude Mλ1λ2(s) should be the real

boundary value of an analytic function Mλ1λ2(z), where the complex variable z is such that

Rez = s. More specifically, this analytic extension of Mλ1λ2(z) is defined in all the complex

plane C except for two cuts (see [20])) along the real axis, for |s| ≥ 2m2, as shown in Figure

2.1.

Along the contour C we can apply Cauchy formula and write

d2Mλ1λ2(z)

d2z

∣∣∣∣
z=0

=
1

i π

∮
C

dζ
Mλ1λ2(ζ)

ζ3
. (2.23)

We have now to evaluate the right-hand side of (2.23) along the different sections of the

contour C. First of all, we observe that the contributions given by the two circles at infinity are

negligible because of the so called Froissart bound [23,24] on forward scattering amplitudes:

M(s, t = 0) . log2 s. (2.24)

Indeed, this bound makes the contributions of the circles vanishing at infinite radius:

Mλ1λ2(ζ)

ζ3
=

Mλ1λ2(s+ i Im(ζ))

(s+ i Im(ζ))3

s→+∞' log2 s

s3
−→ 0. (2.25)

Thus, we’re left only with the contributions given by the four sections of C above and

below the two branch cuts. Calling ε the arbitrary small, real value setting the shift from the

cuts, equation (2.23) becomes

d2Mλ1λ2(z)

d2z

∣∣∣∣
z=0

=
1

i π

[∫ −2m2

−∞

ds

s3

(
Mλ1λ2(s+ i ε)−Mλ1λ2(s− i ε)

)
+

+

∫ +∞

2m2

ds

s3

(
Mλ1λ2(s+ i ε)−Mλ1λ2(s− i ε)

)]
.

(2.26)
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Applying Schwarz reflection principle [25]

M(s∗) = M(s)∗, (2.27)

and taking the limit ε→ 0 we obtain

d2Mλ1λ2(s)

d2s

∣∣∣∣
s=0

=
2

π

[∫ −2m2

−∞

ds

s3
Im [Mλ1λ2(s)] +

∫ +∞

2m2

ds

s3
Im [Mλ1λ2(s)]

]
=

=
2

π

∫ +∞

2m2

ds

s3
Im [Mλ1λ2(s) + Mλ1λ2(−s)] (2.21)

=

=
4

π

∫ +∞

2m2

ds

s3
Im [Mλ1λ2(s)] .

(2.28)

It is now possible to apply the optical theorem (2.9)-(2.10), from which we have

d2Mλ1λ2(s)

d2s

∣∣∣∣
s=0

> 0, (2.29)

and making use of the explicit expression of the two amplitudes presented in (2.22) we finally

obtain the positivity bounds on the two coefficients a and b of (2.11):

a > 0, b > 0. (2.30)

2.3 Positivity bounds on Einstein–Maxwell theory

The procedure we explicitly worked out in the case of Euler–Heisenberg theory (2.11) is

a good example of how positivity bounds on the higher-order coefficients of an effective field

theory are obtained.

The positivity bounds for the 4-derivatives extension of Einstein–Maxwell theory (1.26)

have been computed in [18] and result to be

2c1 − c3 > 0, (2.31)

2c2 + c3 > 0, (2.32)

c2 > 0. (2.33)

Thus, going back to the charge-to-mass ratio (1.34):

zext = 1 +
64π2M2

P

5M2
(2c1 − c3),

which characterizes an extremal black hole solution of (1.26), we immediately see that the

positivity bound (2.31) set the higher-derivatives correction that it receives to be positive.

Therefore, as anticipated, in the case of Einstein–Maxwell theory (1.4) there is an exact

equivalence between the positivity bounds on the higher-order coefficients and the conditions

(1.35), (1.36) under which the Electric WGC (1.1) is realized.
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2.3.1 Subtleties with gravity

The constraints (2.31), (2.32) and (2.33) are an example of positivity bounds computed

in a theory involving gravity. However, for such theories the procedure to obtain positivity

bounds that we described in Section 2.2 is not effective anymore. In fact, because of the

presence of gravitons, the amplitude (2.16) acquires a new term that in the forward limit

becomes divergent:

∆M(s, t→ 0) = − s2

M2
P t

+ O(s). (2.34)

This means that when we apply the Cauchy formula (2.23) we end up with two divergences,

one per side of the equation, that makes it, in this form, useless. Therefore, to be able to

compute positivity bounds in a gravitational theory one needs, in general, to circumvent this

divergence, known as Coulomb singularity.

In [18], the strategy to perform such an operation follows from the observation that in

three spacetime dimension there is no propagating graviton and so no Coulomb divergence:

the idea is then to compactify one spacetime dimension on a circle2 and study the theory

that results from the dimensional reduction. Also in this configurations the forward scattering

amplitude contains contributions, that we call ∆Mdiv, that could make useless the application

of the Cauchy formula (2.23). The crucial fact is that this time the problematic terms cancel

with each other from the two sides:[
d2M(s)

d2s
− d2 (∆Mdiv) (s)

d2s

] ∣∣∣∣
s=0

=
4

π

∫ +∞

0

ds

s3
Im
[
M̃(s)

]
> 0, (2.35)

where M̃ denotes the “reduced” forward scattering amplitude, obtained, as said, via subtrac-

tion of the divergent contributions, whose counterpart is the term proportional to ∆Mdiv on

the left-hand side. From this regularized amplitude it is still possible to derive meaningful

positivity bounds, such as (2.31), (2.32) and (2.33).

2Despite this compactification indeed breaks Lorentz invariance in the 4-dimensional spacetime, in [18] it is
claimed that the positivity bounds can be consistently computed exploiting the residual 3D Lorentz invariance
of the non-compact dimensions.





Chapter 3

Electromagnetic Duality

This third chapter is devoted to the presentation of the second main topic of this thesis

work: Electromagnetic (EM) Duality. The foundations of this peculiar symmetry, that con-

cerns 4-dimensional theories involving gauge fields, were given by M. Gaillard and B. Zumino

in their famous paper [26] and it states the invariance under rotation (on-shell) of the equa-

tions of motion (EoM) and Bianchi identities (BI) of abelian gauge fields. It is of extreme

importance to remark that EM duality is not a symmetry of the Lagrangian but rather of

the EoM and BI: we will see in fact that the Lagrangian does (and should) transform under

a generic duality rotation.

The easiest example of electromagnetic duality is given by the well-known symmetry of

the free Maxwell equations under the exchange of the electric and the magnetic field. This

property is manifest from the explicit expression of the EoM and the BI of the free Maxwell

theory:

EoM: d ? F = 0, (3.1)

BI: dF = 0, (3.2)

where ? denotes the Hodge operator, acting as

?Fµν =
1

2
εµνρσF

ρσ, (3.3)

εµνρσ =
√
−g ε̂µνρσ, (3.4)

with ε̂ the flat Levi-Civita tensor. To swap the electric and magnetic field is equivalent to

interchange the roles of equations (3.1) and (3.2), which though keep the same expression:

this is a EM duality transformation. In any case, Gaillard and Zumino’s discussion is not

restricted to pure gauge theories but applies to more generic ones, involving also other types

of fields.

One reason that makes EM duality of great interest is it’s connection with String Theory

and Supergravity. Dualities are in fact a fundamental element of the String world because

they allow to establish the equivalence among the different formulations of String Theory.

EM duality can then be seen as a low-energy realization of the so called U-duality group of

String Theory [14–16].

This property of EM duality suggests the idea to make use of it to constraint the higher-

order operators of a given effective gauge theory. In the U-duality perspective, EM duality

results in fact to be a symmetry of the full UV theory and therefore it is expected to hold at

every perturbative order. Thus, given an independent set of higher-order operators realizing

an extension of a low-energy gauge theory, one can try to further characterize, or even restrict,

21
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this set of operators by asking that the EM duality structure is preserved. An example of such

an operation is given by P. Cano and A. Múrcia extension of Einstein–Maxwell theory [29].

This idea has also an immediate and very interesting connection with the Swampland

Program. Similarly to the case of positivity bounds and the WGC in the context of Einstein–

Maxwell theory [18], the constraints that EM duality can produce on a given theory can

indeed be compared with the prescriptions of some swampland conjecture. EM duality can

then be of further evidence for a conjecture (or a further requirement for the conjecture

to be realized) or, on the contrary, produce some examples against it; in either cases, it

provides an additional and meaningful benchmark on which test the swampland conjectures

and determine the contours inside which they hold.

In this regard, an interesting example, relevant for this thesis work, is given by the

fact that while positivity bounds on scattering amplitudes equivalently realize the WGC

in the case of Einstein–Maxwell theory, they’re not sufficient anymore when one tries to

go beyond the pure Einstein–Maxwell setup. This equivalence seems to be restored if also

duality requirements are included [33, 34]. This topic is the core of the main results of this

thesis work and is going to be better discussed in the following chapter.

In Section 3.1 we introduce the idea of EM duality and how it works by presenting the

review of Gaillard and Zumino analysis of [26]. In Section 3.2 we instead explore how EM

duality can be used to constraint higher-order extensions of low-energy theories by discussing

a possible duality-preserving extension of Einstein–Maxwell theory proposed by Cano and

Múrcia [29].

3.1 Gaillard-Zumino duality

We now review the analysis through which Gaillard and Zumino derived in [26] the

duality group of a 4-dimensional theory involving an arbitrary number of gauge fields.

Let’s consider a theory coupling N abelian gauge fields FΛ to a given set of other fields

φi, described by the Lagrangian

L = L(FΛ, φi, ∂φi), (3.5)

which depends on the derivatives of the fields φi but is assumed to not depend on the

derivatives of the gauge fields.

Next, we introduce the dual fields GΛ as

G̃Λµν ≡ 2
∂L

∂FΛµν
, (3.6)

where

F̃µν ≡
1

2
εµνρσF

ρσ. (3.7)

With this definition, the EoM of the gauge fields FΛ, obtained by varying (3.5) with

respect to the associated vector potentials AΛ, can be written as

0 =
�
�
�∂L

∂AΛ
µ

− ∂α
∂L

∂∂αAΛ
µ

=− ∂α
∂L

∂FΣ
ρσ

∂FΣ
ρσ

∂∂αAΛ
µ

= −2∂α
∂L

∂FΛ
αµ

= −∂αG̃αµΛ ⇐⇒

⇐⇒ ∂αG̃
αµ
Λ = 0, (3.8)
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while the BI are instead

∂αF̃
Λαµ = 0. (3.9)

The system made by equations (3.8) and (3.9) is indeed invariant under a linear transfor-

mation of the gauge fields and their duals, which are called duality transformations. Calling

F and G the vectors containing all the gauge fields and their duals, the infinitesimal version

of such a duality transformation can be written as(
δF

δG

)
=

(
A B

C D

)(
F

G

)
, (3.10)

δφi =ξi(φ), (3.11)

where {A,B,C,D} ∈ GL(N,R), while ξi(φ) denotes the associated duality transformation

of the fields φi and it’s assumed to be a non-derivative function of the various φi’s.

These transformations, which clearly leave equations (3.8) and (3.9) invariant, should

be consistent with the EoM of the φi and with the dual field definition (3.6). These con-

sistency requirements translates into constraints over the duality transformations (3.10) and

(3.11). The strategy is to study the F and φ dependence on the associated variation of the

Lagrangian. This reads

δL =
∂L

∂φi
δφi +

∂L

∂∂µφi
δ(∂µφi) +

∂L

∂FΛ
δFΛ =

=

[
ξi

∂

∂φi
+ ∂µφj

∂ξi
∂φj

∂

∂∂µφi
+
(
AΛ

ΣF
Σ +BΛΣGΣ

) ∂

∂FΛ

]
L,

(3.12)

where we used the property that the two operations δ and ∂µ commute. Differentiating this

equation with respect to FΣ and making use of equations (3.6) and (3.10) we get

∂

∂FΣ
δL =δ

∂L

∂FΣ
+

1

2

(
AΛ

Σ +BΛΩ∂GΩ

∂FΣ

)
∂L

∂FΛ
=

=
1

2
δG̃Σ +

1

2

(
AΛ

Σ +BΛΩ∂GΩ

∂FΣ

)
G̃Λ =

=
1

2
CΣΩF̃

Ω +
1

2

(
AΛ

Σ +DΣ
Λ
)
G̃Λ +

1

2
G̃ΛB

ΛΩ∂GΩ

∂FΣ

(3.13)

We can obtain some consistency condition by observing that, since the left-hand side

of this equation is a derivative with respect to FΣ, also the right-hand side must be so. To

make manifest which part of the right-hand side of equation (3.13) can be seen as a derivative

with respect to FΣ and which one cannot, we observe that, since for the Levi-Civita tensor

structure we have F̃ ·G = F · G̃, we have

∂

∂FΣ
(FCF̃ ) =(CΣΩ + CΩΣ)F̃Ω, (3.14)

∂

∂GΣ
(GCG̃) =G̃Λ(BΛΩ +BΩΛ)

∂GΩ

∂FΣ
. (3.15)

We can apply these identities in (3.13) by symmetrizing and anti-symmetrizing the B

and C matrices, obtaining:
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∂

∂FΣ
δL =

1

4

∂

∂FΣ

(
FCF̃ +GBT G̃

)
+
(
AΛ

Σ +DΣ
Λ
) ∂L

∂FΛ
+

+
1

4
(CΣΩ − CΩΣ) F̃Ω +

1

4
G̃Λ (BΛΩ −BΩΛ)

∂GΩ

∂FΣ
.

(3.16)

The conditions that allow to write also the right-hand side of this transformation as a deriva-

tive with respect to FΣ are therefore

B =BT , (3.17)

C =CT , (3.18)

A+D =α 1, (3.19)

with α a real constant. Equation (3.16) then becomes

∂

∂FΣ
δL =

∂

∂FΣ

(
1

4
FCF̃ +

1

4
GBG̃+ αL

)
(3.20)

Next, a second constraint is obtained again from (3.12) in a similar fashion but this time

making use of the φi EoM as a guideline. We define the EoM operator as

Êi ≡
∂

∂φi
− ∂µ

∂

∂∂µφi
, (3.21)

so that the EoM of the field φi are

Êi[L] ≡ Ei = 0. (3.22)

Under the duality transformation (3.11), the φi EoM transforms covariantly as

δEi = −∂ξ
j

∂φi
Ej . (3.23)

Now, with the same approach of equation (3.13), we apply the EoM operator (3.21) to the

Lagrangian variation (3.12). After some algebraic calculation, and making use of equations

(3.23), (3.6) and (3.15), we obtain

Êi[δL] =��δEi +
�
�
��∂ξj

∂φi
Ej +

∂GΛ

∂φi
BΛΣ ∂L

∂FΣ
− ∂µ

(
∂GΛ

∂∂µφi
BΛΣ ∂L

∂FΣ

)
=

=
1

2

∂GΛ

∂φi
BΛΣG̃Σ −

1

2
∂µ

(
∂GΛ

∂∂µφi
BΛΣG̃Σ

)
=

=
1

4

(
∂

∂φi
− ∂µ

∂

∂∂µφi

)(
GBG̃

)
=

1

4
Êi

[
GBG̃

] (3.24)

Thus, we obtained two different transformation rules for δL, equation (3.20) and (3.24):
∂

∂FΣ
δL =

∂

∂FΣ

(
1

4
FCF̃ +

1

4
GBG̃+ αL

)
Êi[δL] =

1

4
Êi

[
GBG̃

] , (3.25)

describing the dependence of δL respectively on the gauge fields FΛ and on the other φi.
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From this two equations we may wright
δL =

1

4
FCF̃ +

1

4
GBG̃+ αL + f1(φ)

δL =
1

4
GBG̃+ f2(F )

(3.26)

where f1(φ) and f2(F ) are two arbitrary real functions of the various φi and FΛ respectively.

By comparing these two equations, we see that we must have

f1(φ) =0, (3.27)

f2(F ) =
1

4
FCF̃ , (3.28)

α =0. (3.29)

Therefore, the consistency conditions on the duality matrix defined in (3.10) are

A = −DT , B = BT , C = CT ; (3.30)

these constraints (3.30) on the components of the duality matrix fix the duality group to be

Sp(2N,R). The variation of the Lagrangian reads instead

δL =
1

4

(
FCF̃ +GBG̃

)
. (3.31)

Equations (3.30) and (3.31) are the main result of Gaillard and Zumino’s remarkable

paper. Some comments are now in order. First of all, Sp(2N,R) is actually the maximal

duality group that a theory can have: it may happen that the non-gauge fields further

restrict it to a subgroup of Sp(2N,R) in order to have (3.31) satisfied. Further, when gravity

is involved, the energy tensor of the theory results to be invariant under this actual duality

group of the theory, so that Einstein equations are indeed duality-invariant (the metric does

not transform under duality).

Another important observation regards equation (3.31), which testifies that EM duality

is a symmetry of the EoM and the BI and not of the Lagrangian, which indeed transform.

From (3.31) we see that only a subgroup of the duality transformations, the diagonal one

(B = 0 = C), leaves the Lagrangian invariant. Also, since the Lagrangian is function only

of the “original” fields FΛ, only lower-triangular duality transformations can be re-adsorbed

via fields redefinitions. Thus, a generic duality transformation contains a component which

determines a change of the so called “symplectic frame”, by modifying the starting Lagrangian

according to (3.31): EM duality identifies therefore a set of theories with the same EoM, i.e.

the same dynamics, but which are not connected by fields redefinitions.

3.1.1 EM duality as a Legendre transform

An interesting property of Gaillard and Zumino duality is that it can be interpreted as a

Legendre transform. To see this, we consider the case of one gauge field F and a Lagrangian

L = L[F, . . . ] and we introduce the EM dual field G as in (3.6):

G̃µν ≡ 2
∂L[F ]

∂F
.

This EM dual field can indeed be seen as the Legendre dual of F and used then to build

a dual Lagrangian. Following the Legendre formalism, the dual Lagrangian is generically
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defined as

LD[FD] = L[F ]− F · FD, (3.32)

where FD is the Legendre dual of F . The following duality relations, which link one side to

the other, hold:

FµνD =
∂L[F ]

∂Fµν
(3.33)

Fµν =− ∂LD[FD]

∂FµνD
(3.34)

By comparing equations (3.6) and (3.33), we can see that the EM dual field G̃ can thus

be seen as Legendre dual of F , defining the following dual Lagrangian:

LD[G̃] = L[F ]− 1

2
F · G̃, (3.35)

while the duality relations become

G̃µν =2
∂L[F ]

∂Fµν
(3.36)

Fµν =− 2
∂LD[G̃]

∂G̃µν
(3.37)

Thanks to the duality relation (3.36), to each solution of the EoM of the starting Lagrangian

L[F ] corresponds one solution of the dual Lagrangian LD[G].

The Legendre formalism of EM duality was suggested in [27, 28]; for a more detailed

description of how it can be used to constraint higher-order operators’ coefficients, see [17].

3.1.2 EM duality and higher-derivative operators

The strength of Gaillard and Zumino’s analysis is that it’s carried out in a completely

general setting: there is no perturbative assumption on the Lagrangian, which is kept generic,

like no specifications on the non-gauge fields φi and their characteristics have been made. This

fact has the important outcome of making EM a deep property of gauge theories, which are

naturally equipped with this dual structure that does not depend on anything but the gauge

nature of the theory, regardless in particular of the energy scale to which the theory belongs.

This general character is in agreement with the perspective for which EM duality is a

manifestation of the so called U-duality of String Theory: being a symmetry of the ultimate

UV theory, it is expected to hold at every perturbative order. As outlined at the beginning of

this chapter, this property makes EM duality a relevant tool to constraint higher-derivatives

operators of low-energy Lagrangians, which is an interesting procedure also from the Swamp-

land Program point of view.

However, this procedure of constraining the higher-derivative extension of a gauge theory

through EM duality is affected by an intrinsic problem. One of the few hypothesis of Gaillard

and Zumino derivation is that the Lagrangian does not contain operators involving derivatives

of the gauge field. This hypothesis is crucial for their analysis, as equation (3.12) clearly

shows. In fact, keeping also those operators would mean that the F -contribution to the

variation of the Lagrangian with respect to the duality transformation would result to be an
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infinite series of terms:

δFL =
∂L

∂FΛ
µν

δFΛ
µν +

∂L

∂∂αFΛ
µν

∂αδF
Λ
µν +

∂L

∂∂α∂βFΛ
µν

∂α∂βδF
Λ
µν + . . . . (3.38)

Thus, any higher-order extension that includes operator with derivatives on the gauge

fields cannot be analyzed via Gaillard and Zumino duality. This issue may be ignored when

the perturbative order of the extension is small because one may be able to exclude, via

identities and/or fields redefinitions, the problematic operators from the independent set

that is considered, but as higher is the order one wants to reach, the more difficult is to (not

arbitrarily) exclude them.

This problem can be tackled in two different ways. One possible strategy is to some-

what abandon the generic setting of Gaillard and Zumino derivation and rely instead to a

perturbative, model-based approach. The idea is to again start by the infinitesimal duality

transformation of the type (3.10) and fix the duality group by asking the duality transforma-

tion to be self-consistent in the specific case of the (2-derivative) theory under examination.

The higher-order operators are then determined by consistency with the duality group found

in this way. This procedure is indeed similar to Gaillard and Zumino’s one; the difference is

precisely that there’s no need to make assumptions on the full structure of the theory because

the duality analysis is made order by order, so that also operators involving derivatives of the

gauge fields are not excluded a priori. This is the procedure we followed in the main analysis

of this thesis work and it’s better described in the next chapter.

Another possible approach to this problem is the one developed by P. Cano and A.

Múrcia in [29], in which the operators involving derivatives of the gauge fields are completely

excluded from the analysis by virtue of the (claimed) consistency between the constitutive

relation (3.6) and the duality transformations (3.10). In the following section we describe in

more details this analysis of Cano and Múrcia, which determined a sort of algorithm to find

higher-derivative extensions of Einstein–Maxwell theory (1.4) and, moreover, we discuss the

criticisms of their approach, focusing in particular on the argument the two authors bring to

completely exclude the operators involving derivatives of the gauge field from the higher-order

Lagrangian.

3.2 Duality-preserving extension of Einstein–Maxwell theory

In [29], P. Cano and A. Múrcia want to find higher-derivative extensions of Einstein–

Maxwell theory (1.4),

SEM =

∫
d4x

√
|g|
[
M2

P

2
R− 1

4
FµνF

µν

]
,

that preserve EM duality, and they do so by exploiting some consistency conditions coming

from the duality structure. In particular, the outcome of their analysis is a sort of algorithm

to find order by order in the derivatives the different extension of (1.4).

3.2.1 Duality transformation and structure of the Lagrangian

Cano and Múrcia introduce the duality transformations in a slightly different way with

respect to Gaillard and Zumino. The generic higher-order Lagrangian that the authors want
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to determine is denoted by

L = L(gµν , Rµνρσ, DαRµνρσ, . . . ;Fµν , DαFµν , dots) (3.39)

and the resulting EoM of the gauge fields are

0 =Dµ

(
Fµν − 2

δL

δFµν

)
, (3.40)

δL

δFµν
=

∂L

∂Fµν
−Dα

∂L

∂DαFµν
+ . . . . (3.41)

The dual field is then defined as

G̃µν ≡ −Fµν + 2
δL

δFµν
, (3.42)

so that the EoM and the BI of the gauge fields are indeed

dF =0, (3.43)

dG =0. (3.44)

These definitions make explicit the different contributions of the starting, 2-derivative La-

grangian (1.4) and of the higher-order one L. Also, we notice that at this level the derivatives

of the gauge field are still allowed in L.

Now, as in Gaillard and Zumino, the system (3.44) of the EoM and the BI of Fµν is

invariant, in principle, under a GL(2,R) transformation over the gauge field and its dual.

Consistency with the duality definition (3.42) and with the invariance of Einstein equations

(i.e. the invariance of the stress-energy tensor) reduce this group to the SO(2,R) rotations:(
F ′

G ′

)
=

(
cosα − sinα

sinα cosα

)(
F

G

)
(3.45)

At this point, Cano and Múrcia argue that internal consistency between the dual field

definition (3.42) and the duality transformation (3.45) forbids L to contain operators with

derivatives on the gauge field. The argument is the following. If L does contain operators

with derivatives on the gauge fields, equation (3.42) is a differential relation, which makes its

inverse F = F (G) involving an integration. On the contrary, considering a (3.45) rotation of

angle α = π/2, we can write:{
F ′ = −G
G ′ = F

=⇒ F̃ ′ = −G̃ (3.42)
= F − 2

∂L

∂F
= G ′ − 2

∂L

∂F

∣∣∣∣
F→G ′

. (3.46)

Though analogous in form to the mentioned inverse of (3.42), this relation is differential,

while the former involves integration. This is considered to be a problem: since the EoM

and BI are invariant under duality rotations, the two relations should be equivalent but this

is not the case if one involves integration and one differentiation. Because of this argument,

operators with derivatives are excluded from the higher-order Lagrangian:

L =L(gµν , Rµνρσ, DαRµνρσ, . . . ;Fµν), (3.47)

δL

δFµν
=

∂L

∂Fµν
. (3.48)
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This is indeed a subtle point. Cano and Múrcia notice also that one may recover a

differential relation also from (3.42) by a perturbative expansion. The problem of such an

operation is that also the invariance under duality would hold perturbatively as well and,

because of the above argument, theories with operators involving derivatives of the gauge

field would lead to a divergent series instead of an exactly invariant theory (see [29,36]).

3.2.2 Higher-derivative terms

Once the structure of the higher-order Lagrangian is restricted to (3.47), we now turn to

the sort of algorithm that Cano and Múrcia derived to determine the various higher-derivative

operators. This is done again by exploiting the two duality rules (3.42) and (3.45) and the

associated invariance of the EoM.

Starting from (3.45), we have

G ′ = sinαF + cosαG

?G ′ = sinα ? F + cosα ? G
(3.42)

= − cosαF + 2 cosα
∂L

∂F
+ sinα ? F

(3.45)
=

=− F ′ − sinα(G− ?F ) + 2 cosα
∂L

∂F

(3.42)
= −F ′ + 2 (cosα+ sinα?)

∂L

∂F
≡

≡− F ′ + 2R̂
∂L

∂F

∣∣∣∣
F→cosαF ′+sinαG ′

.

(3.49)

In order for this equation to be compatible with (3.42) for F ′ and G ′, we see that we have

to require

R̂
∂L

∂F

∣∣∣∣
F→cosαF ′+sinαG ′

=
∂L

∂F

∣∣∣∣
F→F ′

, (3.50)

and since this identity should hold on-shell, we have

R̂
∂L

∂F

∣∣∣∣
F→R̂F ′−2 sinα?( ∂L∂F )

=
∂L

∂F

∣∣∣∣
F→F ′

, (3.51)

This identity is the “master equation” that Cano and Múrcia use to determine L such

that EM duality is preserved. To do so, although L is considered to be an exactly invariant

theory, they rely on the following perturbative expansion:

L =
1

m2
L4 +

1

m4
L6 + . . . , (3.52)

in which m is the energy scale driving the expansion and each Ln term contains n derivatives

of the fields. Plugging this expansion into equation (3.49) and working until the 6-derivatives

order1, we obtain

G ′µν =− F ′µν +

{
2

m2
R̂
∂L4

∂Fµν
+

2

m4
R̂
∂L6

∂Fµν
+

− sinα R̂

(
?R̂

∂L4

∂F

)αβ ∂2L4

∂Fαβ∂Fµν

}∣∣∣∣∣
F→R̂F ′

+ O

(
1

m6

)
.

(3.53)

1In [29] the authors carry out the calculations also for the 8-derivatives operators.
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Thus, in virtue of identity (3.51), we have the following identification:

∂L4

∂Fµν
=R̂

∂L4

∂Fµν

∣∣∣∣
F→R̂F

, (3.54)

∂L6

∂Fµν
=

[
∂L6

∂Fµν
− 1

2

(
?R̂

∂L4

∂F

)αβ ∂2L4

∂Fαβ∂Fµν

] ∣∣∣∣∣
F→R̂F

. (3.55)

To solve such identities, we observe that a given operator of L takes the general form

F aDbRc, (3.56)

with a, b and c that are not mixed by duality transformations, so that each of these operators

independently satisfy the associated identity. From (3.56) we it follows also that

Fµν
∂L

∂Fµν
= aL =⇒ Fµν

(
R̂

∂L

∂Fµν

) ∣∣∣∣
F→R̂F

= aL
∣∣∣
F→R̂F

. (3.57)

We apply then this additional identity to determine L4 and L6.

• L4 Combining equations (3.54) and (3.57) we get

∂L4

∂Fµν
= R̂

∂L4

∂Fµν

∣∣∣∣
F→R̂F

=⇒ Fµν
∂L4

∂Fµν
= FµνR̂

∂L4

∂Fµν

∣∣∣∣
F→R̂F

=⇒ L4(F ) = L4(R̂F ).

(3.58)

This last identity (3.58) completely characterizes L4, that contains therefore only R̂-invariant

operators, i.e. operators invariant under a SO(2,R)-rotation of F and F̃ . Defining the

SO(2,R) vector F ≡ (F, F̃ ), we can find them by studying the invariance condition of a

generic SO(2,R)-built operator:

FAM
A
BF

B −→ F′AM
A
BF
′B = FAM

A
BF

B ⇐⇒ STMS = M, (3.59)

where S ∈ SO(2,R) and M is the matrix coefficient that we fix via the invariance requirement.

The result of this calculation is that M must be proportional to the identity.

M ∝ 1. (3.60)

Thus, the SO(2,R)-invariant operators appearing in L4 are proportional to

FAµνF
Aαβ =FµνF

αβ + F̃µνF̃
αβ =

=����
FµνF

αβ −����
FµνF

αβ + 4

[
F [α|γF[µ|γ −

1

4
F 2δ[α|

[µ|

]
δ|β]

|ν] = T [α
[µδ

β]
ν],

(3.61)

where Tα µ is precisely the stress-energy tensor associated to Einstein–Maxwell (2-derivative)

action (1.4). Therefore, all the dependence of L4 on the gauge field must come through the

stress-energy tensor (3.61) and its most general, duality-preserving expression is

L4 =α1TµνT
µν + α2R

µνTµν + α3(Rµν)2 + α4R
2 + α5GB =

=
α1

4

[
(F · F )2 + (F · F̃ )2

]
+ α2

[
RµνF

µαF ν α −
1

4
RF 2

]
+ α3(Rµν)2 + α4R

2 + α5GB,

(3.62)
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where GB is the topological Gauss–Bonnet term (1.13). We remark that while the various

operators could be identified independently, the EM duality requirement that the dependence

on Fµν should occur via Tµν fixes the relative coefficients. Indeed, this result is different from

the one we obtain in (1.26): the operator RµνρσF
µνF ρσ seems to violate duality.

• L6 The same strategy applies now to L6 but this time the starting identity (3.55) is more

involved. Applying (3.57) we get in fact

L6(R̂F ) = L6(F )− 1

4

(
sinα ? R̂

∂L4

∂F

)µν ∂L4

∂Fµν

∣∣∣∣
F→R̂F

. (3.63)

This means that L6 is not invariant under a SO(2,R)-rotation of F and F̃ . Thus, L6 takes

the form

L6 = LH
6 + LIH

6 , (3.64)

where LH
6 is the homogeneous term, i.e. a term that is SO(2,R)-invariant like L4 (see (3.58),

while LIH
6 is the inhomogeneous term, producing the non-trivial transformation (3.63). Cano

and Múrcia show that this inhomogeneous term reads

LIH
6 = −1

8

∂L4

∂Fµν
∂L4

∂Fµν
. (3.65)

For more details on the explicit expression of L6, on the 8-derivatives order calculations

and on the (crucial) invariance of the higher-order Einstein equations, see [29].

3.2.3 Remarks on Cano and Múrcia analysis

The one of Cano and Múrcia is an interesting application of Gaillard and Zumino duality

and a good example of how EM duality can be used to constraint the higher-derivative

extension of a Lagrangian, in this case being the Einstein–Maxwell theory (1.4).

As shown previously in this section, the two authors, similarly to Gaillard and Zumino,

start from the definitions of the dual field (3.42) and of the duality transformation (3.45)

under which the EoM and BI of the gauge field stays invariant and determine the higher-order,

duality-preserving Lagrangian by imposing the self-consistency between the two definitions

(3.42) and (3.45) (see (3.47), (3.51) and (3.57)). Although the found consistency conditions

should define an exactly-duality preserving Lagrangian, to carry out explicitly the calculations

they turn to a perturbative expansion (see (3.52), (3.54) and (3.55)). The result is a sort

of algorithm that allows to compute order by order in the derivatives the different duality-

preserving contributions to the Lagrangian (see (3.62), (3.64) and (3.65)).

The critical point, as we understood, are again the operators involving derivatives of

the gauge fields and how to deal with them. Differently from Gaillard and Zumino, whose

analysis is somewhat followed in parallel but not directly applied, Cano and Múrcia do not

assume the absence of such operators from the Lagrangian as starting hypothesis but rather

argue that their presence is entirely forbidden by, again, duality consistency.

Their argument rely on the comparison between the inverse of the dual field definition

(3.42),

G̃µν ≡ −Fµν + 2
δL

δFµν
−→ F = F (G),
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and the analogous relation (3.46) that one obtains via a duality rotation (3.45) of angle π/2:

F ′ = G ′ − 2
∂L

∂F

∣∣∣∣
F→G ′

.

Cano and Múrcia’s claim is that these two relations should be equivalent because of the

invariance of the EoM and BI under a duality rotation (3.45), but this is impossible if L

does contain operators with derivatives on the gauge field because the former would involve

integration, while the latter differentiation.

This argument is, however, somewhat vague. The presence of integration in the inverse

of (3.42) is in fact not clear. In general, we can perform easily such an inversion only when

the Lagrangian contains “simple” (usually, 2-derivatives) operators, but this is not the case

when the Lagrangian starts to include also higher-order operators and/or a larger set of fields.

Let’s understand this problem by considering some examples:

1. Einstein–Maxwell theory in the 2-derivative Einstein Maxwell theory (1.4) the inver-

sion is trivial:

G̃µν = −Fµν −→ Fµν(G) = −G̃µν . (3.66)

2. Non-minimally coupled theory A more involved theory is given by

L = −1

4
I(φ)FµνF

µν +
1

4
R(φ)FµνF̃

µν + (. . . ) , (3.67)

which is an example of possible gauge sector of a theory involving also a scalar field φ,

of which the couplings I and R are functions (the “. . . ” denote other possible non-gauge

operators, such as the φ kinetic term). The dual field in this case reads

Gµν = I(φ)F̃µν + R(φ)Fµν =

[
1

2
I(φ) εµνρσ + R(φ) g[µ|ρg|ν]σ

]
F ρσ ≡ D̂(φ)F ρσ, (3.68)

so that the inverse relation yields

Fµν(G) = D̂(φ)−1µνρσGρσ =
I

I2 + R2
G̃µν +

R

I2 + R2
Gµν . (3.69)

We could obtain (3.69) because we can easily invert the operator D̂(φ) in (3.68), but this

is far from obvious with more complicated theories. One immediate example is the Cano and

Múrcia L4 (3.62), where combinations of the gauge filed with the Riemann and the Ricci

tensor, as well as quartic gauge field operators, starts to appear. Another one can be found

again in a theory such (3.67), involving a gauge field and a scalar. At the 4-derivative order

operators such

∂µφ∂
µφF 2, ∂µφ∂

µφFF̃ , ∂µφ∂νφF
µαF ν α,

appears and complicate the task to invert (3.42). The more fields a Lagrangian describes

and/or the higher is the derivative order at which is given, the less the inversion of the dual

field becomes clear and with it the comparison with its counterpart (3.46) coming from a

duality rotation, independently on any possible integration and/or differentiation.

In addition, since the comparison is made keeping the two relations (3.42) and ((3.46))

in their general form (i.e. not specialized to the Einstein–Maxwell Lagrangian (1.4)), this

argument should prevent operators with derivatives on the gauge field to appear in any gauge

theory meant to preserve EM duality, not only in Einstein–Maxwell one. Nevertheless, the

comparison is difficult to understand, as discussed, not only when operators with derivatives
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of the gauge fields are present but also when the Lagrangian has a more involved structure

(because of other fields and/or higher-order operators), so that if analogous constraints were

to be derived also for this configurations of the studied Lagrangian the consistency conditions,

analogous to (3.48), would be to detailed and stringent.

To deal with this comparison between (3.42) and (3.46) it seems that one needs to rely

on a perturbative approach, as indeed mentioned by Cano and Múrcia themselves, regardless

of whether the resulting series of operators re-add then to an exact theory or not. In this

way, operators with derivatives of the gauge field are not excluded a priori, although how to

include them, though perturbatively, in the above discussion is not trivial at all.

Despite this critical point, Cano and Múrcia is indeed a relevant example of how EM

duality can be used to constraint higher-derivatives operators. Despite the argument they

bring is not very well understood, working without operators with derivatives of the gauge

field is in fact completely in agreement with Gaillard and Zumino duality framework. As

it’s stated, this procedure works well in the Einstein–Maxwell context, where the number

higher-order operators is, after all, not too large (the authors were able to explicitly carry on

the calculations to the 8-derivative order). It would be interesting then to try to apply - and

possibly refine - it in more complicated theories.





Chapter 4

Beyond pure Einstein–Maxwell

theory

In the first chapter we introduced the Weak Gravity Conjecture and the Swampland

approach to the study of low-energy effective field theories and their higher-order extensions.

We have also shown how such swampland analysis explicitly works by studying the realization

of the Electric WGC (1.1) in the context of the 4-derivatives extension (1.26) of the Einstein–

Maxwell theory (1.4).

The third chapter is instead dedicated to the description of Electromagnetic duality, a

very deep property of gauge theories that states the invariance under rotation of the EoM and

the BI of gauge fields. First we studied how M. Gaillard and B. Zumino determined in [26] how

this symmetry works and the most general duality group that a theory can have (see (3.30),

(3.31)). Next, we turned to discuss how EM duality, by virtue of its connection with the

dualities of String Theory [14–16], can be used as a guideline to constrain higher-derivatives

extension of low-energy gauge theories. Einstein–Maxwell theory (1.4) was again used as a

benchmark to explicitly see how this idea can be applied and we studied its duality-preserving

extension (3.62) proposed by P. Cano and A. Múrcia [29].

Following this perspective, EM duality and the Swampland Program can indeed be con-

nected: EM duality represents a tool to determine higher-order extensions of low-energy

theories, the swampland conjectures a tool to constraint the resulting coefficients. Interest-

ing questions are then if and how EM duality works in favour of (or against) some swampland

conjecture and what are its actual role and weight as a fundamental property.

In the second chapter we described how an important class of evidence supporting the

WGC is represented by the positivity bounds on the theory’s scattering amplitudes [19]. In

the case of Einstein–Maxwell theory, the positivity bounds on the coefficients of the extended

theory (1.26) automatically realize the Electric WGC condition (1.36), as shown in (2.31).

However, when the WGC is studied in the context of a more involved theory the positivity

bounds are not sufficient anymore to exactly reproduce its prescriptions [33]. The equivalence

seems though to be restored if EM duality constraints are included [33, 34]. This picture

in which EM duality plays an active and relevant role in constraining higher-derivatives

corrections to low-energy models and, together with the positivity bounds on the scattering

amplitudes, realizes the WGC, is the starting point for the main analysis of this thesis work.

The theory we study describes gravity, two U(1) abelian gauge fields FΛ (Λ = 1, 2) and

a complex scalar field τ , coupled in a non-minimal way. Working in MP = 1 units, the

35
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Lagrangian is

L2 =
1

2
R− 1

2(Imτ)2
∂µτ̄ ∂

µτ − 1

4
IΛΣ(τ, τ̄)FΛ · FΣ +

1

4
RΛΣ(τ, τ̄)FΛ · F̃Σ,

where couplings IΛΣ and RΛΣ are indeed functions of the complex scalar field τ . This theory

can be seen as the bosonic sector of a N = 2 Supergravity theory [37], involving the graviton

and a vector multiplets.

Starting from this theory, our goal is to find its higher-derivatives extension such that

EM duality is preserved, test the realization of the Electric WGC via the charge-to-mass ratio

of an extremal black hole solution of the resulting theory and finally compare the resulting

constraints on the higher-order coefficients with the conditions imposed by positivity bounds

in order to verify that the equivalence does get restored thanks to duality.

This same model has been studied also by G. Loges, T. Noumi and G. Shiu in [34], where

they indeed find a duality extension of the action and performed the Electric WGC test we

described. However, the higher-order theory that they present involves a set of operators

which are manifestly duality-invariant, so that the very same extension results to be exactly

invariant: this is not the most precise way to deal with EM duality. Indeed, we strongly

remark that EM duality is a symmetry that concerns the EoM and the BI, not the Lagrangian,

as equation (3.31) clearly shows. It immediately follows that the higher-derivative extension

proposed in [34] is not, a priori, the most general duality-preserving correction to the starting

Lagrangian. The main purpose of this thesis work is precisely to fulfil this task in a more

rigorous framework.

The procedure we follow to determine the higher-order Lagrangian via EM duality is

one of the main aspects of this work. Differently from Cano and Múrcia, whose approach

in [29] has the uncertainties described in the previous chapter, we derive the duality group

of the theory again by requiring consistency between the dual field definition (3.6), and the

duality transformation (3.10), but we do this in a full perturbative sense, studying the duality

transformation order by order. We remark that this is compatible with the UV symmetry

nature of EM duality because, being such, it is then expected to hold at every perturbative

order.

More specifically, we consider an infinitesimal duality transformation of the type (3.10)

on the gauge fields and their duals computed at the 2-derivatives order and we find the

transformation rules that the two non-minimal couplings I(τ, τ̄) and R(τ, τ̄) should follow in

order for the duality transformation to be consistent with the dual field definition. From these

rules we can fix also the duality group associated to our theory by exploiting the symmetries

of I(τ, τ̄) and R(τ, τ̄). Next, we determine the 4-derivatives extension by studying the duality

transformations of the various operators that can provide such higher-order correction and

the conditions under which they’re well defined.

Similarly to Cano and Múrcia, we somewhat abandon the general approach of Gail-

lard and Zumino and rely on a model-based analysis of the duality group. However, Cano

and Múrcia’s procedure, although focused on Einstein–Maxwell theory (1.4), still looks, at

the beginning, for duality constraint over the ideal full action and this leads to the (sub-

tle) condition (3.47) about the operators with derivatives on the gauge fields. Instead, our

strictly-perturbative approach is completely agnostic about the structure of the full theory

and lets duality determine the higher-orders structure of the Lagrangian, without any addi-

tional requirement. This allows in particular to include in the discussion the operators with

derivatives on the gauge fields in a simple way.

This chapter is dedicated to the 2-derivatives order. In the first section we present the
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theory we studied and describe its structure and its origin as a N = 2 Supergravity theory;

in the second and third ones we discuss the duality analysis and the resulting duality group.

The analysis of the 4-derivatives order is instead discussed in the next chapter.

4.1 The model

We start by presenting the theory that is the subject of this thesis work, focusing on its

structure and background. As anticipated at the beginning of the chapter, the (2-derivatives)

Lagrangian, written in MP = 1 units, is

L2 =
1

2
R− 1

2(Imτ)2
∂µτ̄ ∂

µτ − 1

4
IΛΣ(τ, τ̄)FΛ · FΣ +

1

4
RΛΣ(τ, τ̄)FΛ · F̃Σ, (4.1)

with associated action:

S =

∫
d4x

√
|g|L2. (4.2)

This model couples gravity to two U(1) abelian gauge fields FΛ (Λ = 1, 2) and a complex

scalar field τ in a non-minimal way. The two gauge fields couplings IΛΣ(τ, τ̄) and RΛΣ(τ, τ̄)

are functions of the scalar field τ and are symmetric in the gauge indices (Λ,Σ). Apart from

these two properties, the two coupling matrices are not specified further.

The EoM of the various fields result to be:

F : IΛΣDµF
Σµν + (∂µI)ΛΣ F

Σµν − (∂µR)ΛΣ F̃
Σµν = 0, (4.3)

τ :
1

2(Imτ)2
�τ +

i

2(Imτ)3
∂µτ∂

µτ − 1

4
(∂τ̄ I)ΛΣ F

ΛFΣ +
1

4
(∂τ̄R)ΛΣ F

ΛF̃Σ = 0, (4.4)

g: Gµν − Tµν ≡ Rµν −
1

2
Rgµν − Tµν = 0, (4.5)

where Tµν is the stress-energy tensor, equal to

Tµν ≡T (F )
µν + T (τ)

µν , (4.6)

T (F )
µν =IΛΣ

[
FΛ
µρF

Σ ρ
ν − 1

4
gµνF

ΛFΣ

]
, (4.7)

T (τ)
µν =− 1

2(Imτ)2

(
∂ατ̄ ∂

ατgµν − 2∂(µτ̄ ∂ν)τ
)
. (4.8)

The Lagrangian (4.1) describes a bosonic subsector common to many Supergravity theo-

ries and coincides with that of a N = 2 Supergravity theory coupled to a vector multiplet [37].

We can in fact identify the various fields with the bosonic degrees of freedom of the N = 2

vector and graviton multiplets:

vector multiplet: 1 vector + 2 Weyl fermions + 1 complex scalar;
graviton multiplet: 1 graviton + 2 gravitini + 1 vector.

The standard bosonic sector of such theories appears like

Lbos =
1

2
R− gij(φ)∂µφ

i∂µφj − 1

4
MMN (φ)FM · FN , (4.9)

where, similarly to (4.1), we have gravity, a set of real scalars φi and a set of abelian field

strengths FMµν . Such theories are characterized by the scalar kinetic matrix gij(φ) and the vec-

tor kinetic matrix MMN (φ), whose explicit expression is determined by the supersymmetric
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structure of the theory.

4.1.1 The scalar sector

Let G be the global symmetry group of the theory. The scalar field sector is given by a so

called σ-model, which in general denotes a scalar field theory in which the fields take values

on a given manifold Mφ; the scalar kinetic matrix gij(φ) introduced in (4.9) is precisely the

metric tensor associated to Mφ. This manifold is given by the coset space G/K, which is the

set of equivalence classes of elements of G connected by a transformation of K, taken in this

case to be its maximal compact subgroup. The following relation among the algebras hold:

g = k⊕ c, (4.10)

where c is the algebra of the coset space and has indeed dimension dimc = dimg− dimk.

As explicit example of how such σ-models are build we consider the case, related to the

Lagrangian (4.1), of the coset manifold

Mφ = SL(2,R)/SO(2,R). (4.11)

The associated algebra generators are taken to be

sl(2) : T1 =
1

2

(
0 1

1 0

)
, T2 =

1

2

(
0 1

−1 0

)
, T3 =

1

2

(
1 0

0 −1

)
, (4.12)

so(2) : t =
1

2

(
0 1

−1 0

)
, (4.13)

so that c = {T1, T3} and dimc = 2.

The typical procedure to build the scalar Lagrangian starts by selecting a representative

element of the coset space. There are several possibilities to do so and in general it can be

built as an exponential of the generators of the coset algebra c. The most “economic” choice

in our case is given by1

L(ϕ, θ) = exp (θ(T1 + T2)) exp (ϕT3) =

(
eϕ/2 e−ϕ/2θ

0 e−ϕ/2

)
, (4.14)

where ϕ and θ are going to be the two scalar fields described by the resulting σ-model. Next,

with the coset representative L one defines the matrix

M(ϕ, θ) = LLT , (4.15)

which is positive defined and invariant under K transformations. The σ-model Lagrangian

can then be obtained as

Lscalar =
1

8
Tr
[
∂µM∂µM−1

]
, (4.16)

and in the Mφ = SL(2,R)/SO(2,R) case we’re considering it results to be

Lscalar(ϕ, θ) = −1

4

[
∂µϕ∂

µϕ+ e−2ϕ∂µθ∂
µθ
]
. (4.17)

We can recast this expression by merging the two real scalars ϕ and θ in a complex one

1This choice comes from the application of the so called “Iwasawa decomposition” [38].
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τ as

τ ≡ θ + i eϕ, (4.18)

so that Lagrangian (4.17) becomes

Lscalar(τ) = − 1

4(Imτ)2
∂µτ̄ ∂

µτ, (4.19)

which is equivalent, modulo a scalar coefficient, to the scalar sector of (4.1).

We notice that the resulting σ-model (4.19) indeed enjoys the following SL(2,R) symme-

try:

τ −→ aτ + b

cτ + d
with

(
a b

c d

)
∈ SL(2,R). (4.20)

We have in fact that ∂µτ̄ ∂
µτ and Imτ transform in opposite ways:

• ∂µτ −→ 1

(cτ + d)2
∂µτ =⇒ ∂µτ̄ ∂

µτ −→ 1

|cτ + d|4
∂µτ̄ ∂

µτ (4.21)

• Imτ −→ 1

|cτ + d|2
Imτ =⇒ 1

(Imτ)2
−→ |cτ + d|4 1

(Imτ)2
. (4.22)

We highlighted here this SL(2,R) symmetry of the scalar Lagrangian (4.19) because it’s

going to play a relevant role in the duality structure of Lagrangian (4.1).

4.1.2 The gauge sector

In order to go from the gauge sector of Lagrangian (4.9), expressed in terms of the gauge

kinetic matrix, to the one of (4.1) in terms of the couplings I and R, one needs again to make

use of EM duality, which in this context corresponds to the action of the symmetry group G

on the field strengths FM . Going back to the dual field definition we gave in (3.6), we can

rewrite it, in the case of (4.9), as

GM µν = εµνρσMMNF
N ρσ. (4.23)

As we previously understood, EM duality identifies a set of non-equivalent theories which

describe though the same dynamics, thanks to (4.23). Among this set, there is one theory

in which all the fields FM are dualized, i.e. in which the duality symmetry of the EoM and

BI is manifest. Let’s suppose that Lagrangian (4.9) describes precisely this picture: in even

spacetime dimensions, the fields FM splits as

FM =
(
FΛ, FΛ

)
, (4.24)

in which FΛ are the proper dynamical degrees of freedom, while FΛ are their associated duals.

For such a FM , the dual field definition (4.23) can be rephrased in what is called twisted

self-duality condition [37,39,40]:

FMµν = −1

2
εµνρσΩMJMJNF

N ρσ, (4.25)

where Ω is the symplectic matrix:

Ω =

(
0 1
−1 0

)
. (4.26)
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The proper Lagrangian, function only of the dynamical half of the fields FΛ, that encodes

equation (4.25) is given precisely by

Lgauge =
1

4
IΛΣ(φ)FΛ · FΣ +

1

4
RΛΣ(φ)FΛ · F̃Σ, (4.27)

in which the coupling matrices I(φ) and R(φ) are related to the starting gauge kinetic matrix

M(φ) by

M = −
(
I + RI−1R −RI−1

−I−1R I−1

)
. (4.28)

4.2 The duality group

We now go back to Lagrangian (4.1) and study the associated duality group. As we

described in the introduction to the chapter, the strength of our duality analysis relies in

its perturbative character: it allows in fact to determine the duality group of the theory

already at the 2-derivatives level (4.1) and, moreover, to include in the discussion also the

higher-order operators that involve derivative of the gauge fields.

In this perspective, we introduce the dual field definition as

G̃Λµν ≡ 2

[
∂L

∂FΛµν
−Dα

∂L

∂ (DαFΛµν)
+ . . .

]
, (4.29)

where the dots stand for the various higher-derivatives terms. Since our analysis will concern

the 4-derivatives order, the relevant contributions to GΛ are the one that are explicit in (4.29).

The infinitesimal duality transformation on the gauge fields is, similarly to (3.10),(
δF

δG

)
=

(
A B

C D

)(
F

G

)
, (4.30)

where F =
(
F 1, F 2

)
, G = (G1, G2) and {A, B, C, D} ⊂ GL(2,R). For what concerns the

other fields of the theory, the metric does not transform under duality, while, as anticipated in

(4.20), the (full) duality transformation on the scalar field τ , under which its EoM transforms

covariantly (recall (3.23)), is the SL(2,R) transformation

τ −→ aτ + b

cτ + d
with

(
a b

c d

)
∈ SL(2,R). (4.31)

The reason why the duality transformation of τ is precisely a transformation of SL(2,R) is

going to be clear once the duality group of the theory is fixed.

4.2.1 Duality analysis of the gauge sector

According to definition (4.29), the dual field associated to our starting, 2-derivatives

theory (4.29) is

G
(2)
Λµν = IΛΣF̃

Σ
µν + RΛΣF

Σ
µν , (4.32)

where the superscript “(2)” remarks the order at which the dual field is computed.

We can then derive the duality group of the theory by exploiting the self-consistency of the

infinitesimal duality transformation (4.30). According to it, we can read the transformation

of the dual field G
(2)
Λ from two different points of view. On one side, it’s directly involved in
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the duality transformation and we have

δG
(2)
Λ = CΛΣF

Σ +DΛ
ΣG

(2)
Σ . (4.33)

On the other, G
(2)
Λ is function of the gauge fields FΛ and of the complex scalar τ (see (4.32)),

so that its duality transformation must be proportional to δFΛ as well as to δτ and δτ̄ . At

this order2, we have

δG
(2)
Λ = δτG

(2)
Λ + δFG

(2)
Λ = δτG

(2)
Λ +

∂G
(2)
Λ

∂FΣ
δFΣ = δτG

(2)
Λ +

∂G
(2)
Λ

∂FΣ
[AF +BG(F )]Σ , (4.34)

where δτG
(2)
Λ and δτG

(2)
Λ denote the components of the duality transformation that are pro-

portional, respectively, to δFΛ and to δτ and δτ̄3.

Thus, by putting together equations (4.33) and (4.34) we obtain the following consistency

identity:

CΛΣF
Σ +DΛ

ΣG
(2)
Σ = δτG

(2)
Λ +

∂G
(2)
Λ

∂FΣ
[AF +BG(F )]Σ . (4.35)

From this identity we can obtain the transformation rules of I and R under (4.30) and,

consequently, the consistency conditions on the A, B, C and D matrices that fix the duality

group.

Explicitly, the two transformations read

• G side: δG
(2)
Λ =CΛΣF

Σ +DΛ
ΣG

(2)
Σ = (C +DR)ΛΣ F

Σ + (DI)ΛΣ F̃
Σ; (4.36)

• F side: δG
(2)
Λ =δ

(
IΛΣF̃

Σ
)

+ δ
(
RΛΣF

Σ
)

=

=δIΛΣF̃
Σ + δRΛΣF

Σ + IΛΣδF̃
Σ + RΛΣδF

Σ = (4.37)

= [δI + IA+ IBR + RBI]ΛΣ F̃
Σ+

+ [δR + RA− IBI + RBR]ΛΣ F
Σ.

Identity (4.35) is satisfied by equating the coefficients of FΣ and F̃Σ in (4.36) and (4.37).

This yields the following transformation rule for I and R:

δI =DI− IA− IBR− RBI, (4.38)

δR =C +DR− RA+ IBI− RBR. (4.39)

We remark that these transformation rules are fixed by the consistency between the duality

transformation (4.30) (the “G side”) and the dual field definition (4.29) (the “F side”),

expressed by identity (4.35).

Moreover, transformations (4.38) and (4.39) must also be consistent with I and R prop-

erties. As mentioned, these couplings are symmetric matrices, as it is clear from (4.1):

IΛΣ =IΣΛ, RΛΣ =RΣΛ. (4.40)

Thus, plugging (4.40) into (4.38) and (4.39) we obtain consistency conditions also on the

2At the 2-derivatives level we have only terms proportional to δFΛ. When higher-derivatives operators will
be included, equation (4.34) is corrected by terms proportional to Dµ(δFΛ), DµDν(δFΛ) and so on.

3Since the τ -dependence of G
(2)
Λ is all in the couplings, this term corresponds to the δI and δR terms of

(4.37).
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duality matrices A, B, C and D. From (4.38) we get

0 = δIΛΣ − δIΣΛ =
(
DΛ

Ω +AΩ
Λ

)
IΩΣ − IΛΩ

(
DΣ

Ω +AΩ
Σ

)
+

− IΛA

(
BAB −BBA

)
RBΣ − RΛA

(
BAB −BBA

)
IBΣ.

=⇒ (4.41)

=⇒
D =−AT ,
B =BT .

(4.42)

From (4.39) we get the same conditions on A, B and D and also one on C:

C = CT , (4.43)

Conditions (4.42) and (4.43) fix the EM duality group of our theory (4.1) to be Sp(4,R).

Comparison with Gaillard and Zumino Indeed, we notice that conditions (4.42) and

(4.43), and with them, of course, the duality group they determine, coincide with the Gaillard

and Zumino result (3.30). The difference relies in the framework in which these constraints

have been derived. Gaillard and Zumino carry out their analysis working with a generic

Lagrangian, i.e. without specifying neither the fields content nor, in the effective field the-

ory perspective, the derivatives order at which is computed. This makes their result very

general and it can indeed be applied to study vast classes of theories, but at the same time

they’re forced to exclude (as starting assumption) the presence in the Lagrangian of operators

with derivatives on the gauge fields, otherwise they would not be able to proceed with the

calculations (see (3.12), (3.41)).

Instead, our derivation of the duality group is strongly model-based: we obtained the

constraints (4.42) and (4.43) by directly applying the explicit expression of the dual field

(4.32) and the symmetries of the I and R couplings (4.40). This obviously limits the results

of our duality analysis to the model (4.1) we consider but at the same time we do not have

to make any further assumption on the structure of Lagrangian and its higher-derivative

extension: only duality fixes it, independently on the type of operators considered.

4.2.2 Duality analysis of the scalar sector

From the analysis of the gauge sector we determined the duality transformation rules of

the I and R couplings (4.38) and (4.39): these transformations depend both on the gauge

structure of the two couplings - they’re matrices carrying the gauge indices (Λ,Σ) - and their

dependence on the scalar field τ .

To understand how τ transform under duality we study the total variation of the La-

grangian (4.1) under (4.30). We first rewrite (4.1) as

L2 =
1

2
R+ Lmat +

1

4
FΛG̃

(2)
Λ , (4.44)

with

Lmat = − 1

2(Imτ)2
∂µτ̄ ∂

µτ, (4.45)

and G(2) as in (4.32), so that under (4.30) it transforms as

δL2 = δLmat +
1

4
δ
(
FΛG̃

(2)
Λ

)
. (4.46)
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The gauge term of this transformation reads

δ
(
FΛG̃

(2)
Λ

)
=G̃

(2)
Λ δFΛ + FΛδG̃

(2)
Λ =

=G̃
(2)
Λ

(
AF +BG(2)

)Λ
+ FΛ

(
CF̃ +DG̃(2)

)
Λ

=

=FCF̃ +G(2)BG̃(2) + G̃(2)AF + FDG̃(2) (4.42)
=

=FCF̃ +G(2)BG̃(2) +����
G̃(2)AF −����

G̃(2)AF = FCF̃ +G(2)BG̃(2).

(4.47)

For what concerns Lmat, a general result about the matter sector (i.e. the sector de-

scribing scalars and/or fermions) of 2-derivatives gauge theories (like (4.1)) states that if the

gauge sector of the Lagrangian transforms as (4.47), the matter sector results then to be

duality-invariant:

δLmat = 0. (4.48)

The proof of this result is shown in Appendix A. This is a very important point of our analysis

because it is the condition that fixes the duality transformations of the scalar field τ to those

under which Lmat (4.45) is exactly invariant. Indeed, we have seen in (4.20), (4.21) and

(4.22) that these transformations are those of SL(2,R), as stated in (4.31), which indeed is a

subgroup of Sp(4,R).

Therefore, the total variation of Lagrangian (4.1) under a duality transformation is

δL2 =
1

4

(
FCF̃ +G(2)BG̃(2)

)
, (4.49)

which we observe is compatible with Gaillard and Zumino (3.31).

4.2.3 Structure of the duality group

The duality analysis on the gauge sector of (4.1) told us the EM duality group of the

theory is Sp(4,R) (see (4.42) and (4.43)); the analysis of the scalar sector told instead that

the correspondent duality transformation on τ must be in SL(2,R) ⊂ Sp(4,R).

While Sp(4,R) is the full EM duality group, it is in fact SL(2,R) that represents the

proper duality group of theory (4.1): although the EoM and the BI of the gauge fields are

invariant under the larger Sp(4,R), it is only under its subgroup SL(2,R) that the EoM of

the scalar field τ transforms covariantly. We notice that SL(2,R) is still a “good” duality

group, in the sense that it is still a symmetry of the EoM and BI of the gauge fields and not

of the Lagrangian, since the subset of generators of sp(4,R) realizing sl(2,R) contains also

off-diagonal components (see (4.30) and (4.49)):

sl(2,R) : t1 =
1

2

(
0 σ3

σ3 0

)
, t2 =

1

2

(
0 −1
1 0

)
, t3 =

1

2

(
−σ3 0

0 σ3

)
, (4.50)

where σi are the Pauli matrices.

The transformations that instead leave the Lagrangian invariant correspond indeed to

the diagonal generators of Sp(4,R) (see again (4.30) and (4.49)), which identify the GL(2,R)

subgroup:

gl(2,R) : v1 =
1

2

(
−σ3 0

0 σ3

)
, v2 =

1

2

(
1 0
0 −1

)
,

v3 =
1

2

(
σ1 0
0 −σ1

)
, v4 =

1

2

(
i σ2 0
0 i σ2,

) (4.51)
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which shares with sl(2,R) the generator t3 = v1. These transformations can indeed be re-

adsorbed via field redefinitions.

The remaining generators correspond to the group given by

GL(2,R) \ Sp(4,R)/SL(2,R). (4.52)

Such transformations provide the change of the so called symplectic frame. Each one of

these symplectic frames corresponds to a formulation of the Lagrangian that is inequivalent

to the formulations of other frames: they in fact cannot be mapped into each other by

field redefinitions because the group describing such transformations, i.e. GL(2,R), has been

removed, as described in (4.52). However, since the set of EoM and BI of the gauge fields

is invariant under any transformation of the full Sp(4,R), the dynamics described by all of

these Lagrangian is indeed the same.

The duality group of our theory (4.1) we have now described indeed exhibits the typical

structure of such duality groups. The EoM and BI of the set of gauge fields is invariant

under the full EM duality group, i.e. Sp(2NF ,R), where NF denotes the number of such

gauge fields. Only a subgroup of Sp(2NF ,R) is though the proper duality group of the whole

theory and this is given by the Isometry group of the scalar manifold Mφ on which the scalar

fields are defined (see (4.11), (4.20)): it is in fact under this group, that we call Iso(Mφ),

that their EoM transform covariantly. The transformations between the different symplectic

frames are then given by the transformations of Sp(2NF ,R) that are left once we remove the

Iso(Mφ) and GL(NF ,R) components, the latter being the diagonal subgroup of Sp(2NF ,R)

whose transformations are equivalent to fields redefinition.



Chapter 5

Duality constraints on non-minimal

couplings

In the previous chapter we introduced Lagrangian (4.1), we described the Supergravity

framework in which it appears and we characterized its duality group by exploiting the

perturbative consistency analysis of the duality transformation (4.30) that we discussed. As

a result, we found that the full EM duality group associated to (4.1) is Sp(4,R) (see (4.42),

(4.43)), while the proper duality group of the whole theory (4.1) is its SL(2,R) subgroup (see

(4.48)). In doing so, we also determined the duality transformations (4.38) and (4.39) of the

two I and R couplings.

The next, very important step of our analysis is the extension of the 2-derivatives La-

grangian (4.1) to higher-orders in the derivatives expansion. In particular, we derive the

4-derivatives correction to (4.1), that we call L4, following a bottom-up approach which

exploits EM duality to fix the higher-order non-minimal coefficients.

This derivation is divided in two parts. The first one consists in finding an independent

set of all the 4-derivatives operators, made out of the metric gµν , the complex scalar field

τ and the gauge fields FΛ, that can appear in L4, i.e. that respects the symmetries of the

model, including the SL(2,R) symmetry of the scalar sector, which we have seen to be exactly

invariant under the transformations of this group (see (4.48) and Appendix A).

The second part concerns instead the determination, via duality, of the non-minimal

couplings of such operators. This procedure follows exactly the one we applied in Section

3.2.1 to determine the EM duality group and the transformations (4.38) and (4.39) of the I

and R couplings, only adapted to the 4-derivatives case under examination. In particular,

the presence of 4-derivatives operators, a part from correcting the 2-derivatives dual field

(4.32) according to (4.29), change the expression of the founding identity (4.35). In such a

procedure the perturbative character of our analysis is manifest.

5.1 Higher-order operators

Following a bottom-up approach, the first thing to do when trying to find the higher-

energy extension of an effective field theory is to write down all the higher-order operators

that can provide such extension. In our case, we have to find all the operators composed of

the metric, the scalar and the gauge fields that contain a total number of derivatives equal

to 4. An independent set of such operators that can provide the higher-order extension L4

of Lagrangian (4.1) is given by

45
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g : R2 , (Rµν)2 , (Rµνρσ)2;

F : (FΛFΣ)(FAFB) , (FΛF̃Σ)(FAF̃B) , (FΛFΣ)(FAF̃B) ,

F̃AµνFBνρF
Λ ρσFΣ

σµ;

τ :
[
(�τ)2 , (∂µτ∂

µτ)2 , ∂µτ̄ ∂
µτ∂ντ∂

ντ , �τ∂µτ∂
µτ , �τ∂µτ̄ ∂

µτ ,

�τ̄ ∂µτ∂
µτ + h.c.] , (∂µτ̄ ∂

µτ)2 , |∂µτ∂µτ |2 , �τ�τ̄ ;

g+ F : RFΛFΣ , RFΛF̃Σ , RµνF
ΛµρFΣ ν

ρ , RµνρσF
ΛµνFΣ ρσ ,

RµνρσF
ΛµνF̃Σ ρσ, DµF

ΛµαDνFΣ
να;

τ + F : ∂µτ̄ ∂
µτFΛFΣ , ∂µτ̄ ∂

µτFΛF̃Σ , ∂µτ̄ ∂ντF
ΛµρFΣ ν

ρ ,[
∂µτ̄ ∂ντF

ΛµαF̃Σ ν
α, ∂µτ∂

µτFΛFΣ , ∂µτ∂
µτFΛF̃Σ ,

∂µ∂ντF
ΛµαFΣ ν

α , ∂µτ∂ντF
ΛµρFΣ ν

ρ, ∂µτF
ΛµαDνFΣ

να ,

∂µτF̃
ΛµαDνFΣ

να , �τF
ΛFΣ , �τFΛF̃Σ + h.c.

]
;

g+ τ : [R∂µτ∂
µτ , Rµν∂

µτ∂ντ , �τR , ∂µ∂ντR
µν + h.c.] ,

R ∂µτ̄ ∂
µτ , Rµν∂

µτ̄ ∂ντ.

(5.1)

In principle, all these operators can be part of the 4-derivative Lagrangian L4 correcting

(4.1). In L4, they appear together with a coefficient that in general is indeed function of

the complex scalar τ , as the I and R couplings of (4.1). To restrict this set of operators we

make use of the duality structure we derived in the previous chapter as a tool to fix these

non-minimal couplings: the result will be a 4-derivatives theory that preserves EM duality.

As in the 2-derivatives case, we can divide the 4-derivatives Lagrangian L4 as

L4 = L
(4)
mat + L(4)

gauge , (5.2)

where L
(4)
gauge contains the operators involving the gauge fields, while L

(4)
mat contains operators

made out only of the metric gµν and the complex scalar field τ and represents the sector of

L4 that we expect to be exactly duality-invariant.

5.1.1 Classification of the gauge operators

The duality analysis of the exactly invariant L
(4)
mat is, because of it exact invariance under

duality, straightforward and we discuss it in Section 4.2. This is not the case for the more

challenging gauge sector L
(4)
gauge, which requires a more detailed analysis.

In this respect, it is useful to reorganize the 4-derivatives gauge operators of (5.1) as

follows. We observe that we can identify four different classes of operators involving the

gauge fields:

1. operators involving four FΛ’s;

2. operators involving two FΛ’s and R;

3. operators involving two FΛ’s and τ derivatives;

4. operators involving derivatives of FΛ.

The last two classes are the most delicate to deal with: the explicit presence of the

complex scalar τ , which appears not only “inside” the coefficient but also outside and together
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with spacetime derivatives, complicates the duality analysis. We have in fact that this explicit

∂µτ part of these operators transforms with the proper duality group SL(2,R), while the gauge

fields, together with the matrix couplings that carry gauge indices, transform instead with

the full EM duality group Sp(4,R). Thus, to perform the duality transformation over these

operators in this explicit form one would have to restrict the analysis to the SL(2,R) group

only, but this would not be correct because, as we discussed, the set EoM and BI of the gauge

fields is invariant under the full EM duality group Sp(4,R), not only under SL(2,R).

To avoid such complication, we rewrite the operators belonging to classes 3 and 4 by

properly including also the ∂µτ component into the matrix coefficient carrying the gauge

indices, so that we can study them via the correct Sp(4,R) duality group. According to

this perspective, we can classify all the resulting “composed” coefficients in four different

categories:

• XAB = XAB(τ, τ̄ , ∂τ, ∂τ̄), with two spacetime derivatives of τ and no free Lorentz

indices (the same holds for X̃);

• [YAB]µν = [YAB]µν (τ, τ̄ , ∂τ, ∂τ̄), with two spacetime derivatives of τ that give the two

Lorentz indices (the same holds for Ỹ );

• Z
(1)
AB = Z

(1)
AB(τ, τ̄), with no derivatives;

•
[
Z

(2)
AB

]
µ

=
[
Z

(2)
AB

]
µ

(τ, τ̄ , ∂τ, ∂τ̄), with one spacetime derivative on τ , which gives the

free Lorentz index (the same holds for Z̃(2)).

Thus, calling L
(4)
∂τ the sector of the higher-order Lagrangian that contains these operators,

we can write it as

L
(4)
∂τ =XABF

AFB + X̃ABF
AF̃B + [YAB]µν F

AµαFB ν α +
[
ỸAB

]
µν
FAµαF̃B ν α+

+Z
(1)
AB(DµF

Aµα)(DνFBνα) +
[
Z

(2)
AB

]
µ
FAµαDνFBνα +

[
Z̃

(2)
AB

]
µ
F̃AµαDνFBνα,

(5.3)

and the full gauge sector is therefore

L(4)
gauge = + [α1]ABCD (FΛFΣ)(FAFB) + [α2]ABCD (FΛF̃Σ)(FAF̃B)+

+ [α3]ABCD (FΛFΣ)(FAF̃B) + [α4]ABCD F̃
AµνFBνρF

Λ ρσFΣ
σµ+

+ [β1]AB RF
ΛFΣ + [β2]AB RF

ΛF̃Σ + [β3]AB RµνF
ΛµρFΣ ν

ρ+

+ [β4]AB RµνρσF
ΛµνFΣ ρσ + [β5]AB RµνρσF

ΛµνF̃Σ ρσ+

+XABF
AFB + X̃ABF

AF̃B + [YAB]µν F
AµαFB ν α+

+
[
ỸAB

]
µν
FAµαF̃B ν α + Z

(1)
AB(DµF

Aµα)(DνFBνα)+

+
[
Z

(2)
AB

]
µ
FAµαDνFBνα +

[
Z̃

(2)
AB

]
µ
F̃AµαDνFBνα.

(5.4)

We now proceed with the true duality analysis of the 4-derivatives Lagrangian: first of

the invariant sector L
(4)
mat and then of the gauge one L

(4)
gauge.
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5.2 Duality analysis of the exactly invariant sector

The sector of L4 that we expect to be exactly duality invariant is the one involving only

the metric and the complex scalar, i.e. the one we called L
(4)
mat (5.2). The metric gµν does

not transform under duality and thus all the g-operators of (5.1) are allowed in L
(4)
mat:

g : R2 , (Rµν)2 , (Rµνρσ)2. (5.5)

Since they’re already exactly invariant they appear in L
(4)
mat with couplings that are

purely numerical factors and not functions of τ and τ̄ . In fact the only SL(2,R) invariants

that we’re able to build are those resembling the τ kinetic term of Lagrangian (4.1), which

indeed involves the spacetime derivatives of τ (see (4.45)). A purely algebraic invariant

cannot be constructed. We also notice that, having numerical coefficients, we can exchange,

as in the case of pure Einstein–Maxwell theory, the operator (Rµνρσ)2 with the topological

Gauss–Bonnet term (1.13).

Instead, the complex scalar τ does transform under the proper duality group SL(2,R)

(4.31), so that each corresponding operator in L
(4)
mat must be individually SL(2,R) invariant.

Such SL(2,R) invariant operators are, as said, those constructed according to the transfor-

mation rules (4.21) and (4.22). Thus, the τ and τ + g operators described in (5.1) that can

enter in L
(4)
mat are

τ : (∂µτ̄ ∂
µτ)2 , |∂µτ∂µτ |2 ,

g+ τ : R∂µτ̄ ∂
µτ , Rµν∂

µτ̄ ∂ντ ,
(5.6)

with couplings proportional to some inverse power of Imτ . Therefore, this sector of the

4-derivatives Lagrangian can be written as

L
(4)
mat =α0GB + α1R

2 + α2(Rµν)2 +
1

(Imτ)2
[λ1R∂µτ̄ ∂

µτ + λ2Rµν∂
µτ̄ ∂ντ ] +

+
1

(Imτ)4

[
λ3(∂µτ̄ ∂

µτ)2 + λ4|∂µτ∂µτ |2
]
,

(5.7)

where αi and λi are purely numerical coefficients.

This Lagrangian can be further reduced by applying a duality-preserving fields redefini-

tion. Making use of the same redefinition scheme introduced in (1.20) and (1.21) and the

Einstein equations (4.5) of our model, we can remove some of the operators of (5.7) redefining

the metric via

δgµν = c1Rg
µν + c2R

µν +
1

(Imτ)2

[
c3g

µν∂ατ̄ ∂
ατ + c4∂

(µτ̄ ∂ν)τ
]
, (5.8)

where the ci are numerical coefficients and the (Imτ)−2 factors ensures that the SL(2,R)

symmetry is preserved by the field redefinition.

It follows that the field redefinition’s coefficients can be set to remove the following

operators:
c1 −→ R2, c2 −→ (Rµν)2,

c3 −→ R∂µτ̄ ∂
µτ, c4 −→ Rµν∂

µτ̄ ∂ντ,
(5.9)

and the resulting exactly invariant sector L
(4)
mat is therefore (after relabelling the coefficients)

L
(4)
mat = α0GB +

1

(Imτ)4

[
λ1(∂µτ̄ ∂

µτ)2 + λ2|∂µτ∂µτ |2
]
. (5.10)
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5.3 Duality analysis of the gauge sector

We now turn to the discussion of the more challenging duality analysis of the gauge sector

(5.4) of the 4-derivatives Lagrangian.

The strategy to fix its non-minimal coefficients is the same we applied to in section 3.2.1:

we determine the correction to the dual field according to (4.29), we apply a EM duality

transformation (4.30) and constraint the coefficients via the corrected version of identity

(4.35).

5.3.1 Scheme of the 4-derivatives correction duality analysis

We start by studying how the founding elements of our duality analysis, the dual field

(4.32) and the consistency identity (4.35), change when we include in the Lagrangian also

the 4-derivatives correction L4.

Starting from the dual field, its expression in terms of the perturbative expansion we’re

following is

GΛ = G
(2)
Λ +G

(4)
Λ , (5.11)

with G
(2)
Λ as in (4.32) and G

(4)
Λ that, according to (4.29), reads

G
(4)
Λµν = 2

[
∂L4

∂FΛµν
−Dα

∂L4

∂ (DαFΛµν)

]
. (5.12)

We remark that, given the expression (5.4) of L
(4)
gauge, the higher-derivative term that appears

in (5.12) is the only that contributes to G
(4)
Λµν , as anticipated in (4.29).

To derive instead the 4-derivatives version of identity (4.35) we apply a duality transfor-

mation (4.30) to (5.11) and study it, again, from the two F and G points of view introduced

in (4.37) and (4.36). This time the transformation is going to split, as GΛ in (5.11), in the

2 and 4-derivatives components respectively, so that we’re going to determine two different

transformation rules, one of G
(2)
Λ and one of G

(4)
Λ , separately, guided by the perturbative

expansion in the number of derivatives. Thus, starting from (5.11), the “G-side” of the

transformation reads, as before:

δGΛµν = CΛΣF
Σµν +DΛ

ΣGΣµν = CΛΣF
Σ
µν +DΛ

ΣG
(2)
Σµν +DΛ

ΣG
(4)
Σµν , (5.13)

while the “F -side” now becomes

δGΛµν =δτGΛµν +
∂GΛµν

∂FΣ
αβ

δFΣ
αβ +

∂GΛµν

∂DγFΣ
αβ

Dγ
(
δFΣ

αβ

)
=

=δτ

(
G

(2)
Λµν +G

(4)
Λµν

)
+

∂G(2)
Λµν

∂FΣ
αβ

+
∂G

(4)
Λµν

∂FΣ
αβ

(AF +BG(2) +BG(4)
)Σ

αβ
+

+
∂G

(4)
Λµν

∂DγFΣ
αβ

Dγ
(
AF +BG(2) +��BG(4)

)Σ

αβ
+ O(D6) =

=δτG
(2)
Λµν +

∂G
(2)
Λµν

∂FΣ
αβ

(
AF +BG(2)

)Σ

αβ
+ δτG

(4)
Λµν +

∂G
(2)
Λµν

∂FΣ
αβ

(
BG(4)

)Σ

αβ
+

+
∂G

(4)
Λµν

∂FΣ
αβ

(
AF +BG(2)

)Σ

αβ
+

∂G
(4)
Λµν

∂DγFΣ
αβ

Dγ
(
AF +BG(2)

)Σ

αβ
+ O(D6),

(5.14)
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so that from (5.14) we reproduce correctly the G
(2)
Λ transformation (4.37), together with its

4-derivatives version:

δG
(2)
Λµν = δτG

(2)
Λµν +

∂G
(2)
Λµν

∂FΣ
αβ

(
AF +BG(2)

)Σ

αβ
, (5.15)

δG
(4)
Λµν =δτG

(4)
Λµν +

∂G
(4)
Λµν

∂FΣ
αβ

(
AF +BG(2)

)Σ

αβ
+

+
∂G

(2)
Λµν

∂FΣ
αβ

(
BG(4)

)Σ

αβ
+

∂G
(4)
Λµν

∂DγFΣ
αβ

Dγ
(
AF +BG(2)

)Σ

αβ
.

(5.16)

Therefore, by comparison between (5.13) and (5.15) we re-obtain the 2-derivatives consis-

tency identity (4.35), while the comparison between (5.13) and (5.16) yields its 4-derivatives

corrected version:

DΛ
ΣG

(4)
Σµν =δτG

(4)
Λµν +

∂G
(4)
Λµν

∂FΣ
αβ

(
AF +BG(2)

)Σ

αβ
+

+
∂G

(2)
Λµν

∂FΣ
αβ

(
BG(4)

)Σ

αβ
+

∂G
(4)
Λµν

∂DγFΣ
αβ

Dγ
(
AF +BG(2)

)Σ

αβ
.

(5.17)

Though being expected, given that no term in the transformation containing G
(4)
Λ can

actually talk to the 2-derivatives ones, it’s important to have re-obtained the 2-derivatives

identity (4.35) because it provides further support to the results on the duality group of the

theory we derived from the pure 2-derivatives order (see (4.42) and (4.43)). Also, we notice

that the perturbative character of our approach is manifestly shown in the splitting of the

consistency identity in (4.35) and (5.17).

Now that we derived (5.17) we can make use of it to constrain the couplings of the 4-

derivatives gauge sector (5.4). As we did in the 2-derivatives case, we determine the dual

field component associated to G
(4)
Λ (5.12), we apply a duality transformation and derive, via

(5.17), the transformation rules of the various couplings. These couplings are then going to be

constrained both by the structure of their transformation rule and by the requirement that all

the transformations of the various couplings are consistent with each other. In fact, a duality

transformation mixes, in general, the different operators and, with them, the couplings, as

we saw in the case of I (4.38) and R (4.39).

In this perspective, it is useful to identify in L
(4)
gauge (5.4) sets of operators that under a

duality transformation get mixed between each other but not with operators of other sets.

The reason is that we can perform the duality analysis on each of these sets independently

on the others and this simplifies and clarifies at the same time the full discussion. This

classification is in fact straightforward and yields four different sectors:

L(4)
gauge = L

(4F )
4 + L

(RF )
4 + L

(τ)
4 + L

(D)
4 , (5.18)

with:

• 4F -sector:

L
(4F )
4 = [α1]ABCD (FAFB)(FCFD) + [α2]ABCD (FAF̃B)(FC F̃D)+

+ [α3]ABCD (FAFB)(FC F̃D) + [α4]ABCD F̃
AµνFBνρF

C ρσFDσµ,
(5.19)
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• RF -sector:

L
(RF )
4 = [β1]ΛΣRF

ΛFΣ + [β2]ΛΣRF
ΛF̃Σ + [β3]ΛΣRµνF

ΛµρFΣ ν
ρ+

+ [β4]ΛΣRµνρσF
ΛµνFΣ ρσ + [β5]ΛΣRµνρσF

ΛµνF̃Σ ρσ,
(5.20)

• τ -sector:

L
(τ)
4 = XABF

AFB + X̃ABF
AF̃B +[YAB]µν F

AµαFB ν α+
[
ỸAB

]
µν
FAµαF̃B ν α, (5.21)

• D-sector:

L
(D)
4 = Z

(1)
AB(DµF

Aµα)(DνFBνα) +
[
Z

(2)
AB

]
µ
FAµαDνFBνα +

[
Z̃

(2)
AB

]
µ
F̃AµαDνFBνα, (5.22)

Furthermore, a duality transformation on the 4-derivatives dual field does not mix only

the operators that enter explicitly the Lagrangian but can indeed produced terms that corre-

spond to those operators we chose to exclude from the set (5.1). These “dependent” operators

are indeed related to the independent ones of (5.1) via some identities, that we exploit to

properly take into account also these extra terms.

The summary of the identities we made use of is reported in Appendix B. The following

sections are then dedicated to the duality analysis of the four different sectors (5.19)–(5.22)

of L
(4)
gauge (5.4).

5.3.2 Duality analysis of the 4F -sector

The Lagrangian of the 4F -sector is

L
(4F )
4 = [α1]ABCD (FAFB)(FCFD) + [α2]ABCD (FAF̃B)(FC F̃D)+

+ [α3]ABCD (FAFB)(FC F̃D) + [α4]ABCD F̃
AµνFBνρF

C ρσFDσµ,
(5.23)

where the coefficients αi have the following symmetry properites:

[α1]ABCD = [α1]BACD = [α1]ABDC = [α1]CDAB , (5.24)

[α2]ABCD = [α2]BACD = [α2]ABDC = [α2]CDAB , (5.25)

[α3]ABCD = [α3]BACD = [α3]ABDC , (5.26)

[α4]ABCD = [α4]ADCB , (5.27)

[α4]AB(CD) = 0. (5.28)

The corresponding dual field reads, according to (5.12),

G
(4F )
Λµν =− 8 [α1]ΛBCD (FCFD)F̃Bµν + 8 [α2]ΛBCD (FC F̃D)FBµν+

+ [Λ1]ΛBCD (FCFD)FBµν + [Λ2]ΛBCD F
B
[µ|αF

C αβFDβ|ν],
(5.29)

where the two coefficients Λ1 and Λ2 are defined as the following linear combinations of α3
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and α4:

[Λ1]ΛBCD ≡ 8 [α3]Λ(C|B|D) + 4 [α3]CDΛB + [α4]BCΛD , (5.30)

[Λ2]ΛBCD ≡ 16 [α3]ΛCBD − 2 [α4]ΛBCD − 2 [α4]CBΛD . (5.31)

and we have [Λ1]ΛBCD = [Λ1]ΛB(CD) and [Λ2]ΛBCD = [Λ2]Λ(B|C|D).

We now apply a duality transformation (4.30) and exploit identity (5.17): by comparing

the coefficients of the same operators on the two sides of the identity (as we did with FΛ and

F̃Λ in (4.36) and (4.37)) we obtain the transformation rules for the αi coefficients of (5.19).

These transformations result to be:

• [δα1]ΛΩCD =DΛ
Σ [α1]ΣΩCD − [α1]ΛΣCD A

Σ
Ω − [α1]ΛΣCD (BR)Σ

Ω+

− (RB)Λ
Σ [α1]ΣΩCD +D(C|

Σ [α1]ΛΩΣ|D) − [α1]ΛΩ(C|ΣA
Σ
|D)+

− [α1]ΛΩ(C|Σ (BR)Σ
|D) − (RB)(C|

Σ [α1]ΛΩΣ|D) +

+
1

8

(
(BI)Σ

Ω [Λ1]ΛΣCD + (IB)Λ
Σ [Λ1]ΣΩCD

)
+

− 1

4

(
(BI)Σ

Λ [Λ2]ΣΩ(CD) + (BI)Σ
(C| [Λ2]Σ|D)ΛΩ

)
+

+
1

8
(BI)Σ

Λ [Λ2]ΩΣ(CD) ;

(5.32)

• [δα2]ΛΩCD =DΛ
Σ [α2]ΣΩCD − [α2]ΛΣCD A

Σ
Ω − [α2]ΛΣCD (BR)Σ

Ω+

− (RB)Λ
Σ [α2]ΣΩCD +D(C|

Σ [α2]ΛΩΣ|D) − [α2]ΛΩ(C|ΣA
Σ
|D)+

− [α2]ΛΩ(C|Σ (BR)Σ
|D) − (RB)(C|

Σ [α2]ΛΩΣ|D) +

+
1

8
(BI)Σ

(C| [Λ2]ΛΣ|D)Ω −
1

16
(BI)Σ

Λ [Λ2]Ω(C|Σ|D) +

+
1

16
(BI)Σ

(C| [Λ2]ΛΩΣ|D) +
1

32
(BI)Σ

Λ [Λ2]ΣΩ(CD) +

− 1

4
(IB)(C|

Σ [Λ1]ΛΩΣ|D) ;

(5.33)

• [δΛ1]ΛΩCD =DΛ
Σ [Λ1]ΣΩCD − [Λ1]ΛΣCD A

Σ
Ω+

− [Λ1]ΛΣCD (BR)Σ
Ω − (RB)Λ

Σ [Λ1]ΣΩCD +

+D(C|
Σ [Λ1]ΛΩΣ|D) − [Λ1]ΛΩ(C|ΣA

Σ
|D)+

− [Λ1]ΛΩ(C|Σ (BR)Σ
|D) − (RB)(C|

Σ [Λ1]ΛΩΣ|D) +

− 16(BI)Σ
(Λ| [α1]Σ|Ω)CD − 16(BI)Σ

(C| [α1]Λ|D)ΣΩ +

− 16(BI)Σ
Ω [α1]Λ(C|Σ|D) + 16(BI)Σ

(C| [α2]ΛΣΩ|D) +

+ 16(BI)Σ
(C| [α2]ΛΩΣ|D) + 16(BI)Σ

Λ [α2]Σ(C|Ω|D) ;

(5.34)
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• [δΛ2]ΛΩCD =DΛ
Σ [Λ2]ΣΩCD − 2 [Λ2]ΛΣCD A

Σ
Ω − 2 [Λ2]ΛΣCD (BR)Σ

Ω+

− (RB)Λ
Σ [Λ2]ΣΩCD +DC

Σ [Λ2]ΛΩΣD − (RB)C
Σ [Λ2]ΛΩΣD +

− 64(BI)Σ
(Ω| [α1]ΛCΣ|D) + 64(BI)Σ

(Λ| [α2]Σ|C)ΩD

(5.35)

Solution for the coefficients Let’s now look at these transformations and try to conse-

quently fix the coefficients. In particular, a very interesting scenario is the one in which the

higher-order coefficients reproduce the transformation patterns of the 2-derivatives couplings

I and R or, in other words, in which it exists a duality-preserving, 4-derivatives extension of

Lagrangian (4.1) whose couplings are proportional precisely to those of the previous pertur-

bative order (4.1). This may be not the only solution but it is indeed a relevant one because

first it would provide an explicit expression for the coefficients (and not only their duality

transformation), then because it suggests the possibility that an exactly invariant UV the-

ory, from which we can derive the perturbative expansion in the number of derivatives we’re

dealing with, could indeed exists and this is of great support to our analysis.

With this picture in mind, we see that Λ2 transformation (5.35) is far from resembling I

and R ones (4.38) and (4.39). Thus, we can start looking for a solution for the 4F -sector’s

coefficients by setting

Λ2 = 0. (5.36)

Transformation (5.35) now is not “dynamical” anymore, but yields instead a constraint over

the coefficients α1 and α2:

(BI)Σ
(Ω| [α1]ΛCΣ|D) = (BI)Σ

(Λ| [α2]Σ|C)ΩD . (5.37)

The transformation rules of the other coefficients now become:

• [δα1]ΛΩCD =DΛ
Σ [α1]ΣΩCD − [α1]ΛΣCD A

Σ
Ω − [α1]ΛΣCD (BR)Σ

Ω+

− (RB)Λ
Σ [α1]ΣΩCD +D(C|

Σ [α1]ΛΩΣ|D) − [α1]ΛΩ(C|ΣA
Σ
|D)+

− [α1]ΛΩ(C|Σ (BR)Σ
|D) − (RB)(C|

Σ [α1]ΛΩΣ|D) +

+
1

8

(
(BI)Σ

Ω [Λ1]ΛΣCD + (IB)Λ
Σ [Λ1]ΣΩCD

)
;

(5.38)

• [δα2]ΛΩCD =DΛ
Σ [α2]ΣΩCD − [α2]ΛΣCD A

Σ
Ω − [α2]ΛΣCD (BR)Σ

Ω+

− (RB)Λ
Σ [α2]ΣΩCD +D(C|

Σ [α2]ΛΩΣ|D) − [α2]ΛΩ(C|ΣA
Σ
|D)+

− [α2]ΛΩ(C|Σ (BR)Σ
|D) − (RB)(C|

Σ [α2]ΛΩΣ|D) +

− 1

4
(IB)(C|

Σ [Λ1]ΛΩΣ|D) ;

(5.39)

• [δΛ1]ΛΩCD =DΛ
Σ [Λ1]ΣΩCD − [Λ1]ΛΣCD A

Σ
Ω+

− [Λ1]ΛΣCD (BR)Σ
Ω − (RB)Λ

Σ [Λ1]ΣΩCD +

+D(C|
Σ [Λ1]ΛΩΣ|D) − [Λ1]ΛΩ(C|ΣA

Σ
|D)+

− [Λ1]ΛΩ(C|Σ (BR)Σ
|D) − (RB)(C|

Σ [Λ1]ΛΩΣ|D) .

(5.40)
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We notice that constraint (5.37) exactly cancels all the terms proportional to α1 and α2 in

Λ1 transformation (5.34), which now does not depend on any other coefficients. Instead, α1

and α2 transformations do depend also on Λ1.

We now look at the transformation patterns shown in (5.38), (5.39) and (5.40). We see

that the transformation of Λ1 (5.40) resembles the one of I (4.38) in both the (Λ,Ω) and

(C,D) couples of gauge indices, namely

[Λ1]ΛΩCD ∝ IΛΩICD, (5.41)

or other possible configurations of indices that reproduce (5.40). This same structure is

present also in the α1 and α2 transformations (5.38) and (5.39) but concerns only the terms

that are proportional, respectively, to α1 and α2 themselves. Differently from (5.40), in (5.38)

and (5.39) there are also the terms proportional to Λ1, which spoil the identification with I

of the type (5.41).

Thus, we cannot have both Λ1 and the couple (α1, α2) proportional to I like in (5.41). In

the latter case Λ1 is forced to be vanishing by transformations (5.38) and (5.39); in the former

we would not be able to determine α1 and α2 from their transformation rules, although very

similar to (5.41). In particular, (5.38) and (5.39) excludes the possibility to set α1 and α2 to

zero because also Λ1 would then result to be vanishing and the entire duality transformation

of the 4F -sector would loose its meaning.

Since the latter option involves undetermined coefficients, we proceed by following the

former one and we set

Λ1 = 0. (5.42)

At this point we can choose α1 and α2 proportional to I2 and the constraint (5.37) fixes them

to be

[α1]ABCD = [α2]ABCD = η IA(C|IB|D), (5.43)

with η a scalar coefficient.

We recall now that Λ1 and Λ2 do not appear directly in the Lagrangian of the 4F -sector

(5.19), but rather are combinations of the coefficients α3 and α4 (5.30), (5.31). However, we

now show that setting Λ1 and Λ2 to zero is equivalent to set to zero α3 and α4. In fact, (5.36)

and (5.42) together give[Λ1]ABCD = 8 [α3]A(C|B|D) + 4 [α3]CDAB + [α4]BCAD = 0

[Λ2]ABCD = 16 [α3]ACBD − 2 [α4]ABCD − 2 [α4]CBAD = 0
, (5.44)

so that we have 
[α3]A(C|B|D) = −1

2
[α3]CDAB −

1

8
[α4]BCAD

[α3]ACBD = −1

8
([α4]ABCD + [α4]CBAD)

. (5.45)

Replacing now α3 in the first equation of system (5.45) from the second one and aking use

of α4 symmetry properties (5.27) and (5.28) we obtain

0 =
������[α4]AB(CD) + [α4](C|BA|D) +

1

2
([α4]CADB + [α4]DACB) + [α4]BCAD =

=
1

2
([α4]CBAD + [α4]DBAC + [α4]CADB + [α4]DACB) + [α4]BCAD =

=
������[α4]CB(AD) +

������[α4]DB(AC) + [α4]BCAD = [α4]BCAD .

(5.46)
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Hence, we have

[α4]ABCD = 0, (5.47)

which immediately implies also

[α3]ABCD = 0. (5.48)

Therefore, we were able to find a solution for the coefficients of (5.19) that is compatible

with the associated duality transformations (5.32)–(5.35). The resulting 4F -sector is

L
(4F )
4 = η IACIBD

[
(FAFB)(FCFD) + (FAF̃B)(FC F̃D)

]
(5.49)

5.3.3 Duality analysis of the RF -sector

We now proceed further with the RF -sector:

L
(RF )
4 = [β1]ΛΣRF

ΛFΣ + [β2]ΛΣRF
ΛF̃Σ + [β3]ΛΣRµνF

ΛµρFΣ ν
ρ+

+ [β4]ΛΣRµνρσF
ΛµνFΣ ρσ + [β5]ΛΣRµνρσF

ΛµνF̃Σ ρσ.
(5.50)

The symmetries of the coefficients are:

[βi]ΛΣ = [βi]ΣΛ , i 6= 5. (5.51)

The associated dual field is

G
(RF )
Λµν =− 4 [β1]ΛΣRF̃

Σ
µν + 4

[
β2 +

β5

2

]
ΛΣ

RFΣ
µν + 2 [β3]ΛΣR

ραFΣσ
αεµνρσ+

− 2 [β4]ΛΣR
αβρσFΣ

ρσεαβµν + 4 [β5](ΛΣ)RµναβF
Σαβ + 8 [β5]ΛΣR[µ|αF

Σ α
|ν] .

(5.52)

We notice that, differently from the 4F case (5.29), there is a coefficient, β5, that appears

in (5.52) associated with three different operators: we immediately understand that the

comparison between the transformation rules coming from these operators will determine

some relevant consistency conditions on the L
(RF )
4 coefficients.

The duality transformations of the coefficients of each term of the dual field (5.52) are

the following:

• [δβ1]ΛΩ =DΛ
Σ [β1]ΣΩ −A

Σ
Ω [β1]ΛΣ − (BR)Σ

Ω [β1]ΛΣ − (RB)Λ
Σ [β1]ΣΩ +

+ (BI)Σ
Ω

(
β2 +

3

2
β5

)
ΛΣ

+ (IB)Λ
Σ

(
β2 +

β5

2

)
ΣΩ

+

+
1

2
(BI)Σ

Ω [β5]ΣΛ ;

(5.53)

• [δβ2]ΛΩ +
1

2
[δβ5]ΛΩ =DΛ

Σ

(
β2 +

β5

2

)
ΣΩ

−AΣ
Ω

(
β2 +

β5

2

)
ΛΣ

+

− (BR)Σ
Ω

(
β2 +

β5

2

)
ΛΣ

− (RB)Λ
Σ

(
β2 +

1

2
β5

)
ΣΩ

+

− (BI)Σ
Ω

(
β1 +

β3

2
− β4

)
ΛΣ

− (IB)Λ
Σ [β1]ΣΩ ;

(5.54)
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• [δβ3]ΛΩ =DΛ
Σ [β3]ΣΩ −A

Σ
Ω [β3]ΛΣ − (BR)Σ

Ω [β3]ΛΣ − (RB)Λ
Σ [β3]ΣΩ +

− 4(BI)Σ
Ω [β5](ΛΣ) − 2(BI)Σ

Ω [β5]ΛΣ − 2(IB)Λ
Σ [β5]ΣΩ ;

(5.55)

• [δβ4]ΛΩ =DΛ
Σ [β4]ΣΩ −A

Σ
Ω [β4]ΛΣ − (BR)Σ

Ω [β4]ΛΣ − (RB)Λ
Σ [β4]ΣΩ +

+ (BI)Σ
Ω [β5](ΛΣ) + (IB)Λ

Σ [β5](ΣΩ) ;
(5.56)

• [δβ5]ΛΩ + [δβ5]ΩΛ =DΛ
Σ ([β5]ΛΣ + [β5]ΣΛ)−AΣ

Ω ([β5]ΛΣ + [β5]ΣΛ) +

− (BR)Σ
Ω ([β5]ΛΣ + [β5]ΣΛ) + 2(BI)Σ

Ω [β4]ΛΣ +

− (RB)Λ
Σ ([β5]ΣΩ + [β5]ΩΣ) + 2(IB)Λ

Σ [β4]ΣΩ ;

(5.57)

• [δβ5]ΛΩ =DΛ
Σ [β5]ΣΩ −A

Σ
Ω[β5]ΛΣ − (BR)Σ

Ω[β5]ΛΣ − RB)Λ
Σ [β5]ΣΩ +

+ 2(BI)Σ
Ω [β4]ΛΣ −

1

2
(BI)Σ

Ω [β3]ΛΣ +
1

2
(IB)Λ

Σ [β3]ΣΩ .
(5.58)

Solution for the coefficients As previously mentioned, the coefficient β5 enters three

different transformations: (5.54), together with β2, (5.57) and (5.58). Let’s focus on the

last two of them. The first one (5.57) is symmetrized in the gauge indices (Λ,Ω) but split

consistently in the two components, yielding

[δβ5]ΛΩ =DΛ
Σ [β5]ΣΩ − [β5]ΛΣA

Σ
Ω − (RB)Λ

Σ [β5]ΣΩ +

− [β5]ΛΣ (BR)Σ
Ω + 2(BI)Σ

Ω [β4]ΛΣ .
(5.59)

In order for this transformation to agree with (5.58) we see that we must have that β3 is

such that

(IB[β3])[ΛΩ] = 0. (5.60)

This requirement can be satisfied by setting β3 = 0 or β3 = ξ I, with ξ a numerical coefficient.

We can test the latter option by looking at the transformation of β3 (5.55) and check what

additional conditions we should impose in order to reproduce I transformation rule (4.38).

From (5.55) we see that this additional constraint is

2(IB)Λ
Σ [β5]ΣΩ + 2(IB)Ω

Σ [β5]ΣΛ + 4 [β5]ΛΣ (BI)Σ
Ω = ξ (IBR)ΛΩ . (5.61)

However, the way indices are contracted in the left-hand side does not allow this constraint

to be solved. Thus, the only option we’re left with is

β3 = 0. (5.62)

The transformation (5.55) now becomes the following constraint over β5:

2(β5BI)ΛΩ + (IB β5)ΩΛ + (IB β5)ΛΩ = 0, (5.63)

which cannot be solved but via

β5 = 0, (5.64)
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and from β5 transformation (5.59) we get also

β4 = 0. (5.65)

Therefore, consistency among the duality transformations reduce the RF -sector La-

grangian (5.20) to

L
(RF )
4 = [β1]ΛΣRF

ΛFΣ + [β2]ΛΣRF
ΛF̃Σ, (5.66)

with the couplings β1 and β2 that transform under duality as

[δβ1]ΛΩ =D Σ
Λ [β1]ΣΩ − [β1]ΛΣA

Σ
Ω − ([β1]BR)ΛΩ + ([β2]BI)ΛΩ + 2 (IB[β2])(ΛΩ) , (5.67)

[δβ2]ΛΩ =D Σ
Λ [β2]ΣΩ − [β2]ΛΣA

Σ
Ω − ([β2]BR)ΛΩ − ([β1]BI)ΛΩ − 2 (IB[β1])(ΛΩ) . (5.68)

Weyl transformation At this point, it is not necessary to find an explicit expression for

β1 and β2 because we can re-adsorb these coefficients, and with them the entire RF -sector

(5.66), via a field redefinition of the metric gµν called Weyl transformation:

gµν −→ g′µν = e2Λgµν , (5.69)

with Λ an arbitrary real function. This transformation acts on the Ricci scalar R as

R −→ R ′ = e−2Λ (R− 6�Λ + 6∂µΛ∂µΛ) . (5.70)

Assuming that Λ is a 2-derivatives function and exploiting a perturbative expansion to

the 4-derivative order, the Weyl transformation on the Ricci scalar becomes

R −→ R ′ =e−2Λ (R− 6�Λ + 6∂µΛ∂µΛ) =

=(1− 2Λ) (R− 6�Λ +�����6∂µΛ∂µΛ) + O(D6) =

=R− 2ΛR+�Λ + O(D6).

(5.71)

The �Λ term is irrelevant because it is a total derivative and vanishes in the total action,

but we can indeed get rid of the entire RF -sector (5.66) the 2ΛR term, with the choice

Λ =
1

2

(
[β1]AB F

ΛFΣ + [β2]AB F
ΛF̃Σ

)
. (5.72)

Thus, no operator of the RF -sector appears in the resulting 4-derivatives, duality-

invariant Lagrangian (5.2).

5.3.4 Duality analysis of the τ-sector

Now our analysis goes on with the τ -sector, which, together with the D-sector, is one of

the most subtle sectors because of the presence of the derivatives of the complex scalar field

τ , which we have placed inside the couplings, as described in (5.3).

The τ -sector Lagrangian is

L
(τ)
4 = XABF

AFB + X̃ABF
AF̃B + [YAB]µν F

AµαFB ν α +
[
ỸAB

]
µν
FAµαF̃B ν α, (5.73)
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with the coefficients having the following symmetries:

XAB =X(AB), [YAB]µν = [YBA]νµ , (5.74)

X̃AB =X̃(AB),
[
ỸAB

]
µν

=
[
ỸAB

]
[µν]

. (5.75)

The corresponding dual field reads:

G
(τ)
Λµν = −4XΛΣF̃

Σ
µν + 4X̃ΛΣF

Σ
µν + 2 [(YΛΣ)]ρα FΣσ

αεµνρσ − 4
[
Ỹ[ΛΣ]

]ρ
[µ|F

Σ
ρ|ν] (5.76)

and the duality transformations of the various coefficients are:

• δXΛΩ =DΛ
ΣXΣΩ −AΣ

ΩXΛΣ − (BR)Σ
ΩXΛΣ − (RBX)ΛΩ + (X̃BI)ΛΩ+

+ (IBX̃)ΛΩ;
(5.77)

• δX̃ΛΩ =DΛ
ΣX̃ΣΩ −AΣ

ΩX̃ΛΣ − (BR)Σ
ΩX̃ΛΣ − (RBX̃)ΛΩ+

− (XBI)ΛΩ − (IBX)ΛΩ −
1

2
(BI)Σ

Ω (YΛΣ)α α;
(5.78)

• (δYΛΩ)ρα =DΛ
Σ (δYΣΩ)ρα −AΣ

Ω(YΛΣ)ρα − (BR)Σ
Ω(YΛΣ)ρα+

− (RB)Λ
Σ (YΣΩ)ρα − 2(IB)Λ

Σ
(
Ỹ[ΩΣ]

)ρα
;

(5.79)

•
(
δỸ[ΛΩ]

)α
[µ| =DΛ

Σ
(
δỸ[ΣΩ]

)
−AΣ

Ω

(
Ỹ[ΛΣ]

)α
[µ|+

− (BR)Σ
Ω

(
Ỹ[ΛΣ]

)α
[µ| − (RB)Λ

Σ
(
Ỹ[ΣΩ]

)α
[µ|+

− (BI)Σ
Ω (YΛΣ)α [µ| + (IB)Λ

Σ (YΩΣ)α [µ|.

(5.80)

Solution for the coefficients We notice that the transformations of the various coef-

ficients do not seem to be influenced by the presence of the τ spacetime derivatives: the

transformation patterns are in fact similar to the ones of I (4.38) and R (4.39), as well as

the transformations of the other sectors. This fact suggests the idea that the derivative com-

ponent of these coefficients appears always together with a (non-derivative) function of the

complex scalar field in such a way that their combination is duality invariant. We know that

such a term is given by
1

(Imτ)2
∂µτ̄ ∂ντ, (5.81)

as we saw for example in (4.48).

Working then with this assumption, we first focus on the Y and Ỹ transformations (5.79)

and (5.80). Ỹ transformation (5.80) resembles the transformation of I (4.38) in the terms

proportional to Ỹ itself, so that a possible solution is obtained by asking that the terms in

(5.80) that are proportional to Y cancel out:

(BI)Σ
Ω (YΛΣ)α β = (IB)Λ

Σ (YΩΣ)α β. (5.82)
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This constraint is satisfied by setting Y to

(YΛΣ)µν =
α

(Imτ)2
∂(µτ̄ ∂ν)τ IΛΣ, (5.83)

where α is a scalar factor and the symmetrization in the (µ, ν) indices makes it compatible

with Y symmetry properties (5.74). This solution is compatible with the transformation of

Y in (5.79) if we require Ỹ to be symmetric in the gauge indices and this is indeed the case,

since (5.83) was meant to make the Ỹ transformation (5.80) compatible with the I one (4.38).

Thus, a solution that sees Ỹ proportional to I and antisymmetric in the (µ, ν) indices,

as prescribed by its symmetry (5.75), is given by(
ỸΛΣ

)
µν

=
β

(Imτ)2
[i ∂µτ̄ ∂ντ + h.c.] IΛΣ, (5.84)

where β is, again, a numerical coefficient.

Let’s now turn to the discussion of X and X̃ transformations (5.77) and (5.78). Again,

the part of these transformations that is proportional, respectively, to X and X̃ follows the

same pattern of I transformation (4.38). To have such a solution we need then to set to zero

the other parts of the transformations:

(X̃BI)ΛΩ + (IBX̃)ΛΩ = 0, (5.85)

(XBI)ΛΩ + (IBX)ΛΩ +
1

2
(BI)Σ

Ω (YΛΣ)α α = 0. (5.86)

Equation (5.85) immediately sets

X̃ = 0, (5.87)

while (5.86) can be rewritten, via (5.83), as

(XBI)(ΛΩ) = −α
4
∂µτ̄ ∂

µτ(IBI)ΛΩ, (5.88)

so that X is set to be

XΛΩ =
α

4
∂µτ̄ ∂

µτ IΛΩ, (5.89)

which is in agreement with the X transformation (5.77) after imposing (5.87).

Thus, the resulting τ -sector is

L
(τ)
4 =− α

4

1

(Imτ)2
∂µτ̄ ∂

µτ IΛΣF
ΛFΣ +

α

(Imτ)2
∂µτ̄ ∂ντ IΛΣF

ΛµαFΣ ν
α+

+
β

(Imτ)2
IΛΣ

(
i ∂µτ̄ ∂ντF

ΛµαF̃Σ ν
α + h.c.

)
.

(5.90)

A remark is now in order. Back to the solutions (5.83) and (5.84) for the Y and Ỹ

coefficients, their derivation started by imposing (5.82) in order to remove the extra terms

from transformation (5.80) and identify then Ỹ with I. Equivalently, we could have considered

the Y transformation (5.79) first and tried to reproduce some transformation pattern by

acting on the extra Ỹ term. In this case we can indeed try to identify, as in (5.83), Y with

I and to do so is sufficient to require Ỹ to be symmetric in the gauge indices. However, this

(Y, Ỹ ) solution exactly solve also the Ỹ transformation (5.80) without the need to specify

further the explicit expression of Ỹ .

Although this is indeed a more general solution for the τ -sector coefficients, of which
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(5.84) can be seen as a subcase, it also features an undetermined Ỹ which is not fully un-

derstood and also spoils the final result. Thus, we decide to proceed with the more specific

solution (5.84).

5.3.5 Duality analysis of the D-sector

The last sector to be analyzed is the one involving the operators containing derivatives

of the gauge fields (as well as of the complex scalar). The D-sector Lagrangian is

L
(D)
4 = Z

(1)
AB(DµF

Aµα)(DνFBνα) +
[
Z(2)
µ

]
AB

FAµαDνFBνα +
[
Z̃(2)
µ

]
AB

F̃AµαDνFBνα, (5.91)

where the only coefficient having a symmetry property is Z(1), which is symmetric in the

gauge indices:

Z
(1)
AB = Z

(1)
BA. (5.92)

The dual field results to be

G
(D)
Λµν =

[
2∂ρ

(
Z(1) −

(
Z(2)

)ρ)]
ΛΣ

DαF
Σασεµνρσ + 4

[
Z̃

(2)
(ΛΣ)

]
[µ|
DαFΣ

α|ν]+

+ 2
[
Z(1)

]
ΛΣ

DρDβF
Σβσεµνρσ +

[
Z

(2)
ΣΛ

]
α
DρFΣασεµνρσ −

[
Z̃

(2)
ΣΛ

]
α
DαFΣ

µν+

+
[
∂ρ
(
Z

(2)
ΣΛ

)
α

]
FΣασεµνρσ −

[
∂α
(
Z̃

(2)
ΣΛ

)
α

]
FΣ
µν + 2

[
∂α
(
Z̃

(2)
ΣΛ

)
[µ|

]
FΣ
α|ν]

(5.93)

and because of the presence of operators with derivatives of the gauge fields the duality

transformation is now more involved. Making this calculation explicitly, we obtain:

δG
(D)
Λµν =DΛ

ΣG
(D)
Σµν∣∣

=
[(

2∂ρ(δZ(1)ΛΩ)− (δZ
(2)
ΛΩ)ρ

)
+ (A+BR)Σ

Ω

(
2∂ρ(Z

(1)
ΛΣ)− (Z

(2)
ΛΣ)ρ

)
+

+(RB)Λ
Σ
(

2∂ρ(Z
(1)
ΣΩ)− (Z

(2)
ΣΩ)ρ

)
+ 2Z

(1)
ΛΣ(B∂ρR)Σ

Ω+

+2(IB)Λ
Σ
(
Z̃

(2)
(ΣΩ)

)ρ]
DαF

Ωασεµνρσ+

+ 4

[(
δZ̃

(2)
(ΛΩ)

)
[µ|

+ (A+BR)Σ
Σ

(
Z̃

(2)
(ΛΣ)

)
[µ|

+ (RB)Λ
Σ
(
Z̃

(2)
(ΣΩ)

)
[µ|

+

+
1

2
Z

(1)
ΛΣ(B∂[µ|I)

Σ
Ω +

1

2
(BI)Σ

Ω

(
Z

(2)
ΣΛ

)
[µ|

+

−1

2
(IB)Λ

Σ
(

2∂[µ|(Z
(1))− (Z(2))[µ|

)
ΣΩ

]
DαFΩ

α|ν]+

+ 2
[
δZ

(1)
ΛΩ + (A+BR)Σ

ΩZ
(1)
ΛΣ + (RB)Λ

ΣZ
(1)
ΣΩ

]
DρDαF

Ωασεµνρσ+

+
[(
δZ

(2)
ΩΛ

)
α

+ (A+BR)Σ
Ω

(
Z

(2)
ΣΛ

)
α

+ (RB)Λ
Σ
(
Z

(2)
ΩΣ

)
α

+

+2Z
(1)
ΛΣ(B∂αR)Σ

Ω

]
DρFΩασεµνρσ+

−
[(
δZ̃

(2)
ΩΛ

)
α

+ (A+BR)Σ
Ω

(
Z̃

(2)
ΣΛ

)
α

+ (RB)Σ
Λ

(
Z̃

(2)
ΩΣ

)
α

+ (BI)Σ
Ω

(
Z

(2)
ΣΛ

)
α

+

+2Z
(1)
ΛΣ(B∂αI)

Σ
Ω

]
DαFΩ

µν+
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+
[
∂ρ
(
δZ

(2)
ΩΛ

)
α

+ (A+BR)Σ
Ω∂

ρ
(
Z

(2)
ΣΛ

)
α

+ (RB)Λ
Σ∂ρ

(
Z

(2)
ΩΣ

)
α

+

+(B∂αR)
(

2∂ρ(Z
(1)
ΛΣ)− (Z

(2)
ΛΣ)ρ

)
+ 2(B∂ρ∂αR)Σ

ΩZ
(1)
ΛΣ+

+(B∂ρR)Σ
Ω

(
Z

(2)
ΛΣ

)
α

+ (IB)Λ
Σ
(
∂α(Z̃

(2)
ΩΣ)ρ

)]
FΩασεµνρσ+

−
[
∂α
(
δZ̃

(2)
ΩΛ

)
α

+ (A+BR)Σ
Ω∂

α
(
Z̃

(2)
ΣΛ

)
α

+ (RB)Λ
Σ∂α

(
Z̃

(2)
ΩΣ

)
α

+

+(BI)Σ
Ω∂

α
(
Z

(2)
ΣΛ

)
α

+ (B∂αR)Σ
Ω

(
Z̃

(2)
ΣΛ

)
α

+ 2(B�I)Σ
ΩZ

(1)
ΛΣ+

+
(

2∂α(Z
(1)
ΛΣ)− (Z

(2)
ΛΣ)α

)
(B∂αI)

Σ
Ω + (B∂αI)Σ

Ω

(
Z

(2)
ΣΛ

)
α

]
FΩ
µν+

+ 2

[
∂α
(
δZ̃

(2)
ΩΛ

)
[µ|

+ (A+BR)Σ
Ω∂

α
(
Z̃

(2)
ΣΛ

)
[µ|

+ (RB)Λ
Σ∂α

(
Z̃

(2)
ΩΣ

)
[µ|

+

+(BI)Σ
Ω∂

α
(
Z

(2)
ΣΛ

)
[µ|

+ 2(B∂αR)Σ
Ω

(
Z̃

(2)
(ΛΣ)

)
[µ|

+

+
(

2∂α(Z
(1)
ΛΣ)− (Z

(2)
ΛΣ)α

)
(B∂[µ|I)

Σ
Ω +

1

2
(B∂αI)Σ

Ω

(
Z

(2)
ΣΛ

)
[µ|

+

+Z
(1)
ΛΣ(B∂α∂[µ|I)

Σ
Ω − (IB)Λ

Σ
(
∂[µ|(Z

(2)
ΩΣ)α

])
FΩ
α|ν]+

+ 2

[
(BI)Σ

Ω∂
α
(
Z̃

(2)
ΣΛ

)
[µ|

+ 2(B∂αI)Σ
Ω

(
Z̃

(2)
(ΛΣ)

)
[µ|

]
F̃Ω
α|ν]+

−
[
(B∂αI)Σ

Ω

(
Z̃

(2)
ΣΛ

)
α

+ (BI)Σ
Ω∂

α
(
Z̃

(2)
ΣΛ

)
α

+ (IB)Λ
Σ
(
∂α(Z̃

(2)
ΩΣ)α

)]
F̃Ω
µν+

−
[
(BI)Σ

Ω

(
Z̃

(2)
ΣΛ

)
α

]
DαF̃Ω

µν − 4
[
(IB)Λ

ΣZ
(1)
ΣΩ

]
D[µ|D

αFΩ
α|ν]+

− 2
[
(IB)Λ

Σ
(
Z

(2)
ΩΣ

)α]
D[µ|F

Ω
α|ν] −

1

2

[
(IB)Λ

Σ
(
Z̃

(2)
ΩΣ

)α]
DαF

Ω ρσεµνρσ.

(5.94)

Solution for the coefficients We focus on the last four lines of this very complicated

transformation:

2

[
(BI)Σ

Ω∂
α
(
Z̃

(2)
ΣΛ

)
[µ|

+ 2(B∂αI)Σ
Ω

(
Z̃

(2)
(ΛΣ)

)
[µ|

]
F̃Ω
α|ν]+

−
[
(B∂αI)Σ

Ω

(
Z̃

(2)
ΣΛ

)
α

+ (BI)Σ
Ω∂

α
(
Z̃

(2)
ΣΛ

)
α

+ (IB)Λ
Σ
(
∂α(Z̃

(2)
ΩΣ)α

)]
F̃Ω
µν+

−
[
(BI)Σ

Ω

(
Z̃

(2)
ΣΛ

)
α

]
DαF̃Ω

µν − 4
[
(IB)Λ

ΣZ
(1)
ΣΩ

]
D[µ|D

αFΩ
α|ν]+

− 2
[
(IB)Λ

Σ
(
Z

(2)
ΩΣ

)α]
D[µ|F

Ω
α|ν] −

1

2

[
(IB)Λ

Σ
(
Z̃

(2)
ΩΣ

)α]
DαF

Ω ρσεµνρσ.

(5.95)

We can see in fact that these operators do not appear in the dual field of the D-sector (5.93).

They’re indeed an example of those operators which are not independent with respect to the

considered set (5.1). Such operators appeared also in the other sectors’ transformations and

we properly took them into account by exploiting the identities that connect them to the

operators of (5.1), as described in Appendix B.

However, in this case we cannot exploit the same procedure because some of the operators

of (5.95) are connected to those appearing in the dual field (5.93) via an integration by parts.

This means that in the identity we should exploit to account for them it appears a total

derivative that completely spoils the duality transformation, since there are no counterparts

of such terms in the G-side of the transformation.

Thus, the only way to avoid this problem is to set to zero the coefficients of these oper-
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ators, which though means that all the coefficients of the D-sector result to be vanishing:

Z(1) = 0 = Z(2)
µ = Z̃(2)

µ . (5.96)

5.4 Resulting duality-preserving Lagrangian

The duality analysis of the different sectors (5.18) of the gauge part of the 4-derivatives

Lagrangian (5.2) allows to determine which operators of the set (5.1) give rise to a duality-

invariant extension of the starting model (4.1) and, with them, an explicit expression for the

associated non-minimal couplings. The resulting duality-preserving 4-derivatives Lagrangian

is

L4 =
1

(Imτ)4

[
λ1(∂µτ̄ ∂

µτ)2 + λ2|∂µτ∂µτ |2
]
− α

4

1

(Imτ)2
∂µτ̄ ∂

µτ IΛΣF
ΛFΣ+

+
α

(Imτ)2
∂µτ̄ ∂ντ IΛΣF

ΛµαFΣ ν
α +

β

(Imτ)2
IΛΣ

(
i ∂µτ̄ ∂ντF

ΛµαF̃Σ ν
α + h.c.

)
+

+ η IACIBD

[
(FAFB)(FCFD) + (FAF̃B)(FC F̃D)

]
.

(5.97)

Let’s describe now the properties characterizing our solution. First of all, duality re-

duced significantly the set of allowed operators (see (5.1)). In particular, the operators with

derivatives of the gauge fields are excluded from this set dynamically, i.e. not by assumption,

and this was possible thanks to the perturbative character of our duality analysis.

Moreover, also the allowed couplings result to be strongly constrained. Focusing on

the 4-derivatives gauge sector (5.4), we have seen that the components carrying the gauge

indices have been fixed for all the couplings to be proportional to I. This fact is quite

remarkable. First, because it establish a direct connection between the couplings of the 2

and 4-derivatives orders, indeed suggesting the idea that the one we’re dealing with is the

perturbative expansion of an exactly duality-invariant theory, which supports the meaning

of the perturbative expansion itself. Then, because it makes manifest that the duality group

characterizing the invariance of the gauge fields’ EoM and BI is the full EM duality group

Sp(4,R) presented in (4.42), (4.43). A very important property of (5.97) is in fact that we

were able to derive it working with the full Sp(4,R), namely without any SL(2,R) additional

and simplifying assumption. This means that the 4-derivatives Lagrangian (5.97) holds in

every symplectic frame we can identify via a duality transformation.

It’s important to highlight also that the 4-derivatives Lagrangian (5.97) we found may

not be the only possible solution for the couplings’ duality transformations. To derive it

we followed the strategy to search for the I transformation pattern (4.38) in the duality

transformations of the various coefficients and then impose constraints over them in order

to realize such a solution. This though does not exclude the possibility that other solutions

may be allowed1. However, the only way we have to identify an explicit expression for the

higher-order coefficients is to rely on those of the 2-derivatives Lagrangian (4.1) and their

duality transformations (4.38) and (4.39): although possible, the alternative solutions for

the 4-derivatives Lagrangian would lack of a precise determination of its couplings, of which

we would know only the duality transformation patterns. This does not make them good

candidates for applications such as the test of the WGC we had in mind at the beginning of

1This does not hold properly for the RF -sector (5.20), in which first the constraints (5.62), (5.65) and (5.64)
followed strictly from formal consistency among the duality transformations, second the β1 and β2 coefficients
were removed via the Weyl transformation (5.69), (5.72) without the need to solve their transformation.
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this discussion.

On the contrary, the Lagrangian (5.97) is perfect to perform such test. In fact, it depends

on the five undetermined scalar coefficients {η, α, β, λ1, λ2} that are precisely the subject of

the WGC constraints.





Chapter 6

Non-minimal couplings and the

Weak Gravity Conjecture

In chapters 4 and 5 we discussed in detail the duality group of Lagrangian (4.1) and how it

can be used to determine its 4-derivatives correction, which was found to be Lagrangian (5.97)

and is the main result of this thesis work. In particular, it is the perturbative analysis we

applied to obtained it that strongly support our result. As we described, the strategy we have

adopted was to require the self consistency of the duality transformation (4.30) order by order

in the higher-derivative expansion of the Lagrangian under examination. This means that no

further assumption was needed on the general structure of the resulting theory, which was

the subtle point of Cano and Múrcia approach in [29]. The analysis of the 2-derivatives order

(4.1) provided the EM duality group of the theory (4.42), (4.43) and the transformation rules

(4.38) and (4.39) of the I and R couplings. These results have then be applied to the analysis

of the 4-derivatives order (5.2), (5.4), (5.7) and allowed to fix the higher-order couplings in a

duality-preserving way, yielding eventually Lagrangian (5.97).

Now that we indeed determined a duality-preserving extension of the starting Lagrangian

(4.1) we can turn to the discussion of its connection with the Weak Gravity Conjecture

(1.1). In the context of pure Einstein–Maxwell theory (1.4), we have seen in Chapter 2 how

positivity bounds on the scattering amplitudes [20–22] equivalently realize the Electric WGC

(1.1) [18, 19]. Instead, in the context of a theory beyond Einstein–Maxwell, like the model

(4.1) we studied, to realize this equivalence one needs to add to the positivity bounds also

EM duality constraints [33,34].

Especially [34] represents an important basis of comparison for this analysis. In fact, also

in [34] a duality-preserving, 4-derivatives extension of Lagrangian (4.1) is proposed:

L
(4)
S =(Imτ)2αABCD

[
(FAFB)(FCFD) + (FAF̃B)(FC F̃D)

]
+

+
1

Imτ
αAB

[
−1

8
∂µτ̄ ∂

µτFAFB +
1

2
∂µτ̄ ∂ντF

AµαFB ν α+

]
+

+
1

Imτ
αAB

[
1

4

(
i ∂µτ̄ ∂ντF

AµαF̃B ν α + h.c.
)]

+

+
1

(Imτ)4

[
α1(∂µτ̄ ∂

µτ)2 + α2|∂µτ∂µτ |2
]
,

(6.1)

65
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where the α-coefficients are scalars and have the following symmetries:

αabcd =αbacd = αabdc = αcdab, (6.2)

αab =αba. (6.3)

However, as anticipated at the beginning of Chapter 4, this extension of (4.1) seems to

have been constructed just by adding operators that are exactly invariant under a duality

transformation but this is not an accurate way of deal with duality. Indeed, EM duality is a

symmetry of the EoM and BI of the gauge fields and not of the Lagrangian that describes

them. Therefore, the higher-order theory (6.1) proposed in [34] is not, in principle, the most

general duality-invariant, 4-derivatives correction to (4.1). Also, it is defined only in one

specific symplectic frame, the one in which the I and R couplings of (4.1) become proportional

to identity matrix according to

I =Imτ 1, (6.4)

R =Reτ 1. (6.5)

Indeed, the 4-derivatives extension (5.97) we derived represents an improvement to (6.1)

in both its issues: first, it was determined with a well-defined procedure, in full agreement

with the definition of EM duality as a symmetry of the EoM and BI of the gauge fields;

second, it’s definition is independent of the choice of symplectic frame.

Despite the structural uncertainties of (6.1), we see that its expression and the one of

(5.97) are indeed similar. To properly compare them, we make use of its freedom in the

symplectic frame choice and write our 4-derivatives Lagrangian in the frame (6.4)-(6.5) in

which (6.1) is defined. In this way we can make an identification between the coefficients

{η, α, β, λ1, λ2} of (5.97) and the α-ones of (6.1) and this allows to re-read the results of [34]

- and understand how they change - from the more rigorous point of view of our result (5.97).

In particular, after introducing (6.1), in [34] the authors proceed by computing the cor-

respondent correction to the charge-to-mass ratio of an extremal black hole solution of the

theory and test then the Electric WGC as described in (1.11). To do so, they exploit a

thermodynamic formulation of the black hole and carry out the calculations by following the

procedure described in [41]. Further, they compute the positivity bounds associated to the

coefficients of (6.1) that enter the correction to the charge-to-mass ratio and show that they

are sufficient conditions to realize the Electric WGC (1.1) because they make this correc-

tion positive. What we do is to start back from the charge-to-mass ratio computed in [34]

rewritten in terms of the coefficients of (5.97) and we study in detail which values of these

coefficients realize the Electric WGC. Similarly, we then translate to the coefficients of (5.97)

also the positivity bounds reported in [34] and show that they set them to a configuration in

agreement with the WGC.

This chapter is organized in the following way. In the first section we discuss the black

hole solution and the higher-order corrections to its charge-to-mass ratio presented in [34].

Next, in the second section we describe the symplectic frame in which (6.1) is defined (see

(6.4), (6.5)), we specify (5.97) in this frame and we make the identification between the

coefficients of the two theories. This allows to make use of the black hole solution of [34] to

study the WGC constraints on the coefficients of (5.97): this analysis is the topic of the third

section.
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6.1 Higher-order corrections to the charge-to-mass ratio

In this first section we focus on the black hole solution of Lagrangian (4.1) that is pre-

sented in [34] and on the higher-order correction to the associated charge-to-mass ratio that

come from the higher-derivative Lagrangian (6.1). To compute such corrections, the authors

exploit a thermodynamic description of the black hole and the physical quantities associated

to it, following the procedure they describe in [41].

6.1.1 The black hole solution

The Einstein equations (4.5) associated with the 2-derivatives Lagrangian (4.1) admit

the following dyonic black hole solution:

ds2 =− f(r)dt2 +
1

f(r)
dr2 + (r + κ1)(r + κ2)

(
dθ2 + sin2 θϕ2

)
,

f(r) =
r(r − 2ξ)

(r + κ1)(r + κ2)
,

(6.6)

together with

Reτ =0, Imτ =
r + κ1

r + κ2
, (6.7)

as solution for the τ EoM (4.4) and with

A1 =− q

r + κ1
dt, A2 =− p cos θ dϕ, (6.8)

for what concerns instead the vector potentials associated to F 1 and F 2 and their EoM (4.3).

q and p are the reduced electric and magnetic charges, namely

Q =4πq, P =4πp, (6.9)

and are related to the constants ξ, κ1 > 0 and κ2 > 0 that appear in the metric as

q2 =κ1(κ1 + 2ξ), p2 =κ2(κ2 + 2ξ). (6.10)

From the metric (6.6) we see that the two black hole horizons corresponds to r = 0 and

r = 2ξ, so that the extremal configuration is achieved via ξ → 0.

6.1.2 Thermodynamic description

This black hole can be characterized via a thermodynamic description, presented in [41].

The reason why such an approach is applied is that it allows to compute the higher-order

corrections to the physical quantities associated to the black hole in a simple way.

The building block of this thermodynamic picture is the fact that we can identify the

Euclidean version IE of the action under examination with the free energy H in the grand

canonical ensemble:

H = TIE, (6.11)

where T is the temperature of the black hole. The free energy H acts as a bridge between

the (Euclidean) action and the thermodynamic quantities characterizing the black hole. First

of all, the mass M and the entropy S of the black hole are connected by the First Law of
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Thermodynamics as

dM = TdS + ΦdQ+ ΨdP, (6.12)

where Φ is the electric potential evaluated at the outer horizon and Ψ its magnetic counterpart

(see A1 and A2 in (6.8) and [34, 41]). Then, from the definition of free energy and from the

First Law (6.12) we have

H ≡M − TS −QΦ, (6.13)

dH =− SdT −QdΦ + ΨdP. (6.14)

Equation (6.14) tells that the grand canonical ensemble we have introduced is described

in terms of the three variables T , Φ and P and, moreover, provides, together with (6.13), an

explicit procedure to compute the physical quantities characterizing the black hole, such as

S =−
(
∂H

∂T

) ∣∣∣∣
Φ, P

, Q =−
(
∂H

∂Φ

) ∣∣∣∣
T, P

, Ψ =

(
∂H

∂Q

) ∣∣∣∣
T,Φ

. (6.15)

The crucial point is that the free energy H is connected to the action under examination,

as stated in (6.11). Indeed, in all this description we have not specified the perturbative

order at which the action should be computed and in fact the fundamental relation (6.11)

does hold also when higher-derivative corrections to the leading order action are included1.

Let’s then explore further the case of an action including also higher-order terms. Fol-

lowing the perturbative expansion, we can write its Euclidean version as

IE = I2 + ∆I + I∂ , (6.16)

where I2 is the 2-derivatives, starting action, ∆I denotes all the included higher-derivatives

correction and I∂ is a boundary term (taken to be the Gibbons-Hawking-York term [42]) that

is necessary to have a well-defined Euclidean action, free of divergences.

From (6.16) we immediately see that this thermodynamic approach allows to compute

the higher-derivative corrections in a very simple way because they’re already included into

equations (6.14) and (6.15). For instance, in the case of the entropy we have

S =−
(
∂H

∂T

) ∣∣∣∣
Φ, P

= −
(
∂(TIE)

∂T

) ∣∣∣∣
Φ, P

=

=−
(
∂ (T (I2 + I∂)

∂T

) ∣∣∣∣
Φ, P

−
(
∂T∆I

∂T

) ∣∣∣∣
Φ, P

=

=−
(
∂ (T (I2 + I∂)

∂T

) ∣∣∣∣
Φ, P

−
(
∂TI4

∂T

) ∣∣∣∣
Φ, P

+ · · · ≡ S2 + ∆S.

(6.17)

This computation naturally splits into the different higher-derivative contributions, so that

all the corrections to the physical quantities characterizing the black hole can be derived in

the same way from IE.

The 4-derivatives order is particularly interesting because the full Euclidean action, de-

scribing a set of fields that we call F, is such that (see [44]):

IE [F] = IE [F2] + O(λ2), (6.18)

1This statement is true if the entropy S is the Wald entropy [43].



6.1 Higher-order corrections to the charge-to-mass ratio 69

where F2 denotes the solution of the EoM of the 2-derivatives action and λ the generic higher-

order coefficient driving the perturbative expansion. Thus, from this property it follows that

the corrections computed at the 4-derivatives order along the solution of the leading order

EoM - in the case of theory (4.1), given by the Euclidean version of (6.6), (6.7) and (6.8) -

are, at this order, exact. In other words, the 4-derivatives corrections are fully characterized

by evaluating I4 along F2.

Let’s now outline the results of applying such thermodynamic procedure to theory (4.1)

and its 4-derivatives extension (6.1) proposed in [34].

2-derivatives order The free energy associated to Lagrangian (4.1) results

H(T,Φ, P ) =
1− Φ2

2T
+

P 2T

2(1− Φ2)
, (6.19)

so that from equation (6.14) we obtain the electric charge and the entropy of the black hole,

while from (6.13) we then obtain its mass:

Q2(T,Φ, P ) =
Φ

T

(
1− P 2T 2

(1− Φ2)2

)
, (6.20)

S2(T,Φ, P ) =
1− Φ2

2T 2

(
1− P 2T 2

(1− Φ2)2

)
, (6.21)

M2(T,Φ, P ) =
1

T

(
1− Φ2P 2T 2

(1− Φ2)2

)
. (6.22)

One can indeed check that these expression of S, Q and M match the ones that can be

read from the metric (6.6) (see [34]).

4-derivatives order Applying the strategy described by equations (6.16), (6.17) and (6.18),

the 4-derivatives correction to Q and M that comes from the α1111-operator are

Q(T,Φ, P ) =Q2(T,Φ, P ) +
64π2 α1111TΦ2

5(1− Φ2)2

[
2(2− Φ2) 2F1 (1, 1, 6, y(T,Φ, P )) +

+

(
Φ2[3P 2T 2 − (1− Φ2)2]

3(1− Φ2)3

)
2F1 (2, 2, 7, y(T,Φ, P ))

]
,

(6.23)

M(T,Φ, P ) =M2(T,Φ, P ) +
64π2 α1111TΦ4

5(1− Φ2)2

[
2(2− Φ2) 2F1 (1, 1, 6, y(T,Φ, P )) +

+

(
− Φ2

3(1− Φ2)2
+
P 2T 2(1 + 2Φ2)

3(1− Φ2)3

)
2F1 (2, 2, 7, y(T,Φ, P ))

]
,

(6.24)

where the function y(T,Φ, P ) is equal to

y(T,Φ, P ) =
P 2T 2 − Φ2(1− Φ2)2

(1− Φ2)3
, (6.25)

and the functions 2F1(a, b, c, d) are the hypergeometric functions.

The other contributions, proportional to the remaining coefficients of (6.1), are obtained

in the same way and have a similar form. Once the full set of corrections has been computed,
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one can indeed derive the charge-to-mass ratio of an extremal black hole configuration of

(6.6). To do so, one more step is in order. In fact, to carry on this calculation it is convenient

to exchange the roles of Φ and Q and make use of the latter as a “coordinate” to describe the

ensemble: this operation corresponds to the transition from the grand canonical ensemble to

the canonical one and is achieved by inverting, at first order in the α-coefficients, equation

(6.23).

With this substitution, equation (6.24) describes now the mass of the black hole as

function of its electric charge. The corrected charge-to-mass ratio of an extremal black hole

can indeed be computed from this relation and (after taking the limit T → 0) results to be

zext = 1 +
1

5p(p+ q)

[
(α1111) 2F1 (1, 1; 6; 1− Q/P) + (α2222) 2F1 (1, 5; 6; 1− Q/P) +

+ (4α1212 − 2α1122) 2F1 (1, 3; 6; 1− Q/P) +

−
(

1− Q

P

)2 (α11

84
2F1 (3, 3; 8; 1− Q/P) +

α22

84
2F1 (3, 5; 8; 1− Q/P)

)
+

+

(
1− Q

P

)4 α1 + α2

126
2F1 (5, 5; 10; 1− Q/P)

]
.

(6.26)

We notice how this result is written, as seen in (6.17), as a perturbative series of cor-

rections to the leading order value, in terms of the higher-order coefficients, which makes

manifest the contributions to zext of the different higher-derivatives operators of (6.1). More-

over, this result holds in the case of positive charges: Q > 0, P > 0. The reason is that,

otherwise, the two “coordinates” of the (now canonical) ensemble could give rise to a negative

value of the mass M .

6.2 4-derivatives Lagrangian in the diagonal frame

The charge-to-mass ratio (6.26) is is the result of [34] that we want to re-read in terms of

the coefficients of (5.97) in order to test the WGC and its requirements over them. To do so,

we first need to write it in the proper symplectic frame to make the comparison with (6.1).

6.2.1 The diagonal frame

The frame in which (6.1) is defined is the one in which the I and R couplings take the

form presented in (6.4) and (6.5) and we call it “diagonal frame”. To see that such frame can

indeed be reached via duality transformation, we need to introduce the following complex

combination of I and R:

N ≡ R− i I. (6.27)

From the rules (4.38) and (4.39), we see that the infinitesimal duality transformation of

this new quantity is

δN = C +DN −NA−NBN, (6.28)

From this infinitesimal transformation rule we can actually track back the correspondent

finite transformation. Going back to (4.30), the finite duality transformation on the gauge
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fields and their duals is written as(
F ′

G ′

)
=

(
Â B̂

Ĉ D̂

)(
F

G

)
=

[
14 +

(
A B

C D

)](
F

G

)
+ O(2), (6.29)

where (
Â B̂

Ĉ D̂

)
∈ Sp(4,R),

(
A B

C D

)
∈ sp(4,R), (6.30)

14 is the 4 × 4 identity matrix and O(2) denotes the higher-order terms. Then, the corre-

spondent finite transformation on N can be understood from (6.28) as follows:

N ′ = N + δN + O(2) =N + C +DN −NA−NBN + O(2) =

= (C + (1 +D)N)−N (A+BN) + O(2) =

= [C + (1 +D)N] [1−A−BN] + O(2) =

= [C + (1 +D)N] [(1 +A) +BN]−1 + O(2),

(6.31)

so that, looking at (6.29), we find

N ′ =
(
Ĉ + D̂N

)(
Â+ B̂N

)−1
. (6.32)

This fractional, finite duality transformation is the rule that we can use to set the I

and R in the diagonal frame given by (4.38) and (4.39). To understand which is the duality

transformation that we have to apply to reach such a frame we have to better specify the

explicit expression of the matrix N. To do so, we need to go back to the construction of

theory (4.1). In Section 4.1 we introduced the concept of coset manifolds, specifying that the

scalar sector of (4.1) is given by the SL(2,R)/SO(2,R) coset manifold (4.11). This manifold

can be seen also as a so called Kähler manifold (see [32], [31]), which is the typical structure

of the scalar manifolds of supersymmetric models. Then, one can show (see [31]) that the

Kähler geometry fixes the matrix N to be diagonal and of the form

N =

(
τ̄ 0

0 − 1
τ̄

)
, (6.33)

and we see that it holds

N11 = − 1

N22
. (6.34)

Now that the matrix N has been fixed to (6.33), we can look for the finite duality

transformation that sets the I and R couplings to be as in (6.4) and (6.5). This transformation

is given by the following Sp(4,R) matrix (see [31]):

D̂ =


1 0 0 0

0 0 0 1

0 0 1 0

0 −1 0 0

 . (6.35)
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The correspondent transformation is in fact (6.32) on N is

N ′ =

(
N11 0

0 −1

)(
1 0

0 1
N22

)
=

(
N11 0

0 − 1
N22

)
(6.34)

= N11 14, (6.36)

which recalling (6.27) and (6.33) indeed reproduces (6.4) and (6.5).

We finally remark that the duality transformation (6.35) is indeed a symplectic frame

transformation: the correspondent transformation of the algebra sp(4,R) is in fact given by

D = −i π
2

[
t2 +

1

2

(
0 σ3

−σ3 0

)]
, (6.37)

where t2 is one of the sl(2,R) generators (4.50) and the second one belongs to the symplectic

subgroup (4.52).

6.2.2 Identification between the coefficients

We showed that the symplectic frame we have called diagonal indeed exists and how it

can be reached via duality transformations. It is in this frame that we can properly compare

the 4-derivatives correction we determined and the one proposed in [34].

As said, Lagrangian (6.1) is essentially a guess, in the diagonal frame, based on the min-

imal operator content that is expected to enter the 4-derivatives, duality-invariant extension

of (4.1). It appears in fact in terms of generic matrix coefficients αi, which still carry the

gauge indices (A, B) although the couplings’ dependence on the complex scalar field τ ap-

pears explicitly. Moreover, as highlighted in the previous chapters, such a construction is not

fully respectful of EM duality, which truly is a symmetry of the EoM and BI of the gauge

fields and not of the Lagrangian. The result of such vague structure is precisely the fact that

(6.1) is not in clear connection with all the EM duality group but it is instead defined in one

particular symplectic frame.

Looking now at Lagrangian (5.97), we see that though the operators it contains are the

same of (6.1), they appear together with proper combinations of the coupling I of (4.1),

without the need to specify it further, neither in the Lagrangian nor in the analysis that lead

to (5.97). It is this dependence on I that makes (5.97) frame-independent, a property that,

together with its perturbative, duality based derivation, supports (5.97).

In fact, Lagrangian (5.97) can indeed be seen as a generalization of (6.1) which fills all

the gaps the latter leaves open. Specifying then (5.97) in the diagonal frame, which means

substituting to the I terms of (5.97) its diagonal frame expression (6.4), we obtain

L
(4)
diag =η(Imτ)2

[
(FAFB)(FAFB) + (FAF̃B)(FAF̃B)

]
− α

4

1

Imτ
∂µτ̄ ∂

µτFΛFΛ+

+
α

Imτ
∂µτ̄ ∂ντF

ΛµαF νΛα +
β

Imτ

(
i ∂µτ̄ ∂ντF

ΛµαF̃ νΛα + h.c.
)

+

+
1

(Imτ)4

[
λ1(∂µτ̄ ∂

µτ)2 + λ2|∂µτ∂µτ |2
]
.

(6.38)

We immediately see that Lagrangian (6.38) not only reproduces the dependence on the com-

plex scalar field, in terms of Imτ , of the non-minimal couplings shown in (6.1), but it also

better specifies the expression of the α-coefficients of (6.1), where they were left generic, and

with them the structure of the associated operators.

Therefore it’s now possible to make an identification between the α-coefficients of (6.1)
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and the set {η, α, β, λ1, λ2} of (6.38). Following the Lagrangian subdivision seen in (5.2)

and (5.18), we have:

• 4F -sector we start with the operators of (6.1) and (6.38) that we can track back to

the 4F -sector (5.19), so that the coefficients to be compared are αABCD and η.

The symmetries of αABCD (6.2) tell that out of its 16 components the independent

ones are
α1111 (×1), α1112 (×4), α1212 (×4)

α1122 (×2), α1222 (×4), α2222 (×1).
(6.39)

Instead, the 4F -term in Lagrangian (6.38) reads

η(FAFB)(FAFB) = η
[
(F 1F 1)2 + (F 2F 2)2 + 2(F 1F 2)2

]
. (6.40)

Thus, by comparing (6.39) and (6.40) we obtain the following identification be-

tween the coefficients:

α1111 = η, α1112 = 0, α1212 =
η

2
,

α1122 = 0, α1222 = 0, α2222 = η.

(6.41)

• τ-sector For what regards the operators of the τ -sector, we immediately see that

there’s a relevant difference between (6.38) and (6.1): in the former the coefficient

of the operator

i ∂µτ̄ ∂ντF
AµαF̃B ν α + h.c. = i (∂µτ̄ ∂ντ − ∂µτ∂ν τ̄)FAµαF̃B ν α (6.42)

is independent of the other two of this sector (i.e. there is no relation between

α and β), while in the latter such relation does exits and would correspond, in

(6.38), to the additional constraint

β =
1

2
α. (6.43)

This means that a one-to-one correspondence between the coefficients of (6.38)

and (6.1) is not possible. The reason is that the former, thanks to the rigorous

derivation of Chapter 5, has a more specified structure that the latter, more guessed

than derived, necessary lacks.

However, we saw that the black hole solution presented in [34] with which we want

to make contact is characterized by (see (6.7))

Reτ = 0,

and along this solution for the complex scalar field τ the operator (6.42) results

to be identically vanishing, independently on the coefficient β:

Reτ = 0 =⇒ τ = i Imτ = −τ̄ =⇒

=⇒ ∂µτ̄ ∂ντ − ∂µτ∂ν τ̄ = −∂µτ∂ντ + ∂µτ∂ντ = 0.
(6.44)

Thus, since the purpose is to study, from the (6.38) point of view, the higher-

derivatives corrections to the charge-to-mass ratio (6.26) of the black hole solution

determined in [34] and, according to this solution, the operator (6.42) is identically
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vanishing, it is sufficient to perform the identification between the coefficients in

absence of this operator. In this case, it results to be

α11 =α22 = 2α,

α12 =α21 = 0.
(6.45)

• scalar sector For the remaining operators, the ones involving the complex scalar field

only, the identification is trivial and reads

α1 = λ1, α2 = λ2. (6.46)

Thanks to this identification, we can now read the results of [34] in terms of the coefficients

of (6.38) and study then which conditions they should satisfy to realize the Electric WGC

(1.1).

6.3 Weak Gravity Conjecture

We’re now able, thanks to (6.41), (6.45) and (6.46), to write the charge-to-mass ratio

(6.26) of [34] in terms of the coefficients of the 4-derivatives Lagrangian (5.97) we derived.

Defining

x ≡Q
P
, (6.47)

λ ≡λ1 + λ2, (6.48)

we can write the resulting charge-to-mass ratio as

zext =1 + ∆zext, (6.49)

∆zext =
1

QP
[cη(x) η − cα(x)α+ cλ(x)λ] , (6.50)

where we have:

cη(x) =
16π2

5

x

1 + x
( 2F1(1, 1; 6; 1− x) + 2F1(1, 5; 6; 1− x) + 2 2F1(1, 3; 6; 1− x)) , (6.51)

cα(x) =
4π2

105

x(1− x)2

1 + x
( 2F1(3, 3; 8; 1− x) + 2F1(3, 5; 8; 1− x)) , (6.52)

cλ(x) =
8π2

315

x(1− x)4

1 + x
2F1(5, 5; 10; 1− x), (6.53)

and all these functions are non-negative for all values of x. We can get an idea of the relative

contribution of each of these pieces to zext by plotting

QP
∆zext

λi
,

where λi = {η, α, λ}, as function of x: this is shown in Figure 6.1. The contributions are

relative because their true weight in zext depends on the values of the η, α and λ coefficients.

As we discussed in Section 1.1.2, the Electric WGC (1.1) can be formulated as the request

that extremal black holes are able to decay into smaller black holes. This process is possible
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Figure 6.1: Relative contributions to the 4-derivatives correction to zext.

if the higher-order correction that the charge-to-mass ratio of such black hole receives are

positive, as shown in (1.11). Therefore, the Electric WGC is realized in our theory if the

coefficients η, α and λ are such that

Z(x) ≡ cη(x) η − cα(x)α+ cλ(x)λ ≥ 0 ∀x. (6.54)

Let’s then study this condition in order to extract the WGC constraints over the co-

efficients of (5.97). First of all, from Figure 6.1 we can see that for the value x = 1 we

have

cη(1) >0, cα(1) =0, cλ(1) =0, (6.55)

which means

Z(1) = cη(1)η =
32π2

5
η. (6.56)

Since for the WGC to be realized the condition (6.54) must be satisfied for every values of x,

Z(1) yields a bound over η, which is

η ≥ 0. (6.57)

This is the first WGC constraint we obtain. To deal also with α and λ, it is convenient

to rewrite (6.54) dividing everything by η:

Z̃(x) ≡ cη(x)− cα(x) α̃+ cλ(x) λ̃ ≥ 0, (6.58)

where

α̃ ≡α
η
, λ̃ ≡λ

η
. (6.59)

From (6.58) we get (for x 6= 1)

λ̃ ≥ cα(x)

cλ(x)
α̃− cη(x)

cλ(x)
. (6.60)

To study this bound (6.60) we need to consider separately the four possible combinations of
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signs of α̃ and λ̃.

(I) α ≤ 0, λ ≥ 0. This case is the simplest one because for α ≤ 0 the right-hand side of

(6.60) is negative, so that for λ ≥ 0 the bound is trivially satisfied for all values of x.

(II) α ≥ 0, λ ≥ 0. for this combination we have to distinguish two cases, depending on

whether the right-hand side (RHS) of (6.60) is positive or negative.

1. For a positive RHS we have a non-trivial condition over both α and λ:

α̃ ≥ cη(x)

cα(x)
−→ λ̃ ≥ cα(x)

cλ(x)
α̃− cη(x)

cλ(x)
. (6.61)

Since, as said, (6.60) should be satisfied for all values of x, these conditions translate

to the maximum values of the functions of x:

α̃ ≥max
x

(
cη(x)

cα(x)

)
, λ̃ ≥ max

x

(
cα(x)

cλ(x)
α̃− cη(x)

cλ(x)

)
. (6.62)

However, studying the α̃ bound we immediately find that

max
x

(
cη(x)

cα(x)

)
= +∞, (6.63)

and therefore a positive RHS of (6.60) with both α and λ positive is not an allowed

configuration.

2. If the RHS of (6.60) is negative then λ ≥ 0 is sufficient to satisfy the bound, as happened

in case (I). We have a negative RHS for

α̃ ≤ cη(x)

cα(x)
, (6.64)

and this time this condition translates to the minimum of the function of x, which is

now finite:

α̃ ≤ min
x

(
cη(x)

cα(x)

)
= 4. (6.65)

Therefore we can conclude that for both α and λ positive the WGC is realized if

0 ≤ α ≤ 4η, λ ≥ 0. (6.66)

(III) α ≤ 0, λ ≤ 0. In this case the RHS of (6.60) is negative and we have

cα(x)

cλ(x)
α̃− cη(x)

cλ(x)
≤ λ̃ ≤ 0. (6.67)

In order to extremes this bound and obtain the WGC constraint, it is convenient to rewrite

it in terms of the absolute values of α̃ and λ̃:

λ̃ ≥ cα(x)

cλ(x)
α̃− cη(x)

cλ(x)
=⇒ − |λ̃| ≥ −

[
cα(x)

cλ(x)
|α̃|+ cη(x)

cλ(x)

]
=⇒

=⇒ |λ̃| ≤ cα(x)

cλ(x)
|α̃|+ cη(x)

cλ(x)
.

(6.68)
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We can then can minimize this expression with respect to x, obtaining

|λ̃| ≤ min
x

(
cα(x)

cλ(x)
|α̃|+ cη(x)

cλ(x)

)
= min

x

(
cα(x)

cλ(x)

)
|α̃|+ min

x

(
cη(x)

cλ(x)

)
= 1 +

|α̃|
4
, (6.69)

so that

|λ̃| = −λ̃ ≤ 1 +
|α̃|
4

= 1− α̃

4
=⇒ λ̃ ≥ −1 +

α̃

4
. (6.70)

The resulting WGC bounds on the negative α and λ are therefore

α ≤ 0,
α

4
− η ≤λ ≤ 0. (6.71)

(IV) α ≥ 0, λ ≤ 0. In this last configuration we have a negative λ, so that also the

RHS of (6.60) must be so. This yields the following condition on α:

α̃ ≤ cη(x)

cα(x)
=⇒ α̃ ≤ min

x

(
cη(x)

cα(x)

)
=4 =⇒ 0 ≤ α ≤ 4η. (6.72)

The associated bound on λ is instead

cα(x)

cλ(x)
α̃− cη(x)

cλ(x)
≤ λ̃ ≤ 0, (6.73)

and we can study it again by analyzing the correspondent condition on its absolute value:

λ̃ ≥ cα(x)

cλ(x)
α̃− cη(x)

cλ(x)
=⇒ − |λ̃| ≥ cα(x)

cλ(x)
α̃− cη(x)

cλ(x)
=⇒

=⇒ |λ̃| ≤ cη(x)

cλ(x)
− cα(x)

cλ(x)
α̃.

(6.74)

It follows that

|λ̃| ≤ min
x

(
cη(x)

cλ(x)
− cα(x)

cλ(x)
α̃

)
= 1− α̃

4
=⇒ λ̃ ≥ α̃

4
− 1. (6.75)

We conclude that the WGC is realized by positive α and negative λ if they’re such that

0 ≤ α ≤ 4η,
α

4
− η ≤λ ≤ 0. (6.76)

Summarizing, the coefficients α and λ agree with the WGC for the following subsets of

their values:

(I)

{
α ≤ 0

λ ≥ 0
, (II)

{
0 ≤ α ≤ 4η

λ ≥ 0
,

(III)

α ≤ 0
α

4
− η ≤ λ ≤ 0

, (IV)

0 ≤ α ≤ 4η
α

4
− η ≤ λ ≤ 0

.

(6.77)

Looking at the different combinations, we notice that we can indeed merge the different

bounds over one coefficients keeping fixed the sign of the other one. For instance, at fixed α
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we have

α ≤ 0 −→ λ ≥ α

4
− η, (6.78)

0 ≤ α ≤ 4η −→ λ ≥ α

4
− η. (6.79)

Since the resulting bound on λ does not change when the sign of α does, we can merge also

the bounds on α and obtain, as final bounds on the two coefficients,

α ≤ 4η (6.80)

λ ≥ α

4
− η. (6.81)

Equations (6.57), (6.80) and (6.81) are therefore the conditions over the coefficients of

(5.97) in order for the Electric WGC (1.1) to be realized in (5.97). Following the Swampland

prescriptions, the set of theories (5.97) with coefficients satisfying (6.57), (6.80) and (6.81)

belong to the Landscape, all the others to the Swampland.

6.3.1 Positivity bounds

Once the conditions under which the WGC is realized have been found, one can look for

supporting evidence in the positivity bounds on the scattering amplitudes that the theory

under examination describes. We have seen that in the pure Einstein–Maxwell theory (1.4)

there is an exact equivalence between the WGC conditions and the positivity bounds [18]

(see Chapter 2). However, as discussed in [33, 34], they’re not sufficient, alone, when the

field content of the theory is more involved: the equivalence seems to be restored if the

theory satisfies the additional requirement to be duality-preserving. Therefore, our resulting

4-derivatives Lagrangian (5.97) is a good benchmark to make such a test.

We rely again on [34] for the computation of such amplitudes2. The resulting positivity

bounds over the coefficients η, α and λ = λ1 + λ2 of (5.97) are the following:

η ≥ 0, (6.82)

α ≤ 0, (6.83)

λ ≥ 0. (6.84)

By comparing these positivity bounds with the WGC requirements we found in the

previous section, we immediately see that while the bound (6.57) on the coefficient η exactly

match the WGC condition (6.57), the bounds (6.83) and (6.84) on α and λ correspond only

to a subclass of the WGC constraints (6.80) and (6.81), the one we denoted with (I). There

are indeed configurations of the coefficients - the ones we named (II), (III) and (IV) - that

are in agreement with the WGC but are instead excluded from the positivity bounds, so that

the latter result to be a stronger requirement over the coefficients than the former.

We can then conclude that in the context of the duality-preserving theory (5.97) an exact

equivalence between the positivity bounds on the scattering amplitudes and the Electric WGC

(1.1) was not found: the positivity bounds represent only a sufficient condition to realize

Electric the WGC, not a necessary one.

2This computation is performed in [34] assuming that the graviton exchange amplitude is subdominant, so
that problems with the Coulomb singularity (2.34) are avoided.



Summary and Outlook

The first and main goal of this thesis work was to find a 4-derivatives extension of action

(4.1) that was duality preserving. To do so, the issues to overcome were two: the first was to

understand how to properly implement EM duality as a symmetry of the set of EoM and BI (

it’s definitely not a symmetry of the Lagrangian); the second was how to not exclude a priori

from the discussion the operators with derivatives of the gauge fields. The strategy we applied

was to abandon the general approach of Gaillard and Zumino in [26] and rely instead to a

model-based, perturbative duality analysis that exploits the self-consistency of the duality

transformations (4.29), (4.30). This indeed restricts our results to the specific model (4.1) we

considered, but at the same time it does not require - unlike in [26] - any further assumption

on the structure of the full theory, which is determined only in virtue of EM duality. We

also remark that this perturbative approach is consistent with the perspective under which

EM duality is a manifestation of the duality symmetries of String Theory [14–16]: being a

symmetry of the full UV theory is then expected to hold at every perturbation order.

More specifically, we determined the duality group (4.42)-(4.43) of the theory and the

transformations (4.38) and (4.39) of the I and R couplings from the duality analysis of the

2-derivatives, starting Lagrangian (4.1). We then used these results of the 2-derivatives order

to determine which operators and couplings give rise to a duality-preserving 4-derivatives

correction to (4.1). This analysis led to Lagrangian (5.97), which is the main result of the

thesis work. The main feature of this Lagrangian is that it does not depend on the choice of

the particular symplectic frame: this shows that our result was indeed derived in full respect

of EM duality as symmetry of the EoM and BI. Also, it supports our perturbative duality

analysis as a valuable analytic tool to determine duality-preserving extensions of effective

gauge theories.

After presenting this duality analysis in chapters 4 and 5, in Chapter 6 we discussed the

relationship, in the context of the resulting theory (5.97), between the Electric WGC (1.1) and

the duality-preserving higher-order theories, which is the second topic addressed in this work.

Following [34], we studied the charge-to-mass ratio (6.50) characterizing a black hole solution

of (5.97) in terms of the higher-order coefficients η, α and λ = λ1 + λ2 and we determined

which subset of these parameters satisfy the Electric WGC prescription (1.11). This subset

is given by conditions (6.57), (6.80) and (6.81). Then, we compared these results with the

positivity bounds (6.82)–(6.84) presented in [34] and showed that they’re indeed a sufficient

condition for the Electric WGC (1.1) to be realized but not a necessary one, similarly to what

was found [34]. Therefore, while our resulting Lagrangian (5.97) is indeed an improvement

with respect to [34] because of the rigorous duality framework in which it was derived and

because it allows to explicitly determine the WGC requirements on its coefficients (which are

not determined in [34]), it’s not able to overcome it on the question about the relationship

between the WGC and the positivity bounds, since, despite the improvements, the exact

equivalence between the two was not found.
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In this respect, one question that must be explored is whether this equivalence between

the WGC and the positivity bounds may follow by including in the analysis also Super-

symmetry. Indeed, Supersimmetry imposes additional constraints over the couplings of the

theory: it is then possible that the higher-order coefficients result to be able to now realize

the equivalence between the two requirements in an exact way.

More in general, this relationship among EM duality, the WGC and the positivity bounds

on the scattering amplitudes is a topic that surely needs to be discussed further. In fact,

although the claimed equivalence between the Electric WGC (1.1) and the positivity bounds

has not been found, neither in [34] nor in this work, to hold in the duality-preserving extension

of axion-dilaton-Maxwell-Einstein theory (4.1), it was indeed shown in [33] to be exactly

realized in the context of the axion-dilaton-Einstein theory. Thus, to better understand

which is the true connection between the WGC and the EM duality, and if they truly point

in the same direction in the theories’ space, is then crucial to test the WGC in different

realizations of EM duality. To do so, the perturbative duality analysis we exploited to derive

Lagrangian (5.97) is indeed a valuable tool that can be applied to many different models.

Another question the duality analysis presented in this work can be useful to address

regards the relation between EM duality and the operators with derivatives on the gauge

fields. As said, they’re excluded from the general discussion of Gaillard and Zumino in [26]

but when EM duality is used to determine the higher-derivatives extensions of effective gauge

theories it results to be too restrictive a hypothesis. Indeed, the perturbative approach we

exploited was able to overcome this issue and treat those operators in the same way as the

others. However, it does not give, in itself, any further clues about the true role of these

operators in duality-preserving theories. Thus, studying many different models with this

approach may point out the conditions under which such higher-order extensions do include

also these operators or if instead, as happened for (4.1), they’re always excluded.
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Appendix A

Duality transformation on Lmat

In this section we show the result (4.48) on the duality transformation of the matter

sector of a 2-derivatives gauge theory.

We consider the case of a Lagrangian density L describing a set of scalar fields φi and

one U(1) gauge field F (and not on its derivatives):

L = Lmat(φ) + Lg(φ, F ), (A.1)

such that under a duality transformation we have

δLg =
1

4

(
FCF̃ +GBG̃

)
, (A.2)

where G is the dual field as defined in (4.29). Let’s denote the associated duality transfor-

mation on the scalars φi as

δφi ≡ξi(φ), (A.3)

ξiµ ≡∂µξi =
∂ξi

∂φj
∂µφ

j ≡ ∂ξi

∂φj
φjµ. (A.4)

Recalling the definitions (3.22) and (3.21) of the φi EoM and the associated operator, the

variation δLmat can be written in terms of the total duality transformation of the Lagrangian

L in the following way:

δL =δLmat + δLg = δLmat +
1

4

(
FCF̃ +GBG̃

)
∣∣

=ξk
∂L

∂φk
+ ξkα

∂L

∂φkα
+ δF

∂L

∂F
= ξkEk + ∂α

[
ξk
∂L

∂φkα

]
+

1

2
(AF +BG)G̃,

(A.5)

so that

δLmat = ξkEk + ∂α

[
ξk
∂L

∂φkα

]
+

1

2
FAG̃+

1

4
GBG̃− 1

4
FCF̃ . (A.6)

Similarly to what we have seen in Gaillard and Zumino analysis (see (3.24)), we can

study the φ-dependence of δLmat by applying to it the EoM operator (3.21):

Êi[δLmat] = Êi[ξ
kEk] + Êi

[
∂α

(
ξk
∂L

∂φkα

)]
+ Êi

[
1

2
FAG̃+

1

4
GBG̃

���
��−1

4
FCF̃

]
, (A.7)

where the last term cancels because F and φi are of course independent. After some algebraic
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computations, each of the pieces of (A.7) reads

• Êi

[
1

2
FAG̃+

1

4
GBG̃

]
= δFEi − ∂µ(δF )

∂

∂F

∂L

∂φiµ
, (A.8)

• Êi

[
ξkEk

]
= δφEi + δ∂φEi +

∂ξk

∂φi
Ek − ξkµ

∂Ek
∂φiµ

− ∂µ
[
ξk
∂Ei
∂φkµ

]
, (A.9)

• Êi

[
∂α

(
ξk
∂L

∂φkα

)]
= ∂α

[
ξk
∂Ei
∂φkα

− ξkµ
∂2L

∂φkα∂φ
i
µ

]
, (A.10)

in which we have introduced the quantities δFEi, δφEi and δ∂φEi according to (A.5):

δEi =δFEi + δφEi + δ∂φEi ≡
∂Ei
∂F

δF +
∂Ei
∂φj

δφj +
∂Ei

∂φjα
∂α(δφj). (A.11)

Putting (A.8), (A.9) and (A.10) together and exploiting the covariance of the scalar fields’

EoM (3.23), we obtain

Êi[δLmat] =
���

����

δEi +
∂ξk

∂φi
Ek −

[
∂µ(δF )

∂

∂F
+ ∂µ(δφk)

∂

∂φk
+ ∂µ(δφkα)

∂

∂φkα

]
∂L

∂φiµ
. (A.12)

This last equation can be further manipulated by exploiting first the fact that space-

time derivatives and field derivatives are commutative operations (since the fields and their

spacetime derivatives are considered as independent degrees of freedom in the Lagrangian):

∂

∂φi
(∂µL) =

∂

∂φi

(
∂L

∂φk
(∂µφ

k) +
∂L

∂∂αφk
(∂µ∂αφ

k)

)
=

=
∂2L

∂φk
(∂µφ

k∂φi) +
∂2L

∂∂αφk∂φi
(∂µ∂αφ

k) = ∂µ
∂L

∂φi
,

(A.13)

then the commutativity also between ∂µ and δ. The right-hand side of equation (A.12) thus

becomes

∂µ(δφk)
∂2L

∂φk∂φiµ
+ ∂µ(δφkα)

∂2L

∂φkα∂φ
i
µ

+ (∂µδF )
∂2L

∂F∂φiµ
=

= ∂µ

[
δφk

∂

∂φk
+ δφkα

∂

∂φkα
+ δF

∂

∂F

]
∂L

∂φiµ
−
[
δφk∂µ

∂

∂φk
+ δφkα∂µ

∂

∂φkα
+ δF∂µ

∂

∂F

]
∂L

∂φiµ

(A.13)
=

= ∂µ

(
δ
∂L

∂φiµ

)
−
[
δφk

∂

∂φk
+ δφkα

∂

∂φkα
+ δF

∂

∂F

]
∂µ

∂L

∂φiµ
=

= ∂µ

(
δ
∂L

∂φiµ

)
− δ

(
∂µ

∂L

∂φiµ

)
= 0.

(A.14)

Thus, the final result of this computation is

Êi[Lmat] = 0 (A.15)

and this is not an equation but rather an identity. The only way to satisfy it consistently

with the fact that Lmat indeed carries a dependence on the scalar fields φi is therefore

δLmat = 0. (A.16)
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Appendix B

Identities among higher-order

operators

In this Section we describe the relevant identities among the 4-derivatives gauge operators

of (5.1) and how to use them to properly deal with the duality transformations of (5.29), (5.52)

and (5.76).

B.1 4F -sector

The extra operator that appear in the duality transformation of the 4F -sector dual field

(5.29) are

FAαβF
B βγFCγδF

D δα, F̃AαβF
B βγFCγδF̃

D δα, F̃AαβF
B βγF̃CγδF

D δα, (B.1)

which can be related to those appearing in (5.19) by exploiting the Levi-Civita tensor con-

traction rule, which in D spacetime dimension reads

εµ1...µpνp+1...νDεµ1...µpρp+1...ρD =
g

|g|
(D − p)! p! δνp+1

[ρp+1
. . . δνDρD], (B.2)

and the identity

FAαβF
B βγFCγδF

D δα =
1

4
(FAFD)(FCFB) +

1

4
(FAFB)(FCFD) +

1

4
(FAF̃C)(FBF̃D). (B.3)

The resulting relations between the operators of (B.1) and those of (5.19) are:

• [β1]ABCD F
A
αβF

B βγFCγδF
D δα =

1

2
[β1]ABCD (FAFB)(FCFD)+

+
1

4
[β1]ACBD (FAF̃B)(FC F̃D),

(B.4)

• [β2]ABCD F̃
A
αβF

B βγFCγδF̃
D δα =

1

4
([β2]ACDB − [β2]ACBD) (FAFB)(FCFD)+

+
1

4
[β2]ABCD (FAF̃B)(FC F̃D),

(B.5)

• [β3]ABCD F̃
A
αβF

B βγF̃CγδF
D δα =

(
1

2
[β3]A(B|C|D) −

1

4
[β3]ADBC

)
(FAF̃B)(FC F̃D), (B.6)
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where β1, β2 and β3 are couplings function of τ and τ̄ and possess the following symmetries:

[β1]ABCD = [β1]ADCB = [β1]CBAD , (B.7)

[β2]ABCD = [β2]DCBA , (B.8)

[β3]ABCD = [β3]CDAB . (B.9)

As we described in Chapter 5, when acting the duality transformation of the dual field

(5.29) we obtain also terms that can be linked to the dependent operators (B.1) as if they

were explicitly present in G
(4F )
Λ , while they are instead “hidden” inside the independent ones

via the identities (B.4), (B.5) and (B.6). We can find the dual field analogue of such identities

by acting, following the dual field definition (4.29), on both sides with the operator

εµνρσ
∂

∂FΛ
µν

. (B.10)

Exploiting the symmetries (B.7)–(B.9) and redefining the coefficients as

[Ω1]ΛBCD ≡ [β1]ΛBCD + [β1]BΛDC , (B.11)

[Ω2]ΛDCB ≡ [β2]ΛDCB − [β2]DΛCB , (B.12)

[Ω3]ΛBCD ≡ [β3]ΛBCD − [β3]BΛCD , (B.13)

the identities we obtain by applying (B.10) to (B.4)–(B.6) are:

• [Ω1]ΛBCD F
B ραFCαβF

Dβσεµνρσ =− 1

2

(
[Ω1]ΛB(CD) + [Ω1](CD)ΛB

)
(FCFD)F̃Bµν+

− 1

2
[Ω1]Λ(C|B|D) (FC F̃D)FBµν ;

(B.14)

• [Ω2]ΛDCB F̃
B
[µ|αF

C αβFDβ|ν] =
1

2
[Ω2]BDCΛ (FCFD)F̃Bµν+

− 1

2
[Ω2]ΛBCD (FC F̃D)FBµν ;

(B.15)

• [Ω3]ΛBCD F
B
[µ|αF̃

C αβFDβ|ν] =
1

2
([Ω3]BDΛC − [Ω3]ΛBCD) (FC F̃D)FBµν . (B.16)

These identities are then plugged into the duality transformation of the dual field (5.29)

and allow to re-adsorb the extra terms into those that have a corresponding term in (5.29).

The final result are the transformations (5.32)–(5.35).

B.2 RF -sector

Next, we discuss the identities used in the RF -sector. The extra operators that appear

in δG
(RF )
Λ are

RαβF̃
ΛαγF̃Σβ

γ , RαβγδF̃
ΛαβF̃Σ γδ, (B.17)

which are related to (5.20) by the identities

• RαβF̃
ΛαγF̃Σβ

γ = −1

2
RFΛFΣ +RαβF

ΛαγFΣβ
γ , (B.18)

• RαβγδF̃
ΛαβF̃Σ γδ = RFΛFΣ +RαβγδF

ΛαβFΣ γδ − 4RαβF
ΛαγFΣβ

γ . (B.19)
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Proceeding as we did for the 4F -sector, we apply on both sides of these identities the dual

field operator (B.10) and we obtain, in terms of two generic non-minimal couplings [β1]ΛΣ

and [β2]ΛΣ, symmetric in the gauge indices, their analogue for the duality transformation

terms:

• [β]ΛΣR[µ|αF̃
Σ
|ν] α =

1

4
[β]ΛΣRF̃

Σ
µν +

1

2
[β]ΛΣR

ραFΣσ
α εµνρσ; (B.20)

• [β]ΛΣRµνρσF̃
Σ ρσ = [β]ΛΣRF̃

Σ
µν +

1

2
[β]ΛΣR

ρσαβFΣ
αβ ερσµν+

+ 2 [β]ΛΣR
ραFΣσ

α εµνρσ.
(B.21)

These identities yields then the transformations (5.53)–(5.58) of the RF -sector couplings.

B.3 τ-sector

In the case of the τ -sector (5.21) there is only extra operator in the dual field transfor-

mation,

F̃ΛαγF̃Σβ
γ , (B.22)

which is related to (5.21) by the identity

[βΛΣ]αβ F̃
ΛαγF̃Σβ

γ = −1

2
[βΛΣ]α α + [βΣΛ]αβ F

ΛαγFΣβ
γ , (B.23)

where [β]µν is a generic non-minimal coupling such that

[βΛΣ]µν = [βΣΛ]νµ . (B.24)

The analogue of such identity, obtained via (B.10), to be applied in the duality transfor-

mation results to be

[βΛΣ][µ|α F̃
Σ α
|ν] = −1

4
[βΛΣ]α αF̃

Σ
µν −

1

2
[βΣΛ]ρα FΣσ

α εµνρσ, (B.25)

yielding then transformations (5.77)–(5.80).
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