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Abstract

Inflation is the standard scenario, completely consistent with a variety of data, to understand the
generation of primordial scalar (density) perturbations, i.e. the seeds of all the cosmological structures
we see today, and also of tensor perturbations (i.e. primordial gravitational waves). Inflation must
come to an end, in order for the universe to be filled in with radiation, and to proceed through the
standard radiation dominated era, during which, e.g. primordial nucleosynthesis can take place. Such
a transition (called reheating phase) from the inflationary stage to the standard radiation dominated
epoch, is the least known part of the inflationary scenario, because, e.g., it involves couplings of the
fields driving inflation to other (relativistic) particles. Nonetheless the precision of cosmological data
has allowed recently to put already some constraints on such a reheating phase.

This Thesis will provide an up-to-date review of all the cosmological observables that can be used
to open a new window into such period of the early universe. Moreover, we will also review the main
models present in the literature about the preheating epoch (the initial stage of reheating) and the
subsequent phases of reheating. These stages involve very non-linear and interesting physics and can
lead to production of gravitational waves that can be observed today.
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Introduction

In modern cosmology one of the most important theories is represented by Cosmological Inflation.

Inflation was an era during the early history of the universe, before the epoch of primordial nu-
cleosynthesis, during which the universe expansion was accelerated. Such a period can be attained if
the energy density of the universe was dominated by the vacuum energy density associated with the
potential of a scalar field, called the inflaton field ϕ.

Inflation leads to a very rapid expansion of the universe and can elegantly solve the flatness,
the horizon and the monopole problems of the Standard Big Bang Cosmology (the first important
model of inflation by Guth in 1981 was introduced to address such problems [5]). It can explain
the production of the first density perturbations in the early universe, which are the seeds for the
Large Scale Structure (LSS) in the distribution of galaxies and underlying dark matter, and for the
Cosmic Microwave Background (CMB) temperature anisotropies that we observe today. Inflation has
become the dominant paradigm to understand the initial conditions for structure formation and CMB
anisotropies. During this era primordial density fluctuations and gravitational waves are created from
quantum fluctuations “redshifted” out of the horizon during the rapid expansion and here “frozen”.

From this period we can observe temperature anisotropies in the CMB caused by perturbations
at the surface of the last scattering. The CMB temperature anisotropies were first detected by the
Cosmic Background Explorer (COBE) satellite [6], [7]. Another impressive confirmation of the infla-
tionary theory has been provided by the data of the Wilkinson Microwave Anisotropy Probe (WMAP)
mission, that has produced a full-sky map of the angular variations of the CMB with unprecedented
accuracy. WMAP data confirm the inflationary mechanism as responsible for the generation of super-
horizon fluctuations [8], [2]. More recently, the best constraints on the CMB data are provided by the
2018 Planck measurements [10]. The Planck data have given a very precise characteritation of the
primordial cosmological perturbations and have allowed cosmological parameters to be constrained at
the sub-percent level. Thus, Planck measurements provide a powerful constraint to inflationary mod-
els [4]. In particular, the Planck data have established with extremely high precision (at more than
8 sigma) that the primordial density perturbations are not scale-invariant, which is another generic
prediction of inflation; also, the Planck data have provided one of the most stringest test on inflation-
ary models by providing the strongest constraints on deviations from Gaussianity of the cosmological
perturbations.

The literature contains a huge number of different models of inflation. Each model amounts to a
choice for the potential of the inflaton. In the simplest scenario, the main models of inflation focuse
on two different paradigms. Throughout the early 1990s discussion was dominated by the single-field
models. In these models the scalar field potential often is chosen to be some convenient simple function,
such as a monomial or exponential, and the initial conditions are chosen such that the scalar field is
well displaced from any minimum.

In the mid-1990s this paradigm was challenged by a new wave of inflationary model building, based
on particle physics motivation such as the theories of supersymmetry, supergravity, and superstrings.
In such a period we have a new class of models, known generically as hybrid inflation models, which
rely on interactions between two scalar fields and exploit the flat potentials expected in supersymmetry
theories [1]. In other scenarios we have the presence of a further scalar field besides the inflaton that
does not influence the inflationary dynamics (for example the curvaton scenario), or the inflaton
coupled to a gauge field. Finally, there are theories based on Modified Gravity (MG) that involve a
modification of General Relativity [3].

Inflation cannot proceed forever. In fact, the greatest successes of the Standard Big Bang model,
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INTRODUCTION INTRODUCTION

such as primordial nucleosynthesis and the origin of the CMB, require the standard evolution from
radiation to matter dominated era. The transition from inflation to later stages of the evolution of
the universe (radiation and matter dominance) is referred to as Reheating. In the simplest models
(single-field, slow-roll scenario) inflation ends when the inflaton field starts rolling fast along its po-
tential, it reaches the minimun and then oscillates around it. During reheating the inflaton loses
its energy, eventually leading to the production of ordinary matter. More intricate scenarios include
non perturbative processes such as (broad) resonance decay, tachyonic instability, instant preheating,
fermionic preheating. Preheating denotes the initial stage of reheating where we have an exponential
decay that generates high occupation numbers in selected frequency bands.

The aim of this Thesis is to provide a complete and up-to-date review of the main models of
reheating discussed in the literature. However, the reheating era is difficult to constrain observationally.
In the absence of topological defects like monopoles or strings, the fluctuations produced during
reheating remain sub-horizon and cannot leave an observable imprint at the level of the CMB or LSS.
A lower bound is placed on the reheating temperature (i.e. the temperature at which the standard
radiation era of the universe begins after reheating) by primordial nucleosynthesis (BBN) TBBN ∼
10−2Gev [11]. The scale of inflation is bounded from above and can be as large as ∼ 1016Gev, leaving
for the reheating temperature an allowed range of many orders of magnitude. Moreover, a variety of
signatures relative to production of primordial black holes, magnetic fields, unwanted relics, and also
to mechanisms such as baryo and leptogenesis, may be traced back to specific preheating/reheating
models [12].

An extremely important prediction of cosmological inflation is the generation of a Stochastic Back-
ground of primordial Gravitational Waves (SGWB). Primordial GW are in fact not expected in the
non-inflationary standard early universe models and will provide, if detected, a smoking gun probe
of inflation. In the standard slow-roll inflationary scenario tensor fluctuations of the metric (i.e. pri-
mordial GW) are characterized by a nearly scale invariant spectrum on super-horizon scales. The
amplitude of the GW signal is usually described by the tensor-to-scalar ratio r, defined as the ratio
between the tensor and the scalar power spectrum amplitudes at a given pivot scale k∗. The cur-
rent best bound on r comes from the joint analysis of Planck and BICEP/Keck 2018, which yields
r < 0.032 at 95% C.L. for k∗ = 0.05Mpc−1 [9]. A crucial point is that, even in the simplest single field
framework, different inflationary scenarios predict different values of r. The study of observational
signatures of primordial GW thus provides not only a way to probe the general inflationary theory,
but also to discriminate in detail among specific models.

A detection of primordial GW would not only be extremely important for Cosmology, but also
for High Energy and Fundamental Physics. Since the energy scale of inflation is directly linked to
the value of the tensor-to-scalar ratio, by means of a detection of r we would obtain a hint of the the
physics beyond the Standard Model of Particle Physics and the precise indication of the energy regime
of such new physics. Indeed, the primordial GW are the object of a growing experimental effort, and
their detection will be a major goal for Cosmology in the forthcoming decades.

The main observational signature of the inflationary GW background is a curl-like pattern (B-
mode) in the CMB. A number of, present or forthcoming, ground-based or baloon-borne experiments,
are specifically aimed to B-mode detection. Unfortunately, the B-modes measured by BICEP2 [14]
did not point to any inflationary signal, but several next-generation CMB space missions have been
proposed in recent years with the specific goal of B-mode detection such as COrE [15] or PRISM [16],
and more recently LiteBIRD (https://www.isas.jaxa.jp/en/missions/spacecraft/future/litebird.html).
Finally, we have the possibility of a future direct detection, by experiments such as aLIGO [17], or
eLISA [18], especially if some inflationary models produced a blue-tilted primordial tensor spectrum [3].

In this thesis we will focus also on another type of GW: those generated by classical mechanisms
during reheating after inflation. By investigating GW we cannot neglect this stage. In fact, there are
many models for the reheating period which provide further GW production, besides the inflationary
stage. Moreover, it can be shown that reheating parameters are related to inflationary power-spectra
ones, so that the constraints on tensor perturbations are related to those on the reheating period.

In this work we are going to review all the most important inflation and reheating scenarios.
After the first three chapters we will present detailed models of reheating about each of its stages
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INTRODUCTION INTRODUCTION

(Preheating, Bubbly Stage, Scalar Wave Turbolence, Thermalization) investigated in the literature.
Moreover, we will review predictions about the production of GW, observable signatures on CMB and
the possibility of direct detection of GW from reheating epoch.

The Thesis is organized with the following plan:
In chapter 1 we review the standard single-field model of slow-roll inflation and we derive some of the
physical observables that can be seen and constrained from CMB.

In chapter 2 we overview the main inflationary models and a simple toy model of reheating is
presented.

In chapter 3 we explain how gravitational waves can put some constraints about the reheating
epoch. Moreover, we derive some quantities important for such a stage coming from CMB observables.

In chapter 4, we investigate about preheating, the first stage of reheating, exploiting the main
models discussed in the literature.

In chapter 5 we examinate the non-linear stage at the end of preheating. This stage is extremely
non-linear and complicated. In this chapter we show some lattice simulations performed in the liter-
ature.

In chapter 6 we discuss the turbolent and Thermalization stage after preheating.
In chapter 7 we present the results found in the literature about the gravitational waves generated

during the reheating stage.
In the conclusions we summarise the main points and the results of the thesis.
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Chapter 1

Inflation

The inflation theory not only provides an excellent way to solve flatness and horizon problems, but
also generates density perturbations as seeds for the large-scale structure in the universe. Quantum
fluctuations of the field that drives inflation (called inflaton) are streched on large scales by the
accelerated expansion. In the simplest version of the single-field scenario the fluctuations are “frozen”
after the scale of perturbations leaves the Hubble radius during inflation. Long after inflation ends,
the perturbations cross inside the Hubble radius again. Thus, inflation provides a mechanism for
the origin of the large-scale structures in the universe. An important prediction of inflation is that
density perturbations generally exhibit a tiny deviation from scale-invariance. This prediction can
be directly tested by the measurement of the temperature anisotropies in the Cosmic Microwave
Background (CMB). All data acquired until now have continued to confirm the main predictions of
the inflationary theory within observational errors [19].

In this first chapter we review the simple standard model of slow-roll inflation and we derive
observables and relations that will be used in the next chapters.

1.1 Standard Big-Bang Cosmology

The Standard Big-Bang Cosmology is based upon the cosmological principle which requires that
the universe is homogeneous and isotropic on averaging over large volumes.

A homogeneous and isotropic universe is described by the Friedmann-Robertson-Walker metric
(FRW):

ds2 = −dt2 + a2(t)
[ dr2

1−Kr2
+ r2(dθ2 + sin2 θdϕ2)

]
. (1.1)

Here a(t) is the scale factor with t being the cosmic time and (r, θ, ϕ) are comoving (spherical) coor-
dinates. The constant K is the spatial curvature where positive, zero, and negative values correspond
to closed, flat, and hyperbolic spatial sections, respectevely.

The evolution of the universe is dependent on the material within it. A key role is played by
the equation of state relating the energy density ρ(t) and the pressure P (t). Assuming a perfect and
barotropic fluid, we can describe it with the relation P = ωρ, with ω = 0 for non-relativistic matter
(dust) and ω = 1/3 for radiation. For example, in the universe we have P = 0 or P = 1/3 if it is
dominated by dust or radiation, respectevely.

The dynamical evolution of the universe is known once we solve the Einstein equations of General
Relativity:

Gµν = Rµν −
1

2
gµνR = 8πGTµν , (1.2)

where Gµν is the Einstein Tensor, Rµν , R, Tµν and G are the Ricci tensor, Ricci scalar, energy-
momentum tensor and gravitational constant, respectively. The energy-momentum tensor Tµν de-
scribes the perfect fluid with density energy ρ and isotropic pressure P that fills the universe. The
Planck energy, Mpl = 1.2211 × 1019 GeV, is related to G through the relation Mpl = (ℏc5/G)1/2.
Hereafter we use the units ℏ = c = 1.
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1.2. STANDARD COSMOLOGY AND INFLATION CHAPTER 1. INFLATION

From the Einstein equations (1.2) for the background FRW metric (1.1) we obtain the Friedmann
equations:

H2 =
8πG

3
ρ− K

a2
, (1.3)

ä

a
= −4πG

3
(ρ+ 3P ), (1.4)

where the dots denote the derivative with respect to t, and H = ȧ/a is the Hubble expansion rate.
Combining these relations we obtain the energy conservation equation

ρ̇+ 3H(ρ+ P ) = 0, (1.5)

which is known as the continuity or fluid equation.
The Friedmann equation (1.3) can be rewritten as

Ω− 1 =
K

a2H2
, (1.6)

with

Ω =
ρ

ρc
, ρc =

3H2

8πG
, (1.7)

where the density parameter Ω is the ratio of the energy density to the critical density ρc. When the
spatial geometry is flat (K=0, Ω=1) the solution for the equations (1.3) and (1.4) are a ∝ t1/2 (ρ ∝
a−4) for the radiation dominated era, while a ∝ t2/3 (ρ ∝ a−3) for dust dominated era. Thus, in the
case of radiation and matter dominated era we obtain a decelerate expansion (ä < 0) of the universe.

1.2 Standard Cosmology and Inflation

In this section we briefly review the problems with the standard cosmology and how they are solved
by the idea of inflation [1], [20], [19].

Flatness problem

In the standard Big-Bang theory, with ä < 0, the a2H2(= ȧ2) term in (1.6) always deacreases.
This means that Ω tends to evolve away from unity with the expansion of the universe. Howewer,
since present observations suggest that Ω is within a few percent of unity today, Ω is forced to be much
closer to unity in the past. For example, we require |Ω−1| < O(10−16) at the epoch of nucleosynthesis
and |Ω − 1| < O(10−64) at the Planck epoch [1]. This appears an extreme and innatural fine-tuning
of initial conditions. Unless initial conditions are chosen very accurately, the universe either collapses
too soon, or expands too quickly before the structures can be formed. This is the so-called flatness
problem.

Horizon problem

Consider a comoving wavelength λ and the corresponding physical wavelength aλ, which at some
time is inside the Hubble radius H−1 (i.e. aλ ≤ H−1). The standard Big-Bang Cosmology is char-
acterized by the cosmic evolution of a ∝ tn with 0 < n < 1. In this case the physical wavelength
grows as aλ ∝ tn, whereas the Hubble radius evolves as H−1 ∝ t . Therefore, the physical wavelength
becomes much smaller than the Hubble radius at late times. This means that a causally connected
region can only be a small fraction of the Hubble radius.

For example, if we observe photons in the cosmic microwave background (CMB) which are last-
scattered at the time of decoupling, turns out that the causally connected regions on the surface of
last scattering corresponds to an angle of order 1°. This appears to be in contrast with observations
of the CMB, which has the same temperature to high precision in all directions on the sky. There is
no way to establish thermal equilibrium if these points were never been in causal contact before the
last scattering. This is the so-called horizon problem .

2



CHAPTER 1. INFLATION 1.2. STANDARD COSMOLOGY AND INFLATION

Large-scale structure

Experiments which observe temperature anisotropies in the CMB find that the amplitude of the
anisotopies is small, with power spectrum close to scale-invariance on large scales. It is impossible to
generate such fluctuations via causal processes in a FRW metric in the time between the Big-Bang
and the last scattering.

Relic density problem

In Particle Physics the standard paradigm to study the fundamental interactions is the Spontaneous
Symmetry Breaking (SSB) of gauge symmetries.

In the early universe the breaking of such symmetries leads to the production of many unwanted
relics such as monopoles, cosmic strings, and other topological defects [21]. For example, any grand
unified theory based on a simple Lie group that includes the U(1) of electromagnetism must produce
monopoles. String theories also predict supersymmetric particles such as gravitinos, Kaluza-Klein
particles, and moduli fields.

If these massive particles exist in the early stages of the universe, and are stable (or sufficiently
long-lived), they could become the dominant matter in the early universe depending on their number
density, contradicting a variety of observation such as those of the light element abundances. This
problem is known as the relic density problem.

The idea of inflation

The problems in the standard Big-Bang Cosmology lie in the fact that the universe always exhibits
decelerated expansion. Instead, let us assume the existence of a stage in the early universe with an
accelerated expansion:

ä > 0. (1.8)

From the relation (1.4), this gives the condition

ρ+ 3P < 0, (1.9)

and from the equation of state P = ωρ we obtain

ω < −1

3
. (1.10)

The condition (1.8) essentialy means that ȧ (= aH) increases during inflation, and hence that the
comoving Hubble radius (aH)−1 decreases in the inflationary phase.

Flatness problem

Since the a2H2 term in (1.6) increases during inflation, Ω is rapidly driven towards unity. After
the inflationary period ends, the evolution of the universe is followed by the conventional Big-Bang
theory, and |Ω − 1| begins to increase again. As long as the inflationary expansion lasts sufficiently
long and drives Ω very close to one, Ω will remain close to unity even in the present epoch.

Horizon problem

Since the scale factor evolves approximately as a ∝ tn with n > 1 during inflation, the physical
wavelength, aλ, grows faster than the Hubble radius, H−1(∝ t). Therefore, physical wavelengths are
pushed outside the Hubble radius during inflation. Causally connected regions then can be much
larger than the Hubble radius, potentially solving the horizon problem. A detailed computation shows
this is achieved when the universe expands at least about e70 times during inflation, or 70 e-folds of
expansion [1].

3
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Large-scale structure

The inflationary period leads to perturbations of the scalar field that drives inflation, and then of
the energy density of the universe. In the early stage of inflation, the scales of these perturbations
are well within the Hubble radius and causal physics can work generating small quantum fluctuations.
During the later stages, these scales are pushed outside the Hubble radius (i.e. the first Hubble
radius crossing). Fluctuations of the scalar field become over-damped on long-wavelengths and the
perturbations can be described as classical on these large scales. After the inflationary period, these
scales of perturbations cross inside the Hubble radius again (i.e. the second Hubble radius crossing).

The small perturbations imprinted during inflation have amplitudes determined by the Hubble rate,
which is approximatevely constant during this period, and hence leads to an almost scale-invariant
spectrum with constant amplitude on different scales. In this way inflation naturally provides a causal
mechanism to generate the seeds of density perturbations observed in the CMB anisotropies.

Relic density problem

During the inflationary phase the energy density of massive particles scales as a−3, much faster
than the energy density of the universe (considering a ∝ tn with n > 1, we have H ∝ t−1 ∝ a−1/n that
leads ρ ∝ a−2/n). Thus, these particles are red-shifted away during inflation, solving the monopole
problem.

1.3 The Inflaton Equation

As we have seen from (1.10), a period of inflation is possible if the pressure P is negative with

P < −ρ
3
. (1.11)

In the special case in which ω = −1 (P = −ρ), we have a period in the hystory of the universe called
de-Sitter stage. Such a period can be obtained inserting a cosmological constant Λ in the Einstein
equations:

Rµν −
1

2
gµνR = 8πGTµν − Λgµν . (1.12)

Considering the energy continuity equation (1.5) and the first Friedmann equation (1.3), we see that
in a de-Sitter phase ρ = constant and H = Hinf ≃ constant (we neglect the curvature K which is soon
redshifted away as a−2). Solving the second Friedmann equation (1.4), we obtain an exponentially
growing of the scale factor, i.e.

a(t) = aie
Hinf (t−ti), (1.13)

where ti is the time at which inflation starts.
The cosmological constant can be interpreted as the energy of the quantum vacuum state of the

system, i.e. the vacuum energy density contributed by any particle species. Even if it is simple to
have such exponentially expansion of the universe, the inflation must end at some point. Thus, there
must be some dynamics regulating such a system. We can obtain this if we consider a scalar field,
called the inflaton, which dominates the energy in this epoch and leads the expansion.

Consider, in full generality, the total action

STOT = SHE + Sϕ + Sm =
1

16πG

∫
d4x

√
−g(R+ L[ϕ, ∂µϕ] + Lmatter), (1.14)

where g is the determinant of the metric tensor gµν , SHE is the Hilbert-Einstein action, Sϕ is the
inflaton scalar field action, and Sm is the action of the rest of the matter besides the inflaton (fermions,
gauge fields, other scalars...). We will neglect Sm because, in general, it is subdominant at early times.

The action for a minimally-coupled real scalar field ϕ is given by

S =

∫
d4x

√
−gL =

[
− 1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
, (1.15)
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where V (ϕ) specifies the scalar field potential and can have different forms depending on the model.
For example, it can be a simple quadratic potential V (ϕ) = 1

2m
2ϕ2, with m the mass of the particle

associated to ϕ, or can describes self interactions V (ϕ) = λ
4ϕ

4. V (ϕ) can represent also interactions of
ϕ with other fields and contains quantum radiative corrections.

To characterize the evolution of the scalar field in an expanding universe we can associate to ϕ its
stress-energy momentum Tµν , which in General Relativity is derived from a generic lagrangian by

Tµν =
−2√
−g

δS

δgµν
=

−2√
−g

[
− ∂(

√
−gL)

∂gµν
+ ∂α

∂(
√
−gL)

∂∂αgµν
+ ...

]
. (1.16)

Assuming a minimally-coupled field (i.e. doesn’t involve direct coupling with gravity, e.g. εϕ2R terms),
the stress-energy tensor assumes the form

T ϕµν = −2
∂Lϕ
∂gµν

+ gµνLϕ = ∂µϕ∂νϕ+ gµν

[
− 1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
. (1.17)

The equation of motion for ϕ is derived by varying the action (1.15) with respect to ϕ, obtaining
the Klein-Gordon equation

□ϕ =
∂V

∂ϕ
, (1.18)

where □ is the covariant D’Alembert operator

□ϕ =
1√
−g

∂ν

(√
−ggµν∂µϕ

)
. (1.19)

In a FRW universe described by the metric (1.1), the evolution equation for ϕ becomes

ϕ̈+ 3Hϕ̇− ∇2ϕ

a2
+ V ′(ϕ) = 0, (1.20)

where V ′(ϕ) = dV/dϕ. Through 3Hϕ̇ the field ”feels” a friction due to the expansion of the universe,
which will play a crucial role.

We can now express the inflaton field ϕ as the sum of the classical background value and the field
fluctuations

ϕ(t,x) = ϕ0(t) + δϕ(t,x), (1.21)

where ϕ0(t) = < 0|ϕ(t,x)|0 > is the classical field, that is the expectation value of the inflaton field
on the initial isotropic and homogeneous state, while δϕ(t,x) represents the quantum fluctuations
around ϕ0(t). We will consider first the background dynamics, and then the evolution of quantum
perturbations during inflation. This separation is justified by the fact that quantum fluctuations are
much smaller than the classical value, and therefore negligible when one looks the classical evolution.

1.4 Classical Dynamics

The inflaton field ϕ(t) behaves like a perfect flud with background energy density and pressure
given by

T 0
0 = −

[
1

2
ϕ̇20(t) + V (ϕ0)

]
= −ρϕ(t) (1.22)

T ij = −

[
1

2
ϕ̇20(t)− V (ϕ0)

]
δij = δijPϕ(t),

where ρϕ(t) is the energy density and Pϕ(t) the isotropic pressure. Tµν is diagonal, and the spatial
part is the same in every direction as a consequence of isotropy and homogeneity resulting in a tensor
typical of perfect fluids. Hereafter we don’t insert the subscript “0” when we denote the background
field. Therefore, if

V (ϕ) ≫ 1

2
ϕ̇2, (1.23)
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Figure 1.1: Example of inflationary potential with a flat region. After the slow-roll of the inflaton field ϕ, the
reheating phase starts. The field oscillates around the minimum of the potential and decays in other particles.
∆ϕ indicates the inflaton excursion between the horizon exit of a comoving scale and the end of inflation [3].

we see that
Pϕ ≃ −ρϕ, (1.24)

which gives rise to a quasi-de-Sitter phase.
From this simple calculation we realize that a scalar field whose energy is dominant in the universe,

and whose potential energy dominates over the kinetic term, gives inflation. The condition (1.23) is
called slow-roll regime, during which V (ϕ) ≃ constant provides accelerated expansion driven by the
vacuum energy density of ϕ, which mimics an effective cosmological constant Λ.

The ordinary matter fields, in the form of a radiation fluid, and the spatial curvature K are usually
neglected during inflation because their contribution to the energy density is redshifted away during
the accelerated expansion.

1.4.1 Slow-roll parameters

We quantify now under which circumstances a scalar field may give rise to a period of inflation.
Considering the background scalar field ϕ (homogeneous and isotropic), the equation of motion (1.20)
becomes

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0. (1.25)

If the slow-roll condition ϕ2 ≪ V (ϕ) is satisfied, the scalar field slowly rolls down its potential. Such
a period can be achieved if the inflaton field is in a region where the potential is sufficiently flat. Since
the potential is flat we may also expect that ϕ̈ is negligible as well. We assume that this is true and
we quantify now this condition.

Requiring the slow-roll condition, the Friedmann equation (1.3) becomes

H2 ≃ 8πG

3
V (ϕ), (1.26)

where we assumed that the inflaton field dominates the energy density of the universe. Moreover,
assuming also ϕ̈ negligible, we obtain the new equation of motion

3Hϕ̇ = −V ′(ϕ). (1.27)

Using (1.27) and the slow-roll condition (1.23), we obtain

(V ′)2

V
≪ H2, (1.28)

and considering ϕ̈≪ 3Hϕ̇,
V ′′ ≪ H2. (1.29)

6
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These two conditions represent the flatness conditions of the potential, which are conveniently parametrized
in terms of the so-called slow-roll parameters. The slow-roll parameters quantify the slow-roll regime
dynamics in order to give predictions of specific models and to compare them with others and with
observations.

Firstly, we define the ϵ parameter

ϵ = − Ḣ

H2
, (1.30)

which describes how much H changes during inflation. To relate this variable to the slow-roll relation
ϕ̇2 ≪ V (ϕ), let us derive the first Friedmann equation (neglecting the curvature),

H2 =
8πG

3
ρϕ =

8πG

3

(1
2
ϕ̇2 + V (ϕ)

)
, (1.31)

obtaining

2HḢ =
8πG

3

(
ϕ̇ϕ̈+ V ′(ϕ)ϕ̇

)
. (1.32)

Now, inserting the equation of motion of the inflaton ϕ̈ = −3Hϕ̇− V ′ in (1.32), we obtain

Ḣ = −4πGϕ̇2. (1.33)

Finally, using H2 = (8πG/3)V (ϕ),

ϵ = − Ḣ

H2
= 4πG

ϕ̇2

H2
≃ 3

2

ϕ̇2

V (ϕ)
, (1.34)

where the last equality si valid only in the slow-roll regime. Therefore, we can interpret ϵ as the ratio
between the kinetic energy and the potential. Hence, assuming V (ϕ) ≫ ϕ̇2, we obtain

ϵ≪ 1. (1.35)

Moreover, exploiting Hϕ̇ ≃ −V ′, we can write

ϵ = 4πG
ϕ̇2

H2
≃ 1

16πG

(V ′

V

)2
, (1.36)

which means that if ϵ≪ 1 , V ′ is small and the potential is flat. Thus, ϵ quantifies the flatness of the
potential.

Considering the second slow-roll condition ϕ̈≪ 3Hϕ̇, we can define the second slow-roll parameter
as

η = − ϕ̈

Hϕ̇
≪ 1. (1.37)

As we have done for ϵ we can relate this expression to the potential. To do this we can derive
ϕ̇ ≃ −V ′/3H, obtaining

ϕ̈ = −V
′′ϕ̇

3H
+

Ḣ

3H2
V ′. (1.38)

Plugging this into the definition of η we obtain

η ≃ V ′′

3H2
− Ḣ

H2

V ′

3Hϕ̇
≃ ηV − ϵ, (1.39)

where V ′

3Hϕ̇
≃ −1, and we have defined ηV = V ′′

3H2 . Thus, again, having η ≪ 1 means to have a flat

potential.
A successful period of inflation requires that ϵ, |η| ≪ 1. Moreover, exists a hierarchy of slow-roll

parameters: for example, one can define the slow-roll parameter related to the third derivative of the
potential

ξ2 =
( 1

4πG

)2(V ′V ′′′

V 2

)
, (1.40)
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which is a second order slow-roll parameter. The third derivative of the potential corresponds to an
eventual self-interaction of the inflaton field. One can use these parameters with the data collected
from observations to reconstruct the shape of the potential. At first-order in the slow-roll parameters
ϵ and η can be considered constant, since the potential is very flat and their derivatives are higher
orders in these parameters. In fact, it is easy to see that ϵ̇, η̇ = O(ϵ2, η2).

If we write ϵ = −Ḣ/H2, we can notice that

ä = ˙̇a = ˙(aH) = ȧH + aḢ = aH2
(
1 +

Ḣ

H2

)
= aH2(1− ϵ). (1.41)

Thus, inflation can be attained only if ϵ < 1. As soon as this condition fails, inflation ends.
This condition alone can be sufficient to realise inflation. However, having also η ≪ 1 assure that

inflation lasts for long enough. In fact, η = − ϕ̈

Hϕ̇
≪ 1 both ensures that inflation is an attractor

solution and that ϕ̇ remains constant and small for long enough. In other words, η controls the
duration of inflation.

Despite the semplicity of the inflationary theory, the number of inflationary models that have been
proposed so far is enormous, differing for the kind of potential and for the underlying particle phyisics
theory. In the second chapter we will discuss about the most important models, but we just mention
here that the main classification in connection with the observations is the one in which the single-field
inflationary models are divided into three broad groups as “small field”, “large field” (or chaotic) and
“hybrid” type, according to the region occupied in the (ϵ - η) space by a given inflationary potential.

1.5 Inflation and Cosmological Perturbations

The description of the universe as a perfectly homogeneous and isotropic FRW model is an ide-
alitation. Actually, we are interested in deviations from homogeneity and isotropy that enable us to
characterise different models.

So far we have considered only the dynamics of a homogenous scalar field driving inflation. But
to investigate inflation models in more detail, and to test theoretical predictions against cosmological
observations, we need to consider inhomogeneous perturbations.

Besides the background inflationary dynamics we have the evolution of quantum fluctuactions of
the inflaton field δϕ(t,x). In the inflationary model there are primordial energy density perturbations,
associated with these vacuum fluctuations, which survive after inflation and are the origin of all the
structures in the universe.

Once the universe became matter dominated (z ≃ 3200), primeval density inhomogeneites (δρ/ρ ≃
10−5) were amplified by gravity and grew into the structures we see today. The existence of these
inhomogeneities was in fact confirmed by the COBE discovery of CMB anisotropies.

In this section we summarise how the quantum fluctuations of a generic scalar field evolve during
an inflationary stage. For more details see [1], [2], [20].

1.5.1 Quantum Fluctuations

Consider for semplicity a scalar field ϕ (the inflaton) with an effective potential V (ϕ) in a pure
de-Sitter stage, during which the Hubble rate H is constant. We first split the field ϕ(τ,x) in the
homogeoneous classical part, ϕ(τ), and its fluctuations δϕ(τ,x),

ϕ(τ,x) = ϕ(τ) + δϕ(τ,x) (1.42)

where τ is the conformal time, related to the cosmic time t through dτ = dt/a(t).
We consider the Fourier transform of the fluctuations

δϕ(τ,x) =
1

(2π)3

∫
d3keik·xδϕ(τ, k). (1.43)

Redefining the scalar field as
δ̃ϕ = aδϕ, (1.44)
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we can promote it to an operator, which can be decomposed as

δ̃ϕ(τ,x) =

∫
d3k

(2π)3/2
[
uk(τ)ake

ik·x + u∗k(τ)a
†
ke

−ik·x], (1.45)

where we have introduced the creation and annihilation operators ak and a†k. The creation and

annihilation operators for ϕ̃ satisfy the standard commutation relations[
ak, ak′ ] = 0

[
ak, a

†
k′ ] = δ(3)(k− k′), (1.46)

and the modes uk(τ) are normalized, so that they satisfy the condition

u∗ku
′
k − uku

′∗
k = −i, (1.47)

where primes denote derivatives with respect to the conformal time τ .
Expanding the equation of motion for the scalar field (1.20) in the fluctuations δϕ(τ,x) in Fourier

space, we obtain

u′′k(τ) +
[
k2 − a′′

a
+
∂2V

∂ϕ2
a2
]
uk(τ) = 0, (1.48)

where m2
ϕ = ∂2V/∂ϕ2 is the effective mass of the scalar field. This equation describes an harmonic

oscillator with a frequency changing in time, due to the expansion of the universe.
The modes uk(τ) at very short distances must reproduce the form for the ordinary flat space-time

quantum field theory. Thus, well within the horizon in the limit k/aH → ∞, the modes should
approach plane waves of the form

uk(τ) →
1√
2k
e−ikτ . (1.49)

Let us consider a special case where the inflaton is massless in a pure de-Sitter universe (mϕ =
0, H = constant). In this situation, the equation (1.48) becomes

u′′k(τ) +
[
k2 − a′′

a

]
uk(τ) = 0. (1.50)

Using adτ = dt and a ∝ eHt in a de-Sitter stage, we obtain

a′′

a
=

2

τ2
= 2a2H2 =

2

r2H
, (1.51)

where rH is the comoving Hubble radius.
Therefore, we can study (1.50) in two different regimes: the sub-horizon regime where λphys ≪

H−1, k2 ≫ a2H2 ≃ a′′/a, and the super-horizon regime where λphys ≫ H−1, k2 ≪ a2H2 ≃ a′′/a.
In the sub-horizon case the equation of motion reduces to the wave equation

u′′k + k2uk = 0 → uk(τ) =
1√
2k
e−ikτ , (1.52)

and the field reads

δϕk = uk/a =
1

a

1√
2k
e−ikτ , (1.53)

from which we can notice that it has a decreasing amplitude |δϕ| = 1/a
√
2k, which depends on the

inverse of a.
In the super-horizon regime we obtain the equation

u′′k +
a′′

a
uk = 0. (1.54)

This equation is solved by
uk(τ) = B(k)a(τ) +A(k)a−2(τ), (1.55)
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Figure 1.2: A plot of ln(H−1/a) versus ln a shows the different epochs in the e-foldings calculation. The solid
curve shows the evolution from the initial horizon crossing to the present, with the dashed lines showing likely
extrapolations into the past and future. The condition for inflation is that ln(H−1/a) be decreasing. During
reheating and matter domination H−1/a ∝ a1/2 , while during radiation domination H−1/a ∝ a. The recent
domination by dark energy has initiated a new era of inflation. The horizontal dotted line indicates the present
horizon scale. The number of e-foldings of inflation is the horizontal distance between the time when H−1/a
first crosses that value and the end of inflation [23].

where A, B are integration constants in τ which depends on k. In terms of the field we get

δϕk = B(k) +A(k)a−3(τ) ≃ B(k) = constant, (1.56)

where we have neglected the decaying term which gets washed away by inflation.

We can fix the amplitude of the growing mode, B(k), by matching the (absolute value of) this
solution to the plane wave solution (1.53) when the fluctuation with wavenumber k leaves the horizon
(k = aH). This gives

|B(k)| = 1

a
√
2k

=
H√
2k3

. (1.57)

Therefore, the quantum fluctuations of the original scalar field ϕ on super-horizon scales are constant,

|δϕk| =
|uk|
a

=
H√
2k3

. (1.58)

From this simple computation we can see that inflation is able to provide a mechanism to generate
density perturbations (and gravitational waves). To understand what is going on, a key ingredient is
the decreasing with time of the comoving Hubble horizon (aH)−1 during inflation. The wavelength of
a quantum fluctuation in the inflaton field soon exceeds the Hubble radius. The quantum fluctuations
arise on scales which are much smaller than the comoving Hubble radius, that is the scale beyond
which causal processes cannot operate. On small scales we can use the usual flat space quantum field
theory to describe the scalar field vacuum fluctuations. However, the inflationary expansion stretches
the wavelength of these fluctuations outside the horizon. The quantum fluctuations of the inflaton are
amplified (and frozen) on super-horizon scales, resulting in a net number of scalar field particles.

On large scales the perturbations just follow a classical evolution. Since microscopic physics does
not affect the evolution of fluctuations when their wavelengths are outside the horizon, the amplitude
of these inhomogeneites are ”frozen” and fixed at some nonzero value δϕ at the horizon crossing. The
amplitude of the fluctuations on super-horizon scales then remains almost unchanged for a very long
time, whereas the wavelength grows exponentially. Thus, these frozen fluctuations of the inflaton
are equivalent to the appearance of a classical field δϕ that does not vanish after having averaged
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over some macroscopic interval of time. Moreover, the same mechanism also generates a stochastic
background of gravitational waves.

The quantum fluctuations of the inflaton generate also fluctuations in the space-time metric, giving
rise to perturbations of the curvature R. On super-horizon scales curvature fluctuations are frozen
in and considered as classical. When the wavelength of these perturbations re-enters the horizon, in
the radiation or matter dominated epoch, the curvature perturbations of the space-time give rise to
matter (and temperature) perturbations δρ via the Poisson equation. These fluctuations will then
start growing, giving rise to the structure we observe today (Fig. 1.2 from [23]).

1.5.2 Power spectrum

To characterise the properties of a perturbation field we introduce the power spectrum. Consider
a random field f(t,x) that can be expanded in Fourier space as

f(t,x) =

∫
d3k

(2π)3/2
eik·xfk(t). (1.59)

The power spectrum Pf (k) can be defined by means the relation

〈
fk1f

∗
k2

〉
≡ 2π2

k3
Pf (k)δ

(3)(k1 − k2), (1.60)

where the angled brackets denote the ensemble average. The power spectrum measures the amplitude
of the fluctuations at a given scale k. Indeed, if we consider the last definition, the mean square value
of f(t,x) in real space is 〈

f2(t,x)
〉
=

∫
dk

k
Pf (k). (1.61)

To describe the slope of the power spectrum we define the spectral index nf (k),

nf (k)− 1 ≡
d lnPf
d ln k

. (1.62)

For the inflaton field quantum fluctuations |δϕk| = |uk|
a ,

〈
δϕk1δϕ

∗
k2

〉
=

2π2

k3
|δϕk1 |2δ(3)(k1 − k2). (1.63)

Therefore,

Pδϕ(k) =
k3

2π2
|δϕk|2, (1.64)

with δϕk ≡ uk/a.

1.5.3 Exact solution

Now we briefly recap how to solve exactly the equation of motion for the modes uk (1.48). This
equation can be rewritten in the form of Bessel equation,

u′′k(τ) +
[
k2 − ν2 − 1/4

τ2

]
uk(τ) = 0. (1.65)

In this form it is equivalent to the Bessel equation

z2y′′(z) + zy′(z) + (z2 − ν2)y(z) = 0, (1.66)

whose solutions are known to be of the form

uk(τ) =
√
−τ
[
c1(k)H

(1)
ν (−kτ) + c2(k)H

(2)
ν (−kτ)], (1.67)
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where H
(1)
ν and H

(2)
ν are the Henkel functions of first and second kind, respectively. The parameter

ν can be expressed in terms of the slow roll parameters. In the case of a quasi de-Sitter universe and
(little) massive scalar field we have the relation 3/2− ν ≃ ηV − ϵ. The requirement of a light mass is
due to the fact that if m2

ϕ ≥ H2, δϕk remains in the vacuum state and fluctuations get suppressed.
From now we omit the subscript “V ” in η.

If we impose that in the ultraviolet regime k ≫ aH (−kτ ≫ 1), the solution matches the plane-
wave solution e−ikτ/

√
2k that we expect in flat space-time. Knowing the asymptotic beheaviour of

the Hankel functions on sub-horizon scales we obtain

H(1)
ν (x≫ 1) ∼

√
2

πx
ei(x−

π
2
ν−π

4
) H(2)

ν (x≫ 1) ∼
√

2

πx
e−i(x−

π
2
ν−π

4
), (1.68)

and on super-horizon scales we have

H((1)
ν (x≪ 1) ∼

√
2

π
e−i

π
2 2ν−

3
2

Γ(ν)

Γ(3/2)
x−ν . (1.69)

We can set in (1.67) c2(k) = 0 and c1(k) =
√
π
2 e

i(ν+ 1
2
)π
2 .

We finally obtain for the fluctuations |δϕk|

|δϕk| =
H√
2k3

( k

aH

) 3
2
−ν
, (1.70)

yielding for the power spectrum (1.64)

Pδϕ(k) =
(H
2π

)2( k

aH

)3−2ν
, (1.71)

where ν is given by 3/2− ν ≃ ηV − ϵ.
In the power spectrum just computed there is an inconsistency. In the computation the scalar field

is perturbed on a unperturbed spacetime. Thus, we should also include perturbations of the metric to
have a correct result. To do so, we need to consider scalar perturbations of the metric and use gauge
invariant quantities. But before doing that, we are going to consider the tensorial perturbations of
the metric: the gravitational waves.

1.5.4 Gravitational waves

Inflation predicts the existence of a scale invariant spectrum of primordial gravitational waves,
sourced by the same quantum fluctuations described in the previous sections. Gravitational waves are
only weakly coupled to matter fields, and move freely through the universe from the moment they are
produced.

The perturbations of the inflaton field will induce perturbations of the metric. This leads to a
stochastic background of gravitational waves (GW), which are represented by tensor perturbations
of the metric. A stochastic background of waves is a continuos set of waves, fully characterized only
by their global statistic properties. It consists of a signal coming from every direction in the sky. It
is different from the signals coming from astrophysical sources (merging neutron stars, binary black
holes...), which come from a specific direction in the sky. In this section we explain how inflation can
generate this stochastic background.

We start considering the perturbed spatially flat FLRW metric, where we neglect scalar and vector
perturbations,

ds2 = −dt2 + a2(t)[δij + hij ]dxidxj , (1.72)

with hij , in the so called Transvere-Traceless gauge (TT gauge), are such that

hij = hji hii = 0 hij|i = 0. (1.73)

At linear level Einstein’s equations for hij are

ḧij + 3Hḣij −
∇2hij
a2

= ΠTTij , (1.74)

12
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where ΠTTij is a tensor, with the same properties of hij , which is a source term coming from possible
anisotropic stress of the matter source. It is related to the last term of the stress-energy tensor of
a perfect fluid Tµν = (ρ + P )uµuν + Pgµν + Πµν , called anisotropic stress tensor, which can get a
contribution in the case of astrophysical sources when we have a non vanishing quadrupole moment.
We will see that this term is also important to describe the gravitational waves emitted in the reheating
phase. However, at first order, it is vanishing during single field inflation and the equation of hij
becomes

ḧij + 3Hḣij −
∇2hij
a2

= 0, (1.75)

which is similar to the equation for the quantum vacuum fluctuation in the case of a massless scalar
field. Since there is no source term, GW are the intrinsic quantum fluctuations of the metric. Moreover,
they provide a smoking gun of inflation and would be the first ever detected evidence of quantum
gravity.

The equation (1.75) describes the evolution of the tensor hij , which has 2 independent DOF,
corresponding to the two possible polarizations of GW λ = (+,×). Such object can be decomposed
in Fourier space as

hij(τ,x) =
∑
+×

∫
d3k

(2π)3
eik·xhλ(k, τ)ϵ

λ
ij(k), (1.76)

where ϵλij(k) are the polarization tensors, which satisfy

ϵij = ϵji ϵii = 0 kiϵij(k) = 0, (1.77)

with normalitation conditions

ϵλij(k)ϵ
∗ij
λ′ (k) = δλλ′

(
ϵλij(k)

)∗
= ϵλij(−k). (1.78)

Considering a plane monochromatic gravitational wave propagating in the ẑ direction in Fourier space
we have

ϵ+ij =

(
1 0
0 −1

)
ϵ×ij =

(
0 1
1 0

)
(1.79)

hij(k, τ) = h+(k, τ)ϵ
+
ij(k) + h×(k, τ)ϵ

×
ij(k), (1.80)

and the tensor hij satisfies

ḧλ + 3Hḣλ + k2
hλ
a2

= 0, (1.81)

which is the same for each polarization state.
On super-horizon scales, k ≪ aH, the solution for h+,× is given by a constant plus a decaying

mode. Using the canonical normalitation

|h+,×| =
√
32πG|ϕ+,×| =

√
32πG

H√
2k3

( k

aH

)−ϵ
. (1.82)

On sub horizon scales (k ≫ aH) we have h+,× = e−ikτ

a(τ) .
For the power spectrum we obtain

PT (k) =
k3

2π2
⟨h∗ijhij⟩ =

16

M2
pl

(H
2π

)2( k

aH

)−2ϵ
, (1.83)

where H indicates the Hubble rate during inflation and we have summed the two polarizations (+,×).
Therefore we can define the spectral index of inflationary gravitational waves as

nT =
d lnPT
d ln k

= −2ϵ. (1.84)

In the simplest models one has ϵ > 0, so nT is always red-tilted (on smaller scales the amplitude
decreases). Since during inflation PT ∼ H2 and H2 ≃ V

M2
pl
, detecting the tensor spectrum would give

us the energy scale of inflation (Einf ≃ V 1/4, see later).

13
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1.5.5 Primordial curvature perturbation

In the standard slow-roll inflationary models the fluctuations of the inflaton field are responsible
for the curvature perturbations. As said, they are (nearly) frozen on super-horizon scales. When they
re-enters the horizon lead to pertubations of matter that give rise the structure we see today.

To characterise the scalar and curvature perturbations we need gauge invariant quantities. A
complete treatment of this argument is in [2]. Here we just summarise the main points.

Consider the perturbed FRWmetric at first order including only scalar perturbations and expressed
with the conformal time τ =

∫
dt/a(t)

ds2 = a2(τ)
[
− (1 + 2Ψ)dτ2 + (1− 2Φ)δijdxidxj

]
. (1.85)

The first gauge invariant quantity we consider is

−ζ ≡ Φ̂ +H
δρ

ρ′
, (1.86)

where H ≡ a′/a is the Hubble parameter in conformal time and the prime denote differentiation w.r.t
it. Φ̂ is referred to as the curvature perturbation. This quantity, however, is not gauge invariant since
it changes under a transformation on costant time hyper-surfaces τ → τ + α. Instead, combining
the Φ̂ transformation and the gauge transformation for scalars comes out that ζ in (1.86) is gauge
invariant. This quantity is called gauge-invariant curvature perturbation of the uniform energy-density
hypersurfaces.

To obtain the ζ power spectrum consider another gauge invariant quantity called curvature per-
turbation on comoving hyper-surfaces. In the case of a stress-energy tensor of a single scalar field it
reads

R ≡ Φ̂ +
H

ϕ′
δϕ. (1.87)

The comoving curvature perturbation R is related to the curvature perturbation ζ by

−ζ = R+
2ρ

9(ρ+ P )

( k

aH

)2
Ψ, (1.88)

where Ψ is the perturbation that appears in the metric. From this relation we obtain that on large
scales R ≃ −ζ.

In the previous sections we obtained the power spectrum of the primordial fluctuations of the
inflaton (1.71). However, we computed it without taking into account the perturbation of the metric.
To do so, we define a new gauge-invariant quantity called Sasaki-Mukhanov variable,

Qϕ ≡ δϕ+
ϕ′

H
Φ. (1.89)

Introducing the field Q̃ϕ = aQϕ the Klein-Gordon equation reads [2]

Q̃′′ +
(
k2 − a′′

a
+M2

ϕa
2
)
Q̃ϕ = 0, (1.90)

where

M2
ϕ =

∂2V

∂ϕ2
− 8πG

a3

(a3
H
ϕ̇2
)

(1.91)

is an effective mass of the inflaton field. At lowest orders in the slow-roll parameters the latter
expression reduces to M2

ϕ/H
2 = 3η−6ϵ. Solving (1.90) by means of the Hankel functions, as we did in

the previous sections, we obtain at super-horizon scales and at lowest order in the slow-roll parameters
the complete solution

|Qϕ(k)| =
H√
2k3

( k

aH

)3/2−ν
, (1.92)

where ν ≃ 3/2 + 3ϵ− η. This solution leads to a power spectrum

PQ =
(H
2π

)2( k

aH

)3−2ν
. (1.93)
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Now, returning to the gauge-invariant curvature perturbation R (1.87), we can easily express it in
function of the Sasaki-Mukhanov variable. Using (1.89) results

R =
HQϕ
ϕ′

=
HQϕ

ϕ̇
, (1.94)

where we have expressed R in terms of the cosmic time. Finally, using (1.93), we obtain the power
spectrum of the curvature perturbation R,

PR =
(H
ϕ̇

)2
PQ =

( H2

2πϕ̇

)2( k

aH

)3−2ν
≃
( H2

2πϕ̇

)2
∗
, (1.95)

where the asterisk denotes quantities evaluated at the epoch a given perturbation mode leaves the
horizon during inflation, that is k = aH. The last equation shows that the curvature perturbations
remains time-independent on super-horizon scales. In the uniform curvature gauge, where Φ = 0,
we have ζ ≃ −Hδρ/ρ′. So, we can connect the inflaton perturbations to observable quantities. The
solution obtained for ζ is valid throughout the different evolution eras of the universe until the mode
remains super horizon.

From (1.95) we can easily obtain the spectral index of the curvature perturbation (at lowest order
in the slow-roll approximation)

nR − 1 ≡ d lnPR

d ln k
= 3− 2ν = −6ϵ+ 2η. (1.96)

Inflationary models predict a power spectrum of density perturbations very close to 1. The specific
case in which ns = 1 is called Harrison-Zel’dovich spectrum, and means that the amplitude of the
inflaton pertubations does not depend on the cosmological scale.

The curvature mode is the quantity which allows to connect the primordial perturbations produced
during inflation to the observables. This result comes from the fact that in single-field slow roll models
the intrinsic entropy perturbation of the inflaton field is negligible on large scales. This result holds
also during the reheating phase after inflation [2].

1.5.6 Consistency relation

In the single-field models an important consistency relation holds. To derive it, we introduce the
tensor-to-scalar ratio

r(k∗) ≡
PT (k∗)

PS(k∗)
, (1.97)

that yields the amplitude of the GW with respect to that of the scalar perturbations at some pivot
scale k∗.

We can rewrite the power spectrum PR in (1.95) as function of the slow-roll parameters using the

fact that ϵ = −Ḣ/H2 = 4πGϕ̇2/H2, obtaining

PR(k) =
1

2M2
P ϵ

(H
2π

)2( k

aH

)nR−1
, (1.98)

that yields r = 16ϵ.
Furthermore, we have shown that a nearly scale-invariant spectrum of tensor modes is expected,

being nT = −2ϵ. Therefore, at the lowest order in the slow-roll parameters, one finds the consistency
relation

r = −8nT . (1.99)

This equality can be proved only with a measure of the tensor power spectrum (not only the amplitude,
but also its spectral index i.e. its shape).

Since a large spectral index would invalidate the consistency relation, it will be very hard to measure
any scale dependance of the tensors assuming the consistency relation valid. The current best bound
on r comes from the joint analysis of Planck and BICEP/Keck 2018, which yields r < 0.032 at 95%
C.L. for k∗ = 0.05 Mpc−1 [9].
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Finally, we can connect the energy scale of inflation to the tensor-to-scalar ration r. From H2 =
8πGV/3 = V/3M2

pl we can link the energy scale of inflation, at the time when the pivot scale leaves
the horizon, directly to the parameter ϵ using (1.98),

V = 24π2M4
plPRϵ = (3π2PR/2)M

4
plr. (1.100)

Thus, considering the scalar amplitude estimated by the Planck Collaboration [22], one gets the
following relation between the energy scale of inflation at the time when the pivot scale leaves the
Hubble radius, and the tensor-to-scalar ratio:

V = (1.88× 1016GeV )4
r

0.10
. (1.101)

Then we have a direct link between r and the energy scale of inflation.
In the next chapter we will overview the most important models of inflation and we will introduce

the important stage of reheating by means of a toy model. The reheating phase is the main focus
of this work since it leads to very interesting effects and physics. Moreover, the gravitational waves
generated by reheating are very different from those generated by inflation and could be detected by
future experiments providing an observational window of such period.
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Chapter 2

Inflation Zoology and Reheating

So far we have not discussed the form of the inflaton potential, V (ϕ). A simple model of inflation
was proposed by Guth in 1981 to solve the horizon and flatness problems discussed in the first chapter
[5]. In this model, called Old Inflation scenario, the inflaton is initially trapped in a metastable false
vacuum during inflation. Subsequently it moves towards the true vacuum via a first-order transition.
In this scenario inflation is then an exponential expansion of the universe in the supercooled false
vacuum state that makes the universe very big and very flat. However, as pointed out by Guth in the
paper, this type of inflation produces a random nucleation of bubbles that lead a highly inhomogeneous
universe.

This problem is solved by the New Inflation in 1981-1982 [25] . In this model, inflation may begin
either in the false vacuum, or in an unstable state at the top of the effective potential. Then the
inflaton field slowly rolls down to the minimun of the potential. However, the useful part of inflation
responsible for the homogeneity of the universe does not occur in the false vacuum state in this model.
Unfortunately, also this picture has problems. It works only if the effective potential of the field ϕ
has a very flat plateau near ϕ = 0, which is somewhat artificial. Moreover, in most versions of this
scenario the inflaton field has an extremelly small coupling constant, so it could not be in thermal
equilibrium with other matter fields.

However, in the beginning of the 80’s, on the basis of all available observations (CMB, abundance
of light elements) everybody believed that the universe was in a state of thermal equilibrium from
the very beginning and the stage of inflation was just an intermediate stage of the evolution of the
universe.

In the 1983 the Chaotic Inflation resolved all problems of old and new inflation [26]. According
to this scenario, inflation may begin even if there was no thermal equilibrium in the early universe
and it may occur in the scenarios with simplest quadratic potential. Moreover, it is not limited to
theories with polynomial potentials: chaotic inflation occurs in any theory where the potential has a
sufficiently flat region, which allows the existence of the slow-roll regime, as described in the previous
chapter. A review of the hystory of inflation can be found in [27].

The different kinds of single-field inflationary models can be classified in the following way. The
first class consists of the large field models, in which the initial value of the inflaton is large and it slowly
rolls down towards the potential minimum at smaller ϕ. Chaotic inflation is one of the representative
models of this class. The second class consists of the small fied models, in which the inflaton field is
small initially and slowly evolves toward the potential minimum at larger ϕ. An example of this type is
new inflation. The third class consists of the hybrid inflation models, in which inflation typically ends
by a phase transition triggered by the presence of a second scalar field. Several models of inflation can
involve a coupling with gauge fields or other scalar fields. These models are very interesting because
they can give rise to a source of gravitational waves and curvature perturbations [3].

The main reheating models discussed in the literature are concentrated on the end of inflation in
the chaotic and hybrid scenarios. Thus, in the first part of this chapter we review these important
models. Beside that, we discuss also the Guth and natural inflation models (the second is an example
of small-field model). In the second part, we start to focus on the main topic of this work: the
reheating phase. We’ll start considering an elementary, simple scenario of reheating. From chapter 4
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we will see that, instead, reheating models have very complicate and non-linear dynamics.

2.1 Inflationary Models

2.1.1 Guth’s Inflation

We start from the Guth model of inflation because it contains very interesting points such as
entropy production and the random nucleation of bubbles, phenomena that also occurs in the non-
linear stages of reheating [5]. This model was introduced to solve the horizon and flatness problem:
initially, indeed, the early universe was assumed to be highly homogeneous, despite to the fact that
separated regions were causally disconnected, and the initial value of the Hubble constant had to be
extremelly fine-tuned to produce the flat universe we see today.

In this scenario the universe is assumed to be homogeneous and isotropic, and then is described
by the Robertson-Walker metric that we rewrite:

ds2 = −dt2 + a2(t)
[ dr2

1− kr2
+ r2(dθ2 + sin2θdϕ2)

]
, (2.1)

where k = +1,−1, 0 denotes a closed, open, or flat universe; a(t) is the scale factor. As seen, the
evolution of the scale factor is governed by the Friedmann equations

H2 =
8πG

3
ρ− k

a2
, (2.2)

ä

a
= −4πG

3
(ρ+ 3P ), (2.3)

where H is the Hubble constant. We rewrite the conservation of energy as

d

dt
(ρa3) = −p d

dt
(a3). (2.4)

In the standard Big-Bang model one also assumes that the expansion is adiabatic,

d

dt
(sa3) = 0, (2.5)

where s is the entropy density.

To study the evolution of the universe we need an equation of state for matter. At high temper-
atures, however, is a good approximation to consider an ideal quantum gas of massless particles. Let
g∗(T ) the effective number of degrees of freedom, the thermodynamics functions are given by

ρ =
π2

30
g∗(T )T

4, (2.6)

s =
2π2

45
g∗(T )T

3 (2.7)

n =
ζ(3)

π2
g′(T )T 3, (2.8)

where n denotes the particle number density and ζ(3) = 1.202... is the Riemann zeta function. We
can rexpress the second Friedmann equation (2.2) solely in terms of the temperature. To do so, we
substitute (2.6) in (2.2) obtaining

H2 =
4π3G

45
g∗T

4, (2.9)

where we have neglected the curvature term K/a2. The conservation of entropy equation (2.5) yields

ṡ+ 3Hs = 0. (2.10)
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Figure 2.1: Guth’s potential in the old inflation. The inflation is achieved when the inflaton field is trapped in
the false vacuum. [24].

Using (2.7) in this equation we obtain a direct relation between the Hubble constant and the temper-
ature

H = − Ṫ
T
, (2.11)

which, substituted in (2.9), yields the Friedmann equation (2.2) expressed only in terms of the tem-
perature T: ( Ṫ

T

)2
=

4π3

45
Gg∗(T )T

4. (2.12)

Guth in his paper stated that to solve the horizon and flatness problems it is crucial the violation of
the adiabaticity condition by means a huge entropy production during the inflationary stage. Suppose
that the equation of state for matter exhibits a first-order phase transition at some critical temperature
Tc (of the order of the GUT scale TGUT ≃ 1014−1015 Gev). For example, we can have a phase-transition
which causes a SSB of a group of a GUT theory. At higher temperature than Tc the inflaton is in
thermal equilibrium with other particles. As the universe expands, the system is not cooling toward
the true vacuum, but rather towards some metastable false vacuum with an energy density ρ0 which
is necessarily higher than that of the true vacuum. The inflaton is trapped in this state (Fig. 2.1
from [24]). Then, with a good approximation, we can rewrite the energy density (2.6) as

ρ(T ) =
π2

30
g∗(T )T

4 + ρ0, (2.13)

where the value of ρ0 is positive and is determined by the particle theory. We can rewrite (2.12) as( Ṫ
T

)2
=

4π2

45
Gg∗(T )T

4 +
8πG

3
ρ0. (2.14)

When the temperature is low enough, the ρ0 term dominates over the other term in the RHS of this
equation, and one has

T (t) ≃ const× e−ξt, (2.15)

where

ξ2 =
8πG

3
ρ0. (2.16)

Suppose that this supercooling continues down to some temperature Ts, many orders of magnitude
below Tc. Since from (2.12) we have aT = const, we finally obtain

a(t) = const× eξt. (2.17)

The universe is expanding exponentially, in a false vacuum state of energy density ρ0. In other words:
if we consider initially the universe in thermal equilibrium (at least locally, in some regions), then
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Figure 2.2: Example of chaotic inflation potential. ∆ϕ indicates the inflaton excursion between the horizon exit
of a given comoving scale and the end of inflation. Chaotic inflation is an example of large-field models [3].

when the temperature of such regions falls below Tc the effective potential of the inflaton field changes
and at least another minimum of the potential appears (true vacuum). However, the inflaton initially
remains in the false vacuum and we have inflation.

The universe will continue to supercool as it expands. Suppose that this cooling continues down to
some temperature Ts, many orders of magnitude below Tc. When the field passes from the false vacuum
to the true vacuum (by means quantum tunneling or in a classical way), the system undergoes a phase
transition of the first order by means the generation of bubbles. When finally the phase transition takes
place at Ts the latent heat is released and the universe is reheated at some temperature comparable
to Tc. We have the reheating stage.

As the universe expands and cools through the critical temperature Tc we have a nucleation of
bubbles caused by the tunneling of the inflaton field from the false vacumm to the true one. The
bubbles form randomly and we can introduce a certain nucleation rate λ(t), which is the probability
per (physical) volume per time that a bubble will form in any region which is still in the high-
temperature phase. We can imagine that the bubbles start at a point and expand at the speed of
light. The crucial issue of this picture is that to solve the horizon and flatness problems the nucleation
rate λ(t) needs to be slow compared to the expansion rate of the universe. This leads to disastrous
consequences. First af all, the latent heat released as a bubble expands is transferred initially to
the walls of the bubble. This energy can be thermalized only when the bubbles walls undergo many
collisions. As time goes on, we obtain regions of the universe occupied by separated clusters of these
bubbles that grow in size. The range of these bubbles is immense. However, in these regions the
clusters do not join together to form an infinite region (percolation). It can be shown that the system
percolates for large values of λ/ξ4, but for sufficiently small values it does not. Without a sufficient
collision of these bubbles we obtain an extremely dishomogeneous universe, far away from the current
observations.

2.1.2 Chaotic Inflation

Consider a theory of a scalar field ϕ with effective potential V (ϕ) = V0 = const > 0. There are no
reasons to expect that the classical field ϕ is equal to any particular value (e.g. ϕ = 0) in the entire
early universe. Instead, we expect that all values of the field ϕ may appears in different regions, with
equal probability, varying from −∞ to +∞ in different points of the universe. This is the idea of
Chaotic Inflation [26].

The only constraint we assume on the field ϕ in the early universe is that (∂µϕ)
2 ≤ M2

P for
µ = 0, 1, 2, 3, since otherwise the corresponding part of the universe would be in the pre-planckian era,
in which the classical description is impossible.

For example, we can study the simplest model of a scalar field ϕ with a mass m and with the
potential energy density V (ϕ) = m2

2 ϕ
2 (Fig. 2.2 from [3]). Accounting for the expansion of the
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universe with Hubble constant H = ȧ/a, the system is described by the equation of motion of the
field ϕ

ϕ̈+ 3Hϕ̇ = −m2ϕ. (2.18)

As said, the second term in the LHS of this equation can be interpreted as a friction term. The
Friedmann equation (2.2) for a homogeneous universe containing the scalar field ϕ, yields

H2 =
8πG

3
ρϕ =

4πG

3

(
ϕ̇2 +m2ϕ2

)
, (2.19)

where we have used (1.22) and neglected the curvature term.
From the last equation we see that if the scalar field ϕ initially was large, the Hubble parameter H

had to be large too and then the friction term. This means that the scalar field during inflation was
moving very slowly, as a ball in a viscous liquid. Therefore, the energy density of the inflaton, unlike
the density of ordinary matter, remained almost constant and the expansion of the universe continued
with a high speed.

Soon after the beginning of this regime (rapid expansion of the universe and slow motion of ϕ) we

obtain ϕ̈≪ 3Hϕ̇ and ϕ̇2 ≪ m2ϕ2, yielding

H =
ȧ

a
=

√
4πG

3
mϕ. (2.20)

This equation shows that if the field ϕ changes slowly, the size of the universe in this regime grows
approximately as eHt with H given by (2.20).

In this model inflation does not require initial state of thermal equilibrium, supercooling and
tunnelling from the false vacuum. This means that, in this scenario, there is no bubble nucleation and
then the problems seen with Guth’s model are avoided.

When inflation ends, the scalar field ϕ begins to oscillate near the minimun of V (ϕ). As any rapidly
oscillating classical field, it looses its energy by creating pairs of elementary particles. These particles
interact with each other and come to a state of thermal equilibrium with some temperature Tr. From
this time on, the universe can be described by the usual Big-Bang theory.

To have an idea of the huge expansion of the universe during inflation we can consider the mass
m of the inflaton about 10−6Mp, and an initially closed universe with initial size l ≃M−1

p . Moreover,
we assume as initial condition for the energy density ρ ≃ 1 of the scalar field. From ρ < 1 we can
consider this domain as classical universe.

Solving (2.20) comes out that the total amount of inflation achieved starting from V (ϕ) ≃ 1 is
of the order of 1010

10
! . In this model the total duration of inflation is about 10−30 seconds. From

investigations of this period, if we consider the initial size of the universe small as the Planck size lp
≃ 10−33cm, after 10−30 seconds of inflation the universe acquires a huge size of l ≃ 1010

10
cm [27]. This

value is model dependent, but in all realistic models the size of the universe after inflation appears to
be many orders of magnitude greater than the size of the part of the universe which we can see now,
l ≃ 1028cm. Thus, most of the problems of the old cosmological theories are immediatly solved.

If the universe initially consisted of many domains with chaotically distributed scalar field ϕ, then
domains with a value of the inflaton too small never inflated. Thus, the main contribution is given by
those domains which originally contained large scalar field ϕ. Inflation of such domains creates very
large homogeneous islands out of initial chaos, each one much greater than the size of the observable
part of the universe.

Other examples of models of chaotic inflation are based on polynomial potentials. The first po-
tential proposed by Linde, when he suggested the chaotic inflation scenario, was V (ϕ) = λ

4ϕ
4 [26].

However, the main idea of this type of inflation is quite generic. One can consider any particular
potential V (ϕ), polynomial or not, with or without spontaneous symmetry breaking, and study all
possible initial conditions without assuming that the universe was in a state of thermal equilibrium.

2.1.3 Small-field models

The small field models are characterized by the following potential around ϕ = 0:

V (ϕ) = V0

[
1−

(ϕ
µ

)n]
, (2.21)

21



2.1. INFLATIONARY MODELS CHAPTER 2. INFLATION ZOOLOGY AND REHEATING

Figure 2.3: Natural inflation potential. This is an example of small-field model [19].

which may arise in spontaneous symmetry breaking. An important example is Natural Inflation model
where a Pseudo Nambu-Goldstone boson (PNGB) playes the role of inflaton [28]. The PNGB potential
is in the form

V (ϕ) = Λ4
[
1 + cos(ϕ/f)

]
, (2.22)

where the two mass scales Λ and f characterize the height and width of the potential, respectevely
(Fig. 2.3 from [19]). The potential has a unique minimun at ϕ = πf . The typical mass scales for
successful inflation are of order f ∼ Mpl ∼ 1019 Gev and Λ ∼ mGUT ∼ 1016Gev. For temperatures
T ≤ f the global symmetry is spontaneously broken. These mass scales arise in particle physics
models, for example in superstring theories.

We can describe the evolution of the field as

ϕ̈+ 3Hϕ̇+ Γϕ̇+ V ′(ϕ) = 0, (2.23)

where Γ is the decay rate of the inflaton. When the temperature T ≤ Λ, in regions of the universe with
ϕ initially near the top of the potential, the field starts to slowly roll down toward the minimum of
the potential. In those regions the energy density of the universe is quickly dominated by the vacuum
contribution and the universe expands exponentially. The slow-roll regime is characterized, as in the
previous models, by ϕ̈ ≪ 3Hϕ̇ and the initial conditions for the field ϕ, as in chaotic scenario, are
random.

At the end of the slow-roll regime we have the reheating phase. The field ϕ begins to oscillate about
the minimun of the potential and gives rise to particle and entropy production. During this process the
energy of the inflaton is converted in radiation in a time ≃ Γ−1. If Γ > H, then the reheating process
takes less than an expansion time (≃ H−1) and the coherent field energy is efficiently converted into
radiation, reheating the universe to a temperature [29]

TRH =
( 45

4π3g∗

)1/4
(Hmpl)

1/2, (2.24)

where g∗ counts the effective number of relativistic degree of freedom.

On the other hand, if Γ < H, then the reheating process takes longer than an expansion time.
Until t ≃ Γ−1 the field continues to oscillate about the minimun of the potential. When t ≃ Γ−1 these
oscillations are damped (in a few expansion times), reheating the universe to a temperature

TRH ≃
( 45

4π3g∗

)1/4
(Γmpl)

1/2. (2.25)

The decay rate can be evaluated as

Γ ≃ g2Λ6/f5, (2.26)
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Figure 2.4: Hybrid inflation potential. The field rolls down the potential up to the critical value ϕc, and then
reaches the true minimum of the potential ϕ = 0, σ = σ0 = v [3]

.

where g is an effective coupling constant (for example, in the axion model [30], g ∝ αEM for two-photon
decay). For f = mpl and g∗ = 103, we find that TRH ≃ 1014 Gev in the first case (Γ > H) and TRH ≃
108g Gev in the other case (Γ < H). Since generally we expect that g < 1, the reheating temperature
will be TRH < 108 Gev [28]. This can have very insteresting application in GUT baryogenesis models
(see [28] and [29]).

2.1.4 Hybrid models

In this type of model inflation ends because of the combination of several scalar fields. In particular,
we have a scenario with two interacting scalar fields where inflation ends by a rapid rolling (waterfall)
of a second scalar field σ besides the inflaton, triggered by the slow rolling of the field ϕ [31].

An example of effective potential from this type of model is given by

V (σ, ϕ) =
1

4λ
(M2 − λσ2)2 +

m2

2
ϕ2 +

g2

2
ϕ2σ2. (2.27)

When the fields have large value their effective mass squared are both positive and the potential has
the symmetry σ ↔ −σ. The potential has a maximum at ϕ = σ = 0 and a global minimum at ϕ = 0,
σ = σ0 =M/

√
λ where the symmetry is broken.

The effective mass squared of the field σ is obtained by deriving the potential two times with
respect the field σ:

m2
σ = V ′′

σ (σ, ϕ) = −M2 + g2ϕ2. (2.28)

Since the curvature of the effective potential in the σ-direction is much greater than in the ϕ-direction,
we expect that at the first stages of expansion of the universe the field σ rolled down to σ = 0, whereas
the field ϕ could remain large for longer time. Thus, we can consider the motion starting at large ϕ
(where the effective mass of the σ field is large), with the field sitting at the minimum of the potential
at σ = 0.df

During the slow-roll of the field ϕ, the effective mass of the triggering field is m2
σ = g2ϕ2 −M2.

As soon as the field ϕ acquires the critical value ϕc =M/g, fluctuations of the massless σ field trigger
the symmetry breaking phase and inflation ends.

If the bare mass M is large compared with the rate of expansion H of the universe, the transition
will be instantaneous and inflation will end very rapidly. Instead, if the M parameter is of the order
of H, then the transition will be very slow and we can have a few more e-folds of inflation after the
phase transition. When σ = 0 the effective potential becomes

V (ϕ) =
M4

4λ
+
m2ϕ2

2
. (2.29)
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Since during inflation the scalar field ϕ is of the order ϕc = M/g, if m2 ≪ g2M2/λ we obtain for the
potential the expression

V (ϕ, 0) =
M4

4λ
+
m2ϕ2

2
≃ M4

4λ
, (2.30)

and for the Hubble rate, under this condition,

H2 ≃ 8πG

3
V (ϕ, 0) ≃ 8π

3M2
pl

M4

4λ
=

2πM4

3λM2
pl

. (2.31)

This means that, under the condition m2 ≪ g2M2/λ, we obtain inflation for ϕ > ϕc. In this case the
inflation is driven by the vacuum energy density V (0, 0) =M4/4λ.

The complete equation of motion of the field ϕ is

ϕ̈+ 3Hϕ̇ = −(m2 + g2σ2)ϕ. (2.32)

As said, during inflation σ = 0 and one can neglect ϕ̈ in the equation of motion for the field ϕ, yielding

3Hϕ̇ = −m2ϕ. (2.33)

It is then possible to integrate the evolution equation of ϕ, obtaining

ϕ(N) = ϕce
rN r ≃ m2

3H2
, (2.34)

where N = H(tc − t) is the number of e-folds to the phase transition.

We can study the beheaviour of the fields ϕ and σ after the time ∆t = H−1 =
√

3λ
2π

Mpl

M2 , from

the moment tc when the field ϕ becomes equal to ϕc. Considering the equation of motion of the field
during inflation (2.33), during the time ∆t, the variation ∆ϕ is

∆ϕ =
m2ϕc
3H2

=
m2M

3H2g
=
λm2M2

pl

2πgM3
. (2.35)

Thus, the value of the field after ∆t becomes

ϕtc−∆ϕ =
M

g

(
1−

λm2M2
pl

2πM4

)
. (2.36)

Moreover, after tc −∆t the value of the negative mass squared of the field σ (2.28) becomes

m2
σ = −M2(ϕ) = −

λm2M2
pl

πM2
, (2.37)

where the square of the field ϕ is obtained expanding the square of (2.36) (we are working in the
regime M2 ≫ λm2/g2).

The value of M2(ϕ) is much greater than H2 for M3 ≪ λmM2
pl (see (2.31)). This means that the

field σ within the time ∆t ∼ H−1 rolls down to its minimum at σ(ϕ) = M(ϕ)/
√
λ, rapidly oscillates

near it and loses its energy due to the expansion of the universe. It can be checked that the field ϕ rolls
down very fast towards the minimum of its effective potential within a time much smaller than H−1 if
M3 ≪

√
λgmM2

pl. Thus, under these conditions inflation ends in this theory almost instantaneously,
as soon as the field ϕ reaches the critical value ϕc =M/g.

Considering the reheating phase at the end of this type of model, it will be important the following
consideration. According to the classical equation of motion, the field σ = 0 cannot change its value
because the first derivative of the effective potential at σ = 0 vanishes. The spontaneous symmetry
breaking, in this case, occurs due to the exponential growth of quantum fluctuations. Indeed, writing
the (negative) effective mass squared of the field −m2

σ(ϕ) = g2(ϕ − ϕc), we immediately see that it
vanishes at the critical point, but becomes large and grows up to m2

σ(0) = M as the field ϕ slides
towards ϕ = 0. This leads to a fast growing of quantum fluctuations of the scalar field σ, producing
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an inhomogeneous distribution of the field σ with < σ >= 0. We will return to this in a more detailed
way later.

Quantum fluctuations of the inflaton field produce metric perturbations R ≃ Hδϕ/ϕ̇, where δϕ is
the amplitude of the field fluctuations when they cross outside the Hubble scale. Appying (1.95) with
the solution (2.34) we obtain

ϕ̇ = −(Hrϕc)e
rN , (2.38)

and

PR =
( H2

4π2r2ϕ2c

)
e−2rN =

1

r2
g2M2

6πλM2
pl

e−2rN . (2.39)

However, another more accurate way to compute this spectrum (2.39) is in [32]. The only difference
is that the spectrum (2.39) is multiplied by C(r)2 where C(r) = Γ[3/2− r]/2rΓ[3/2] ≃ 1 in the limit
m≪ H. Moreover, [32] evaluated the spectral tilt as

nR − 1 =
d ln PR

d ln k
= 2r. (2.40)

Note that the tilt is always greater than one in this model.
Hybrid inflation is also a version of the chaotic inflation scenario. The main difference between

this scenario and the simplest versions of the one-field chaotic inflation is in the way inflation ends.
In the theory with a single field inflation ends when the potential of this field becomes steep. In the
hybrid picture, instead, inflation ends due to the presence of another scalar field that triggers the
waterfall. Several extensions of this scenario became quite popular in the context of supergravity and
string cosmology.

2.2 Observations

Inflation is not just an interesting theory that can resolve many problems of the standard Big-Bang
Cosmology. The inflation paradigm made several predictions, which can be tested by cosmological
observations.

The first important prediction is that the universe must be flat, and in most models Ω = 1± 10−4.
An other important prediction is that inflationary perturbations generated during a slow-roll regime
with ϵ, η ≪ 1 have a nearly flat spectrum with nS close to 1. In general, the spectrum of inflationary
perturbations usually is slightly non-flat. It is possibile to construct models with nS extremely close
(or even exactly equal) to 1, but the small deviation of the spectrum from the exact flatness is one of
the distinguishing features of inflation.

Perturbations of the metric could be scalar, vector or tensor. Inflation mostly produces scalar
perturbations, but it also produces tensor perturbations with nearly flat spectrum, and it does not
produce vector perturbations. As seen in the first chapter, there are important relations between scalar
and tensor perturbations produced by inflation. The perturbations coming from inflation produce
specific peaks in the spectrum of CMB radiation. It is possible to violate each of these predictions if
one makes inflationary theory sufficiently complicated. For example, it is possible to produce vector
perturbations of the metric in the models where cosmic strings are produced at the end of inflation,
which is the case of some other models of hybrid inflation. However, it is difficult to do so, and most
of the inflationary models obey the predictions above [27].

The most recent constraints on inflation comes from the 2018 Planck measurements of the CMB
anisotropies [33]. The Planck mission estimates the spectral index as

ns = 0.9626± 0.0057 (68%C.L.), (2.41)

and the curvature constraint

ΩK = 0.0007± 0.0037 (95%C.L). (2.42)

Moreover, the tensor-to-scalar ratio r is estimated, assuming that it satisfies the consistency relation
(nT = −r/8) [9],

r0.05 < 0.032 (95%C.L.). (2.43)
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Figure 2.5: Classification of inflationary models in the nR − r plane. The line r = (8/3)(1 − nR) marks the
border of large-field and small-field models, whereas the border of large-field and hybrid models correspond to
r = 8(1− nR) [19].

To characterize the system we can write the power spectra w.r.t a pivot scale k0 as power laws

∆T (k) = ∆T (k0)
( k
k0

)nT

∆(k) = ∆ζ(k0)
( k
k0

)ns−1
, (2.44)

obtaining a set of 4 observables: 2 spectral indeces and 2 amplitudes. Assuming the consistency
relation true, we can reduce the DOF to 3. Exploiting the normalitation of CMB anisotropies on large
angular scales ∆T/T ∼ 10−5 [34], one can constraint one of the two amplitudes since it contains both
ζ and GW contributions. From experimental constraints on amplitudes and spectral indeces we can
also constraint the slow-roll parameters since nT = −2ϵ and nS − 1 = 2η − 6ϵ.

The usually chosen DOF to classify inflationary models are taken to be (r, ns), from which we build
the parameter space. In the (r, ns) plane we have that different classes of models (small-field, large-
field, hybrid models) occupy different regions. Indeed, we can consider the parameter η ≃MplV

′′/V ,
and rewriting the tensor-to-scalar ratio in terms of the slow-roll parameters as r = 16ϵ, we obtain

r(ns, η) =
8

3
(1− ns) +

2

3π
M2
pl

V ′′

V
. (2.45)

For η < 0 we have small-field models, for 0 < η < 2ϵ we have large-field models and hybrid models
provide η > 2ϵ. The hybrid models are almost excluded by observation yielding ns ≤ 1. As mentioned,
even if we are considering only the simplest models which realise inflation, there is still a large variety of
them (”zoology”). In addition, one can see that large field models tend to produce more gravitational
waves than small ones.

2.3 Reheating

In this section we start to discuss one of the main focus of this thesis: the reheating stage after
inflation. As said, after inflation the standard FLRW radiation dominated universe should start
in order to recover the standard Big-Bang model of the universe. However, during the accelerated
expansion of the universe T ∝ a−1 ≃ e−Ht. Then, at the end of inflation the temperature becomes
too small to allow a good Thermalization of the particles, and then to start the radiation dominated
era. This is the reason why we need a post-inflation period in which the universe is reheated, and
which comes just before the radiation dominated era. For now, we present a toy, elementary model
of reheating. From Chapter 4 we will investigate deeply such a period and we will see, actually, that
this phase leads to very interesting non-linear physics and dynamics. For reference see [35].
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Figure 2.6: Illustration of slow-roll inflation and reheating. In (a) we have barrier penetration (if needed); (b)
is the stage of slow-roll; and (c) the coherent oscillations about the minimum of the potential [35].

We start considering the simple single-field model discussed in the first chapter,

L = −1

2
gµν∂µϕ∂νϕ− V (ϕ). (2.46)

Inflation ends when the slow-roll parameter ϵ reaches the value 1, which implies that also η = 1.
Indeed, this happens when the curvature V ′′ of the potential starts to become non negligible, implying
that the flat region in which the slow-roll takes place has ended. This stage is equivalent to say that
V ′′ ∼ H2, that means η ∼ 1 from (1.39) (we recall that we have renamed ηV as η).

From this moment the second derivative of the potential starts to increase, becoming greater than
the rate of the expansion of the universe, and the inflaton begins to oscillate around the minimum
with a high frequency ω. This leads to V ′′ ∝ ω2 ≫ H2. Moreover, the inflaton not only starts to
oscillate with high frequency around the minimum of the potential, but it also decays with a rate Γϕ
to lighter relativistic particles that reheat the universe.

We can then modify the equation of motion for the inflaton field in a way that takes into account
its decay,

ϕ̈+ (3H + Γϕ)ϕ̇+ V ′(ϕ) = 0. (2.47)

We remark that the decay rate is a rate such as H, and then they should be multiplied by ϕ̇. Consider
now the energy density of the inflaton ρϕ = 1

2 ϕ̇
2 + V (ϕ), and compute the time derivative

ρ̇ϕ = ϕ̇ϕ̈+ V ′ϕ̇. (2.48)

Multiplying (2.47) by ϕ̇, and using the last expression, we obtain

ρ̇ϕ + ϕ̇2(3H2 + Γϕ) = 0. (2.49)

Moreover, using the fact that the typical time of oscillation is much smaller than the characteristic
time of expansion, we can take an average over a period of oscillation such as

1

2
< ϕ̇2 >period = < V (ϕ) >period → ρϕ = < ϕ̇2 >period . (2.50)

Finally, the final form of (2.49) reads

ρ̇ϕ + (3H + Γϕ)ρϕ = 0. (2.51)
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Figure 2.7: Summary of the evolution of ρϕ, ρr and S during reheating [35].

To solve this equation, we consider the general solution

ρϕ(t) = ρosce
−A(t), A(t) =

∫ t

tosc

(3H + Γϕ)dt, (2.52)

where ρosc denotes the initial condition at tosc, the time at which the inflaton begins to oscillate. The
solution for A(t) reads

A(t) =

∫ t

tosc

(
3
ȧ

a
+ Γϕ

)
dt = 3 ln

(a(t)
aosc

)
+ Γϕ(t− tosc), (2.53)

and substituing in (2.52), we finally obtain the solution

ρϕ = ρosc

( a

aosc

)−3
e−(t−tosc)Γϕ . (2.54)

From this equation we obtain an interesting feature of this system: during the oscillation phase the
inflaton beheaves as non-relativistic pressureless matter. Moreover, we can impose as initial condition
ρosc =M4. The exponential extra factor accounts for the decay of the field.

We can summarize the situation. After the end of inflation, as a consequence of the no-more
negligible curvature of the potential, the inflaton field moves towards the minimum and starts to
oscillate around it with high frequency. At times t near to tosc the decay of ϕ is not efficient and ρϕ
decreases essentially as a−3. However, the field ϕ starts to decay with a rate Γϕ. Because of these
contributions the energy density of the inflaton decreases, but still dominates the energy density of
the universe. As time passes, the decay starts to become important, and at tdecay ∼ 1/Γϕ becomes
very efficient. At this point the energy density of the inflaton starts to be very strongly suppressed
and that of the relativistic particles increases (Fig. 2.7 from [35]).

The presence of the new term Γϕ related, to the decay of the inflaton field, brings to a modification
also to the equation for the energy density of radiation, which becomes

ρ̇r + 4Hρr = Γϕρϕ. (2.55)

As we said, from tosc ≃ H−1 ≃ Mpl/M
2 to tdecay ≃ Γ−1 the field oscillates but, although in principle

it can decay, this process is still not efficient. Lighter particles begin to be produced in a slow way
and their energy is still dominated by that of the inflaton, which energy continues to decrease. As a
consequence of this peculiar phase ρr has not the particular beheaviour a−4, which is expected in the
standard radiation dominated era, but the universe is still dominated by a matter-like field. In such
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a phase the scale factor evolves as a ∝ t2/3 and the Hubble constant reads H = 2/3t. Thus, starting
from (2.55) we can write

ρ̇r +
8

3t
ρr ≃ Γϕρosc

( a

aosc

)−3
, (2.56)

where we have evaluated the expression near tosc ∼ Mpl/M
2, neglecting the exponential term in ρϕ.

Considering the time beheaviour of the scale factor and ρosc =M4, this equation yields

ρ̇r +
8

3t
ρr ≃ ΓϕM

4
( t

tosc

)−2
≃

ΓϕM
2
pl

t2
. (2.57)

To solve this equation we can search solution for ρr ∝ tα, taking as initial condition ρr(tosc) = 0. We
can use also the general solution

ρr(t) = cine
−A(t) + e−A(t)

∫ t

tosc

dt′ (g(t′)eA(t
′)), g(t′) =

ΓϕM
2
pl

t′2
, (2.58)

where cin denotes the initial condition. Putting ρ(tosc) = 0, it is easy to see that cin = 0. The A(t)
term is given by

A(t) =

∫ t

tosc

8

3t′
dt′ =

8

3
ln(t/tosc). (2.59)

Finally, the integral term in (2.58) yields∫ t

tosc

dt′
ΓϕM

2
pl

t′2

( t′

tosc

)8/3
=

9

40

ΓϕM
2
pl

t
8/3
osc

(t5/3 − t5/3osc ). (2.60)

Putting all inside (2.58), we obtain

ρr =
9

40

ΓϕM
2
pl

t

(
1−

( t

tosc

)−5/3)
. (2.61)

Using the scaling beheaviour a ∝ t2/3, we can write the last expression in terms of the scale factor,
obtaining the final solution

ρr(t) =
9

40

ΓϕM
2
pl

tosc

( a

aosc

)−3/2(
1−

( a

aosc

)−5/2)
, (2.62)

and using tosc =Mpl/M
2,

ρr(t) =
9

40
ΓϕMplM

2
( a

aosc

)−3/2(
1−

( a

aosc

)−5/2)
. (2.63)

From this equation we can determine easily the beheaviour of the radiation energy density. During
the period of oscillation of the inflaton field the radiation energy starts to grow from zero up to a
maximum value ρmax ≃ ΓϕMplM

2, thanks to the inflaton decays. Once the maximum is reached, ρr
decreased as a−3/2, instead of the usual a−4.

Regarding the temperature, we can estimate the maximum temperature reached by the radiation
fluid at ρmax using ρr = (π2/30)g∗T

4. We obtain

Tmax ∼ g
−1/4
∗ (ρmaxr )1/4 ∼ g

−1/4
∗ Γ

1/4
ϕ M

1/4
pl M

1/2. (2.64)

During this phase the system is still between the start of oscillations and the time at which decays
become efficient. In such a period we have that also the entropy increases. Indeed, the total entropy
S = sa3 is constant only if the entropy density scales as s ∝ a3. This happens only in a pure FLRW
radiation dominated universe, and we are not yet in that phase. In this period

s ∝ T 3 ∼ ρ3/4r ∼ a−9/8, (2.65)
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that leads
S ∝ a15/8. (2.66)

Thus, during this stage the inflaton decays producing new relativistic particles and this process causes
the increasing of the entropy.

In the final stage we reach the time tdecay ∼ Γ−1
ϕ . From this moment the decay of the inflaton is

efficient due to the exponential term in (2.54). The energy density of the field ρϕ decreases rapidly
and ρr becomes the dominant energy density, allowing to recover the usual radiation dominated
era in which ρr ∝ a−4 and S = const. The temperature at which the radiation energy becomes
the dominant energy of the universe (and then when the radiation dominated era begins) is called
Reheating Temperature TR. To estimate this temperature we can consider the Hubble constant during
the standard radiation dominated era, and evaluating it at tdecay = Γ−1

ϕ , we obtain

H2 =
( 1

2t

)2
=

Γ2
ϕ

4
, (2.67)

and

H2 =
8π

3M2
pl

ρr ≃
8πg∗
3M2

pl

π2

30
T 4

|t≃Γ−1
ϕ

. (2.68)

Combining the last two equations, we finally derive an estimate of the reheating temperature,

TR ≃ 0.55g
1/4
∗ (ΓϕMpl)

1/2, (2.69)

where we assumed for semplicity that the radiation dominated era starts at the instant tdecay, when
the decay of the inflaton field becomes efficient.

As final comment, we notice that there is no remnant of the vacuum energy density of the inflaton
field, which drives the accelerated expansion of the universe. Indeed, just after inflation, ϕ beheaves
as a non-relativistic pressureless field which causes its redshifting as a3.

There is also a special case in which the reheating is istantaneous at ρosc ≃ M4 ≃ T 4
R. This

happens when at tosc the decay of the inflaton field is already extremely efficient. ϕ will not even make
a single oscillation around the minimum, transforming immediately all the vacuum energy directly into
radiation. In this special case we have TR ≃M .
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Chapter 3

Reheating Observables

Detection of the stochastic background of primordial gravitational waves would have profound
implications for the physics of the early universe and the high energy physics. The fundamental
reason why gravitational waves carry information about the very early universe is that particles which
decoupled from the primordial plasma at a certain time t ∼ tdec, when the universe had a temperature
of Tdec, memorize the physical state of the universe at Tdec. Since gravitons decoupled below the Planck
energy scale, they memorize all the expansion history of the universe after they decoupled allowing us
to see through the entire history of the universe. Another example are CMB photons which decoupled
from matter at T ∼ 0.3 eV. However, the primordial gravitational waves carry information on the
state of the much earlier universe than CMB photons do.

As discussed in the first chapter, the primordial gravitational waves spectrum would also provide
informations about inflation and reheating. Indeed, the energy scale of inflation is directly related
to the amplitude of the spectrum. Typically, the amplitude of the spectrum is of order 10−15 for
1016 GeV inflation energy scale. Inflation ends when the inflaton decays into radiation and reheats
the universe. The energy scale of reheating could be seen from the highest frequency end of a nearly
scale invariant energy density spectrum. The modes which re-entered the horizon during the radiation
dominated era show a nearly scale invariant spectrum if we don’t consider the change of the effective
number of degrees of freedom.

The slope of the spectrum provides the power-law index of the tensor perturbation nT . nT = 0
corresponds to a scale invariant power spectrum from purely de-Sitter inflation. In a large class
of inflationary models the absolute value of nT is not zero but much smaller than unity, and its
determination constraints the inflationary models. Thus, the primordial gravitational waves not only
test and probe the physics of inflation and reheating, but also the study of the spectrum enables us
to probe the very early universe in a transparent way [36].

The universe is transparent to GW up to the Planck epoch in principle, and then we can obtain
informations about the reheating epoch. Although the GW amplitude is constant in the super-horizon
regime, once a mode enters the horizon again it is reduced as the universe expands. Since the expansion
rate depends on the equation of state of the universe, corresponding thermal history of the universe
is imprinted in the gravitational wave spectrum at present.

In particular, the reheating stage is characterized by the reheating temperature TR ∼ g
1/4
∗ (ΓϕMpl)

1/2,
that we have estimated in the simple reheating model in the previous chapter. TR is hardly constrained
from cosmological observations by now. However, the reheating temperature contains rich informa-
tion from the viewpoints of particle physics. Indeed, it is determined by the inflaton decay rate, and
it depends on the inflaton properties, such as its mass, potential and the interaction strength with
other particles. Thus, determining TR may have impacts on choosing realistic inflation models and
inflaton candidates. In the first part of this chapter we consider how the detection of the primordial
gravitational wave background produced in the inflationary era can determine the thermal history of
the universe before Big-Bang Nucleosynthesis (BBN), in particular the reheating temperature TR. We
will also discuss how the gravitational wave spectrum changes with some non-standard cosmological
scenarios, as late-time entropy production during reheating. In the second part we will study how we
can obtain informations about reheating from measurements of CMB.
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3.1 Energy Density of GW

In the first chapter we derived a solution for the gravitational waves. In this section we define
the spectral energy density ΩGW of the gravitational wave background relative to the power spectrum
P 2
h (k). In accordance with the literature, we rename the power spectrum of the gravitational waves

as ∆T and the power spectrum of curvature perturbations as ∆ζ .

3.1.1 The transfer function

Consider the equation of the gravitational waves for the mode k,

ḧλ,k + 3Hḣλ,k + k2
hλ,k
a2

= 0. (3.1)

we can express it in terms of the conformal time,

h′′λ,k +
(2a′
a

)
h′λ,k + k2hλ,k = 0. (3.2)

This is just the massles Klein-Gordon equation for a plane wave in an expanding universe. Each
polarization state of the wave behaves as a massless, minimally coupled, real scalar field.

After the fluctuations left the horizon, k ≪ aH, (3.2) becomes

h′′λ,k
h′λ,k

≃ −2
a′

a
, (3.3)

whose solution is

hλ,k(τ) = A+B

∫ τ dτ ′

a2(τ)
, (3.4)

where A and B are integration constants. Discarding the second term, which is a decaying mode, we
obtain that hλ,k remains constant outside the horizon. Therefore, we can write a general solution of
hλ,k at any time as

hλ,k(τ) ≡ h
prim

λ,k T (τ, k), (3.5)

where hprimλ,k is the primordial gravitational wave mode that left the horizon during inflation. The
transfer function T (τ, k) then describes the sub-horizon evolution of GW modes after they entered the
horizon, and it is normalized such that T (τ, k) → 1 as k → 0. The power spectrum of the gravitational
waves ∆T is defined as

⟨hij(λ,x)hij(λ,x)⟩ =
∫
dk

k
∆2
T (τ,k) =

2k3

2π2

∑
λ

⟨|hλ,k(τ)|2⟩. (3.6)

Using (3.5), one can write the power spectrum as

∆2
T (τ, k) ≡ ∆2

T,prim[T (τ, k)]
2, (3.7)

where

∆T,prim =
2k3

2π2

∑
λ

⟨|hprimλ,k |2⟩ = 16

π

(Hinf

Mpl

)2
. (3.8)

3.1.2 The spectral density ΩGW (k)

The next step is to calculate the energy density of the gravitational waves, which is given by the
(0-0) component of the stress-energy tensor. For reference of this section see [36], [38].

To obtain the energy momentum tensor of the gravitational waves consider the Ricci tensor of the
FLRW metric (1.1), and expand it in metric perturbations, h:

Rµν = R̄+R(1)
µν +R(2)

µν + O(h3), (3.9)
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where R
(1)
µν ∼ O(h) and R(2) ∼ O(h2). In vacuum we have Rµν = 0. Then, the linear term in (3.9)

must obey the vacuum equation,
R(1)
µν = 0. (3.10)

This is an equation for the propagation of the GW. The remaining part of (3.9) in general is not
linear in hµν , and can be divided into a smooth part which varies only on scales larger than some
coarse-graining scales

R̄µν + ⟨R(2)
µν ⟩ = 0, (3.11)

and a fluctuating part which varies on smaller scales

R(1)nonlinear
µν +R(2)

µν − ⟨R(2)
µν ⟩ = 0, (3.12)

up to second order in hµν . Here, R
(1)nonlinear
µν is defined in this equation and represents the non-linear

correction to the propagation of hµν (3.10) (see [36], [38]).
We can write the Einstein equation in vacuum as

Ḡµν = R̄µν −
1

2
R̄ḡµν = 8πGT (GW )

µν , (3.13)

where

T (GW )
µν ≡ − 1

8πG

(
⟨R(2)

µν ⟩ −
1

2
ḡµν⟨R(2)⟩

)
(3.14)

is a definition of the energy-momentum tensor for the gravitational waves, and ⟨·⟩ denotes an average
over several wavelengths. The importance of the energy-momentum tensor is that it tells us how back-
reaction from energy density of gravitational waves would affect the expansion law of the background
universe. Since ⟨R(2)⟩ = 0 [38],

T (GW )
µν =

1

32πG
⟨hαβ|µh

αβ
|ν ⟩ = 1

32πG
⟨hαβ,µhαβ,ν ⟩+ O(h3), (3.15)

where | is the covariant derivative with respect to the background metric, ḡµν . We have employed the
transverse-traceless (TT) gauge and neglected higher order terms in the energy-momentum tensor.

The energy density of gravitational waves, ρh, is defined by the (0-0) component of the energy
momentum tensor

ρh ≡ T
(GW )
00 =

1

32πG
⟨ḣij ḣij⟩, (3.16)

where hij is in the TT gauge. We have only two independent modes for the GW:

hij =

 h+ h× 0
h× −h+ 0
0 0 0

 , (3.17)

where + and × denote the two independent polarization modes, and the propagation of the wave is
taken in the ẑ direction.

Thus, from (3.16) we obtain

ρh =
2

32πG
⟨ḣ2+ + ḣ2×⟩ =

1

16πGa2
⟨h′ 2+ + h′ 2× ⟩, (3.18)

where we have expressed it in terms of the conformal time. The Fourier transformation of the last
equation yields

ρh =
1

16πGa2

∫
d3k

(2π)3

∫
d3k′

(2π)3
⟨(h′+,kh′+,k′ + h′×,kh

′
×,k)e

i(k+k′)·x⟩, (3.19)

where h∗λ,k = hλ,−k is used. For stochastic modes the spatial average over several wavelengths, ⟨⟩, is
equivalent to the ensemble average in k space:

⟨h′λ,kh′λ′,k’⟩ = (2π)3δλλ′δ
(3)(k+ k’)|h′λ,k|2, (3.20)
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where λ = +,×. Inserting the last equation in (3.19), we obtain

ρh(τ) =
1

16πGa2

∫
d3k

(2π)3
[|h′+,k(τ)|2 + |h′×,k(τ)|2]. (3.21)

We assume that the primordial gravitational waves are unpolarized, i.e. |h′+,k(τ)|2 = |h′×,k(τ)|2.
Whenever we express the time evolution of some quantitities, it is convenient to express them in terms
of the transfer function T (kτ). The primordial amplitude ∆2

T,prim defined in (3.8) then reads

ρh(τ) =
1

32πGa2

∫
d ln k ∆T,prim[T

′(kτ)]2, (3.22)

with

∆T,prim = 4
k3

2π2
|hprimk |2 = 16

π

(Hinf

Mpl

)2
, (3.23)

where |hprimk |2 is the amplitude of gravitational waves outside the horizon, |kτ | ≪ 1, during inflation.
It is common to define the relative spectral density as the normalized energy density per logarithmic

scale

ΩGW (τ, k) =
ρ̃h(τ, k)

ρcr(τ)
, (3.24)

with

ρ̃h(τ, k) =
dρh(τ, k)

d ln k
, (3.25)

where ρcr(τ) is the critical density of the universe, and ρ̃h(τ, k) denotes the energy density of the
gravitational waves per logarithmic scale. Inserting (3.22) into (3.24), we obtain

ΩGW (τ, k) =
∆2
T,prim

32πGa2ρcr(τ)
[T ′(τ, k)]2. (3.26)

Finally, using the Friedmann equation H2 = 8πGρc/3, the final expression for the relative spectral
energy density reads

ΩGW (τ, k) =
∆2
T,prim

12H2(τ)a2(τ)
[T ′(τ, k)]2. (3.27)

3.1.3 Analytical solutions

We can find analytical solutions of (3.2) for the inflationary (assuming de-Sitter), radiation and
matter dominated era [36].

From (3.2) we obtain the equation

u′′k(τ) +
[
k2 − a′′

a

]
uk(τ) = 0, (3.28)

found in the first chapter (we remind that uk(τ) = hk(τ)/a(τ)). Using the fact that in a de-Sitter
universe a′′/a = 2/τ2, we obtain

u′′k(τ) +
[
k2 − 2

τ2

]
uk(τ) = 0. (3.29)

In this case we can find the exact solution

uk(τ) = c1(k)
e−ikτ√

2k

(
1− i

kτ

)
+ c2(k)

eikτ√
2k

(
1 +

i

kτ

)
. (3.30)

Assuming the appropriate normalitation limτ→−∞ uk(τ) = e−ikτ/
√
2k (positive frequency solution),

(3.30) yields

hk(τ) =
e−ikτ√
2ka

(
1− i

kτ

)
. (3.31)
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For the radiation and matter dominated era we can recast (3.2) in the spherical Bessel functions.
Indeed, considering that in the radiation era (RD) H = a′/a = 1/τ , and in the matter dominated era
(MD) H = a′/a = 2/τ , we obtain

h′′λ,k +
(1
τ

)
h′λ,k + k2hλ,k = 0, RD (3.32)

h′′λ,k +
(2
τ

)
h′λ,k + k2hλ,k = 0. MD (3.33)

We recognise in these equations the spherical Bessel equation after making the change of variables
x ≡ kη and h ≡ f(x)/x,

x2
d2f

dx2
+ 2x

df

dx
+ (x2 − l(l + 1))f = 0, (3.34)

where l = 0 in the case of radiation era, and l = 1 in the matter era. The solution is given by
f(x) = jl(x). Then the complete solution, accounting for the boundary conditions at the horizon
crossing, is

hk(τ) = [j0(kτ)]h
prim
k RD, (3.35)

hk(τ) =
[3j1(kτ)

kτ

]
hprimk MD, (3.36)

where hprimk is evaluated at the horizon crossing. Notice that |hk(τ)|2 in (3.31), (3.32) and (3.33) does

not depend on time at the super-horizon scale |kτ | ≪ 1 (|hk(τ)|2 ≃ |hprimk |2).
Now, we classify wave modes by their horizon crossing time τhc: |k| = k > keq denotes the modes that
entered the horizon during RD (τhc < τeq), while k < keq are the modes that entered the horizon during
MD (τhc > τeq). Using the transfer function (3.5), we obtain the time evolution of the amplitude of
gravitational waves [36]:

T (τ < τeq, k > keq) = j0(kτ), (3.37)

T (τ > τeq, k > keq) =
τeq
τ
[A(k)j1(kτ) +B(k)y1(kτ)], (3.38)

T (τ, k < keq) =
3j1(kτ)

kτ
, (3.39)

where

A(k) =
3

2kτeq
− cos(2kτeq)

2kτeq
+

sin(2kτeq)

(kτeq)2
, (3.40)

B(k) = −1 +
1

(kτeq)2
− cos(2kτeq)

(kτeq)2
− sin(2kτeq)

2kτeq
, (3.41)

and yn are the spherical Neumann functions. The conformal time derivatives of the transfer functions
are

T ′(τ < τeq, k > keq) = −kj1(kτ), (3.42)

T ′(τ > τeq, k > keq) = −kτeq
τ
[A(k)j2(kτ) +B(k)y2(kτ)], (3.43)

T ′(τ, k < keq) = −3j2(kτ)

τ
. (3.44)

Equations (3.37) and (3.38) are the evolution of modes which entered the horizon during the radiation
era, while (3.39) is the evolution of modes which entered the horizon during the matter era. Coefficients
A(k) and B(k) are obtained by equating the solution (3.37) with (3.38) and their first derivatives (3.42)
and (3.43) at the matter-radiation equality.

Finally, the solution for the relative spectral density ΩT are

ΩGW (τ < τeq, k > keq) =
∆2
h,prima

2

12H2
eqa

4
eq

k2[j1(kτ)]
2 RD, (3.45)

ΩGW (τ > τeq, k > keq) =
∆2
h,prima

12H2
0a

3
0

k2
τ2eq
τ2

[A(k)j2(kτ) +B(k)y2(kτ)]
2 MD, (3.46)

35



3.1. ENERGY DENSITY OF GW CHAPTER 3. REHEATING OBSERVABLES

Figure 3.1: Numerical solutions of tensor perturbations. The solid, dashed, and short-dashed lines show the
high, medium, and low frequency modes, respectively. The higher k-modes enter the horizon earlier, and are
damped more by the cosmological redshift. Vertical lines define the horizon crossing time for each k-mode [36].

Figure 3.2: The primordial gravitational wave spectrum at present, τ = τ0, as a function of the comoving
number k. The frequency of the gravitational waves observed today is related to k by f0 = kc/2π. In the plot is
assumed de-Sitter inflation and then the spectrum at large wavenumber is exactly scale-invariant. In this figure
is not taken into account the effects of the change in relativistic degree of freedom or neutrino free-streaming [36].
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ΩGW (τ > τeq, k < keq) =
∆2
h,prima

12H2
0a

3
0

k2
[3j2(kτ)

kτ

]2
MD. (3.47)

In (Fig. 3.1, 3.2) we report the plots in [36] of the numerical solutions for the temporal evolution
of the GW modes and the primordial gravitational wave spectrum at present, respectevely.

The first solution (3.45) describes ΩGW (τ, k) during radiation era for the modes that entered the
horizon before the time at the matter-radiation equality τeq. This solution is not relevant for what
we observe today. The second (3.46) and the third (3.47) solutions describe ΩGW (τ, k) during matter
era for the modes that entered the horizon before and after τeq, respectively. While the expression is
slightly complicated, one can find that the second solution is independent of k when the oscillatory part
is averaged out, which explains a scale-invariant spectrum at high frequencies, k > keq ∼ 10−15Hz.
On the other hand, the third solution gives ΩGW (τ, k) ∝ k−2.

These arguments can be understood in a more qualitative way and clearly seen in (Fig. 3.2). Energy
density of gravitational waves evolves just like that of radiation inside the horizon, ρ̃h(τ, k) ∝ a−4, for
k ≫ aH. This implies that the relative spectral energy density, ΩGW (τ, k), inside the horizon remains
independent of time during the radiation era, while it decreases as ΩGW (τ, k) ∝ a−1 during the matter
era. Thus, the modes that entered the horizon during the matter era later would decay less. As the
low frequency modes represent the modes that entered the horizon at late times, ΩGW (τ, k) rises
toward lower frequencies. On the other hand, ΩGW (τ, k) at k > 10−15 is independent of k. These are
the modes that entered the horizon during the radiation era, for which ΩGW (τ, k) was independent
of time. After the matter-radiation equality all of these modes suffered the same amount of redshift,
and then the shape of ΩGW (τ, k) still remains scale invariant at k > 10−15.

3.2 Thermal History

In general it is granted that energy density of the universe evolves as ρ ∝ a−4 during the radiation
era, and this is exactly what caused a scale-invariant spectrum of ΩGW (k) at k > keq. However, ρ ∝ a−4

does not always hold in the radiation era because some particles would become non-relativistic before
the others and don’t contribute anymore to the radiation energy density. Since during the radiation
era many kinds of particles interact with photons frequently, we can consider thermal equilibrium.

We recall that the energy density and the pressure in such era are given by

ρ(T ) =
π2

30
g∗T

4, p(T ) =
1

3
ρ(T ). (3.48)

Moreover, we rewrite the expression for the entropy density,

s(T ) =
2π2

45
g∗s(T )T

3, (3.49)

with s(T ) = (ρ(T )+p(T ))/T . The effective number of degrees of freedom, g∗ and g∗s, count respectively
the (effective) number of relativistic species contributing to the radiation energy density and entropy.
In an adiabatic system the entropy per unit comoving volume must be conserved, i.e.

S(T ) = s(T )a3(T ) = constant. (3.50)

From the equation for energy density in (3.48) we obtain the relation for the temperature

T = (30/π)1/4ρ1/4g
−1/4
∗ , (3.51)

and, using (3.50),

S(T ) =
2π2

45
g∗s(T )T

3a3 =
(2π2
45

)(30
π

)3/4
g∗s ρ

3/4g
−3/4
∗ a3 = const, (3.52)

from which we obtain the beheaviour of the energy density

ρ ∼ g∗g
−4/3
∗s a−4. (3.53)
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Figure 3.3: Evolution of the effective number of relativistic degree of freedom contribuiting to energy density,
g∗, as a function of temperature. The solid and dashed lines represent g∗ in the Standard Model and in the
minimal extension of Standard Model (MSSM), respectively. MSSM also includes particles in supersymmetric
models. At the energy scales above ∼ 1 TeV, gSM

∗ = 106.75 and gMSSM
∗ ≃ 220. At energy scales below ∼ 0.1

MeV, g∗ ≃ 3.3626 and g∗s = 3.9091; g∗ = g∗s otherwise [36].

We see then, unless g∗ and g∗s are independent of time, the evolution of ρ would deviate from ρ ∼ a−4.
In other words, the evolution of ρ during the radiation era is sensitive to how many relativistic species
the universe had at a given epoch (Fig. 3.3).

We can then understand how g∗ and g∗s would affect the shape of ΩGW (τ0, k). While energy density

of the universe during the radiation era is affected by g∗, g∗s as ρcr ∝ g∗g
−4/3
∗s a−4, energy density of

gravitational waves always evolves as ρ̃h(τ, k) ∝ a−4 inside the horizon, k ≪ aH, regardless g∗ or g∗s,
because the gravitons are not in thermal equilibrium with other particles. Thus, this difference in the
evolution of ρ̃h and ρcr significantly modifies the spectrum of ΩGW (τ0, k) at k > keq.

Consider a gravitational wave mode with k which entered the horizon at a given time τhc < τeq and
temperature T = Thc during the radiation era. After the mode entered the horizon its amplitude would
be suppressed by the cosmological redshift. We can then derive, at first approximation, the relative
spectral density ΩGW (τ0, k > keq) = ρ̃h(τ0, k)/ρcr(τ0) today. Since energy density of gravitational
waves is independent of other particles, we can write (the mode k entered the horizon during the
radiation era at τhc)

ρ̃h(τ0, k) = ρ̃h(τhc, k)
( a0
aeq

)−4(aeq
ahc

)−4
, (3.54)

where the subscripts 0 and eq denote the present value and the value at the radiation-matter equality,
respectively. Instead, the critical energy density of the universe during the matter era scales as ∼ a−3,

and ∼ g∗g
−4/3
∗s a−4 during the radiation era:

ρcrit(τ0) = ρcrit(τeq)
( a0
aeq

)−3
, ρcrit(τeq) = ρcrit(τhc)

[ g∗,0
g∗(Thc)

][ g∗s,0
g∗s(Thc)

]−4/3(aeq
ahc

)−4
. (3.55)

Combining these equations in the expression for the relative spectral density of the GW at present,
we obtain

ΩGW (τ0, k > keq) = ΩGW (τhc, k)
[g∗s(Thc)

g∗s0

]−4/3[g∗(Thc)
g∗0

]
(1 + zeq)

−1, (3.56)

where we have used (1 + zeq)
−1 = aeq/a0, with zeq = 3402. This equation helps us to understand how

g∗s and g∗ would affect the beheaviour of ΩGW (τ0, h).
The modes that entered the horizon earlier experienced larger suppression, as g∗ and g∗s would

be larger than the modes that entered the horizon later. The modes that entered the horizon during
the matter era should not be affected by g∗ or g∗s, as they do not change during this era. (3.56) can
be obtained analytically also directly from the equation for the gravitational waves (3.28), exploiting
a′′/a during the thermal history of the universe (see [36]). In [36] is also reported the full computation
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Figure 3.4: The primordial gravitational wave spectrum at present, Ωh(τ0, k)/10
−10, as a function of the

comoving wavenumber, k. It is assumed a scale-invariant spectrum and Ωm = 1−Ωr,Ωr = 4.15×10−5h−2, h =
0.7, and Einf = 1016 GeV. It is also included the effects of the effective number of relativistic degree of freedom
and neutrino free-streaming. The dashed line shows the case in which these effects are ignored [36].

of ΩGW (τ0, k) obtained numerically integrating the wave equation together with the numerical data of
g∗ and g∗s. The computation accounts also the effect of free-streaming of relativistic neutrinos which
have decoupled from thermal equilibrium at T < 2 Mev, and significantly contributes to damping the
amplitude of the gravitational waves.

The effect of the evolution of g∗ and g∗s can be very important. For example, big changes in g∗
would occur at the electron-positron annihilation epoch (∼ 0.51 Mev, ∼ 2 × 10−11 Hz), as well as
the quark-gluon plasma (QGP) to hadron gas phase (∼ 180 Mev, ∼ 10−7 Hz). From the analysis
comes out that the gravitational wave spectrum is suppressed by roughly 20% and 30% above the
electron-positron annihilation and QGP transition scales, respectively [36].

One may approximately relate the horizon crossing temperature of the universe to the frequency
of the gravitational waves. The horizon crossing mode, khc = ahcHhc, is related to the temperature at
that time by H2

hc =
8πG
3 ρhc =

8π3G
90 g∗,hcT

4
hc. Using entropy conservation g∗s,hca

3
hcT

3
hc = g∗s0a

3
0T

3
0 , one

can obtain the following conversion factor from the temperature of the universe to the frequency of
gravitational waves observed today [39],

f0 = 1.65× 2π × 10−7
( Thc
1Gev

)[g∗s(Thc)
100

]−1/3[g∗(Thc)
100

]1/2
Hz, (3.57)

which is related to the comoving wavenumber, k (or kc in units of Hertz), by 2πf0 = kc/a0.

In an extremely high frequency region the gravitational wave spectrum should provide us unique
informations about the reheating of the universe after inflation. On the other hand, in an extremely
low frequency region (below ∼ 10−18 Hz ) dark energy dominates the universe and affects the spec-
trum. The signatures of the primordial gravitational waves may be detected by CMB polarization
experiments in the low frequency region, < 10−16 Hz. For the higher frequency region, however, di-
rect detection of the gravitational waves would be necessary, and it should allows us to search for a
particular cosmological event, such as reheating.

3.3 GW and Reheating

In the previous section we have seen that the spectrum of the inflationary gravitational wave
background directly reflects the expansion history of the universe. In particular, we see now that from
the direct detection of gravitational waves we can extract informations about the reheating epoch, in
particular the reheating temperature and the equation of state of the universe after inflation.

As discussed, the growing mode solutions to the wave equation (3.2) have simple qualitative beheav-
iour: before the mode re-enters the horizon hk(τ) is constant. Once the modes cross inside the horizon
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during the radiation-dominated era the solution is hk = hprim,k(j0(kτ)), while for the modes that cross
inside the horizon during the matter-dominated era the exact solution is hk = hprim,k(3j1(kτ)/kτ).
The Bessel function are given by j0(x) = sinx/x and j1(x) = sinx/x2 − cosx/x.

However, well into the matter dominated era the temporal beheaviour of modes that entered the
horizon during the radiation-dominated era is also given by (3j1(kτ)/kτ). For example, considering a
gravitational wave mode of inflation that re-enters the horizon during the radiation era, its beheaviour
is given by

hk(τ) = hprimk T (k/kEQ)
(3j1(kτ)

kτ

)
, (3.58)

where the transfer function of gravitational wave, T (k/kEQ), is only a function of k/kEQ, with kEQ ≡
a(teq)H(teq) = 7.1× 10−2Ωmh

2 Mpc−1 [37].

The transfer function has been calculated by integrating (3.2) numerically from τ = 0 to τ = τ0
and we report the fit in (3.66) of [37], where this approach is introduced.

However, as said in the previous section, the effect of the change of the relativistic degrees of
freedom could be important. Indeed, during the expansion of the universe g∗ changes and the expansion
rate is modified from the simple power law a(t) ∝ T−1 during radiation era. This effect yields the
damping factor (

g∗(Tin)

g∗0

)(
g∗s0

g∗s(Tin)

)4/3

(3.59)

on the power spectrum of the gravitational waves, where Tin denotes the temperature at which the
corresponding mode enters the horizon, given by [40]

Tin ≃ 5.8× 106 Gev

(
g∗s(Tin)

106.75

)−1/6(
k

1014Mpc−1

)
. (3.60)

Since we are interested about reheating, we consider the modes that re-enter the horizon during the
reheating era. Moreover, we should also include the effect of dark energy that is leading today the
expansion of the universe.

Before writing the solution we can rewrite the relative spectral density (3.24) as

ΩGW (τ, k) =
∆2
T,prim

12H2(τ)a2(τ)
[T ′(τ, k)]2 =

1

12

(
k

aH

)2

∆2
h,primT

2
h (k). (3.61)

The last relation is a good approximation when we consider the modes deep inside the horizon,
k ≪ aH. It is given by the fact that the transfer function is in general given by Bessel type functions,
T (x) = 1

xn [Ajn(x)+Byn(x)], and its conformal time derivative by T ′(x) = − k
xn [Ajn+1(x)+Byn+1(x)],

where x = kτ . Thus, in the limit k ≪ aH we obtain (3.61) [36].

In a single-field slow-roll inflation model the tensor-to-scalar ratio r = ∆2
h,prim(k0)/∆

2
ζ,prim(k0) can

be related to the tilt of the tensor mode spectrum nT = d ln∆2
h,prim(k0)/d ln k with r = −8nT . From

r = −8nT we obtain the relation

nT =
d ln∆2

h,prim(k)

d ln k
= −r

8
, (3.62)

from which
∆2
h,prim(k)

∆2
h,prim(k0)

=
k

k0
e−r/8, (3.63)

where k0 = 0.002 Mpc−1 is the pivot scale. Thus, we can obtain from the expression of the tensor-to-
scalar ratio r the equation [41]

∆2
h,prim(k) ≃ r∆2

ζ,prim(k0) exp

[
− r

8
ln

k

k0
+ ...

]
. (3.64)
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The effects of the cosmological evolution after inflation are then all included in the transfer function
Th(k) in (3.24) [41]:

T 2
h (k) = Ω2

m

(
g∗(Tin)

g∗0

)(
g∗s(Tin)

g∗s0

)−4/3(
3j1(kτ0)

kτ0

)2

T 2
1 (xeq)T

2
2 (xR). (3.65)

The subscript 0 denotes the present time, and the subscript in denotes the time when the mode
crosses the horizon. The effective number of degrees of freedom at the end of reheating is taken
to be the sum of the standard model particles, g∗(TR) = g∗s(TR) = 106.75. The values at present
are g∗0 = 3.36 and g∗s0 = 3.90. τ0 is the present conformal time calculated assuming the universe
matter dominated, τ0 = 2H−1

0 . The parameter Ωm = ΩΛ accounts for the effect of the cosmological
constant. In the limit of kτ0 ≪ 1 the spherical Bessel function j1(x) = (sinx− x cosx)/x2 is replaced
by j1(kτ0) ≃ cos(kτ0)/(kτ0) = 1/(

√
2kτ0). The first transfer function T1(xeq) describes the change of

the frequency dependence of the spectrum which arises from the change of the expansion rate of the
universe at the matter-radiation equality t = teq

T 2
1 (xeq) = [1 + 1.57xeq + 3.42x2eq], (3.66)

where xeq = k/keq and keq ≡ τ−1
eq = 7.1 × 10−2Ωmh

2 Mpc−1. The second transfer function T2(xR)
corresponds to the change of the expansion rate at the end of reheating t = tR and connects the modes
which enter the horizon after and before reheating ends.

Since before the inflaton decays the universe was dominated by the coherent oscillation of the
inflaton, the spectrum of the gravitational waves changes for the modes which enter the horizon at
the inflaton dominated epoch (k > kR), where

kR ≃ 1.7× 1013Mpc−1

(
g∗(TR)

106.75

)1/6(
TR

106Gev

)
. (3.67)

In terms of frequency, this corresponds to

fR ≃ 0.026 Hz

(
g∗s(TR)

106.75

)1/6(
TR

106Gev

)
, (3.68)

which is close to the most sensitive frequency of detectors like DECIGO [40]. The transfer function
T2(xR) is obtained by solving simultaneously the gravitational waves equation and the Friedmann
equations taking into account the decay of the inflaton,

ḧλ,k + 3Hḣλ,k +
k2

a2
hλ,k = 0, (3.69)

ρ̇ϕ + 3Hρϕ = −Γϕρϕ, (3.70)

ρ̇r + 4Hρr = Γϕρϕ, (3.71)

H2 =
8πG

3
(ρϕ + ρr), (3.72)

where ρϕ denotes the energy density of the inflaton coherent oscillation. The best fit of T2(xR) is given
by [40]:

T 2
2 (xR) = [1− 0.32xR + 0.99x2R]

−1, (3.73)

where xR = k/kR.
ΩGW (f) beheaves as f0 for modes which enter the horizon in the radiation era, while it beheaves

as f−2 for modes which enter in the matter era (see later). Since the evolution of inflationary gravita-
tional waves is sensitive to the expansion of the universe, H−1, we obtain a characteristic feature for
the modes around f ∼ fR. If the universe beheaves like a matter-dominated universe during reheat-
ing, the transition from reheating to the radiation domination era is seen as a change of the frequency
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Figure 3.5: The spectra of the inflationary gravitational wave background for different values of the reheating
temperature (thick black solid curves with TR = 106, 107, 108 GeV from left to right). The tensor-to-scalar ratio
is taken to be r = 0.1. For reference, it is also plotted the noise spectra for BBO/FP-DECIGO with 10-year
observation (red solid) and for Ultimate-DECIGO with 3-year observation (blue-dotted). The grey shaded
region represents where the noise coming from white dwarf binaries may significantly contribute as systematic
error [41].

dependence of the spectrum. If this signature exists in the frequency band of direct detection sensi-
tivity, 0.1 − 1 Hz, we may able to determine the reheating temperature by measuring the knee-like
feature where the frequency dependence changes from f−2 to f0. In this view, fR is the important
frequency where the change of the frequency dependence due to reheating arises. We show the spectra
for different values of the reheating temperature in (Fig. 3.5) from [41], where we can see the knee
shape around fR.

We also report in (Fig. 3.6) and (Fig. 3.7) two plots from [40]. The first plot shows the resulting
spectrum ΩGW (f) at f = 0.1 Hz for the values of the slow-roll parameter η = 0.01, 0,−0.01 from
upper to lower (it is assumed TR ≤ 109). The second plot shows the resulting gravitational wave
spectrum for TR = 109 GeV and 105 GeV with r = 0.1 and r = 0.001.

Thus, the spectrum of the primordial gravitational wave background generated during inflation
crucially depends on the reheating temperature TR. This fact opens the possibility that future ex-
periments devoted to detect the gravitational wave background will probe the reheating stage of the
universe.

The important parameters that determine the primordial gravitational wave spectrum are the
tensor-to-scalar ratio r and the reheating temperature TR. The tensor-to-scalar ratio r determines the
overall normalitation of the spectrum (the amplitude), and TR fixes the frequency above which the
spectrum is significantly suppressed. The important point is that if the knee point in the spectrum
determined by TR around the frequency fR lies above the sensitivity of future detectors, TR can be
determined by observation of gravitational waves.

The non-zero value of the tensor-to-scalar ratio r is determined by measurements of the B-mode
CMB polarization, whose detection indirectly would confirm the existence of the primordial gravita-
tional wave background. A certain amount of B-modes polarization has been detected by BICEP2
collaboration, but the amplitude is compatible with foreground contamination. Current data actually
provide only an upper bound on r (r0.05 < 0.09 at 95% C.L.).

In [40] and [41] is studied the observable range of TR for various value of r, through future mission
concepts based on space laser interferometers, like DECIGO [43] and NASA’s Big Bang Observer
(BBO). DECIGO is a future mission that will explore the gravitational wave range frequency 0.1 <
f < 10 Hz, which would contains important informations about the primordial epoch and likely can
put a meaningful constraint on TR. However, stochastic noise coming from some astrophysical sources
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Figure 3.6: The spectrum ΩGW (f) at f = 0.1 Hz for η = 0.01, 0,−0.01 from upper to lower [40]

.

Figure 3.7: Primordial gravitational wave spectrum for TR = 109 GeV and TR = 105 GeV are shown by thin
and thick lines for r = 0.1 and r = 0.01. Also shown are expected sensitivity of DECIGO (green dashed),
correlated analysis of DECIGO (blue-dot dashed), Ultimate-DECIGO (purple dashed) and correlated analysis
of ultimate-DECIGO (red dotted), from upper to lower [40].
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must be taken into account for the purpose of detecting gravitational wave background. In particular,
gravitational waves from white-dwarf binaries are considered to completely hide the primordial ones
for the frequencies f < 0.1 Hz. But for the frequency range 0.1 − 10 Hz, where DECIGO and BBO
are most sensitive, foregrounds from astrophysical sources can be separated.

From the analysis of [40], for 10−3 ≤ r ≤ 1, direct detection of the gravitational wave background
can determine the reheating temperature TR if it lies in the range TR ∼ 106 − 108 Gev.

On the other hand, in [41] the detectability of TR is studied using the Fisher information matrix
approach. This Fisher matrix is a powerful method used in cosmology to forecast the constraining
power of parameter of interest for a given survey.

The Fisher matrix generally depends on the covariance matrix of signals, i.e. the noise properties of
the survey configurations. In the case of the stochastic gravitational wave background direct detection
can be attempted by cross-correlating the output signals between detectors. The Fisher matrix Fij
depends on three ingredients: a total observational time Tobs, an overlap reduction function γij(f) and
the noise spectra SI(f). These functional forms rely on the type of interferometry that we choose.
Both DECIGO and BBO are basically designed to aim at the detection of the inflationary gravitational
waves with similar frequency ranges around 0.1− 10 Hz. It is chosen a lower cutoff of fcut = 0.1 Hz,
below which the signal may be contaminated by noise from cosmological white dwarf binaries. On the
other hand, fmax is set to fmax = ∞.

The Fisher matrix is a product of the signal-to-noise ratios, ΩGW /S, and the derivative, ∂pi lnΩGW ,
and hence depends on the parameter response, namely the parameter degeneracy as well as the
signal detectability. Fisher matrix can be calculated once the detector parameters are assigned and
theoretical predictions for ΩGW is provided.

The marginalized 1σ error is computed with the inverse of the Fisher matrix σ(pi) =
√
(F)−1

ii . We

can estimate the detectability of the reheating temperature substituing the expression of the relative
spectral density (3.27) in the Fisher matrix, given by

Fij =

(
3H2

0

10π2

)2

2Tobs
∑
(I,J)

∫ fmax

fcut

df
|γij(f)|2∂piΩGW (f)∂pjΩGW (f)

f6SI(f)Sj(f)
. (3.74)

The paramaters r and TR are taken as free and correspond to the amplitude of the spectrum and
the frequency of the reheating signature, respectevely. In the plot (Fig. 3.8) from [41] is presented
an example of future constraints. The fiducial parameters are chosen as r = 0.1 and TR = 107

Gev. Each ellipse represents the 2σ error contours expected from 1, 3 and 10 years of observation
with BBO/DECIGO. The error ellipse shrinks more for longer observations due to the fact that the
signal-to-noise ratio scales as

√
Tobs.

Another interesting question examinated in [41] is what frequency range actually carries informa-
tion about the reheating temperature, i.e. how wide of a band width is necessary to detect the knee
shape with a good accuracy. We report the plot of [41] in (Fig. 3.9) in which errors in TR are plotted
as a function of the upper frequency limit in the calculation of the Fisher matrix (fmax). From the
analysis in the paper, apparently frequencies above f ≃ 0.3 Hz do not contribute to detection of the
reheating temperature. This is because both the suppression of the signal amplitude due to reheating
and the increase of the noise spectrum intensity prevents us from reaching the spectrum informations.

Instead of choosing fixed values of r and TR, we can discuss the fiducial dependence and predict the
parameter space where the signature of reheating can be successfully detected. In (Fig. 3.10) from [41]
the marginalized error in TR(σTR) is calculated by changing r with the fixed value of TR = 107 Gev.
The error becomes smaller as the gravitational wave spectrum is detected with larger signal-to-noise
ratio (the spike in the figure is an artificial effect due to the choice of parametrization). Similarly
in (Fig. 3.11) from [41] is shown the dependence on the fiducial value of TR with the fixed value of
r = 0.1. From the plot we can see that the error becomes smaller when the signature of reheating
comes into the range of the sensitivity, which corresponds to the reheating temperature of about 106

Gev to 108 Gev. The right panel of (Fig. 3.11) shows that Ultimate-DECIGO could determine the
reheating temperature with 1% accuracy of 1.2 × 106 Gev < TR < 3.3 × 108 Gev for r = 0.1, and if
2.1×106 Gev < TR < 7×107 Gev, for r = 0.01. We also report in (Fig. 3.12) from [41] the parameter
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Figure 3.8: The 2σ confidence level contours in the TR−r plane for 1-year (dotted), 3-year (dashed) and 10-year
(solid) observation by BBO/FP-DECIGO. The fiducial parameters are set as r = 0.1 and TR = 107 GeV, which
is shown by a cross mark [41].

Figure 3.9: The 1σ margnalized errors are shown as a function of fmax, calculated assuming r = 0.1 and
TR = 107 GeV (corresponding to fR = 0.26 Hz) with 3-year observations. The best sensitivity frequency is
plotted as a vertical line [41].
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Figure 3.10: The marginalized 1σ uncertainty in TR as a function r of BBO/DECIGO (left panel) and Ultimate-
DECIGO (right panel). The fiducial value of the reheating temperature is fixed to be TR = 107 GeV. The upper
horizontal axis represents the values of ΩGW corresponded to r by (3.61) [41].

Figure 3.11: The marginalized 1σ uncertainty in TR as a function of TR for BBO/DECIGO (left panel) and
Ultimate-DECIGO (right panel). The fiducial value of the tensor-to-scalar ratio is fixed to be r = 0.1 [41].

space of r and TR, where the reheating signature is detected at greater than 2σ level (TR/σTR > 2)
with 3-year observation. It is also shown the parameter region for the detection with a signal-to-noise
ratio higher than 5 (S/N > 5), that is the criterion adopted in [40]. However, in [40] is not taken
into account the degeneracy between the parameters TR and r, given by the fact that as long as the
frequency dependence of the spectrum is measured with a good accuracy, we cannot distinguish the
spectrum with larger TR from that with smaller amplitude, i.e. with smaller r. This may cause an
underestimate of σTR .

3.4 Late-time Entropy Production

So far we have assumed that there were no late-time entropy production processes after the com-
pletion of reheating after inflation. Let us consider also the case in which some other scalar field
σ dominates the universe some time after the inflaton decays. This new particle eventually decays
releasing huge entropy. In some cases, during the radiation-dominated era after the decay of the
inflaton, the oscillating σ field can dominate over the radiation energy density. Then, the universe
enters a matter-dominated like phase due to the σ oscillation. After the σ-field decays into radiation
the universe is dominated by the radiation energy again. Such a scenario can be interesting since it
diluites all cosmological relics produced in the reheating era.
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Figure 3.12: 2σ detection of TR is shown as a blue shaded region for 3-years observations by BBO-FP-DECIGO
(left panel) and Ultimate-DECIGO (right panel). The gray area represents the region where σTR

may be
underestimated in the previous work [40], where the Fisher approach was not used. In the light blue shaded
region the inflationary gravitational wave background would be detected with a signal-to-noise ratio higher than
5 [41].

This non-standard cosmological evolution is imprinted in the present gravitational wave spectrum.
In the presence of such a late-decaying particle, the additional σ-matter dominated era suppresses
the gravitational wave amplitude for the frequencies which re-entered the horizon during or before σ
begins to dominate the universe [40]. The fitting formula for the transfer function is given by [40]

T 2
h = Ωm

(
g∗(Tin)

g∗0

)(
g∗s0

g∗s(Tin)

)4/3(
3j1(kτ0)

kτ0

)2

T 2
1 (xeq)T

2
2 (xσ)T

2
3 (xσR)T

2
2 (xRF ), (3.75)

where kσ corresponds to the wavenumber which enters the horizon at the time when σ decays into
radiation after the σ-dominated era, and it is given by

kσ = 1.7× 1014

(
g∗s(Tσ)

106.75

)1/6(
Tσ

107Gev

)
Mpc−1, (3.76)

with Tσ being the temperature of the universe at the σ decay. Before writing down kσR and kRF , we
define the diluition factor F, which represents the amount of entropy production by the decay of σ:

F ≡ s(Tσ)a
3(Tσ)

s(TR)a3(TR)
, (3.77)

where s(T ) is the entropy density at temperature T. The abundance of all dangerous cosmological
relics produced in the reheating era after inflation are diluited by this factor.

With this quantity we can define the other characteristic frequencies as kσR = kσF
2/3 and kRF =

kRF
−1/3. The third transfer function T3(x) describes the transition from the first radiation-dominated

era to the σ-dominated phase and it is given by [40]

T3(x) = 1 + 0.59x+ 0.65x2. (3.78)

For the modes kσR < k < kR, which correspond to the modes which re-enter the horizon in the
radiation dominated era before the σ domination, the energy density of the gravitational waves is
suppressed by the factor ∼ (kR/kσR)

2 = F−4/3 [44]. On the other hand, there are no effects on large
scales with the modes k < kσ.

The gravitational wave spectrum in the presence of late-time entropy production is then completely
characterized by two additional parameters: the diluition factor F and the decay temperature of σ,
Tσ. Non-negligible effects of F can affect the overall amplitude of the gravitational wave background
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Figure 3.13: Gravitational wave spectrum for the diluition factor F = 102 and F = 104. Here is set r =
0.1, TR = 109 GeV and Tσ = 1 GeV. Also shown are expected sensitivity of DECIGO (green dashed), correlated
analysis of DECIGO (blue-dot dashed), Ultimate-DECIGO (purple dashed) and correlated analysis of ultimate-
DECIGO (red dotted), from upper to lower [40].

for the modes kσR < k < kR, and hence there is a degeneracy between F and the tensor-to-scalar
ratio r when we consider the direct detection around 0.1 Hz. However, r should be determined by
CMB B-mode measurements. Thus, if future CMB experiments measure r, there does not remain
any ambiguity coming from the degeneracy between r and F . This means that if the results of direct
detection experiments deviate from the expected signal from the large scale measurements of r, there
must be an entropy production process in the early universe. In (Fig. 3.13) from [40] is plotted the
gravitational wave spectrum with F = 102 and F = 104, with r = 0.1, TR = 109 Gev and Tσ = 1 Gev.
The figure shows how the gravitational wave spectrum is affected by late-time entropy production.

If 0.1 Hz < kR(F ) < 10 Hz, both F and TR can be determined from the shape of the gravitational
wave spectrum. In the figure are shown also the future sensitivities to determine the diluition factor
F and the reheating temperature TR with fixed tensor-to-scalar ratio r, which can be measured by
CMB polarization experiments.

3.5 Blue-tilted Spectrum

Although the standard inflation model predicts a red-tilted spectrum since the tensor spectral
index nT has the so-called consistency relation nT = −r/8, a blue-tilted spectrum can be realized in
some non-standard models. There are several observational constraints on the energy density of the
stochastic gravitational waves at different frequencies given by pulsar timing, Big-Bang Nucleosyn-
thesis (BBN), interferometric GW detectors such as LIGO and VIRGO and so on. Although these
limits are far above the predictions of the standard inflationary models, a strongly blue-tilted tensor
spectrum can instead be detected. Moreover, the mechanisms that generate GW do not necessary
predict a blue-tilted spectrum over all the frequencies. The spectral index of the primordial GW
spectrum can change at some frequency.

We can use two different approaches to describe GW spectrum. In the first approach we consider
constraints on nT taking into account the suppression of the spectrum at high frequencies due to
reheating and late-entropy production, assuming that the primordial spectrum has uniform spectral
index over all frequencies. Until now we used this approach considering a fitting formula that can
reproduce the effect of the thermal history of the universe on the spectrum with a very good accuracy.

In the second approach, introduced in [42], we can consider the constraints on nT without assuming
an explicit model of the early universe. Since the shape of the GW spectrum strongly depends on
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the model assumed, in [42] a more general form of the spectrum is used such that the spectral index
changes from nT to a different value at a given frequency. In this way, we can also include the
case where the universe is dominated by a component whose equation of state differs from that of
radiation/matter component.

We first summarize observational bounds on the energy density of the stochastic GW, which are
used to obtain constraints on nT . The constraints adopted are the stringest ones from interferometric
GW detectors, pulsar timing array, and BBN. For details and references for this section see [42]. Here
we discuss the main results of the paper.

LIGO + VIRGO

From interferometric GW detectors, such as LIGO, we obtain an upper bound on the stochastic
GW given by the fact that we don’t detect them until now. It is adopted 95% C.L. upper bound from
the LIGO-Virgo collaboration [45]

ΩGWh
2 < 2.6× 10−6 [f = 41.5− 169.25 Hz], (3.79)

where h is the dimensionless Hubble parameter that parametrizes the present Hubble constant as
H0 = 100h km/s. The analysis is performed using the approximate form of the GW spectrum,
ΩGW (f) = ΩGW,α(f/100Hz)

α, where α is the local power index around the sensitive frequency ∼ 100
Hz, where (3.79) is obtained assuming α = 0.

Pulsar timig array

The millisecond pulsars are very precise clocks. Gravitational waves can be searched through the
effect of the pulse arrival timings, which currently provides the stringest constraint on the amplitude of
GW at f ∼ 10−8 Hz. We can use the bounds obtained by the North American Nanohertz Observatory
for Gravitational waves (NANOGrav) project, which gives the upper bound [46]

ΩGWh
2 < 1.1× 10−8 [f = 1/(5.54years) = 5.72× 10−9Hz], (3.80)

where GW spectrum is modeled by hc(f) = A1year(f/f1year)
β, which corresponds to ΩGW (f) =

(2π2/3H2
0 )f

2h2c(f), and A1year is well approssimated by A1year = 2.26× 10−14(5.54year/1year)β.

BBN

We can also consider contraints from Big-Bang nucleosynthesis. Primordial GW contribute to the
energy density of the universe as an extra radiation component. Such extra radiation changes the
expansion rate of the universe during BBN and affects the abundance of the light elements. The total
energy of GW, given by integrating the density parameter ΩGW (f), is therefore constrained not to
spoil BBN: ∫ f2

f1

d(ln f)ΩGW (f)h2 ≤ 5.6× 10−6(N
(upper)
eff − 3), (3.81)

where N
(upper)
eff is the upper bound on the effective number of extra radiation at the time of BBN. The

lower limit f1 is given by the frequency corresponding to the comoving horizon at the time of BBN,
and f1 = 10−10 Hz is taken. For the upper cutoff f2 = 107 Hz is taken, which corresponds to the

temperature of the universe ∼ 1015 Hz. In [42] is adopted the 95% C.L. upper limit of N
(upper)
eff = 4.65.

We illustrate how these observational bounds on ΩGW (f) can provide upper bounds to nT in
consideration of reheating and late-entropy production. Large values of nT can elude the observational
constraints if the reheating temperature is low or the amount of entropy produced at late time is large.
We discuss the results of [42]. In this paper are investigated constraints on nT for the cases of the
standard reheating and late-time entropy production scenarios, and how these constraints depend on
the parameters of the two models, in particular TR, Tσ and F .
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Figure 3.14: 2σ excluded region (colored) in the nT − TR plane for the case of the standard reheating scenario.
The tensor-to-scalar ratio is assumed to be r = 0.2 [42].

Standard reheating scenario

In the standard reheating scenario the universe enters in the matter dominated era soon after the
end of inflation, and is connected to the radiation dominated era when the temperature of the universe
becomes T = TR. In (Fig. 3.14) are reported the results of [42]. The plot shows the parameter space
ruled out by LIGO, pulsar timing and BBN in the nT−TR plane. For given nT and TR is calculated the
stochastic GW spectrum and compared with the observational bounds presented. The GW spectrum
is calculated using the fact that the power spectrum ∆2

T = ∆2
T,prim(k)T

2
T (k) can be parametrized as

∆2
T,prim(k) = AT (kref )

( k

kref

)nT

, (3.82)

with TT (k) the transfer function, AT (kref ) and nT the amplitude and the spectral index at the ref-
erence scale kref . The amplitude AT (kref ) is linked to the tensor-to-scalar ratio r through r(kref ) =
∆2
T,prim(kref )/∆

2
R,prim(kref ), with ∆2

R,prim(kref ) ≃ 2.2× 10−9 the power spectrum for the scalar per-

turbations at kref = 0.01 Mpc−1. Notice that, in the case of LIGO and pulsar timing, we find a
characteristic temperature above which the constraint on nT does not depend on the reheating tem-
perature. The reason is that the reheating temperature characterizes the frequency of the suppression
due to reheating. For a reheating temperature higher than a certain value, the suppression occurs
at frequencies higher than the frequency band of the experiments, and the observational bound on
nT is determined regardless of the effect of reheating. The BBN can put a severe constraint on nT
depending on the reheating temperature because the bound is subject to the integrated value in (3.81).
By putting together all the contraints, we see that the constraint on nT is relaxed for lower rehat-
ing temperatures. Moreover, in order not to spoil the success of BBN we require that the reheating
temperature should be larger than about 10 Mev. This implies that the spectral index nT should be
smaller than nT = 1.2 for r = 0.2.

Late-time entropy production

In the case with late-time entropy production scenario, if large entropy is produced by the decay of
another scalar field σ, the GW spectrum is further suppressed. The degree of suppression depends on
the amount of the entropy produced, which is characterized by the diluition factor F . The frequency

50



CHAPTER 3. REHEATING OBSERVABLES 3.5. BLUE-TILTED SPECTRUM

range of the suppression depends on the temperature of the universe at the end of the second reheating
Tσ. Therefore, the bound on nT depends on both F and Tσ. The reheating temperature TR is fixed
to be rather high as TR = 1015 GeV in order not to include the effect of the first reheating in the
constraint on nT , and then simple see the effect of the late-time entropy production. In (Fig. 3.15)
and (Fig. 3.16) are reported the excluded parameter space in the nT − F and nT − Tσ planes. Since
larger values of F give larger suppression of the GW spectrum, constraints from LIGO and BBN on
nT are weakened as F becomes large. On the other hand, we notice that the upper bound on nT
obtained from pulsar timing does not depend on the value of F . This is because the constraint from
pulsar timing is put at f ∼ 10−8 Hz, which corresponds to modes which entered the horizon at T ∼ 1
GeV. This involves that for the case of Tσ > 1 GeV the spectrum is suppressed at frequencies higher
than f ∼ 10−8 Hz, and then the constraint from pulsar timing is irrelevant to the value of F .

Also in this model Tσ determines the frequency of the suppression of the spectrum. However, in
contrast to the case of the standard reheating scenario, the suppression due to late-entropy production
arises in a certain frequency range, which is determined by the amount of entropy production F . Thus,
the constraints on nT from LIGO and BBN do not change depending on the value of Tσ. The values
F = 102 and 105 assumed here are not enough to reduce the GW amplitude at high frequencies and
to relax the observational bounds.

Once the parameters Tσ, F , TR and r are fixed, we can obtain an upper bound on nT (see [42]).
An interesting fact is that BBN provides a stringest upper bound on nT in most parameter space
because the reheating temperature is assumed to be very high (TR = 1015 GeV) and the spectrum
is not suppressed by reheating. Then BBN put strong constraints at very high frequencies. Instead,
LIGO is sensitive at high frequencies (∼ 100 Hz ) and, as far as Tσ < 1010 GeV, the upper bound on
nT depends on the value of F and does not be affected by Tσ. On the other hand, the pulsar timing
has sensitivity at lower frequencies, f ∼ 10−8 Hz, and when Tσ is below 0.1 GeV the suppression
becomes important at f ∼ 10−8 Hz.

Figure 3.15: 2σ excluded region (colored) in the nT − F plane for the cases of Tσ = 10−2 GeV(left) and 103

GeV (right). We assume r = 0.2 and TR = 1015 GeV [42].

3.5.1 Extension to general case

In the last part of this section we consider the most general case presented in [42]. The stochastic
GW spectrum is modeled by two parameters α and fα, such that the power index of the spectrum
changes from nT to α at a characteristic frequency fα. This approach covers a broad class of models
of the early universe. For example, one can interpret the change of the power-law beheaviour as an
effect of the change of the background evolution, which is applicable not only for reheating but also
for different models. Moreover, we can adjust parameter values to describe a particular generation
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Figure 3.16: 2σ excluded region (colored) in the nT − Tσ plane for the cases of F = 102 GeV (left) and 105

(right). We assume r = 0.2 and TR = 1015 GeV [42].

mechanism of primordial GW which does not predict a uniform spectral index over whole frequency
range.

The GW spectrum is modeled as

ΩGW (k) =


1
12

(
k
aH

)2
T 2
T (k)AT (kref )

(
k

kref

)nT

(k < kα)

1
12

(
k
aH

)2
T 2
T (k)AT (kref )

(
kα
kref

)nT
(
k
kα

)α
(k > kα)

, (3.83)

where kα is the frequency at which the power index of the spectrum changes from nT to α. The
corresponding frequency is given by fα = kα/2π. In this formula T 2

T (k) includes only T1(k) (and
not T2(k) and T3(k)), which means that only the change of the frequency dependence due to matter-
radiation equality is included. The effect of reheating and late-time entropy production is excluded
from the transfer function. This allows to treat in a more general way the change of the expansion
rate before BBN.

An important application of this approach could be in the study of the equation of state during the
reheating phase. Assume that the universe is dominated by a fluid whose equation of state parameter
is ω. In the next section we will probe that a gravitational wave which enters the horizon during this
phase has a spectral power dependence of

ΩGW ∝ k
2(3ω−1)
1+3ω . (3.84)

Therefore, when the background equation of state changes from ω to 1/3 (radiation) at the temperature
Tα, one can describe the GW spectrum by assuming α as

α =
2(3ω − 1)

1 + 3ω
+ nT , (3.85)

and fα would be the quantity determined by Tα. Moreover, this model can be applied also whenever
in some models the spectral index changes from blue-tilted one to another. This approach could be
important when we consider the change of slope of the energy density spectrum of GW during the
reheating epoch.

To have an intuitive idea of how the constraint on nT depends on the value of α and kα(fα) we
show in (Fig. 3.17) the plot in [42] of the GW spectrum (3.84). In the figure three examples of GW
spectrum are shown, considering different scenarios of the early universe. First, a blue-tilted spectrum
with nT = 0.6, which underwent the standard reheating scenario with TR = 106 GeV. Next, a scale
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invariant primordial spectrum in which the kinetic energy of a scalar field dominates the universe.
Finally, a primordial spectrum such that the model predicts a strongly blue-tilted spectrum of nT = 1
around the CMB scale, but at some later stage the situation becomes the same as the standard slow-
roll inflation. In [42] are presented also the contour plots in the fα − α plane for each observational
bound (LIGO, pulsar timing, BBN), which represent the upper bound on nT . Thus, once we know an
approximated form of the GW spectrum for some particular model, we can find the values of α and
fα for that model and read off the upper bound on nT from these plots (see the paper).

Therefore, in this section we have seen a direct application of the reheting temperature. It is found
that the suppression of the GW spectrum due to reheating can significantly relax the constraints on
the tensor spectral index nT , depending on the reheating temperature TR. Moreover, taking into
account the late-time entropy production, the constraints on nT changes depending on the amount
of the produced entropy F and the cosmic temperature at the epoch of entropy production Tσ. For
example, assuming TR = 1015 GeV, the constraints on nT from BBN, LIGO and pulsar timing are
nT < 0.43, 0.54 and 0.87 for r = 0.2 at 95% C.L., respectevely. Assuming TR = 106 GeV, instead, we
obtain nT < 0.64, 0.89, 0.87 from BBN, LIGO and pulsar timing, respectevely [42].

Figure 3.17: GW spectra modeled by α, fα [42].

3.6 Equation of State

In the last sections we focused on the determination of the reheating temperature by observing
the change of the frequency dependence of the GW spectrum.

In the toy model of reheating showed in the previous chapter we assumed that, after inflation, the
inflaton field behaves as non-relativistic matter with equation of state parameter ω = 0. Thus, since
this field still dominates the universe in this stage, the universe undergoes a matter-like era.

We suppose now, in this model, that the inflaton beheaves during this phase as a generic perfect
fluid with equation of state parameter ωre. We start rewriting the equation for the radiation during
the reheating stage,

ρ̇r + 4Hρr = Γϕρϕ. (3.86)

Considering the general beheaviour of the scale factor, we can write

a(t) = aosc

(
t

tosc

) 2
3(1+ωre)

, (3.87)

where aosc ≡ a(tosc) and tosc is the time when the inflaton starts to oscillate around the minimum of its
potential. During this stage the Hubble rate reads H = ȧ

a = 2
3(1+ωre)t

, and considering ρϕ ∼ a−3(1+ωre),
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(3.86) becomes

ρ̇r +
8

3(1 + ωre)t
ρr = Γϕρosc

(
a

aosc

)−3(1+ωre)

, (3.88)

with ρr(tosc) = 0 and ρosc =M4. Before t ≃ Γ−1
ϕ the decay of the inflaton is not efficient. Using (3.87)

we obtain (
a

aosc

)−3(1+ωre)

=

(
t

tosc

)−2

, (3.89)

and we set tosc ≃Mpl/M
2. From (3.88) the final equation to solve is

ρ̇r +
8

3(1 + ωre)t
ρr =

ΓϕM
2
pl

t2
. (3.90)

We solve this equation in the same way we did for the toy model of reheating. We write the general
solution as

ρr(t) = e−A(t)
∫ t

tosc

dt′(g(t′)eA(t
′)), (3.91)

where now A(t) is given by

A(t) =
8

3(1 + ωre)t
, (3.92)

and the integral term now reads

∫ t

tosc

dt′
ΓϕM

2
pl

t′2

(
t′

tosc

) 8
3(1+ωre)

=
ΓϕM

2
pl

t
8/3(1+ωre)
osc

∫ t

tosc

dt′ t
′ 2(1−3ωre)
3(1+ωre) . (3.93)

Solving the integral and putting all together in (3.91), we finally obtain

ρr(t) =
ΓϕM

2
pl

t

(
3(1 + ωre)

5− 3ωre

)(
1−

(
t

tosc

)− 5−3ωre
3(1+ωre)

)
. (3.94)

At t ≃ Γ−1
ϕ the decay becomes very efficient and we assume that the radiation era starts immediately.

Equating the expression for the radiation density energy and (3.94) at t ≃ Γ−1
ϕ , we obtain an equation

for the reheating temperature:

ρrad = g∗
π2

30
T 4
reh = Γ2

ϕM
2
pl

(
3(1 + ωre)

5− 3ωre

)
, (3.95)

that yields

Treh ≃ 1.32 g
−1/4
∗ (ΓϕMpl)

1/2

(
3(1 + ωre)

5− 3ωre

)1/4

. (3.96)

Thus, the reheating temperature has a dependence from the equation of state during reheating.
In general the equation of state is parametrized by a function ωre(t) for the universe during the

various stages of reheating. When inflation ends, ωre = −1/3. Assuming a massive inflaton, the
equation of state climbs to 0. During this initial stage of reheating the frequency of oscillations,
characterized by the inflaton mass, will be larger than the expansion rate. As the inflaton decays,
the decay products compose an increasing percentage of the energy density of the universe, increasing
the equation of state parameter from 0 to 1/3 at the start of radiation dominance. However, it is
estimated that during preheating (the initial stage of reheating) we have an increase of ωre from 0 to
ωre ∼ 0.2−0.3 [48]. However, the duration of this stage can be considered instantaneous in comparison
with the remaining stages of reheating. Thus, in general ωre may be rightfully treated as a constant
throughout the entire reheating era [49].
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3.6.1 GW and equation of state

We can relate the equation of state parameter ω to the tilt of the gravitational wave background
spectrum. We assume that the initial power spectrum has no tilt, i.e. ∆2

h,prim ∝ k0. Then, with this
assumption, the frequency dependence of the spectrum is determined only by the transfer function.
Therefore, from (3.61) we have ΩGW ∝ k2T 2

T (k). A gravitational wave, with initial amplitude of
hk,prim, mantains constant amplitude outside the horizon and it starts to decrease inversely propor-
tional to the scale factor when the mode re-enters the horizon. Then, we can rewrite the transfer
function as TT (k) = |hk,0|/|hk,prim| = (a0/ain)

−1, that implies ΩGW ∼ k2a2in. We know that a mode
re-enters the horizon when k = aH. Considering that the Hubble rate is given in terms of the equation
of state as H2 ∝ a−3(1+ω), we obtain ain ∝ k−2/(1+3ω). Thus, for modes which enter the horizon when
the universe has the equation of state ω, the spectrum has the frequency dependence of

ΩGW ∝ k
2(3ω−1)
3ω+1 . (3.97)

If we parametrize the amplitude of the gravitational wave background spectrum, normalizing at f = F ,
it reads

ΩGW (f) = ΩGW,F (f/F )
2(3ω−1)
3ω+1 . (3.98)

Thus, from this equation we can easily see the change of slope of the spectrum at the reheating
temperature in the case of the transition from the matter-like era after inflation to the radiation era.
Indeed, matter-dominated era (ω = 0) and radiation-dominated era (ω = 1/3) corresponds to the
frequency dependence f−2, f0, respectevely [41].

From the analysis of [41] results that the value of the tilt is more sensitive to the change of ω
when the fiducial model is ω ∼ 0 than when ω has larger value. Then, it is easier for direct detection
experiments distinguish the model with smaller value of ω.

3.7 Informations from CMB

Another possibility for extracting informations about reheating is to consider the expansion history
of the universe between the time the observable CMB scales crossed outside the Hubble radius during
inflation and the time they later re-entered. We can start by recapping the cosmic expansion history.

At early times the inflaton field ϕ drives the quasi-de-Sitter stage for Nk e-folds of expansion,
while the reheating comoving horizon scale decreases as ∼ a−1. The reheating phase starts when the
accelerated expansion ends and the comoving horizon starts to increase. After another Nre e-folds of
expansion the energy in the inflaton field has been completely dissipated into a hot plasma with a
reheating temperature Tre. After that, the universe expands under radiation domination for another
NRD e-folds before it makes the transition to the matter-dominated era. Thus, the number of e-folds
between the time that the current comoving horizon scale exited the horizon during inflation and the
end of inflation must be related to the number of e-folds between the end of inflation and today. Then,
studying the expansion history of the universe we can trace the diluition of the energy density (Fig.
3.18) [50].

In this section we want find a connection between the CMB contraints on the primordial power
spectrum (which would correspond to a prediction for Nk) for a given inflationary model, and reheating
parameters such as Nre (the duration of reheating). Moreover, for a given single-field inflationary
model and for a given equation of state during reheating, we may use the CMB data to place constraints
on the reheating temperature. We derive expressions for the reheating parameters (Nre, Tre and ωre)
in terms of a set of physical quantities that are specific to inflation and to the cosmological evolution
subsequent to reheating (for reference see [49] and [50]).

Consider a single-field inflationary model with background field equation ϕ̈+3Hϕ̇+V ′ = 0. First,
we derive an expression for Nre. Assuming a constant equation of state during reheating, the density
energy of the universe beheaves as ρ ∼ a−3(1+ωre). We write

ρend
ρre

=

(
aend
are

)−3(1+ωre)

, (3.99)
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Figure 3.18: The evolution of the comoving Hubble scale 1/aH. The reheating phase connects the inflationary
phase and the radiation era. Compared to instantaneous reheating (thick dotted curve), a reheating equation of
state parameter ωre < 1/3 implies more post-inflationary e-folds of expansion. Fewer post-inflationary e-folds
requires ωre > 1/3 (thin dotted curve) [50].

where the subscripts end and re denote, respectevely, the end of inflation and the end of reheating.
In terms of e-foldings, Nre = ln(are/aend), we obtain

Nre =
1

3(1 + ωre)
ln

(
ρend
ρre

)
. (3.100)

For example, consider for the inflaton power-law potentials

V (ϕ) =
1

2
m4−αϕα, (3.101)

with power-law α and mass parameter m. We can determine the number of e-folds Nk from the time
that the field value is ϕk until the end of inflation ϕend:

Nk =

∫ tend

tk

Hdt =

∫ ϕend

ϕk

H

ϕ̇
dϕ. (3.102)

Using the equation of motion ϕ̇ ≃ −V ′(ϕ)/3H and H2 ≃ (8π/3M2
pl)V (ϕ) during inflation, we obtain

Nk = −
∫ ϕend

ϕk

(
8πϕ

M2
plα

)
dϕ =

ϕ2k − ϕ2end
2αM2

pl

≃
ϕ2k

2αM2
pl

, (3.103)

where we have assumed that the field value at the end of inflation ϕend is small compared to that
during the slow-roll.

For this model we can find also a simple relation for the slow-roll parameters

ϵ ≃
M2
pl

2

(
V ′(ϕ)

V (ϕ)

)2

, η ≃M2
pl

(
V ′′

V

)
. (3.104)

Using the relation (3.103), the slow-roll parameters can be simply rewritten in this model as

ϵk =
α

4Nk
ηk =

α− 1

2Nk
, (3.105)
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where they are evaluated at the reference scale k. Finally, we obtain a simple relation also for the
spectral tilt at the scale k:

ns − 1 = −6ϵ+ 2η = −α+ 2

2Nk
. (3.106)

In Cosmology we observe perturbation modes on scales that are comparable to that of the horizon.
For reference scale we choose the pivot scale at which Planck determines ns, k = 0.05 Mpc−1. The
comoving Hubble scale akHk = k, when this mode exited the horizon, can be related to that of the
present time by means

k

a0H0
=

ak
aend

aend
are

are
aeq

aeqHeq

a0H0

Hk

Heq
, (3.107)

where quantities with subscript k are evaluated at the time of the horizon exit. Same thing for the
other subscripts: end of inflation (end), end of reheating (re), radiation-matter equality (eq) and the
present time (0). Then, we use eNk = aend/ak, e

Nre = are/aend and eNRD = aeq/are to obtain a
constraint on the total amount of expansion,

ln

(
k

a0H0

)
= −Nk −Nre −NRD + ln

(
aeqHeq

a0H0

)
+ ln

(
Hk

Heq

)
. (3.108)

To solve this equation we first write an expression for Hk as a function of ns. Using the definition of
the tensor-to-scalar ratio r = Ph/Pζ , with Ph = (2H2)/(π2M2

pl) and Pζ = As at the pivot scale,

rk =
2H2

k

π2M2
plAs

. (3.109)

Using the consistency relation r = 16ϵ, we obtain

Hk ≃ πMpl

√
8Asϵk. (3.110)

We can then express Hk in terms of the spectral tilt ns, the power-law index α and As, using (3.106)
and (3.105). The expression for Hk becomes

Hk = πMpl

√
2Asα(1− ns)

α+ 2
. (3.111)

The energy density at the end of reheating determines the reheating temperature through ρre =
(π2/30)greT

4
re. The subsequent expansion is mainly driven by hot radiation, except for very recently

non-relativistic matter and dark energy. Thus, for semplicity, we assume that no immense entropy
production occurs after Tre. Under this assumption the reheating entropy is preserved in the CMB-
neutrino background today, and leads to the relation

gs,reT
3
rea

3
re = g0sT

3
0 a

3
0, (3.112)

from which

gs,reT
3
re =

(
a0
are

)3(
2T 3

0 + 6 · 7
8
· T 3

ν0

)
, (3.113)

where T0 = 2.725 K is the present CMB temperature, and Tν,0 = (4/11)1/3 T0 is the neutrino temper-
ature. gre is the effective number of degrees of freedom at the end of reheating. From (3.113) we can
derive a relation between today CMB-temperature T0 and the reheating temperature Tre:

Tre
T0

=

(
43

11gs,re

)1/3
a0
aeq

aeq
are

. (3.114)

Using e−NRD = are/aeq, we rewrite the reheating temperature as

Tre = T0

(
43

11gs,re

)1/3(
a0
aeq

)
eNRD . (3.115)
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We also rewrite a0/aeq using (3.107),

a0
aeq

=
a0H0

k

ak
aend

aend
are

are
aeq

Heq

H0

Hk

Heq
, (3.116)

that leads
a0
aeq

=
a0Hk

k
e−Nke−Nree−NRD . (3.117)

With this expression for a0/aeq, we can finally rewrite the reheating temperature as

Tre = T0

(
43

11gs,re

)1/3(
a0Hk

k

)
e−Nke−Nre . (3.118)

From this relation we see that larger values of Nre corresponds to smaller Tre and viceversa. In other
words, quicker and more efficiently reheating takes place, larger becomes the reheating temperature.

We use now the fact that, at the end of inflation, the equation of state has to be ωend = −1/3
to stop the exponential quasi-de-Sitter expansion (ωinf ≃ −1). At this time then we have that the
energy density and the pressure of the inflaton read

ρend =
1

2
ϕ̇2 + Vend(ϕ), Pend =

1

2
ϕ̇2 − Vend(ϕ), (3.119)

with the equation of state Pend = ωend ρend = −(1/3)ρend, and the inflaton potential evaluated at the
end of inflation. Using the equation of state at the end of inflation and these expressions, we obtain
−1

3ρend =
1
2 ϕ̇

2 − Vend. Using also 1
2 ϕ̇

2 = ρend − Vend, we obtain the simple relation

ρend =
3

2
Vend. (3.120)

Plugging this into Nre =
1

3(1+ωre)
ln(ρend/ρre), Nre becomes

Nre =
1

3(1 + ωre)
ln

(
3Vend
2ρre

)
=

1

3(1 + ωre)
ln

(
30 · 3

2Vend

π2greT 4
re

)
. (3.121)

Finally, using the expression found for the reheating temperature (3.118), it reads

Nre =
4

3(1 + ωre)

[
1

4
ln

(
45

π2gre

)
+ ln

(
V

1/4
end

Hk

)
+

1

3
ln

(
11gre
43

)
+ ln

(
k

a0T0

)
+Nk +Nre

]
. (3.122)

Solving this in terms of Nre, assuming ωre ̸= 1/3, we find

Nre =
4

3(1− ωre)

[
− 1

4
ln

(
45

π2gre

)
− ln

(
V

1/4
end

Hk

)
− 1

3
ln

(
11gre
43

)
− ln

(
k

a0T0

)
−Nk

]
. (3.123)

The second and the last terms in the right part of this equation depend on the specific inflationary
model, since Vend is the potential of the inflaton evaluated at the end of inflation, and Nk is the number
of e-folds between the pivot scale k crosses outside the Hubble radius and the time when inflation ends.
Assuming gre ≃ 100 and using Planck’s pivot scale of 0.05 Mpc−1, one obtains a simplified expression
for Nre, without specifying a particular inflationary model:

Nre =
4

(1− 3ωre)

[
61.6− ln

(
V

1/4
end

Hk

)
−Nk

]
. (3.124)

Moreover, plugging this equation into (3.118), we can find another expression for the reheating tem-
perature,

Tre =

[(
43

11gre

)1/3
a0T0
k

Hke
−Nk

[45Vend
π2gre

]− 1
3(1+ωre)

] 3(1+ωre)
3ωre−1

. (3.125)
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The results obtained for Nre in (3.124) and (3.123) are valid only if ωre ̸= 1/3. Indeed, if ωre = 1/3
in (3.123), Nre cancels from both sides of the equation. Assuming gre = 100 and Planck’s pivot scale,
one finds [49]

61.6 = ln

(
V

1/4
end

Hk

)
+Nk. (3.126)

The issue is that we are defining the start of radiation dominance as the moment in which ωre = 1/3.
If ωre is already equal to 1/3 during the reheating phase, then there is ambiguity in differentiating the
two regimes. This implies that for ωre = 1/3 is not possible to derive a prediction for Nre or Tre but,
instead, for a particular inflation model, one finds a prediction for ns.

Going back to the inflaton potential V (ϕ) = 1
2m

4−αϕα, we have found the expression for Nk =
α+2

2(1−ns)
, Hk = πMpl

(4πAs(1−ns)
α+2

)1/2
in terms of α, ns and As. We finally compute also Vend in terms

of ns and As. To find Vend we start from the expression for Hk in terms of the potential

Hk ≃
8π

3M2
pl

V (ϕk) =
8π

3M2
pl

1

2
m4−αϕαk , (3.127)

from whichm4−α ≃ 6M2
plHk

8πϕαk
. On the other hand, Vend =

1
2m

4−αϕαend. Substituing in Vend the expression

found for m4−α, we obtain

Vend = 3M2
plHk

(ϕend
ϕk

)α
. (3.128)

The value of the field at the end of inflation is computed imposing the slow-roll condition ϵ = 1. From
(3.105) we have that ϵend ≃ 1 implies α = 4N = 4ϕ2end/2α, that yields

ϕend ≃
αMpl√

2
. (3.129)

Using also (3.106),

ϕ2k = 2αM2
plNk = 2αM2

pl

α+ 2

2(1− ns)
, (3.130)

and, finally considering also the expression for Hk (3.111), Vend reads

Vend = 6π2M4
plAs(1− ns)

(
α(1− ns)

2(α+ 2)

)
. (3.131)

Thus Nk, Hk and Vend are all expressed as functions only of α, ns and As. One can then plot Nre

or Tre as a function of ns for some fixed values of ωre and α. We consider ns = 0.9682 ± 0.0062 and
Planck’s central value As = 2.196× 10−9. Moreover, in general once the form of the inflaton potential
is specified for a given model, one can express Vend as a function of model parameters calculated at the
pivot scale. One can also use Vend to derive Nre and Tre as a function of inflationary model parameters
using the equations found in this section [49].

3.7.1 Results

We report the results of [49] and [50]. In (Fig. 3.19) from [49] are computedNre and Tre as functions
of ns−1 for power-law potentials with α = 2/3, 1, 2, 4. The results indicate that the quadratic potential
α = 2 implies a prolonged reheating epoch for the central value ns ≃ 0.96 and canonical reheating
(ωre = 0). It is required a reheating temperature Tre ≃ 106, and a number Nre ≃ 30 of e-folds in this
case. Instead, a scalar tilt bluer than 0.96 requires smaller Nre and higher reheating temperature.
In [50] is derived from numerical analysis a relation between the reheat temperature Tre and the scalar
spectral index ns, given by log10(Tre/10

6GeV ) ≃ 2000(ns − 0.96). From this formula we see that an
higher reheat temperature Tre implies a larger ns. If Tre is considerably above the electroweak scale,
then ns will have to be larger than its central value. For example, if reheating was nearly instantaneous
and set Tre ≃ 1016 GeV, as may required by GUT-scale baryogenesis models, then quadratic inflation
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Figure 3.19: Plots of Nre and Tre, the length of reheating and the temperature at the end of reheating,
respectively, for polynomial potentials with exponent α. The solid red line corresponds to ωre = −1/3, the
dashed green line to ωre = 0, the dotted blue line to ωre = 2/3, and the dot-dashed black line to ωre = 1. The
pink shaded region corresponds to the 1σ bounds on ns from Planck. The purple shaded region corresponds to
the 1σ bounds of a further CMB experiment with sensitivity 10−3, using the same central ns value as Planck.
Temperatures below the dark green shaded region are ruled out by BBN. The light green shaded region is below
the electroweak scale, assumed 100 GeV for reference. This region is not disallowed but would be interesting in
the context of baryogenesis [49].

requires ns ≃ 0.965 (taking k = 0.05Mpc−1 used by Planck. This value increase to ns ≃ 0.967 for the
WMAP pivot scale k = 0.02Mpc−1 ).

For models with smaller power-law indeces (α = 2/3, 1) canonical reheating is too efficient in diluit-
ing the energy density if ns falls within its 1σ error range. These types of model (axion-monodromy
models), unless ns is above the current 1σ upper limit, require some exotic mechanism of reheating,
beyond that in the canonical scenario. On the other hand, models with larger power-law potentials
indeces (α = 3, 4), require ωre > 1/3 (irrealistic considering that this would mean a diluition of energy
density faster than that occurs during the radiation epoch). Thus, also in these models reheating
require some non-canonical picture, unless ns is near the lower limit of the current 2σ range.

In conclusion, the analysis suggests that the power-law inflationary models, with α = 2, are the
most compatible with the simplest canonical reheating scenario. The current data then do seem to
favor a simple quadratic inflaton potential if a simple reheating scenario is assumed [49].

In [49] is studied, with the approach discussed in this section, a broad range for the equation of
state parameter, −1/3 ≤ ωre ≤ 1, with the corresponding limits on CMB observables for different
inflationary models. From the analysis comes out that a ϕ2 potential would favor relatively large
values of r. For example, a reheating model with ωre ≤ 1 imples r ≥ 0.11. On the other hand, to
allow a reheating model with ωre ≤ 1/3, which is very probable, the tensor-to-scalar ratio requires to
be r ≥ 0.14. For natural inflation, considered in the previous chapter, the paper finds that Planck’s
2σ bound on ns favors a tensor-to-scalar ratio r ≥ 0.05 for ωre ≤ 1/3.

3.8 Bayesian approach

We end this chapter considering the Bayesian approach to have informations about reheating using
CMB. So far, the contraints on the reheating temperature and the reheating energy scale are not so
numerous. The reheating temperature should be less than 1016 GeV, and also should proceed before
BBN implying Treh ≥ 10 MeV. Thus, the reheating temperature is poorly constrained, in particular
its lower limit.

In [51] are derived constraints on the reheating phase making use of Bayesian techniques and
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utilizing a full numerical approach. This approach has several advantages. First, the method remains
accurate when the slow-roll approximation breaks down, as one expects near the end of inflation.
Second, it permits a new treatment of reheating. Indeed, instead of viewing the reheating parameters
as a nuisance collection of parameters, they can easily be included in the Bayesian data analysis
process. Third, the evolution of cosmological perturbations in the hot Big-Bang theory already relies
on numerical codes. Treating perturbations during inflation in the same way allows to automatize
the entire procedure and easily extends to other scenarios. Fourth, the numerical approach allows us
to solve the problem of the prior choice. Indeed, from a physical point of view, our prior knowledge
is on the inflationary theory and not the shape of the primordial power-spectra which is actually a
model prediction. Therefore, it is better and easier to choose prior probability distributions directly
on model parameters, such as the power index of the large-field potentials [51].

In this section we only outline the main points. For a complete treatment see [51], where the
Bayesian approach was first introduce to study reheating, [52] which is based on Planck 2013 data,
and [53] based on Planck 2015 data (using a better analysis).

The evolution of scalar density perturbation is described by the Mukhanov-Sasaki variable vk, seen
in the first chapter (in accordance with the literature, we renamed Qk with vk ). The equation (1.90)
can be rewritten in terms of the slow-roll parameter ϵ:

v′′k +

[
k2 − (a

√
ϵ)′′

a
√
ϵ

]
vk = 0. (3.132)

The Mukhanov-Sasaki variable vk is related to the curvature pertubation ζk through the following
relation

ζk =
1

Mpl

vk

a
√
2ϵ
, (3.133)

from which we derive the power spectrum of ζk,

Pζk ≡ k3

2π2
|ζk|2 =

k3

4π2M2
pl

∣∣∣∣∣ vka√ϵ
∣∣∣∣∣
2

. (3.134)

To obtain the power sperctrum Pζ(k) one has to integrate (3.132) with initial conditions given by the
Bunch-Davis vacuum

lim
k/H→+∞

vk =
1√
2k
e−ikτ , (3.135)

since, at the beginning of inflation, all the modes of astrophysical interest today were much smaller
than the Hubble radius.

As said in the first chapter, the curvature perturbation ζk is directly linked to CMB anisotropies
and it is a conserved quantity on large scales. This means that one can use it to propagate the
inflationary spectrum from the end of inflation to the post-inflationary era. In other words, the
power spectrum is not affected by the post-inflationary evolution, in particular by the reheating stage.
However, in the previous section we have seen that the relation between the physical scales at present
and during inflation depends on the properties of the reheating epoch. Thus, in order to calibrate the
inflationary spectrum with respect to the physical scales of astrophysical interest today, we need to
know how reheating proceed.

We can express (3.132) in terms of the number of e-folds during inflation, N = ln(a/ain), where
ain is the value of the scale factor at the beginning of inflation. It can be written as

d2vk
dN2

+
1

H

dH

dN

dvk
dN

+

[(
k

H

)2

− Us(N)

]
vk = 0, (3.136)

where Us(N) is an effective potential for the perturbations which depends on the scale factor and its
derivative only. All the terms in the equation, but k/H, are specified by the inflationary background
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evolution. Given a physical scale today, say k/anow = 0.05 Mpc−1, we need to express k/H in terms
of k/anow and quantities defined during inflation. We can find then the relation

k

H
=

Γk
H(N)

eNT e−N , (3.137)

where NT is the total number of e-folds during inflation. In [51] was defined Γk as

Γk ≡
k

anow
(1 + znow) =

k

anow

(
ρend
Ωγρcr

)1/4

R−1
rad, (3.138)

where in the paper was introduced the new parameter Rrad. This parameter plays a crucial role in
this treatment. ρend is the energy density at the end of inflation, ρcr is the present day critical energy
density and Ωγ ≃ 2.471 × 10−5h−2 is the density parameter of radiation today. The parameter Γk
depends on the whole post-inflationary evolution of the universe through zend. After inflation only
the reheating phase is poorly known and represents the main source of uncertainty for the inflationary
predictions.

In order to find the physical interpretation of Rrad, assume that the reheating phase is dominated by
a conserved effective fluid with energy density ρ and pressure P , with the equation of state parameter
ωre. We can define the energy density during reheating as

ρ(N) = ρend exp

{
−3

∫ N

NT

[1 + ωre(n)]dn

}
. (3.139)

From this expression we can derive

lnRrad =
∆N

4
(−1 + 3ω̄re), (3.140)

where
∆N ≡ Nre −NT (3.141)

is the total number of e-folds during reheating, being Nre the number of e-folds at which reheating is
completed and the radiation dominated era begins. The parameter ω̄re denotes the mean equation of
state parameter

ω̄re ≡
1

∆N

∫ Nre

NT

ωre(n)dn. (3.142)

Then, the parameter Rrad only depends on what happens during reheating. In the special case in
which ω̄re = 1/3, lnRrad = 0 and, in this case, the reheating stage cannot be distinguished from the
subsequent radiation dominated era and cannot affect the inflationary predictions. This also implies
Rrad = 1.

From (3.139) lnRrad can be put in the form

lnRrad =
1− 3ω̄re

12(1 + ω̄re)
ln

(
ρre
ρend

)
, (3.143)

where ρre is the energy density at the end of the reheating era.
We can summarise the discussion. In order to calculate the power spectrum of the inflationary

cosmological perturbations, we need to solve (3.136). In this formula the only term not known during
inflation is k/H, which depends on the parameter Rrad that is the only parameter that contains
informations about the reheating stage. More precisely, it depends on the energy density at the end
of reheating, ρre, and on the mean equation of state ω̄re.

Having discussed the physical interpretation of Rrad, we can explain how it is constrained from
CMB observations. Rrad can be expressed in terms of quantities defined at the Hubble horizon crossing,

lnRrad = NT −N∗ +N0 −
1

4
ln

(
H2

∗
M2
plϵ∗

)
+

1

4

(
3

ϵ∗

Vend
V∗

3− ϵ∗
3− ϵend

)
, (3.144)
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where it is defined

N0 ≡ ln

(
k/anow

ρ
1/4
γ

)
. (3.145)

In (3.144) N∗ is the e-folds number at which the scale k/anow crossed out the Hubble radius during
inflation, and same thing for the other quantities. In order to be consistent with the standard cos-
mological model, lnRrad cannot take any arbitrary values. One shoud have ω̄re < 1 to respect the
positivity energy conditions of General Relativity, and ω̄re > −1/3 by the fact that reheating is not
inflation. Moreover, reheating should occur after inflation and before BBN, i.e. ρnuc < ρre < ρend,
with

ρnuc ≡ (104MeV )4 (3.146)

From this we can directly explicitily (3.144) (see [51]).

The equation (3.144) can be used in two manners. The first way is to assume something about
Rrad and derive the corresponding range of variations of the slow-roll predictions N∗ and ϵ(N∗). In
other words, this determines how the inflationary predictions depend on the details of the reheating
era. This approach is the mostly used in the literature to compare inflationary predictions to the
current contraints on the slow-roll parameters ϵ∗ (or spectral index and tensor-to-scalar ratio). But,
as pointed out in the paper, this is made by choosing a value of N∗, which is directly linked to Rrad,
which itself depends on the energy density at which reheating ends, and on the equation of state
during reheating. The range of variation for N∗ then can only be known once a reheating model is
assumed. Without such assumption, an assumed value of N∗ can cause inconsistencies with standard
cosmology (for example reheating occurring after BBN, or at energy densities higher than ρend).

The second approach, introduced in the [51], consists of considering Rrad as an observable model
parameter and includying it in the data analysis using a Bayesian approach. If we have specified a
model, and then a potential, Vend is explicitily known. CMB data put a limit on H2

∗/ϵ∗, through the
amplitude of the anisotropies, as well as on ϵ∗ from the tensor-to-scalar ratio. One can expects CMB
data to also give some informations on Rrad. Therefore, to discuss how well CMB data constraint a
set of inflationary models is to perform a Bayesian analysis of the data given the model parameters,
including reheating. This is different than constraining the slow-roll parameters, or the spectral index
and the tensor-to-scalar ratio, which only encode the shape of the primordial power spectra and
know nothing about reheating (while a model of inflation does). The numerical exact integration
method consists of the computation of the primordial power spectra assuming only General Relativity
and linear perturbation theory. Therefore, the only model parameters are the ones appearing in the
inflaton potential together with the reheating parameters Rrad. In [51] is performed data analysis for
both large and small field models. It is showed that CMB data restrict the a priori possible values of
∆N and ω̄re

In [52] and [53] the analysis are computed with the Planck data. In these papers are derived
the posterior probabilities of the reheating parameters associated with almost 200 inflationary models
taken from Encyclopedia Inflationaris [54]. Such a number is representative of all the single-field
slow-roll models proposed (until 2015). This analysis allows to obtain generic conclusions and new
constraints on the inflationary reheating within the slow-roll.

Performing a CMB data analysis within one model of inflation allows one to infer, among others, the
marginalized posterior probability distribution P (lnRre|D) for the parameter Rre defined as Rre =

Rrad (ρ
1/4
end/Mpl), under the dataset D. Considering that reheating should occur after inflation and

before BBN, and the conditions seen on the equation of state parameter −1/3 < ω̄re < 1, one derives

−46 < lnRreh < 15 +
1

3
ln

(
ρend
M4
pl

)
. (3.147)

These bounds define a flat prior probability distribution π(lnRreh). The data are constraining the
reheating epoch as soon as the posterior P is peaked compared to the prior π. Since the simple ratio of
standard deviations wastes some information, in [53] is used the Kullback-Leibler divergence between
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Figure 3.20: Probability distributions (normalized to their maximum) for the rescaled reheating parameter Rreh

associated with two of the 200 models analyzed: loop inflation on the left (LI) and supergravity brane inflation
on the right (SBI) [ [55]]. The black curve corresponds to the prior (3.147) and is not exactly flat since the
upper bound of (3.147) is slightly model dependent. The marginalized posterior obtained from Planck 2013
data is displayed in blue and is to be compared to the more constraining posterior obtained from the Planck
2015 with BICEP/KECK (red curve) [53].

the prior distribution π and the posterior P,

DKL =

∫
P (lnRreh|D) ln

[
P (lnRreh)

π(lnRreh)

]
d lnRreh, (3.148)

which is a measure of the amount of information provided by the data D about lnRreh. In order
to perform the CMB data analysis of the almost 200 slow-roll inflationary models, [53] considered
an effective likelihood Leff depending only by the slow-roll parameters (P∗, ϵi∗). This likelihood is
obtained by marginalitation of the joint Planck 2015 and BICEP2/KECK likelihood over all the other
parameters θiac, that corresponds to the instrumental, astrophysical and cosmological parameters.

The effective likelihood is defined as

Leff (P∗, ϵi∗) ≡
∫
P (D|θiac, P∗, ϵi∗)π(θiac)dθiac. (3.149)

Within a given slow-roll model of inflation M, with theoretical parameters θinf , the quantities P∗ and
ϵi∗ are explicit function of θinf and, most importantly of lnRreh. Thus, from Bayes’ theorem, the
posterior on lnRreh is given by

P (lnRreh|D) =
π(lnRreh)

P (D|M)
×
∫

L[P∗(θinf , lnRreh), ϵi∗(θinf , lnRreh)]π(θinf )dθinf , (3.150)

where P (D|M) is the global likelihood, which is proportional to the Bayesian evidence P (M|D) =
P (D|M)π(M) of the model M to explain the data D.

To fix better the idea in (Fig. 3.20) is reported the plot of [53], in which are represented the
posteriors of lnRreh for two particular models: loop inflation and supergravity brane inflation using
both the Planck 2013 and 2015 data. From the figure we can see the gain of information between
these two data sets as well as the overall constraining power of CMB data on reheating. Of course, for
other models Mi, the posteriors on lnRreh are different and may be peaked over large or small values,
or not constrained at all.

We show in (Fig. 3.21) also the main plot of [53]. In the plot each model is represented by a circle
in the plane (B, DKL), where B is the Bayes’ factor normalized to the best model, obtained from the
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global likelihoods by

B ≡ P (Mi|D)

supj [P (Mj |D)]
. (3.151)

Most of the models having large Bayes factor are concentrated around values DKL ≤ 1, whereas
disfavored models have DKL > 2.5. This indicates how good a model fits the data. In the paper it is
calculated also the average value of DKL in the space of all models for Planck 2013 and Planck 2015
data, with

< DKL >
∑
i

P (Mi|D)DKL(Mi). (3.152)

This value is weighted by the Bayesian evidence, namely the probability of a model to explain the data.
Disfavored models weight less than favored models. The authors estimate < DKL >= 0.82± 0.26 for
Planck 2015 and < DKL >= 0.55 ± 0.14. This leads a 40% improvement in information gain from
Planck 2015 compared to Planck 2013.
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Figure 3.21: Information gain DKL in (bits) given by Planck 2013 (left panel) and Planck 2015 with BI-
CEP2/KECK (right panel) about the rescaled reheating parameter lnRreh as a function of the Bayesian ev-
idence. Each circle represents one of the 200 models of the Encyclopedia Inflationaris collection whose color
traces the mean value of lnRreh. The yellow band represents the one-sigma deviation around the mean value.
For Planck 2015 and BICEP2/KECK, one gets < DKL >= 0.82± 0.13. This corresponds to 40% improvement
compared to Planck 2013 [53].
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Chapter 4

Preheating

According to the theory of inflation, almost all elementary particles populating the universe are
created during the reheating phase. In the previous chapters we introduced toy models of reheating
that show the main idea. After inflation the inflaton oscillates near the minimum of its effective
potential producing particles that interact with each other and come to a state of thermal equilibrium
at some reheating temperature Tr. The process completes when all (or almost all) the energy of the
classical scalar field ϕ transfers to the thermal energy of the particles created in the process.

A perturbative model of reheating is possible as long as the couplings are sufficiently small. How-
ever, the particle production from a coherently oscillating field for a wide range of couplings occurs
in a non-perturbative regime of parametric excitation, called parametric resonance. In fact, in a large
part of inflationary models the first stages of reheating occur in a regime of a broad parametric res-
onance. This initial stage of reheating is called preheating. A complete and analytical treatment of
preheating with parametric resonance after chaotic inflation was introduced by Kofman, Linde and
Starobinsky in [56]. During preheating the energy transfers from the inflaton field to other bose fields
and particle production is extremely efficient. From the analysis in [56] comes out that reheating
never completes at the stage of parametric resonance. Instead, the resonance becomes narrow and
inefficient, and the final stages of decay of the inflaton can be described by a perturbative (elemen-
tary) theory of reheating. During preheating we have a copious particle production that occurs far
away from thermal equilibrium. The energy of the inflaton zero mode is transferred to particles in an
out-of-equilibrium state with very large occupation numbers within a very short time interval of about
10−35 seconds [58]. One can expects that the initial conditions for the subsequent thermal history
of the universe are settled during preheating. Moreover, a precise understanding of preheating and
how thermal equilibrium is reached is crucial since partial thermal distributions can be responsible for
cosmological baryo-leptogenesis, the possible creation of dangerous cosmological relics etc.

The most studied inflationary scenarios in which GW production is investigated during reheating
are chaotic inflation and hybrid inflation. In the latter model preheating develops in a slightly different
way compared to the first, with a mechanism called tachyonic preheating. However, in both cases the
process of gravitational waves production is essentially the same.

We start the discussion about preheating reviewing the Kofman-Linde-Starobinsky model in [56].
We will discuss the main points, see the paper for further details and references. For other references
about preheating see [59], [57], [19].

After preheating at the end of chaotic inflation scenario, we will discuss the tachyonic preheating
after hybrid inflation and other important models discussed in the literature.

4.1 Parametric Resonance Model

4.1.1 Elementary reheating

We start considering a basic model that describes the interaction between the inflaton scalar field
ϕ and a scalar field χ and a spinor field ψ:

L =
1

2
∂µϕ∂

µϕ− V (ϕ) +
1

2
∂µχ∂

µχ− 1

2
m2
χχ

2 + ψ̄(iγµ∂µ −mψ)ψ − 1

2
g2ϕ2χ2 − hψ̄ψϕ, (4.1)
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where g, h are small coupling constants, and V (ϕ) is the effective potential of the field ϕ.

During inflation the dynamics is leaded by the first two terms of the lagrangian. Consider the
Klein-Gordon equation for the inflaton field, ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0. For sufficiently large initial value
of the field, the friction term 3Ḣϕ dominates over ϕ̈ and the potential term dominates over the kinetic
term. In such a stage the universe expands quasi-exponentially. In the simplest model of chaotic
inflation, V (ϕ) = 1

2mϕ
2, inflation occurs at ϕ > Mpl. With a decrease of the field ϕ below Mpl, the

friction term becomes less and less important and inflation terminates at ϕ ∼Mpl/2.

For the model (4.1) we consider first, for generality, the case in which the effective potential V (ϕ)
has a minimum at ϕ = v. Near the minimum the effective potential is quadratic with respect to the
field ϕ, V (ϕ) ∼ 1

2m
2(ϕ− v)2, with m2 the effective mass squared of the inflaton field ϕ. Suppose that

we have a spontaneous symmetry breaking (SSB) of the parity symmetry ϕ → −ϕ. In this case, we
can expand the inflaton field around the minimum v, ϕ(x) = v + h(x). Substituing this expansion in
(4.1) and renaming h(x) with ϕ(x), the lagrangian becomes

L =
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2− 1

2
∂µχ∂

µχ− 1

2
(m2

χ+g
2σ2)χ2+ ψ̄(iγµ∂µ−mψ−hv)ψ−hψ̄ψϕ−g2vϕχ2. (4.2)

After SSB we obtain then a correction for the effective mass of the field χ, m2
χ → m2

χ + g2v2, a
correction for the effective mass of ψ, mψ → mψ + hv, and a new term in the lagrangian, −g2vϕχ2.
Hereafter we rename m2

χ and mψ with the new effective masses after SSB. Moreover, we consider the
case m ≫ mχ,mψ with mχ,mψ after the SSB, and we assume that after inflation H ≪ m. The last
condition is always satisfied during the reheating stage.

The energy density of the oscillating inflaton field after the SSB is ρϕ = 1
2 ϕ̇

2 + 1
2m

2ϕ2. Consider
the field ϕ oscillating around ϕ = 0 with frequency k = m. A homogeneous scalar field oscillating with
frequency m can be considered as a coherent wave of ϕ-particles with zero momenta and with particle
density nϕ = ρϕ/m. This means that nϕ oscillators with the same frequency m that oscillate with the
same phase can be described as a single homogeneous wave ϕ(t). If we consider time intervals larger
than the typical oscillation time m−1, the energy density of the oscillating field ρϕ and the number
density of the particles nϕ can be related to the amplitude of the inflaton Φ, with ρϕ = 1

2m
2Φ2 and

nϕ = 1
2mΦ2.

We consider now the effects related to the expansion of the universe and to particle production.
The equation of motion for the inflaton field, considering a decay rate Γ and a Hubble constant H, is

ϕ̈+ (3H + Γ)ϕ̇+m2ϕ = 0. (4.3)

In particular, the probability of decay of a ϕ-particle into a pair of scalar χ-particles or spinor ψ-
particles for m≫ mχ,mψ is given by [56]

Γ(ϕ→ χχ) =
g4v2

8πm
, Γ(ϕ→ ψψ) =

h2m

8π
. (4.4)

Solving the equation of motion (4.3), assuming H constant, we obtain the solution

ϕ(t) = ϕ0 exp
[
− 1

2
(3H + Γ)t

]
sin(mt) = Φ(t) sin(mt). (4.5)

This equation describes the damped oscillations of the field near ϕ = 0. This means that the amplitude

of oscillations of the field ϕ decreases as exp
[
− 1

2(3H +Γ)t
]
due to particle production, which occurs

during the decay of the inflaton field, and the expansion of the universe.

The decay products are ultrarelativistic (m ≫ mχ,mψ). As seen in the previous chapters, re-
heating ends only when t becomes smaller than Γ−1, because otherwise the main portion of energy
remains stored in the inflaton field. Assuming that the universe reaches the thermodynamic equilib-
rium immediately after the complete decay of the field ϕ at t ≃ Γ−1, we can estimate the reheating
temperature as we did previously.

However, this elementary theory has problems. First consider the fact that, in absence of fermions,
the only contribution to the decay rate comes from Γ(ϕ → χχ) = g4v2/8πm. This term vanishes in
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the theories without SSB, in which v = 0. However, this doesn’t mean that there is no reheating in
theories without spontaneous symmetry breaking. In fact, we can have reheating also in the presence
of a large oscillating field ϕ(t). We can obtain a naive estimate for the decay rate at v = 0 writing Φ

instead of v in the expression of the decay rate, obtaining Γ(ϕϕ→ χχ) ≃ g4Φ2

8πm . In the chaotic inflation,
for a quadratic potential, the beheaviour of the amplitude of the inflaton is Φ2 ∼ t−2, whereas the
Hubble constant decreases as t−1. Thus, the decay rate never catches up with the expansion of the
universe and reheating never completes. We can obtain a complete reheating only if Γ decreases more
slowly than t−1. An incomplete decay of the inflaton implies that the universe at the age of 10 billion
years is cold, empty and unsuitable for life [56]. This could happens even if the coupling constant g2

is very large. Therefore, from the requirement that reheating has to complete we obtain important
constraints on the theory.

The other problem with the elementary theory is that it does not take into account Bose conden-
sation effects. Even if the couplings of the inflaton to bosons (for example χ) are small enough to
allow for a perturbative coupling expansion, if many χ-particles have been already produced and the
phase space is densely populated, Bose condensation effects can greatly enhance the decay rate and
lead to an explosive production of particles. Moreover, for larger couplings the perturbative methods
fail and particle production then must be treated as a non-perturbative effect.

The inflaton condensate is a coherent oscillating homogeneous field. This means that particle
production has to be treated as a collective process in which many inflaton particles decay simultane-
ously, not independently of each other. Moreover, due to the large occupation number we can treat
the condensate classically.

We see now that the periodic time-dependence of the effective masses of the decay products in the
classical oscillating background can have a powerful effect on their production rates in the form of the
parametric resonance.

4.1.2 Parametric resonance

Consider the interaction between the classical inflaton field ϕ and the quantum scalar field χ̂ with
lagrangian given by (4.1). We can represent the quantum field χ̂ as

χ̂(t,x) =
1

(2π)3/2

∫
d3k

(
âkχk(t)e

−ik·x + â+k χ
∗
k(t)e

ik·x

)
, (4.6)

where âk and â+k are the annihilation and creation operators. Now, the equation of motion for χk,
δS
δχk

= 0, reads

□χ =
∂V (ϕ, χ)

∂χ
, (4.7)

where □ is the covariant D’alembert operator, given by (1.19). From the lagrangian (4.1) the equation
of motion becomes

χ̈k + 3
ȧ

a
χ̇k +

(
k

a2
+ m̄2

χ + g2ϕ2

)
χk = 0. (4.8)

This equation describes an oscillator with a variable frequency ω(t) due to the changing with time of
the scale factor a(t) and the background field ϕ(t). We suppose that the effective mass m̄χ + g2ϕ2

vanishes for ϕ = 0, i.e. m̄χ = 0.
Consider the potential that reproduces the SSB, V (ϕ) ∼ 1

2m
2(ϕ−v)2. After the SSB the lagrangian

(4.1), considering only the scalar sector, reads

L =
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 +

1

2
∂µχ∂

µχ− 1

2
g2v2χ2 − 1

2
g2ϕ2χ2 − g2vϕχ2. (4.9)

Assume that the amplitude of ϕ-oscillations are much smaller than v, and neglect for the moment the
expansion of the universe (set a = 1). The equation for the modes (quantum fluctuations) of the field
χ with physical momentum k (4.8) becomes

χ̈k + (k2 + g2v2 + 2g2vΦsinmt)χk = 0, (4.10)
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where k =
√
k2, and Φ stands for the amplitude of oscillations of the inflaton field. This equation

describes an oscillator with a periodically changing frequency ω2(t) = k2 + g2v2 + 2g2vΦsinmt. For
certain values of k this periodicity may lead parametric resonance. To see this effect we have to cast
(4.10) in the well known Mathieu equation. First, make the change of variables in mt = 2z − π/2. In
this way sin(2z − π/2) = −cos(2z). With this change of variable, the equation (4.10) becomes

χ′′
k +

(
4
k2 + g2v2

m2
− 8g2vΦ

m2
cos(2z)

)
χk = 0, (4.11)

where prime denotes differentiation with respect to z. Setting Ak = 4k
2+g2v2

m2 , q = 4g2vΦ
m2 and z = mt

2 ,
we finally obtain the Mathieu equation:

χ′′
k + (Ak − 2q cos(2z))χk = 0. (4.12)

The Mathieu equation is a type of Hill’s equation

ük + ω2(k, t)uk(t) = 0, (4.13)

where the angular frequency is periodic, ω2(k, t) = ω2(k, t+ T ). From the Floquet theorem the most
general solution of the Hill’s equations is given by

uk(t) = eµktPk+(t) + e−µktP−(t), (4.14)

where µk is called Floquet exponent and Pk(t) = P(t + T ) is a periodic function. If the real part of
the Floquet exponent R(uk) is different from zero, one of the two terms increases exponentially with
time. This is what we call parametric resonance. We can easily prove (4.14).

First, we can put the Hill’s equation (4.13) in the form

d

dt

(
uk(t)
u̇k(t)

)
=

(
0 0

ω2(t) 0

)(
uk(t)
u̇k(t)

)
, (4.15)

and, more compactly,
d

dt
x(t) = A(t)x(t), (4.16)

with x(t) = (uk(t), u̇k(t))
T , and A(t) = A(t + T ). From (4.16) we can easily see that if x(t) solves

this equation, also x(t + T ) is a solution. Obviously, the same is valid also for uk(t). Consider now
two independent solutions of (4.13), uk1(t) and uk2(t). If they are solutions, then also a general lin-
ear combination of them is a solution at the time t and at t + T . Moreover, we can express them,
evaluated at t + T , in terms of uk(t) evaluated at time t, i.e. uk1(t + T ) = B11uk1(t) + B12uk2(t)
and uk2(t + T ) = B21uk1(t) + B22uk2(t). We can rewrite this in a more compact way, uki(t + T ) =∑2

j=1Bijukj(t) with Bij a constant 2× 2 invertible matix. Diagonalizing the last equation, we obtain

vki(t+ T ) =
∑2

j=1 λ
B
i δijvkj(t), where λ

B
i are two eigenvalues of Bij and vki(t) are independent linear

combinations of uki(t). Then, we obtain that with a time shift t→ t+T we have a rescaling by an eigen-
value, vki(t+T ) = λBi vki(t). The most general solutions with this property are vki(t) = (λBi )

t/TPki(t),
where Pki(t+ T ) = Pki(t).
Now, the Wronskian of the Hill’s equation (4.13) is given by W [uk1, uk2] = uk1u̇k2 − u̇k1uk2. De-
riving the Wronskian and using the Hill’s equation (4.13), we obtain Ẇ [uk1, uk2] = 0. So must be
Ẇ [vk1, vk2] = 0. On the other hand, it is easy to see that W [vk1, vk2](t + T ) = λB1 λ

B
2 W [vk1, vk2](t).

This means that λB1 = 1/λB2 ≡ λB. The Floquet exponent is simply µk = ln(λB)/T , and in (4.14)
Pk±(t) is some linear combination of Pk1,2(t) [57], [59].

To find the Floquet exponent we just need to calculate the eigenvalues of Bij . From [59] we
point out a consideration. Consider the initial conditions uk1(t0) = 1, u̇k1(t0) = 0 and uk2(t0) = 1,
u̇k2(t0) = 0. After evolving the Hill’s equation for one period T for the two sets of initial conditions,
the eigenvalues found in [59] are

λB1,2 =
1

2

[
uk1(t0+T )+u̇k2(t0+T )±

√
[uk1(t0 + T )− u̇k2(t0 + T )]2 + 4u̇k1(t0 + T )uk2(t0 + T )

]
. (4.17)
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Figure 4.1: A plot of the instability band structure for the model V (ϕ, χ) = 1
2m

2
ϕϕ

2 + 1
2m

2
χ χ

2 + 1
2g

2ϕ2χ2. The

color represents the real part of the Floquet exponent rescaled by the mass of the inflaton, R(µk)/mϕ. The two
other axes represent the scaled amplitude of the inflaton field, gΦ/mϕ, and the rescaled wavenumber K/mϕ,

where K =
√
k2 +m2

χ [57].

We see that the initial conditions are relevant for the efficiency of the parametric resonance. If both the
initial field and field velocities are zero, parametric resonance does not lead any growth. Therefore we
obtain a difference respect to the case of ordinary resonance. In the ordinary resonance the forcing term
leads to a rapid growth even if the field displacement and velocity are zero. Instead, in the parametric
resonance we have no resonant excitations if no energy is stored in the fluctuations initially. This
is the reason why vacuum fluctuations, even if small, are crucial for the particle production during
preheating.

The properties of the solution of the Mathieu equation are represented by the stability/instability
chart, plotted in (Fig. 4.1) from [57]. There is a region of stability, the dark-red zone, in which
R(µk) = 0. The lighter regions are the unstable zones in which R(µk) > 0.

However, for now consider the case in which |q| ≪ 1 and Ak > 0. The regions of instability become

narrow and approach A
(n)
k ≃ n2 as q → 0 (n integer). In the first narrow band the peak value of the

Floquet exponent is R(µk) ≃ |q|/2, while A(1)
k ≃ 1± |q| = 1± 4g2vΦ

m2 [60]. In this case the first band is
the widest and most important band. The Floquet exponent µk describes the rate of the exponential
growth and in the first band, for m2 ≫ g2v2, is given by [56]

µk =

√√√√(q
2

)2

−

(
2k

m
− 1

)2

. (4.18)

Considering the condition to have resonance, R(µk) ̸= 0, the resonance occurs for k = m
2 (1±

q
2). The

maximal value is reached at µk = q
2 = 2g2vΦ

m2 at k = m/2, and the corresponding modes χk grow at a

maximal rate exp(qz/2) = exp( qmt4 ) = exp(g
2vΦt
m ).

With the growth of the modes χk, we have a growth of the occupation number of the created
particles nk(t). In fact, we can estimate the number density nk of particles with momentum k as the
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energy of the mode 1
2 |χ̇k|

2 + 1
2ω

2
k|χk|2 divided by the energy ωk for each particle:

nk =
ωk
2

(
|χ̇k|2

ω2
k

+ |χk|2
)

− 1

2
. (4.19)

When the modes χk grow as exp(qz/2), the number of χ-particles grows as exp(qz) = exp(2g
2vΦt
m ).

Since the resonance occurs near k = m/2, we can interpret this process as a decay of a ϕ-particle
in two χ-particles with momentum ∼ k/2. In the perturbative limit the tree-level order Feynman
diagrams gives the dominant contribution to the decay of the inflaton condensate into χ-particles.
Feynman diagrams of higher order describe the simultaneous decay of more than one inflaton parti-
cles from the condensate and are negligible in the perturbative limit. The main difference between
perturbation theory and parametric resonance is that in the first model the amount of produced par-
ticles does not depend on the number of particles produced earlier. Indeed, considering the rate of

production Γ(ϕ → χχ) = g4v2

8πm , the decay rate Γ−1 is suppressed by the factor g4 making the decay
very slow in the weak coupling limit. Instead, in parametric resonance the rate of the process can

be calculated as ukm ∼ g2vΦ
m , which is greater than Γ for Φ > g2v

8π , and the rate of production of
χ-particles is proportional to the amount of particles produced earlier (this is the reason why we have
an exponential growth). However, even if the elementary theory and preheating due to parametric
resonance are two completely different effects, these processes may coexist. Moreover, parametric res-
onance in the narrow resonance regime |q| ≪ 1 is in good agreement with the perturbative treatment
of Bose condensation [59].

Thus, we have this picture. In the beginning the inflaton field ϕ oscillates with amplitude Φ > g2v
8π

and we have parametric resonance with an exponential growth of the modes χk. However, the inflaton

loses its energy with the time and the amplitude becomes smaller than g2v
8π . From this point, the

amplitude of the field Φ decays exponentially within a time Γ−1, which is smaller than the typical
time necessary for parametric resonance to occur.

During the expansion of the universe the field ϕ decreases also for the friction term 3Hϕ̇ in the
equation of motion for the field ϕ. Then we should compare qm with the effective decay rate 3H +Γ.
Parametric resonance occurs for qm > 3H + Γ. Considering that the perturbative decay is inefficient
at Γ < H, we can consider only the condition qm > 3H.

Parametric resonance can become inefficient also if the momenta k are redshifted away from the
resonance band. If the total width of the first band is given by qm, we consider the part in which the
resonance is efficient as qm/2. We can then roughly estimate the time in which a given mode remains
within this band as q/H, and depends on the equation of state of matter. During this time the number

of particles in growing modes increases as exp( q
2m
2H ). This implies that we obtain an efficient decay of

the inflaton field only if q2m ≥ H (see [56]).

In the model considered the two conditions for an efficient resonance, qm ≥ Γ and q2m ≥ H, yield
for the amplitude of the inflaton field the constraints

Φ ≥ g2

32π
v, Φ ≥ m

√
mH

4g2v
. (4.20)

From this model we obtain that parametric resonance can be efficient only at a sufficiently large
amplitude Φ, but reheating never ends in the regime of parametric resonance. Instead, as soon as the
amplitude of oscillations becomes sufficiently small, parametric resonance terminates and reheating
can be described by the elementary theory.

In this simple model with SSB (v ̸= 0) we assumed that the amplitude of oscillations of the
inflaton field is very small, i.e Φ ≪ v, and we considered only the quadratic part of the effective
potential V (ϕ) ∼ (ϕ − v)2. However, considering a realistic model of SSB this condition is satisfied
only at the end of parametric resonance. Therefore, instead of this model, we can consider a model
with spontaneous symmetry breaking with the potential V (ϕ) = λ

4 (ϕ
2 − v2)2, with m≫ mχ, λ≫ g2.

Unlike the previous model, in this case the interaction term λ
4ϕ

4 becomes more important than g2ϕ2χ2.
This leads to a more efficient production of ϕ-particles respect to the production of χ-particles.
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Assume that in the beginning the inflaton field ϕ is at the top of the potential at ϕ = 0. In
this case we have a negative effective mass squared. This implies, independent of any parametric
resonance, a production of particles through a tachyonic process. However, this effect does not last
long because away from the maximum the curvature of the potential becomes positive. When ϕ = v,
the inflaton field begins to oscillate near its minimum. In this case the parametric resonance with
ϕ-particle production can be represented with a Mathieu equation for the fluctuations δϕk. The decay
of the coherently oscillating inflaton field ϕ into ϕ-particles remains the dominant process until the
amplitude of the field Φ becomes much smaller than v, after which the decay ϕ → χχ becomes more

important. In the end, when the amplitude of the oscillations Φ becomes smaller than g2

32πv or m
√
mH

4g2v
,

the parametric resonance stops and the decay ϕ → χχ is described by the elementary reheating. In
this theory the process of χ-particle production is more efficient than ϕ-particle production only for
Φ ≪ v.

The models studied in this section are a good laboratory to study different features of parametric
resonance. However, there is a problem with the initial conditions. There is no a valid reason why
the inflaton field should be stay initially at the top of the potential at ϕ = 0. Also, the shape of
the potential is rather artificial. For this reason, from the next section we move in the more realistic
scenario of chaotic inflation. In this theory, with a simple potential 1

2m
2ϕ2, the parametric resonance

becomes very different.

4.2 Resonance after Chaotic Inflation

In the chaotic inflation we don’t impose any initial condition on the initial value of the inflaton.
The amplitude of oscillations of the inflaton can be as large as Mpl, i.e. much greater than any other
parameters such as v. We consider now the lagrangian (without SSB)

L =
1

2
∂µϕ∂

µϕ+
1

2
∂µχ∂

µχ− 1

2
m2ϕ2 − 1

2
g2ϕ2χ2, (4.21)

from which the equation for the fluctuations χk is

χ̈k + (k2 + g2Φ2 sin2(mt))χk = 0. (4.22)

From this, putting z = mt, we can derive the Mathieu equation

χ′′
k + (Ak − 2q cos(2z))χk = 0, (4.23)

where, in this case, q = g2Φ2

4m2 , Ak =
k2

m2 + 2q and z = mt. For gΦ < m we have narrow resonance with

q ≪ 1. Considering the first band A
(1)
k ≃ 1 ± q ≃ k2

m2 + 2q, the resonance is obtained for the modes
k2 ∼ m2(1− 2q± q). The modes χk with momenta corresponding to the center of resonance at k ∼ m

grow as exp(µkz) ≃ exp(qz/2) ∼ exp(g
2Φ2t
8m ). At the same time, the number of χ-particles grows as

exp(2µkz) ≃ exp(qz) ∼ exp(g
2Φ2t
4m ). We can interpret this process as a resonance with decay of two

ϕ-particles with mass m to two χ-particles with momenta k ∼ m.
However, for oscillations with a large amplitude Φ, the parameter q can be very large. In this

case the resonance occurs for a broad range of values k and reheating becomes extremelly efficient.
Considering the stability/instability chart for the Mathieu equation, the resonance occurs for modes

with k2

m2 = A− 2q, i.e. above the line A = 2q. In this regime we can’t apply the standard methods of
the narrow resonance.

This broad resonance regime becomes important when we take into account the expansion of the
universe. In the previous section we have seen that resonance in an expanding universe occurs only if
q2m ≥ H. This implies

gΦ ≥ 2m

(
H

m

)1/4

. (4.24)

In the simplest inflationary models the value of the Hubble constant at the end of inflation is of the
same order of the inflaton mass m, H ∼ m. We can then conclude that the regime of the resonance
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Figure 4.2: Parametric resonance in the theory m2ϕ2 in an expanding universe with scale factor a ∼ t2/3 for
g = 5× 10−4 and m = 10−6Mpl. The initial value of q in this process is q0 ∼ 3× 103. The number of particles
nk in this process typically increases, but it may occasionally decrease as well. This is a distinctive feature
of stochastic resonance in an expanding universe. A decrease in the number of particles is a purely quantum
mechanical effect which would be impossible if these particles were in a state of thermal equilibrium [56].

reheating occurs only if the amplitude of the inflaton oscillations satisfies the condition Φ > m/g.
The resonance stops at Φ < m/g when q ≤ 1/4. Therefore, preheating in this model cannot begin
for Φ < m/g. In fact, efficient preheating requires extremely large initial values of q. The reason is
that the amplitude of the inflaton field decreases rapidly during the expansion of the universe. Thus,
for not very large initial values of q, the condition (4.24) becomes violated before the resonance has
enough time to transfer the energy from the oscillating inflaton field into the energy of χ-particles.
In this model preheating is efficient only if the initial value of q at the end of inflation is very large,
q0 ≥ 103.

For this huge value of q, the expansion of the universe makes preheating very peculiar and, instead
of regular resonance, we obtain a stochastic resonance (Fig 4.2 from [56]).

4.2.1 Stochastic resonance

Consider the fluctuations χk in an expanding universe with m2
χ = 0 and, after inflation, in a

matter-dominated like era with a(t) = (t/t0)
2/3. We consider t0 as initial time, counted from the end

of inflation. With these assumptions, for sufficiently large t, we can write the solution for the inflaton
field after inflation as

ϕ(t) = Φ(t) sin(mt), Φ(t) =
Mpl√
3πmt

. (4.25)

We can simplify the study of the parametric resonance stage in the expanding universe introducing
the function Xk(t) = a(t)3/2χk(t) (that it is equal to t

t0
χk(t) in this case). The equation for the

fluctuations χk (4.8) becomes simply
χ̈k + ω2

kXk = 0, (4.26)

where

ω2
k =

k2

a2(t)
+ g2Φ2 sin2(mt) + ∆, (4.27)
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Figure 4.3: Parametric resonance in the theory m2ϕ2 in an expanding universe with scale factor a ∼ t2/3 for
g = 5 × 10−4 and m = 10−6Mpl. Towards the end of this period, after approximatevely 25 oscillations of the
inflaton field, the resonance ceases to exist, and the occupation number nk becomes constant [56].

with ∆ = m2
χ − 3

4(
ȧ
a)

2 − 3
2
ä
a . This term is usually very small. Indeed, we are considering the case

in which mχ ≃ 0. Moreover, soon after the end of inflation H2 = ( ȧa)
2 ∼ ä

a ≪ m2. Then, we
can neglect this term. This equation describes an oscillator with a variable frequency ω2

k(t) due to
the time-dependence of the background field ϕ(t) and a(t). The initial condition is given by the
positive-frequency solution, Xk(t) ≃ e−ωkt/

√
2ωk.

We consider now the comoving occupation number of particles nk in the mode k in an expanding
universe,

nk =
ωk
2

(
|χ̇k|2

ω2
k

+ |χk|2
)

− 1

2
. (4.28)

This quantity is an adiabiatic invariant of (4.26). Indeed, in the WKB approximation, i.e. ω̇ ≪ ω2,
the comoving number of particles nk does not change with time. This is not true when the adiabatic
approximation (and then the condition ω̇ ≪ ω2 ) is violated. The violent production of particles
occurs, indeed, when the adiabatic approximation is broken.

We can study the beheaviour of Xk and nk from the following consideration. The number of bands
in the theory of Mathieu equation is given by n =

√
A. In this model reheating occurs for A ∼ 2q,

that implies n ∼
√
2q ∼ gΦ/m. In the numerical analysis in [56], with m ∼ 10−6Mpl and g ∼ 10−1,

from the first oscillation to the second oscillation the band number decreases from n ∼ 3 × 103 to
n ∼ 1.5× 103, because the amplitude Φ drops by a factor two after the second oscillation. Therefore,
during a single oscillation of the inflaton the field does not remain in the same instability band of the
Mathieu equation, but it jumps over 103 different instability bands. Thus the standard approaches to
study the Mathieu equation completely fails here.

However, as we will see in the next subsection, in the broad resonance regime particle production
occurs only in a small interval around ϕ = 0. Nothing depends on the exact way the inflaton field
ϕ beheaves in other moments. This happens because the WKB approximation breaks when the field
ϕ(t) = 0. Then, the comoving number of particles nk is not anymore an adiabatic conserved quantity,
i.e. it changes with time.

Therefore, we have the following picture. Stochastic resonance occurs only in the first part of the
process, when the value of q is very large and the resonance is very broad. During this phase particles
are produced in bursts near the moment when ϕ(t) = 0, raher than smoothly as in the narrow resonance
regime. Gradually, the amplitude of the field ϕ decreases, which makes q smaller. The field then stays
in each resonance band for a longer time, also because the expansion of the universe slows down. The
stochastic regime ends and the regular resonance begins when the parameter q drops from q ≫ 1 to
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q ∼ 1.
The numerical analysis in [56] provides the following beheaviour. The transition from the stochastic

resonance to a regular one is shown as a short plateau for lnnk in the plots of [56] (Fig. 4.3 from
[56]). During this short stage the resonance is no longer stochastic and the mode Xk appears in the
region of stability, which divides the second and the first instability band of the Mathieu equation.
After this little time of stability, we don’t have a broad resonance anymore, but the amplitude still
grows exponentially at high rate until the amplitude of the field Φ becomes smaller than m/g, which
corresponds to q ∼ 1/3− 1/4. Then, the resonance stops very soon and the amplitude stabilizes at a
certain constant value.

We can estimate the time tf and the number of oscillations Nf at the end of parametric resonance
taking the condition Φ ≃ m/g when resonance stops. Using (4.25) we obtain tf ≃ gMplm

2 and
Nf ≃ gMpl/6m. In [56] Nf is estimated as Nf ∼ 26.5.

The first resonance band for k = 0 extends from q ∼ 0.8 to q ∼ 1/3. At the time t ∼ tf/2 we have
q ∼ 1. During the time from tf/2 to tf the resonance occurs in the first resonance band. During this
stage the resonance is not very broad and there are no stochastic jumps from one resonance band to
another. At the time just before tf/2 we don’t have any resonance. The field is located in the stability
band between q = 1 and q = 2.

In [56] is pointed out that the final number of particles nk produced by the resonance is extremely
sensitive to even small modifications of g. For example, nk changes in a chaotic way even when g
changes by only 10%. Moreover, we have to take into account the effects due to backreaction of created
particles. In [56] the authors found that for g ∼ 10−3 the occupation numbers nk become incredibly
large. However, for g ∼ 10−4 backreaction of created particles is not very important. Instead, for
g ≤ 3 × 10−4 backreaction becomes crucial, because it does not allow the resonance to produce an
indefinitely large number of particles.

We will now discuss an analytical approach, introduced in [56], to investigate the stochastic reso-
nance. But first, we need to talk about the WKB approximation.

4.2.2 WKB approximation

Consider the Schröedinger equation

d2ψ

dx2
+ ω2(x)ψ = 0, (4.29)

making the assumption of a slowly varying potential. If k(x) = const, the Schröedinger equation
(4.29) has the simple solution ψ(x) = e±ikx. If k is no longer constant, but varies at a slow rate, we
can consider

e±
∫
ω(t)dt (4.30)

as solution of (4.29). Applying the Schröedinger equation to this solution, we obtain(
d2

dx2
+ ω2(x)

)
e±

∫
ω(t)dt = ±iω′(x)e±i

∫
ω(t)dt, (4.31)

where the prime denotes the differentiation with respect x, in this case. Thus, if we consider the case

in which |ω′(x)|
ω2(x)

≪ 1, then (4.30) solves the Schröedinger equation. This is called Wentzel-Kramers-

Brillouin (WKB) approximation, used to construct approximate solutions to differential equations.
We can then construct an iterative solution of (4.29). Considering an ordinary differential equation

y′ = f(x, y), (4.32)

we define the solution at order n as

yn = y0 +

∫ x0

x
f(t, yn−1(t))dt, (4.33)

where we assume that exists a series of function yn(x) converging to the true solution y(x). The
parameters y0 and x0 are set by the initial conditions.
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We assume now that the solution of the Schröedinger equation (4.29) is given by

ψ(x) = eiu(x), (4.34)

with u(x) an unknown complex function. Substituing in (4.29), we obtain the equation for u(x)

iu′′(x)− u′(x)2 + ω(x)2 = 0. (4.35)

We can solve this equation with an iterative procedure. We set the 0-th approximation to be the
simple guess in (4.30),

u0 =

∫ x

x0

ω(t)dt. (4.36)

From (4.35) we can derive an iterative solution

un = ±
∫ x

x0

√
ω2(t) + iu′′n−1(t)dt. (4.37)

At first approximation, we obtain

u1(x) = ±
∫ x

x0

√
ω2(x) + iu′′0(x) = ±

∫ x

x0

ω(t)

√
1 + i

ω′(t)

ω2(t)
. (4.38)

Using the WKB approximation, ω′ ≪ ω2, we obtain

u1(x) ≃ ±
∫ x

x0

[
ω(t) +

i

2

ω′(t)

ω(t)

]
dt = ±

∫ x

x0

ω(t) dt+
i

2
lnω(x) + constant. (4.39)

Therefore, the solution at first order is given by

ψ(x) = exp[iu(x)] =
1√
ω(x)

exp

[
± i

∫ x

x0

ω(t)dt

]
. (4.40)

4.2.3 Stochastic resonance: analytic approach

Coming back to preheating, we can represent the solution Xk = a3/2χk(t) of (4.26) as products of
its solution in the adiabatic approximation and some functions α(t) and β(t):

Xk(t) =
αk(t)√
2ω

e−i
∫ t ωdt +

βk(t)√
2ω

e+i
∫ t ωdt. (4.41)

In terms of classical waves, quantum effects occur due to the departure from the initial positive-
frequency solution, ∼ e−i

∫
ωdt/

√
2ω. Thus, we consider as initial conditions αk = 1 and βk = 0 with

normalitation |αk|2 − |βk|2 = 1.
Now, we can easily demonstrate that the comoving particle occupation number nk is obtained by

nk = |βk|2. To demonstrate this, consider the equation for nk, (4.28). Derive the expression (4.41) for
Xk (assuming αk, βk independent on time) and substitute it in the expression (4.28). Finally, use the
normalitation condition |αk|2 − |βk|2 = 1.

The quantity nk = |βk|2 is an adiabatic invariant of the equation for Xk in (4.26) in the WKB
approximation. A time-dependent system is said to be adiabatic if the time-dependence is slow.
For example, an adiabatic system in classical mechanics is generally an oscillator with slowly time-
dependent parameters. Neither the frequency nor the energy of the oscillator are exactly conserved
in the adiabatic process, but we can find approximately conserved quantities at high accuracy as the
changes of the parameters are slow. In this case the occupation number nk is approximately constant

as the adiabatic condition |ω′(x)|
ω2(x)

≪ 1 is valid.

During each oscillation of the inflaton field, the field χ oscillates many time. In fact, the effective
mass mχ(t) = gϕ(t)) is much greater than the inflaton mass for the main part of the oscillation of
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the inflaton in the broad resonance regime, q ≫ 1. Thus, the typical frequency of oscillation of χ,
ωk(t) =

√
k2 + g2ϕ2(t), is much greater than that of the field ϕ. Considering a period of oscillation

T of the inflaton field, the field χ makes O(g1/2) oscillations. We then can consider an adiabatically
changing effective mass mχ(t), i.e. the frequency changes very slowly with time compared to the
variation of the inflaton field. During this time the solutions χk(t) do not grow, nk is adiabatically
invariant and it is conserved, i.e. we have no production of particles. Instead, when the field ϕ(t)
is near at ϕ(t) = 0, the change in the frequency of oscillations ω(t) ceases to be adiabatic, nk is no
more a conserved quantity and we have particle production. In general the adiabaticity condition is
violated each time the background value of the inflaton field is such that the interaction term vanishes,
i.e. when the effective mass of χ-field changes rapidly. For an oscillating field this happens twice in a
period, implying a rate of particle production comparable to T.

We discuss now the analytical approach presented in [56] to study the system when ϕ(t) = 0.
Consider the general equation (4.26). From the previous discussion, the eigenfunctions Xk(t) has
adiabatic evolution between the moments tj , j = 1, 2, 3.., where the inflaton field is equal to zero
ϕ(tj) = 0 (twice in a period). Since the non-adiabatic changes of Xk(t) occur only in the vicinity of
ϕ(tj), we expect that in all moments but tj the wave Xk(t) have the form

Xj
k(t) =

αjk√
2ω
e−i

∫ t
0 ωdt +

βjk√
2ω
e+i

∫ t
0 ωdt, (4.42)

where the coefficients αkj and βkj are constant for tj−1 < t < tj . Then, after the scattering within the
interval tj < t < tj+1, Xk(t) has the form

Xj+1
k (t) =

αj+1
k√
2ω
e−i

∫ t
0 ωdt +

βj+1
k√
2ω
e+i

∫ t
0 ωdt, (4.43)

and the coefficients αj+1
k and βj+1

k are constant for tj < t < tj+1. These last two equations are
essentially the asymptotic expressions for the incoming waves (for t < tj) and for the outgoing waves

(for t > tj), scattered at the moment tj . The outgoing amplitudes αk+1
j , βj+1

k can be expressed in

terms of the incoming amplitudes αjk and β
j
k through the reflection Rk and transmission Dk amplitudes

of scattering at tj , (
αj+1
k e−iθ

j
k

βj+1
k e+iθ

j
k

)
=

(
1
Dk

R∗
k

D∗
k

Rk
Dk

1
D∗

k

)(
αjke

−iθjk

βjke
+iθjk

)
, (4.44)

where θkj =
∫ tj
0 dt ω(t) is the phase accumulated by the moment tj .

Around the points tj the interaction term can be written as g2ϕ2(t) ≃ g2Φ2m2(t−tj)2 ≡ k4∗(t−tj)2,
where k∗ =

√
gΦm is a characteristic momentum. In correspondence of these points we can have an

increase or a decrease of the number of particles, depending on the phase of the incoming wave (Fig.
4.4 from [56]).

Consider the mode equation around a single parabolic potential. Around the time tj , we can write

d2Xk

dt2
+

(
k2

a2
+ g2Φ2m2(t− tj)

2

)
Xk = 0. (4.45)

We can rewrite this equation in the simple form

d2Xk

dτ2
+ (κ2 + τ2)Xk = 0, (4.46)

where we have introduced a new time variable τ ≡ k∗(t − tj) and a scaled momentum κ = k/ak∗.
Moreover, we have in this case κ2 = (Ak − 2q)/2

√
q. The asymptotes of this equation match the

forms (4.42) and (4.43). We can then interpret Rk and Dk as, respectevely, the reflection and trans-
mission amplitudes of scattering at tj of scattering at the parabolic potential. The reflection and the

transmission coefficients, for consistency, must obey the equation |Rjk|
2 + |Dj

k|
2 = 1.

78



CHAPTER 4. PREHEATING 4.2. RESONANCE AFTER CHAOTIC INFLATION

Figure 4.4: The change of the comoving particle number nk due to scattering at the parabolic potential. The
dotted lines show the sequence of the parabilic potentials g2ϕ2(t) ≃ g2Φ2m2(t − tj)

2 where scattering occurs.
Time is given in units of 2π/κ. The number of particles can either increase or decrease at the scattering,
depending on the phase of the incoming wave [56].

The reflection Rk and the transmission Dk amplitudes can be found using the linear combination

of the parabolic cylinder functions W
(
− κ2

2 ;
√
2τ
)
, and take the form:

Rk = − ieiφk√
1 + eπκ2

, (4.47)

Dk =
e−iφk√
1 + e−πκ2

, (4.48)

where the angle φk is

φk = arg Γ

(
1 + iκ2

2

)
+
κ2

2

(
1 + ln

2

κ2

)
. (4.49)

Using these expressions in (4.44), we obtain the evolution of the amplitudes αjk, β
j
k from a single

parabolic scattering in terms of the parabolic potential and the phase θkk only, that become(
αj+1
k

βj+1
k

)
=

( √
1 + e−πκ2eiφk ie−πκ

2/2+2iθjk

−ie−πκ2/2−2iθjk
√

1 + e−πκ2e−iφk

)(
αjk
βjk

)
. (4.50)

Now, the number density of χ-particles with momentum k is given by nk = |βk(t)|2. Then, from this
equation we can calculate the number density of outgoing particles nj+1

k = |βj+1
k |2 after the scattering

on the parabolic potential with njk = |βjk|
2 incoming particles. We obtain

nj+1
k = e−πκ

2
+

(
1 + 2e−πκ

2

)
njk − 2e−πκ

2/2
√

1 + e−πκ2
√
njk(1 + njk) sin θ

j
tot, (4.51)

where θjtot = 2θjk − φk + argβjk − argαjk.
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Now, we should make two important comments. First, the number of created particles is a step-like
function of time. The value nkj is constant between two successive scatterings at the points tj and
tj+1. We have a change of the number of particles exactly at the instances tj in a step-like manner.

The second point is that the effect of particle creation is significant if πκ2 ≤ 1, otherwise the
exponential term e−πκ

2
suppresses the effect of particle accumulation. We then obtain the following

criterion for the width of the resonance band,

κ2 =
A− 2q

2
√
q

≤ π−1. (4.52)

Recalling that A = k2

a2m2 + 2q and q = g2Φ2

4m2 , we can rewrite this condition as

k2

a2
≤ k2∗

π
=
gmΦ

π
. (4.53)

Finally, we can consider the large occupation limit of (4.51), nk ≫ 1,

nj+1
k ≃

(
1 + 2e−πκ

2 − 2 sin θjtote
−πκ2/2

√
1 + e−πκ2

)
njk. (4.54)

The first two terms in this equation correspond to the effect of spontaneous particle creation, which
always increases the number of particles. The last term corresponds to the induced particle creation,
which can either increase or decrease the number of particles. The whole effect of particle creation
depends crucially on the interference of the wave functions, i.e. the phase correlation/anticorrelation
between successive scatterings at the parabolic potential. The beheaviour of the resonance essentially
depends on the beheaviour of the phase θjk as a function of k for different time intervals j.

In this treatment we now take into account the expansion of the universe. In the case with broad
resonance, where q ≫ 1, this parameter significantly varies within a few inflaton oscillations. However,
we can treat also this case with the method of successive parabolic scattering and, in this case, (4.54)
simplifies. The reason is that for large initial values of q, the phase variations are much larger than π
for all relevant k (see [56]). Therefore, all the phases θj can be considered as random numbers.

Moreover, the backreaction of created particles leads to an exponentially rapid decrease of q down
to q ∼ 1/4 only at the last moments of preheating. Thus, the parameter q in this regime remains very
large and the phases remain random until the very last stages of preheating.

The stochastic character of the phases θjk simplifies significantly (4.54) since there is no memory in
the phase and each scattering can be considered independent from the previous ones. Assuming then
θtot completely random, we can rewrite (4.54) as

nj+1
k ≃

(
1 + 2e−πκ

2
j − 2 sin θ̂e−πκ

2
j/2

√
1 + e−πκ

2
j

)
njk, (4.55)

where θ̂ is a random phase in the interval (0, 2π), and k2j changes slowly with j, κ2j ∼ j−1/3. This
equation defines the number of particles at an arbitrary moment as a function of the random phase.
Then, the number of particles njk is a random variable which can either increase or decrease depending
on the realitation of the phase. The whole process is the superposition of elementary processes where
nk jumps up and down. However, on average the number of particles is amplified with time. This
means that nk increases more often than it decreases. Indeed, from the analysis of [56] comes out that
the probability for the number of particles to increase is three times higher than the probability of its
decreasing. There is also a natural selection effect. Among all modes χk, there will be some modes
for which the increasing appears more often than in the proportion 3 : 1. These modes will give the
dominant contribution to the total number of produced particles.

When the parameter q decreases because of the expansion of the universe and becomes smaller
than 1, the resonance becomes similar to the usual parametric resonance with q ≤ 1. However, at
some stage this description needs to be corrected because of the backreaction of the created particles.
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4.3 Backreaction and Rescattering

In the preheating epoch we have a resonant amplification of the fluctuations χk(t), which corre-
sponds to an exponentially fast creation of nk particles. However, because of the exponential instability
of the χ-field, we expect that its backreaction on the background gradually accumulate until it affects
the process of resonance itself. Therefore, we can divide preheating in two stages. In the first part
of preheating the backreaction of created particles can be neglected. This stage is rather long, and if
the initial value of q is small enough, i.e q0 ≤ 103, preheating may end before backreaction becomes
important. Instead, in the case in which q0 is greater than 103, at some moment we have to change
the description of the parametric resonance.

We can have several ways in which backreaction can alter the process. First, interactions with
particles created by parametric resonance may change the effective masses of all particles and the
frequency of oscillation of the inflaton field. Moreover, scattering of the particles off each other and
their interaction with the oscillating field ϕ(t) may lead to additional particle production and to the
removal of the previously produced particles from the resonance.

Then, we have to take into account two effects. First, χ-particles may change the frequency of
oscillations of the inflaton field ϕ(t). This can lead to an increase of the value of m, making the
resonance narrow and eventually shut it down.

The second effect is that the interaction of χ-particles with the oscillating field ϕ(t) may lead to
the production of ϕ-particles. Indeed, we can imagine this process as scattering of χ-particles on the
oscillating inflaton field ϕ(t). In each interaction each χ-particle takes one ϕ-particle away from the
homogeneous oscillating field ϕ(t). When many ϕ-particles are produced, they may change the effective
mass of the field χ, making χ-particles so heavy that they no longer can be produced. Moreover, the
process of rescattering can destroy the inflaton field ϕ(t) by decomposing it into separate ϕ-particles.
For references of this section see [56], [61] and [62]. Here we summarise the main points.

The simplest way to take into account the backreaction of the amplified quantum fluctuations χk
is to use the Hartree, or mean-field, approximation. In this approximation we assume that different
modes and fields evolve independently (are uncorrelated in time), i.e. ⟨χ∗

k-qχk⟩ ≃ 0 if q ̸= 0,
⟨δϕ∗k-qχk⟩ ≃ 0 etc. for all q. In this way all effects of the amplification of the χ-field are mediated by

the variance of χ, ⟨χ2⟩.
In the Hartree approximation the equation for the field ϕ reads

ϕ̈+ 3Hϕ̇+m2ϕ+ g2χ2⟩ϕ = 0, (4.56)

where the vacuum expectation value ⟨χ2⟩ is

⟨χ2⟩ = 1

2π2a3

∫ ∞

0
dk k2|χk(t)|2. (4.57)

Quantum effects contribute to the effective mass mϕ of the inflaton field. Indeed, from (4.56) we have
that m2

ϕ = m2 + g2⟨χ2⟩.
One can express ⟨χ2⟩ in terms of the coefficients αk(t) and βk(t) that describe the resonance [56]:

⟨χ2⟩ = 1

2π2a3

∫ ∞

0

dkk2

ω

(
|βk|2 +Re

(
αkβ

∗
ke

−2i
∫ t
0 ωdt

))
. (4.58)

Using the fact that nk = |βk|2, we can express the effective mass squared of the background field ϕ(t)
in the Hartree approximation as [56]

m2
ϕ = m2 +

(
1 + C cos

(
2gΦ

m
cosmt

))
gnχ
|ϕ(t)|

, (4.59)

where C is a numerical factor that derives from the integration.
The equation for the inflaton field becomes

ϕ̈+ 3Hϕ̇+m2ϕ+ gnχ

(
1 + C cos

2gΦcosmt

m

)
ϕ

|ϕ|
= 0. (4.60)
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The last term oscillates with a frequency ∼ 2gΦ ≫ m. However, in the broad resonance regime with
gΦ ≫ m, the high frequency oscillation does not much affect the evolution of the field ϕ(t), and then
we can neglect it. Thus, in the first approximation the equation for the inflaton field reads

ϕ̈+ 3Hϕ̇+m2ϕ+ gnχ
ϕ

|ϕ|
= 0. (4.61)

To estimate the change of the frequency of the oscillations of the inflaton field we can use the effective
mass m2

ϕ = m2 + g2⟨χ2⟩. We obtain that the frequency of oscillations of the inflaton field does not
change until the number of χ-particles grows to

nχ ≃ m2Φ

g
=

2m3

g2
q1/2. (4.62)

We can use this value to define the duration of the first stage of preheating where backreaction of the
created particles can be neglected.

Therefore, we obtain the following picture (see [56]). The process of broad resonance can be divided
in two stages. In the first stage, nχ ≪ m2Φ/g, backreaction of the χ-particles can be neglected and
the frequency of oscillations of the field ϕ is determined by its bare mass m. The second stage begins
when nχ ∼ m2Φ/g. From now, the frequency of oscillations of the field ϕ becomes determined not by
its bare mass m, but by its interaction with χ-particles.

There is another process that affect the preheating stage. We should consider also the generation
of inflaton fluctuations δϕ due to the interaction of χ-particles with the oscillating field ϕ(t) and the
subsequent interaction between χ and δχ fluctuations. Using a particle-like picture we can imagine
the classical scalar field as a condensate of ϕ-particles with zero momentum, and interpret ϕ-particle
production as the result of rescattering of χ-particles in the condensate. With this interpretation, we
can use the concept of cross-section of interacting particles. Actually, the process is very complicated
and this interpretation fails (see the discussion in [56]). However, there are two results that are
valid. First, there is a significant generation of rapidly growing fluctuations δϕ ∼ e2µmϕt, due to the
interaction between χ-particles and the oscillating inflaton field ϕ(t). Second, the generation of large
fluctuations of δϕ can terminate the resonant creation of χ-particles at the end of the second stage of
preheating.

We discuss now briefly the validity of the Hartree approximation. In fact, as the number of particles
increases the Hartree approximation stops to being a good description. The couplings between different
Fourier modes become important, heralding the true beginning of the non-linear stage. However,
we will discuss this important result. Fluctuations of the χ-fields generated from vacuum by the
oscillating inflaton in the large occupation number limit can be considered as classical waves with
gaussian statistics. Therefore, in first approximation all fields χ, δϕ can be treated as interacting
scalar waves. We can then study preheating by investigating a system of non-linear classical equations
or by lattice numerical simulations of the interacting scalar fields. The equations of motion in Fourier
space for the Fourier modes of the fluctuations δϕ are:

¨δϕk + 3Hδϕ̇k +

(
k2

a2
+m2

ϕ

)
δϕk = −g

2ϕ0(t)

(2π)3

∫
d3k′χk−k’χk′ − g2

(2π)3

∫
d3k′ d3k′′δϕk−k′+k′′ χk′χk′′ ,

(4.63)
and those for χk:

χ̈k+3Hχ̇k+

(
k2

a2
+ g2ϕ20(t)

)
χk = −g

2ϕ0(t)

(2π)3

∫
d3k′χk−k’δϕk′ − g2

(2π)3

∫
d3k′ d3k′′χk−k′+k′′ δϕk′δϕk′′ .

(4.64)
The Hartree approximation corresponds to neglect the scattering between different Fourier modes.
Considering the first equation, only the second term in the r.h.s is retained. This term gives rise
only to the g2⟨χ2⟩δϕk term for k’=k” . The other term in this equation is neglected because involves
coupling between different Fourier modes. Similarly, we obtain g2⟨δϕ2⟩χk from the r.h.s of the second

82



CHAPTER 4. PREHEATING 4.3. BACKREACTION AND RESCATTERING

Figure 4.5: Lattice simulations for the evolution of the field variances in the ϕ and χ fields during preheating for
the model V (ϕ, χ) = 1

2m
2ϕ2 + 1

2g
2ϕ2χ2 with an initial resonance parameter q = 106. Here τ is the conformal

time and ⟨X2⟩ is ⟨χ2⟩ in our notation. The χ fluctuations begins to grow initially through parametric resonance
but this is followed by the growth of the ϕ fluctuations through the non-linear process of rescattering which
is significantly more rapid (with roughly double the Floquet index). The backreaction shuts off the resonance
in the χ-field earlier than it does in the ϕ fluctuations which also dominate the final variances. The lattice
simulations are essential to full understand the process [62], [19].

equation. Therefore, the perturbed field equations under the Hartree approximation are

¨δϕk + 3Hδϕ̇k +

(
k2

a2
+m2

ϕ + g2⟨χ2⟩

)
δϕk = 0, (4.65)

χ̈k + 3Hχ̇k +

(
k2

a2
+ g2(ϕ20(t) + ⟨δϕ2⟩)

)
χk = 0. (4.66)

The scattering between different momentum modes becomes crucial especially at the non linear stage
of preheating, and then we cannot have a complete view with the Hartree approximation. Indeed, the
couplings between different Fourier modes actually lead the rescattering process.

The equations (4.63) and (4.64) explain also an observation of the lattice simulations. After the
initial resonance in the χ-field, there is a very rapid amplification of the fluctuations of the inflaton
field. We can see this by looking at the first term on the r.h.s. of (4.63). This term is independent of
δϕk, which grows as exp(2µkmϕt) since each factor of χ is growing exponentially with Floquet index
µ. This provides a rapid increasing source term for δϕk fluctuations. Then, the fluctuations δϕk goes
as δϕk ∼ e2µmϕt and hence they will grow basically with twice the Floquet index of the χ-fluctuations
(see Fig. (4.5) from [62] and [19]).

We can then put all together to summarise all the stages of preheating making some important
comments. In the first stage we can ignore the backreaction of created particles on the frequency of
oscillations of ϕ(t). An estimate of the moment t1 in which this stage ends is

nχ(t1) ≃
m2Φ(t1)

g
. (4.67)

A very important point is which fluctuations χk are amplified during the entire period of resonance.
We remind that the amplification occurs when the adiabaticity condition dω

dt ⟨ω
2 is violated, i.e. when

the inflaton field ϕ(t) = 0. This implies that the fluctuations χk amplified by the broad resonance
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have physical momenta k ≤ k∗/2 ∼
√
gmΦ/2. In other words, we obtain an exponentially growing

occupation number of particles with k < km, i.e. n(t) ∼ exp(2µmt), where µ is an effective index which
describes an average rate of growth for modes with k < k∗. Meanwhile, the amplitude Φ decreases as
∼Mpl/3mt due to the expansion of the universe.

For different values of the coupling constant g, one can estimate for example the initial value q0
and the final value q1 of q at the beginning/end of the first stage of preheating. We report the results
of [56]. For g ≃ 10−3, we have q0 ≃ 104 and q1 ≃ 3. For g ≃ 10−2, we have q0 ≃ 106 and q1 ≃ 550.
Finally, for g ≃ 10−1, q0 ≃ 108 and q1 ≃ 105. One can also calculate the number of oscillations the
inflaton field ϕ makes from the end of inflation to the end of the first stage. For example, the inflaton
makes 15, 11 and 8 oscillations for the three different couplings reported above, respectevely.

From the analysis of [56] we can distinguish different scenarios depending on the coupling constant
g. For g ≪ 3 × 10−4, the broad resonance ends during the first stage. Parametric resonance in this
case is not efficient enough to transfer the main part of energy of the inflaton field to the energy of
χ-particles.

For g ∼ 3×10−4, at the end of the first stage we have q1 ∼ 1/4. The energy becomes approximately
equally distributed between the energy of the oscillating inflaton field ϕ and the energy of the χ-
particles produced by its oscillations.

Finally, for g > 3× 10−4 the broad resonance continues after the end of the first stage. To study
further the process, one should study quantum effects produced by the interaction of the χ-fluctuations
with the oscillating inflaton field ϕ(t).

In the second stage of preheating (after t1) the frequency of inflaton oscillations is determined by
the backreaction of χ-particles and it is no longer m. Neglecting rescattering for the moment, from the
numerical analysis of [56], comes out that the system spends half of the time in the broad resonance
regime and another half of the time in the regime with q ∼ 1. During all the time, except the last one
or two oscillations, the parameter q is very large and the theory can be described with the stochastic
resonance. When q ∼ 1/4, the resonance terminates. However, this description should be modified
because of the presence of the rescattering process.

The rescattering process leads to the fragmentation of the inflaton condensate. In order to alter
the motion of the field the fluctuations δϕ should have comparable kinetic energy to mϕΦ

2/2. The
fluctuations of the inflaton field δϕ grow as δϕ ∼ e2µmt, due to the interactions of pairs of χ-particles
with the inflaton condensate. In this stage the inflaton fluctuations grows with double rate. When
⟨δϕ2⟩ ≫ Φ2 we say that the condensate is substantially fragmented or destroyed. Then, rescattering
also re-destributes the energy stored in the χ-particles. The rescattering process transfers the energy
from the amplified modes to modes with momenta lying in the stability regions. Even if rescatter-
ing completely shuts off the resonance, rescattering becomes important since leads to the non-linear
evolution of the system and to the fragmentation of the inflaton condensate.

However, we should point out that having a fragmented inflaton condensate does not imply that
the energy stored in it is negligible. We can say only that rescattering and fragmentation kick in
when the energy stored in interaction terms and/or fluctuations is comparable to the energy of the
classical background. Then, at the end of preheating, non-perturbative particle production ends and
non-linear evolution begins with most (or at least non-negligible) fraction of the total energy being
stored in field fluctuations.

We can roughly estimate the time at which resonance ends comparing the effective mass term of
the inflaton field g2⟨χ2⟩ with its squared bare mass m2. When backreaction of the χ fluctuations
are as large as the inflaton bare mass it is difficult for the resonance to continue. Considering that
⟨χ2⟩ ∼ e2µmt, we obtain

tend ∼
1

µm
ln

(
m

g

)
. (4.68)

From the analysis of [56] comes out that, for example, at the end of resonance χ-particles need to
rescatter only 10 times to destroy the coherent oscillation of the field ϕ and decomposing it into separate
ϕ-particles. At the end of resonance, χ-particles may destroy the classical field ϕ(t) completely. Then,
the final stage of preheating is not determined by resonance, but by rescattering.
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In the next chapter we will investigate through numerical simulations in the literature this peculiar
stage. Before doing that, we explore now other models of preheating.

4.4 Model λϕ4

In this section we concentrate on the theory of preheating in a class of conformally invariant
theories such as λ

4ϕ
4 + 1

2g
2ϕ2χ2. In such theories, the classical oscillating inflaton field ϕ(t) decays

into χ-particles and ϕ-particles. The parametric resonance in this theory is described by the Lame
equation and significantly differs from the resonance with a quadratic potential. The structure of the
resonance in this case depends in a rather nontrivial way on the parameter g2/λ. For example, with
g2 = λ or g2 = 3λ this theory has only one instability band, but the structure of the bands and the
characteristic exponents µk are completely dfferent. Changing the ratio g2/λ only slightly, the number
of instability bands immediately becomes infinitely large. In this section we review the model. For
reference and details see [63].

4.4.1 Equation for the inflaton

In the chaotic inflation model V (ϕ) = 1
4λϕ

4 the equation for the classical field ϕ(t) reads

ϕ̈+ 3Hϕ̇+ λϕ3 = 0. (4.69)

For sufficiently large initial values ϕ > Mpl, the friction term 3Hϕ̇ dominates over ϕ̈. This leads to
the inflationary stage where the universe expands quasi-exponentially. With a decrease of the field
ϕ below Mpl, the friction term 3Hϕ̇ becomes less important and inflation terminates at ϕ ∼ Mpl/2.
After a short stage of fast rolling down, the inflaton rapidly oscillates around the minimum of V (ϕ)
with initial amplitude Φ0 ∼ 0.1Mpl.

The amplitude Φ of the oscillations of the inflaton field ϕ after inflation asymptotically approaches

Φ(t) ≃ 1√
t

(
3M2

pl

8πλ

)1/4

∼
Mpl

10N
, (4.70)

where N is the number of oscillations after the end of inflation.

To simplify calculations in this theory we make a conformal transformation of the space-time
metric and the fields. We then use the conformal time

η =

∫
dt

a(t)
, (4.71)

and the conformal field,

φ = aϕ. (4.72)

In the coordinates (η,x) the equation of motion for the field ϕ (4.69) becomes

φ′′ + λφ3 − a′′

a
φ = 0. (4.73)

However, the last term in this equation can be discarded. Indeed, in this particular model after
inflation we have a radiation-like dominated era, p = ρ/3, a(η) ∼ η and then a′′ = 0. The equation
(4.73) now reads simply

φ′′ + λφ3 = 0. (4.74)

This equation can be reduced to the canonical equation for an elliptic function. We use the dimen-
sionless conformal time variable

x ≡
√
λφ̃η =

(
6λM2

pl

π

)1/4√
t, (4.75)
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where φ̃ is the amplitude of the oscillations of the field φ. We rescale the field φ as φ = φ̃f(x), where
the function f(x) has an amplitude equal to unity. This function obeys to the canonical equation for
elliptic functions

f ′2(x) =
1

2
(1− f4), (4.76)

whose solution is in terms of the elliptic cosine

f(x) = cn

(
x− x0;

1√
2

)
. (4.77)

Oscillations in this theory are not sinusoidal, but are given by an elliptic function. Moreover, the
energy density of the inflaton field ϕ decreases in the same way as the density of radiation, i.e. a−4.

The elliptic cosine can be represented as follows [63]:

f(x) =
8π

√
2

T

∞∑
n=1

e−π(n−1/2)

1 + e−π(n−1/2)
cos

2π(2n− 1)x

T
, (4.78)

where T ≃ 7.416 is the period of oscillations. In this equation the amplitude of the first term in
the sum is 0.9550; the amplitude of the second term is much smaller, 0.04305. However, even if the
first harmonic term is very close to the actual form of oscillations, to study the general structure of
stability/instability bands one should consider the full solution.

4.4.2 Conformal theory

Consider the interaction between the classical inflaton field ϕ and the massless quantum scalar
field χ, given by the lagrangian

L =
1

2
∂µϕ∂

µϕ− λ

4
ϕ4 +

1

2
∂µχ∂

µχ− 1

2
g2ϕ2χ2. (4.79)

The fluctuations of the χk-field with comoving momentum k obeys the equation

χ̈k + 3
ȧ

a
χ̇k +

(
k2

a2
+ g2ϕ2

)
χk = 0. (4.80)

The self-interaction λϕ4 also leads to the generation of fluctuations of the field ϕ. The equation for
the inflaton field ϕk is

ϕ̈k + 3
ȧ

a
ϕ̇k +

(
k2

a2
+ 3λϕ2

)
ϕk = 0. (4.81)

Note that this last equation is equal to (4.80) with g2 = 3λ. Then, the last equation is a particular
case of (4.80). Since the physical momentum p = k/a(t) in (4.80) is redshifted in the same manner as
the background field ϕ(t) = φ(t)/a(t), we can eliminate the redshifting of momenta from the evolution
of χk. In fact, considering the rescaled quantity Xk(t) = a(t)χk(t) and rewriting the mode equation
for Xk(t) with the conformal time x, we obtain

X ′′
k +

(
κ2 +

g2

λ
cn2

(
x,

1√
2

))
Xk = 0, (4.82)

where κ2 = k2/λφ̃2. In this way, the equation for the field fluctuations does not depend on the
expansion of the universe and it is reduced to a problem in Minkowsky space-time. This is a special
feature of this theory. The equation (4.82) describes oscillators, Xk, with a variable frequency

ω2
k = κ2 +

g2

λ
cn2

(
x;

1√
2

)
, (4.83)
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Figure 4.6: The stability/instability chart for the Lame equation for fluctuations Xk(x) in the variables (κ2, g
2

λ ),
obtained from the numerical solution of (4.82). Shaded (unshaded) areas are regions of instability (stability).
For instability bands, the darker shade implies a larger characteristic exponent µk. There are 10 color steps.
One color step corresponds to the increment ∆µk = 0.0237, so the darkest shade corresponds to maximal
µk = 0.237, the least dark shade in the instability bands correspond to µk = 0.009. For positive κ2, there is

only one instability band for the particular values of the parameter g2

λ = 1 and 3. This occurs because the

higher bands shrink into nodes as g2

λ approaches 1 and 3 [63].

which periodically depends on time, x. For the fluctuations of the field φ = aϕ, we have

φ′′
k +

(
κ2 + 3cn2

(
x,

1√
2

))
ϕk = 0. (4.84)

The solutions Xk are exponentially unstable, i.e. Xk(x) ∝ eµkx. Assuming positive-frequency initial
condition, we expect then an exponentially fast creation of χ-particles as the inflaton field oscillates, i.e.
nk ∼ e2µkx. The parameter g2/λ gives the strength of the interaction with the periodic oscillations
cn2(x, 1/

√
2). Therefore, we have a crucial difference with the theory with a quadratic potential

described in the previous section. In the theory with quadratic potential it is required a large amplitude
of the inflaton field. In the conformal theory, instead, is the combination of parameters g2/λ that
defines the structure of the parametric resonance.

The equation (4.82) belongs to the class of the Lame equations and it is an equation with periodic
coefficients, as the Mathieu equation. The solutions Xk of this equation may be stable or unstable
depending on the particular values for κ and g2/λ. The parameter g2/λ represents the strength of
the interaction. The second parameter κ is the momentum of vacuum fluctuations κ in units of the
frequency of the inflaton oscillations.

As in the quadratic potential model, the evolution of the comoving number density of created
χk-particles, nk with comoving momentum k, is given by the comoving energy density and the energy
per particle ωk,

nk =
ωk
2

(
|χk|2 +

|χ̇k|2

ω2
k

)
− 1

2
. (4.85)

The stability/instability charts of the Lame equation describes preheating in the conformal invari-
ant theories and it is studied in [63]. The stability/instability chart is plotted in (Fig. 4.6) from [63].
The stability/instability chart is similar to the stability/instability chart of Mathieu equation, but
there are important differences. In the case of Mathieu equation there are infinitely instability bands
corresponding to each value of q. Instead, in the Lame equation some of the instability bands may
occasionally shrink to a point. For example, for g2/λ = 1 and for g2/λ = 3 there is only one instability
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band. From the (Fig. 4.6), indeed, we see that the higher zones shrink to nodes as g2/λ approaches to

1 and 3. For positive κ2, whenever g2

λ = n(n+1)
2 , there are a finite number of instability bands. Finally,

as for the Mathieu equation, all other values of g2/λ have infinite numbers of instability bands.

In particular, for g
2

λ ≪ 1, the Lame equation can be formally transformed into the Mathieu equation

with the parameters A ≃ 1.3932κ2 and q ≃ 0.3464g
2

λ ≪ 1. Thus, in this case the stability/instability
charts of Mathieu equation and Lame equation coincide exactly.

4.4.3 Analysis of Lame equation

The Lame equation can be solved in terms of the transcendental Jacobi functions. The analytical

study of resonance using these functions is rather difficult. However, for g2

λ = n(n+1)
2 , with n integer,

one can obtain simple solutions to (4.82). In [63] are studied different cases for the value of g/λ. Here
we summarise the main results.

First, we rewrite (4.82) in the so-called algebraic form using the time variable z instead of x, where

z(x) = cn2

(
x,

1√
2

)
. (4.86)

The equation (4.82) becomes

2z(1− z2)
d2Xk

dz2
+ (1− 3z2)

dXk

dz
+ (κ2 +

g2

λ
z)Xk = 0. (4.87)

Consider two linearly-independent solutions of this equation, X1(z) and X2(z). We expect that one
of them exponentially grows and the other exponentially decreases during resonance. Introducing the
linear combinations X2

1 , X
2
2 and X1X2, turns out that they solve the third order equation

2z(z2 − 1)
d3M

dz3
+ (9z2 − 3)

d2M

dz2
− 2

[(
2
g2

λ
− 3

)
z + 2κ2

]
dM

dz
− 2

g2

λ
M = 0. (4.88)

The three solutions, M(z), of this equation correspond to the three bilinear combinations of X1 and

X2. The important point is that for g2

λ = n(n+1)
2 this equation admits a polynomial solution of degree

n. This solution is the product of an exponentially growing solution and an exponentially decreasing
solution in the resonance zone, i.e. M(z) = X1(z)X2(z).

Solution for g2

λ
= 1

In the case g2 = λ the solution in the resonance band is

M1(z) = X1(z)X2(z) = z − 2κ2. (4.89)

Using the Wronskian of (4.87), the solution for X1,2 is found

X1,2(z) =
√

|M1(z)| exp

(
± C1

2

∫
dz√

z(1− z2)M1(z)

)
, (4.90)

where
C1 =

√
2κ2(1− 4κ2). (4.91)

Considering that for exponentially growing solutions C1 must be real, these solutions take place in a
single instability band where

0 < κ2 <
1

2
. (4.92)

The growing solution of (4.87) has the form X(x) = eµkxP (z(x)), where P (z(x)) is a periodic function
of the conformal time x. The solution for the characteristic exponent µk is

µk(κ) =
2

T

√
2κ2(1− 4κ2)I(κ), (4.93)

88



CHAPTER 4. PREHEATING 4.4. MODEL λϕ4

with

I(κ) =

∫ π/2

0
dθ

sin1/2 θ

1 + 2κ2 sin θ
. (4.94)

The maximal value of µk is µmax ≃ 0.1470 and κ2 ≃ 0.228.

Solution for g2

λ
= 3

In this case in the resonance zone the solution is given by

M2(z) = X1(z)X2(z) = z2 − 2

3
κ2z − 1 +

4

9
κ2, (4.95)

and

X1,2(z) =
√

|M2(z)| exp

(
± C2

2

∫
dz√

z(1− z2)M2(z)

)
, (4.96)

with

C2 =

√
32

81
κ2(κ4 − 9

4
)(3− κ4). (4.97)

Also in this case there is only one instability band for

3

2
< κ2 <

√
3. (4.98)

In this case the characteristic exponent is given by

µk =
8
√
2

9T

√√√√κ2

(
κ4 − 9

4

)
(3− κ4)J(κ), (4.99)

where

J(κ) =

∫ π/2

0
dθ

sin3/2 θ

1 + 2
3κ

2 sin θ + (49κ
4 − 1) sin2 θ

. (4.100)

The maximal value of the characteristic exponent is µmax ≃ 0.03598 at κ2 ≃ 1.615. In (Fig. 4.7) we
show the plot of [63] in this case.

Solution for g2

λ
≪ 1

Considering that the function f(x) can be expanded in series (4.78), comes out that the leading
contribution to Xk(x) comes from the lower harmonic cos(4πx/T ). Keeping only this term, the
equation for Xk can be reduced to the Mathieu equation

d2Xk

dτ2
+ (A+ 2q cos 2τ)Xk = 0, (4.101)

where τ = 2πx/T , A = (Tκ/2π)2 and q = 0.4973 g2

2λ ( T2π )
2. Thus, for g2

λ ≪ 1 the parametric resonance
corresponds to that of the Mathieu equation.

The exponentially growing solution has the maximum characteristic exponent

µmax ≃ 0.1467

(
g2

λ

)
. (4.102)
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Figure 4.7: The typical resonant production of particles at the particular choice of rescaled comoving momentum

κ2 = 1.6, and the parameter g2

λ = 3. This plot shows the logarithm of the comoving particle number density
nk. The number of particles grows exponentially with log nk ≃ 2µkx. In this case, µk ≃ 0.035 [63].

Solution for g2

λ
≫ 1

In this case the parameter g2

λ is very large. We report in (Fig. 4.8) from [63] the plot of the time
evolution of the fluctuations Xk(x) and the comoving number of particles in a given mode, nk(x).

In this case, the evolution is similar to the broad/stochastic resonance regime in quadratic potential

model. For g2

λ ≫ 1, the evolution of the modes Xk(x) is adiabatic and the number of particles nk(x)
is constant between the zeros of the background field. The number density of particles changes only
near times x = xj , when the amplitude of the oscillating inflaton field crosses zero (φ(x = xj) = 0).
We can use, as for the quadratic potential model, the scattering potential method.

We assume that the semiclassical solution is valid everywhere but around xj . Thus, away from
the points xj , the mode function Xk(x) is adiabatic and we consider the scattering in the parabolic
potential (x−xj)2 at the moment xj between the incoming waves (for x < xj) and the outgoing waves
(for x > xj). In the vicinity of xj we have cn(x, 1/

√
2) ≃ (x − xj), and from (4.87) we obtain the

simple equation

d2Xk

dx2
+

(
κ2 +

g2

2λ
(x− xj)

2

)
Xk = 0. (4.103)

In this way we can solve this equation in terms of coefficients for transmissivity and reflectivity (see [63]
for details).

From [63] turns out that in this case

µmax =
2

T
ln(1 +

√
2) ≃ 0.2377. (4.104)

This is a general result for the upper limit of µmax for an arbitrary g2/λ. Therefore, in this special
case the resonance is stronger both in terms of the characteristic exponent µmax and the width κ2.

4.4.4 End of resonance

We can study the end of the resonance with the pure 1
4λϕ

4 model, with g2 = 0 and no χ-field
involved. Indeed, if one neglects backreaction, the equations describing the resonance for the modes
ϕk coincide with the equations for the modes χk in the theory g2 = 3λ (see the equations (4.80) and
(4.81). Therefore, it is sufficient to study the theory with g2 = 3λ.
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Figure 4.8: The upper plot shows the time-dependence of the real part of the eigenmode Xk(x), which de-
mostrates the adiabatic (semiclassical) beheaviour between zeros of the inflaton oscillations (dotted line), where
the comoving occupation number nk of created particles is constant (lower plot). The lower plot shows log nk
as a function of time x. Particle creation occurs in a step-like manner only in the vicinity of the zeros of the
inflaton field, where the adiabaticity is broken. This beheaviour is the same of the quadratic potential model

of the previous sections. In this plot the characteristic exponent µk ≃ 0.1, g2

λ = 5050 and κ2 = 29 [63].

The main reason for the termination of the resonance in the 1
4λϕ

4 model is the restructuring of
the resonance band due to the backreaction of created particles. Indeed, it is sufficient to shift the
position of the resonance band in momentum space by few percent to stop the growing of the leading
resonant mode ϕk. There are two effects that lead to the restructuring of the resonance band. First,
particle production reduces the energy of the scalar field, and therefore reduces the amplitude of its
oscillations. This means that the oscillations reduce their frequency and the resonance band is moved
towards smaller k. On the other hand, the effective mass of the field φ grows due to its interaction
with the ϕ-particles. We then have an increase of the frequency of oscillations and a shift of the
resonance band towards larger k. Therefore, these effects act in opposite direction. From computer
simulations of [63] in this theory results that efficient preheating ends as soon as the fluctuations of
produced particles ⟨φ2⟩ grow to 0.05 ϕ̃2.

The resonance in the particular case of the pure theory λϕ4 is inefficient because the resonance
band in this theory is very narrow and the characteristic exponent µ is extremely small. However,
when we take into account also the χ-field with g2 = λ or g2 = 2λ the characteristic exponent is much
greater and the resonance band is very broad. It is much more difficult to shut down the resonance
in such theories.

In the next subsection we discuss the case in which the conformally invariance is broken by a small
mass term.

91



4.4. MODEL λϕ4 CHAPTER 4. PREHEATING

Figure 4.9: Development of the resonance in the theory m2

2 ϕ
2 + λ

4ϕ
4 + g2

2 ϕ
2χ2 for g2

λ = 5200. The upper curve
corresponds to the massless theory, the lower curve describes stochastic resonance with a theory with a mass
m which is chosen to be much smaller than

√
λϕ during the whole period of calculations. Nevertheless, the

presence of a small mass term completely changes the development of the resonance [63].

4.4.5 Preheating with a massive self-interacting inflaton

In the previous sections we investigated parametric resonance in the theory m2

2 ϕ
2 + g2

2 ϕ
2χ2. In

this theory reheating can be efficient only if gΦ ≫ m, with Φ the amplitude of the oscillating inflaton
field. Due to the rapidly decrease of the amplitude Φ, the parameter q in the Mathieu equation rapidly
changes and we have a stochastic resonance regime.

In the theory λ
4ϕ

4 + g2

2 ϕ
2χ2, instead, the decreasing of the inflaton field ϕ does not make the

resonance stochastic because all parameters of the resonance scale in the same way as Φ due to the
conformal invariance.

However, neither of these two theories is completely general. Indeed, in the theory of the massive
scalar field we expects terms ∼ λϕ4 because of radiative corrections. On the other hand, in many
realistic theories the effective potential is quadratic with respect to ϕ near the minimum of the effective

potential. Therefore, one can study the general theory m2

2 ϕ
2 + g2

2 ϕ
2χ2 + 1

4λϕ
4. We report here in

(Fig. 4.9) the plot of [63], in which are shown the development of the resonance both for the massless
theory, and for a theory with a small m. See the paper for details. In the purely massless theory
the logarithm of the number density nk for the leading growing mode increases linearly. Instead, in
the case with a small mass m the resonance becomes stochastic. However, in the case with smaller
g2/λ and a little massive inflaton field, the resonance is not stochastic, but it may consist of stages of
regular resonance separated by stages without any resonance. Therefore, the presence of a little mass
term can modify the nature of the resonance even if this term is much smaller than λϕ4.

In this model if the ratio of g/
√
λ is smaller than a certain critical value,

√
λMpl/m, the resonance

never become stochastic. Otherwise, if g/
√
λ >

√
λMpl/m, the resonance originally develops as in

the massless conformal theory and then, with the decrease of Φ(t), the resonance becomes stochastic.
In all cases the resonance stops when Φ(t) becomes sufficiently small. Another interesting model
studied in [63] is the case with spontaneous symmetry breaking with the change of sign of m2, i.e.

V (ϕ, χ) = −m2

2 ϕ
2 + g2

2 ϕ
2χ2 + 1

4λϕ
4.
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4.5 Tachyonic Preheating

In the second chapter we considered the hybrid inflation model

V (ϕ, σ) =
1

4λ
(M2 − λσ2)2 +

1

2
m2ϕ2 +

1

2
g2ϕ2σ2, (4.105)

where m and M are the bare masses of the scalar fields ϕ and σ. At large values of the fields, their
effective masses squared are both positive and the potential has the simmetry σ → −σ. At small
values of the field ϕ, the potential has a maximum at ϕ = σ = 0 and a global minimum at ϕ = 0,
σ = σ0 ≡M/

√
λ, where the simmetry is broken.

In the second chapter we discussed how inflation proceeds/ends in this model. Motion starts
at large ϕ, where the effective mass of the σ-field is positive and large. The σ-field is sitting at
the minimum of the potential at σ = 0. During the slow-roll, the effective mass of the σ-field is
m2
σ = g2ϕ2 −M2. When the field ϕ acquires the critical value ϕc =M/g, fluctuations of the massless

σ field trigger the symmetry breaking phase transition that ends inflation.
Therefore, in the simplest model of hybrid inflation, inflation ends as soon as the inflaton field

decreases below ϕc = M/g. It is important to understand the waterfall process in which the σ field
goes from σ = 0 to |σ| = M/

√
λ. In fact, considering the classical equation of motion, the field at

σ = 0 cannot change its value because the first derivative of the effective potential vanishes at σ = 0.
Indeed, in this case the process of SSB occurs due to the exponential growth of quantum fluctuations.
The trigger field σ acquires a negative mass squared −µ2(ϕ) = g2(ϕ2 − ϕ2c), which vanishes at the
critical point, but becomes large and grows up to µ(0) =M as the field ϕ moves to ϕ = 0.

Quantum fluctuations of the trigger field σ with momentum k grow as ∼ eωkt, where ωk =√
µ2 − k2, k = |k|. Therefore, simmetry breaking occurs due to the growth of fluctuations with

k⟨µ. We obtain an inhomogeneous distribution of the field σ with ⟨σ⟩ = 0. The resulting distribution
of the field σ is rather homogeneous on a scale l ∼ µ−1 because the rate of exponential growth is
maximal at k = 0, and the fluctuations with k > µ do not grow (see [64]).

After inflation, the fields oscillate around their minima producing particles. In this model there are
two fundamental frequencies of oscillations near the minimum of the effective potential: mσ =

√
2M

andmϕ = gM/
√
λ. We have also two different scales for the fields ϕ and σ: ϕc =M/g and σ0 =M/

√
λ.

In the case λ ≫ g2 we have σ0 ≪ ϕ0 and mσ ≫ mϕ. In this case oscillations of the σ-field tend
to be insignificant and most of the energy of these two fields is concentrated in the oscillations of the
inflaton field ϕ. On the other hand, for λ≪ g2 we have mσ ≪ mϕ. In this case we have the opposite
situation: oscillations of the inflaton field ϕ is insignificant and most of the energy of the two fields
will be concentrated in the oscillations of the scalar field σ. Finally, the case λ ∼ g2 is much more
complicated. Both fields will oscillate with a comparable amplitude, transferring energy to each other
in a chaotic way.

In [64] are studied different cases deriving, for each situation, the Mathieu equation that describes
the system. For example, are studied the case in which g2 ≪ λ, where the beheaviour of the inflaton ϕ
dominates, or the opposite case, g2 ≫ λ. However, if we consider the amplitude of oscillations of the
field σ small, resonance occurs in the narrow resonance regime and then, in general, the production
of particles is inefficient in all cases . Instead, considering M ≫ H for λ ≪ g2, we obtain a different
result. In this type of model we have a quick end of inflation and a large amplitude of oscillations
of the field σ after inflation. The field makes 106 oscillations before the amplitude is damped by the
expansion of the universe (taking for example a model with g = 1, λ = 10−2, m = 103GeV and
M = 1.3× 1011 GeV, it gives H ∼ 2× 104 GeV, mϕ ∼ 5× 107H and mσ ∼ 8× 106H ). As a result,
we obtain very efficient production of σ and ϕ particles. In the plots (Fig. 4.10) from [64] are shown
the growth of the fluctuations for the two fields neglecting backreaction. Preheating in this model is
so efficient that it completes within few oscillations.

The efficiency in this model of the process of production of σ-particles can be explained by the
tachyonic instability of the field in the first stages of its rolling down. Neglecting the expansion of the
universe, fluctuations of the field σ in the beginning of the process grow as exp

√
k2 −M2t. The value

of the homogeneous field ⟨σ⟩ vanishes at all time and all the energy is stored in the fluctuations of the
σ-field.
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Figure 4.10: The top panel shows the exponential growth of the occupation number nk and σ particles, as a
function of N = m̄σt/2π for k = 0.43M with m̄2

σ ≡ 2M2. It acquires a typical growth parameter µk ≃ 0.3 during
the last stages of preheating. The lower panel shows the occupation number nk of ϕ-particles, for k = 0.2M .
In this case the growth parameter is an order of magnitude smaller, µk ≃ 0.023. The dashed line shows the
oscillations of the field σ. The upper panel shows 10σ/σ0, while the lower panel shows σ/σ0. The number of
the σ-field oscillations differs from N because the oscillations are not armonic. In this model λ = 10−2, g = 1,
m = 103 GeV, M = 1.3× 1011 GeV [64].

Various simulations are computed about this stage. We will see in the next chapter that preheating
process after hybrid inflation is even more violent than in the case of parametric resonance that occurs
after chaotic inflation. For more details about this model see [64].

4.6 Other Models

In this last section we briefly review some other very interesting models of preheating.

4.6.1 Instant preheating

Instant preheating works even in the models where parametric resonance does not develop. It
leads to an almost instantaneous reheating accompanied by the production of superheavy particles
with masses which may be as great as 1017 − 1018 GeV [65].

Consider the simple chaotic inflation model with m2

2 ϕ
2+ λ

4ϕ
4 and assume that the inflaton interacts

with some other scalar field χ with the interaction term −1
2g

2ϕ2χ2. We have seen in the previous
sections that, when the inflaton ϕ = 0, we have a production of χ-particles. This mechanism is
described by the broad resonance process. However, concentrate on the first instant of the process.
Initially only a small fraction of the energy of the inflaton field is transferred to the particles χ.
Suppose that the particles χ interact with fermions ψ with the coupling hψ̄ψχ. If the coupling with
fermions is strong enough, the χ particles may decay to fermions before the oscillating inflaton field
ϕ returns back to the minimum of the effective potential. In this way, parametric resonance does not
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occur, but the total energy of the χ-particles at the moment of their decay is much greater than their
energy at the moment of their creation. Indeed, the effective mass of each χ-particle grows as mχ = gϕ
when the field ϕ rolls up from the minimum of the effective potential. We can consider the χ-particles
being fattened by the energy of the inflaton field. These χ fattened particles decay to fermions when
they have the greatest mass, i.e. when ϕ reaches the maximal value.

The χ-particles can decay to two fermions with mass that can be as large as 5 × 1017 GeV for
g ∼ 1. It results that this mass is two orders of magnitude greater than the masses of the particles
that can be produced by the parametric resonance process. The total energy density of the produced
particles also becomes two orders of magnitude greater than their energy density at the moment of
their production. Therefore, the chain ϕ → χ → ψ significantly enhance the efficiency of the energy
transfer from the inflaton field to matter.

Moreover, the produced superheavy particles ψ eventually dominate the energy density of the
universe, even if initially their energy density was relatively small. When these particles decay, they
eventually lead to the reheating of the universe.

The entire non perturbative process is referred as instant preheating since it occurs immediately
after the end of inflation within less than one oscillation of the inflaton field (see [65] for the complete
detailed model). This process can lead to the production of particles with momenta and masses many
orders of magnitude greater than the inflaton mass.

A peculiar and very interesting effect that can happens in this model occurs when the masses of
the produced χ particles, mχ = g|ϕ|, become greater than Mpl. When this happens, each χ-particle
becomes a Planck-size black hole, which immediately evaporates and reheats the universe.

4.6.2 Preheating of fermions

During preheating the leading channel of particle production is the non-perturbative process of
parametric resonance of bosonic fields during which they are produced exponentially. Initially, because
of the Pauli principle that prohibits unbounded creation of fermions, it was assumed that the creation of
fermions can be treated with perturbation theory for the decay of individual inflatons. However, in [66]
it is found that we can have preheating of fermions in a regime called parametric excitation of fermions.
Fermionic preheating differs significantly from the perturbative expectation. In this case the number
density of fermions varies periodically with time.

Consider the Dirac equation for a massless quantum Fermi field ψ(t,x):

[iγµ∇µ − hϕ(t)]ψ = 0, (4.106)

where ϕ(t) should be considered as a coherently oscillating scalar field.
Consider the model 1

4λϕ
4 + hψ̄ϕψ. We can do a conformal transformation of the involved fields:

φ = aϕ, Ψ = a3/2ψ and τ =
√
λφ̃2

∫
dt a(t)−1. Take an auxillary field X(τ,x), so that Ψ =

[iγµ∇µ + hφ]X. It is found that the temporal part of the eigenmode Xk obeys the oscillator-like
equation [66]

Ẍk +

(
κ2 + qf2 − i

√
qḟ

)
Xk = 0. (4.107)

This is an equation with complex frequency which depends periodically on time. The comoving
momentum k enters the equation in the combination κ2 = k2/λφ̃2. The background oscillation

enters in the form f(τ) = cn

(
τ, 1√

2

)
with unit amplitude. Finally, the combination of the coupling

parameters q = h2/λ defines the structure of the solution of (4.107). The comoving occupation number
of particles nk in a given spin state is given by

nk(τ) =
1

2
− κ2

Ωk
Im

(
XkẊ

∗
k

)
−

√
qf

2Ωk
, (4.108)

where Ωk = κ2 + qf(τ)2 and nk ≤ 1/2. From the numerical analysis in [66] comes out that the occu-
pation number exhibits high frequency oscillations, which are modulated by a long period beheaviour
(see (Fig. 4.11) from [66]).

95



4.6. OTHER MODELS CHAPTER 4. PREHEATING

Figure 4.11: The occupation number nk in this model as a function of τ in units of T ≃ 7.416 (the period of the
background oscillations) for q = 10−4 (lower), 1 (middle on right), and 100 (upper on right) and κ2 = 0.18, 1.11,
and 11.9, respectevely [66].

For values q ≫ 1, as in the case of parametric resonance production of bosonic particles, the
number of fermions is almost constant between two successive zeros of the inflaton field. It jumps in a
step-like manner at instances when ϕ(t) crosses zero. In this case we talk about parametric excitation
of fermions and q plays the role of the resonance parameter. For details about this model see [66].

4.6.3 Gauge-field preheating

We can consider the possibilty of preheating via the parametric amplification of a massless, U(1)
abelian gauge field. This is a model studied in [67].

In this model the inflaton field ϕ is coupled to U(1) gauge field with the action

S =

∫
d4x

√
−g

(
− W (ϕ)

4
FµνF

µν − 1

2
∂µϕ∂

µϕ− V (ϕ)

)
, (4.109)

where W (ϕ) and V (ϕ) are scalar functions which represent the coupling strength and the inflationary
potential, respectevely. The potential of the inflaton field is quadratic, V (ϕ) = 1

2m
2ϕ2, and the

coupling function has the form

W (ϕ) = eϕ/M , (4.110)

where M is a free parameter which value is near m. As the scalar field decays, the coupling goes to
unity and standard electromagnetism is recovered.

From the analysis of [67] an abelian U(1), massless, electromagnetic field can be used as a mecha-
nism by which energy can be moved from the inflaton field into particles. Moreover, this model does
not require additional channel of decay or tachyonic instabilities in order to generate the radiation
dominated universe after reheating. Once the energy is moved to the gauge field during resonance,
there is no movement of energy back to the scalar field that one normally see in other models.

Once the field ϕ becomes small, the coupling function term becomes negligible and the energy
deposited in the gauge field remains there. In this model then we obtain a method for creating a
universe at the end of inflation with a majority of its energy in a gauge field Aµ. At late times
the coupling function is close to unity and the standard dynamics of the gauge field, for example
electromagnetism, is recovered.

Another possibility is the case in which the inflaton is charged [68]. In this case we consider the
inflaton field ϕ to be a complex scalar field under an abelian U(1) symmetry, with the standard kinetic
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term replaced by

∆L = −|Dµϕ|2 = −|∂µϕ|2 + ig(ϕ∂µϕ
∗ − ϕ∗∂µϕ)A

µ + g2|ϕ|2AµAµ, (4.111)

where the final term is similar to the standard preheating interaction g2ϕ2χ2, but with the scalar field
χ replaced by a gauge field. Since spin-1 fields are bosonic, this can leads to significant parametric
resonance.

4.6.4 Multi-field preheating

In the case we consider several oscillating homogeneous fields, the periodicity of the time-dependent
background can be violated. Unless special situations [59], the time-dependent coefficients in the
equation of motion governing the fluctuations are not exactly periodic. This can lead a stochastic
resonance if the adiabaticity condition is violated.

In the case in which the number of oscillating homogeneous fields is much greater than one, the
effective masses of the daughter fields evolve randomly. This reduces the efficiency of the particle
production, but resonance still takes place. It occurs at all wavenumbers, not only within particular
resonance bands. In fact, we can consider the condensed matter phenomenon of Anderson localitation,
in which small random impurities make eigenfunctions exponentially localized in space (see [59]).
Therefore, we expect that in the case of preheating, time-dependent masses with random components
give rise to exponentially growing modes at all wavelength. A reference for this type of models can be
found in [69].
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Chapter 5

Non-linear Evolution

The study of reheating in the early universe involves the description of the evolution of interacting
fields in a dense, high-energy environment. Preheating and the subsequent phase of Thermalization
involve non-perturbative interactions of fields with exponentially large occupation numbers in states
far from thermal equilibrium. As seen in the previous chapter, approximation methods like the Hartree
approximation fail in the description of the process because they neglect important scattering terms.

The simplest model of preheating involves a chaotic inflationary scenario with potential V (ϕ) =
1
2m

2ϕ2 and a quadratic coupling of the inflaton to another field 1
2g

2ϕ2χ2. We studied the process
of preheating. However, backreaction of inhomogeneous fluctuations quickly brings the system of
interacting scalar fields to a strongly non-linear regime characterized by very high occupation numbers.

Another important class of inflationary models are given by hybrid inflation scenerios. As discussed,
preheating in hybrid inflation, which contains a symmetry breaking mechanism, occurs in the tachyonic
way and has a very different character respect to the chaotic inflation scenario.

In this chapter we present the numerical results about the process of non-linear interactions of
fields during and after preheating. We consider both tachyonic and chaotic models.

5.1 Tachyonic Model

We start discussing the dynamics of spontaneous symmetry breaking that leads to the tachyonic
preheating process. In this model the particle production is extremelly efficient, much more than
parametric resonance models after chaotic inflation. For reference and details see [70] and [71].

In the simplest models the instability appears because of the presence of a tachyonic mass term
such as −m2ϕ2/2 in the effective potential. This implies the exponentially growing of long wavelength
quantum fluctuations ϕk of the field ϕ with momenta k < m, ϕk ∼ exp(t

√
m2 − k2), which leads to

spontaneous symmetry breaking.
The spontaneous symmetry breaking process is a strongly non-linear, non-perturbative effect, and

leads to production of particles with large occupation numbers. The approximation methods like
perturbative theory or the Hartree approximation completely fail in the description. However, in the
past years methods of lattice simulations have been developed. They are based on the observation
that quantum states of bose fields with large occupation numbers can be interpreted as classical waves
and their dynamics can be fully analized through lattice simulations of relativistic wave functions. A
significant advantage of this method is that the semi-classical nature of these effects allows us to have
a clear visual picture of all the processes involved.

To understand the basic features of a SSB model we consider the simplest model

V (ϕ) =
λ

4
(ϕ2 − v2)2 ≡ −m

2

2
ϕ2 +

λ

4
ϕ4 +

m4

4λ
, (5.1)

wherem2 ≡ λv2 and λ≪ 1. V (ϕ) has a maximum at ϕ = 0 with curvature V ′′ = −m2 and a minimum
at ϕ = ±v.

Consider the Klein-Gordon equation for the scalar field fluctuations in this model:

ϕ̈k + (k2 + V ′′)ϕk = 0. (5.2)
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Suppose that initially at t = 0 the mode functions describing quantum fluctuations in the symmetric
phase ϕ = 0 are the same as for a massless field, ϕk = 1√

2k
e−ikt+ikx. Then, at t = 0 we turn on the

term −m2ϕ2/2 corresponding to the negative mass squared −m2. The modes with k = |k| < m grow

exponentially, ∼ et
√
m2−k2 , until

√
⟨δϕ2⟩ reaches the value ∼ v/2. At ϕ ∼ v/

√
3 the curvature of the

effective potential vanishes and one has the usual oscillations of all the modes instead of the tachyonic
instability. This happens within a time t∗ ∼ 1

2m ln C
λ , where C ∼ 102 (see [71]).

To study this process is convenient to use the occupation number nk of produced particles. Indeed,
in situations where the number of particles is well defined (this happens at the end of the process)
the occupation number is an adiabatic invariant, i.e. it does not change during the field oscillations,
unless some dramatic changes occur to the system. In the previous chapter we have seen the standard
definition of the occupation number, which is valid for m2 ≥ 0,

nk =
ωk
2

(
|ϕ̇k
ω2
k

+ |ϕk|2
)

− 1

2
. (5.3)

However, this definition should not be interpreted as the occupation number of particles during the
tachyonic regime. In fact, during this stage the effective mass squared of the field ϕ becomes neg-
ative since ωk =

√
k2 +m2 becomes imaginary. We can define a formal quantity using for example√

k2 + |m2| in the expression for nk whenever m2 < 0. This formal quantity nk can be interpreted as
the occupation number of particles after the end of the tachyonic regime, when m2 > 0. Indeed, these
two quantities matches at the end of the tachyonic stage.

The exponential growth of fluctuations during the tachyonic regime can be interpreted as the
growth of the occupation number of particles with k ≪ m. Considering the instant t∗ at which the
tachyonic growth of the fluctuations ends, it is showed in [71] that nk for k ≪ m at the time t∗ grows
up to nk ∼ exp(2mt∗) ≃ O(102)λ−1 ≫ 1. Thus, for small λ fluctuations with k ≪ m acquire very
large occupation numbers. Moreover, these fluctuations will have large amplitude and will be in a
squeezed state. If we consider the general solution, it will contains two terms, a growing mode ∼ Aeωt

and a decreasing mode ∼ Be−ωt, but after a short time only the growing mode survives. Then, only
modes with k < m survives after the beginning of the tachyonic regime independently of the initial
phase of quantum fluctuations, and their amplitude will become extremely large. This implies that
we can study these modes by lattice simulations since we can interpret them as classical waves.

Equation for fluctuations in the model V (ϕ) = −m2

2 ϕ
2 + λ

4ϕ
4 + m4

4λ is

ϕ̈k +

(
k2 −m2 + 3λϕ2

)
ϕk = 0. (5.4)

This is the Lame equation that we have seen in the previous chapter, and its solutions depend on
the parameter combination

√
λϕ0/m. In the numerical computation this equation should be solved

together with the equation for the background field ϕ(t):

ϕ̈−m2ϕ+ λϕ3 = 0. (5.5)

In this model the study of the growing of perturbations is a generalitation of the theory of parametric
resonance in the model λ4ϕ

4, studied using the stability/instability chart of the Lame equation. The
additional instability is due to the presence of the negative mass term.

From the analysis of [71] we have the following picture. Consider the evolution of the occupation
number nk of the modes ϕk with λ = 10−4 and the field rolling from ϕ0 = 0.01v. Start with a
mode ϕk with k ≪ m. When the field ϕ rolls from ϕ = ϕ0 to ϕ = v/

√
3, the occupation number

becomes ∼ e9. Then, the field reaches the bottom of the effective potential, goes little beyond this
point, bounces back and again approaches the tachyonic region ϕ < v/

√
3. The occupation number

of particles with k ≪ m does not change much until the field becomes smaller than v/
√
3. After this

point, however, the comoving number of particles decreases almost to the same value from which the
simulation starts. Indeed, this beheaviour is due to the fact that the solution for the fluctuations has
two modes, one growing and the other one decaying. Then, when the field bounces, fluctuations either
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grow or decay depending on the phase with which they re-enter the tachyonic regime. In (Fig. 5.1)
from [71] is showed the growth of nk during three consecutive oscillations of the field ϕ. During each
full oscillation the occupation numbers grow e15 times. Therefore, during n oscillations the occupation
numbers grow e15n times. We obtain from this model then an incredible fast growth, much faster

Figure 5.1: Evolution of the occupation numbers for fluctuations with k ≪ m in the model V (ϕ) = −m2

2 ϕ
2 +

λ
4ϕ

4 + m4

4λ [71].

Figure 5.2: Same as in (Fig. 5.1) but for k = 0.5 m [71].

than in the parametric resonance theories with m2 > 0. This process can rapidly convert all the
energy of the homogeneous field into the energy of the classical interacting fields.

If we consider in general a theory with V (ϕ) ∼ −ϕn with n > 2, the growth of the occupation
numbers for small k occurs faster. Indeed, the tachyonic fluctuations with small momenta in the long
time limit grow as ϕk ∼ ϕn/2. We can easily prove this statement. Consider a generic model

V (ϕ) = V0 − λϕn/2. (5.6)

Consider the field ϕ that begins rolling down from ϕ0. From energy conservation we have

1

2
ϕ̇2 − 1

2
ϕ̇20 = V (ϕ0)− V (ϕ). (5.7)

Assume for semplicity that the field starts from ϕ = 0 with zero total energy, i.e. ϕ0 = V0 = 0. Then,
we have

1

2
ϕ̇2 = −V (ϕ) =

1

2
λϕn, (5.8)
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that yields
ϕ̇ =

√
λϕn/2, (5.9)

and finally,
ϕk = Cϕn/2. (5.10)

In particular, this implies that in the theory with the potential −ϕ2 the long wavelength fluctuations
grow just like the field itself, i.e. ϕk ∼ ϕ. If we consider for example a theory with a potential ∼ −ϕ3,
the fluctuations grow faster, ϕk ∼ ϕ3/2, and for the theory −ϕ4 they grow even faster, ϕk ∼ ϕ2.

In the theory −m2ϕ2 the fluctuations grow as fast as the scalar field. For example, if one consider
ϕ0 ∼ 10−2v, quantum fluctuations grow almost 104 times when the field falls down from ϕ = ϕ0
and returns back. The amplitude of inhomogeneites after the return becomes approximately three
orders of magnitude larger than ϕ0. This means that the homogeneous inflaton condensate becomes
completely destroyed. When the inflaton field falls down to the minimum of the effective potential
again, it becomes divided into large colliding waves. If we consider a general potential V (ϕ) ∼ −ϕn
with n > 2, the process occurs even more faster (see [71]).

5.1.1 Lattice simulations

To study the beheaviour of this process with lattice simulations in [71] is considered the probability
distribution function P (ϕ, t), which is the fraction of the volume containing the field ϕ at a time t. At
t = 0, at the start of the simulation, the probability distribution is concentrated near ϕ = 0.

In the beginning, quantum fluctuations are very small and the probability distribution P (ϕ, t) is
very narrowly focused near ϕ = 0. Then, it spreads out and shows two maxima that oscillate about
ϕ = ±v with an amplitude much smaller than v. The symmetry becomes broken within a single
oscillation of the distribution of the field ϕ. After the SSB, the space becomes divided into domains
with the field ϕ ∼ ±v (see (Fig. 5.3) from [71]). The size of the domains is large and they become
even larger since large domains eat the small ones. In the numerical analysis are considered only the
modes with k < m, since only these modes experience exponential growth and beheave as classical
fields.

In (Fig. 5.4) and (Fig. 5.5) from [71] is showed the growth of fluctuations in a two-dimensional
slice of 3D space. Maxima corresponds to domain with ϕ > 0, while minima correspond to domains
with ϕ < 0. The third image correspond to the first one half of an oscillation. In this moment, the
universe is already divided into domains with ϕ±v and initial size somewhat greater than m−1. Inside
each domain the deviation from ϕ = |v| is much smaller than v. Therefore, from the lattice simulation
we see that SSB occurs within a single oscillation. Gradually, the size of each domain grows and the
domain wall structure becomes more and more stable. If one continues the simulation for a much
longer time, we see formation and growth of domains with ϕ = ±v. In the beginning these domains
are small, but they eat each other and grow.

We show also in (Fig. 5.6) from [71] the case in which we have the SSB for a theory of a multi-
component scalar field ϕi with the potential

V (ϕ) =
λ

4
(|ϕ|2 − v2)2 ≡ −m

2

2
|ϕ|2 + λ

4
|ϕ|4 + m4

4λ
. (5.11)

In the plots of (Fig. 5.6) is illustrated the dynamics with a two-component scalar field ϕ = (ϕ1 +
iϕ2)/

√
2. It shows the probability distributions P (ϕi, t) which is the fraction of the volume containing

the field ϕ at a time t.
In the beginning, the probability distribution is concentrated near ϕ = 0. Then, it spreads out

and stabilizes at |ϕ| ∼ v after a single oscillation, which corresponds to SSB. In (Fig. 5.7) from [71] is
showed the occupation numbers nk of produced particles. During the first oscillation the occupation
numbers grow up to 107 − 108 for k < m (k < 1 in the figure). Then, the occupation numbers at
k < m slightly decrease, while at k > m begin to grow. In the model of a complex scalar field, instead
of domain walls, we obtain strings that are produced when the field falls down. We report in (Fig.
5.8) from [71] a simulation of the strings produced after one half of an oscillation of the complex scalar
field. The whole process of string formation in this model occurs within a single oscillation.
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Figure 5.3: The process of symmetry breaking in the model (5.1) for λ = 10−4. The values of the field are shown
in units of v, time is shown in units of m−1. For each moment of time, it is also shown the occupation numbers
nk (the lower part of each panel), with k measured in units of m. At t = 0 one has nk = 0, as in the usual
quantum field theory vacuum. In the beginning of the process the occupation numbers nk grow exponentially
for k < m (k < 1 in the figure), but then this growth spreads to k > m because of domain wall formation and
collisions of classical waves of the field ϕ. Within a single oscillation the occupation numbers for k ≪ m grow
up to ∼ 106. The spectrum rapidly stabilizes, but it is not thermal yet, and the occupation numbers remain
extremely large [71].

We see that, as in the case of the one-component scalar field, we obtain a formation of topological
defects from the SSB. Indeed, this is not a small correction but an important feature of SSB. Topo-
logical defects, like other inhomogeneities generated by tachyonic instability, drain the energy of the
scalar field rolling down to the minimum of the effective potential. In this way, they diminuish the
amplitude of subsequent oscillations of the inflaton field.

5.1.2 Tachyonic model simulations

An important example of tachyonic model is provided by the theory

V (ϕ) = −λ
3
vϕ3 +

λ

4
ϕ4 +

λ

12
v4. (5.12)

This potential is a prototype of the potential that appears in descriptions of symmetry breaking in F-
term hybrid inflation [78]. In this model the fluctuations increase considerably if the initial amplitude
is somewhat greater than δϕc ∼ λv

4π2 . Low probability fluctuations with δϕ ≫ δϕc correspond to
peaks of the initial Gaussian distribution of the fluctuations of the field ϕ (see [71]). In this model of
tachyonic preheating the whole process looks not like a uniform growth of all modes, but more like
bubble production. The numerical simulation is showed in (Fig. 5.9) from [71]. The bubbles, that
are high peaks of the field distribution, grow, change shape, and interact with each other, rapidly
dissipating the vacuum energy V (0). In (Fig. 5.10) is showed the occupation numbers of produced
particles with λ = 10−2. These occupation numbers grow up to 104 − 105 within a single oscillation.

We consider now the model of tachyonic preheating with potential

V (ϕ, σ) =
λ

4
(|σ|2 − v2)2 +

g2

2
ϕ2|σ|2 + 1

2
m2ϕ2, (5.13)

that we have seen in the previous chapter. If σ is a real one-component scalar, the SSB may lead to
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Figure 5.4: Tachyonic growth of quantum fluctuations and the early stages of domain formation in the simplest

theory of spontaneous symmetry breaking with V (ϕ) = −m2

2 ϕ
2 + λ

4ϕ
4 [71].

Figure 5.5: Formation of domains in the process of symmetry breaking in the model (5.1) [71].
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Figure 5.6: The process of symmetry breaking in the model (5.11) for a complex field ϕ = 1√
2
(ϕ1 + iϕ2) [71].

Figure 5.7: Occupation numbers nk of particles produced during tachyonic preheating in the model of a complex
scalar field ϕ with effective potential V (ϕ) = −m2|ϕ|2 + λ|ϕ|4 with λ = 10−4. In the beginning (lower curves),
nk grows for k ≤ m (k ≤ 1 in this figure), but then eventually this growth spreads to larger k [71].
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Figure 5.8: Strings produced after one half of an oscillation in the model (5.11) for a complex field ϕ [71].

Figure 5.9: Field values on a 2D slice through the lattice for V = −λ
3 vϕ

3 + λ
4ϕ

4. The growth of quantum
fluctuations of ϕ looks like bubble formation. The bubbles expand and collide even before the average field
value reaches the minimum. Preheating occurs due to a combined effect of bubble production, tachyonic
instability and bubble wall collisions [71].
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Figure 5.10: Occupation numbers of particles produced during tachyonic preheating in the model (5.12) with
λ = 10−2 [71].

the formation of domain walls. In this case, assuming σ a complex field, SSB after inflation produces
cosmic strings [70].

In this model a lattice simulation can be found in [72] and it is showed in (Fig. 5.11) and (Fig.
5.12). This model leads, as the previous one, to bubbles formation. The non-perturbative evolution is
studied numerically solving the coupled classical equations of motion for the inflaton field ϕ and the
Higgs field σ with gaussian initial conditions. As seen in the other models, also in this one SSB in not
at all a homogeneous process. Already in the linear regime, the Higgs field σ evolves by developing
lumps in space that grows with time. In the plots (Fig. 5.11) and (Fig. 5.12) from [72] is followed the
classical evolution of the Higgs’ lumps. From the figure we can see that the peak of the largest Higgs’
lump is the first to break the symmetry, i.e. to reach |σ| = v, and soon after the center of the lump
invaginates, creating an approximately spherically symmetric bubble, with ridges that remain above
|σ| = v. Finally, from these plots we see that neighbouring bubbles collide and the symmetry gets
fully broken through the generation of higher momentum modes.

Regarding the beheaviour of the |σ(x, t)| at the center of the highest Higgs lump, it oscillates
around |σ| = v with an amplitude that is dumped in time. Oscillations of the field remain coherent
and give rise to concentric bubbles, until the time when bubble collisions break the symmetry.

5.2 Chaotic Models

Consider the potential of chaotic inflation

V (ϕ, χ) =
1

2
m2ϕ2 +

1

2
g2ϕ2χ2, (5.14)

where ϕ is the inflaton and χ the scalar field coupled to it. At the end of inflation, ϕ is a homogeneous
oscillating field and χ a quantum field which obeys an oscillator equation with a periodic frequency
ω2
k =

k2

a2
+ g2ϕ2. In the previous chapter we have seen that the amplitude χk(t) undergoes parametric

resonance, leading to large occupation numbers of created particles nk. Since the occupation numbers
grow very fast, we can treat the field χ(t,x) as a classical scalar field. Once the χ field is amplified
in this way, the other fields coupled to it are themselves amplified. Thus, within a short time of
linear preheating (of order dozens of inflaton oscillations), fluctuations of χ generate inhomogeneous
fluctuations of the inflaton field ϕ.

The equation of motion for ϕ
□ϕ+m2ϕ2 + g2χ2ϕ = 0, (5.15)

in Fourier space reads

ϕ̈k + 3Hϕ̇k + ((k2/a2) +m2)ϕk = g2ϕ0(t)

∫
d3qχqχ

∗
q , (5.16)

107



5.2. CHAOTIC MODELS CHAPTER 5. NON-LINEAR EVOLUTION

Figure 5.11: Snapshots of the growth of the Higgs peak in a full non-linear lattice simulations, for λ = 0.11/4
and V = 0.003. Plotted is the value of the Higgs amplitude σ in the (x, y) plane, where the z-coordinate is that
of the highest peak. Note that several peaks appear in the simulation. Here are showned the first stages of the
evolution, where the highest peak invaginates and form the bubble. In the figure ϕ is the our Higgs field σ [72].

Figure 5.12: Same as in (Fig. 5.12). Here are showed the late stages, in which gradients arise from collisions of
bubbles and the symmetry is broken. In the figure ϕ is the our Higgs field σ [72].
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Figure 5.13: Evolution of spectra in the combination k3ωknk of the ϕ and χ fields during and immediately after
preheating. Bluer plots show later spectra. Horizontal axis k is in units of m [73].

where is neglected the term that is third order with respect to fluctuations and ϕ0(t) is the background
oscillation [73]. When the amplitudes of the fields ϕ and χ become sufficiently large we obtain a full
non-linear problem. The field evolution can be well determined using the classical equation of motion
(5.15) supplemented by the equation for the field χ,

□χ+ g2ϕ2χ = 0. (5.17)

To obtain the simulations in this section of non-linear preheating it is used the program LAT-
TICEEASY [74]. LATTICEEASY can generally solve the classical equations of motion for interacting
scalar fields, with or without the effects of the expansion of the universe. This program has a vari-
ety of applications since it simulates the nonlinear scalar field dynamics, i.e. parametric resonance,
formation of gravitational waves, phase transitions, formation of topological defects, Thermalization
after preheating. Each particular scalar field potential that the program solves is encoded in a model
file, which is read in LATTICEEASY. The model contains all the necessary equations for running the
potential and includes the potential itself and its first and second derivatives, all of which have to be
provided in the model file. The model contains also all the parameters for a given run of the program,
the number of grid points, the time step, and a number of other general variables specific to each run.

LATTICEASY uses a staggered leapfrog algorithm with a fixed time step. This means that at
each step the field values f and their derivatives ḟ are stored at two different times t and t + dt/2,
respectevely. The derivatives are used to advance the field values by a full step dt, and then the field
values are used to calculate the second derivatives f̈ , which are in turn used to advance the field
derivatives by dt (see [74]).

For chaotic inflation we show the results of [73] in (Fig. 5.13) expressed in terms of the evolution of
the occupation numbers nk(t) with m = 10−6Mpl (fixed by CMB normalitation) and g2 = 2.5× 10−7.
The size of the simulation box is L = 10m−1 and the grid contains 2563 points. The spectra in (Fig.
5.13) show a rapid growth of the occupation numbers of both fields, with a resonant peak that develops
first in the infrared (k ≃ k∗), and then moves towards the ultraviolet as a result of rescattering. In
the other plot in (Fig. 5.14) from [73] is showed the evolution of the comoving number density for the
fields ϕ and χ. We can see clearly the exponentially fast growing of the occupation number of the field
χ, due to parametric resonance, followed by even faster growth of the field ϕ due to the interaction.
This beheaviour is in accordance with (5.16).

Another feature of preheating is the onset of chaos: small differences in the initial conditions for
the fields lead to exponentially divergent solutions, i.e. D(t) ≃ eλt, where D is the distance in phase
space between the solutions and λ is called Lyapunov exponent (see [73]). After the violent transition,
the distance D begins to diverge exponentially towards the turbolent stage.
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Figure 5.14: Evolution of the comoving number density of ϕ (red, lower plot) and χ (blue, upper ploat) in units
of m3. Time is in units of 1/m [73].

The evolution of the fields in configuration space is showed in (Fig. 5.15) from [73]. Each frame
shows the spatial profile of the fields ϕ and χ along a two-dimensional slice of the 3D lattice. Times
are reported in units of 1/m.

For t ≤ 100, we have the initial evolution of the fields characterized by linear growth of fluctuations
of χ. The positive and negative peaks correspond to the peaks of the initial gaussian random field χ.
During this stage the fluctuations have the form of a superposition of standing waves with random
phases, which yield to a random gaussian field. The first panel in (Fig. 5.15) shows the fields at
the end of this first linear stage. After this point, the oscillations become nonlinear and ϕ becomes
excited. The amplitude of these ϕ oscillations grows much faster than the initial χ oscillations, and
the oscillations have different and changing frequencies.

For t ≤ 110, the peaks reach their maximum amplitude, comparable to the initial value of the
homogeneous field ϕ, and begin to spread. The two lower left panels of (Fig. 5.15) shows the peaks
expanding and colliding.

By t = 124, the fluctuations have spread throughout the lattice. Shortly after this time all
coherence is lost and the field configurations appear to be like random turbolence.

The evolution during the non-linear period is analyzed not using the Fourier-mode description
(5.16), but instead considering the configuration space description (5.15).

We show also in (Fig. 5.16) from [73] the evolution of the statistics of the fields ϕ and χ. In (Fig.
5.16) are showed the field distributions, i.e. histograms, at various times during the evolution. Initially
both fields have gaussian distributions from their random quantum fluctuations. The field ϕ is sharply
peaked around ϕ0, and the field χ is centered around zero. As non-linear effects become important, the
statistics of the two fields become complicate. The distribution of the inflaton field becomes at times
sharply peaked to one side (when the condensate is at an extreme end of its oscillation), and at other
times with a presence of the homogeneous component plus a significant inhomogeneous component,
i.e. bi-modal. The statistics of the field χ also becomes strongly non-gaussian. Moreover, the statistics
of the two fields remain non-gaussian for a long time after preheating. At t = 300, when the simulation
in [73] ends, the fields are still non-gaussian.

The picture that emerges in this model is similar to what we observed in the previous section
for tachyonic preheating in hybrid inflation. For example, in the model (5.12) small initial random
fluctuations of ϕ are amplified by the non-linear ϕ3 term. The peaks of the gaussian field then begin
to grow very fast relatively to the surrounding regions of ϕ. In the same way, in the model discussed
in this section, it is found in [73] that oscillations of the fields χ and ϕ grow initially at the locations
of the peaks in the initial χ field. In this model these growing peaks form a pattern of standing
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Figure 5.15: Values of the ϕ and χ fields in a two dimensional slice through the lattice. The horizontal axes are
spatial axes and the vertical axis is field value [73].

waves that persists throughout the linear regime, and then begin to spread and overlap as rescattering
becomes important.

Therefore, we can split the reheating process from the end of inflation, when we have the inflaton
condensate, to the begin of the radiation era, where we have the radiation of randomly moving waves, in
four stages. The first is the exponentially growing of small inhomogeneities that emerge from vacuum
fluctuations (due to parametric resonance or tachyonic instabilities). During this stage fluctuations
are linear and the fields are gaussian random fields. The second stage is violent backreaction and
rescattering of the waves with non-gaussian, non-linear and non-thermal fluctuations. In the next
chapter we will study the third and the last stage of reheating. The third stage is the Kolmogorov
turbolence. During this phase, the fluctuations are nearly gaussian and energy gradually cascades
towards high momentum modes. The final stage is Thermalization where eventually the fields reach
thermal equilibrium characterized only by the temperature.

To end this section, we discuss an important signature from the non-linear bubble-stage of inflaton
fragmentation. Lumps of the scalar fields correspond to large energy density inhomogeneites at the
scale of those bubbles, say R. The collisions of bubbles generate gravitational waves. The fraction of
the total energy at the time of preheating converted into gravitational waves is significant. To estimate
this quantity we consider the following result. The energy converted into gravitational waves from the
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Figure 5.16: Field distributions. The horizontal axes are field values and the vertical axis represents the
frequency of that field value on the lattice. The black dots represent the simulation results and the red lines
are best-fit Gaussian curves. The fitting lines can not be seen in the first frame because they lie directly under
the dots [73].

collision of two black holes is of the order of the black hole masses. Suppose the mass of lumps of size
R equals to a fraction f of a black hole of the same size. Thus, the fraction of energy converted to
gravitational waves from the collision of two lumps is f . Scalar field lumps at the Hubble scale would
form black holes, so f = (RH)2. We can then estimate the fraction of the total energy converted into
gravitational waves as

ρGW
ρrad

≃ (RH)2. (5.18)

The present-day frequency of this gravitational radiation is estimated as

f ≃ 107GeV

M
Hz, (5.19)

where M = V 1/4 is the energy scale of inflation with the potential V .
For the chaotic inflation model in this section the size of the bubbles is R ∼ few/m and they begin
colliding at H ∼ m/100 [73]. Then, the fraction of energy converted into gravitational waves is
estimated as ∼ 10−3 − 10−4. For chaotic inflation with M at the GUT scale this frequency is too
short and not observable. However, better possibility of observations comes from low energy hybrid
inflation where f can be much smaller.

Gravitational waves continue to be generated during the turbolent stage and even during thermal
equilibrium due to thermal fluctuations, but with a smaller amplitude. In the final chapter of this
thesis we present various numerical simulations of gravitational wave production from preheating after
chaotic and hybrid inflation.
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5.3 Oscillons

We end this chapter considering a very peculiar model from which we can have a signature in the
spectrum of gravitational waves.

Many interesting non-perturbative phenomena may take place during preheating such as forma-
tions of oscillons when we have the inflaton fragmentation. Oscillons are spatially localized, tempo-
rally oscillating configurations of a nonlinear scalar field. They are first described by Bogolubsky and
Makhankov [79], and then are studied in great detail through numerical simulations.

Oscillons are not strictly stable, even in the classical limit since they are not associated with
conserved charges, but are long-lived (see [76] and [75]. There are various models in which massive
oscillons are generated during preheating, and in a large class of inflationary scenarios oscillons may
account for the majority of the energy density in the post-inflationary universe, i.e. axion monodromy
model. In these scenarios, the universe undergoes a transient matter-dominated phase.

Oscillons can form in a variety of models. However, an oscillon-dominated universe can follow
inflation driven by a single-field model. Oscillons can form if the inflaton potential is

V (ϕ) =
1

2
m2ϕ2 + U(ϕ), (5.20)

where U(0) = 0 and U(ϕ) < 0 for some range of ϕ.
Consider potentials with V (ϕ) ∼ ϕ2α during inflation and α < 1. These models are generated by

various string and supergravity scenarios which yield U(ϕ) < 0 at large ϕ. It is also required that
V (ϕ) has a stable minimum set at the origin in order to have V (ϕ) ∼ ϕ2 at small ϕ. We can consider
the potential

V (ϕ) =
m2M2

2α

[(
1 +

ϕ2

M2

)α
− 1

]
, (5.21)

where 0 ≤ α ≤ 0.9 and M ≤ 0.05Mpl. In particular, α = 1/2 is the axion monodromy model. When
ϕ/M is small, we have V (ϕ) ≃ m2ϕ2/2. For this potential very massive oscillons can be copiously
produced after inflation, giving rise to an oscillon-dominated phase. They eventually decay reheating
the universe.

A very interesting feature of this model is the production of gravitational waves as a consequence
of an oscillon-dominated phase in the early universe. Gravitational waves can arise during their
formation, during the oscillon dominated phase itself, and during their decay and the subsequent
Thermalization of the universe [77]. In [77] is computed the gravitational wave spectrum during the
resonance and the oscillon-formation phase. In (Fig. 5.18) from [77] is showed the resulting spectrum.
The spectrum has a specific and characteristic structure, with multiple peaks and troughs.

In models in which the scalar field is complex, one can also get nontopological solitons, called
Q-balls [80]. Also Q-balls can generate high-frequency gravitational waves [81].
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Figure 5.17: Sample output from a 3D oscillon simulation. Contours delineate regions where the local energy
density exceeds the average value by a factor 10, showing localized, approximatevely spherical, overdensities
characteristic of oscillons [75].

Figure 5.18: Peaks and troughs of the gravitational wave spectrum. The vertical lines correspond to the
gravitational wave frequencies associated with the different harmonics of the oscillon [77].
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Chapter 6

Thermalization

We have seen in the previous chapters that after inflation all energy density is stored in a Bose-
condensate, the coherently oscillating inflaton field. This stage is highly unstable: non-adiabatic
processes as parametric resonance or tachyonic instability lead to an explosive and fast decay of the
inflaton and production of particles. The decay of the inflaton leads to a rapid amplification of one or
more bosonic fields to exponentially large occupation numbers. This process eventually shuts down
because of backreaction and rescattering. We obtain at the end a turbolent medium of coupled,
inhomogeneous, classical waves far from equilibrium.

The transition from this stage of turbolence to a hot Friedmann universe in thermal equilibrium
is the stage called Thermalization. A theory of Thermalization of the fields is necessary to bridge
inflation and the Hot Big Bang universe. The details of Thermalization depend on the costituents of
the fundamental Lagrangian and their coupling. At first glance the description of this process would
be strongly model-dependent. However, from various analysis, i.e. [82], many features of this stage
seem to hold generically across a wide spectrum of models. This is due to the fact that the conditions
at the end of preheating are in general not qualitatevely sensitive to the details of inflation.

In this chapter we review the main common features of Thermalization among various different
models. We will discuss the beheaviour of the spectrum in terms of the so-called Kolmogorov turbo-
lence.

6.1 Rules of thermalization

In [82] is calculated the evolution of the number density n(t) of particles with time for different
models. For all models examinated in the paper, n(t) shows an exponential growth during preheating.
This exponential growth is well-studied in the previous chapters and corresponds to the explosive
particle production due to parametric resonance or tachyonic instabilities. After preheating, the fields
enter a turbolent regime during which n(t) decreases. Indeed, the decrease can be interpreted as a
consequence of the particle interactions: as nk shifts from low to high momenta the overall number
decreases. We then have a flow towards infrared momenta.

This beheaviour can be understood from (Fig. 6.1) from [82]. The spectrum shows a cutoff at some
momentum k∗, above which the occupation number falls off exponentially. This is because we have an
excess of occupation numbers at low k due to parametric resonance. Indeed, parametric resonance is
typically most efficient at exciting low momentum modes, and becomes completely inefficient above a
certain cutoff k∗. From (Fig. 6.1) we can see the flow towards higher momenta. The ultraviolet cutoff
is initially at the momentum k∗, where parametric resonance shuts down. However, during the time
the cutoff moves to higher k as more modes are brought into the quasi-equilibrium of the infrared
part of the spectrum. Moreover, the infrared sector gradually flattens as the system approaches a true
thermal distribution.

We have an other interesting feature studied in [82]. Consider the pure one-field model λϕ4 and
the two-field model g2ϕ2χ2. The numerical analysis in [82] shows that in the first case nϕ decreases
very slowly compared to the second. This occurs because the interactions between ϕ and χ greatly
speed up the Thermalization of both fields (see the plots in [82]). In the pure λϕ4 model, ϕ can

115



6.1. RULES OF THERMALIZATION CHAPTER 6. THERMALIZATION

Figure 6.1: Evolution of the spectrum of the field χ in the model V = 1
4λϕ

4 + 1
2g

2ϕ2χ2.The lower plots all
show early times. In the bundle of plots higher up the spectrum rises on the right and falls on the left as time
progresses [82].

only thermalize through its weak self-interaction. Moreover, the spectra of the two fields ϕ and χ are
essentially identical and results nϕ ≃ nχ. The two spectra match shortly after preheating, and from
that they evolve identically. This is due to the fact that the potential term V ≃ g2ϕ2χ2 is symmetric
with respect to the two fields, and then they act as a single effective field.

Finally, we can also include an additional decay channel for χ. The interaction between χ and
the decay field, σ, drag σ exponentially quickly into an excited state. The field σ is exponentially
amplified not by parametric resonance, but by its stimulated interactions with the amplified χ-field.
The interaction of the two fields does not affect the preheating of χ. From this, results that nχ
decreases as σ grows, so the spectra of χ and ϕ are no longer identical.

In [82] the previous features are encoutered in various models. Thus, in the paper are established
a set of rules that seem to hold generically. They are called rules of Thermalization. We report them
in the following:

1. In most models of inflation exist a mechanism for exponentially amplifying fluctuations of at
least one field χ. These mechanisms tend to give rise an highly infrared spectrum due to the
long-wavelength excitations.

Indeed, we have seen in the case of single-field models the parametric resonance mechanism.
In hybrid models the same amplification is mainly leaded by tachyonic instabilities. Adding
additional fields or self-couplings has little or no effect on the resonant period. Moreover, the
qualitative features of the fields arising from these processes are largely independent of the details
of inflation or the mechanisms used to produce the fields.

2. Exciting one field χ is sufficient to rapidly drag all other light fields with which χ interacts into
a similarly excited state.

In the paper is simulated the beheaviour of multiple fields directly coupled to χ. It is sufficient
to have one field rapidly excited to amplify an entire sector of interacting fields. These amplified
fields will inherit the basic features of the χ-field, i.e. they will have spectra with more energy
in the infrared than would be expected for a thermal distribution.

3. The excited fields will be grouped into subsets with identical characteristic (spectra, occupation
numbers, effective temperatures) depending on the coupling strengths.

In general, fields that are interacting in a group will thermalize much more quickly than other
fields.

4. Once the fields are amplified, they will approach thermal equilibrium by scattering energy into
higher momentum modes.
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In this process we obtain a slow redestribution of the particle occupation number as low mo-
mentum particles are scattered and combined into higher momentum modes. The tilt of the
infrared part of the spectrum decreases, meanwhile the ultraviolet cutoff of the spectrum in-
creases. Within each field group the evolution proceeds identically for all the fields. However,
different groups can thermalize at very different rates.

6.2 Kolmogorov Turbolence

Turbolence appears in a large variety of non-equilibrium phenomena in nature. In particular,
Kolmogorov turbolence was first applied in the study of fluids with large Reynolds number. In this
case Kolmogorov identified turbolence as a statistically scale invariant flow of spectral energy mediated
by vortex interaction. The same structure may appear in systems of coupled waves [84].

If there exists an active (stationary) source of energy in momentum space, the turbolence is called
stationary (or driven). When the source is switched off after the stage of activity, the freely propagating
energy flux is called free turbolence.

In the case of reheating, we can think the inflaton field as a source of energy localized in the
infrared part of the spectrum. The energy flows towards a significantly separated region of ultraviolet,
high momentum modes. In the first stage of turbolence the energy is pumped out by the zero-mode
of the inflaton field. At this stage we have stationary turbolence driven by the zero-mode. The
stage of stationary turbolence terminates when the energy left out by the inflaton zero-mode becomes
smaller than the energy stored in created particles. From this moment the transport of energy from
the source is negligible, and we observe non-stationary evolution of particles distribution towards
thermal equilibrium. This last stage of free turbolence is very long and analitically can be described
as self-similar evolution.

We can consider first the simple λϕ4 model. In (Fig. 6.2) from [83] we see the exponential growth
with time of the occupation numbers, which are shown at different moments of conformal time η. ϕ̄0
denotes the amplitude of the zero-mode oscillations. At the time η = 100 we have the parametric
resonance. At later times, the growth of the resonance peak is stopped by re-scattering of particles
out of the resonance band, which leads the appearance of multiple peaks at η = 400. At even later
times, the spectra becomes smooth because of rescattering.

The particles with small momenta are distributed according to a power-law. At larger momenta
we have a cutoff that moves with time to the ultraviolet. In the system energy is continuosly inputted
in the region of k near the resonance peak. We have a continuos flux of energy across momentum
space, from low to high momenta.

We have the following features for η > 1500 [83]:

1. The system overall is statistically close to a Gaussian distribution of field amplitudes.

2. The spectra in the dinamically important region can be described by a power-law, k−s, with
s ≃ 3/2. The exponent of particle distributions in the power region corresponds to Kolmogorov
turbolence. The system is not in thermal equilibrium, which would imply s = 1.

3. the power-law is followed by a cutoff at higher k. The position of the cutoff monotonously grows
towards the ultraviolet, reflecting the evolution towards thermal equilibrium.

4. This motion can be described as a self-similar evolution

n(k, τ) = τ−qn0(kτ
−p), (6.1)

where τ = η/ηc and ηc is some arbitrary late-time moment. In (Fig. 6.3) from [83] is reported
the best numerical fit of [83] that correponds to q ≃ 3.5p and p ≃ 1.5. The value of the exponent
p determines the rate with which the system approaches equilibrium.

In (Fig. 6.4) from [83] is reported the squared amplitude of oscillations of the zero-mode of the inflaton
field, ϕ0 = ⟨ϕ⟩, and the variance var(ϕ) = ⟨ϕ2⟩ − ϕ20, as a function of time. From the plot we can see
the initial fast transfer of the zero-mode energy into fluctuations during preheating (up to η ∼ 300),
and the subsequent decreasing of the amplitude of the zero-mode oscillations.
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Figure 6.2: Occupation numbers as function of k/ϕ̄0 at the conformal time η = 100, 400, 2500, 5000, 10000 [83].

Figure 6.3: On the right hand side, it is plotted the wave energy per decade found in lattice integration at
η=3600,5100,7000,10000. On the left hand size are the same graphs but transformed according to the relation
inverse to (6.1) [83].
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Figure 6.4: Squared amplitude of the zero-mode oscillations, ϕ̄20, and variance of the field fluctuations as
functions of time η [83].

6.2.1 Analytical model

In the Kolmogorov turbolence we have a stationary transport of some conserved quantity between
different scales in momentum space. Turbolence occurs when a source of energy or particles is present
and is localized in some momentum region kin. Considering reheating, the localized source of energy
is represented by the coherently oscillating inflaton zero-mode that pumps energy into the system of
particles at kin ≃ kres. The mechanism behind the pumping can be parametric resonance, tachyonic
instabilities etc.

A complete analytical model is described in [83] and here we discuss only the main points. The
model is based on the analysis of the wave kinetic equation

ṅk = Ik[n], (6.2)

where nk is the occupation number which describes the average volume of phase space occupied by the
oscillations of a single mode with a wave-number k. The evolution of nk is a result of wave interactions.
The quantity Ik[n] is the collision integral, which is a function of the external momentum k and a
functional of the distribution function n. Considering for example the scattering of two particles into
two particles, the collision integral reads

Ik[n] =

∫
dΩ(k, qi)F (k, qi). (6.3)

In this definition are separated the contributions which are due to the (fixed) particle model, dΩ(k, qi),
from those which are due to the evolving particle distribution functions, F (k, qi). In this equation k
is the external momentum and qi refer to momenta over which the integration is carried out. The
infinitesimal solid angle, dΩ(k, qi), reads

dΩ(k, qi) =
(2π)4|M |2

2ωk
δ4(kµ, qiµ)

3∏
i=1

d3qi
2ωi(2π)3

. (6.4)

In this formula the δ- function represents the usual energy-momentum conservation, |M |2 is the squared
matrix element of the process and ωk is the particle energy. Finally, F accounts for quantum effects
and, in the limit n≫ 1, reads in this case

F (k, qi) = (nk + nq1)nq2nq3 − nknq1(nq2 + nq3). (6.5)
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The limit n ≫ 1 corresponds to interactions of classical waves. In this limit, F is a homogeneous
function with respect to multiplication of each occupation number by a quantity ζ. For example, in
the case of interaction of m waves F (ζn) = ζm−1F (ζn).

In the initial stage, when the turbolence is stationary, the flux should be scale-independent. Con-
sidering the energy flux, Sρ(p), through the sphere of radius p

(2π)d · Sρ(p) = −
∫ p

ddk ωkṅk = − πd/2

Γ(1 + d/2)

∫ p

dk kd−1ωkIk[n] , (6.6)

the stationarity implies that the integral in this equation should not depend upon its integration limit
p. This is possible only if the collision integral equals to zero, i.e. Ik[n] = 0. Such solutions correspond
to stationary turbolence and are found in [83] considering states for which the collision integral has
certain scaling properties under ϵ-rescaling of the external momentum k, i.e.

Iϵk[n] = ϵ−νIk[n]. (6.7)

In an analytical approach when the process is described by free turbolence, i.e. non-stationarity, it is
usually assumed that the evolution is self-similar. In the numerical simulation of [83] at late times, in
the λϕ4 model, the evolution is self-similar.

Suppose n0(k) a distribution function at some late moment of time t0, when the regime of self-
similarity has been already established. We can describe the evolution with a rescaling of momenta
accompanied by a suitable change of the overall normalitation

n(k, τ) = Aγn0(kA), (6.8)

where it is defined τ = t/t0, γ is a constant and A(τ) is some time-dependent function satisfying
A(1) = 1. A(τ) and γ are determined by solving the wave kinetic equation (6.2).

Using the scaling beheaviour of the collision integral I(k, τ) (6.7) (setting ϵ = A), and the wave
kinetic equation (6.2), results

A = τ−p, (6.9)

with p = Γt0 and Γ is some typical rate. Finally, substituing (6.9) in (6.8) we obtain

n(kτ) = τ−γpn0(kτ
−p), (6.10)

that confirms the numerical beheaviour (6.1). The exponent p determines the speed with which
the distribution function moves over momentum space and defines the time scale of Thermalization.
During reheating the energy is concentrated at low momenta initially and should propagate to high
momenta. The solution of (6.10) then is physically relevant only for p > 0. The exponent γ can be
specified by appropriate boundary conditions that are studied in [83].

6.2.2 Numerical results

We refer to the numerical analysis in [83]. In the analysis is considered the two-field model

V (ϕ, χ) =
λϕ
4
ϕ4 +

1

2
λϕχϕ

2χ2 +
λχ
4
χ4, (6.11)

where ϕ is the inflaton. The couplings are set λϕ = 10−13, g ≡ λϕχ/λϕ = 30 and h ≡ λχ/λϕ. The
parameter h is varied in the range 0.1g ≤ h ≤ 104g.

At late times the spectra of the two fields are very similar to the one-field model and have the
same turbolent exponents, s = 3/2. Both fields evolve in a self-similar way with p = 1.5 at sufficiently
late times.

The measure of the total energy density stored in particles as function of time is shown in (Fig.
6.5) and (Fig. 6.6), from [83] in which are compared models with two different values of h. We can
see three different regimes:

1. Parametric resonance: In this regime the energy density ρχ grows exponentially. The resonance
stops when re-scattering becomes important. Larger is the parameter h, earlier resonance stops.
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Figure 6.5: Spectral energy distributions for χ (upper panel) in the model with h = 10g. In each panel it is
plotted the wave energy per decade found in lattice integrations at η = 1000, 1500, 2000. In the lower-left corner
of each panel are the same graphs transformed according to (6.1) [83].

2. Stationary turbolence: At later times the energy density in χ particles grows linearly with time.
This is a sign of stationary turbolence since in this phase the flux of energy is constant and the
total energy has to grow linearly with time.

3. Free turbolence: This phase starts when the energy density in the zero-mode of the inflaton field
drops below the energy density already stored in particles. From this point the regime of free
turbolence, with conserved energy in particles, follows as a self-similar evolution.

If we consider models with larger self-coupling, turns out that the parametric resonance stops earlier
and only a negligible part of the inflaton energy is transferred to particles during the resonance stage.
Moreover, in [83] is showed that if all coupling constants are of order of the inflaton self-coupling,
Thermalization becomes a very long process and the universe reheats to a very low temperature
T ∼ 100 eV. This means that some couplings, such as self-couplings or couplings to the inflaton in
a realistic model, have to exceed significantly the scale of the inflaton self-coupling. In models with
larger couplings Thermalization proceeds faster. In realistic models the major mechanism of energy
transfer from the inflaton to particles is stationary turbolence. Indeed, in many models the parametric
resonance stops very soon, only when a negligible fraction of the inflaton energy has decayed.

6.3 Equation of state

In [58] is computed the equation of state during and immediately after preheating. In this paper is
considered a chaotic inflaton quadratic potential V (ϕ, χ) = 1

2m
2ϕ2+ 1

2g
2ϕ2χ2 with mass of the inflaton

m ≃ 1013 GeV.
Previously, we have seen that immediately after inflation the equation of state is effectively the one

of matter domination since we expect that in this stage the frequency of oscillations of the inflaton is
much higher than the rate of expansion H.

In [58] is perfomed a three-dimensional lattice simulation for this model with m = 10−6Mpl and
g2 = 10−7. It is chosen this value because it is large enough to produce highly efficient preheating,
but small enough that the occupation numbers nk ∼ 1/g2 produce strong rescattering.

The numerical simulation is showed in (Fig. 6.7) from [58] where it is studied the time evolution
of the EOS ω(t) for different couplings. Each point plotted in the figure represents the value of ω
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Figure 6.6: Different regimes of the evolution of the χ field for two values of self-coupling, h = 10g and h = 100g.
The dashed lines correspond to a linear growth of energy in the χ field with time, ρχ ∝ η [83].

averaged over a complete inflaton oscillation. The equation of state averaged over inflaton oscillations
is ω = 0 immediately after inflation and it sharply changes at the end of preheating. In [58] are showed
three important points:

1. The transition of the EOS from ω = 0 to the value ω ∼ 0.2 − 0.3 occurs very sharply, within a
time interval ∼ 10−36 seconds.

In (Fig. 6.7) the unit of time is 1/m (m inflaton mass), i.e. 10−37 seconds. The first stage of
preheating is completed in 10−35 seconds.

2. The dependence of ω(t) on the coupling g2 for resonant preheating is a non-monotonic function
of g2.

The time at which preheating comes to an end is very weakly (logarithmically) dependent on
the coupling. In (Fig. 6.7) we can see that the curves ω(t) initially shifts to the left towards
an earlier end of preheating. However, at some point the curves stop moving to the left and,
instead, begin to return towards the right. Moreover, as g2 is varied, the function ω not only
shifts but it also varies its detailed shape.

3. The equation of state ω does not necessarily immediately go to the radiation dominated value
1/3.

This is due to the fact that, immediately after preheating, the light field still has a significant
induced effective mass because of the interaction with the inflaton field. On the other hand, a
significant residual contribution comes from the inflaton itself.

6.4 Thermalization

During the last stage of free turbolence the front of the distribution propagates into the ultraviolet
until it relaxes to a Bose-Einstein (or Fermi-Dirac) spectrum. At this stage quantum effects domi-
nate over thermal fluctuations, and Thermalization is obtained through particle fusion and off-shell
processes.

Thermalization is a long process, much longer than the preceding preheating, non-linear and
turbolent stages. A complete Thermalization requires two conditions: the system has to reach a
nearly constant equation of state with ω ∼ 1/3 (radiation-dominated universe), and it has to reach
Local Thermal Equilibrium (LTE).
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Figure 6.7: Evolution of the equation of state ω = ω(t) as a function of time (given in units of m−1) for various
couplings g2 around g2 = 2× 10−7 [58].

In principle, the universe can attain a radiation-like equation of state during or shortly after the
turbolent stage. However, it can take much longer to reach a state of LTE and involves particle fusion
and off-shell processes. We say that the universe is in a prethermalized state if ω ≃ 1/3 but LTE is
not established yet.

If we consider long-lived objects such as Q-balls or oscillons, preThermalization can be delayed.
They beheave as pressureless dust, and they then should decay into relativistic matter to achieve a
radiation-like equation of state before BBN. On the other hand, if we consider massive scalar field
condensates, they must decay completely before preThermalization. For example, if there is some
remnant condensate, even if subdominant in energy during Thermalization, it can make the universe
re-enter in a matter-dominated state of expansion before BBN. To avoid this, we can add perturbative
interactions for the absolute removal of the inflaton condensate such that a three-leg interactions, i.e.
ϕχ2, or a Yukawa interaction with fermions, ϕψ̄ψ.

A state of LTE is characterized by particle species both in kinetic and chemical equilibrium. The ki-
netic equilibrium ensures that the moment distribution of the particles maximizes the entropy. Chem-
ical equilibrium, on the other hand, ensures the stability of different species of matter interacting with
each other. Kinetic and chemical equilibrium require in this stage the re-distribution of momentum
and energy between different particles and the increase of their total number. Both number-conserving
and number-violating (i.e. off-shell processes, particle fusion) reactions are involved.

Kinetic equilibrium entails efficient exchange of energy and momentum between particles. This
means that it is sufficient to have number-conserving interactions only. Instead, chemical equilibrium
can be achieved only by changing the number of particles. Even if number-violating interactions are
suppressed initially (for example particles mediating this type of interactions have a large mass at early
times), these processes become efficient during the time. Therefore, particles flow to lower chemical
potentials until the sum of chemical potentials of reacting particles becomes equal to the sum of the
chemical potentials of the products in every reaction. At this point full LTE is reached [59].

An understanding of the entire Thermalization process is still incomplete. In particular, given any
particular model, it remains an open challenge to trace the evolution of the system through each of
the four major stages and compute a robust equilibrium reheat temperature, Treh [57]. For references
about thermalization see for example [57] and [59].

We can sum up all the stages of rehating after inflation using the results of [?]:

1. Preheating: This first phase, dominated by parametric resonance, lasts typically δt1 ∼ 100m−1,
where m is the mass of the inflaton field.

2. Non-linear dynamics: This stage occurs at the end of preheating. It consists of a short and violent
stage in which non-linear effects evolve in a chaotic way, erasing details of initial conditions. This
stage lasts δt2 ∼ 10m−1.
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3. Turbolent regime: The spectrum of fluctuations cascades towards both ultraviolet and infrared
modes. This process lasts on a time-scale δt3, which is longer than either δt1 and δt2

4. thermalization: This last stage is characterized by particle fusion and off-shell processes. The
reaching of LTE state occurs on a time-scale δt4, which is the longest of the four stages.
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Chapter 7

GW from Reheating

Gravitational waves play an important role in the context of inflationary cosmology. A detection
of the cosmological background of GW may carry unique informations about the universe at very
early/high energies since once produced they propagate freely to us.

During inflation tensor modes are produced from the amplification of initial quantum fluctuations
into classical perturbations outside the Hubble radius, due to the accelerated expansion of the universe.
The amplitude of these gravitational waves depends directly on the energy scale during inflation and,
in particular, they lead to the B-mode polarization of the CMB anisotropy fluctuations. The imprint of
the GW on the CMB anisotropies should be detectable by forthcoming CMB polarization experiments.
However, if inflation occurs at lower energies (for example in many hybrid inflationary models), the
amplitude of the resulting gravitational waves would be too weak to be observed.

On the other hand, we have during reheating another type of gravitational wave production which
is not associated with amplification of quantum fluctuations, but instead with classical production from
energy sources involving large, time-dependent inhomogeneites. In the previous chapters we have seen
the dynamics of reheating: the inflaton decays and reheats the universe. In most models preheating,
the first stage of this process, is dominated by an explosive and non-perturbative production of highly
inhomogeneites, non-thermal fluctuations of the inflaton and the other bosonic fields coupled to it.

In the case of chaotic inflation models, the inflaton decays via parametric resonance accompanied
by violent dynamics of non-linear inhomogeneous structures of the scalar fields. Instead, in hybrid
inflation models, the inflaton decays into inhomogeneous structures through a tachyonic process. After
preheating the dynamics is characterized by turbolent interactions between Bose (scalar) waves until
the system settles into thermal equilibrium.

Preheating, non-linear stage at the end of preheating and thermalization are inevitably accompa-
nied by the emission of gravitational waves. For low energy scale inflationary models, the frequencies
of the GW produced after inflation may well occur in the range which can be detected by direct
detection experiments (like LIGO/VIRGO and BBO/DECIGO). The detection of these gravitational
waves would provide us, with the complement of CMB data, a way to test inflation and a potential
observational window to understand the subsequent dynamics of the very early universe [90].

In this last chapter we discuss the main results and the various methods studied in the literature
to understand the production of gravitational waves during the reheating epoch, considering all the
stages discussed in the previous chapters.

7.1 Emission of GW

In this section we consider the discussion and the results of [90]. In this paper the authors develop
a theoretical framework for calculating systematically the emission of classical gravitational waves
from random media of dynamical scalar fields in an expanding universe. Here we summarise the main
points of [90]. See the paper for details.

Considering the Robertson-Walker background, gravitational waves can be represented by the
transverse and traceless part of the spatial metric perturbation

ds2 = gµνdx
µdxν = a2(τ)[−dτ2 + (δij + hij)dx

idxj ], (7.1)
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with ∂ihij = hii = 0. The tensorial perturbation hij , which has two independent degrees of freedom,
has the equation of motion

h′′ij + 2
a′

a
h′ij −∇2hij = 16πGa2ΠTTij , (7.2)

where prime denotes a derivative with respect to the conformal time τ . In the third chapter we have
considered this equation without the source term. In this case the tensorial modes are produced by
quantum fluctuations during inflation. Now, we consider the situation in which quantum effects are
negligible and classical gravitational waves are generated by a non-zero source term in (7.2). The
source term ΠTTij is the transverse-traceless part (∂iΠ

TT
ij = ΠTTii = 0) of the anisotropic stress Πij

a2Πij = Tij − ⟨p⟩gij , (7.3)

where ⟨p⟩ is the background homogeneous pressure and Tij is the energy-momentum tensor.

We consider the classical gravitational waves emitted by a background made by inhomogeneous
scalar fields denoted collectively by {ϕa, a = 1, 2...}. In this case the energy-momentum tensor reads

Tµν = ∂µϕa∂νϕa − gµν

(
1

2
gρσ∂ρϕa∂σϕa + V

)
, (7.4)

where repeated indeces are summed. In this treatment we work at linear order in δgµν considering its
linear response to the inhomogeneous part of Tµν . Indeed, the inflaton decays inhomogeneously and
some of the fields that are coupled to it are significantly amplified. We work at linear order in δgµν
because its coupling to Tµν is suppressed by the Planck massMpl, and the typical mass scales involved
in the energy-momentum tensor are much lower than Mpl. Gravitational waves are the only physical
degrees of freedom, among the different components of the metric perturbations, that propagate and
carry energy out of the source.

One can solve the equation (7.2) in different ways. One example is based on the Weinberg formula
and using the wave-zone approximation of the solution in configuration space. However, this approach
is applicable only for isolated sources without expansion of the universe and requires the knowledge
of the whole evolution of the stress-energy tensor with time. In the next section we will study this
method. In this section, instead, we present the method in [90], which is better suited to cases such
as reheating with extended sources or continuos media in an expanding universe, and allows to follow
the evolution of GW with time. Consider the equation (7.2) in Fourier space

h̄′′ij(k) +

(
k2 − a′′

a

)
h̄ij(k) = 16πGa3ΠTTij (k), (7.5)

where it is redefined h̄ij = ahij . The transverse-traceless part of the tensor Πij is obtained in momen-
tum space by the projection

ΠTTij (k) = Oij,lm(k̂) Πlm(k) =

[
Pil(k̂)Pjm(k̂)−

1

2
Pij(k̂)Plm(k̂)

]
Πlm(k), (7.6)

with

Pij(k̂) = δij − k̂ik̂j , (7.7)

where k̂ = k/k is the unit vector in the k direction. The operators Pij are projectors on the subspace
orthogonal to k satisfying Pijki = 0 and PijPjl = Pil. These properties imply that kiΠ

TT
ij = ΠTTii = 0.

At first order (7.3) becomes

a2Πij ≃ Tij − ⟨p⟩δij , (7.8)

where Tij reads

Tij ≃ ∂iϕa∂jϕa − δij

(
1

2
δkl∂kϕa∂lϕa + V

)
. (7.9)
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In the last two equations we have neglected the spatial metric perturbation hij in the spatial part
of the metric tensor gij = δij + hij since it gives a contribution 16πG

3 ⟨∂ϕ ∂ϕ⟩h̄ij , which emerges only
at second order in the gravitational coupling and it is negligible at sub-Hubble scales. In the last
two expressions the part proportional to δij are pure trace and then they do not contribute in the
computation of the transverse-traceless part of the stress-energy tensor. Thus, the relevant part of the
energy-momentum tensor is given by the product of the spatial derivatives of the fields, which gives a
convolution in Fourier space,

a2ΠTTij = T TTij (k) = Oij,lm(k̂){∂lϕa∂mϕa}(k) = Oij,lm(k̂)

∫
d3p

(2π)3/2
pl pm ϕ(p) ϕa(k− p), (7.10)

where {∂lϕa∂mϕa}(k) denotes the Fourier transform of ∂lϕa∂mϕa.

The dominant part of the gravitational wave spectrum is produced well inside the Hubble radius at
the time of production. In this case the term a′′/a in (7.5) can be neglected since a′′/a ∼ a2H2 ≪ k2.
Dropping this term in (7.5), and using (7.10), we obtain

h̄′′(τ,k) + k2h̄ij(τ,k) = 16πGa(τ)T TTij (τ,k). (7.11)

Assume that there are no gravitational waves at scales k before the initial time τi, yielding the initial
conditions hij(τi) = h′ij(τi) = 0. The solution of (7.11) simply is given by the Green function

h̄ij(τ,k) =
16πG

k

∫ τ

τi

dτ ′ sin[k(τ − τ ′)] a(τ ′) T TTij (τ ′,k) (7.12)

for k ̸=0. Moreover, we have

h̄′ij = 16πG

∫ τ

τi

dτ ′ cos[k(τ − τ ′)] a(τ ′) T TTij (τ ′,k). (7.13)

If we assume that the source eventually becomes negligible after some time τ = τf , the waves propagate
freely. At the time of production the gravitational wave modes were sub-Hubble and remain sub-
Hubble until today. The solution of (7.11) without the source reads

h̄ij(τ,k) = Aij(k) sin[k(τ − τf )] +Bij(k) cos[k(τ − τf )] τ ≥ τf . (7.14)

Matching hij and h
′
ij at τ = τf , yields

Aij(k) =
16πG

k

∫ τf

τi

dτ ′ cos[k(τf − τ ′)] a(τ ′) T TTij (τ ′,k), (7.15)

and

Bij(k) =
16πG

k

∫ τf

τi

dτ ′ sin[k(τf − τ ′)] a(τ ′) T TTij (τ ′,k). (7.16)

7.2 GW Energy Density Spectrum

The energy density carried by gravitational waves can be defined as an average over a volume V
of several wavelengths’ size. We can compute the energy density of GW as

ρGW =
1

32πG
⟨ḣij(t,x) ḣij(t,x))⟩V , (7.17)

where in this case ȧ denotes a derivative with respect to the cosmic time t. We can rewrite the term
ḣij ḣij in terms of the conformal time and h̄ij = ahij ,

ḣij ḣij =
1

a4
(h̄′ij h̄

′
ij + 2aHh̄ij h̄

′
ij + a2H2h̄ij h̄ij). (7.18)
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In the case of sub-Hubble wavelengths, k/a ≫ H, the second and third terms are negligible with
respect to the first one. Therefore, we obtain

ρGW =
1

32πGa4
⟨h̄′(τ,x) h̄′(τ,x)⟩V . (7.19)

From this expression, we can expand each h̄(τ,x) into Fourier components h̄(τ,k) and calculate the
remaining spatial average as

1

V

∫
V≫λ3

d3xe−i(k+k’)x =
(2π)3

V
δ(3)(k+ k′), (7.20)

where the comoving volume V has large dimensions compared to the comoving wavelengths λ. In the
lattice simulations V corresponds to the volume of the box in configuration space. The final results
are independent of V . The final expression for ρGW is then

ρGW =
1

32πGa4
1

V

∫
d3k h̄′(τ,k) h̄′∗(τ,k), (7.21)

where ∗ denotes the complex conjugate.
Consider free waves propagating up to now after the emission process is completed. Suppose that

today we are not interested in the resolution of the oscillation of h̄(τ,k) with time, and then we average
over a complete period of oscillation T = 2π/k, i.e.

⟨h̄′(τ,k) h̄′∗(τ,k)⟩T =
k2

2

∑
i,j

(|Aij |2 + |Bij |2). (7.22)

Using (7.15) and (7.16), the right part of this expression reads

(16πG)2

2

∑
i,j

{∣∣∣∣∣
∫ τf

τi

dτ ′ cos[k(τf −τ ′)] a(τ ′) T TTij (τ ′,k)

∣∣∣∣∣
2

+

∣∣∣∣∣
∫ τf

τi

dτ ′ sin[k(τf −τ ′)] a(τ ′) T TTij (τ ′,k)

∣∣∣∣∣
2}
.

(7.23)
Expanding the cosine and sine in this expression in terms of cos(kτf ) and sin(kτf ), we obtain the final
expression of ρGW using (7.21),

ρGW =
4πG

a4
1

V

∫
d3k

∑
i,j

{∣∣∣∣∣
∫ τf

τi

dτ ′ cos(kτ ′) a(τ ′) T TTij (τ ′,k)

∣∣∣∣∣
2

+

∣∣∣∣∣
∫ τf

τi

dτ ′ sin(kτ ′) a(τ ′) T TTij (τ ′,k)

∣∣∣∣∣
2}
.

(7.24)
Defining the quantity

Sk(τf ) =
4πGk3

V

∫
dΩ
∑
i,j

{∣∣∣∣∣
∫ τf

τi

dτ ′ cos(kτ ′) a(τ ′) T TTij (τ ′,k)

∣∣∣∣∣
2

+

∣∣∣∣∣
∫ τf

τi

dτ ′ sin(kτ ′) a(τ ′) T TTij (τ ′,k)

∣∣∣∣∣
2}
,

(7.25)
we can construct the spectrum of the gravitational wave energy density per unit logarithmic interval,(

dρGW
d ln k

)
τ⟩τf

=
Sk(τf )

a4(τ)
. (7.26)

Sk(τf ) is the main quantity computed in [90]. This quantity does not depend on the subsequent
cosmological evolution that diluites the energy density and redshifts the frequencies of gravitational
waves. The final spectrum today is obtained from the expression (7.25), where τf is the time at which
the source becomes negligible.

It is important to remark that the gravitational waves that we are considering here are very
different from the ones produced during inflation. During inflation, initial quantum fluctuations are
amplified into super-horizon classical perturbations, as a result of the accelerated expansion. In this
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case, the inhomogeneous part of the scalar field corresponds to a small perturbation compared to the
homogeneous part. At linear order the source term ΠTTij vanishes. Instead, in the case of GW that we
are studying in this chapter, the inhomogeneous part of the scalar fields cannot be treated as small
perturbations and ΠTTij acts as a classical source. Gravitational waves can be produced classically
from the second-order scalar perturbations generated during inflation [3].

Finally, consider the expression (7.25) of Sk(τf ). We can distinguish two different regimes where the
spectrum (7.26) depends in a simple way on the frequency. In the case of quadrupole approximation
for large wavelengths, and then small k, the sine and cosine in the time integrals of (7.25) vary more
slowly with time than the source and can be taken out of the integrals. In this way, Sk varies as the
cube of the frequency since its k−dependence comes only from the pre-factor in k3. On the other
hand, for large k the time integrals of the factor in cosine and sine in (7.25) are proportional to 1/k.
Therefore, Sk ∝ k and the gravitational wave spectrum varies linearly with the frequency.

From (7.26) we can compute the abundance of gravitational waves energy today

h2

(
ρGW
ρcr

)
0

=

∫
df

f
h2ΩGW (f), (7.27)

and the spectrum per logarithmic frequency interval

h2ΩGW (f) =

(
h2

ρc

dρGW
d ln f

)
0

, (7.28)

where f is the frequency and ρc = 3H2
0/(8πG) is the critical energy density today. To convert the

spectrum into physical variables today, it is necessary to consider the evolution of the scale factor from
preheating up today. We have seen in the previous chapter that if we consider an inflaton potential
quadratic around its minimum, the equation of state jumps from ω = 0 to an intermediate value close
to ω = 1/3 during preheating.

Denote by ti the time at the end of inflation, t∗ the instant at which reheating ends, i.e when thermal
equilibrium is established, tj < t∗ a moment after the jump of the equation of state, and finally t0 the
present time. Moreover, we assume that from t∗ to t0, i.e. from the end of thermalization to today, the
expansion of the universe obeys entropy conservation. We assume also that from tj to t∗, i.e. from the
jump of the equation of state to the end of thermalization, the universe evolves with a mean equation
of state ω, which is close to 1/3. From the time ti to tj the equation of state is ω = 0. During such a
period the energy density of the universe evolves as ρ ∼ a−3, and at tj we have ρj = ρi (aj/ai)

−3. At
t∗ we have ρ∗ = ρj (a∗/aj)

−3(1+ω). In these expressions ρi, ρj and ρ∗ denote the energy density at ti,
tj and t∗, respectevely. Denoting ρrad,0 as the energy density of radiation today, we can use entropy

conservation a40 g
1/3
0 ρrad,0 = a4∗ g

1/3
∗ ρ∗ to find an expression of ρrad,0 in terms of ρj . We obtain

ρrad,0 =

(
g∗
g0

)1/3(
a0
a∗

)−4

ρj

(
aj
a∗

)3(1+ω)

. (7.29)

From this expression we derive an equation for the scale factor today a0,

1

a0
=

1

ajρ
1/4
j

(
g∗
g0

)−1/12(
aj
a∗

)1− 3
4
(1+ω)

ρ
1/4
rad,0. (7.30)

Therefore, we can derive the physical wave-number today, k0 = k/a0, in terms of the comoving wave-
number k,

f0 =
k0
2π

=
k

ajρ
1/4
j

(
aj
a∗

)1− 3
4
(1+ω)

4× 1010Hz. (7.31)

From this result, we can obtain the energy density spectrum today from (7.26) setting a = a0,

ΩGWh
2 =

h2

ρc

dρGW
d ln k

=
h2

ρc

Sk(τf )

a40
=
Sk(τf )

a4jρj

(
g∗
g0

)−1/3(
aj
a∗

)1−3ω

Ωradh
2, (7.32)
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where Ωradh
2 = h2ρrad,0/ρc = 4.3 × 10−5 is the abundance of radiation today, and we consider

g∗/g0 = 100.

7.3 No-go Theorem

In [90] it is derived an important result, called no-go theorem. To discuss it, we start expressing
the amplitude of the gravitational waves from (7.12)

h̄ij(τ,k) =
16πG

k
Oij,lm

∫ τ

τi

dτ ′ sin[k(τ − τ ′)] a(τ ′)

∫
d3p

(2π)3/2
pl pm ϕa(τ

′,p) ϕa(τ
′,k− p). (7.33)

Consider gravitational waves emitted by a medium made of a real free massive scalar fields ϕ obeying
the Klein-Gordon equation in Minkowsky spacetime, with a(τ) = 1. The Fourier transform of the
fields is

ϕ(p, τ)eipx = b(p)e±ωpτ+ipx, (7.34)

with dispersion relation ωp = p2 + m2, and m mass of the scalar fields. Therefore, we can rewrite
(7.33) in the form

hij(τ) ∝ eikτOij,lm(k̄)

∫
d3p pl pm b(p) b(k− p)

∫ τ

τi

dτ ′ei(±ωp±ω|k−p|±k)τ ′ , (7.35)

that corresponds to trilinear interactions between two ϕ-particles and one graviton, with different
signs in the phase corresponding to different channels of integration. However, in the limit of large
τ respect to the frequencies of the particles, the time integrals reduce to the Dirac delta function,
yielding energy conservation

ωp + ω|k−p| = k. (7.36)

In this case energy and momentum conservation can be realized only for massless particles. We can
derive this exploting the relation (7.36) using the dispersion relation. Moreover, we have that for
the conservation of helicity, which forbids interactions between free scalar waves and a graviton at
linear order, the gravity amplitude (7.35) becomes zero. Indeed, helicity 2 of the emitted graviton
cannot match the helicity zero of the incoming scalar waves, and the resulting amplitude vanishes.
Interactions involving several gravitons are possible but further suppressed by the Planck mass. On
the other hand, if we consider the source of gravitational radiation as a superposition of vector field
waves (photons or gauge bosons), gravitons can be emitted already at first order since vector fields
carry helicity 1. Thus, for example a thermal bath of photons emits gravitational waves, while a
thermal bath of massless scalars does not (see [90]).

We apply this result to the various stages of reheating to see what phases can lead to gravitational
waves emission. Suppose that we are dealing with interacting scalar waves instead of free scalar waves.
Therefore, the dispersion relation of the field ϕ will involve the other scalar fields interacting with it.
For example, in the case of chaotic inflation with coupling g2ϕ2χ2 we obtain

ω2
p = p2 +m2 + g2χ2. (7.37)

In the case in which the frequencies ωp vary adiabatically with time, the time evolution of the field ϕ

can be described by the WKB approximation, ϕ(p, τ) ∼ e
∫
dτ ′ωp in (7.33) and the no-go result holds.

Thus, from [90], we can introduce the no-go theorem:
Scalar field configurations which can be represented as the superposition of waves with wave-like dis-
persion relations and adiabatically varying frequencies do not emit gravitational waves at first order
in the gravitational coupling.

This theorem has very interesting applications in the case of gravitational wave production during
reheating. For instance, during preheating after chaotic inflation scalar field waves are produced
only during short intervals of time and vary adiabatically between those instances. Therefore, no
gravitational radiation is emitted during the adiabatic phases. The no-go theorem is violated when
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the frequency does not change adiabatically and the dispersion relation is not wave-like. We have this
beheaviour during preheating in the instances in which the WKB approximation is broken.

Another stage of production of gravitational waves is in the strongly non-linear phase at the end of
preheating described by bubble-like configurations of non-linear scalar fields. During this bubble stage
the wave-like dispersion is violated. The collision of scalar field bubbles emit gravitational waves.

After preheating, the scalar fields enter a stage of Kolmogorov turbolence, characterized by the
irreversible dynamics of weakly interacting scalar waves. We do not expect gravitational waves to be
emitted from this stage. Finally, we do not expect emission of GW neither in the case of thermalization,
in which we have a thermal bath of interacting scalar fields.

7.4 Analytical Calculations

Before considering lattice simulations of production of GW we outline the analytical approach
discussed in [90]. In the previous sections we have considered the emission of gravitational waves
by inhomogeneous media, without using their stochastic character. In this section we consider the
gravitational wave energy density obtained from the ensemble average over different realitations of the
random scalar fields. We consider the energy density (7.19) decomposing hij(τ,x) into Fourier compo-
nents, and taking the ensemble average ⟨...⟩ of the resulting bilinear combinations of the gravitational
wave amplitudes

ρGW =
1

32πGa4

∫
d3k

(2π)3/2

∫
d3k′

(2π)3/2
⟨h̄′ij(k, τ) h̄

′∗
ij(k

′, τ)⟩ei(k−k′)x. (7.38)

For hij(τ,k) consider the free waves (7.14) after the emission process is completed. This leads to
the computation of terms of type ⟨Aij(k) A∗

ij(k
′))⟩ in (7.15) and ⟨Bij(k) B∗

ij(k
′))⟩ in (7.16), which

involve the computation of the unequal time correlators of the transverse-traceless part of the energy-
momentum tensor ⟨T TTij (τ ′,k) T TT∗ij (τ ′′,k′)⟩ for an arbitrary random medium and depends on the
4-point unequal time correlators of the scalar fields. In the computation it is assumed the the fields
ϕa(p) are described by a statistically homogeneous random gaussian field. During reheating the scalar
fields are gaussian during the linear stage of preheating and non-gaussian during the bubble-stage at
the end of preheating. Gaussianity is recovered at the later stage of turbolence.

The unequal time correlator for the energy-momentum tensor reads

⟨T TTij (τ ′,k) T TT∗ij (τ ′′,k′)⟩ = Oij,lm(k̂)Oij,rs(k̂
′)

∫
d3p

(2π)3/2

∫
d3p′

(2π)3/2
pl pm p′r p

′
s

× ⟨ϕa(p, τ ′)ϕa(k− p, τ ′)ϕ∗b(p
′, τ ′′)ϕ∗b(k

′ − p′, τ ′′)⟩.
(7.39)

The 4-point functions can be expanded in terms of 2-point functions for the Wick’s theorem. We can
express the unequal time correlators of the scalar fields as

⟨ϕa(p, τ ′) ϕ∗b(p′, τ ′′)⟩ = Fab(p, τ
′, τ ′′)δ(p− p′), (7.40)

where Fab depends only on p = |p|, by statistical homogeneity and isotropy of the scalar fields.
Averaging over a complete period of oscillation of the free waves we obtain

⟨⟨h̄′ij(k, τ) h̄
′∗
ij(k

′, τ)⟩⟩T =
k2

2

(
⟨Aij(k) A∗

ij(k
′)⟩+ ⟨Bij(k) B∗

ij(k
′)⟩
)
. (7.41)

From these expressions we can compute the quantity Sk(τf ), that now reads

Sk(τf ) =
2

π
Gk3

∫
d3p

(2π)3
p4 sin4(k̂, p̂)

×
∫ τf

τi

dτ ′
∫ τf

τi

dτ ′′ cos[k(τ ′ − τ ′′)]a(τ ′)a(τ ′′)Fab(p, τ
′, τ ′′)Fab(|k− p|, τ ′, τ ′′),

(7.42)

where (k̂, p̂) denotes the angle between k and p. This result is used in [90] to compute analytically
the energy density of gravitational waves during the various stages of reheating.
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7.4.1 Linear Preheating

In the first linear stage of preheating only the field χ is amplified. The quantum field χ is described
by the field operator

χ̂(τ,x) =

∫
d3k

(2π)3/2

(
âk χk(τ) e

ikx + â+k χ∗
k(τ) e

−ikx
)
, (7.43)

where âk, â
+
k are the annihilation and creation operators with the usual commutation relations. The

field χ̂ obeys Gaussian statistics. When we compute the unequal time correlators such as (7.40), we
have to use the operator χ̂(p, τ) defined as

χ̂(p, τ) ≡ χp(τ) âp + χ∗
k(τ) â

+
−p. (7.44)

The field correlator then reads

⟨0|χ̂(p, τ ′) χ̂+(p′, τ ′′)|0⟩ = χp(τ
′)χ∗

p(τ
′′)δ(p− p′), (7.45)

from which we obtain
Fχχ(p, τ

′, τ ′′) = χp(τ
′)χ∗

p(τ
′′). (7.46)

Inserting this into the expression for Sk(τf ) (7.42), we finally obtain

Sk(τf ) =
2

π
G k3

∫
d3p

(2π)3
p4 sin4(k̂, p̂)

×

{∣∣∣∣∣
∫ τf

τi

dτ cos(kτ) a(τ) χp(τ) χ|k−p(τ)

∣∣∣∣∣
2

+

∣∣∣∣∣
∫ τf

τi

dτ sin(kτ) a(τ) χp(τ) χ|k−p|(τ)

∣∣∣∣∣
2}
.

(7.47)

From the last equation we can compute analytically the gravitational wave spectrum emitted in
different models during the linear stage of preheating. In the case of broad resonance with interaction
g2ϕ2χ2, the dispersion relation for the χp field is ωk = (k/a)2 + g2ϕ2(t), where ϕ(t) is the background
oscillating inflaton field at the end of chaotic inflation. When ϕ is away from its zeros, the frequency ωk
changes adiabatically with time and the field χp(τ) is described by the WKB approximation. During
these stages there is no production of gravitational waves for the no-go theorem. When ϕ(t) crosses
zero, the frequency ωk changes non-adiabatically with time and we have production of GW.

In [90] is computed in detail the spectrum of the gravitational waves emitted in the broad resonance
regime for the model V = λ

4ϕ
4 + 1

2g
2ϕ2χ2 using (7.47). See [90] for details. In (Fig. 7.1) from [90] is

plotted the spectrum derived analytically from (7.47), compared with lattice simulations, in the first
stage of linear preheating during which only the χ-field has been significantly amplified.

7.4.2 Non-linear stage

At the end of preheating there is a violent, highly non-linear and non-perturbative stage where
the inhomogeneous fields have very large occupation numbers and strongly interact. In this phase the
fields become extremely non-gaussian and the analytical approach discussed in this section does not
work anymore. This stage gives the dominant contribution to the gravitational wave production.

During the linear stage of preheating after chaotic inflation, scalar fields interacting with the
inflaton field are produced as standing random gaussian fields with exponentially increasing amplitude.
During the non-linear rescattering stage in the final part of preheating, standing random non-gaussian
inflaton inhomogeneites are generated with very fast growing amplitude. The peaks of the inflaton
inhomogeneities coincide with the peaks of the scalar fields produced by parametric resonance. When
the inflaton peaks reach their maxima, they stop growing and begin to expand. The subsequent
dynamics is characterized by the expansion and the superposition of the scalar waves generated from
the peaks. This phase is then characterized by the formation, expansion and collision of bubble-like
field inhomogeneities associated with the peaks of the gaussian field. This process is similar to the
bubble-like inflaton fragmentation occurring in tachyonic preheating after hybrid inflation.
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Figure 7.1: Spectrum of energy density in gravitational waves computed at the time of their production with
(ΩGW )p = Sk(τf )/(a

4
jρj), as a function of their comoving wave-number k, in units of

√
λϕ0, for the model

V = λ
4ϕ

4 + 1
2g

2χ2 with ϕ0 amplitude of the inflaton at the of inflation. The two thin lines correspond to
the spectrum obtained from the lattice simulation. The thick line corresponds to the spectrum obtained from
analytical computation. The spectra are calculated with q = g2/λ = 128 during the linear stage of preheating
(xf ≃ 50 in (7.25)) [90].

This fragmentation gives the dominant contribution to the production of gravitational waves.
Supposing R∗ the typical size of the bubble-like field inhomogeneities, we have roughly estimated in
(5.18) the fraction of the total energy converted into gravitational waves when two bubbles collide.
We can re-express (5.18) as (

ρGW
ρrad

)
p

≃ α
(
R∗ H

)2
p
, (7.48)

where the subscript p indicates that this quantity is evaluated at the time of production tp and H is
the Hubble radius evaluated at that time. In [90] α is estimated α ∼ 0.15 from numerical analysis.

7.4.3 Thermalization

After preheating the scalar fields enter the stage of Kolmogorov turbolence. This stage corre-
sponds to media of the scalar waves, weakly interacting and having random phases. These waves
have dispersion relation similar to ωp = p2 + k2 and are described by eigenfunctions varying as e−iωkt

with time. Thus, during the stage of Komogorov turbolence we have no production of gravitational
waves because of the no-go theorem. However, numerical computations of the scalar field dynamics
show that the Kolmogorov turbolence is not established immediately after preheating, but the fields
stay non-gaussian for a while after the end of preheating. Moreover, for models of chaotic inflation,
the residual inflaton condensate is still significant at the end of preheating and the wave-like disper-
sion ω = m2 + p2 is not established yet. Therefore, we can expect some residual gravitational wave
production after the non-linear stage at the end of preheating.

In the final stage of thermalization the scalar fields are described by field operators decomposed
into oscillators as in (7.43), and obey gaussian statistics. Therefore, for the no-go theorem, neither
in this stage we have production of gravitational waves. In [90] it is also derived analytically this
result during thermalization using the partition function Z = Πk(1− e−ωk/T ) and the density matrix

Z−1e−Ĥ/T , with Ĥ the hamiltonian for oscillators Ĥ =
∑

k ωka
+
k âk. For a scalr field φ in thermal

equilibrium with a thermal bath at temperature T, the correlator results [90]

⟨φ(k, τ)φ∗(k′, τ ′)⟩ = Z−1 Tr

(
e−Ĥ/T φ̂(k, τ)φ̂∗(k′, τ ′)

)
=

cos[ωp(τ − τ ′)]

ωp(eωp/T − 1)
δ(p− p′). (7.49)

133



7.5. NUMERICAL ANALYSIS CHAPTER 7. GW FROM REHEATING

Figure 7.2: Spectrum of gravitational wave energy density in physical variables today (7.28), accumulated up
to the time xf ≃ 240, with q = 120. The two spectra are obtained from simulations with different box sizes,
and averaged over different directions in k-space [90].

The field correlator is an harmonic function of time. Deriving Fφφ from this correlator and inserting
it in (7.42) we reproduce the conditions for the no-go theorem. Therefore, no gravitational waves are
emitted from the thermal bath of scalar fields. However, a bath of gauge fields and photons emits
gravitational waves [91].

7.5 Numerical analysis

The numerical analysis in [90] is based on the computation of the quantity Sk(τf ), defined in (7.25),
using the program LATTICEEASY to calculate the evolution of the scalar fields and the evolution of
the scale factor. The calculation of the scalar field evolution is performed in configuration space and
it is described by LATTICEEASY documentation [74]. To find the integrand at each integration time
step it is calculated the transverse, traceless components of the energy momentum tensor T TTij (τ ′,k).

In [90] is computed the gravitational radiation emitted in the model V = λ
4ϕ

4+ g2

2 ϕ
2χ2 for several

values of the coupling constant g2. In (Fig. 7.2) from [90] is showed the results of simulations for
q = g2/λ = 120. This figure shows the gravitational wave spectrum (7.28) accumulated up to the time
xf = 240, where xf is defined as xf =

√
λϕ0τf , with ϕ0 ≃ 0.342Mpl initial amplitude of the inflaton

condensate at the end of inflation. xf = 240 is well after the end of preheating. For this model the
peak amplitude is h2ΩGW ∼ 3 × 10−11 with a peak frequency f ∼ 7 × 107 Hz. All the modes are
produced well inside the Hubble radius. Any gravitational wave produced from preheating in this
model are at frequencies well above the range of LIGO/VIRGO.

In (Fig. 7.3) from [90] is also showed how the total energy density in gravitational waves is
accumulated with time, in comparison with the evolution with time of the total particle number
density of the fields ϕ and χ. The first stage, up to xf ≃ 90, corresponds to preheating by parametric
resonance. In this stage gravitational waves are produced in very short intervals where the fields evolve
in a non-adiabatic way. The resulting gravitational waves energy density grows twice the exponent
of the scalar field number density, i.e. ρGW ∼ n2tot. At the end of preheating, during the highly
non-linear stage, the energy density in gravitational waves continues to increse significantly up to
xf ≃ 150. At this time the number density becomes approximatevely constant. For different values of
the parameter q this non-linear stage may be much shorter. During the early stage of the subsequent
regime of turbolence, the gravitational waves energy density still slightly increases but at a much
lower scale. From the plot we see that the rate of production of GW is maximal during parametric
resonance, but the main part of the final energy density in gravitational waves is produced during the

134



CHAPTER 7. GW FROM REHEATING 7.5. NUMERICAL ANALYSIS

Figure 7.3: The thick curve shows the total density energy in gravitational waves (7.27) accumulated up to the
time xf , as a function of xf . The thin curve shows the evolution with time of the total particles number density,
ntot = nϕ + nχ, rescaled to fit on the same figure [90].

non-linear bubble stage at the end of preheating.
In (Fig. 7.4) from [90] are plotted the results of simulations for different values of the coupling

constant g2 and hence the resonant parameter q = g2/λ. They are all performed in lattice simulations
on lattice with 2563 points, up to the same final time xf = 240. The spectra of gravitational waves
energy density accumulated up to different times are shown on the left panel of the figure for q =
1.2, 120, 128 and 1130, and they are calculated around the time of their production,

(ΩGW )p =

(
1

ρtot

dρGW
d ln k

)
p

≃
Sk(τf )

a4ρj
. (7.50)

On the right panel are shown, for each of these values of q, the evolution with time of the spectrum
of K2(|Xk| + |Φk|) for the two scalar fields, where X = aχ, Φ = aϕ and K = k/(

√
λϕ0). The peak

amplitude in the gravitational wave spectra depends only mildly on the values of q for the cases
considered. The maximal amplitude is for q = 1.2, in which case the spectrum today has a peak
amplitude h2ΩGW ∼ 5× 10−10, at a frequency of order 5× 106 Hz.

The IR part of the spectrum is essentially produced around the end of preheating, when the peaks
in the scalar field spectra become maximal. The UV part of ΩGW (k) then increases, for example with
new peaks appearing at high frequencies in the case of q = 128 and q = 1130. However, the peak
amplitudes at low frequencies stay basically unchanged. The frequencies of these peaks in the GW
spectrum depend directly on the resonant momentum k∗ amplified by preheating, which corresponds
to the initial peaks in the scalar field spectra. The corresponding frequencies of these gravitational
waves spectrum’s peak today can be computed from (7.31),

f∗ ≃
k∗

ajρ
1/4
j

4× 1010 Hz ≃ K∗ λ
1/4 5× 1010Hz ≃ K∗ 2× 107Hz, (7.51)

where it is used a4ρj ≃ 1.15 λϕ40, k∗ =
√
λϕ0K∗ with λ = 10−14.

During preheating the exponential growth of the spectra of the scalar fields with a sharp peak at
the comoving resonant momentum k∗ corresponds to the amplification of bubble-like inhomogeneities
with a characteristic, physical size R∗ ∼ a/k∗. At the end of preheating the shift of the spectra of the
scalar fields towards the UV corresponds to the fragmentation of these inhomogeneities into smaller
structures. Equation (7.48) estimates the contribution of this non-linear stage to the energy density
in gravitational waves at the time of production shortly after the end of preheating. At this time, the
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Figure 7.4: Evolution with time of the gravitational waves energy density spectrum (left panels) and of the
scalar field spectrum (right panel) for different values of q = g2/λ. From top to bottom, q = 1.2, 120, 128, 1130.
The left panels show the spectra (ΩGW )p, accumulated up to different times xf , as a function of the comoving

momentumK = k/(
√
λϕ0). The right panels show the total scalar field spectrumK2(|Xk|+|Φk|)/ϕ0 at different

times, as a function of K [90].
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total energy density in GW is given by the peak of the spectrum,

(Ω∗
GW )p ∼ α(R∗H)2p ∼ α

(
aH

k∗

)2

p

∼ α

a2pK
2
∗

(a2H)2p
λϕ20

, (7.52)

where R∗ = a/k∗ and ap is the value of the scale factor when the peak of the spectrum is reached.
In all simulations of [90] the last factor (a2H)2p/(λϕ

2
0) ≃ 0.28. The dependence on 1/a2p is expected

since for this model T TTij diluites as 1/a2 with the expansion, giving an overall factor of 1/a2 in Sk.
The peak amplitude of ΩGW is reached when the rescaled scalar modes Xk and Φk stabilize to their
maximal value. Gravitational waves produced after this moment are suppressed by the expansion.

The value of (Ω∗
GW )p tends to decrease with q, for example from about 3 × 10−5 for q = 1.2 to

3× 10−6 for q = 120. However, its precise value varies with q in a non-monotonic way. For example,
it is higher for q = 128 than for q = 120. Indeed, also the resonant momentum k∗ is lower for q = 128.
In this case, preheating is also more rapid and ap is lower. Moreover, from the analysis of [90], the
parameter α is estimated as α ∼ 0.15.

The numerical results of this model, V = λ
4ϕ

4 + g2

2 ϕ
2χ2, for the frequency and the amplitude of

the spectrum of GW are well described by (7.51) and (7.52). From the analysis of [90] turns out
that these quantities depend very mildly on the details of the rescattering, non-linear phase, but they
are mainly determined by the characteristic momentum k∗ amplified during preheating. The precise
value of k∗ can be calculated analytically for any values of the coupling constants. However, k∗ is a
non-monotonic function of the parameters.

Finally, from the analysis of [87] we remark that the exponential rate of gravitational wave pro-
duction is maximal during parametric resonance, but the main part of the final energy density in GW
is produced during the non-linear bubble stage.

7.6 Other methods

There are several approaches to study the production of gravitational waves. The first predic-
tion about the production of GW from the fields was made by Khlebnikov and Tkachev in [86].
In [86] the authors predicted a gravitational wave signal whose peak amplitude was approximatevely
ΩGW ≃ 10−10 for quartic λϕ4 models, at present day frequencies of around 1 GHz. In this paper the
gravitational radiation emitted was calculated using the Weinberg formula in flat spacetime, assuming
that the time scale of processes that give rise to gravitational radiation is much smaller than the
time scale of the expansion of the universe. In this approach, the total energy of gravitational waves
radiated in the direction n in flat spacetime is calculated as

dE

dΩ
= 2GΛij,lm

∫ +∞

0
ω2T ij∗(k, ω)T lm(k, ω)dω, (7.53)

where T ij(k, ω) are the Fourier components of the stress-energy tensor, and Λij,lm is a projection
tensor made of the components of n and Kronecher’s deltas (we can think this projector as the Oij,lm
of the previous section). Therefore, in this method the energy in gravitational waves is expressed in
terms of the double Fourier transform in both space and time of the stress-energy tensor.

In 2006 Easther and Linn argued that the amplitude of any preheating signal could be essentially
independent of the inflationary scale, while its present day frequency is proportional to the energy
scale of inflation [87]. Therefore, while a GUT scale model would be peaked near GHZ, preheating
following inflation at 109 GeV scale would lead to a signal near the LIGO band, while lowers scales
would overlap with the range of BBO. The approach developed in [87] was a numerical algorithm
derived from [86]. However, this algorithm has limitations since it does not allow the gravitational
wave spectrum to be computed at arbitrary times. Indeed, it is considered the power generated in
a series of four dimensional space-time boxes, and it is based on a formula for the radiated power in
gravitational waves which is only strictly valid in a non-expanding universe.

In [88] was developed a new algorithm, similar to the one studied in the previous section, in which
the tensorial components of the metric perturbation are directly evolved. This paper confirmed that
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a preheating signal could be visible in future versions of LIGO or BBO when the inflationary scale is
low enough, and that its amplitude was essentially independent of the inflationary scale [85]. In this
method is considered the perturbed Einstein’s equation

Ḡµν + δGµν(x, t) = 8πG[T̄µν(t) + δTµν(x, t)], (7.54)

where the background Ḡµν and T̄µν obey Einstein’s equations for the unperturbed metric,

Ḡµν(t) = 8πGT̄µν(t), (7.55)

and the perturbed metric,
δGµν(x, t) = 8πGδTµν(x, t). (7.56)

From this equation one obtains the equations of motion for the hij ,

ḧij − 2

(
ȧ2

a2
+ 2

ä

a

)
hij + 3

ȧ

a
ḣij −

1

a
∇2hij =

16πG

a2
δSTTij , (7.57)

where

Sij = δTij(x, t)−
1

3
δijδT

k
k , (7.58)

and STTij is the transverse-traceless part of Sij . This can be extracted from Sij by projecting into the
transverse plane and subtracting its trace, i.e.

STTij = PikSklPlj −
1

2
Pij(PlmSlm), (7.59)

where Pij = δij − kikj/k
2 is the projection operator. Then, hij is Fourier transformed, obtaining the

resulting differential equation for the Fourier component h̃ij

Ḡµν(k, t) = 8πGT̄µν(k, t). (7.60)

The mode k = 0 is the homogeneous background for which the corresponding components of hij
vanish. This approach is referred as the spectral method, since it explores the spectral evolution of the
hij . In [88] and [85] is used a 4th order Runge-Kutta integrator to evolve the modes. At each point
in space it is calculated Sij(x) explicitily from

Tµν = ∂µϕk∂νϕk − gµν

[
1

2
∂αϕk∂

αϕk − V (ϕi)

]
. (7.61)

The full Tµν is obtained by summing in the last equation over all the scalar fields. The non-vanishing
components of Sij are

Sij = ∂iϕk∂jϕk −
2

3
δij [∂mϕk∂

mϕk]. (7.62)

Then, STTij (k) are constructed Fourier-transforming the last equation. The field evolution is computed
using LATTICEEASY.

The relative spectral density is calculated as

ΩGWh
2 = Ωrh

2dΩGW (ae)

d ln k

(
g0
g∗

)1/3

, (7.63)

where ae is evaluated at the end of the simulation and g0/g∗ is the ratio of the number of degrees of
freedom today to the number of degrees of freedom at matter/radiation equality, and Ωr is the present
day radiation energy density. In the simulation are taken g0/g∗ = 100. The form of dΩGW /d ln k is

dΩGW
d ln k

=
1

ρcrit

dρGW
d ln k

=
πk3

3H2L2

∑
i,j

|hij,0(k)|2, (7.64)
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Figure 7.5: Spectrum of gravitational radiation produced during resonance using the spectral approach with
m = 10−18 (left) through to 10−6 (right) in units where Mpl ≃ 1019GeV = 1. Each spectrum has a value of
m 103 times larger than the one immediately to the left. The corresponding initial energy densities run from
(4.5× 109GeV )4 to (4.5× 1015GeV )4. The plots are made on 1283 grids and the spikes at high frequencies are
a numerical artifact [88].

where L is the length of one side of the lattice. This equation is derived using the expression for the
stress-energy tensor

Tµν =
1

32πG
⟨hij,µhij,ν⟩, (7.65)

from which the associated energy density is computed exploiting the (0 − 0) component (see [85]
for details). In (Fig. 7.5) from [88] is plotted the spectrum of gravitational waves produced during
resonance with the spectral method for the quadratic model V (ϕ, χ) = 1

2m
2ϕ2 + 1

2g
2ϕ2χ2.

In (Fig. 7.6) from [87] is shown the gravitational spectrum calculated using the Weiberg formula
(7.53) in the quadratic model. We refer to this method as the box method since the spectrum is
calculated subdividing the spacetime into descrete 4-D boxes of spatial sizes L3, and time interval
τ = L with τ conformal time. In the box method each box, labeled α, is a localized source and the
total gravitational waves energy density produced for each box, ραGW , is calculated from the Weinberg
formula (7.53). The total energy density is then built up summing the energy densities computed for
each box, diluited appropriately, i.e.

dρGW (ae)

d lnω
=
∑
α

dρ
(α)
GW (aα)

d lnω

(
ae
aα

)4

, (7.66)

where aα is the scale factor taken at the middle of the box in conformal time and ae, in this case, is
the scale factor at the end of inflation. For each box α results

dρGW (aα)

d lnω
= 8πGω3l−3

aα Λij,lmT
ij∗T lm, (7.67)

where l3aα is the physical size of the box at time aα and ω is the physical frequency. The total density
of GW is computed with (7.63). In this method it is implicitly assumed the universe is radiation
dominated at the end of preheating.

The source term for hij contains different combinations of derivatives which are evaluated on a
discretized lattice. Thus, there is an ample opportunity for numerical noise to contaminate these
simulations. Therefore, the analysis has to take into account the spatial extent of the lattice, which
has to be small enough to ensure that the highest Fourier modes that contribute to the gravitational
wave spectrum are well resolved.
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Figure 7.6: Gravitational wave spectrum for the quadratic model of inflation m2ϕ2 computed with the box
method. The parameters are set g2 = 2.5×10−7, m = 1012 GeV. The resonance parameter is q = 2.5×105 [87].

During the reheating phase following inflation with quartic potential the universe grows signifi-
cantly diluiting the gravitational waves as they are produced. The box method does not properly
account for the growth of the universe in the computation. Therefore, it is safest to solve hij self-
consistenly in an expanding background when we need to evaluate the gravitational wave signal gen-
erated during preheating.

We can compare the Green’s function method discussed in the previous section, with the box
method considering the discussion in [85]. In the previous section we have estimated the quantity
Sk(τf ) in (7.25). In the Green’s function method the source, or the continuos media, extends over the
whole expanding universe, and is active (with respect the gravitational wave emission) for a limited
period of time τf . This can be extended to systems emitting gravitational waves continuosly, i.e.
active all the time, by taking τf → +∞. Thus, we can relate the Green’s function method to the
Weinberg formula for the case of isolated sources in the wave-zone limit (where the distances are large
compared to the wavelengths and to the size of the localized source) in Minkowsky spacetime. The
computation is done in [90], setting a(τ) = 1 and taking the limit τf → +∞ in (7.24). Expressing
T TTij (τ,k) in terms of Tij(k, ω) and after some easy math the Weinberg formula (7.53) is obtained (in
this case Λij,lm is the projection Oij,lm) (see [90] for details).

As explained, gravitational waves from preheating after chaotic inflation in the box method is
investigated on the basis of the Weinberg Formula (7.53) in Minkowsy spacetime. In this approach
the expansion of the universe is taken into account by dividing the conformal time into steps ∆τ ,
calculating the gravitational wave density energy that results from each step, and summing up each
contribution diluited by the value of the scale factor at the middle of the step. From the analysis
of [90], this results that the terms∣∣∣∣∣

∫ τf

τi

dτ ′ cos(kτ ′) a(τ ′) T TTij (τ ′,k)

∣∣∣∣∣
2

(7.68)

in (7.25) are effectevely replaced by

∑
α

∣∣∣∣∣
∫ τα+∆τ

τα

dτ ′ cos(kτ ′) a(τ ′) T TTij (τ ′,k)

∣∣∣∣∣
2

, (7.69)

where α = 1, 2, 3... counts the steps. Indeed, in the box method what is summed up is the energy
density from each partial step, instead of the energy density from the whole evolution of gravitational
waves with time. Indeed, we can divide the term (7.68) into similar steps. The final result is different
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from (7.69), because all the cross terms given by the products of integrals over different steps are lost.
This means that the approach based on (7.69) does not take into account the precise propagation
history of the gravitational waves in the medium. However, this approach may give a good approx-
imation during preheating when the scalar fields are exponentially amplified and their past values
give negligible contributions. On the other hand, the past evolution should be taken into account at
the end of preheating, when the amplitude of the scalar fields stabilize around their maximum value.
The numerical results obtained in [90], with the Green’s function method, are relatively similar to the
ones obtained with the results of Khlebnikov and Tkachev in [86], where a smaller frequency range
is considered. However, the results in [90] differ significantly from the results of [87], which use the
box algorithm, for both the shape and the amplitude of the gravitational wave spectrum. This can be
easily seen comparing (Fig. 7.8) from [87] and (Fig. 7.7) or (Fig. 7.2).

In the case of the quadratic model V (ϕ) = m2ϕ2, the spectrum obtained with the spectral method
in [88] is similar to that obtained using the box algorithm [87] (compare (Fig. 7.5) and (Fig. 7.6)).
In this case the agreement between the two approaches is considerably better, even if the box code
actually underestimates the maximal power in gravitational waves. The reason is that the total
growth of the universe during resonance is smaller in this case than in the quartic inflation. Since
the box algorithm effectively computes hij in flat space, the discrepancy between the two methods is
reduced [85].

On the other hand, the results of the spectral method developed in [88], and the Green’s function
method, developed in [90], overlap exceptionally well. We can see this from the plot (Fig. 7.7).
Despite some little discrepancies that are introduced by the finite resolution of the underlying spatial
lattice, there is a solid agreement between the two independent codes. Therefore, one can be confident
that the gravitational wave signal generated during preheating is being accuratevely evaluated. These
results can be safely used to assess observational stategies for detecting a gravitational wave stochastic
background.

Figure 7.7: Results of simulation with a quartic inflation model with g2/λ = 120 using both the spectral method,
and the Green’s function method. The simulation matches (Fig. 7.2) from [90], and the Green’s function results
are shown with a dotted lines. The results from the the spectral method are showed for three different lattice
sizes (1283 for the solid line, 2563 the dashed line, and 5123 the dot-dashed line). There are an excellent
agreement with the results of [90], in which the gravitational wave spectrum in obtained using a very different
numerical algorithm [85].
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Figure 7.8: The gravitational spectrum for the λϕ4 with λ = 104 and g2/λ = 1.2 (dashed line) and 129 (full
line) respectevely. It is peaked around 107 − 108 Hz. It differs significantly with the results obtained with the
Green’s method and the spectral method [87].

7.7 Tachyonic Models

In the low-scale models of hybrid inflaton it might be possible to generate a stochastic background
of gravitational waves in the frequency range accessible to present detectors. In tachyonic models
of preheating after hybrid inflation the process of spontaneous symmetry breaking proceeds via the
nucleation of dense bubble-like structures moving at the speed of light, which collide and break up
into smaller structures. Such collisions could be a very strong source of GW. From the moment of
production until now, the gravitational waves are redshifted as a radiation-like fluid, totally decoupled
from the other energy-matter content of the universe, such that the today’s ratio of energy stored in
the GW could range from ΩGW ∼ 10−8, peacked around f ∼ 107 Hz for the high-scale models, to
ΩGWh

2 ∼ 10−11, peacked around f ∼ 1 Hz for the low-scale models.
We can consider the hybrid inflation potential

V (ϕ, σ) =
λ

4
(|σ|2 − v2)2 + g2ϕ2|σ|2 + 1

2
m2ϕ2, (7.70)

where ϕ is the inflaton field and σ is the Higgs (or trigger) field that triggers the spontaneous symmetry
breaking and then the end of inflation. Hybrid models do not require small couplings in order to
generate the observed CMB anisotropies. For instance, a model with a GUT symmetry breaking,
v = 10−3Mpl, a Higgs self-coupling λ and an inflaton coupling g, given by g =

√
2λ = 0.05 satisfies all

CMB constraints [89]. While chaotic inflation models can only occurs at high scales, with Planck scale
values of the inflaton, and Vinf ∼ 1016 GeV, one can choose the scale of inflation in hybrid models to
range from GUT scales to GeV scales. The Higgs v.e.v can range from Planck scale, v = Mpl, to the
electroweak scale, v = 246 GeV.

In [89] the spectrum of gravitational waves is computed evolving the classical equations of motion
of the Bose fields with the equation for tensor perturbations

ḧij + 3Hḣij −
1

a2
∇2hij = 16πGΠij (7.71)

in configuration space, with ∂iΠij = Πii = 0. The source of GW, Πij , contributed by both the inflaton
and the other scalar fields, is calculated as

Πij(k) = Λij,lm(k̂)Tlm(k), (7.72)
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with

Λij,lm(k̂) ≡

(
Pil(k̂)Pjm(k̂)−

1

2
Pij(k̂)Plm(k̂)

)
, (7.73)

where Tlm(k) is the Fourier transform in momentum space of the stress-energy tensor

Tij =
1

a2
(∇iϕ∇iϕ+∇iχ∇iχ), (7.74)

where we have not inserted the term proportional to gµν because is thrown away by the projection.
In [89] are computed the various quantities at those instances at which it is wanted to calculate

the GW spectrum. In particular, it is solved first the equation

üij + 3Hu̇ij −
1

a2
∇2uij = 16πGTij . (7.75)

This equation is the same of (7.71) but sourced with the complete Tij , instead of its TT part, Πij .
However, the equation (7.75) contains unphysical degrees of freedom. Only when needed, the solution
of this equation is Fourier transformed and the projector is applied, i.e.

hij(t,k) = Λij,lm(k̂)uij(t,k), (7.76)

with uij(t,k) the Fourier transform of the solution of (7.75). In this way, it is recovered the physical
transverse-traceless d.o.f. representing the gravitational waves. Whenever needed, one can Fourier
transform back to configuration space and obtain the spatial distribution of the gravitational waves.
Therefore, one can easily build the GW spectra or take a snapshot of spatial distribution of GW.

To obtain the power spectrum of GW, the energy density is expressed in terms of the uij in Fourier
space as

ρGW =
1

32πG

1

L3

∫
d3k ḣij(t,k)ḣ

∗
ij(t,k) =

1

32πGL3

∫
k2dk

∫
dΩ Λij,lm(k̂)u̇ij(t,k)u̇

∗
lm(t,k). (7.77)

The power spectrum per logarithm frequency interval in GW is computed as

ΩGW =

∫
df

f
ΩGW (f), (7.78)

where

ΩGW (k) =
1

ρcr

dρGW
d log k

=
k3

32πGL3ρcr

∫
dΩ Λij,lm(k̂)u̇ij(t,k)u̇

∗
lm(t,k). (7.79)

In (Fig. 7.9) from [89] is showed the evolution of the GW spectra up to times mt = 200. In the
plot ρ0 = m2v2/4 is the energy density at the end of inflation, with m = λv2. From the figure we
see that the amplitude of GW saturates to a value of order ρGW /ρ0 ≃ 2 · 10−6. At mt ≃ 50 the
maximum amplitude of the spectra has already reached ρGW /ρ0 ≃ 10−6. From times mt ≃ 150 till
the maximum time reached in the simulation, mt = 2000, the maximum of the spectrum does not
change significantly, slowly increasing from ≃ 2 · 10−6 to 2.5 · 10−6. Despite the saturation, we see
in the plot that the long momentum tail of the spectrum keeps moving towards greater values. We
expect this beheaviour from the turbolence stage.

In (Fig. 7.10) from [89] is reported also the evolution in time of the fraction of energy density
in GW. In the first tachyonic stage we can see the growth with a logarithmic slope twice that of the
anisotropic stress tensor Πij . Then, there is a small plateau corresponding to the production of GW
from bubble collisions. Finally, there is a slow growth due to turbolence.

To end this final chapter, in (Fig. 7.11) from [89] is plotted the sensitivity of planned GW interfer-
ometers like LIGO, LISA and BBO together with the present bounds from CMB anisotropies (GUT
inflation), from Big Bang Nucleosynthesis (BBN) and from millisecond pulsars (ms pulsar). Also, are
shown the expected stochastic backgrounds of chaotic inflation models like λϕ4, both coupled and
pure, as well as the predicted backgrounds from two different hybrid inflation models. The first is an
high-scale model with v = 10−3Mpl and λ ∼ g2 ∼ 0.1, while the second one is a low-scale model, with
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Figure 7.9: Time evolution of the GW spectra from mt = 6 to mt = 2000. The amplitude of the spectra seems
to saturate after mt ∼ 100, altough the high momentum tail still moves slowly to higher values of k during the
turbolent stage [89].

Figure 7.10: The time evolution of the different types of energy (kinetic, gradient, potential, anisotropic com-
ponents and gravitational waves for different lattices), normalized to the initial vacuum energy, after hybrid
inflation, for a model with v = 10−3Mpl. One can clearly distinguish here three stages: tachyonic growth,
bubble collisions and turbolence [89].
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Figure 7.11: The sensitivity of the different gravitational wave experiments, present and future, compared with
the possible stochastic backgrounds. It is also included the White Dwarf Binaries (WDB) and chaotic preheating
(λϕ4, coupled and pure) for comparison. Note the two differentiated backgrounds from high-scale and low-
scale hybrid inflation. The bound marked with (?) is estimated from high frequency laser interferometers’
expectations [89].

v = 10−5Mpl and λ ∼ g2 ∼ 10−14 corresponding to a rate of expansion H ∼ 100 GeV. The high-scale
hybrid models produce typically as much gravitational waves from preheating as the chaotic inflation
models. The advantage of low-scale hybrid models of inflation is that the background produced is
within reach of future GW detectors like BBO.

For high-scale models of inflation, we may never see the predicted GW background coming from
preheating, in spite of its large amplitude, since it appears at very high frequencies where no detector
has yet shown to be sufficiently sensitive. However, if inflation occured at lower scales, we can expect
gravitational waves from preheating to contribute with an important background in sensitive detectors
like BBO, even if in this case we will never have a chance to detect the GW produced during infla-
tion in the polarization anisotropies of the CMB. The detection and characteritation of such a GW
background, coming from the complicated and mostly unknown epoch of reheating of the universe
after inflation, may open a new window into the very early universe, while providing a new test on
inflationary cosmology.
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Conclusions

In this work we have provided a full view about the stage of reheating after inflation. We call
reheating the transition from inflation to later stages of the evolution of the universe (radiation and
matter dominance). We have seen that such a phase contains very complicated and non-linear dy-
namics. We can divide reheating in three major stages: preheating, turbolence and thermalization.

In single field chaotic inflationary models, the coherent oscillations of the inflaton during preheating
generates, via parametric resonance, a population of highly occupied modes that beheave like waves
of matter. They collide themselves and their scattering leads to turbolence, homogenization and
local thermal equilibrium. In models like hybrid inflation the conversion into radiation occurs almost
instantaneously. In hybrid models preheating is more violent than chaotic inflationary models, via the
spinoidal instability of the symmetry breaking field that triggers the end of inflation. Such a process
is known as tachyonic preheating and could be responsible for copious production of dark matter
particles [92], but also has applications in the study of lepto and baryogenesis, topological defects,
primordial magnetic fields, etc. (see [57] and [59]). Moreover, we have explored non-standard models
of preheating in which we have production of oscillons, Q-balls or in which the inflaton is coupled with
fermions or gauge fields.

During reheating a strong production of gravitational waves is predicted. Gravitational waves are
ripples in space-time that travel at the speed of light. The emission of gravitational waves is a robust
prediction of General Relativity. We do believe that the universe is permeated by a diffuse background
of GW of both astrophysical and cosmological origin. Astrophysical sources, like the gravitational
collapse of supernovae or the neutron star, black holes binaries’ coalescence, produce a stochastic
gravitational wave background. On the other hand, among the backgrounds of cosmological origin, we
have production of gravitational waves also during inflation. Fortunately, these backgrounds have very
different spectral shapes and amplitudes that can help in distinguishing between them, if they will be
detected at present or future interferometers such as LIGO (Laser Interferometer Gravitational Wave
Observatory), LISA (Laser Interferometer Space Antenna), BBO (Big Bang Observer) or DECIGO
(Decihertz Interferometer Gravitational Wave Observatory). However, this task will be very difficult
since the gravitational wave signal is very weak. In order to distinguish one background from another
a very high accuracy is needed.

There are different constraints on some of these backgrounds. As far as the cosmological (in-
flationary) background is concerned, the most stringest one comes from the large-scale polarization
anisotropies in the CMB, measured by Planck. There are also contraints coming from Big Bang Nu-
cleosynthesis, since such a background would contribute as a relativistic species to the expansion of
the universe, and then increases the light element abundance. We can also have constraints from
millisecond pulsar timing. However, most of these constraints come at very low frequencies, typically
from 10−18 Hz to 10−8 Hz. Instead, present GW detectors work at frequencies of order 1-100 Hz, and
planned observatories will range from 10−3 Hz of LISA to 103 of Advanced-LIGO.

During inflation we have production of gravitational waves with an almost scale-free power spectra.
Because of the weakness of gravity, the primordial GW from inflation should decouple from the rest
of matter as soon as they are produced, and move freely through the universe till today. Today, we
can have an indirect detection of these primordial GW from the B-mode polarization anisotropies of
the CMB. Therefore, right now the biggest effort employed in the search of the B-mode polarization,
rather than via direct detection. The detection of such a background would help to determine the
absolute energy scale of inflation, a quantity that is still uncertain, and would open the exploration of
physics at very high energies.

147



CONCLUSIONS CONCLUSIONS

In the first part of this thesis we have explored the possibility to have information from inflationary
gravitational waves about the reheating temperature, defined as the temperature at which reheating
ends and thermalization is completely established. The reheating temperature could provide important
information about inflation such as the inflaton properties (mass, potential, interaction strength with
other particels...), and therefore constraints about the choice of the inflationary model. We have
seen how the detection of primordial gravitational waves can determine the reheating temperature TR
through a change of slope in the GW spectrum. This knee-like feature could be observed by future
experiments like BBO. We have explored also the possibility to have contraints on TR from the analysis
of the CMB.

After inflation, other backgrounds of GW could have been produced at shorter wavelengths in a
more classical manner, rather than sourced by quantum fluctuations. In particular, whenever there
are large and fast moving inhomogeneities in the matter distribution, one expects the emission of
GW. In the second part of the thesis we have reconstructed the full model of reheating present in the
literature, analyzing in depth each of its phases. During preheating, the first stage of reheating, we
have a very fast motion and high density contrasts in the continuos matter distribution, due to the
conversion of the huge energy density which has driven inflation into radiation and matter. In this
stage only specific resonance bands of the fields suffer an exponential instability, which makes their
occupation numbers grow by many orders of magnitude. Shape and size of the spectral bands depend
very much on the inflationary model. The highly populated modes in position-space correspond to
large time-dependent inhomogeneities in the matter distribution, which act as a source of gravitational
waves.

The characteristic frequency and shape of GW generated at a given time should contain infor-
mations about the very early universe in which they were produced. Actually, the detection of GW
backgrounds could be the only way we may have to infer the physical conditions of the universe at
such high energy scales, which certainly no particle collider will ever reach. However, even if GW are
the major candidate to probe informations about the early universe, they are extremelly difficult to
observe [89].

At the solar-system scale, the space-based interferometer LISA will probe frequencies from 10−2

Hz, which is probably too small for the gravitational waves considered. The proposed BBO and
DECIGO missions are sensitive to frequencies of the order of 1 Hz and would probe gravitational
waves arising from preheating after TeV scale inflation. Terrestrial interferometers also could probe
frequencies corresponding to preheating following low-scale inflation, like LIGO and VIRGO. These
are sensitive to scales between 100-1000 Hz, and may be able to probe a stochastic background in
the range ΩGWh

2 ∼ 10−10. However, the best hope for observing a primordial gravitational wave
background is currently provided by BBO that may be launched in several decades [90].

However, for some recently discussed methods to detect very high-frequencies GW [93], besides the
gravitational wave spectrum associated with preheating, one would need to understand other potential
sources that could lead to a stochastic background of gravitational waves such as first order phase
transitions in the early universe, or decays from cosmic strings. The potential for gravitational waves
to provide a clean information about inflation and other early universe processes has rightfully drawn
considerable attention and strongly motivates the huge experimental efforts to detect the primordial
gravitational spectrum [3]. The challenge is to better determine their properties, and to assess possible
strategies for their detection [94].
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[70] G. Felder, J. Garćıa-Bellido, P. B. Greene, L. Kofman, A. Linde and I. Tkachev, Phys. Rev. Lett.
87, 011601 (2001) [arXiv:hep-ph/0012142].

[71] G. Felder, L. Kofman and A. Linde, Phys. Rev. D64, 123517 (2001) [arXiv:hep-th/0106179].
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