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Introduction

The goal of fundamental physics is to describe and understand physical phenomena in terms
of a small and coherent set of principles which emerge by the interplay of experimental
validation and theoretical interpretation. The Standard Model (SM) of particle physics is
a quantum field theory that provides such a coherent framework encompassing three of the
four known fundamental interactions. i.e. the electromagnetic, weak and strong forces. It
is a gauge theory based on the group SU(3)¢c x SU(2)w x U(1)y under which the matter
fields (leptons and the quarks) are charged. The SM, starting with the discovery of the
gauge bosons Z/W¥ in 1983, passing through the years of LEP, Tevatron and the flavor
factories, and finally getting to the present days of the Large Hadron Collider (LHC), has
been repeatedly confirmed experimentally. Its most recent triumphs have perhaps been the
discovery of the long sought Higgs boson in 2012, and the direct measurements of (some of)
its couplings, in quite good agreement with the predictions of the SM. The null results, so
far, of the search for physics beyond the SM may suggest that the SM is in fact the adequate
description of nature in a range of energy that extends beyond the Fermi scale. As a matter
of fact, the SM seems a quite good and simple description of the dynamics at the TeV scale,
too.

Despite such a tremendous experimental success and its internal theoretical consistency,
there are reasons of discontent with the renormalizable SM. First of all, the SM is certainly
not the ultimate theory and it should be regarded instead as an Effective Field Theory
(EFT) with a possibly large, yet finite, cutoff. The Planck mass provides, at very last,
such a ultimate cutoff. Indeed, gravitational interactions introduce irrelevant deformations,
e.g. the interactions from the Einstein-Hilbert term, which grow with energy and eventually
become as important as the other forces at the Planck scale where an ultraviolet (UV) com-
pletion, such as string theory, must kick-in. Analogously, non-vanishing neutrino masses can
be accommodated by deforming the SM with a dimension-5 operator, again an irrelevant
operator, which introduces a new scale to be interpreted e.g. as the mass of heavy right-
handed neutrinos. Moreover, most of the matter in the universe, Dark Matter, is actually
not accounted by the particles of the SM. Other puzzles of the SM, such as baryogenesis,
the origin of flavor, and the strong CP problem, point all toward the existence of physics
beyond the SM. Furthermore, besides the irrelevant deformations, any UV threshold gen-
erates generically a dangerous relevant operator, the Higgs mass squared term |H|?, which
is quadratically sensitivity to those UV scales. This suggests, barring fine-tuning of the
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parameters of the underlying UV completion, that the cutoff of the SM should be not too
far from the TeV scale.

Assuming this “new physics” is separated by a mass gap with respect to the Fermi scale, say
above the reach of the LHC, one can (and should) adopt the methods of EFTs in order to
study the dynamics in the infrared (IR), i.e. below the cutoff A. Within this approach, the
leading effects in the IR are captured by an infinite towers of higher dimensional operators

Lprr = Z ﬁoi (0.1)

where the Wilson coefficient ¢; parametrize the impact of new physics on the low-energy
observables. The higher dim O; the more irrelevant the operator becomes at low energy
E < A: only a finite number of operators is needed for any fixed accuracy, making the
EFT predictive. For example, the contribution from a contact term ¢; to a 2 — 2 scattering
amplitude scales as ~ ¢; (E/ A)dimo"_4 and can thus be discarded at sufficiently low-energy,
for a given accuracy. Higher dimensional operators O; with dimQ; > dimQ; that contribute
to the same observables can be discarded as well, (unless ¢; < ¢; e.g. because of a symmetry).
The paradigm of EFTs is very efficient as it retains only the relevant degrees of freedom at
low-energy, capturing in a unified and simple way several UV completions at once.
In EFTs symmetries play a fundamental role because they are respected along the renormal-
ization group (RG) flow from the UV to the IR. In other words, a (possibly approximate)
symmetry of the UV is as well a (possibly approximate) symmetry of the IR described by
the EFT. Symmetries can kill, or suppress by spurions insertions, the Wilson coefficients as-
sociated with operators that carry non-trivial representations of the symmetry group. Vice
versa, operators which are neutral under the symmetries are expected to have sizable coef-
ficients in the IR, as being generated along the RG flow.

But besides symmetries, the Wilson coefficients are constrained by other fundamental re-
quirements. Indeed, the UV theory is required to be local, causal and unitary. Those
conditions imply analyticity, crossing symmetry and unitarity of the scattering matrix. In
turn, these UV properties survive in the IR in terms of dispersion relations that provide
positivity constraints for certain Wilson coefficients of the EFT. Consider for example the
EFT expressed by a Lagrangian density £ = 1/2(9m)% + ¢/A*(0n)* + ... for a Goldstone
boson 7 arising from a spontaneously broken U(1). While any value of the Wilson coefficient
¢ is consistent with the Goldstone shift symmetry @ — 7 + ¢, only ¢ > 0 is actually gener-
ated by unitarity UV completions. Indeed, by means of analyticity, unitarity, and crossing
symmetry of the S-matrix, the forward scattering amplitude M(s) reads [I]

+o00 Jtot s
Wmm:4A ds () (0.2)

T 53

where each /-symbol represents a derivative with respect to s. This relation provides an
IR-UV connection since the left-hand side (L.h.s) is evaluated in the deep IR, s =t = 0,
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where the EFT matches the result of the whole theory by construction, i.e. M”(0) =

M”|EFT(O)
evaluated all the way up to the UV, where the EFT is certainly no longer valid, and one

x ¢. On the right-hand side (r.h.s.) the integral of the total cross-section is

should use there only the UV theory. But in fact, one does not need to know the UV theory
nor calculate the integral to determine its sign: ¢*(s) > 0 in any unitary theory, implying
the claimed result:

M"(0) >0 (0.3)

hence ¢ > 0. Besides, the inequality is saturated ounly for the free theory where the total
cross-section is vanishing: there is thus no interacting unitary UV theory that produces
c <0.

These kind of positivity bounds on scattering amplitudes and Wilson coefficients have been
recently extended to general EFTs involving scalar particles carrying real representations of
an arbitrary symmetry groupE] [2], with the applications being mostly focused on composite
Higgs models and W W -scattering extending earlier results, see e.g. [3], 4], 5].

In this thesis, we extend the positivity constraints even further by including spin-1/2 parti-
cles along the lines of [6], but allowing arbitrary representations, complex or not, for arbitrary
groups. This extension allows us to apply the positivity constraints to fermions of the SM.
For example, we use positivity constraints to place bound on the Wilson coefficients asso-
ciated to certain 4-fermion interactions that are generated within the paradigm of fermion
partial compositeness that arises in composite Higgs models{ﬂ

More specifically, we extend the action of crossing symmetry to arbitrary complex represen-
tations by studying the general structure of the crossing matrices whenever the symmetry
group is non-abelian. We derive the optimal positivity bounds for the eigenamplitudes [ﬂ
and apply them to various examples. We discuss a concrete application for physics be-
yond the SM using data from the LHC combined with our positivities. In particular, we
study the intriguing idea that (some of) the SM fermions are composite pseudo-Goldstini
that emerge from an enlarged supersymmetry (SUSY) with NV > 1 that is fully broken
spontaneously by some strong dynamics [9]. The pseudo-Goldstini enjoy a fermionic shift
symmetry that makes them light and select only derivative interactions, in full analogy with
ordinary Goldstone bosons. In turn, the lowest dimension 4-fermion operators respecting
the fermionic shift symmetry have dim-8 because must contain two derivatives, i.e. they are
of the schematic form x'20%x2. These operators produce 2 — 2 amplitudes that scale as
O(s?), so that the associated Wilson coefficients must respect our positivity bounds. Part
of the flavor and gauge groups are identified with the SU(N) factors contained inside the

'Hereafter we refer to particles transforming under a real (complex) representation of a symmetry as real
(complex) particles.

®For a review of composite Higgs models and partial compositeness see e.g. [7} [§].

3Eigen-amplitudes are nothing but scattering amplitudes in the basis where the S-matrix is diagonal with
respect to the conserved quantum numbers. A familiar example is provided by the SU(2) isospin in 77
scattering where the amplitudes decompose, according to 3 ® 3 =1 @ 3 @ 5, in eigen-amplitudes M;—13 5
associated with isospin-0 (the singlet channel), isospin-1 (the triplet) and isospin-2 (the quintuplet).
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U(N)r R-symmetry that acts linearly on the pseudo-Goldstini. Weakly gauging the SM
group and turning-on the Yukawa couplings represents just a small explicit breaking of the
non-linearly realized SUSY, again in full analogy with composite Higgs models where the
Higgs shift symmetry is also approximate, being broken by gauge and Yukawa interactions.
For concreteness, we apply the positivity bounds to the scenario where the three down-type
right-handed quarks dg = (dg, sgr,br) of the SM are fully composite pseudo-Goldstini from
N =9 SUSY. H They transform under R-symmetry as a 9_;/3 of U(9)gr ~ SU(9)r x U(1)r
which contains U(1)y x SU(3)c x SU(3)4,, as subgroup under which the embedding reads
9_1/3 = (3,3)_1/3. One the SU(3) factors is identified with SU(3)c while the other with
the flavor SU(3)q, that rotates the three down-quarks. We picked the down-type quarks
just as an illustration of the general idea, the particular choice being motivated by the small
bottom Yukawa, y, < 1, which thus represents a very small breaking effect of the fermionic
shift symmetry. While other choices are certainly possible, including the embedding of more
types of quarks or leptons in the same Goldstino multiplet, the details of these extensions
are left to future work.

By studying the dijets angular distributions measured at the LHC in run-IT at /s = 13 TeV,
we show that the SUSY decay constant F' has to be large enough

VF >25TeV  at 95% C.L. (0.4)

in order to make the effect of the derivative 4-fermion interactions compatible with present
data. This corresponds roughly to a cutoff A 2> 9 TeV (g./ 47‘(‘)1/ % (for g, > 3) where g, = 47
is the typical size for the resonance couplings in a maximally strongly coupled model, ac-
cording to the SUSY NDA [10].

The thesis is organized as follow. In chapter [T] we recall how positivity bounds are derived
using analyticity, crossing symmetry and unitarity for scattering amplitudes of a single flavor
real scalar particle. In chapter 2] and 3] we extend the results to several species including com-
plex representations and spin-1/2 particles. We present as well explicit examples based on
scattering amplitudes among fundamental and anti-fundamental representations of SU(N).
In chapter [4] we discuss the pseudo-Goldstini and put bounds on dim-8 four-fermion oper-
ators with two derivatives, using the LHC data. Four appendices with technical but useful
material are also included.

4We recall that A > 4 generates no pathology for a non-linearly realized extended SUSY [9]. Indeed,
there are no massless higher-spin superpartners, the supermultiplets being incomplete in a spontaneously
broken SUSY. Equivalently, while supercurrents are well defined, the supercharges do not actually exist as
raising/lowering operators that move from one-particle state to another one-particle state of (one of) its
superpartners, when SUSY is spontaneously broken. The would-be superpartners are actually multi-particle
states obtained by including Goldstino insertions that in fact raise/lower the spin [34]. Should SUSY be
linearly restored at higher energy, the mass splittings in the supermultiplets would still be non-zero, although
their effect on hard scattering processes above the cutoff would become smaller as the energy is increased.



Chapter 1

Positivity for scalars

In this chapter we recall how unitarity, crossing symmetry and analyticity of the S-matrix
imply rigorous positivity constraints on scattering amplitudes for chargless spin-0 particles.
These results represent the simplest examples of amplitudes’ positivity that have been dis-
cussed in [I], [2] and references therein. Those results are extended to full generality in the
next chapters.

1.1 The Unitary S-matrix

One of the central themes of quantum field theory is the study of the S-matrix, i.e. the

amplitudes probabilities
Spa = (V5" |VLY) (1.1)

for the transitions between the states |¥'") and |\Ilgut> whose particle content, labelled by
the greek subscripts a and £, is defined in the far past (at ¢t — —oo) and the far future
(t = +00), respectivel Without interactions, |U*") and |¥°%) would be the same implying
Sga = 0q- The rate for interactions and the differential cross-sections that are measured
at colliders are thus proportional to |Sga — dgal?-
In the following we work with orthogonal states

<\Ijﬁ‘\pa> = Na(s(B - a) (1.2)

where N, is a normalization factor, and §(8 — «) stands for products of delta functions and
Kronecker deltas summed over all possible permutations according to the spin-statistics. We

in(out)

!Note that we are working in the Heisenberg picture and the (W ) } do not represent the asymptotic
limits of time-varying states. In this picture, it is in fact the time-dependence of the self-adjoint operators
associated with the observables that produce time-varying expectation values. The asymptotic values of the
expectations of a complete set of commuting observables, such as the set of 4-momumtum, the spins, the
cons?rve)ed quantum numbers,. .. define the label o = (p1, 01, q1;p2, 02, q2; . . .) used for the in and out states
‘\I/Zz out >
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also adopt the relativistic normalization where one-particle states carry a v N = 1/ 2Ep(2m)3
factor
<pou 0a|kﬁa Uﬁ> = 50&05 (277)32Ep5(3) (p - k) 5 (1'3)

while multi-particle states carry products of those. With this choice, the scalar products are
Lorentz invariant E] The sum over the states is represented by

/da = ) /d3p1d3p2... (1.4)

O1M1,02N2,...

(but sometimes omitting the integral symbol over repeated indexes). For example, the
completeness relation for states normalized as in (1.2 reads

da
1= Ni(l ‘\I}o) <\I}oz| : (15)

It is often very convenient to think of the scattering amplitudes as actual matrix elements
for an operator S sandwiched between free particle states |®)

Sap = (PalS[Pg) (1.6)
that have the same spectrum (that is the collection of possible {a}) and normalization
Hy|®,) = Eo|Py), (Po|Ps) = Nod(a — ). (1.7)

of the initial and final states |[¥¥°%) for a suitable choice of the free hamiltonian Hy.
Assuming that at ¢ = t+oo interactions are negligible, the in and out states are basically
defined as the eigenvectors of the full Hamiltonian H,

H‘\I,Z;ln(out)> — Ea(ﬁ)|\ljzn(07lt)> (18)

with initial(final) conditions given by the |®,), meaning

/doee_iEatg(a)\I/g"”“t) — /doee_iEatg(a)@a> (1.9)

as t — —oo or t — 400, respectively. As this holds for any wave-packet g(«), one can
formally write

|\Ijian,out> — Q(:FOO)‘(I)a> 7 Q(t) ethe—iHot ] (1.10)

It follows that the scattering matrix (L.1)) can be expressed in terms of actual “matrix
elements” between free-particle states

Spa = (FUIWL) = (@5]Q(+00)TQ(—00)[®a) = (5] S|Pa) (1.11)
for the S-matrix operator formally defined by

S = Q(400) Q(—o0). (1.12)

*We work in the mostly minus signature of the Lorentz metric.
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Since for free theories S = 1, it is actually convenient to define a scattering amplitude

S =1+ (2m)*6W (Zga,) (1.13)

where the trivial evolution is removed.

operator M

1.1.1 Unitarity and the optical theorem

Crucially enough, the S-matrix is unitary
STs=1, SST=1 (1.14)

as one can directly check by means of the completeness relationlﬂ (1.5), i.e.

d’Y * dﬂy 1N |\JyOU oy m
(@a|SS10g) = | 530S = (O ) (UTWE) = Nad(or = B) = (Da[1]@p)

N,
(1.15)
and

d’)/ * d’y ou wm in oy
(@al5511@5) = [ L8085, = [ TLIWIN@I G = Nabla— 5) = (@al1]Dy)
v

N,
(1.16)
for any |®,) and |®g).
Unitarity of the S-matrix has important consequences on the scattering amplitudes, such as
the optical theorem which gives a non-perturbative relation between the imaginary part of
the amplitudes and the total cross-sections. Following e.g. |11, 12] we define the 7" matrix

S=1+iT, (@5|T o) = (27)*6* (o — P5) M pa (1.17)
and using we get
(T -T)=TT. (1.18)
The matrix elements of the r.h.s. reads
(Dpli(TT = T)|Pa) = i (a| T|Pp)" — i (Dp[T|Pa) (1.19)
=i(27)*0% (pa — pg) (Mis — Mpa). (1.20)

while the r.h.s. can be written as

(@] T T|B0) = / j@ (@[T, (@, |T]Ba) (1.21)
::h/nézy(2ﬂd454(p5 — py)(2m)* 6% (pa — Py )M 5 Mg (1.22)

3Trivially, the same completeness relation holds for the free fields |®.,).
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having inserted a complet set of states. Therefore, we derived the generalized optical theorem
o _ [ dy 454 *
Mﬂa — Mg =1 N. (27T) (pa - p’y)M%BM'ya- (1.23)
gl

Whenever the initial and final states are equals, that is « = 8 (the so-called elastic forward

scattering), we get
dy

2ImM o = N
.

(2m)18% (Do — D) | Mral?, (1.24)

that is the imaginary part of the forward elastic scattering is a sum (integral) of squared
matrix elements for the transition amplitudes @ — ~ for any ~y that is kinematically open.
The most important consequence of this equation that we use in the following is the positivity
of the r.h.s. that enforces the same for the Lh.s.

iy = 0] (125

Notice that only the free theory, where none of the transitions in allowed, may saturate this
inequality: in any interacting theory ImM,, > 0.

We can actually say more about the r.h.s. of . Recalling the expression for the total
cross-section of the transition o — any in the center of mass frame for an initial state «
containing just two particles,

1 dry

2 — anything) = ————— [ —-(27)*0*(pa — p+)|Msa|?, 1.26
o nything) 1B o] Nﬁ/( 7)70% (Pa — P~) | Myl (1.26)

we see that ((1.24]) implies
ImMQ_)Q(S)‘elasticforwa’rd = \/(3 - m% - m%)z - 4m%m% ’ Ugcianything(s) : (1'27)

tot
a—ranything

« into any final state that is kinematically open. The positivity of the imaginary part of the

The m; are the masses of the initial particles, and o (s) is the total cross section for

elastic forward scattering can be thus understood as the positivity of the total cross-section.

1.2 Crossing symmetry for spin-0 particles

Crossing symmetry is an important property of the scattering amplitudes. It is a duality
that relates the amplitudes for two different scattering processes evaluated at two (mutually
unphysical) set of momenta, and where the “crossed” particles are replaced by their anti-
particles, swapping them from the initial to the final state. For example, consider the elastic
scattering between two spin-0 particlesﬂ

m(p1)#(p2) — 7(p3)p(ps)  s-chanmel (1.28)

4Crossing symmetry for particles with spins is discussed in Section
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and its s <> u “crossed” process

7(p1)d(p2) — w(ps)o(pa) u-channel. (1.29)

where particles 2 and 4 have been crossed. Crossing symmetry relates these amplitudes in
the following way

Magms(P1,2; 3, 1) = Mg o(p1, —pasps, —pa) P >0 (1.30)

or equivalently

M, 5 5P, P2;P3,P4) = Mz (P1, —Pa; P3, —p2) p; >0. (1.31)

Notice that the right-hand side of these crossing relations requires the evaluation of the
amplitude at the unphysical kinematical point where the anti-particles have negative energy.
In other words, the same function M defines either processes, the s-channel or u-channel
scattering, depending on the sign of the energy which determines whether a particle (or
anti-particle) belongs to the initial or final state.

Crossing symmetry for real scalar particles is easily understood via the Lehmann-Symanzik-
Zimmerman (LSZ) reduction formula [11], 12]

(3, ey Pu|S|P1, P2) = {i/d‘{’tzleimw1 (Dl —l—m2)] [i/d4xle+ip"'x" (Dn —l—m2)
x (0]T{¢(21)¢(x2)...0(xn) }0) (1.32)

that expresses the S-matrix elements in terms of the correlation functions stripped off their
external propagatorﬂ In this expression the only distinction between initial and final states
is given by the sign of the 4-momentum, in agreement with Eq. and because
we have chosen for simplicity indentical real scalars m = ¢ = ¢. The generalization to more
species and complex scalars is trivial, whereas the discussion for fermions is more subtle and
is presented in section [3.1| following the results of [6].

Since the scattering amplitudes among spin-0 particles are Lorentz-invariant, the 2 — 2
processes can be conveniently expressed in terms of the Mandelstam variables s, ¢, u, namely

s=(p1+p)’=s+ps)’ t=(@1—-p3)?=P2—p1)® u=(p1—ps)=(p2—13)°
(1.33)
Note that only two of these variables are independent because

s+t+u=mi+m3+mj+m;. (1.34)

For elastic processes among scalars like those in (1.28) and (1.29)), crossing the s— and
u-channel is equivalent to py <+ —py, that is

s—u (1.35)

5The wave-functions renormalization constant have been absorbed in the definition of the fields.
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where ¢ is held fixed. (Incidentally, this transformations at the level of Mandelstam variables
justifies the choice for the names of the channels). On the amplitudes it reads

Marpore(s, t,u) = ng_ma(u,t, s)|. (1.36)

The proper meaning of this expression relies on the analytic continuation of the amplitude
away from the physical configuration, as it is explained in the section Notice that for
identical real massless spin-0 particles, the forward scattering ¢ = 0 must be an even function
in s because u = —s,

]Mmﬁm(s,t = 0,u) = Murosrn(u,t =0, ) \ (1.37)

For a general kinematics the amplitude for real identical scalars is symmetric under the
inversion s <+ u which leaves invariant the point s = u = m? +m3 — t/2.

There is another crossed channel, the t-channel, that is obtained by exchanging s <> ¢t at
fixed wu, for scalars. In the following, however, we are interested in dispersion relation in the
complex s-plane for elastic scattering at fixed ¢ = 0 (forward scattering), where only the
s <> u crossing plays a role.

1.3 Analyticity

Another key property of the S-matrix that we use in the following is its analyticity with
respect to the external particles’ momenta, in particular the Mandelstam variable s at fixed
t = 0, in the forward elastic scattering 7(p1)¢(p2) — 7(p1)¢(p2). In order to investigate
this property, we need to recast the LSZ reduction formula in terms of the retarded
commutators of local fields,

Magsmg(s,t =0) =i / dtyet P2y (O, + m3)” 0(4°) (m1|[6(y), $(0)] 1), (1.38)

as explained in appendix Here we hare reduced only the contribution from the =’s.
Because of the microcausality condition on the commutator (and its derivatives) which
makes them vanish at spacelike distances, as well as the occurrence of the step function
9(y") (and its derivatives), they give vanishing contributions in the integrand outside of the
forward light-cone {y? > 0,5° > 0}. In turn, such a causal structure allows to analytically
continue the forward amplitude M in the upper complex s-plane, assuming polynomially
bounded correlation functions. Conversely, the physical amplitude can be read as the upper
boundary value of an analytic function in the whole upper complex s-plane:

M7r¢—>7r¢(3’t =0)= qug_mqs(s +ie,t=0), (1.39)

where the € — 07 limit is always understood, and s > s, = (mq + m2)?. Fj

SEvery time s satisfies an inequality it is implicitly taken on the real axis.
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This is fully analogous to the classical Kramers-Kronig relations where the retarded Green
functions appear as the result of analyticity of the index of refraction with respect to the fre-
quency in the upper complex plane, and vice versa. The analytic continuation for scattering
amplitudes is however somewhat more involved because of the several complex momenta;
for this reason we leave the details to appendix [A]

We stress here, however, that the amplitude can be analytically extended in the lower
complex s-plane too. Indeed, it is enough that the amplitude takes real values M(s,t =
0) = M*(s,t = 0) over an open interval of the real axis (e.g. below threshold) so that the
Schwarz reflection principle extends it to an analytical and real function of complex variable
everywhere in the cut s-plane

Mmb—’m]ﬁ(s*?t =0) = ;qub—)mz:(sat =0) |, (1.40)

except for discontinuities located on the real axis. Those are branch-cuts associated to
multiparticle production, or simple poles associated to stable one-particle states, see Figll]
. As a matter of fact, crossing symmetry gives physical meaning to the boundary amplitude
on the real axis approached from below

Mirgsmg(s —ie,t =0) = M5 o(—s+ie+2mi +2m3,t = 0) |, (1.41)
M 5 g(—s —ie+ 2m3 +2m3,t = 0) = Mg ng(s +ie,t = 0) . (1.42)

On the other hand, the optical theorem ((1.27) provides the discontinuities across the real
axis in the physical regions, e.g.

Disc Mrpsro(s + i€, t =0) = 21'\/(3 —m} —m3)? —4mim3 - o0 aiming(s)  (1.43)

for s > Syin, and

Disc M5, (s +ie,t =0) = —271\/(3 —m? —m3)2 —4m3m3 - Ujr%t_)anything(u) . (1.44)

for s < Umin = —Smin + Qm% + Zm%.

1.4 Positivity for flavourless scalar particles

In this section we discuss the simplest example of positivity contraint that arises from
unitarity, analyticity and crossing symmetry of the S-matrix that we have studied in the
previous sections. We consider a theory of a single massive real scalar particles 7w and study
the two-body scattering. For simplicity, we drop the particle label, and leave the ¢ = 0 in
the argument understood, that is

Morrr(s, t =0) = M(s). (1.45)

Moreover, we demand there are no lighter states than 7 which could be exchanged the
scattering. As an example of interesting EFT that satisfies there requirements one could
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Fig. 1: Analytic structure in the s— plane for the scalars scattering amplitude 7(p1)o(p2) —
7m(p3)¢(pa) in the forward limit ¢ = 0 and with m; = mg = m. There may exist poles
between the branch-cuts shown in the figure with the points p;. We identify the amplitude
of the s—channel by approaching the right cut from above, whereas the physical amplitude
of the crossed reaction in the s plane can be obtaining by approaching the left cut from
below.

keep in mind the lagrangian for a Goldstone Boson (GB) 7 from a spontaneously broken
U()
1 2, ¢ 4
Ezi(ﬁw) +F(87T) +... (1.46)

perturbed by a small mass term —m?72/2, with m arbitrarily smal]ﬂ As it should be
clear from the general derivation presented below, the resulting positivity conditions are not
specific of this example only but apply to any theory with this analytic structure.

Because of analyticity away from the real axis or below the elastic threshold, we can expand
the amplitude around a point x? in the complex cut s-plane as

1
M(s) = M) + M () (s = 1) + M () (s = 1) + ... (1.47)
The coefficient M”(?) can be obtained by means of the Cauchy integral formula,
2! M(s)
"e, 2
=— ¢ —= 1.48
M (122) QFif’é(S_MQ)g,, (1.48)

where C is a contour shown in Fig[2].

There are no singularities between s = 0 and s = 4m? because of the absence of light
intermediate states. The contour integral can be smoothly deformed into the integral over
the curve I', see Figl2], as long as we do not cross singularities. We have seen in the previous
sections that there are none in the upper and lower complex cut s-plane. Thanks to the
Schwartz reflection principle we have M(s*) = M*(s) and in particular

M* (s +i€) = M(s — ie) (1.49)

"When we will apply the general positivity constraint 1) to this particular example we will eventually
send the mass to zero at the end of the calculation.
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Fig. 2: Analytic structure of a forward scattering amplitude of massive scalars in the config-
uration s +u = 4m? without lighter intermediate states. We show the contours along which
we perform the integrals.

across the branch-cuts, implying that the discontinuities are the imaginary parts of the
amplitude. Sending to +oo the radius of the big circle in I', the contour integral can thus
be organized into the sum of three pieces

M (p?) = Coo + (/Ooo (s—d‘jﬂ)?’ + A;:O (s—djﬂ)i”> ImM(s + i€) (1.50)

where C is the contribution of the integral along the big circle whose radius is sent to
infinity. This latter term can actually be discarded because the Froissart bound [13] ensures

that |M(s)| < slog? s for s — co, and therefore Csy — 0.
We can further simplify (1.50)) by changing variable on the second integral s — u = —s+4m?

/0 dSImM(s +ie) /°° s (M(=s+ 4m? + ie) — M(—s + 4m? — ie)) s
—00 (3 - :u2)3 4m? (—s+ 4m? — M2)3
By crossing symmetry
M(u) = M(s) (1.52)
and therefore
O ImM(s + ie) o0 ImM(s + i€)
ds————=— = d 1.53
/—oo ’ (S - /1’2)3 /47712 S(S —4m? + M2)3 ( )
which in turns gives the dispersion relation
M (u?) = /+OO ds ! + ! TmM(s + ie) (1.54)
PO e N\ =28 T (s Am? 1 2)? ‘ |

where the second derivative of the amplitude is expressed in terms of an integral along
the imaginary parts. The imaginary parts of the forward elastic amplitude in the r.h.s. are
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positive in any interacting theory, see the inequalities (1.25) and (1.27)), because of unitarity:
ImM(s+ie) = sy/1 —4m?/s 0rr_sanything > 0. By choosing any real scale 1% between s = 0
and s = 4m? such that the denominators in (1.53) are positive as well, we get the positivity
condition

M (4?) >0 (1.55)

in any interacting theory that admits an unitary UV completion. Notice that it is convenient
to choose the scale u? just below s = 4m? which is a physical threshold where the scattering
opens kinematically. For smaller values of u?, the amplitude is still positive but it should
be run to another scale fi%, above or at threshold, where the experiments are performed and
the Wilson coefficients measured in principle.

Let’s see what the positivity constraint implies on the EFT , e.g. for m — 0.
First, we can use to calculate the l.h.s. of because s =t = 0 is a kinematical
point in the deep IR: we have thus M(s) = 2cs?/A* and therefore

c>0]. (1.56)

This condition means that there are no non-trivial UV completions of this EFT for the GB
that produce ¢ < 0. This positivity conditions is clearly beyond the normal constraints
provided by the symmetry as any value of ¢ would actually be allowed by the GB’s shift
symmetry.

We can easily extend these results to scattering amplitudes of theories with different analytic
structure, i.e. with singularities on the real axis between the elastic branch-cuts that start
at s = 4m? and s = 0, that is to theories with light intermediate states. For example, let
us assume there are stable intermediates states that show up as poles on the real axis as in
Figh].

Now, the relation becomes

b [T 1 1 ~ Res [M(s)] .
M (u?) = AmQ ds ((s =2 + _amZ+ M2)3> ImM(s + i€) Z; (pi — p2)3
(1.57)

where p; are the locations of extra poles. Following the same steps as above, and moving the
residues of the simple poles on the left-hand side, we end up with the positivity condition

Res [M(s)]

M (1) + >

i

5=Ppi
> 0. 1.58
(pi — p?)? 059
We can calculate the left-hand side of the inequality within the EFT, given that ¢ = 0 and
p? < A%. The tree-level EFT has no branch-cut and the sum of the residues in the IR is the
same as (minus) the residue at infinity calculated with the EFT lagrangian, meaning that

M (pi <y < A%)| oy > 0. (1.59)
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Fig. 3: General analytic structure of a forward scattering amplitude of massive scalars in
the configuration s + u = 4m?. The points p; stand for poles coming from intermediate
one-particle states, i.e. propagators.

This relation expresses the fact that the dispersion relations allow one to place positivity
constraints on the leading O(s?) coefficients produced by the EFT, for s larger than any
other IR scale (e.g. the small masses of the light intermediate states) but still below the
cutoff of the EFT.

Finally, It is instructive to give an example of explicit UV completion and see where the
positivity constraint seen in the IR has originated from in the UV. Let’s consider again the
example of a spontaneously broken U(1) with its GB described in the IR by the lagrangian
, where we have seen that the Wilson coefficient ¢ must satisfy the constraint .
At the leading order, the effective amplitude of a generic process 7w — 77 is
C ;9 9 9 - 2c
AWﬁ:F@+tﬂm, M@:M@ﬁmzﬁ

An exampe of calculable UV completion for this theory is a linear sigma model from which

(s%) . (1.60)

the 7 arise as the only states in the spectrum below the mass of the radial (or Higgs-like)
mode. The lagrangian reads
v

2\ 2
E-&@%W@—AO@P—2> (1.61)

where we reparametrize the fields as ®(z) = %(v + h(z))e™®)/v and
A>0 (1.62)

because of vacuum stability and to ensure the desired IR spectrum with a massless particle.
Expanding the terms around the vev v, the lagrangian becomes

A

2
L:lo+z>@mﬂwﬁf—?ﬁW—MW—4mv (1.63)

2
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where M? = 2 v?. The forward amplitude (1.60) is now extended to values of s above the
cutoff, that is above the mass M},

A 52 52

= — — 1.64
M? |s+ M? s—M}% ( )

M(s)

Expanding for small values of s with respect to M, ,f , i.e. integrating out the field h, we get
the matching condition between the IR and UV

c A

where the positivity of ¢ has been tracked back to the positivity of the UV parameter A.
More generally, the M”(u?) can be expressed in principle in terms of the parameters of the
UV theory which are responsible for its positivity.



Chapter 2

Positivity constraints for complex
scalars

In the previous chapter we showed how crossing symmetry works for real scalar particles,
and how it can be used together with unitarity and analyticity of the S-matrix to derive
the positivity of the second derivative with respect to s of the forward elastic amplitudes.
Now we want to extend these results to complex scalars which may transform under some
internal symmetry group. We first discuss how crossing symmetry works when particles carry
representations of non-abelian symmetry groups. In particular we study the properties of the
crossing matrices associated to s <> u crossing between the irreducible representations found
in the decomposition of the initial and final two-particle states, in the 2-to-2 scattering. This
allows us to obtain sum rules and positivity constraints involving the Wilson coefficients of
the EFTs, generalizing the results of [2] to arbitrary complex irreps. As explicit example we
discuss in detail the positivity constraints for the scattering amplitudes of particles carrying
fundamental and anti-fundamental representations of SU(NN). This example is relevant for
the model building involving the pseugo-Goldstini presented in chapter [

2.1 Internal symmetries and eigen-amplitudes

A special role in the classification of fundamental interactions is played by internal sym-
metries, that is symmetries that commute with the generators of Poincaré. Examples are
the nuclear isospin, flavor symmetries as well as the gauge groups of the SM. These trans-
formations act on the Hilbert space of the states as unitary operators U(g) which act on
the internal labels without changing the momenta and spins of the particles. For example,
considering a generic element g in the symmetry group G g, a state with two scalar particles

transforms as

U(9) [¥p1 m15p2ma) = Z D (9)i1,m1 D™ (9)5iz,na Wi i spo,in) (2.1)

n1,n2

21
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where D"i(g) are the matrix elements of the representations r; of the symmetry group G
carried by the two particles.
A symmetry of the dynamics is a symmetry of the S-matrix elements [I1), 12], meaning

(®p]S|®0) = (R5|U(9)SU(9)|®)  V|Pap) (2.2)

that is S = U(g)TSU(g). In other words, the S-matrix is invariant, that is a scalar (or
singlet), under the action of the symmetry. Lie groups are continuous groups where the
elements around the identity can be reach by an expansion in the generators Y™

U(g) @1+ ia, Y™ + ... (2.3)
Applying this expansion to (2.2)) it follows the commutation rule
[Y", S]=0. (2.4)

It is often very convenient to decompose the initial and final multiparticle states |®,) that
transform as the tensor product of single-particle states (that is as in (2.1)) in irreducible
representations (irreps) ry) of the symmetry group. For example, for a two-particle state

ry®@rg = @Pf(g) ) (2.5)
1(¢)

where I labels the inequivalent irrep (e.g. the collection of its Casimirs) whereas £ counts
how several times the (equivalent) irrep I appears in the decompositionﬂ Because the
S-matrix is a singlet under a symmetry, S|®,) has the same decomposition in irreps than
|®,,). Thanks to the Wigner-Eckart theorem, there are no transitions between states |I(£), )
carrying inequivalent irreps

(J(n), IS 1(€),3) = 610:5S1(en) » (2.6)

where the indexes ¢ and j label the particular states inside the multiplets I(§) and J(n)
respectively. The transitions do not depend on the particular representative state inside
the irrep one is picking. The Sy, are known as reduced-matrix elements and the associ-
ated amplitudes My, are called eigen-amplitudes. The latter name is very appropriate
especially for non-degenerate irreps (those that do not appear more than once in the de-
composition such that the labels £ and 7 are not needed), since the amplitudes are diagonal
in this basis for the internal space, M| being the associated “eigenvalues”. For example, in
the mm-scattering of pions the SU(2)-isospin decomposition reads 3 ® 3 =1 @ 3 © 5 where
we have labeled the irreps by their dimensions. There is no equivalent irrep that appears
more than once in the decomposition, hence (J,j|M|1,i) = 6;;0r;7 M where I = 1,3,5,
and 4,5 =1,...,dim/.

!For example, two particles transforming in the adjoint of SU(3) give the following decomposition 8 ®8 =
1+8;+852+10+10+ 27 where the counting label & has been put as subscript to avoid clutter of notation.
The adjoint irrep appears twice in the decomposition.
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2.2 Clebsch-Gordan coefficients and eigen-amplitudes

In the following we need to express the eigen-amplitudes in terms of the ordinary amplitudes
of multi-particle states (that transform as the tensor product of one-particle states).
This is achieved by means of the so-called Clebsch-Gordan coeflicients.

Since crossing symmetry exchanges particles with anti-particles, we will need to consider
the following two-particle decompositions

NeM =P Yy (2.7)
1)

NeM =P Z (2.8)
1)

NeM =P L (2.9)
1)

NoM=g Y (2.10)
1)

where the capital letters (Y, Z) label the sets of irreps, I is a collective index labeling
nonequivalent irreps, and £ labels possible degenerate irreps i.e. those that appear more
than once. In the following, we shall choose M =N for simplicity.

Any multi-particle quantum state can be decomposed into irreps of G using its Clebsch-
Gordan (CG) coefficients. We define |a) and |a) the one-particle states and its complex-
conjugated respectively, where a is a collective index which groups all the quantum numbers.
Under a generic representation U(g) of the group G they transform as

la) = % = U(g)%n° (2.11)
a) = 7 = 7, — Ulg) b, (2.12)
where we defined U(g),? = U(g)*%,. We are considering the general case of states transform-

ing under complex representations. A two-particle state obtained by the product of two
single-particle states transforms as

la) ® |b) = 71, — ULU(g), nCmq . (2.13)

Equations (2.7)+(2.10) mean that we can decompose the two-particles state in terms of
irreps as follow

Y
i’ = Z' Cileys 11(6),4) (2.14)
T = Z Clleyi 11(€) Z Co ey 11(€), 1) (2.15)
1(€)i

TaTy = Z cl (2.16)
1(&)i
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where the C}lb C?&)i, C’iég)i are the CG coefficients associated to the irreps under scrutiny.

(&)

We use the following notation for the complex conjugate

I(€)i
(CI(E)z) Cf(g)z = Ca(g) ~ (2.17)
Crucially, since the CG coeflicients map one basis into another one, they are unitary matrices,
le.
1(£)t ~c c J
SO Clle =085t D C O = 1a6ibe (2.18)
I,gl ab

With these definitions and using the Wigner-Eckart theorem
(J(€), JIMI1(E),1) = 5IJ52]MI(§§’) I,JeY (2.19)

the scattering amplitude of |a) [b) — |c) |d) can be written in terms of the eigen-amplitudes
M among the irreps I € Y

Y
Mapsea(s:t) Z Z CHEI o (T(E),GIMITE), 1) = S CLEV Ot Myeen (s.1) |.
1(§)i J(&).J 1,ig¢!

(2.20)
Compared to notation of the previous section we are inserting a hat over M to distinguish
the eigen-amplitudes associated to the irreps in Y, i.e. found in N ® N, from the eigen-
amplitudes with a tilde, Mv, which are for the transitions of the irreps J € Z, i.e. those
associated to irreps found in N ® N:

(), FIMIT(E), 1) = 016 Myeery, 1T €Z (2.21)
and
Z Z
Mapaa(s,t) = D - Caf POl (I(€), IMITE) Z Cat " Clle Mugeen (s.1) |-
1(8)i J (&), 1,i,6¢
(2.22)

These relations along with unitarity of the CG coeflicients will allow us to express the action
of crossing symmetry directly on the eigen-amplitudes.

2.3 The crossing matrix

Crossing symmetry relates different eigen-amplitudes because the decomposition in irreps
is different in N ® N, N ® N and their complex conjugate. We will show that the crossed
amplitudes are related by a constant involutory matrix X called crossing matriz, built out
of two smaller blocks of crossing matrices that send the irreps found in N ® N in those of
N ® N and vice versa.
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We restrict ourselves to the case of elastic scattering at ¢ = 0 displaying only the dependence
on s, eg. M(s) = M(s,t = 0). The s-channel |ab) — |cd) and its crossed process
|eby — |ad), the u-channel, are related by crossing symmetry

Map—cd(s) = Map—aa(w) (2.23)

as in the previous chapter. However, we find now convenient to decompose the amplitudes

into eigen-amplitudes using (2.20) and (2.22)

Y Z
ab  ~ed A4 _ cb I(&") v
> Cfley iC5leniMueeny(s) = D CleyiCaa " Mieen (u). (2.24)
¢! I¢ig!

Defining the projection operatorsﬂ

Preglis =3 [Coens] ™ [07€] (2.25)

J
a

Proonltd = Y [Crposls [€70V] (2.26)

J
we can write the amplitudes as

Y
Map—ed(s) = Z[Pl(g/g)]gfz/\/ll(gg’)(s) (2.27)
1gig!
Z ~ —~—
My aa(w) = > [Priere) Mieen (u) (2.28)
Igi¢!
multiplying both sides of (2.24) by the expression in (2.25)), and summing over the index
a,b,c,d we get

— z - cd 1~ ba —
dimYsMeen(s) = 3 3 [Poea] , [Proon ], Mrcoe @) (2:29)
Ixx' abed
This expression defines the crossing matrix X3
M(s) = LiM(u) (2.30)

relating the s-channel eigen-amplitudes M (s) with the u-channel eigen-amplitudes M (u):

ab de

1 A ~
Kl seenioon = gmy, Ebjd [PJ(s/s)Ld [anx')Lb : (2.31)

We recall that the indices I and J run over the different sets Z and Y which in general
contain a different number of irreps. Therefore, the matrix X; is in general rectangular.

2They are actual orthogonal projectors only for £ = ¢’



26 CHAPTER 2. POSITIVITY CONSTRAINTS FOR COMPLEX SCALARS

Multiplying and summing both sides of (2.24) by [PJ(XX,)];ZZ, we obtain instead

Y
— 1 ~ dec 1~ ab
Moty (W) =D Gz 2o [Proe], [Preeen] Mieen(®) (2.32)
1gg’ abed
which defines the other crossing matrix Xo
1 ~ de 1~ ab
ol soonieen = qmz, a;d [PJ(xso]ab [PI(&')} . (2.33)
that relates back the u-channel to the s-channel:
M(u) = Ko M(s) |. (2.34)

In li and 1D we are using an index free notation where M and M are vector with
components Mygery and M jery respectively. Notice that in general X, X2 are not the
same matrices, see Figll], although they are the left- or right-inverse of each other

XQXI = ]lz><z> (235)
XKy = Lysy (2.36)

where z (y) is the number of irreps in Z (Y).

s — channel
NN NN

u — channel
NoN-sNeN

Fig. 1

By definition, see ([2.31)) and ([2.33]), we have

XT = X * ’ 7\ — X ’ ’ 237
[ 1]H(99,)J(§£,) { 1]J(§§ )H (66") [ l]J(g EYH(0'9) ( )
dleJ [XI]J(gf/)I(XX/) == dlmZ[ [X2]I(X/X)J(§/§) . (238)

Moreover, defining the diagonal matrices
Aoy aee) = dimY7616eb e (2.39)

AI(XX/)J(&/) = dimZ[(SIJ(ng(sX/g/ 5 (2.40)
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we get

XA, = A (2.41)
KIAKy = A (2.42)

All these relations are better expressed in terms of a single crossing matrix that acts on the
whole set of eigen-amplitudes. Indeed, collecting the various eigen-amplitudes associated to
the irreps in the two decompositions N ® N and N ® N in a single master eigen-amplitude

M= ( % ) (2.43)

whose components are M = (- M jeery -+ ,'-‘/’\AVI(XX,)---)T, we see that the s < u

crossing takes the form

[ M(s) = XM(u)  M(u) = XM(s) . (2.44)

where

0 X
X:[xz 01]. (2.45)

The matrix X represents the crossing matriz of the entire set of eigen-amplitudes, it is thus
the matrix we were after. Its entries are defined in terms of the CG coefficients in ([2.31])
and . They are purely geometric objects that depend on the group and the irreps, but
that know nothing about the dynamics. The crossing matrix X is an involutory matrix and
satisfies the following properties

KGR =G, K =1,n (2.46)
where n =y + z and
A0
= ~ 1. 247
g 0 A ( )

In other words, the crossing matrix is not only involutory but also unitary with respect to
the positive definite metric G built out of the dimensions of the irreps that appear in (2.39)
and (2.40). These relations follow directly from (2.41), (2.42)), (2.35) and (2.36). Being
involutory, the eigenvalues of X are +1. Actually, the (41)-eigenspace always contains the

vector v(t) whose entries are irrep-independent and diagonal with respect to the degenerate
irreps’ labels:

Oegr
e ( o > D Mlieenioon S = Fses D (Rl e oo S = O
XX I I
(2.48)
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For theories with no degenerate irreps appearing in the CG decomposition this (41)-eigenvector
reduces just to vector of identical entries,

o= ] (2.49)

2.4 Sum rules

Now that we understood the general properties of the crossing matrices and how they can
be constructed, we are able to obtain dispersion relations that provide sum rules for the
eigen-amplitudes and the Wilson coefficients. As in the previous chapter we assume:

e Analyticity, in the cut s-plane as shown in Figl2]. Since we assume that particles have
all the same mass, m; = m, the IR branch-points given by the threshold for elastic
scattering are at sy = (m1+m2)? = 4m? in the s-channel, and urg = (my—m2)% =0
in the u-channel. Moreover, a generalization of the Schwarz reflection principle
follows from ([2.20))

Migeen(s)" = Mie(s"), (2.50)

for the eigen-amplitudes. It relates the discontinuity between the upper and lower
complex plane to the imaginary parts of the eigen-amplitudes between the same irreps

{=¢.
e Unitarity, which implies the optical theorem

2
4m® o

ImMee)(s) = sy/1 — ?01(&)(8) >0 (2.51)

for s > syg.

e Crossing symmetry, which acts on the entire set of eigen-amplitudes as M(s) = XM (u)
where the crossing matrix X is defined in section in terms of the relevant CG
coefficients.

By analyticity, we can Taylor expand the amplitude around a scale 2 in the upper complex
plane away from the singularities

M(s) = 37— MO 2) (s — )" (2.52)

n

The coefficient M (u?) can be computed by means of the Cauchy integral formula,

MM (p?) = ;:Z,jéds% (2.53)
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Fig. 2: General analytic structure of a forward scattering amplitude of massive scalars in
the configuration s + u = 4m?. The red points stand for poles coming from intermediate
one-particle states, i.e. propagators, and they always come in pairs because of crossing
symmetry. The black dot marked p? is the point around where we are Taylor expanding the
amplitude. A is the radius of the big circle, while s;g = 4m? is the branch-point associated
to the elastic threshold in the s-channel. The other branch-point at s = 0 comes from the
u-channel, that is by crossing symmetry. In the following, we refer to the energies between
s =0 and s;r as IR masses”.

where the contour C does not cross any singular point as shown in Fig2] .

The integral on the r.h.s. can be performed along the curve I' by subtracting the residue of
poles on the real axis, if any. Just for simplicity, we assume in the following that there are no
lighter stable particles so that these residues are actually not present. The more general case
with lighter particles in the spectrum and their residues included in the dispersion relations

can be obtained straightforwardly, as it was done for a single flavor in section
A

A coming from the integration over the big circle of radius A? (see Fig.

The contribution ¢

)
Isa| = sgr/2 + A? (2.54)

C

A ,/27r do |sple? M(|sp|e??)
=n: — - ,
" o 2 (|sale? — p2)ntt

can be discarded for n > 2 since ¢} — 0 as one take the limit A — oo. This follows from

the Froissart bound [I3] which ensures |M(s)| < slog? s for s — co. The contribution from
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the integrals along the branch-cuts reads

2 M(=s+ sir —i€) — M(—s + srr + i€)

A2+srR/2 i€) — _
i T et 2y
o 2| ) (s str+ 2)
(2.55)
Atsin/2 g 1 X
:n!/ ,[—i— -1)" M(s +ie) — M(s — ie
sim 2 | (s — p?)ntl (=1) (s — spp + p?)ntt M( ) ( )
(2.56)
where in the second equality we used crossing symmetry. By (2.50) we have
M(s +i€) — M(s —ie) = 2ReM ™ (s + i€) + 2IImM™ (s + ie) (2.57)
where, in components,
1
Mi&ﬁ’ ( ) = 5 [Ml(ff’)(s) + ./\/11(5/5)(8)] . (258)

With no degenerate irreps in the CG decomposition, or in presence of particular selection
rules between the degenerate irreps [2] , M~ = 0 and M = M. Hereafter we restrict to
the case of no degenerate irreps, since all examples we will discuss later fall in this category.
Therefore, using also the optical theorem to write the imaginary parts in terms of the total
cross-section, the dispersion relation for n > 2 and A — oo reads

(s s sK 4m?
(TL) 2 — ' e -1 n [ tot )
MO = [ o O e | e

(2.59)

tot t

where o' is the vector with components Uto and s;p = 4m?2.
As we have seen in the previous sections, the crossing matrix X is involutory and it has
therefore eigenvalues +1. We can thus define the projectors over the positive and negative

subspaces

Pi=-(1+X) (2.60)

l\D\»—l

which satisfy the properties
Pi=1, [Py, X =0,, PiX =+Py. (2.61)
Projecting (2.59)) onto the +1-eigenspaces, we get the sum rules

T (ds S s 4m?2
(n)(,2) — p! _1\n _ tot
P M (1) n/ . [(5 — +(—1) G st MQ)nH] 1/1 — Pio™(s).

SIR
(2.62)
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which for n = 2 read

T ds S s 4m?
2), 2 P, 5t
P )(M )= 2/ 3 {(S — 1?3 (s —sin +u2)3] \/: 20 (5)|. (263)

SIR

Notice that at the crossing symmetric point u? = (s;g +usg)/2 = 2m? the projection with
P_ kills the r.h.s. and therefore it makes vanishing the L.h.s. of the dispersion relation as
well

P_M"(2m?* =0/, (2.64)

meaning that M”(2m?) must belong to the (+1)-eigenspace of the crossing matrix. This
provides an useful linear constraint among the amplitudes in the IR which are not all inde-
pendent in that kinematical point.
In the massless limit and choosing ;2 = 0 the sum rules become even more neat
+o00 ds
P MM (0) = 2[1 + (—1)"] / — Pyo'(s). (2.65)

0 8"
2.5 Positivity for flavorfull scalar particles

Using the sum rules obtained by the dispersion relations, we can derive positivity constraints
for scattering amplitudes as it was done in section , except that now the particles
transform non-trivially under a symmetry group of the theory. This allows us in general to
obtain stronger positivity conditions, as it was obtained in the special case of real irreps in
[2]

Let us focus then on the elastic forward scattering

Wa(pl)ﬁb(l)z) — Wa(Pl)Wb(Pz) (2.66)

where 7! stands for an element inside the representation of the group G. Should we follow
the same steps as in section (1.4]), that is without taking advantage of the symmetry, we
would simply get

wpan(1?) > 0| (2.67)

No symmetry has been invoked to obtain this positivity, the labels a and b playing no role

in the derivation above. In order to get (possibly) stronger bounds on M”, we instead use
the sum rules . For 2 chosen between s = 0 and s = srg, the terms in the square
brackets in are positive, and so is the entries of the vector o' made of total cross
sections associated to the transitions I — anything. The only possibly negative sources in
are some of the entries of the projectors P+. However, we have seen in Eq. that
the crossing matrix X that defines the projectors Py = (1 4+ X)/2 is unitary with respect
to a positive definite metric G, i.e. XIGX = G, which is diagonal and whose entries are the
dimensions of the irreps

Grj = 0rydimry 1,JeZY. (2.68)



32 CHAPTER 2. POSITIVITY CONSTRAINTS FOR COMPLEX SCALARS

This means that we can project on the (£1)-eigenspaces with the scalar product defined by
g,ie.

> d / 4m?
f gP " ;LQ =2 a5 5 + 5 1 T GP tot

SIR
(2.69)

that implies

T (s s s 4m?2
T me2y _ T~ _tot
whGM" (%) = 2/ - [(s — 2 + G_snt Mg)s} /1 . wiGo'(s)| (2.70)

SIR

where w4 is any (£1)-eigenvector of X, Xwy = +wy. But here is the catch: among the
various eigenvectors wy, we have seen in the previous section that there always exists a

o) = (1,...,1)T which has all positive entries. Projecting on such a eigenvector
+o0 d 4m?2
U(+)Tg/\/l//(u2) _ 2/ j [ S - 4 S - 3:| 1 ﬁv(‘i‘)fgatot(s)
sin T Ls—w?)P (s —sir+p?)? ]V s

(2.71)
we see that the integrand on the r.h.s is strictly positive, so that the following positivity
must hold

oIGM” (1?) > 0, (2.72)

or equivalently

> dimr; M7(4?) > 0|, (2.73)
I

In fact, since the (+1)-eigenspace of the crossing matrix X is linear, there are other my — 1
positivity conditions that are obtained by adding (m4 — 1) sufficiently small and linearly
independent (41)-eigenvectors to v(t), where m. is the dimension of the (+1)-eigen-space.
As long as the (+1)-cigenvectors V() obtained in this way have non-negative entries the
positivity conditions

VEIGM" (12) > 0 (2.74)

hold too.

The strongest, i.e. optimal, bounds are those that imply the others (e.g. by taking linear
combinations of the inequality with just positive coeffients), that is those that are obtained
by intersecting the linear (41)-eigenspace with the positive quadrant where the entries of
the vectors are all non-negative. This intersection defines a convex polyhedric cone whose
edges Vi(ﬂ, by constructions, define the strongest positivity conditions Vi(ﬂTQ/\/l” (u?) >0
(see Fig.. The edges can be determined explicitly, given the crossing matrix X, by using
the algorithm described in [2], that is by looking for the (+1)-eigenvectors of X with (m4 —1)
vanishing entries (since we need to find a one-dimensional subspace living on the boundary
of the quadrant). Notice that the (+1)—eigenspace can be easily identified by the algebric
condition P_w,; = 0. In the next section we provide a detailed and explicit example of these
positivity constraints.
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Fig. 3: In sky blue the convex polyhedric cone obtained by intersecting the positive quadrant
of amplitudes with the the (+1)-eigenspace (a m,-dimensional hyperplane) of the crossing
matrix. (We are of course able to draw explicitly only a two-dimensional polyhedric cone
with two edges, i.e. a triangle, embedded into a three—dimensior)lal space of amplitudes).
entries but m — 1 which are vanishing. While projecting M”(u?) on any vector inside the
cone, as e.g. on ) = (1,...,1)T as in , gives a positivity constraint, the strongest

. . . . +
bounds are obtained by projecting on the boundary eigenvectors of the cone Vi( ), as any

The boundary of the cone corresponds to (+1)-eigenvectors V;(Jr which have all positive

other vector inside the cone can be reached by linear combinations with positive coefficients.

2.6 An example: SU(N)

Let us consider a 2 — 2 scattering of identical scalar particles transforming under the

fundamental (anti-fundamental) N (N) of SU(N). The decompositions and

reads

N(N-1) o N(N+1)
2 2

N@N=1a(N2-1) =1 Adj. (2.76)

N®N=

=AaS (2.75)

We cluster all eigen-amplitudes of N @ N and N ® N in a single master eigen-amplitude:

Ma(s)

_ @ _ /Es(s)
M@_<M> e | (2.77)

Maaj(s)

In the following we will omit the tilde and the hat over the amplitudes. It should not be
ambiguous since the irrep subscript tell us which decomposition of the tensor product we

are considering.



34 CHAPTER 2. POSITIVITY CONSTRAINTS FOR COMPLEX SCALARS

In order to determine explicitly the crossing matrix, we use the projectors over the invariant

subspaces in (2.75)) and (2.76]), which are

~ 1ab 1
Bs] = (dedh +abay) (2.78)
led 2
~ 7ab 1
[PA == (53 5y — &b 58 ) (2.79)
led 2
~ 7dc 1
[Pl_ =i (2.80)
~ 7dc 1
[PAdj_ = o —~olap (2.81)
Therefore, the crossing matrix X is given by
1 N+l
A
0 0 = EASant
X=| 1_n N1 7§ N ) (2.82)
T
5 3 0 0
which is diagonalized
-1, 0
Riiag = MAM ™! = ( 02 1, ) (2.83)
by
1 1 1
I = 0 =
R -
M = i i (2) 1 (2.84)
1 1 2
1N N+l 1 g
1 1 2
A basis for the two-dimensional (41)-eigenspace is given by
viP=02N+1,)T VP =WN+1,N-1,0N)T. (2.85)

Notice that the vector (1,1,1,1)7 = (V1(+) + VQ(JF))/(N + 1) is indeed an element of the

positive eigenspace as expect by our general arguments. Since all the entries of Vi(+) are
non-negative, one immediately gets the positivity conditions from (2.74))
MY (1) + NME(1?) + (N = )M g5(4°) > 0 (2.86)
M (%) + Mg (%) + 2M L g5(1?) > 0 (2.87)
where we used N1 Nt
G = diag (N 2_ N ; ,1,N2—1) (2.88)

and 0 < p? < 4m?. These positivity conditions are actually optimal because there is no
other (41)-eigenvector with one vanishing entry while its other entries are kept all strictly
positive.
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Further simplifications occur by choosing to work at the crossing symmetric point p? = 2m?
because of the crossing relations P_M"”(2m?) = 0 in (2.64). In our SU(N) example, it gives
rise to the constraints

" (2m?) + M/S/(2m2) - Qdej(ZmQ)

=0, (2.89)
(N — Y)M/L — (N + 1)ME(©2m?) + 2M(2m?) = 0.

(2.90)

The first equation immediately implies dej(ZmQ) > 0 and M’ (2m?) + ME(2m?) > 0.

Solving the system 1} and 1} for ’S’ A(2m?), and plugging them back into 1)
and ([2.87) we get

MR (2m?) + MG(2m?) >0, Mpg;(2m?) >0, M{(2m?) + (N — 1)Mp4;(2m*) > 0|.
(2.91)
These positivity constraints on the scattering amplitudes will be used in the next chapter

to derive positivity constraints on the Wilson coefficients of a theory that respects SU(N)
and where the states transform like the fundamental and anti-fundamental representation.
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Chapter 3

Positivity constraints for fermions

In this chapter we extend the previous results about the positivity of scattering amplitudes
and Wilson coefficients to the case of particles with spin. This task is non-trivial because
crossing symmetry is generically not just exchanging s <> u as it is for scalars in ,
but it involves instead transformations on the polarizations of the external states and extra
overall signs for fermions. Despite these extra features for spinning particles, we show how
to obtain positivity constraints on scattering amplitudes, in the elastic forward limit, for
generic spins. Moreover, exteanding the work of [6], we apply these results to the specific
case of spin-1/2 fermions that carry fundamental and anti-fundamental representations of
SU(N) that we use in the next chapter when discussing composite pseudo-Goldstini that
are charged under the R-symmetry from an extended SUSY.

3.1 Crossing symmetry for spinning particles

3.1.1 Crossing one particle

Let us consider a multi-particle scattering process

Upop X ki 000} ™ Y{ko,0oa0} (3.1)

represented in Fig. [T, where we single out a particle ¢ that we are going to cross from the
initial to the final state. Here

® 1y, 1s a certain particle with four-momentum p, Lorentz little-group indexEI
o (either spin or helicity depending whether it is massive or massless), and internal
index b that labels the state inside an irrep of an internal symmetry group carried by
the particle;

e X and Y stand for generic initial (apart from ) and final states respectively that
contain other spectator particles.

We focus on pure states with definite quantum numbers. A more general discussion involving mixed
states with unpolarized particles can be found in [6].

37
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d’p,a,b

in-states * Yk, .00.a, [ OUtstates

X *
ki,0i,a; o

Fig. 1: Generic scattering process from an initial state in = {1 + X} to a final state
out ={Y'}.

Following the general LSZ reduction formula [II], the scattering amplitudes for the pro-
cess are obtained by dotting the amputated Green functions (i.e. the Green functions
(0| TYg4a(y) - wlb(m)m} contracted with the inverse of the propagators of the external par-
ticles) with the wave-functions polarizations ug of the incoming particles, as represented in
the upper part of Fig. [2] The resulting amplitude can be expressed in the form

M(¢p,0,bX{ki,U¢,ai} - Y{ko,oo,ao}) = Oa({kia 04, ai}v {koa Oo, ao}’p’ b) : ug(p) (32)

where we have singled out for convenience the wave-function polarization uZ(p) for the
particle 1». We use the usual definition for the wave-function polarizations: ¢ annihilates
a particle and creates an anti-particle, whereas ¢! creates a particle and annihilates an
anti-particle

<0‘wo¢ b(O) ’pg> X 5abua(p) ) <pg|¢]ab|0> X 5abvg . (33)

Notice that we have not committed to any particular spin yet; the index « in ug and vg
is spinorial or Lorentzian depending on the Lorentz representation carried by the field v:
the trivial one for scalars, a two-component spinor index for Weyl fermions, a 4-component
spinor index for Dirac fermions, and a four-vector Lorentz index oo = p for vectors, ...

The crossed process E]

X{k‘i,ai,ai} - &57675Y{k07007a0} (34)
is obtained again by the LSZ reduction formula by dotting the amputated Green function

in momentum space with the wave-function polarization vZ(p) of the outgoing anti-particle
M(X — Y@ﬁ,&,é) = ioa({ku g3, ai}7 {k07 Oo, a0}7 _pa b)vg(f)) (35)

as represented in Fig. . Crossing symmetry is the statement that O¢ in is the same
fuction that appears in but evaluated at the unphysical momentum —p (since —p has
negative energy) given that the (anti-)particle now belongs to the final state. In practice,
the amputated Green function O% has the same functional dependence on the kinematical
and internal variables except for the sign of the momentum for the crossed particles, since

2We denote with a bar over the internal indexes the states of anti-particles transforming under the complex
conjugate representation of the internal symmetry group. The bar over the spin and the momentum means
instead that we are provisionally considering generic spin and momentum for the anti-particle.
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D;
i Ti N

\ (0Tg, (p2) ... WL, (p1)[0) Y,

)
@|T‘I’ﬁ1 (p2)... 91, (p1)|(D
J

&

0,7 (Ps) x () 0a

« acg

O|TT}, (p1)¥g, (p2).- - -[0)
. ’ J

Fig. 2: A single Green-function gives rise to several scattering processes where particles/anti-
particles move from/to the initial and final state, according to the LSZ reduction formula. In
the upper part we show schematically the scattering amplitudes for v, ;X — Y, obtained
by dotting the amputated Green function with the on-shell wave-function polarization u?(p)
of the particle. In the lower part we show that the amplitude for the crossed process, where
the anti-particle carries opposite polarization ¢ = —o, arises from the the same amputated
Green-function evaluated in —p and contracted with v=% ~ u?, see Eq. . The overall
sign is determined by the statistics of ¢. The lines with the blue dot in the middle represent
the external propagators.

in the LSZ reduction formula one has +k for incoming and —k for outgoing. Notice that,
besides the momentum flip in O and the different external wave-function polarizations, there
is also an overall sign which depends on the statistics of ¥: it is +1 for bosons and (—1)" for
fermions, where n is number of fermionic pair exchanges performed from the starting Green
function.

Notice that the particle/anti-particle wave-function polarizations dotted in the amputated
matrix elements are actually related via CPT invariance. For vector, Dirac, and left- or



40 CHAPTER 3. POSITIVITY CONSTRAINTS FOR FERMIONS

right-handed (massless) Weyl representation we have respectivelyﬂ

e *(p) = (-1)%¢,°(p), v=(p) =FYuT(p), vi(p)=ur(p), vip(pP)=uk(p). (3.6)

We find thus simple relations between the amplitudes by simply considering opposite helic-
ities in the crossed scattering, i.e. & = —o as represented in the lower part of Fig. [2|

3.1.2 Crossing two particles
We are interested in a 2 — 2 scattering

191292 — 37349 (3.7)

by a2 by “aq

where the b's and a’s are internal indexes and 1j' = 1, 5, 5, with the same notation as
before (analogously for the other particles). We are going to cross two particles: particle 1
from the initial to the final state, and particle 3 from the final to the initial state

a4

3%;22; — 113)'114"4 (3.8)
looking provisionally to a generic kinematics with momenta p and spin & for the crossed
particles. Using the results of the previous subsection for each crossed particles, we get the
following amplitudes
M(15125z — 37245) = [ugi (a)ugs (95)| 08252 (b1, o, b2 pa, 10} {a}) [ (P1)ug (b))

(3.9)

90300 101 40 o a3t (= — — 01 (A o
M35 = 17450 = & [ugs ()0 ()] 02182 (=51, —5s, b2, 1, {0}, {a}) [07 (91) g (p)] -
(3.10)

These expression can be further simplified in the forward scattering where the kinematics
of the initial and final state are the same

p1=Dp3, ko = ky, o1 =03, 09 =0y, (3.11)

and analogous for the barred quantities. In this special kinematics the wave-function po-
larizations in and pair to actually form the matrix-elements of density matrices
(also called spin projectors, the same that appear in matrix elements squared when calcu-
lating cross-sections)

ul (K)ul, (k) = p7,, (k), v (k)T (k) = 52, (k), (3.12)
and (3.9), (3.10) become
M(131252 — 151232) = pl 0, (P1)Onsai (P11, k2, {b}, {a}) p22a, (P2) (3.13)

M(171272 = 171272) = (=1)*% 521, (P1) Oala2 (— b1 ka2, {0}, {a})pT2a, (P2) (3.14)

3For a generic irreducible representation (A4, B) of the Lorentz group SO(3,1) x SU(2) x SU(2) where
A and B are positive half-integer numbers that label the irreps of (2A + 1)(2B + 1) dimension, the relation
1) becomes ug(p) = (—1)*PT577427(p) where S is the spin of the particle, see [6].
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respectively, see Fig. 8| The overall sign of the crossed process is determined by the spin S of
the crossed particles 1 and 3. Since the number of fermions in the amplitude must be even,
for a given ordering of the spectator states 2 and 4 there are necessarily an odd number of
particles exchanges, hence the overall (—1)>° factor from the statistics of the particles.

D1 D
u’t (Pl)\‘ 7o

U (p3) v o3
2Spin
— (—1) x

crossing 1<—>3

—p3 / —P1
(p;)\ v 7 (py)

Fig. 3: We show schematically the action of crossing symmetry 1} that in the forward
limit reduces to (3.14) and then to simply s <> u exchange, thanks to locality, as explained
in the main text.

The expressions (3.13) and (3.14)) become more closely related to each other by choosingﬂ
o = —o because of the relations (3.6). We are also going to take the same physical 4-
momentum for the crossed particles: p; = p;. For simplicity let’s consider first the massless
case:

M(151252 — 151252) = pola, (P1)Oaias (p1, k2, {0}, {a}) p22a, (P2) (3.15)

M7 202 = 157272) = (—1)%% pl4, (P1)Oala2 (—p1, k2, {0} {a})p2a, (P2) |- (3.16)

Compared to the scalar forward scattering we are facing here a difficulty since the 4-
momentum is reversed in the crossed process only inside the amputated Green-function
but not in the external wave-function polarizations which are a priori function of three-
momentum p only, and not the 4-momentum p = (p°, p). Moreover, there is an extra minus
sign for fermions that are exchanged under crossing. In other words, crossing symmetry
does not look, at first sight, as simple as exchanging p; <> —p3 = —p; nor s <> u. But
in fact there is more than meet the eyes. The density matrix can be indeed uniquely ex-
tended analytically to a function p(p) of the whole 4-momentum p with definite parity under
reflection

p(p) = (=1)*°p(=p)|. (3.17)

This can be directly checked on the generic expression of p(p) for arbitrary massless spins

that have been calculated long ago by Weinberg [14, (15, 11]. For example, for a massless
spin-1/2 particle we have

p~(p) = u=(p)u~(p) = v (P (p) = 5 (p) = puo™. (3.18)

4 Actually, for massless particles this is not a choice: the anti-particle can carry only the opposite helicity

than its particle.
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which is a linear, odd, monomial of the 4-momentum, whereas for a massless spin-1 one
can always choose the gauge with pffl, = —ny Which is constant, hence trivially even in the
4-momentum. More generally, it is locality that requires to hold true. One quick way
to see this is realizing that the analytically continued density matrices with definite parity
for massless particles have to exist since they are nothing but the numerators of the Lorentz
covariant version of the propagators |11, [12]

4 i
(0 Tepar, (1)20d,, (22)[0) = / (§W§4e‘i’“(xl‘x2)w = (—=1)*5(0|T¢], (w2)tba, (21)]0)
(3.19)

= (_1>25/d4k6—ik(x1—:cz)%2(__k). (3.20)
(2m)4 k2 —ie

Locality implies the spin-statistic theorem for which fermions have half-integer spin and anti-

commute, hence the second equality in , which can be expressed as in implying

therefore the relation (3.17). Another way to reach the same conclusion is by looking at the

commutator or anti-commutator of two fields at equal times and requires that it vanishes

for x1 # X9, as required by locality.

The case of massive integer spins works similarly, e.g. pu = —guv + Pubv/ m? for a spin-1,

which is an even function of the 4-momentum as it is claimed. The massive Dirac fermions

are slightly more complicated because the representation is reducible, (1/2,0) & (0,1/2),

which is reflected in the presence of a 7% in (3.6)). Nevertheless, by direct inspection of the

Dirac density matrices

L+°47 (k) o
5 8

-
57 (K) = o7 () ) = (f —m) =0 (3.22)

o7 (k) = u” (k)u” (k) = ( +m) (3.21)

where af, (k) = —ag,(—k) is the (analytically continued) polarization 4-vector [6, 31], one sees

I
that indeed p=7(k) = v°p° (k)y> = —p°(—k).

Allin all, the crossed amplitudes can be obtained for spinning particles, in the forward limit,
simply by flipping the spin, taking the complex conjugate representation of the internal quan-
tum numbers, and reversing the 4-momentum not only in the amputated Green-functions
but also in the (analytically continued) wave-function polarizations. Expressing the ampli-
tudes in terms of Mandelstam variables at ¢ = 0, crossing symmetry corresponds thus to the
following statement:

M(171252 = 171282)(s) = M(1;7°233 — 1;71272) (u) (3.23)

which is almost identical to expression (2.23) that holds for particles without spin. We
remark once more that this relation on the amplitudes is true only for the special kinematical
configuration of the forward scattering.
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3.2 The crossing matrix for spinning particles

Given that the crossing relation in the complex s-plane at ¢t = 0 differs from the one
for scalars just because of the spin flip, the crossing matrix relations are also very
similar. Indeed, we are considering only internal symmetries which do not act on the spin
indexes that are inert under the internal transformations. The decomposition in irreps inside
N ® N and N ® N works exactly as for scalars, producing i.e. eigen-amplitudes M?@192 and
Mo102 respectively, up to flipping the spin in the crossed channel. Therefore, Eq.

and ([2.34) read now
M7172(s) = Ly M™% (u) M7 (u) = Ko M7 (s) (3.24)

where the crossing matrices X; are given by the same expression (2.31) and (2.33)), enjoying

thus all their geometric properties.
Again as in (2.45)), it is convenient to define the general crossing involutory matrix X

0 X
Y — < % 01 ) (3.25)

that acts on the master eigen-amplitude M

M\Ulo'g
M= -~ 3.26
(5 "

as

M(s) = AM(u) M(u) = AM(s). (3.27)

3.3 Positivity bounds for fermions

Positivity bounds can be obtained now for fermions following the same steps that we dis-
cussed in the previous chapter for scalars, yielding again the twice subtracted dispersion
relation , the crossing constraint , the positivity , and the optimal bounds
([2.74). We restrict for definiteness and simplicity to the case of scattering amplitudes for
massless fermions which always have the same analytic structure of the amplitudes for
scalard’} i.e. as in Figl2] with no light poles and s;g — 0 in the massless limit.

To derive positivity bounds, we make use of the dispersion relations and consider a
theory that starts with dimensional-8 operators for four massless fermionsﬂ

®There may exist some extra IR branch-cuts of finite extension of the type 1/s(s — 4m?2) that is coming
from the discontinuities of the wave-function polarizations, but only in certain parity-violating theories for
massive fermions as discussed in [6]. Being finite in extension and residing in the IR, they pose actually
no real problem and positivity conditions can be derived as well [6], although the discussion becomes more
involved. The effect of these extra IR branch-cuts is effectively very small and disappears in the massless
limit.

5Should we start with lower dimensional operators the dispersion relation would not be IR convergent,
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3.3.1 Positivity for fermions in the fundamental of SU(N)

More specifically, we consider the SU(N) invariant effective theory that besides the kinetic
terms for the massless fermions starts with

L =001+ 209 + 303 + 404 (3.28)
where

3.29
3.30
3.31
3.32

01 = &aa,u;(bauxad)b’
Oy = lﬁaau)zbaﬂxbwa7
O3 = Yaxp0u X 0"y’ + hec.

(
(
(
O4 = Yaxp0u X " Y* + h.c., (

)
)
)
)

The spinor contractions with dotted and undotted greek indexes in the 2-component notation
of [17], e.g. O1 = @Zmax;}axaﬁ@z;g, are left understood whenever clear. The lagrangian £ in
is the most general EFT, up to Fierz identities and field redefinitions, that involves
two Weyl fermion species x and 1 which transform under the fundamental representation
N of SU(N), and that contains two derivatives. We can compute the forward scattering
amplitude

MW (p1)XG, (p2) = 15, (p1)X%, (p2)) = Ms + My (3.33)

where we wrote explicitly the contributions to the amplitude which come from the operators
O3 and Oy (the contributions of O and O vanish in the forward limit). Using the expression
of the density matrices (3.12) we obtain the amplitudes for polarized Weyl fermions

iM (2 = —is sdgote™ e 7L (p)o T (p2) (3.34)
IMag T2 = —is cadi e e o7 (o) (p2): (3.35)
Since the particles are massless they carry definite helicity, say 012 = —, and therefore

Pac(p) = puolis and e¥7ee? Pap(P) = pu(0")**. Using Tr[o#o”] = 20" we get

Msly5)y = —e30300s? (3.36)
Maly oy = —cadiohs? (3.37)

and therefore
MGy = =52 (30508 + 4620} | (3.38)

in the strict massless limit. For example, the interaction (¢1))?/A? produces an amplitude which behaves
as TmM (s — 0) ~ s /A* which is not enough to grant the IR convergence of for m? = p? = 0 with
n = 2. We recall that n = 1, which would yields an IR convergent dispersion relation, is no longer necessarily
UV convergent; moreover, the integrand for n = 1 (or odd in generality) is not necessarily positive definite
even for a UV convergent theory [2].
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We can decompose the amplitude in eigen-amplitudes inside N ® N using (2.20)) and ([2.25))

MG = [131] aZ My (3.39)

IeYy

whereas the crossed eigen-amplitudes in N ® N are obtained by the exchanging a <+ ¢ and

using ([2.26)

ab —

MG = [ﬁr] dM§+_)- (3.40)

IeZ

C

We collect the the eigen-amplitudes in the vector

s
Mg (s)
M(s)=| P (3.41)
M{(s)
My (5)
Because of crossing symmetry
MG a(=5) = My 5 L4(5) (3.42)
we see that Mflg;ld(s) is enough to derive the positivity bounds. In order to do so, we use
the projectors (2.78)+(2.81)) together with
1 ~7ab [~ qcd 1 ~7ab [~ qjcd
SR S AL o
dimI Z[ ! cd J ab 5IJ dimI ! cd J ab 5IJ (3 3)
abcd abed
In this way, we get the eigen-amplitudes (the sum over the SU(N) indices is understood)
i) 2 Pl 2
M) =y =1 [Pa] Mapscals) = s(es = 1) (3.44)
T 2 []3}“" _ g2 4
Mg () NN D) S Cd/\/lab_>cd(s) s%(e3 + cq) (3.45)
— ~ qab
Mng_)(s) = [Pl}cd./\/lgbﬁad(s) = —5*(Neg + ¢q) (3.46)
~ 1 ~ ab
Mg (s) = N1 [PAdde Mepsad(s) = —sca (3.47)
and hence, using the inequality (2.91), we get from (3.44)) and (3.45)
(ca<0, 3+ <0 (3.48)

Incidentally, these bounds happen to be the same than those that one would obtain by using
the positivity (2.67) for each pair of flavor a = b or a@ # b in the ordinary amplitude, namely

MED"0) = —2(c308 + ¢4) > 0. (3.49)

In conclusion, there is no UV completion that gives rise to 01 and O3 with negative Wilson
coefficients. Moreover, the inequality is saturated only for the free theory.



46

CHAPTER 3. POSITIVITY CONSTRAINTS FOR FERMIONS



Chapter 4

Composite quarks and
pseudo-Goldstini at the LHC

An EFT is a theory with a limited range validity but which is very effective in capturing the
low-energy features of phenomena below a certain energy cutoff A. E] The associated effective
Lagrangian is an infinite tower of operators O; of increasing dimension A; = dim O;,

Ci
Lprr =) A (4.1)

where ¢; are the so-called Wilson coefficients. Despite the infinite number of operators
and Wilson coeflicients, EFT’s are predictive for F < A because only a finite number of
operators affect appreciably (that is above the fixed experimental resolution) the value of
low-energy observables. For F ~ A, infinitely many terms become important and the theory
should be superseded by a UV completion or another EFT that includes the new degrees of
freedom that start propagating at around A.

In a generic setup where all Wilson coefficients are sizeable, one expects by dimensional
analysis that higher dimensional operators contributing to a certain process become quickly
less important in the IR than the lower dimensional operators that contribute to the same
process for E < A. Generically, one can thus truncate the infinite tower of operators to
the lowest dimensional ones in the TR. However, symmetries can forbid or suppress certain
Wilson coefficients so that the would-be leading lower dimensional operators may actually be
dominated by some higher dimensional operator at intermediate energy, i.e. still below the
cutoff, consistency with the EFT expansion. In this chapter we are going to see precisely an
example of such a sort, where marginal and dim-6 operators that enter in 2-to-2 scattering
of fermions have suppressed Wilson coefficients, so that the amplitude is actually dominated
by dim-8 operators, hence scaling as E* for F larger than any IR scale but still well below
the cutoff A. For those dim-8 operators we can apply the positivity conditions that we have
derived on a firm theoretical ground in the previous chapters. The set of rules, symmetries,

'We are focusing on relativistic EF'Ts for particles only, for an introduction see e.g. [19]. The general
ideas of EFT have actually found applications in a much wider range of subjects and fields.
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and spurions that determine which operator enters with a sizeable Wilson coefficient versus
those which are suppressed are known as “power counting”. For definiteness in the following
we adopt the one-coupling one-scale power counting of composite Higgs models, although
several of the results that we present actually extend beyond that framework.

4.1 Power counting and composite dynamics

Strongly-coupled models of the electroweak symmetry breaking and the Higgs sector provide
a solution to the hierarchy problem of the SM. Inspired by the power counting of the chiral
Lagrangian in QCD and by holographic dual models, the dynamics of the states that emerge
from these strong sectors is usually assumed to be broadly described by a simple one-coupling
(g«) one-scale (A) power counting [20]

A* . [0 guo gux
ﬁC - ?zﬁo I:AvAv A3/2:| . (42)

where L¢ is a dimensional function that can be taylor expanded in its arguments with O(1)
coefficients. This power counting encompasses the naive dimensional analysis (NDA) of fully
strongly coupled sectors with g, ~ 47 like in QCD [19, 21], and the moderate coupling limit
g« ~ O(1). The o and x fields in (4.2) represent generic composite spin-0 and spin-1/2
resonances, respectively. However, particular resonances can enjoy extra selections rules
dictated by symmetries that forbid certain interactions.

For example, the 2 — 2 scattering among generic scalar resonances would give M ~ g2, e.g.
from a marginal operator g20*. But should the scalar resonances be composite Goldstone
Bosons (GB) 7 emerging from a symmetry broken spontaneously by the strong sector, we
know that the amplitudes should actually be dependent on the momentum, as the GBs
are derivatively coupled. This means that GBs interactions come from higher dimensional
operators that requires at least two extra derivatives, schematically of the type g20%7* /A2,
giving rise to the desired scaling at leading order M ~ ¢g2E?/A%. Should the spontaneosly
broken symmetry be approximate, the m would actually be pseudo-GBs and admit a potential
schematically of the type € (gfﬂ4 + A%7? 4. ) The spurion € < 1 that slightly breaks
the symmetry generates thus lower dimensional operators which, being less irrelevant that
the symmetry preserving interactions, change the amplitude in the deep IR,

2 2 2E2

But for intermediate energy above the IR and yet below the cutoff
A< E< A (4.4)

the amplitude is still dominated by the irrelevant higher dimensional operator,

M(eA € E < A) ~ g?E?/A? (4.5)
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within the validity of the EFT. In Composite Higgs model where the Higgs boson is one of
the GB’s of the strong sector, the spurion e is provided by the ratio of couplings € = gsnr/ g«
where ggps is a gauge coupling or a Yukawa coupling. E]

The lesson to be drawn from this specific example is in fact quite general: higher dimensional
operators may dominate lower dimensional ones because of selection rules that require to go
high enough in operator dimension to construct a singlet under the symmetry. In the case
of the GBs one had to add at least two extra derivatives because of the GB shift symmetry;
see e.g. |9, 22| for other explicit examples. In the next sections we show that the same may
happen for other resonances of the strong sector, and we discuss in detail the case of the
Goldstone fermion of SUSY, the Goldstino. The leading interactions for a Goldstino do no
start at dim-6 with (xTx)2-type of 4-fermion interaction as one could naively expect for a
generic spin-1/2 resonance, but rather at dim-8 as the fermionic shift symmetry from SUSY
breaking requires two extra derivatives to be inserted, schematically xTxfo?x2.

— Elementary/Composite —

,7 fields interactions —\

composite
sector

GDGSM

elementary
sector

Gsm

Composite
fields Standard Model

fields

L gauge fields —J

Fig. 1: Cartoon of the partial compositeness framework where states from a weakly coupled
elementary sector mix linearly with composite resonances of a strongly coupled sector.

Beside composite particles of the strong sector there are also elementary particles, for ex-
ample the transverse gauge bosons, that we need to include in the EFT in the IR. In order
to couple them consistently to the strong sector, the latter must contain currents J! asso-
ciated to the SM symmetry group. Essentially, the strong sector must have a sufficiently
large symmetry group G to include SU(3) x SU(2) x U(1); the associated currents are thus
weakly gauged by coupling the currents to the elementary gauge fields

ﬁgvmm = giALJZH. (4.6)

Since the currents of the strong sector will generically produce spin-1 resonances acting on
the vacuum, (0[.J,(0)|p, o) o €f(p), the Lagrangian (4.6) represents a mixing between the

2In composite Higgs models, in contrast to pions of QCD that get a tree-level potential from the insertion
of Yukawas, the potential is actually further suppressed because it is generated at one-loop.
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spin-1 resonances and the elementary ones, the angle of the mixing being controlled by
€ = gi/g« . Analogously, a spin-1/2 field ¢ of the elementary sector can source a spin-1/2
operator Op of the strong sector

Ly miz = MOp (4.7)

which generates spin-1/2 resonances x when acting on the vacuum, (0|Or(0)|p, o) o u?(p).
The Lagrangian (4.7) represents again a linear mixing controlled by € = \/g. between
elementary and composite states ¥ and x respectively. Since the physical states are a mixture
of the particles in the two sectors, this scenario is known as “partial compositeness”. The
physical states inherit couplings from both sector upon insertions of the €’s. For example,
4-fermi interactions that are present for the resonance x of the strong sector generate in
turn 4-fermion interactions for the physical state, although containing 4 insertions of €’s. In
the regime where \/g, < 1, the fermion v couples very weakly to the strong sector and it is
thus mostly elementary, the 4-fermion interaction being strongly suppressed. On the other
hand, for A\/g. ~ 1, the fermion as O(1) mixing and becomes part of the strong sector, it is
i.e. (almost) fully composite and it enjoys unsuppressed 4-fermion interactions. When this
happens we can drop the distinction from v and x and use just a single letter x.
Since the couplings of the elementary gauge fields A, and matter fields 1 to the strong
sector pass only through g; and y;, the effective Lagrangian is summarized, apart from extra
selection rules, by the following scaling
4
Lypr = /;QEEFT % ng, 1{3?2’ %Aw j\é’/gi/)L,R + Letem.(Au, V), (4.8)

*

where Lepem. containg the kinetic term and the weak interactions of the elementary sec-
tor. Notice that the strong sector produces corrections to the elementary kinetic terms of
O(\?/g?) or O(y?/g?). We should also mention that, given a leading operator to a certain
process, the insertion of extra derivatives or fields sitting at their VEVs, produces small

k2 = (9;‘\”)2, k2 = <f)2 . (4.9)

4.2 Constraints on dim-8 four-fermion operators

corrections suppressed by

Let us specialize now to the 2 — 2 scattering of fermion fields. The amplitude, due to SM
interactions and dim-6 four-fermion operators, goes approximately as

2 92E2
M(xx = xx) ~ gsur + 12 (4.10)

at energy well above the fermion and gauge boson masses. F’j We are assuming that the
fermion mix almost maximally with the strong sector, i.e. 1 ~ x is essentially fully com-
posite, so that the insertions of € = y/g. can be omitted in the 4-fermion vertex. We are

3This scaling is simply understood by dimensional analysis: each fermion wave-function for E > m goes
like v/E, while the gauge boson propagators go as 1/E? above its mass.
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also provisionally assuming that these dim-6 operators are unsuppressed by symmetries of
the strong sector; we will relax this assumption later.

Since g, < gsar, in the validity range of the effective theory E < A, the contributions of the
higher-dimensional operator can beat the SM gauge coupling and dominate the amplitude
for

<95M> xA<E<A. (4.11)
g«

This is no surprise since irrelevant operators grow with energy and can eventually beat
marginal operators (such as the gauge interactions) within the validity of the EFT because
the gauge coupling is small compared to g,. Adding the contribution from dim — 8 operators
(with two more derivatives) does not change anything in this picture

212 2 4
9:E” | g:E
Mxx = xx) ~ g5 + Zia + T (4.12)

since they are always subdominant to the dim-6 for £ < A, given that both dim-6 and dim-8
Wilson coefficients are unsuppressed.

But let’s suppose now that for because of a symmetry, or some dynamical reasons, the dim-6
four-fermion operators from the strong sector are actually suppressed by a small spurion e

2 2 24
gE” g E
M(xx = xx) ~ gy + 555+ T+ (4.13)

In this case the dim-8 operators dominate the amplitude within the range of the EFT

max{eA,\/gsm/g:A} < E <A (4.14)

while even higher dimensional operators are still suppressed.

Through the remainder of this chapter we will assume precisely this latter scenario where
(some or all) dim-6 operators of four-fermion interactions are suppressed, while dim-8 four-
fermion operators with two extra derivatives dominate the amplitude at high enough energy,
but still below the cutoff such that our EFT approach is valid. We will assume that some
of the quarks of the SM are fully composite, i.e. they mix by an O(1) factor with the
fermions of the strong sector, inheriting the unsuppressed 4-fermion interactions with two
derivatives. We will be agnostic about the precise dynamics or symmetry that forbids the
dim-6 operators, although we provide an explicit example of symmetry of the strong sector
that does so. It is a spontaneously broken extended N-SUSY where the composite fermions
are (pseudo-)Goldstini protected by a fermionic shift symmetry

x(@) = X' (@) = x(z) + &£ — v"(&, x)0ux(z) + . .. (4.15)

where v*(&,x) =i (fo“XT - XJ"{T), as discussed in detail in the appendix @ The SM as
composite pseudo-Goldstini is actually a hold idea by Bardeen and Visnjic [23] that was
recently invoked in [9] in the context of composite Higgs models. We revive this idea and
make it more concrete by comparing a simple realization against the LHC data.
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In Tab. [£.1] we list the expressions of dimension-8 operators involving four Weyl fermions
based on the symmetry they respectﬂ The SU(N¢) x SU(Np) is eventually identified with
the color and flavor group carried by ¥.

U(1) U(1) x SUN) U(1) x SU(N¢) x SU(Nr)
OXNXT (@)X FuXaxpdx X" OxTax T, OXEXY
0 XaXbO" X X" IXTax T, OXING
XX, OXEXG
XXy OXXG

Table 4.1: Dim-8 operators involving massless right-handed Weyl fermions charged under
the fundamental or bi-fundamental representation of the symmetries listed in the headlines.
We use the two-component spinor notation with spinor indexes not displayed, xfxf = ngw
, XX = X%Xo. The Lorentz indexes of the derivatives are contracted between each other and
not displayed. We use upper(lower) indexes x = x* (x! = xa) for the (anti-)fundamental of
SU(N). Greek and Latin letters label SU(N¢) and SU(Np) indexes respectively.

4.2.1 Positivity bounds

As a concrete example, we identify y with a fully composite right-handed down-type quark
dr which carries two SU(3) indexes, flavor and color, on top of the hypercharge. As we
stressed above, we assume that dim-6 four-dr operators are suppressed, either by dynamics

or symmetry, (e.g. an extended SUSY, see appendix @] and Eq. .
The independent hermitian dim-8 operators are

4.16
4.17
4.18
4.19

0 = ddgydry ddrldr}
OF) = odpldr, ddr2dg),
OF) = 0dr2dry 0drl dgS

(
(
(
O = 0dr dry 0drldrl (

)
)
)
)

where Greek and Latin letters stand for color and flavor indexes respectively, and the effective
Lagrangian takes the form

Lerr = Lsm + Z %01(8) . (4.20)
The amplitude of a generic scattering is isE]
M(__)Z§:3§ = (47 [@9)3= (M| Aq|1~ (@)= (0B)) (4.21)

1A sketched derivation of this list is given in the Appendix

®We recall the notation (2:12)) which gives the position of the indexes in the amplitude. For instance
(27 (@9 transforms as a tensor T of SU(3)c x SU(3)r with components T.q4.,5 whereas (27 (?9T+ @) 55
T,
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and it reads
__yab,af3 3
M! )Zd,f;a = w1 (pa, o)u' & (p3, o)uo (pr, o)u” (D2, 0) M1 + Mo + Mz + Ma]  (4.22)
where we are omitting the indexes in the r.h.s. and the polarization is fixed, say o = — (for
d%), giving rise to

— (t 50525288 + u - 5355806 ) (4.23)
— g (t 59855264 + u - 6260525 ) (4.24)
= —gs (t 50525300 + u - 55555d5“) (4.25)
My = —g4 (t 58855300 +u - 535§5d53) . (4.26)

In the elastic forward limit p1 = p3 = p, p2 = pa = k, we can apply the positivity bounds
we derived for fermions transforming in the fundamental of SU(N) in section (2.6) In this
limit, the wave-function polarization can be written in terms of the density matrix (3.12])

1 (k, 0)ula(p, 0)uo (p, 0)u7 (k. 0) = 5~ (P)oae™ e p (K) 5. (4.27)

Then, setting ¢ = 0 and replacing (4.27) in (4.22]), the amplitude becomes

M = s [5g5ga1 + 5:;52@} (4.28)

where
ar = +g40%8) + 93055 (4.29)
ay = +g20285 + 910505, (4.30)

We can decompose the amplitude in eigenamplitudes respect to the flavor group SU(Np)
using the projectors (2.78)+(2.81). Indeed, the amplitude of the process can be written as

M =SR] [ ] (31)
Iey

. . o . b,
whereas, exchanging 1 < 3 in the forward limit we get the crossed amplitude M+~ Zd,?? =

<2*(d5)1+(&&)‘/\4!31>+(ﬂ) 2~ (8 which can be decomposed as

_yab,af ~7ab r—~—, _y1aB
MDA {PI} ) [Mf* )] . (4.32)
ez ¢ 7
By crossing symmetry, M(+_)ZSZ:§ (—s) = M<——)‘j§ :56 (s) in the forward limit, and since

: . . b,
(@21) is an even function of s, we can extract the eigen-amplitudes from M=) 338( ).

The completeness relations in the flavour space

ab

1 —~ ~ cd 1 -
S M ICTA 53
dlmI%[ I ed J ab oy dlmI% I

ab

[JSJE: — 013 (4.33)

cd
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allow us to extract the eigen—amplitudeﬂ To avoid clutter of notation, in the following we
omit the tilde and the hat over the amplitudes (and then the projectors) since the irrep
index labels uniquely the components of the master eigen-amplitude

T
Mg (s)
M(s)=| "B _ 4.34
(s) MV(1+ )(s) (4.34)
My (5)
where we are again omitting the color indexes.
2
— cd _ — 4.
Ma N(N—l)[ ] M = s%(a; — ap) (4.35)
2
e ed _ 4,
Mg N(N—i—l)[ ] oMY = s%(ag + ay) (4.36)
Mi = [Pig M3 = 5*(Nar + as) (4.37)
1 a
Maay = 73— [Paaileg M = s%az. (4.38)
Applying now the general positivity bound (2.91)) we get the constraints
ap >0 a2 >0. (4.39)

Setting o« = v # 8 = § we extract the positivity bounds for g4 and go whereas setting
a =0 # [ = we constraint g; and gj3

(91>0, >0, g3>0, g41>0]. (4.40)

This result matches the positivity condition found in [6] fora =b=c=danda==vy=94§
with the identification y = dp.

4.3 Dijets analysis

The goal of this section is twofold. First, we want first derive the exclusion region on the
parameter space of dim-8 four-fermion operators using the data from the experiments at the
LHC. Second, we want to determine the quantitative impact of the positivity constraints on
those experimental bounds. This will be done by studying the dijets angular distribution
at /s = 13 TeV measured at LHC by ATLAS [24]. We thus we need to say something
about the interactions of the other quarks that can significantly affect the LHC analysis for
pp — jj that we use. We impose a flavor symmetry

Gr =U(3)g, X UB)ap % U3)uy (4.41)

5Notice that the sum over the SU(N) indices is understood and we do not write the color indexes which
are included in the definition of a; and as.
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which rotates the three left-handed g; doublets, the three right-handed down-type and up-
type quarks. This symmetry is obviously broken by the Yukawa couplings of the SM, that is
their masses, but we assume it is respected by the strong sector. The bounds will be placed
using events with large momentum transferred compared to the masses of the quarks that
can thus be neglected. Notice that, while dg is taken fully composite, we haven’t committed
yet to a particular choice of degree of compositeness of the ¢q;, and ugr. For a sizable fraction
of compositeness of the quarks other than dg, we will need to include also dim-6 four-fermion
operators involving them.

We study the angular distribution of dijets processes pp — jj at LHC, which allows to
probe the size of four-quark contact interaction [25],[26],[27],[28]. We will closely follow the
strategy put forward by [29] but using the analysis of [26].

The process is dominated by QCD interactions which may interfere with the higher-dimension
operators that are generated by the strong sector. Since we are after operators that grow
with energy, we look at the events with pretty high dijets invariant massﬂ in the range
[3.4TeV,4.0TeV]. In this range of energy, the SM gives

<0<uuw> ~ 0.04 (awﬂ)> ~0.02, <0<ggﬂg>> ~0.35,
o(uu — uu) ) g5, o(uu — uu) ) g5, o(uu — uu) ) g5,

(4.42)
so that the the dominant contributions in pp — jj come from uu,dd, du, gg initial states.
Initial states involving other quark families are suppressed as well. As example, we show in
Figl2| the MSTW2008NNLO PDFs for each quark (anti-quark) flavour at the factorization
scale 3.4 TeV. The contribution from gg does not receive contribution from the operators
of the strong sector that we want to bound, it is purely QCD and does not interfere at
tree-level with the BSM sector.

Processes with different quark families in final states such as uu — ss do not arise by four-
fermion interaction thanks to the flavour symmetry.
The dimension-6 operators involving only the relevant quarks from the first family are [29]@

O) = (iro"ur)(urour) (4.43)
6) = (qr6"qr)(qrouqr) (4.44)
0(6) (qro"qr)(urG uR) (4.45)
Ol = (716" T q1) (L7, T qL) (4.46)
QE,?} = (qLo" T qr) (R, T ur) (4.47)

where g7, = (ur,dy) and T4 are the generators of SU(3)¢
The relevant dimension-8 operators involving right-handed down-type quarks are those in

"The dijets invariant mass mj; is the characteristic energy of the partonic process, m;; = V'§ where § is
the partonic Mandelstam variable. These kinematical variables will be defined later.
8Contrary to [29], we construct the operators using Weyl spinors.
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1.0

xr

Fig. 2: Parton distribution functions f,, (x) plotted respect to the momentum fraction carried
by the parton ¢; at the factorization scale \/Q = 3.4TeV.

(4.16)+(4.19) that we write again
O = 8dr2dr, ddrtdgl
O = 0dp%dpl ddpsdr’
2 - Rq @Ry VURBURy
O = 0dr2dr, ddrldrS
O = ddr2dry 0drbdr?.

4.48
4.49
4.50

(
(
(
(4.51

)
)
)
)

In Figll] we show an example of the partonic processes we are interested in. All physical
quantities at partonic level are given in terms of the partonic Mandelstam variables which
are defined by the momenta carried by partons inside the protons

§= (ki + k2)2 = (ks + k4)2, (4.52)
t= (k1 —ks)* = (k2 — ka)? (4.53)
0= (k1 — kg)? = (ko — k3)°. (4.54)

In pp collisions, QCD contributes mainly with a t-channel gluon exchange, giving rise to a
differential cross-section which grows approximately as

dé 2
< ‘f) x 5 (4.55)
where £ = —3/2(1 — cos ), 6 being the scattering angle in the collision center of mass frame.

Since in general the center of mass frame of the parton-parton scattering is boosted respect
the collision one, it is convenient to describe the processes using kinematical variables which
transform fairly well under longitudinal boosts. For massless particles, one of these variables
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Fig. 3

is the rapidity y which is addictive under boosts along the beam axis. The definition of

1 E+p,
y = 21n <E pz> (4.56)

rapidity is

where the p, is the particle momentum component along the beam line. The rapidity is
used to define another variable y which is useful to study the angular distribution of dijets,
x = elm=ml = ¢2n"l where n1,2 are the pseudorapidities (or rapidity in the massless limit)
of the two leading jets and n* = (71 — 12)/2. The variable x can be expressed also in terms
of the scattering angle 6 as

_1—|—|cosé|~ 1

B 1—|cosf] 1—|cosf

x % (4.57)

Under this approximation the differential cross-section (4.55) behaves as

dé 2
(") o & (4.58)
dx QCD s

for fixed § which means that we always produce dijets with the same invariant mass. At
the hadronic level, this means also that the product of the PDFs is approximately fixed (up
to logarithmic scaling variations with the factorization scale) and then the cross-section is
approximately constant as well. We therefore expect a flat distribution for dé/dx in the
SM.

Taking into account now the contributions of higher-dimension operators, the distribution
of the partonic differential cross section becomes peaked for small values of y, see Fig. [
New physics signals should thus emerge as deviation in the distributions for small values of
X- In order to observe significant deviations, we will use an useful measurable variable F)
which is defined as the ratio of events

N(x < Xe, m%m <myj < m?}a”:)

N(x < Xmaz, M < myj; < m;}”)

F, = (4.59)
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012
Ldo " . SM + OF(A = 5TeV; gy = (47)?)
. SM

1 2 5 10 20 X

Fig. 4: Distribution of the normalized differential dijets cross-section respect to the variable
x at /s = 13TeV and with 3.4TeV < m;; < 4TeV. We show two distributions: Standard
Model and BSM. In the latter, we turned on only (958) in addition to the SM.

for some values of y. and Xyqae. The interval |y*| < 0.6 defines the region where the variable
is most sensitive to new physics effect and corresponds to the angular region x < x. = 3.32
whereas |y*| < 1.7 corresponds to X < Xmaz = 30 i.e. the region where QCD contribution
dominate. We will follow the same analysis approach of [26].

To obtain the total dijets cross-section, we need to weight each partonic process with the
parton density functions (PDF’s). The general expression of the total cross-section is

initial final

states states dx
o i) = > S e [ ar [ B VR i)+ (10 2)
11,92 f1,f2 ’

(4.60)

where & is the partonic cross-section computed analytically for different quark states, and
Jq; (:p,\/g) is the PDF corresponding to the quark ¢; carrying x fraction of the proton
momentum at the factorization scale v/3.

The variable F) can be also written in terms of the total dijets cross section (at hadronic-

level)
_ alpp = jjX=>® ‘ L)
X a(pp — j)X<B0 lmmin <, ; <mmas :
and then it can be computed analytically using the effective lagrangian
E;G)Q q q g( ) (8)
L= £SM + Z Y ] qz’qJ + Z 7 Q‘]u‘]] 17&4 O (462)

?j

where c,g?,)qj and w,(l?,)qj are respectively the Wilson coefficients of the dim-6 operators OS-S) and

QE?) in BEq. (4.43)), (4.44])), (4.45)), (4.46)), and (4.47)). We can calculate partonic and hadronic
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level cross sections with (4.62) and the QCD Lagrangian. The relevent BSM contributions
in the massless quarks limit are reported in the Appendix [C] Within this approach, the
partonic cross-section of a specific process can be written schematically as (see Appendix [C))

$3 52 8 Sovo (8 G 2(35
. § Sas(8) . as(8) . az(s) .
G=143 03,0 + G =020+ A 01,0+ ad oLt o0 S§ G_12 (4.63)

where the 0;; is the coefficients of the term that scales as §'ad which are obtained by

do
—_—. 4.64
[ (164

Notice that 6_; 2 comes purely from QCD contributions and represent the SM contribution

integrating over x

in isolation.

As we stated at the beginning of this section, we can neglect different initial states from
uu, dd, ud, gg. Within this approximation, and taking the expasion (4.63) into account, the
dijets cross-section can be written schematically as

.. 1 5 2 .
o(pp = ) = Y sy ik Gk + Tagmsgo (PP = 33) (4.65)
7,k
where
‘ﬁmﬂ = (P#Lunv szdnv PUd ) (466)

g 1 §Mag(8)™ ,
Pl Hm/o dT/T e foy (2, V) e (VD= 1 (6 ) (4.67)

Gk = (60 (uu — un), &;1(dd — dd), &, (ud — ud)). (4.68)

We have factored out the gluon initiated contribution because it does not interfere at leading
order with the 4-fermion operators. Using the expression and implementing the la-
grangian in MadGraph5, we can compute the coefficients Pg{ﬁk by fitting the formula
for the hadron-level process

qu sdk

o(¢j9k = 4jak) = J gy Omn(459h = Gak)- (4.69)

The values of Pg{ e and 0m,n depend on the dijets momentum cuts which translate on the
invariant mass cut mg']”” < my; < mi*. We will consider the energy window 3.4 TeV <
mj; < 4 TeV and we will take the data from [24]. All the simulations are performed fixing
both the factorization and the renormalization scale to 3.4 TeV and imposing the cuts as
described in [24], i.e. we require the pqﬂ of the leading and subleading jets greater than 440
GeV and 50 Gev respectively and |y*| < 1.7. The radius parameter is 0.4 and the PDF’s
selected are the NNPDF2.3 grid.

The parameters that we obtain in this way are reported in Table These values have

9The transverse momentum is the component perpendicular to the beam direction.
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P3o(pb™3) Pap(pb™2) Piolpb™t) Pia(pb™) Poa

uu - - 7.4E-4 - 1.4E-3
dd 1.4E-7 - 1.2E-4 8.2E-6 2.6E-4
du - - 3.0E-4 - 5.8E-4

Table 4.2: Partonic coefficients P, , computed using MadGraph and checked analytically
with the NNPDF2.3 set. The values which are not useful for our purposes are labelled with
the dash.

been checked with the analytic expression using the NNPDF2.3 partonic distribution
functions and imposing the cuts on the invariant mass which translates into the integration
intervals x € [, 1] and 7 € [m/ mm /s, mm‘”z/s]

The variable F can be decomposed as

x<332+ X<B32 pSM y x<3.32 ) x<30
F o= OBsm  _ tx Opsm /9SM (4.70)
X X<30+ x<30 1+ x<30 X<30 )
OBSM OBsMm/OSM

where F2M = o)X = 0.08. From the data reported in [24], we extract Fy =
0.084 + 0 0039 and therefore the 20 confidence level bound

0.076 < Fy, < 0.092. (4.71)

4.3.1 Bounds on composite quarks

Bounds on the Wilson coefficients (over a positive power of the BSM scale A) follow from
and the positivity constraints . Example of excluded regions obtained by turning
on just two Wilson coefficients are shown in Figlj|, Figlf] as illustration of the bounds.
These figures are obtained by drawing the contour plot of the F function for values at 1o
and 20 away from the central value. In these figures, the regions allowed experimentally are
colored in green (1o) and yellow (20). The dashed parts are those that do not respect the
positivity conditions , and are thus theoretically excluded. As we see, the positivity
conditions strongly improve the impact of the experimental bounds. This effect is
dramatic for the plot on the right-hand side in Figlh| where the positivity conditions resolve
a flat direction unbounded by the data at LHC.

Range of validity

Since we are working in an EFT, we should make sure that the bounds are obtained con-
sistently within its range of validity, namely F < A. To illustrate this general point, let us
focus for example on g;/A* and write the bound as

5P < A < g (4.72)
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where 657 are the values at 20 obtained by the plots taking the positivity constraints into
4
jj;maxs

information only for a coupling g1 such that 5?7) < gl/mﬁjymax,

account. In particular, 6”7 = 0. Since g1 /A* < g1/m our bounds add non-trivial
i.e. only for sufficiently
large values of g;

g1 > m?j,maa:(simp‘ (473)

This is why strongly coupled models are better suited for these type of analysis. One can
extend the region of validity to smaller values of couplings by working with a sliding energy
window for the cuts where m;; mqz is taken smaller, as advocated e.g. in [22].

Bounds on One-Coupling-One-Scale models

In a One-Coupling-One-Scale model where we also take fully composite dp quarks we have
gi = a;g? with a; = O(1) and g, can be taken as large as 47. We can thus translate the
experimental constraints on lower bound on the scale A

(4m)% [ g« \1/2
> 4 — .
e am

where 67 is taken in the direction g; J/A* = go/A* and we choosen for definiteness a; =
az = 1 (the scaling of the bound being obvious for other values). In this example the plot
on the left in Fig gives 657 ~ 0.013TeV~* which corresponds to

L\ 1/2
A>105 (%) TeV |. (4.75)

™

This bound can be consistently applied only for g, > 1.83, such that our EFT expansion
didn’t break down, see We group in Table [.3] the lower bounds on the composite scale
A depending on the coupling g,.

gx Amin ( TeV)

2 4.2
3 5.1
5 6.6
10 9.4
47 10.5

Table 4.3: Compositeness scale A depending on the value of the coupling g.. The value
g« = 4w corresponds to a maximally strongly coupled theory.

Bounds on the SUSY breaking scale

Let’s assume now that the dim-8 operators actually arise from a spontaneously broken
extended SUSY of the strong sector, the dr being identified with the Goldstini that interact



4.3. DIJETS ANALYSIS 63

=~ 0.15 ' o =~ 0.04
! T 10 ! T 10
g 2 g 2

| o | - a
\E/ 0.10 positivity 1 \E/ . positivity
"'< constraints "'< . §§§ § §§ § §§§ constraints
E )

0.00

-0.05

-0.10

-0.15 ]
-0.15 -0.10 -0.05 0.00 0.05 0.10 0.5 0.00 0.01 0.02 0.03 0.04

g1/t (Tev™?) g1/AY (Tev™?)

Fig. 7: Left: Allowed regions in the g;/A* — g4/A* plane at 1o (green) and 20 (yellow). The
shaded region is excluded by our positivity bounds. Right: zoom of the same regions where
the predictions from spontaneously broken SUSY are the red dots, for different values of the
decay constant F'.

with a strength set by the decay constant F' (see the Appendix [D]). We recall that [F] = 2,
since 2 is proportional to the SUSY breaking contribution to the vacuum energy.

We take in particular N = 9 and embed the dr quarks (with color and flavor indexes) in
the same multiplet of the R-symmetry

U(9)r D SU3) x SU3) x U(1), (4.76)

identifying the various subgroup factors with color, flavor and hypercharge. The defining
representation of SU(9) has one index ¢ that can take 3 - 3 values; it can be replaced by a
pair of indexes i = («, a) where a,a = 1,2, 3, realizing the embedding

9, =(3,3), (4.77)

as one can promptly check, see e.g. [30]. Within this embedding, the dimension-8 Goldstini

interactions
1 ) )
Zax0x1I0xix; (4.78)

can be identified with (’)ig) in . In fact, ¢ and j are pairs of indexes, i.e. i = («, a) and
j = (B8,b) where Greek and latin letters stand for color and flavor indexes respectively. In
practice, only one dim-8 operator is allowed by the non-linearly realized SUSY. Moreover,
its coefficient is precisely the (inverse squared) decay constant F' that we want to bound

.1
%Zﬁ, G=92=93=0, (4.79)
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The experimental bounds on g4/A* can be interpreted as lower bound on the SUSY decay
constant F, see Figl7]. The experimental bounds imply

g4 1 er 1
F:ﬁ§<5+p:>F2 (ﬁ—m. (4.80)

From the plot, (ﬁm = 0.026TeV~* and then

F > 6.2TeV? (4.81)

that is VF > 2.5TeV.



Conclusions

In this thesis we discussed the fundamental consistency conditions that Wilson coefficients
must respect in order for an EFT to admit a UV completion that is Lorentz invariant,
unitarity and crossing symmetric. These consistency conditions take the form of sum rules
and positivity constraints for the low-energy scattering amplitudes that are expressed in
terms of the Wilson coefficients. We extended significantly the results from earlier literature
by treating in full generality particles carrying arbitrary spin and arbitrary representations
of internal symmetry groups. We applied these positivity constraints to certain EFTs for
physics beyond of the SM, and probe them with data from the current run of the LHC.

Several of the results presented in this work are based on crossing symmetry of scattering
amplitudes. In chapter 2 we encapsulated these properties in a general crossing matrix for
particles with arbitrary spin, and that carry a (generically complex) representation r of an
internal symmetry group. We found that the crossing matrix X is an involutory matrix which
is also unitary with respect to the diagonal and positive definite metric made of the dimen-
sions of all the irreps exchanged in the elastic scattering where the initial state transforms
as r @ r (s-channel) or T ® r (u-channel). The crossing matrix takes an anti-diagonal form
and it is built out of two sub-matrices X; 2 which relate the s- and u-channel to each other.
For real representations these two matrices become equal and one recovers the results of [2]
that we have generalized to the case of arbitrary complex irreps. In Chapter 2, we have also
obtained rigorous positivity constraints that follow from the analyticity, crossing symmetry
and unitarity of the S-matrix. These principles allow us to obtain dispersion relations for the
scattering amplitudes: projecting those dispersion relations on the positive eigenspace of the
general crossing matrix we obtain positivity bounds that must be respected by the scatter-
ing amplitudes evaluated in the IR. In chapter 3 we extended these results to particles with
arbitrary spin, and discussed the physically relevant example of positivity constraints for
particles carrying fundamental and anti-fundamental representations of an internal SU(N)
symmetry group. These low-energy eigen-amplitudes must satisfy the following positivity
constraints

MA(2m?) + MG(2m?) >0, Mpg;(2m?) >0, M{(@2m?) + (N — 1)Mp4;(2m?) > 0.

where m is the mass of the particles and 1, A, S and Adj are the singlet, symmetric, anti-
symmetric and adjoint irreps either found in the decomposition of NN = A®S or NQN =

65
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1@ Adj of SU(N). In turn, these conditions translate on certain positivity conditions of
the Wilson coefficients of the EFT that are used to calculate such an amplitudes.

In chapter 4 we discussed an application of the positivity bounds to the scenario of fermion
compositeness. We showed that the positivity constraints have a tremendous impact on the
experimental bounds that one can put on dimension-8 four-fermion operators generated by a
strongly coupled sector that is responsible for the electroweak symmetry breaking. Indeed,
we first obtained the experimental bounds on dimension-8 four-quark interactions of the
schematic type O®) = T 9ythdy by studying the distributions of dijets at the LHC. Then
we imposed our theoretical positivity constraints that removed most of parameter space that
was otherwise experimentally viable. As illustration of these bounds, in Fig. [§] we show the
allowed parameter space at 1o and 20 C.L. for the Wilson coefficients associated to two
dim-8 operators involving the down-type quarks. The dashed darker region is theoretically
excluded by our positivity bounds based on crossing symmetry and unitarity, while the
lighter green or yellow regions are experimentally and theoretically allowed.

o
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(<)
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Fig. 8: Allowed region of parameter space in the g1 — g4 and g3 — g4 planes, where g;
are the Wilson coeflicients of four-dg dim-8 operators (9%8) = ad_Rgd_Rf ﬁngdR%, Ogg) =
Odrodry ddRbdrl, OF) = ddpodryddrbdrS, and OF = 9dgldpy 0drldg’. Darker
dashed regions are theoretically excluded by the positivity constraints. The red line in
the plot on the left hand side represents the prediction from a model of spontaneously bro-
ken extended-SUSY where its N/ = 9 Goldstini are identified with the three down-type
right-handed quarks, and the R-symmetry is the maximal Ugr(9) group. The dots on the

red line correspond to different choices of the SUSY decay constant F in units of TeV?2.

There could be dynamical reasons or a symmetry that explain why dim-8 four-fermion
operators are the leading operators of the EFT in the IR for this process, rather than the
familiar dim-6 four-fermion operators with no derivatives. We actually provided an example
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where it is a spontaneously broken extended N-SUSY of the strong sector that suppresses
indeed all dim-6 four-fermion operators for the A/ Goldstini that transform non linearly, with
a fermionic shift symmetry. Within this setup we identified the down-type right-handed
quarks with fully composite N' = 9 (pseudo-)Goldstini, and interpreted the experimental
constraints on the Wilson coefficients as lower bounds the SUSY decay constant

VF >25TeV  at 95% C.L.,

see Fig.[8 It would be very interesting to push this idea of SM fermions as pseudo-Goldstini
even further, and try to embed all quarks inside the same R-symmetry multiplet of pseudo-
Goldstini, alhtough probably giving up maximal R-symmetry.

In conclusion, not all EFTs are born equal: some live in the “swampland” i.e. in the space
of EFTs that do not admit sensible UV completions. H In this work we proved rigorously
certain necessary conditions that an EFT must satisfy not to live in such a swampland. They
take the form of positivity constraints for the scattering amplitudes in the IR, and hence for
the Wilson coeflicients of the EFTs. Should these positivity conditions be violated, the EFT
at hand would thus live in such a swampland as its UV completion does not have an unitary,
crossing symmetric, and analytic S-matrix. Finally, we showed with a concrete example that
these positivity constraints are relevant also phenomenologically for the searches of physics
beyond the SM that are done at the LHC.

0The concept of swampland in the space of EFTs was originally introduced in the context of string
theory and its landscape by Cumrun Vafa [32], with the weak gravity conjecture [33] being perhaps the most
concrete example of condition that an EFT with gravity and electric type of forces should satisfy.
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Appendix A

Analyticity and Causality

In this appendix we briefly review the relation between causality and the analytic structure
of the forward elastic amplitude Mr4_,r(s,t = 0) that was initiated in the classic works
[42] and [43]. For the sake of simplicity, we restrict to the case where particles 2 and 4 are
actually massless, myo = my4 = 0 as in ref. [I1]. The general case can be found in several
textbooks, e.g. [44] 45], 46], as well an in more specialized monographs [47], 48].

Let us use the LSZ reduction formula only for particles 2 and 4 which move in the
background of 1 and 3,

(b, palS — 1lp1, pa) = { [ e (Dxﬂ { [ dtyerines <Dy>] (oI TO)S()pr) (A1)

Since we are interested in the forward elastic scattering we go in kinematics p; — p3 (and
hence ps — py4 is enforced by momentum conservation). Using the following identity

To(y)o(x) =0(y° — 2°)[6(y), d(x)] + d(x)d(y) (A.2)

we can rewrite the amplitude as

(p1,p4|S — 1lp1,p2) = [i/d4$€_ip2'x (Dx)] [i/d4y€+ip4'y (Dy)] (A.3)
[0(y° — 2°)(1][¢(y), p(2)][1) + (p1]d(x)(y)lp1)] -

The last term without the retarded commutator does not actually contribute to the ampli-
tude for physical values of the momenta. Indeed, inserting a complete set of states in in
(A.3) and using the invariance under spacetime translations i.e. ¢(z) = e"%¢(0)e~F%, we
get

[ [ataee H [ty yﬂ (1]9(2)6(u)]p1) (A.4)
—(2m) s (p / NI —
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This expression is almost a total cross-section except that would require the non-physical
negative energy p to appear in the initial stateﬂ Actually, by crossing symmetry it is
proportional to the decay width of particle 1 — anything, which would be a violation of
our initial assumption that it was a stable asymptotic one-particle state. Therefore, for this
physical kinematics such a matrix elements must vanish. In turn, the scattering amplitude
for elastic forward scattering evaluated for physical momenta can be written in terms of an
integral over the forward lightcone alone

<p1,p4|S - ]l|p1,p2) _ [i/d4$€—ip2~a: (Dx):| |:,L~/d4y€+ip4~y (Dy):|
0(y" — 2°)(p1l[6(y), ¢(a)]|p1) - (A.5)

Using again invariance under translations and recalling the definition of the scattering am-
plitude M in (1.13) where a i(27)*5*(pa — p4) factor is removed, we get the actual expression
that we wish to analytically continue to complex momenta

M(s,t =0) = i/d“ye“’”'ymi {0(°)(p1llo(y), ¢(0)]|p1) } - (A.6)

By Lorentz invariance, it is a function of the Mandelstam variable s. As long as we are
concerned about the analytic properties of M, we can safely move the 6(y°) to the left of
the Dz—operator, the mismatch between the two expressions being only a polynomial in po,
hence analytic, because of the microcausality condition for [¢(y), #(0)]: its time derivatives
vanish at equal times, yg = 0, except at coincidence points y = 0 where a delta function
may occur. The Fourier transform of a differential operator acting on such a delta functions
returns the claimed analytic polynomial.

Microcausality and the presence of the step function imply that the integrand vanishes
outside the forward lightcone {2 > 0,y° > 0}. This allows us to analytically continue M
in the upper complex s-plane, assuming polynomially bounded correlation functions. One
simple way to see this is by working in the rest frame of particle 1, p; = (my,0)”. In this
frame s is just a linear combination of the energy of particle 2

s = 2mpy +mi, (A7)

so that analyticity with respect to p§ trivially implies the analytic structure with respect to
s. In this frame the correlation function inside is actually a function of |y|? and °
only, given that any rotation leaves p; invariant. Therefore, the integral over the angular
variables dSQy in spherical coordinates can be carried out explicitlyﬂ

[e'e) —+o00 0.0 :
Mis,t=0)~2e? [T aly? [ agpens (“ﬂg"p’) 0 D26(0), 60)Ipr)  (A)

!Moreover, for identical particles in the center of mass frame, it would require pg = 0 which corresponds
only to the vacuum state. The stability of the vacuum forbids such a process.

2The ~ symbol means that we are omitting the analytic polynomial contribution from the Fourier trans-
form of the delta functions that arise from the time derivatives in [J that hit the step function.
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where |p2| = pY because mg = 0, and we restricted the integration to y° > 0 thanks to the
step function of the retarded commutator. The analyticity in the upper complex pJ-plane
(hence upper s-plane) of M is now established because of the exponential damping that iP5y’
provides for Im p9 > 0, given that yo > 0 too in the integration region. Even for pJ — oo in
the complex upper plane the integral over |y| can be carried out. The would-be dangerous
terms from the sin function in have the following behavior Expi (pJyo £ |p2|ly|) =
Expip) (yo & |y|) which is integrable for ImpJ > 0 and yo > |y|, i.e. inside the forward
lightcone selected by the retarded commutator.

In practice, the integral representation provides an analytic extension of the amplitude
for Ims > 0, while the physical amplitude is recovered as the boundary value on the real
axis approached from above

Marporp(s,t =0) = Mrpprg(s +ie,t =0), § > Smin = (M1 +ma)?, (A9)

and € — 07 limit is always understood.

Assuming there exists an open interval on the real axis where the amplitude is real, meaning
M(s,t = 0) = M*(s*,t = 0) on such an interval, one can actually extend it as a real
function to the lower complex s-plane too. In fact, using the Schwarz reflection principle
the amplitude is analytically extended everywhere in the complex s-plane:

M(s",t = 0) = M*(s,t = 0), (A.10)

except for some discontinuities on the real axis that come from stable particles and branch-
cuts of multiparticle states. Crossing symmetry relates the discontinuities between the s- and
u-channel that are boundary value of the analytic function approached either from above or

below, see Eq. (1.41)) and (1.42). Remarkably, crossing symmetry, unitarity and the Schwarz

reflection principle are all consistent with each other as one can check re-running for Mf
the analysis that have presented above for M. In particular, the time-ordered product can
be replaced by the advanced commutator

To(y)p(z) = — 0(z" — y°)[o(y), o()] + d(y)d(2) (A.11)

which effectively allows one to extend M?,, in the lower complex plane, consistently with the
extension presented above in terms of the Schwarz reflection principle because of unitarity
(1.18).
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Appendix B

Dim-8 four-fermion operators

In this appendix, we want to show a sketch of the derivation of the most general dimension-8
operators involving a right-handed Weyl fermion field as those listed in Table [£.1]

B.1 Spinor notation

Since we will work with an big number of operators, it is convenient to define a notation to
make easier the lecture of this appendix. A generic fermion bilinear takes the form

I (B.1)

where I'4 is an arbitrary combination of gamma matrices which do not annihilate the oper-
ator. The choice of the gamma matrices basis will be performed in the next section. In the
following, we use the notation

PT4p = (T4) (B.2)
where the brackets stands for the fermions field attached to IT'4. In presence of more bilinears
involving different species of fermion field, we use a different kind of brackets. For instance,

OrAYxLpx = (I4) 8] - (B.3)
If some derivative acts on the fields, we write its Lorentz index on the top of the bracket.
For example,

_ 1 v p o
9T 40,09,XxT g0, x =(T4) [Tg ] . (B.4)

B.2 Chiral basis and Fierz identities

Since we assumed to work with massless fermions, the most convenient choice of the gamma
matrices basis is the chiral one which is defined as

1
{FA} ={R,L,~*L,A*R, X"}, {Ta} ={R,L,v,R,v.L, iZ}W}, (B.5)
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where . .

1+~ 11—~ 1
L= Y = —[yH Y B.

5 5 2[7,7], (B.6)

and we use the Weyl representation of the gamma matrices, i.e.

() () ®

where o# = (1,0%) and 6* = (1, —0") with 0! the Pauli matrices.

R=

The orthogonality property of the chiral basis is
Tr [DATP] = 265 (B.8)

and the completeness relation, written in terms of the spinor notation defined above, is [16]

1

()[]==5 Ta][1*) (B.9)

where the sum over A is understood and the minus is due to the anticommuting nature of
the fermionic fields. From this relation we obtain the chiral Fierz identites

(T4) [PP] = —iTr [TArcTPTp] (PP] 1) . (B.10)

Some useful relations follow from (B.10))

(Y R)[uR) = (" Rl[vuR) (B.11)
(V' R)[vR] = —% {(V“R] [ R) + (V' Rl[vuR) — " (v R][7AR) + ie"*7 (v, R] [%R)} .
(B.12)

The following relations will be useful

o = %(0”6” — oV5M) (B.13)

ot + oV ah = 29" (B.14)
1 2

Xlax's = -3¢ (x*) (B.15)

&,XTB (&“)Bﬁ (59)* DXe = —28“XTd8“XB (B.16)

(6")99(0) 55 = 2677 (B.17)

B.3 Lorentz structure for dimension-8 operators

Let us consider a massless right-handend Weyl spinor x. The dimension-8 operators we can
construct with only this fermion species involve two derivatives 0’s and four fields. We can
group these operators in three classes.
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e Class I) Operators involving the Levi-Civita tensor

g

p p
CL=e""(5") [6"] Cp=e"(5") [6"] (B.18)

o

v, (B.19)

Qi

—% —Qq

C3 = P (at)
Other arrangements of the derivatives can be neglected up to integration by parts.

e Class IT) Operators involving derivatives with same Lorentz indices (i.e. contracted

derivatives)
Ar=oxa" oy Ax = axtarxaxta,x (B.20)
Ag = 8XT6“XXT6M8X Ay = XT6“8X(?XT6MX (B.21)
As =xloroxxTe,0x  As = xTo"xox15,.0x (B.22)

Using the identity (B.17)), we can simplify this list

Ay = Az = Ag = Ag = 2(0x)X"(9x)x (B.23)
Ay = Al (B.24)
A5 = (xX1?’003). (B.25)

Integrating by parts, we end up with only one operator. We choose As.

e Type III) Derivatives with different Lorentz indices ( i.e. derivatives contracted with
I'4 and T'P). The possible operators for a massless fermion field are

v

01=@") [a" Oy=(") "] (B.26)

o
Ny
|
T
Qi
Qr
=

o
O3 =(a")[a" (B.27)
Integrating by parts (IBP) and using Fierz identities, we can reduce this sets of op-
erators. The calculus are tedious and not so illuminating. What we learn is that the
operators of the first class can be expressed in terms of the third class ones, and so we
can neglect C1, Cy, (5. Integrating by parts, we can neglect also 03,04 and O-

IBP

0, '8 _o, (B.28)
o, "2 —o, (B.29)
0, "2° _0,. (B.30)

Then, we end up with O;. Using the identity (B.16)), we can write O; = —2(3,x")xT (9 x)x.
Integrating by parts, As = 20; and then only one operators remains, that is O;.
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B.4 SU(N)-invariant operators

Now, we demand that x transforms under the fundamental representation of SU(N), i.e.
X = x® where a is a SU(N) fundamental index. We normalize the generators of the SU(N)
algebra as

Tr[TATP) = %MB. (B.31)

Expressions involving T4’s can be further simplified using the Fierz Identity for SU(N)

1
ZT cd -5 ( ddbc - Néab50d> . (B.32)

Now, a little remark is indlspensable. Let us consider for example the not Lorentz invariant
operator of the form

OpX " T30, X" X T 245, X" (B.33)

where I‘A can be 9;; or a generator of SU(N). Using the Fierz Identity (B.32), we can
express 1t as the linear combination

%8pra5u8¢,xbebc_r,,xa 2}\]6 XT 005 X" XT a,,x (B.34)
Then, in order to classify the dimension-8 four-fermion operators, each of them carrying an
SU(N¢) index, we can restrict ourselves to those where the color indexes are contracted in
the same bilinear or in different bilinears, because otherwise the operator which contains a
combination of T4’s can be simplified.
If the fields carry an additional SU(N)r index (for example a flavor index) the same argu-
ment holds. Indeed, let us consider

O oL G 36,0 XX TG 55, x4 (B.35)

The only relevant case to study is when the I'’s are the generators of the groups. Using the
Fierz Identity (B.32]) for both kinds of generators

1 1 1
Then we can write (B.35)) as
1 _ b_ 1 _ b_
1 (%x@aﬂax%x*gouxi —~ Nfapri%aax’&x%auxg (B.37)
1 _ b_
—Nfcapx*iauaox%x%auxa — Wﬁ X' JuaoXaXTﬁUuXﬁ’) (B.38)

Then, also in this case we can restrict ourselves to the cases with all possible SU(N)®SU(N)-
indices contracted with the deltas.

The procedure to derive the list of independent operators is the same as above. The inde-
pendent SU(N)-invariant operators involving the massless right-handed field x* are

O1 = ox' xy0x“x (B.39)
Oz = Ox T xTHOX X" (B.40)
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B.5 Implementing four-fermion operators in MadGraph

In this thesis we used MadGraph5 aMCNLO [18] to compute the partonic coefficients in
the table and to quantify the effects of higher-dimension operators (dim-6 and dim-8).
However, when identical particles are involved in the same vertex, MadGraphb does not
handle directly with four-fermion interactions since there is an ambiguity on deriving the
correct fermionic flow. The splitting of the vertex by means of an heavy auxiliary field is
necessary and here we give an example of how to generate dim-6 operators.

To reproduce the dim-6 operators in +, it is enough to use a spin-1 field which
couples with the current

JH(x) = c14q27"qr + c1adrY"dR + crutiry up. (B.41)

Notice that we want to reproduce also dim-6 operators for dp quarks.
Integrating an heavy field at tree-level means solving the equations of motion for this field
evaluating the lagrangian at zero momentum. Then, we get

1
L= §M3uxV”Vu +VHE], = VI =—Jr/MZ,, (B.42)
and the lagrangian becomes
1 1 - -
L=— JH Ty = = (@ . aipar + Gadry" drdryudr (B.43)
2M§ux K 2M3ua: ( 1q © 1 ©

+ cl uRY URUR Y UR + 201401401 YL dRY AR (B.44)

+ 2¢14c1 G LU RYUR + 2¢14C1ud RY* ARURVLUR) -
(B.45)

We have generated some of the desired operators and by matching the coefficients we identify

—C% d C(l)dd
q,a,u — q9,aa,uu B4
2, T A2 (B.46)
—C1(u,q)Cld Cgl) )d
u,q _ u,q
e T AP (B.47)
—C14¢Cl1u C(%L)
Mz AT (B.48)

aux

We can generate the remaining operators (those with the SU(N) generators) by adding a
spin-1 field transforming in the adjoint of SU(N). The lagrangian becomes

1
Ltot =L+ iMc?umVuAVf + J}?VX
where the currents are given by

JA

() = csg@ry" T qr + csadpy" T dg + csulipy T ug.
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Performing the same integration as before gives the same matching conditions. Note that,
using the Fierz identities both for spinors and SU(N) generators, we can write

_ _ 1., - _
2 dry*TAdpdpy* TAd g = gcgddmﬂdemﬂdR (B.49)
then, we can redefine

1
C%d + gcgd — C%d. (B.50)



Appendix C

Partonic BSM cross-sections

We give the list of the at partonic-level cross-sections due to higher-dimensional operators.
We recall that we assume the flavor symmetry Gp = U(3)q, X U(3)a, X U(3)y, together
with color SU(3)¢.

6(dd — dd)psyr  205(8)8 qq , @s(8) (T Laq . U pag dd I
dt  9A2fq AT H gt (Pt T?Bl MR =y v (C.1)
eI [t2Dfd 4 tuDdd 1 u2Dg’d} (C.2)

o(uu = uu)psm _ os(3) [ 5 uu_|_iSAuu <1_2_?)] + 1 [(t?—;{ﬁ)Cim—FCgu}

di A2 ot 952 9r A4 252
(C.3)

6(ud = ud)psyr as(8) [ ug . 02 4 1 wa U
- = oins Ayt — Ay + cd + —Cye (C.4)
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where
1
Add — cg?]) + gw((fqi) (C.5)
B{* = g1+ gs (C.6)
B3 = g3 + g4 (C.7)
dd _ 62 2 6 6 L (6?2
¢ = _Ct(zq) - gc((lq)wt(zq) - §wc(1q) (C.8)
1
Dt = 5 (3917 +291(g2 + 393 + ga) + 392 + 292(g3 + 394) + 393> + 29394 + 3g4%) (C.9)
1
Dyt = 3 (91° +291(3g2 + g3 + 3g4) + g2° + 292(3gs + ga) + g3° + 6g3ga + g4°)  (C.10)
2 2
uu 6 6 6 6
A = —2c£1q) — gwéq) — 20 §w1(w) (C.11)
Ay = w® (C.12)
uu 9 6) (6 6 6
cit = chq)cq(m) + wgq)wéu) (C.13)
wu _ 3602 L 9.(6),,(6) 1 L, (62 | 5.6)2 | 5.(6),6 L (6)2
C3" =3¢y +2c0wyy + 3%Wag + 3¢y + 2¢) Wy + 3 Wi (C.14)
Ay = 20{9) (C.15)
Ay = 2(6)° (C.16)
" 2 2 2
Ot = o+ Zu® (C.17)
Cpd = 6)(6) 4 gw(6)w(6) (C.18)



Appendix D

Extendend N-SUSY and effective
action for Goldstini

In this appendix we derive the effective action for AN/ Goldstini which emerge from a sponta-
neously broken N-SUSY, extending the original work of Akulov and Volkov [41] for ' = 1.
We do not investigate the details of the mechanism that breaks the symmetry, focusing
ourselves instead on the impact of such symmetry breaking in the IR. We will follow a
CCWZ-like construction, see e.g. [36] [37, [38] [39] 40], although we believe to have improved
in clarity earlier derivations. The CCWZ formalism is also better suited than alternative
approaches, such as the constraint superfield formalism [34],[35] for what concerns the cou-
pling to matter and gauge fields in an extended SUSY.

In addition to the Poincaré generators, the A-SUSY algebra includes N spinor supercharges.
The relevant part of this algebra is

[Pu, Qi) = [P, QL1 =0 (D.1)

(@, @3} = (0L, Q) } =0 D.2)

{Qh.Qf )} = 20" P5) (D.3)

where 7,5 = 1,...,N. These (anti-)commutation relations are invariant under a U(N)g

symmetry which transforms the Q?, among themselves and we assume thus such symmetry.
The elements of U(N)g = SU(N)g x U(1)g act by means of the N? generators R* which
transform the supercharges as

[R*.QL] = (U".Q), [R.QL]I=—U""'QL,, a=1.N" (D.4)

where N2 — 1 matrices are the generators of SU(N)g and the last one is just a phase due
to U (1) R-
The symmetry breaking pattern that we assume is

SUSY and maximal R-symmetry — U(N)r X Poincaré. (D.5)
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Thus, let us consider the generic group element made of unbroken and broken generators

U = iX(@)Q+ix(@)fQf iz, PH (D.6)

where the adopted notation is xQ) = X?Qia and QT = XyQZTd. From we see that
the dimension of the supercharges is [@)] = 1/2 and the fields x(z) are not canonically
normalized, i.e. [x] = —1/2.

We want to derive the Goldstino transformation in the particular case of Poincaré (unbroken)
and broken transformations. To this purpose, we will use the fact that, in general, the
commutators among broken (7%) and unbroken generators (T) can be written schematically

as
[T“,Tb} — ifabpe (D.7)
[T“,Tﬂ — jfobpe (D.8)
[T@,Tﬂ = jfabpe 4 jpabpe (D.9)

where fc“b are the structure constants of the algebra. In this way, we can always write the
action of a general transformation g on U as

gU = U’ - (unbroken group element). (D.10)

From , we see that we can derive the Goldstino transformation from U’.
Let us begin with an unbroken transformation, for example a Lorentz transformation L. It
acts as

LU(z,x(x)) = LeX@Qtix(@)'Q [ ~17 cie!Pu ) (D.11)

and this transformation defines U’(2/, x'(2’)) where

ot — P = AP (D.12)
X (@) — X (@) = X (ala) A" = X (ATe) Ay (D.13)
xh(@) — @) = X)) A =X e) A (D.14)

because the supercharges QQ,QL and P, carry irreducible representations of the Lorentz

group which are (3,0) = A, (0, 2) = A* and (3, 3) = A respectively, i.e.

LP,L =P,  LQ.L7'=R,°Q,,  LQifr! =3¢ BQ? (D.15)
where A = A1, Analogously, under space-time translations 7' = e we get
TU = U = W0+ )1 i (D16)

where
P =t rat, (@) = xla(@) = x(@ —a). (D.17)
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We now want to derive how a general SUSY transformation generated by the supercharges
acts on the Goldstini. We write such transformation as

ge = 6@ (D.18)

where § is an anticommuting global variable. Acting with g¢ on U, we get the non-linear
transformation of the Goldstini under a general broken transformation

9eU (2, x(z)) = e4QHEQT cix(x)Qtix(2) QT i, P (D.19)
_ XQHIEQ X QT+iETQT -3 [61QT XQ] -3 [€Q Q] iz PH (D.20)
— X AOQ+I(XT+ENQT +xo €T Py —EotxT Pyt P (D.21)
= X (#)Q+ix" T (") Q1 +ia' * Py (D.22)

where we used the BHC formul eideiB = (iA+iB—3[AB] an4 [§TQT,XQ] = —2XO'M§TPN
(see SUSY algebra (D.3)). From (D.22)), we get the non-linear SUSY representation on y(z)

o (€ x(@) = (o x (@) = x(@)o"¢T)
z— 't =zt + o (€ x(x))
x(@) = X (@) = x(a(@) +€
@) = @) = X @) + ¢

One can invert (D.24]) by expanding in £
ot =2’ P — (€ x () + ... (D.27)
from which we obtain the variation of the field y at a given point

x(@) = X' (x)

x(@'(z)) + & = x(z) + & = v"(&, x)Fpux (@) + ... (D.28)
xXH(a) = XT(z) =1

X! (@) + €8 = M (2) + € = (€, x (@) Fux (@) + .. (D.29)

For matter fields ®(x), i.e matter (non-gauge) fields that aren’t Goldstini, a representation
is obtained simply by omitting the non-linear shift, that is

O(z) = ' (z) = (2 () = ®(z) — v" (&, x(2))0,P(x) + ... (D.30)

In order to construct an effective action for Goldstini, we want to build all the objects
which transform covariantly under SUSY transformations. First of all, let us focus on the
derivative terms. We would like derivative-like terms transforming covariantly, that is

Vax(z) = (Vax)'(z) = Vax(2'(2)). (D.31)

'Notice that all higher commutators vanish because of the SUSY algebra (D.1)), (D.2) and (D.3) and P,
commutes with everybody.
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for some operator V,. It is straightforward to see that the standard derivative do not
transform like (D.31). At a given point
ax/l/

ux(x) — 9ux'(x) = Fux(2(2)) = (X)) (2 (2)) B WX (@' () = Oy x (@' (2)) 0" (€, Oux () + ...
(D.32)

In order to obtain objects transforming covariantely, it is useful to introduce the Maurer-
Cartan 1-form built with the group element U

(UdU)(z) = U Y(w, x(2))dU (z, x(z)) d = dz"0, = dz'"d),. (D.33)

Notice that the Maurer-Cartan 1-form is invariant under SUSY transformations. Since the
¢ spinor in (D.18)) is coordinate-independent

(U™dU)(z) — (UTdUY (2') = U, x(2) " g; ' da"0y (9¢U (2, x(x))) = (U™ dU)(x).

D.34
We can write (U~'dU) in terms of the SUSY generators ( )
(ULdU)(z) = ida"E,° (Pa + Vax Q + Vax! QT) (D.35)

where for future convenience we have factored out the coefficient E,“ of the momentum
E,"=46,"+ iaMXO'aXT — ixaaauXT = EH“Jr , (D.36)
Vax = (E71)"0ux (D.37)
Vo' = (B 0,0 (D.38)

We define the inverse of Eua which satisfies
(E Y =E", EMES=6., E\ E) =04, (D.39)

The transformation of the Maurer-Cartan form at a given point

ax/lj

(UT10,U)(z) = (U10,U) () = 5o (U 9,U) (2 () (D.40)
suggests that £,” and its inverse transform with the Jacobian (anti-Jacobian)
B, B, (z) = 2% g oo D.41
(@) = B (@) = OB, @ (x) (D.41)
/ Bx” v/
B, @) = By (r) = 5B (@), (D.42)
It is clear now that V,x transforms covariantly
Vax(@) = (Vax)' () = B, *(2)0uX (@) (D.43)
oxt .,
= 5 P’ (@' (@) 9ux(a'(z)) (D.44)
Ozt ox'P ., ;o
B (@ (1) (' () (D.45)

= Vax(2'(z)). (D.46)
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We can now render covariant the derivatives of any fields by acting
ViV ¥(x) = E;'0, (E;0,Y(x)). (D.A47)
There is another tensor built out of the Goldstini,
F"(z) = B, (@) E.* (x) (9,B,"(z) — 0,E," (&) (D.48)

which transforms covariantly

Fy.(z) = Fy, (' () (D.49)

because the term 922’7 /dxH Oz E7 cancels out in the difference p <+ v. Moreover, it is easy
to see that
[V, Vo] U(x) = —F,, V. V(). (D.50)

Gauge fields A, associated to local internal symmetry groups behave just as the ordinary
derivatives (they are 1-forms) and should thus be compensated by Goldstino insertions as
well
Ao =EA, (D.51)
so that gauge covariant derivatives
D, =V, —igh, (D.52)

transform covariantly under the SUSY and gauge transformations. The gauge field strength
is defined analogously by compensating the two lorentz indexes with the Vielbien E,".
Now we have all the useful object to construct the effective lagrangian. We want an invariant
measure in the action. Thus let’s define £(x) = det E,,“(x). We have

E(x) = &E(z) = \%Z/\E(x’(x)) (D.53)
and therefore the invariant measure we were looking for is
d*z€(z) — d%]%ﬁg(a}'(:p)) = d*2'E(2)) (D.54)
that we use to build actiond?
Six, ®] = /d4x5(x)£(vax(ﬂf),cl>(x),Vaq)(x),FbC“(x),...) (D.55)

where the ellipses denote other possible covariant object we can build. For our purposes,
the Goldstini and matter fields are enough. The actions (D.55)) are invariant under the
transformations of the field at a given point

Slx, ®] — S/, ®'] = S|x, ¥]. (D.56)

2To avoid clutter of notation we are showing only neutral matter fields ®. Including charged fields
and gauge fields is straightforwardly done by promoting the V, — D, and by adding the fields strengths
EMEY (0uA, — 0LAL).
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because

SI, @) = / € () C((Vay) (2), @ (2), (VuB) (), Fl, *(2)....) (D.57)

/d4 \7\5( "(2)L(Vax(2'(2)), (2" (2)), Va@(2' (2)), [ " (2"(2)), - . )
(D.58)

= /d4x’5(x’)£(vax(x/), d(2'), Vo, @(2'), F, *(2),...) = S[x, ?]. (D.59)

We can build the action by expanding the lagrangian with respect to the fields and their
derivatives. The first term may be just a constant, £L = —F? + ... where [F] = 2. The sign
is determined by the correct sign of the Goldstino kinetic term which arises from &(z)

&= 1+(i8MXU“XT + h.c.)+% [(i@HXU“xT + h.c.>2 - <Z'8HXO'QX + h.c.) (i@axa’”‘xT + h.c.)} +

(D.60)
and it generates a positive vacuum energy E,q. = F2 > 0, as it must be for a spontaneously
broken SUSY. Notice that v/F has the physical meaning of the SUSY breaking scale. The
sign and the coefficient of 4-fermion interactions are fixed in terms of F only

—F28(z) - —2F? (XTa“aHX) (xTc?“@ax) + (vanish on-shell or total der.) (D.61)

If we canonically normalize the Goldstino fields,y — x/(v/2F), the dimension-8 operator
(D.61) enters in the effective lagrangian as

o (1) () oo

The overall square-two factor is due to the presence of the hermitian conjugate of the kinetic
term, since the latter is hermitian up to integration by parts.

Integrating by parts we can rewrite (D.62)) as

o (V73) (a'7) = gy (o) (e o) 00
- FQXha X“UW'B 7" OuXiaX; s (D.64)

F12Xa X80 x5 (D.65)

= zax" oM oxix; (D.66)

where we used (B.16). When we choose N' = 1, this operator reduces to the quartic term
that appears in the Goldstino lagrangian in [34]

1
tovt vy — _ L it
szc?xaxx 4F23( )5(Xx)— XX 00 - (D.67)
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