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Introduction

The goal of fundamental physics is to describe and understand physical phenomena in terms

of a small and coherent set of principles which emerge by the interplay of experimental

validation and theoretical interpretation. The Standard Model (SM) of particle physics is

a quantum �eld theory that provides such a coherent framework encompassing three of the

four known fundamental interactions. i.e. the electromagnetic, weak and strong forces. It

is a gauge theory based on the group SU(3)C × SU(2)W × U(1)Y under which the matter

�elds (leptons and the quarks) are charged. The SM, starting with the discovery of the

gauge bosons Z/W± in 1983, passing through the years of LEP, Tevatron and the �avor

factories, and �nally getting to the present days of the Large Hadron Collider (LHC), has

been repeatedly con�rmed experimentally. Its most recent triumphs have perhaps been the

discovery of the long sought Higgs boson in 2012, and the direct measurements of (some of)

its couplings, in quite good agreement with the predictions of the SM. The null results, so

far, of the search for physics beyond the SM may suggest that the SM is in fact the adequate

description of nature in a range of energy that extends beyond the Fermi scale. As a matter

of fact, the SM seems a quite good and simple description of the dynamics at the TeV scale,

too.

Despite such a tremendous experimental success and its internal theoretical consistency,

there are reasons of discontent with the renormalizable SM. First of all, the SM is certainly

not the ultimate theory and it should be regarded instead as an E�ective Field Theory

(EFT) with a possibly large, yet �nite, cuto�. The Planck mass provides, at very last,

such a ultimate cuto�. Indeed, gravitational interactions introduce irrelevant deformations,

e.g. the interactions from the Einstein-Hilbert term, which grow with energy and eventually

become as important as the other forces at the Planck scale where an ultraviolet (UV) com-

pletion, such as string theory, must kick-in. Analogously, non-vanishing neutrino masses can

be accommodated by deforming the SM with a dimension-5 operator, again an irrelevant

operator, which introduces a new scale to be interpreted e.g. as the mass of heavy right-

handed neutrinos. Moreover, most of the matter in the universe, Dark Matter, is actually

not accounted by the particles of the SM. Other puzzles of the SM, such as baryogenesis,

the origin of �avor, and the strong CP problem, point all toward the existence of physics

beyond the SM. Furthermore, besides the irrelevant deformations, any UV threshold gen-

erates generically a dangerous relevant operator, the Higgs mass squared term |H|2, which
is quadratically sensitivity to those UV scales. This suggests, barring �ne-tuning of the
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parameters of the underlying UV completion, that the cuto� of the SM should be not too

far from the TeV scale.

Assuming this �new physics� is separated by a mass gap with respect to the Fermi scale, say

above the reach of the LHC, one can (and should) adopt the methods of EFTs in order to

study the dynamics in the infrared (IR), i.e. below the cuto� Λ. Within this approach, the

leading e�ects in the IR are captured by an in�nite towers of higher dimensional operators

LEFT =
∑ ci

ΛdimOi−4
Oi (0.1)

where the Wilson coe�cient ci parametrize the impact of new physics on the low-energy

observables. The higher dimOi the more irrelevant the operator becomes at low energy

E � Λ: only a �nite number of operators is needed for any �xed accuracy, making the

EFT predictive. For example, the contribution from a contact term ci to a 2→ 2 scattering

amplitude scales as ∼ ci (E/Λ)dimOi−4 and can thus be discarded at su�ciently low-energy,

for a given accuracy. Higher dimensional operators Oj with dimOj > dimOi that contribute
to the same observables can be discarded as well, (unless ci � cj e.g. because of a symmetry).

The paradigm of EFTs is very e�cient as it retains only the relevant degrees of freedom at

low-energy, capturing in a uni�ed and simple way several UV completions at once.

In EFTs symmetries play a fundamental role because they are respected along the renormal-

ization group (RG) �ow from the UV to the IR. In other words, a (possibly approximate)

symmetry of the UV is as well a (possibly approximate) symmetry of the IR described by

the EFT. Symmetries can kill, or suppress by spurions insertions, the Wilson coe�cients as-

sociated with operators that carry non-trivial representations of the symmetry group. Vice

versa, operators which are neutral under the symmetries are expected to have sizable coef-

�cients in the IR, as being generated along the RG �ow.

But besides symmetries, the Wilson coe�cients are constrained by other fundamental re-

quirements. Indeed, the UV theory is required to be local, causal and unitary. Those

conditions imply analyticity, crossing symmetry and unitarity of the scattering matrix. In

turn, these UV properties survive in the IR in terms of dispersion relations that provide

positivity constraints for certain Wilson coe�cients of the EFT. Consider for example the

EFT expressed by a Lagrangian density L = 1/2(∂π)2 + c/Λ4(∂π)4 + ... for a Goldstone

boson π arising from a spontaneously broken U(1). While any value of the Wilson coe�cient

c is consistent with the Goldstone shift symmetry π → π + ε, only c ≥ 0 is actually gener-

ated by unitarity UV completions. Indeed, by means of analyticity, unitarity, and crossing

symmetry of the S-matrix, the forward scattering amplitudeM(s) reads [1]

M′′(0) =
4

π

∫ +∞

0
ds
σtot(s)

s3
(0.2)

where each ′-symbol represents a derivative with respect to s. This relation provides an

IR-UV connection since the left-hand side (l.h.s) is evaluated in the deep IR, s = t = 0,
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where the EFT matches the result of the whole theory by construction, i.e. M′′(0) =

M′′
∣∣
EFT

(0) ∝ c. On the right-hand side (r.h.s.) the integral of the total cross-section is

evaluated all the way up to the UV, where the EFT is certainly no longer valid, and one

should use there only the UV theory. But in fact, one does not need to know the UV theory

nor calculate the integral to determine its sign: σtot(s) ≥ 0 in any unitary theory, implying

the claimed result:

M′′(0) ≥ 0 (0.3)

hence c ≥ 0. Besides, the inequality is saturated only for the free theory where the total

cross-section is vanishing: there is thus no interacting unitary UV theory that produces

c ≤ 0.

These kind of positivity bounds on scattering amplitudes and Wilson coe�cients have been

recently extended to general EFTs involving scalar particles carrying real representations of

an arbitrary symmetry group1 [2], with the applications being mostly focused on composite

Higgs models and WW -scattering extending earlier results, see e.g. [3, 4, 5].

In this thesis, we extend the positivity constraints even further by including spin-1/2 parti-

cles along the lines of [6], but allowing arbitrary representations, complex or not, for arbitrary

groups. This extension allows us to apply the positivity constraints to fermions of the SM.

For example, we use positivity constraints to place bound on the Wilson coe�cients asso-

ciated to certain 4-fermion interactions that are generated within the paradigm of fermion

partial compositeness that arises in composite Higgs models2.

More speci�cally, we extend the action of crossing symmetry to arbitrary complex represen-

tations by studying the general structure of the crossing matrices whenever the symmetry

group is non-abelian. We derive the optimal positivity bounds for the eigenamplitudes 3

and apply them to various examples. We discuss a concrete application for physics be-

yond the SM using data from the LHC combined with our positivities. In particular, we

study the intriguing idea that (some of) the SM fermions are composite pseudo-Goldstini

that emerge from an enlarged supersymmetry (SUSY) with N > 1 that is fully broken

spontaneously by some strong dynamics [9]. The pseudo-Goldstini enjoy a fermionic shift

symmetry that makes them light and select only derivative interactions, in full analogy with

ordinary Goldstone bosons. In turn, the lowest dimension 4-fermion operators respecting

the fermionic shift symmetry have dim-8 because must contain two derivatives, i.e. they are

of the schematic form χ† 2∂2χ2. These operators produce 2 → 2 amplitudes that scale as

O(s2), so that the associated Wilson coe�cients must respect our positivity bounds. Part

of the �avor and gauge groups are identi�ed with the SU(N) factors contained inside the

1Hereafter we refer to particles transforming under a real (complex) representation of a symmetry as real

(complex) particles.
2For a review of composite Higgs models and partial compositeness see e.g. [7, 8].
3Eigen-amplitudes are nothing but scattering amplitudes in the basis where the S-matrix is diagonal with

respect to the conserved quantum numbers. A familiar example is provided by the SU(2) isospin in ππ

scattering where the amplitudes decompose, according to 3⊗ 3 = 1⊕ 3⊕ 5, in eigen-amplitudesMI=1,3,5

associated with isospin-0 (the singlet channel), isospin-1 (the triplet) and isospin-2 (the quintuplet).
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U(N )R R-symmetry that acts linearly on the pseudo-Goldstini. Weakly gauging the SM

group and turning-on the Yukawa couplings represents just a small explicit breaking of the

non-linearly realized SUSY, again in full analogy with composite Higgs models where the

Higgs shift symmetry is also approximate, being broken by gauge and Yukawa interactions.

For concreteness, we apply the positivity bounds to the scenario where the three down-type

right-handed quarks dR = (dR, sR, bR) of the SM are fully composite pseudo-Goldstini from

N = 9 SUSY. 4 They transform under R-symmetry as a 9−1/3 of U(9)R ∼ SU(9)R×U(1)R
which contains U(1)Y × SU(3)C × SU(3)dR as subgroup under which the embedding reads

9−1/3 = (3,3)−1/3. One the SU(3) factors is identi�ed with SU(3)C while the other with

the �avor SU(3)dR that rotates the three down-quarks. We picked the down-type quarks

just as an illustration of the general idea, the particular choice being motivated by the small

bottom Yukawa, yb � 1, which thus represents a very small breaking e�ect of the fermionic

shift symmetry. While other choices are certainly possible, including the embedding of more

types of quarks or leptons in the same Goldstino multiplet, the details of these extensions

are left to future work.

By studying the dijets angular distributions measured at the LHC in run-II at
√
s = 13 TeV,

we show that the SUSY decay constant F has to be large enough

√
F ≥ 2.5TeV at 95% C.L. (0.4)

in order to make the e�ect of the derivative 4-fermion interactions compatible with present

data. This corresponds roughly to a cuto� Λ & 9 TeV (g∗/4π)1/2 (for g∗ & 3) where g∗ = 4π

is the typical size for the resonance couplings in a maximally strongly coupled model, ac-

cording to the SUSY NDA [10].

The thesis is organized as follow. In chapter 1 we recall how positivity bounds are derived

using analyticity, crossing symmetry and unitarity for scattering amplitudes of a single �avor

real scalar particle. In chapter 2 and 3 we extend the results to several species including com-

plex representations and spin-1/2 particles. We present as well explicit examples based on

scattering amplitudes among fundamental and anti-fundamental representations of SU(N).

In chapter 4 we discuss the pseudo-Goldstini and put bounds on dim-8 four-fermion oper-

ators with two derivatives, using the LHC data. Four appendices with technical but useful

material are also included.

4We recall that N > 4 generates no pathology for a non-linearly realized extended SUSY [9]. Indeed,

there are no massless higher-spin superpartners, the supermultiplets being incomplete in a spontaneously

broken SUSY. Equivalently, while supercurrents are well de�ned, the supercharges do not actually exist as

raising/lowering operators that move from one-particle state to another one-particle state of (one of) its

superpartners, when SUSY is spontaneously broken. The would-be superpartners are actually multi-particle

states obtained by including Goldstino insertions that in fact raise/lower the spin [34]. Should SUSY be

linearly restored at higher energy, the mass splittings in the supermultiplets would still be non-zero, although

their e�ect on hard scattering processes above the cuto� would become smaller as the energy is increased.



Chapter 1

Positivity for scalars

In this chapter we recall how unitarity, crossing symmetry and analyticity of the S-matrix

imply rigorous positivity constraints on scattering amplitudes for chargless spin-0 particles.

These results represent the simplest examples of amplitudes' positivity that have been dis-

cussed in [1], [2] and references therein. Those results are extended to full generality in the

next chapters.

1.1 The Unitary S-matrix

One of the central themes of quantum �eld theory is the study of the S-matrix, i.e. the

amplitudes probabilities

Sβα = 〈Ψout
β |Ψin

α 〉 (1.1)

for the transitions between the states |Ψin
α 〉 and |Ψout

β 〉 whose particle content, labelled by

the greek subscripts α and β, is de�ned in the far past (at t → −∞) and the far future

(t→ +∞), respectively1. Without interactions, |Ψin〉 and |Ψout〉 would be the same implying
Sβα = δβα. The rate for interactions and the di�erential cross-sections that are measured

at colliders are thus proportional to |Sβα − δβα|2.
In the following we work with orthogonal states

〈Ψβ|Ψα〉 = Nαδ(β − α) (1.2)

where Nα is a normalization factor, and δ(β−α) stands for products of delta functions and

Kronecker deltas summed over all possible permutations according to the spin-statistics. We

1Note that we are working in the Heisenberg picture and the |Ψin(out)

α(β) 〉 do not represent the asymptotic

limits of time-varying states. In this picture, it is in fact the time-dependence of the self-adjoint operators

associated with the observables that produce time-varying expectation values. The asymptotic values of the

expectations of a complete set of commuting observables, such as the set of 4-momumtum, the spins, the

conserved quantum numbers,. . . de�ne the label α = (p1, σ1, q1; p2, σ2, q2; . . .) used for the in and out states

|Ψin(out)
α 〉.

9
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also adopt the relativistic normalization where one-particle states carry a
√
N =

√
2Ep(2π)3

factor

〈pα, σα|kβ, σβ〉 = δσασβ (2π)32Epδ
(3)(p− k) , (1.3)

while multi-particle states carry products of those. With this choice, the scalar products are

Lorentz invariant 2. The sum over the states is represented by∫
dα =

∑
σ1n1,σ2n2,...

∫
d3p1d

3p2 . . . (1.4)

(but sometimes omitting the integral symbol over repeated indexes). For example, the

completeness relation for states normalized as in (1.2) reads

1 =

∫
dα

Nα
|Ψα〉 〈Ψα| . (1.5)

It is often very convenient to think of the scattering amplitudes as actual matrix elements

for an operator S sandwiched between free particle states |Φα〉

Sαβ = 〈Φα|S|Φβ〉 (1.6)

that have the same spectrum (that is the collection of possible {α}) and normalization

H0|Φα〉 = Eα|Φα〉 , 〈Φα|Φβ〉 = Nαδ(α− β) . (1.7)

of the initial and �nal states |Ψin,out〉, for a suitable choice of the free hamiltonian H0.

Assuming that at t = ±∞ interactions are negligible, the in and out states are basically

de�ned as the eigenvectors of the full Hamiltonian H,

H|Ψin(out)
α 〉 = Eα(β)|Ψin(out)

α 〉 (1.8)

with initial(�nal) conditions given by the |Φα〉, meaning∫
dαe−iEαtg(α)|Ψin,out

α 〉 −→
∫
dαe−iEαtg(α)|Φα〉 (1.9)

as t → −∞ or t → +∞, respectively. As this holds for any wave-packet g(α), one can

formally write

|Ψin,out
α 〉 = Ω(∓∞)|Φα〉 , Ω(t) ≡ eiHte−iH0t . (1.10)

It follows that the scattering matrix (1.1) can be expressed in terms of actual �matrix

elements� between free-particle states

Sβα = 〈Ψout
β |Ψin

α 〉 = 〈Φβ|Ω(+∞)†Ω(−∞)|Φα〉 ≡ 〈Φβ|S|Φα〉 , (1.11)

for the S-matrix operator formally de�ned by

S = Ω(+∞)†Ω(−∞) . (1.12)

2We work in the mostly minus signature of the Lorentz metric.
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Since for free theories S = 1, it is actually convenient to de�ne a scattering amplitude

operatorM

S = 1+ (2π)4δ(4)

(∑
i

pi

)
iM (1.13)

where the trivial evolution is removed.

1.1.1 Unitarity and the optical theorem

Crucially enough, the S-matrix is unitary

S†S = 1 , SS† = 1 (1.14)

as one can directly check by means of the completeness relation3 (1.5), i.e.

〈Φα|S†S|Φβ〉 =

∫
dγ

Nγ
S∗γαSγβ =

∫
dγ

Nγ
〈Ψin

α |Ψout
γ 〉〈Ψout

γ |Ψin
β 〉 = Nαδ(α− β) = 〈Φα|1|Φβ〉

(1.15)

and

〈Φα|SS†|Φβ〉 =

∫
dγ

Nγ
SαγS

∗
βγ =

∫
dγ

Nγ
〈Ψout

α |Ψin
γ 〉〈Ψin

γ |Ψout
β 〉 = Nαδ(α− β) = 〈Φα|1|Φβ〉

(1.16)

for any |Φα〉 and |Φβ〉.
Unitarity of the S-matrix has important consequences on the scattering amplitudes, such as

the optical theorem which gives a non-perturbative relation between the imaginary part of

the amplitudes and the total cross-sections. Following e.g. [11, 12] we de�ne the T matrix

S = 1+ iT , 〈Φβ|T |Φα〉 = (2π)4δ4(pα − pβ)Mβα (1.17)

and using (1.14) we get

i(T † − T ) = T †T . (1.18)

The matrix elements of the r.h.s. reads

〈Φβ|i(T † − T )|Φα〉 = i 〈Φα|T |Φβ〉∗ − i 〈Φβ|T |Φα〉 (1.19)

= i(2π)4δ4(pα − pβ)(M∗αβ −Mβα). (1.20)

while the r.h.s. can be written as

〈Φβ|T †T |Φα〉 =

∫
dγ

Nγ
〈Φβ|T †|Φγ〉 〈Φγ |T |Φα〉 (1.21)

=

∫
dγ

Nγ
(2π)4δ4(pβ − pγ)(2π)4δ4(pα − pγ)M∗γβMγα. (1.22)

3Trivially, the same completeness relation holds for the free �elds |Φα〉.
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having inserted a complet set of states. Therefore, we derived the generalized optical theorem

Mβα −M∗αβ = i

∫
dγ

Nγ
(2π)4δ4(pα − pγ)M∗γβMγα. (1.23)

Whenever the initial and �nal states are equals, that is α = β (the so-called elastic forward

scattering), we get

2ImMαα =

∫
dγ

Nγ
(2π)4δ4(pα − pγ)|Mγα|2, (1.24)

that is the imaginary part of the forward elastic scattering is a sum (integral) of squared

matrix elements for the transition amplitudes α→ γ for any γ that is kinematically open.

The most important consequence of this equation that we use in the following is the positivity

of the r.h.s. that enforces the same for the l.h.s.

ImMαα ≥ 0 . (1.25)

Notice that only the free theory, where none of the transitions in allowed, may saturate this

inequality: in any interacting theory ImMαα > 0.

We can actually say more about the r.h.s. of (1.24). Recalling the expression for the total

cross-section of the transition α → any in the center of mass frame for an initial state α

containing just two particles,

σ(2→ anything) =
1

4Ecm|pi|

∫
dγ

Nγ
(2π)4δ4(pα − pγ)|Mγα|2 , (1.26)

we see that (1.24) implies

ImM2→2(s)
∣∣
elastic forward

=
√

(s−m2
1 −m2

2)2 − 4m2
1m

2
2 · σ

tot
2→anything(s) . (1.27)

The mi are the masses of the initial particles, and σ
tot
α→anything(s) is the total cross section for

α into any �nal state that is kinematically open. The positivity of the imaginary part of the

elastic forward scattering can be thus understood as the positivity of the total cross-section.

1.2 Crossing symmetry for spin-0 particles

Crossing symmetry is an important property of the scattering amplitudes. It is a duality

that relates the amplitudes for two di�erent scattering processes evaluated at two (mutually

unphysical) set of momenta, and where the �crossed� particles are replaced by their anti-

particles, swapping them from the initial to the �nal state. For example, consider the elastic

scattering between two spin-0 particles4

π(p1)φ(p2)→ π(p3)φ(p4) s-channel (1.28)

4Crossing symmetry for particles with spins is discussed in Section 3.1.



1.2. CROSSING SYMMETRY FOR SPIN-0 PARTICLES 13

and its s↔ u �crossed� process

π(p1)φ(p2)→ π(p3)φ(p4) u-channel. (1.29)

where particles 2 and 4 have been crossed. Crossing symmetry relates these amplitudes in

the following way

Mπφ→πφ(p1, p2; p3, p4) =Mπφ→πφ(p1,−p4; p3,−p2) p0
i > 0 (1.30)

or equivalently

Mπφ→πφ(p1, p2; p3, p4) =Mπφ→πφ(p1,−p4; p3,−p2) p0
i > 0 . (1.31)

Notice that the right-hand side of these crossing relations requires the evaluation of the

amplitude at the unphysical kinematical point where the anti-particles have negative energy.

In other words, the same function M de�nes either processes, the s-channel or u-channel

scattering, depending on the sign of the energy which determines whether a particle (or

anti-particle) belongs to the initial or �nal state.

Crossing symmetry for real scalar particles is easily understood via the Lehmann-Symanzik-

Zimmerman (LSZ) reduction formula [11, 12]

〈p3, ..., pn|S|p1, p2〉 =

[
i

∫
d4x1e

−ip1·x1
(
�1 +m2

)]
...

[
i

∫
d4x1e

+ipn·xn (�n +m2
)]

× 〈0|T{φ(x1)φ(x2)...φ(xn)}|0〉 (1.32)

that expresses the S-matrix elements in terms of the correlation functions stripped o� their

external propagators5. In this expression the only distinction between initial and �nal states

is given by the sign of the 4-momentum, in agreement with Eq. (1.30) and (1.31) because

we have chosen for simplicity indentical real scalars π = φ = φ. The generalization to more

species and complex scalars is trivial, whereas the discussion for fermions is more subtle and

is presented in section 3.1 following the results of [6].

Since the scattering amplitudes among spin-0 particles are Lorentz-invariant, the 2 → 2

processes can be conveniently expressed in terms of the Mandelstam variables s, t, u, namely

s = (p1 + p2)2 = (p3 + p4)2 t = (p1 − p3)2 = (p2 − p4)2 u = (p1 − p4)2 = (p2 − p3)2.

(1.33)

Note that only two of these variables are independent because

s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4 . (1.34)

For elastic processes among scalars like those in (1.28) and (1.29), crossing the s− and

u-channel is equivalent to p2 ↔ −p4, that is

s←→ u (1.35)

5The wave-functions renormalization constant have been absorbed in the de�nition of the �elds.
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where t is held �xed. (Incidentally, this transformations at the level of Mandelstam variables

justi�es the choice for the names of the channels). On the amplitudes it reads

Mπφ→πφ(s, t, u) =Mπφ→πφ(u, t, s) . (1.36)

The proper meaning of this expression relies on the analytic continuation of the amplitude

away from the physical con�guration, as it is explained in the section 1.3. Notice that for

identical real massless spin-0 particles, the forward scattering t = 0 must be an even function

in s because u = −s,

Mππ→ππ(s, t = 0, u) =Mππ→ππ(u, t = 0, s) . (1.37)

For a general kinematics the amplitude for real identical scalars is symmetric under the

inversion s↔ u which leaves invariant the point s = u = m2
1 +m2

2 − t/2.
There is another crossed channel, the t-channel, that is obtained by exchanging s ↔ t at

�xed u, for scalars. In the following, however, we are interested in dispersion relation in the

complex s-plane for elastic scattering at �xed t = 0 (forward scattering), where only the

s↔ u crossing plays a role.

1.3 Analyticity

Another key property of the S-matrix that we use in the following is its analyticity with

respect to the external particles' momenta, in particular the Mandelstam variable s at �xed

t = 0, in the forward elastic scattering π(p1)φ(p2) → π(p1)φ(p2). In order to investigate

this property, we need to recast the LSZ reduction formula (1.32) in terms of the retarded

commutators of local �elds,

Mπφ→πφ(s, t = 0) = i

∫
d4ye+ip2·y (�y +m2

2

)2
θ(y0)〈p1|[φ(y), φ(0)]|p1〉 , (1.38)

as explained in appendix A. Here we hare reduced only the contribution from the π's.

Because of the microcausality condition on the commutator (and its derivatives) which

makes them vanish at spacelike distances, as well as the occurrence of the step function

θ(y0) (and its derivatives), they give vanishing contributions in the integrand outside of the

forward light-cone {y2 ≥ 0, y0 ≥ 0}. In turn, such a causal structure allows to analytically

continue the forward amplitude M in the upper complex s-plane, assuming polynomially

bounded correlation functions. Conversely, the physical amplitude can be read as the upper

boundary value of an analytic function in the whole upper complex s-plane:

Mπφ→πφ(s, t = 0) =Mπφ→πφ(s+ iε, t = 0) , (1.39)

where the ε→ 0+ limit is always understood, and s ≥ smin = (m1 +m2)2. 6

6Every time s satis�es an inequality it is implicitly taken on the real axis.
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This is fully analogous to the classical Kramers-Kronig relations where the retarded Green

functions appear as the result of analyticity of the index of refraction with respect to the fre-

quency in the upper complex plane, and vice versa. The analytic continuation for scattering

amplitudes is however somewhat more involved because of the several complex momenta;

for this reason we leave the details to appendix A.

We stress here, however, that the amplitude can be analytically extended in the lower

complex s-plane too. Indeed, it is enough that the amplitude takes real values M(s, t =

0) = M∗(s, t = 0) over an open interval of the real axis (e.g. below threshold) so that the

Schwarz re�ection principle extends it to an analytical and real function of complex variable

everywhere in the cut s-plane

Mπφ→πφ(s∗, t = 0) =M∗πφ→πφ(s, t = 0) , (1.40)

except for discontinuities located on the real axis. Those are branch-cuts associated to

multiparticle production, or simple poles associated to stable one-particle states, see Fig.1

. As a matter of fact, crossing symmetry gives physical meaning to the boundary amplitude

on the real axis approached from below

Mπφ→πφ(s− iε, t = 0) =M∗
πφ→πφ(−s+ iε+ 2m2

1 + 2m2
2, t = 0) , (1.41)

Mπφ→πφ(−s− iε+ 2m2
1 + 2m2

2, t = 0) =Mπφ→πφ(s+ iε, t = 0) . (1.42)

On the other hand, the optical theorem (1.27) provides the discontinuities across the real

axis in the physical regions, e.g.

DiscMπφ→πφ(s+ iε, t = 0) = 2i
√

(s−m2
1 −m2

2)2 − 4m2
1m

2
2 · σ

tot
πφ→anything(s) (1.43)

for s ≥ smin, and

DiscMπφ→πφ(s+ iε, t = 0) = −2i
√

(s−m2
1 −m2

2)2 − 4m2
1m

2
2 · σ

tot
πφ→anything

(u) . (1.44)

for s < umin = −smin + 2m2
1 + 2m2

2.

1.4 Positivity for �avourless scalar particles

In this section we discuss the simplest example of positivity contraint that arises from

unitarity, analyticity and crossing symmetry of the S-matrix that we have studied in the

previous sections. We consider a theory of a single massive real scalar particles π and study

the two-body scattering. For simplicity, we drop the particle label, and leave the t = 0 in

the argument understood, that is

Mππ→ππ(s, t = 0) ≡M(s) . (1.45)

Moreover, we demand there are no lighter states than π which could be exchanged the

scattering. As an example of interesting EFT that satis�es there requirements one could
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Fig. 1: Analytic structure in the s− plane for the scalars scattering amplitude π(p1)φ(p2)→
π(p3)φ(p4) in the forward limit t = 0 and with m1 = m2 = m. There may exist poles

between the branch-cuts shown in the �gure with the points pi. We identify the amplitude

of the s−channel by approaching the right cut from above, whereas the physical amplitude

of the crossed reaction in the s plane can be obtaining by approaching the left cut from

below.

keep in mind the lagrangian for a Goldstone Boson (GB) π from a spontaneously broken

U(1)

L =
1

2
(∂π)2 +

c

Λ4
(∂π)4 + . . . (1.46)

perturbed by a small mass term −m2π2/2, with m arbitrarily small7. As it should be

clear from the general derivation presented below, the resulting positivity conditions are not

speci�c of this example only but apply to any theory with this analytic structure.

Because of analyticity away from the real axis or below the elastic threshold, we can expand

the amplitude around a point µ2 in the complex cut s-plane as

M(s) =M(µ2) +M′(µ2)(s− µ2) +
1

2!
M′′(µ2)(s− µ2)2 + . . . (1.47)

The coe�cientM′′(µ2) can be obtained by means of the Cauchy integral formula

M′′(µ2) =
2!

2πi

∮
C

M(s)

(s− µ2)3
, (1.48)

where C is a contour shown in Fig.2 .

There are no singularities between s = 0 and s = 4m2 because of the absence of light

intermediate states. The contour integral can be smoothly deformed into the integral over

the curve Γ, see Fig.2 , as long as we do not cross singularities. We have seen in the previous

sections that there are none in the upper and lower complex cut s-plane. Thanks to the

Schwartz re�ection principle we haveM(s∗) =M∗(s) and in particular

M∗(s+ iε) =M(s− iε) (1.49)

7When we will apply the general positivity constraint (1.55) to this particular example we will eventually

send the mass to zero at the end of the calculation.
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Fig. 2: Analytic structure of a forward scattering amplitude of massive scalars in the con�g-

uration s+u = 4m2 without lighter intermediate states. We show the contours along which

we perform the integrals.

across the branch-cuts, implying that the discontinuities are the imaginary parts of the

amplitude. Sending to +∞ the radius of the big circle in Γ, the contour integral can thus

be organized into the sum of three pieces

M′′(µ2) = C∞ +

(∫ 0

−∞

ds

(s− µ2)3
+

∫ +∞

4m2

ds

(s− µ2)3

)
ImM(s+ iε) (1.50)

where C∞ is the contribution of the integral along the big circle whose radius is sent to

in�nity. This latter term can actually be discarded because the Froissart bound [13] ensures

that |M(s)| ≤ s log2 s for s→∞, and therefore C∞ → 0.

We can further simplify (1.50) by changing variable on the second integral s→ u = −s+4m2

∫ 0

−∞
ds
ImM(s+ iε)

(s− µ2)3
= −

∫ ∞
4m2

ds

(
M(−s+ 4m2 + iε)−M(−s+ 4m2 − iε)

)
(−s+ 4m2 − µ2)3

. (1.51)

By crossing symmetry

M(u) =M(s) (1.52)

and therefore ∫ 0

−∞
ds
ImM(s+ iε)

(s− µ2)3
=

∫ ∞
4m2

ds
ImM(s+ iε)

(s− 4m2 + µ2)3
(1.53)

which in turns gives the dispersion relation

M′′(µ2) =

∫ +∞

4m2

ds

(
1

(s− µ2)3
+

1

(s− 4m2 + µ2)3

)
ImM(s+ iε) (1.54)

where the second derivative of the amplitude is expressed in terms of an integral along

the imaginary parts. The imaginary parts of the forward elastic amplitude in the r.h.s. are
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positive in any interacting theory, see the inequalities (1.25) and (1.27), because of unitarity:

ImM(s+ iε) = s
√

1− 4m2/s σππ→anything > 0. By choosing any real scale µ2 between s = 0

and s = 4m2 such that the denominators in (1.53) are positive as well, we get the positivity

condition

M′′(µ2) > 0 (1.55)

in any interacting theory that admits an unitary UV completion. Notice that it is convenient

to choose the scale µ2 just below s = 4m2 which is a physical threshold where the scattering

opens kinematically. For smaller values of µ2, the amplitude is still positive but it should

be run to another scale µ̃2, above or at threshold, where the experiments are performed and

the Wilson coe�cients measured in principle.

Let's see what the positivity constraint (1.55) implies on the EFT (1.46), e.g. for m → 0.

First, we can use (1.46) to calculate the l.h.s. of (1.55) because s = t = 0 is a kinematical

point in the deep IR: we have thusM(s) = 2cs2/Λ4 and therefore

c > 0 . (1.56)

This condition means that there are no non-trivial UV completions of this EFT for the GB

that produce c ≤ 0. This positivity conditions is clearly beyond the normal constraints

provided by the symmetry as any value of c would actually be allowed by the GB's shift

symmetry.

We can easily extend these results to scattering amplitudes of theories with di�erent analytic

structure, i.e. with singularities on the real axis between the elastic branch-cuts that start

at s = 4m2 and s = 0, that is to theories with light intermediate states. For example, let

us assume there are stable intermediates states that show up as poles on the real axis as in

Fig.3 .

Now, the relation (1.54) becomes

M′′(µ2) =

∫ +∞

4m2

ds

(
1

(s− µ2)3
+

1

(s− 4m2 + µ2)3

)
ImM(s+ iε)−

∑
i

Res [M(s)]
∣∣∣
s=pi

(pi − µ2)3

(1.57)

where pi are the locations of extra poles. Following the same steps as above, and moving the

residues of the simple poles on the left-hand side, we end up with the positivity condition

M′′(µ2) +
∑
i

Res [M(s)]
∣∣∣
s=pi

(pi − µ2)3
> 0. (1.58)

We can calculate the left-hand side of the inequality within the EFT, given that t = 0 and

µ2 � Λ2. The tree-level EFT has no branch-cut and the sum of the residues in the IR is the

same as (minus) the residue at in�nity calculated with the EFT lagrangian, meaning that

M′′(pi � µ2 � Λ2)
∣∣
EFT

> 0 . . (1.59)
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Fig. 3: General analytic structure of a forward scattering amplitude of massive scalars in

the con�guration s + u = 4m2. The points pi stand for poles coming from intermediate

one-particle states, i.e. propagators.

This relation expresses the fact that the dispersion relations allow one to place positivity

constraints on the leading O(s2) coe�cients produced by the EFT, for s larger than any

other IR scale (e.g. the small masses of the light intermediate states) but still below the

cuto� of the EFT.

Finally, It is instructive to give an example of explicit UV completion and see where the

positivity constraint seen in the IR has originated from in the UV. Let's consider again the

example of a spontaneously broken U(1) with its GB described in the IR by the lagrangian

(1.46), where we have seen that the Wilson coe�cient c must satisfy the constraint (1.56).

At the leading order, the e�ective amplitude of a generic process ππ → ππ is

M(s, t) =
c

Λ4

(
s2 + t2 + u2

)
, M(s) ≡M(s, t = 0) =

2c

Λ4

(
s2
)
. (1.60)

An exampe of calculable UV completion for this theory is a linear sigma model from which

the π arise as the only states in the spectrum below the mass of the radial (or Higgs-like)

mode. The lagrangian reads

L = ∂µΦ∗∂µΦ− λ
(
|Φ|2 − v2

2

)2

(1.61)

where we reparametrize the �elds as Φ(x) = 1√
2
(v + h(x))eiπ(x)/v, and

λ > 0 (1.62)

because of vacuum stability and to ensure the desired IR spectrum with a massless particle.

Expanding the terms around the vev v, the lagrangian becomes

L =
1

2

(
1 +

h

v

)2

(∂π)2 + (∂h)2 − 1

2
M2
hh

2 − λvh3 − λ

4
h4 , (1.63)
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where M2
h = 2λv2. The forward amplitude (1.60) is now extended to values of s above the

cuto�, that is above the mass Mh

M(s) =
λ

M2
h

[
s2

s+M2
h

− s2

s−M2
h

]
. (1.64)

Expanding for small values of s with respect to M2
h , i.e. integrating out the �eld h, we get

the matching condition between the IR and UV

c

Λ4
=

λ

M4
h

, (1.65)

where the positivity of c has been tracked back to the positivity of the UV parameter λ.

More generally, theM′′(µ2) can be expressed in principle in terms of the parameters of the

UV theory which are responsible for its positivity.



Chapter 2

Positivity constraints for complex

scalars

In the previous chapter we showed how crossing symmetry works for real scalar particles,

and how it can be used together with unitarity and analyticity of the S-matrix to derive

the positivity of the second derivative with respect to s of the forward elastic amplitudes.

Now we want to extend these results to complex scalars which may transform under some

internal symmetry group. We �rst discuss how crossing symmetry works when particles carry

representations of non-abelian symmetry groups. In particular we study the properties of the

crossing matrices associated to s↔ u crossing between the irreducible representations found

in the decomposition of the initial and �nal two-particle states, in the 2-to-2 scattering. This

allows us to obtain sum rules and positivity constraints involving the Wilson coe�cients of

the EFTs, generalizing the results of [2] to arbitrary complex irreps. As explicit example we

discuss in detail the positivity constraints for the scattering amplitudes of particles carrying

fundamental and anti-fundamental representations of SU(N). This example is relevant for

the model building involving the pseugo-Goldstini presented in chapter 4.

2.1 Internal symmetries and eigen-amplitudes

A special role in the classi�cation of fundamental interactions is played by internal sym-

metries, that is symmetries that commute with the generators of Poincaré. Examples are

the nuclear isospin, �avor symmetries as well as the gauge groups of the SM. These trans-

formations act on the Hilbert space of the states as unitary operators U(g) which act on

the internal labels without changing the momenta and spins of the particles. For example,

considering a generic element g in the symmetry group G g, a state with two scalar particles

transforms as

U(g) |Ψp1,n1;p2,n2〉 =
∑
ñ1,ñ2

Dr1(g)ñ1,n1Dr2(g)ñ2,n2 |Ψp1,ñ1;p2,ñ2〉 (2.1)

21
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where Dri(g) are the matrix elements of the representations ri of the symmetry group G

carried by the two particles.

A symmetry of the dynamics is a symmetry of the S-matrix elements [11, 12], meaning

〈Φβ|S|Φα〉 = 〈Φβ|U(g)†SU(g)|Φα〉 ∀|Φα,β〉 (2.2)

that is S = U(g)†SU(g). In other words, the S-matrix is invariant, that is a scalar (or

singlet), under the action of the symmetry. Lie groups are continuous groups where the

elements around the identity can be reach by an expansion in the generators Y n

U(g) ' 1+ iαnY
n + ... (2.3)

Applying this expansion to (2.2) it follows the commutation rule

[Y n, S] = 0. (2.4)

It is often very convenient to decompose the initial and �nal multiparticle states |Φα〉 that
transform as the tensor product of single-particle states (that is as in (2.1)) in irreducible

representations (irreps) rI(ξ) of the symmetry group. For example, for a two-particle state

r1 ⊗ r2 =
⊕
I(ξ)

rI(ξ) , (2.5)

where I labels the inequivalent irrep (e.g. the collection of its Casimirs) whereas ξ counts

how several times the (equivalent) irrep I appears in the decomposition1. Because the

S-matrix is a singlet under a symmetry, S|Φα〉 has the same decomposition in irreps than

|Φα〉. Thanks to the Wigner-Eckart theorem, there are no transitions between states |I(ξ), i〉
carrying inequivalent irreps

〈J(η), j|S| I(ξ), i〉 = δIJδijSI(ξη) , (2.6)

where the indexes i and j label the particular states inside the multiplets I(ξ) and J(η)

respectively. The transitions do not depend on the particular representative state inside

the irrep one is picking. The SI(ξη) are known as reduced-matrix elements and the associ-

ated amplitudes MI(ξη) are called eigen-amplitudes. The latter name is very appropriate

especially for non-degenerate irreps (those that do not appear more than once in the de-

composition such that the labels ξ and η are not needed), since the amplitudes are diagonal

in this basis for the internal space,MI being the associated �eigenvalues�. For example, in

the ππ-scattering of pions the SU(2)-isospin decomposition reads 3⊗ 3 = 1⊕ 3⊕ 5 where

we have labeled the irreps by their dimensions. There is no equivalent irrep that appears

more than once in the decomposition, hence 〈J, j|M| I, i〉 = δijδIJMI where I = 1,3,5,

and i, j = 1, . . . ,dimI.

1For example, two particles transforming in the adjoint of SU(3) give the following decomposition 8⊗8 =

1+81 +82 +10+10+27 where the counting label ξ has been put as subscript to avoid clutter of notation.

The adjoint irrep appears twice in the decomposition.
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2.2 Clebsch-Gordan coe�cients and eigen-amplitudes

In the following we need to express the eigen-amplitudes in terms of the ordinary amplitudes

of multi-particle states (that transform as the tensor product (2.1) of one-particle states).

This is achieved by means of the so-called Clebsch-Gordan coe�cients.

Since crossing symmetry exchanges particles with anti-particles, we will need to consider

the following two-particle decompositions

N⊗M =
⊕
I(ξ)

YI(ξ) (2.7)

N⊗M =
⊕
I(ξ)

ZI(ξ) (2.8)

N⊗M =
⊕
I(ξ)

ZI(ξ) (2.9)

N⊗M =
⊕
I(ξ)

YI(ξ) (2.10)

where the capital letters (Y,Z) label the sets of irreps, I is a collective index labeling

nonequivalent irreps, and ξ labels possible degenerate irreps i.e. those that appear more

than once. In the following, we shall choose M=N for simplicity.

Any multi-particle quantum state can be decomposed into irreps of G using its Clebsch-

Gordan (CG) coe�cients. We de�ne |a〉 and |ā〉 the one-particle states and its complex-

conjugated respectively, where a is a collective index which groups all the quantum numbers.

Under a generic representation U(g) of the group G they transform as

|a〉 ≡ πa → U(g)abπ
b (2.11)

|ā〉 ≡ π̄a ≡ πa → U(g) b
a πb, (2.12)

where we de�ned U(g) b
a = U(g)∗ab. We are considering the general case of states transform-

ing under complex representations. A two-particle state obtained by the product of two

single-particle states transforms as

|a〉 ⊗ |b̄〉 ≡ πaπb → UacU(g) d
b π

cπd . (2.13)

Equations (2.7)÷(2.10) mean that we can decompose the two-particles state in terms of

irreps as follow

πaπb =
Y∑
I(ξ)i

CabI(ξ)i |I(ξ), i〉 (2.14)

πaπ
b =

Z∑
I(ξ)i

C ābI(ξ)i |I(ξ), i〉 ≡
Z∑

I(ξ)i

CbaI(ξ)i |I(ξ), i〉 (2.15)

πaπb =
Ȳ∑
I(ξ)i

C
I(ξ)i
ab |I(ξ), i〉 . (2.16)
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where the CabI(ξ)i, C
āb
I(ξ)i, C

I(ξ)i
ab are the CG coe�cients associated to the irreps under scrutiny.

We use the following notation for the complex conjugate

(CabI(ξ)i)
∗ ≡ C̄abI(ξ)i ≡ C

I(ξ)i
ab . (2.17)

Crucially, since the CG coe�cients map one basis into another one, they are unitary matrices,

i.e. ∑
I,ξ i

C
I(ξ)i
ab CcdI(ξ)i = δcaδ

d
b

∑
ab

C
J(ξ)j
ab CabI(χ)i = δIJδijδχξ . (2.18)

With these de�nitions and using the Wigner-Eckart theorem

〈J(ξ′), j|M| I(ξ), i〉 = δIJδijM̂I(ξξ′) , I, J ∈ Y (2.19)

the scattering amplitude of |a〉 |b〉 → |c〉 |d〉 can be written in terms of the eigen-amplitudes

M̂ among the irreps I ∈ Y

Mab→cd(s, t) =

Y∑
I(ξ),i

Y∑
J(ξ′),j

C
J(ξ′)j
cd CabI(ξ)i 〈J(ξ′), j|M|I(ξ), i〉 =

Y∑
I,i,ξξ′

C
I(ξ′)i
cd CabI(ξ)iM̂I(ξξ′)(s, t) .

(2.20)

Compared to notation of the previous section we are inserting a hat overM to distinguish

the eigen-amplitudes associated to the irreps in Y , i.e. found in N ⊗ N, from the eigen-

amplitudes with a tilde, M̃, which are for the transitions of the irreps J ∈ Z, i.e. those

associated to irreps found in N⊗N:

〈J(ξ′), j|M| I(ξ), i〉 = δIJδijM̃I(ξξ′) , I, J ∈ Z (2.21)

and

Mcb→ad(s, t) =
Z∑

I(ξ),i

Z∑
J(ξ′),j

C
J(ξ′)j
ad CcbI(ξ)i 〈J(ξ′), j|M|I(ξ), i〉 =

Z∑
I,i,ξξ′

C
I(ξ′)i
ad CcbI(ξ)iM̃I(ξξ′)(s, t) .

(2.22)

These relations along with unitarity of the CG coe�cients will allow us to express the action

of crossing symmetry directly on the eigen-amplitudes.

2.3 The crossing matrix

Crossing symmetry relates di�erent eigen-amplitudes because the decomposition in irreps

is di�erent in N ⊗N, N ⊗N and their complex conjugate. We will show that the crossed

amplitudes are related by a constant involutory matrix X called crossing matrix, built out

of two smaller blocks of crossing matrices that send the irreps found in N ⊗N in those of

N⊗N and vice versa.
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We restrict ourselves to the case of elastic scattering at t = 0 displaying only the dependence

on s, e.g. M̃(s) ≡ M̃(s, t = 0). The s-channel |ab〉 → |cd〉 and its crossed process

|c̄b〉 → |ād〉, the u-channel, are related by crossing symmetry

Mab→cd(s) =Mc̄b→ād(u) (2.23)

as in the previous chapter. However, we �nd now convenient to decompose the amplitudes

into eigen-amplitudes using (2.20) and (2.22)

Y∑
Iξiξ′

CabI(ξ),iC̄
cd
I(ξ′)iM̂I(ξξ′)(s) =

Z∑
Iξiξ′

C c̄bI(ξ),iC
I(ξ′)i
ād M̃I(ξξ′)(u). (2.24)

De�ning the projection operators2

[P̂J(ξ′ξ)]
cd
ab =

∑
j

[
CJ(ξ′)j

]cd [
CJ(ξ)j

]
ab

(2.25)

[P̃I(χχ′)]
ba
cd =

∑
j

[
CI(χ)j

]b
c

[
CI(χ

′)j
]a
d
, (2.26)

we can write the amplitudes as

Mab→cd(s) =

Y∑
Iξiξ′

[P̂I(ξ′ξ)]
ab
cdM̂I(ξξ′)(s) (2.27)

Mc̄b→ād(u) =
Z∑

Iξiξ′

[P̃I(ξ′ξ)]
ab
cdM̃I(ξξ′)(u) (2.28)

multiplying both sides of (2.24) by the expression in (2.25), and summing over the index

a, b, c, d we get

dimYJM̂J(ξξ′)(s) =
Z∑

Iχχ′

∑
abcd

[
P̂J(ξ′ξ)

]cd
ab

[
P̃I(χχ′)

]ba
cd
M̃I(χχ′)(u) . (2.29)

This expression de�nes the crossing matrix X1

M̂(s) = X1M̃(u) (2.30)

relating the s-channel eigen-amplitudes M̂(s) with the u-channel eigen-amplitudes M̃(u):

[X1]J(ξξ′)I(χχ′) =
1

dimYJ

∑
abcd

[
P̂J(ξ′ξ)

]ab
cd

[
P̃I(χχ′)

]dc
ab
. (2.31)

We recall that the indices I and J run over the di�erent sets Z and Y which in general

contain a di�erent number of irreps. Therefore, the matrix X1 is in general rectangular.

2They are actual orthogonal projectors only for ξ = ξ′.
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Multiplying and summing both sides of (2.24) by
[
PJ(χχ′)

]dc
ab
, we obtain instead

M̃J(χχ′)(u) =

Y∑
Iξξ′

1

dimZJ

∑
abcd

[
P̃J(χ′χ)

]dc
ab

[
P̂I(ξξ′)

]ab
cd
M̂I(ξξ′)(s) (2.32)

which de�nes the other crossing matrix X2

[X2]J(χχ′)I(ξξ′) =
1

dimZJ

∑
abcd

[
P̃J(χ′χ)

]dc
ab

[
P̂I(ξξ′)

]ab
cd

(2.33)

that relates back the u-channel to the s-channel:

M̃(u) = X2M̂(s) . (2.34)

In (2.30) and (2.34) we are using an index free notation where M̂ and M̃ are vector with

components M̂I(ξξ′) and M̃J(ξξ′) respectively. Notice that in general X1, X2 are not the

same matrices, see Fig.1 , although they are the left- or right-inverse of each other

X2X1 = 1z×z, (2.35)

X1X2 = 1y×y (2.36)

where z (y) is the number of irreps in Z (Y ).

Fig. 1

By de�nition, see (2.31) and (2.33), we have[
X
†
1

]
H(θθ′)J(ξξ′)

= [X1]∗J(ξξ′)H(θθ′) = [X1]J(ξ′ξ)H(θ′θ) (2.37)

dimYJ [X1]J(ξξ′)I(χχ′) = dimZI [X2]I(χ′χ)J(ξ′ξ) . (2.38)

Moreover, de�ning the diagonal matrices

∆̂I(χχ′)J(ξξ′) ≡ dimYIδIJδχξδχ′ξ′ (2.39)

∆̃I(χχ′)J(ξξ′) ≡ dimZIδIJδχξδχ′ξ′ , (2.40)
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we get

X
†
1∆̂X1 = ∆̃ (2.41)

X
†
2∆̃X2 = ∆̂ . (2.42)

All these relations are better expressed in terms of a single crossing matrix that acts on the

whole set of eigen-amplitudes. Indeed, collecting the various eigen-amplitudes associated to

the irreps in the two decompositions N⊗N and N⊗N in a single master eigen-amplitude

M =

(
M̂
M̃

)
(2.43)

whose components are M = (· · · M̂J(ξξ′) · · · , · · · M̃I(χχ′) · · · )T , we see that the s ↔ u

crossing takes the form

M(s) = XM(u) M(u) = XM(s) . (2.44)

where

X =

[
0 X1

X2 0

]
. (2.45)

The matrix X represents the crossing matrix of the entire set of eigen-amplitudes, it is thus

the matrix we were after. Its entries are de�ned in terms of the CG coe�cients in (2.31)

and (2.33). They are purely geometric objects that depend on the group and the irreps, but

that know nothing about the dynamics. The crossing matrix X is an involutory matrix and

satis�es the following properties

X
†GX = G, X

2 = 1n×n (2.46)

where n = y + z and

G =

[
∆̂ 0

0 ∆̃

]
. (2.47)

In other words, the crossing matrix is not only involutory but also unitary with respect to

the positive de�nite metric G built out of the dimensions of the irreps that appear in (2.39)

and (2.40). These relations follow directly from (2.41), (2.42), (2.35) and (2.36). Being

involutory, the eigenvalues of X are ±1. Actually, the (+1)-eigenspace always contains the

vector v(+) whose entries are irrep-independent and diagonal with respect to the degenerate

irreps' labels:

v(+) =

(
δξξ′

δχχ′

)
,

∑
I

[X1]J(ξξ′)I(χχ′) δχχ′ = δξξ′ ,
∑
I

[X2]J(ξξ′)I(χχ′) δχχ′ = δξξ′ .

(2.48)
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For theories with no degenerate irreps appearing in the CG decomposition this (+1)-eigenvector

reduces just to vector of identical entries,

v(+) =

 1
...

1

 . (2.49)

2.4 Sum rules

Now that we understood the general properties of the crossing matrices and how they can

be constructed, we are able to obtain dispersion relations that provide sum rules for the

eigen-amplitudes and the Wilson coe�cients. As in the previous chapter we assume:

• Analyticity, in the cut s-plane as shown in Fig.2 . Since we assume that particles have

all the same mass, mi = m, the IR branch-points given by the threshold for elastic

scattering are at sIR = (m1 +m2)2 = 4m2 in the s-channel, and uIR = (m1−m2)2 = 0

in the u-channel. Moreover, a generalization of the Schwarz re�ection principle (1.40)

follows from (2.20)

MI(ξξ′)(s)
∗ =MI(ξ′ξ)(s

∗), (2.50)

for the eigen-amplitudes. It relates the discontinuity between the upper and lower

complex plane to the imaginary parts of the eigen-amplitudes between the same irreps

ξ = ξ′.

• Unitarity, which implies the optical theorem

ImMI(ξξ)(s) = s

√
1− 4m2

s
σtotI(ξξ)(s) > 0 (2.51)

for s ≥ sIR.

• Crossing symmetry, which acts on the entire set of eigen-amplitudes asM(s) = XM(u)

where the crossing matrix X is de�ned in section 2.3 in terms of the relevant CG

coe�cients.

By analyticity, we can Taylor expand the amplitude around a scale µ2 in the upper complex

plane away from the singularities

M(s) =
∑
n

1

n!
M(n)(µ2)(s− µ2)n. (2.52)

The coe�cientM(n)(µ2) can be computed by means of the Cauchy integral formula,

M(n)(µ2) =
n!

2πi

∮
C
ds

M(s)

(s− µ2)n+1
(2.53)
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Fig. 2: General analytic structure of a forward scattering amplitude of massive scalars in

the con�guration s + u = 4m2. The red points stand for poles coming from intermediate

one-particle states, i.e. propagators, and they always come in pairs because of crossing

symmetry. The black dot marked µ2 is the point around where we are Taylor expanding the

amplitude. Λ is the radius of the big circle, while sIR = 4m2 is the branch-point associated

to the elastic threshold in the s-channel. The other branch-point at s = 0 comes from the

u-channel, that is by crossing symmetry. In the following, we refer to the energies between

s = 0 and sIR as �IR masses�.

where the contour C does not cross any singular point as shown in Fig.2 .

The integral on the r.h.s. can be performed along the curve Γ by subtracting the residue of

poles on the real axis, if any. Just for simplicity, we assume in the following that there are no

lighter stable particles so that these residues are actually not present. The more general case

with lighter particles in the spectrum and their residues included in the dispersion relations

can be obtained straightforwardly, as it was done for a single �avor in section 1.4.

The contribution cΛ
n coming from the integration over the big circle of radius Λ2 (see Fig.2

)

cΛ
n = n!

∫ 2π

0

dθ

2π

|sΛ|eiθM(|sΛ|eiθ)
(|sΛ|eiθ − µ2)n+1

, |sΛ| = sIR/2 + Λ2 (2.54)

can be discarded for n ≥ 2 since cΛ
2 → 0 as one take the limit Λ → ∞. This follows from

the Froissart bound [13] which ensures |M(s)| ≤ s log2 s for s→∞. The contribution from



30 CHAPTER 2. POSITIVITY CONSTRAINTS FOR COMPLEX SCALARS

the integrals along the branch-cuts reads

n!

∫ Λ2+sIR/2

sIR

ds

2πi

[
M(s+ iε)−M(s− iε)

(s− µ2)n+1
+ (−1)n

M(−s+ sIR − iε)−M(−s+ sIR + iε)

(s− sIR + µ2)n+1

]
(2.55)

= n!

∫ Λ2+sIR/2

sIR

ds

2πi

[
1

(s− µ2)n+1
+ (−1)n

X

(s− sIR + µ2)n+1

]
[M(s+ iε)−M(s− iε)]

(2.56)

where in the second equality we used crossing symmetry. By (2.50) we have

M(s+ iε)−M(s− iε) = 2ReM−(s+ iε) + 2iImM+(s+ iε) (2.57)

where, in components,

M±I(ξξ′)(s) ≡
1

2

[
MI(ξξ′)(s)±MI(ξ′ξ)(s)

]
. (2.58)

With no degenerate irreps in the CG decomposition, or in presence of particular selection

rules between the degenerate irreps [2] , M− = 0 and M+ = M. Hereafter we restrict to

the case of no degenerate irreps, since all examples we will discuss later fall in this category.

Therefore, using also the optical theorem to write the imaginary parts in terms of the total

cross-section, the dispersion relation for n ≥ 2 and Λ→∞ reads

M(n)(µ2) = n!

∫ ∞
sIR

ds

π

[
s

(s− µ2)n+1
+ (−1)n

sX

(s− sIR + µ2)n+1

]√
1− 4m2

s
σtot(s) .

(2.59)

where σtot is the vector with components σtotI , and sIR = 4m2.

As we have seen in the previous sections, the crossing matrix X is involutory and it has

therefore eigenvalues ±1. We can thus de�ne the projectors over the positive and negative

subspaces

P± =
1

2
(1± X) (2.60)

which satisfy the properties

P 2
± = 1 , [P±,X] = 0, , P±X = ±P± . (2.61)

Projecting (2.59) onto the ±1-eigenspaces, we get the sum rules

P±M(n)(µ2) = n!

∫ +∞

sIR

ds

π

[
s

(s− µ2)n+1
± (−1)n

s

(s− sIR + µ2)n+1

]√
1− 4m2

s
P±σ

tot(s) .

(2.62)
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which for n = 2 read

P±M(2)(µ2) = 2

∫ +∞

sIR

ds

π

[
s

(s− µ2)3
± s

(s− sIR + µ2)3

]√
1− 4m2

s
P±σ

tot(s) . (2.63)

Notice that at the crossing symmetric point µ2 = (sIR + uIR)/2 = 2m2 the projection with

P− kills the r.h.s. and therefore it makes vanishing the l.h.s. of the dispersion relation as

well

P−M′′(2m2) = 0 , (2.64)

meaning that M′′(2m2) must belong to the (+1)-eigenspace of the crossing matrix. This

provides an useful linear constraint among the amplitudes in the IR which are not all inde-

pendent in that kinematical point.

In the massless limit and choosing µ2 = 0 the sum rules become even more neat

P±M(n)(0) = 2 [1± (−1)n]

∫ +∞

0

ds

πsn
P±σ

tot(s) . (2.65)

2.5 Positivity for �avorfull scalar particles

Using the sum rules obtained by the dispersion relations, we can derive positivity constraints

for scattering amplitudes as it was done in section (1.4), except that now the particles

transform non-trivially under a symmetry group of the theory. This allows us in general to

obtain stronger positivity conditions, as it was obtained in the special case of real irreps in

[2].

Let us focus then on the elastic forward scattering

πa(p1)πb(p2)→ πa(p1)πb(p2) (2.66)

where πi stands for an element inside the representation of the group G. Should we follow

the same steps as in section (1.4), that is without taking advantage of the symmetry, we

would simply get

M′′ab→ab(µ2) ≥ 0 . (2.67)

No symmetry has been invoked to obtain this positivity, the labels a and b playing no role

in the derivation above. In order to get (possibly) stronger bounds onM′′, we instead use

the sum rules (2.63). For µ2 chosen between s = 0 and s = sIR, the terms in the square

brackets in (2.63) are positive, and so is the entries of the vector σtot made of total cross

sections associated to the transitions I → anything. The only possibly negative sources in

(2.63) are some of the entries of the projectors P±. However, we have seen in Eq. (2.46) that

the crossing matrix X that de�nes the projectors P± = (1 ± X)/2 is unitary with respect

to a positive de�nite metric G, i.e. X†GX = G, which is diagonal and whose entries are the

dimensions of the irreps

GIJ = δIJdimrI , I, J ∈ Z, Y . (2.68)
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This means that we can project on the (±1)-eigenspaces with the scalar product de�ned by

G, i.e.

w†±GP±M′′(µ2) = 2

∫ +∞

sIR

ds

π

[
s

(s− µ2)3
± s

(s− sIR + µ2)3

]√
1− 4m2

s
w†±GP±σtot(s)

(2.69)

that implies

w†±GM′′(µ2) = 2

∫ +∞

sIR

ds

π

[
s

(s− µ2)3
± s

(s− sIR + µ2)3

]√
1− 4m2

s
w†±Gσtot(s) (2.70)

where w± is any (±1)-eigenvector of X, Xw± = ±w±. But here is the catch: among the

various eigenvectors w+, we have seen in the previous section that there always exists a

v(+) = (1, . . . , 1)T which has all positive entries. Projecting on such a eigenvector

v(+)†GM′′(µ2) = 2

∫ +∞

sIR

ds

π

[
s

(s− µ2)3
± s

(s− sIR + µ2)3

]√
1− 4m2

s
v(+)†Gσtot(s)

(2.71)

we see that the integrand on the r.h.s is strictly positive, so that the following positivity

must hold

v(+)†GM′′(µ2) > 0 , (2.72)

or equivalently ∑
I

dimrIM′′I (µ2) > 0 . (2.73)

In fact, since the (+1)-eigenspace of the crossing matrix X is linear, there are other m+ − 1

positivity conditions that are obtained by adding (m+ − 1) su�ciently small and linearly

independent (+1)-eigenvectors to v(+), where m+ is the dimension of the (+1)-eigen-space.

As long as the (+1)-eigenvectors V (+) obtained in this way have non-negative entries the

positivity conditions

V (+)†GM′′(µ2) > 0 (2.74)

hold too.

The strongest, i.e. optimal, bounds are those that imply the others (e.g. by taking linear

combinations of the inequality with just positive coe�ents), that is those that are obtained

by intersecting the linear (+1)-eigenspace with the positive quadrant where the entries of

the vectors are all non-negative. This intersection de�nes a convex polyhedric cone whose

edges V
(+)
i , by constructions, de�ne the strongest positivity conditions V

(+)†
i GM′′(µ2) > 0

(see Fig.3). The edges can be determined explicitly, given the crossing matrix X, by using

the algorithm described in [2], that is by looking for the (+1)-eigenvectors of X with (m+−1)

vanishing entries (since we need to �nd a one-dimensional subspace living on the boundary

of the quadrant). Notice that the (+1)−eigenspace can be easily identi�ed by the algebric

condition P−w+ = 0. In the next section we provide a detailed and explicit example of these

positivity constraints.
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v(+)

V
(+)
2

V
(+)
1

Fig. 3: In sky blue the convex polyhedric cone obtained by intersecting the positive quadrant

of amplitudes with the the (+1)-eigenspace (a m+-dimensional hyperplane) of the crossing

matrix. (We are of course able to draw explicitly only a two-dimensional polyhedric cone

with two edges, i.e. a triangle, embedded into a three-dimensional space of amplitudes).

The boundary of the cone corresponds to (+1)-eigenvectors V
(+)
i which have all positive

entries but m+ − 1 which are vanishing. While projectingM′′(µ2) on any vector inside the

cone, as e.g. on v(+) = (1, . . . , 1)T as in (2.72), gives a positivity constraint, the strongest

bounds are obtained by projecting on the boundary eigenvectors of the cone V
(+)
i , as any

other vector inside the cone can be reached by linear combinations with positive coe�cients.

2.6 An example: SU(N)

Let us consider a 2 → 2 scattering of identical scalar particles transforming under the

fundamental (anti-fundamental) N (N) of SU(N). The decompositions (2.7) and (2.8)

reads

N⊗N =
N(N-1)

2
⊕ N(N+1)

2
≡ A⊕ S (2.75)

N⊗N = 1⊕ (N2 − 1) ≡ 1⊕Adj. (2.76)

We cluster all eigen-amplitudes of N⊗N and N⊗N in a single master eigen-amplitude:

M(s) =

(
M̂
M̃

)
=


M̂A(s)

M̂S(s)

M̃1(s)

M̃Adj(s)

 . (2.77)

In the following we will omit the tilde and the hat over the amplitudes. It should not be

ambiguous since the irrep subscript tell us which decomposition of the tensor product we

are considering.
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In order to determine explicitly the crossing matrix, we use the projectors over the invariant

subspaces in (2.75) and (2.76), which are[
P̂S

]ab
cd

=
1

2

(
δac δ

b
d + δbc δ

a
d

)
(2.78)[

P̂A

]ab
cd

=
1

2

(
δac δ

b
d − δbc δad

)
(2.79)[

P̃1

]dc
ab

=
1

N
δda δ

c
b (2.80)[

P̃Adj

]dc
ab

= δca δ
d
b −

1

N
δda δ

c
b . (2.81)

Therefore, the crossing matrix X is given by

X =


0 0 − 1

N
N+1
N

0 0 1
N

N−1
N

1−N
2

N+1
2 0 0

1
2

1
2 0 0

 , (2.82)

which is diagonalized

Xdiag = MXM−1 =

(
−12 0

0 12

)
(2.83)

by

M =


−1

4 −1
4 0 1

2
N−1

4
−N−1

4
1
2 0

1
4

1
4 0 1

2
1−N

4
N+1

4
1
2 0

 . (2.84)

A basis for the two-dimensional (+1)-eigenspace is given by

V
(+)

1 = (0, 2, N + 1, 1)T V
(+)

2 = (N + 1, N − 1, 0, N)T . (2.85)

Notice that the vector (1, 1, 1, 1)T = (V
(+)

1 + V
(+)

2 )/(N + 1) is indeed an element of the

positive eigenspace as expect by our general arguments. Since all the entries of V
(+)
i are

non-negative, one immediately gets the positivity conditions from (2.74)

M′′1(µ2) +NM′′S(µ2) + (N − 1)M′′Adj(µ
2) > 0 (2.86)

M′′A(µ2) +M′′S(µ2) + 2M′′Adj(µ
2) > 0 (2.87)

where we used

G = diag

(
N
N − 1

2
, N

N + 1

2
, 1, N2 − 1

)
(2.88)

and 0 ≤ µ2 ≤ 4m2. These positivity conditions are actually optimal because there is no

other (+1)-eigenvector with one vanishing entry while its other entries are kept all strictly

positive.
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Further simpli�cations occur by choosing to work at the crossing symmetric point µ2 = 2m2

because of the crossing relations P−M′′(2m2) = 0 in (2.64). In our SU(N) example, it gives

rise to the constraints

M′′A(2m2) +M′′S(2m2)− 2M′′Adj(2m
2) = 0 , (2.89)

(N − 1)M′′A − (N + 1)M′′S(2m2) + 2M′′1(2m2) = 0. (2.90)

The �rst equation immediately implies M′′Adj(2m
2) > 0 and M′′A(2m2) +M′′S(2m2) > 0.

Solving the system (2.89) and (2.90) for M′′S,A(2m2), and plugging them back into (2.86)

and (2.87) we get

M′′A(2m2) +M′′S(2m2) > 0 , M′′Adj(2m
2) > 0 , M′′1(2m2) + (N − 1)M′′Adj(2m

2) > 0 .

(2.91)

These positivity constraints on the scattering amplitudes will be used in the next chapter

to derive positivity constraints on the Wilson coe�cients of a theory that respects SU(N)

and where the states transform like the fundamental and anti-fundamental representation.
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Chapter 3

Positivity constraints for fermions

In this chapter we extend the previous results about the positivity of scattering amplitudes

and Wilson coe�cients to the case of particles with spin. This task is non-trivial because

crossing symmetry is generically not just exchanging s ↔ u as it is for scalars in (2.23),

but it involves instead transformations on the polarizations of the external states and extra

overall signs for fermions. Despite these extra features for spinning particles, we show how

to obtain positivity constraints on scattering amplitudes, in the elastic forward limit, for

generic spins. Moreover, exteanding the work of [6], we apply these results to the speci�c

case of spin-1/2 fermions that carry fundamental and anti-fundamental representations of

SU(N) that we use in the next chapter when discussing composite pseudo-Goldstini that

are charged under the R-symmetry from an extended SUSY.

3.1 Crossing symmetry for spinning particles

3.1.1 Crossing one particle

Let us consider a multi-particle scattering process

ψp,σ,bX{ki,σi,ai} → Y{ko,σo,ao} (3.1)

represented in Fig. 1, where we single out a particle ψ that we are going to cross from the

initial to the �nal state. Here

• ψp,σ,b is a certain particle with four-momentum p, Lorentz little-group index1

σ (either spin or helicity depending whether it is massive or massless), and internal

index b that labels the state inside an irrep of an internal symmetry group carried by

the particle;

• X and Y stand for generic initial (apart from ψ) and �nal states respectively that

contain other spectator particles.

1We focus on pure states with de�nite quantum numbers. A more general discussion involving mixed

states with unpolarized particles can be found in [6].

37
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Fig. 1: Generic scattering process from an initial state in = {ψ + X} to a �nal state

out = {Y }.

Following the general LSZ reduction formula [11], the scattering amplitudes for the pro-

cess (3.1) are obtained by dotting the amputated Green functions (i.e. the Green functions

〈0|Tψβ a(y) . . . ψ†α b(x)|0〉 contracted with the inverse of the propagators of the external par-

ticles) with the wave-functions polarizations uσα of the incoming particles, as represented in

the upper part of Fig. 2. The resulting amplitude can be expressed in the form

M(ψp,σ,bX{ki,σi,ai} → Y{ko,σo,ao}) = Oα({ki, σi, ai}, {ko, σo, ao}, p, b) · uσα(p) (3.2)

where we have singled out for convenience the wave-function polarization uσα(p) for the

particle ψ. We use the usual de�nition for the wave-function polarizations: ψ annihilates

a particle and creates an anti-particle, whereas ψ† creates a particle and annihilates an

anti-particle

〈0|ψα b(0)|pσa〉 ∝ δabuσ(p) , 〈pσā |ψα b|0〉 ∝ δabvσα . (3.3)

Notice that we have not committed to any particular spin yet; the index α in uσα and vσα
is spinorial or Lorentzian depending on the Lorentz representation carried by the �eld ψ:

the trivial one for scalars, a two-component spinor index for Weyl fermions, a 4-component

spinor index for Dirac fermions, and a four-vector Lorentz index α = µ for vectors, . . .

The crossed process 2

X{ki,σi,ai} → ψ̄p̄,σ̄,b̄Y{ko,σo,ao} (3.4)

is obtained again by the LSZ reduction formula by dotting the amputated Green function

in momentum space with the wave-function polarization vσ̄α(p̄) of the outgoing anti-particle

M(X → Y ψ̄p̄,σ̄,ā) = ±Oα({ki, σi, ai}, {ko, σo, ao},−p̄, b)vσ̄α(p̄) (3.5)

as represented in Fig. 2. Crossing symmetry is the statement that Oα in (3.5) is the same

fuction that appears in (3.2) but evaluated at the unphysical momentum −p̄ (since −p̄ has
negative energy) given that the (anti-)particle now belongs to the �nal state. In practice,

the amputated Green function Oα has the same functional dependence on the kinematical

and internal variables except for the sign of the momentum for the crossed particles, since

2We denote with a bar over the internal indexes the states of anti-particles transforming under the complex

conjugate representation of the internal symmetry group. The bar over the spin and the momentum means

instead that we are provisionally considering generic spin and momentum for the anti-particle.
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Fig. 2: A single Green-function gives rise to several scattering processes where particles/anti-

particles move from/to the initial and �nal state, according to the LSZ reduction formula. In

the upper part we show schematically the scattering amplitudes for ψp,σ,bX → Y , obtained

by dotting the amputated Green function with the on-shell wave-function polarization uσ(p)

of the particle. In the lower part we show that the amplitude for the crossed process, where

the anti-particle carries opposite polarization σ̄ = −σ, arises from the the same amputated

Green-function evaluated in −p and contracted with v−σ ∼ uσ, see Eq. (3.6). The overall

sign is determined by the statistics of ψ. The lines with the blue dot in the middle represent

the external propagators.

in the LSZ reduction formula one has +k for incoming and −k for outgoing. Notice that,

besides the momentum �ip in O and the di�erent external wave-function polarizations, there

is also an overall sign which depends on the statistics of ψ: it is +1 for bosons and (−1)n for

fermions, where n is number of fermionic pair exchanges performed from the starting Green

function.

Notice that the particle/anti-particle wave-function polarizations dotted in the amputated

matrix elements are actually related via CPT invariance. For vector, Dirac, and left- or
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right-handed (massless) Weyl representation we have respectively 3

εσ ∗µ (p) = (−1)σε−σµ (p) , v±(p) = ∓γ5u∓(p) , v+
L (p) = u−L (p) , v−R(p) = u+

R(p). (3.6)

We �nd thus simple relations between the amplitudes by simply considering opposite helic-

ities in the crossed scattering, i.e. σ̄ = −σ as represented in the lower part of Fig. 2.

3.1.2 Crossing two particles

We are interested in a 2→ 2 scattering

1σ1
b1

2σ2
a2
→ 3σ3

b3
4σ4
a4

(3.7)

where the b's and a's are internal indexes and 1σ1
b1
≡ ψp1,σ1,b1 with the same notation as

before (analogously for the other particles). We are going to cross two particles: particle 1

from the initial to the �nal state, and particle 3 from the �nal to the initial state

3̄σ̄3

b̄3
2σ2
a2
→ 1̄σ̄1

b̄1
4σ4
a4
, (3.8)

looking provisionally to a generic kinematics with momenta p̄ and spin σ̄ for the crossed

particles. Using the results of the previous subsection for each crossed particles, we get the

following amplitudes

M(1σ1
b1

2σ2
a2
→ 3σ3

b3
4σ4
a4

) =
[
uσ4
α4

†(p4)uσ3
α3

†(p3)
]
Oα1α2
α3α4

(p1, p3, p2, p4, {b}, {a})
[
uσ1
α1

(p1)uσ2
α2

(p2)
]

(3.9)

M(3̄σ̄3

b̄3
2σ2
a2
→ 1̄σ̄1

b̄1
4σ4
a4

) = ±
[
uσ4
α4

†(p4)vσ̄3
α3

†
(p̄3)

]
Oα1α2
α3α4

(−p̄1,−p̄3, p2, p4, {b}, {a})
[
vσ̄1
α1

(p̄1)uσ2
α2

(p2)
]
.

(3.10)

These expression can be further simpli�ed in the forward scattering where the kinematics

of the initial and �nal state are the same

p1 = p3 , k2 = k4 , σ1 = σ3 , σ2 = σ4 , (3.11)

and analogous for the barred quantities. In this special kinematics the wave-function po-

larizations in (3.9) and (3.10) pair to actually form the matrix-elements of density matrices

(also called spin projectors, the same that appear in matrix elements squared when calcu-

lating cross-sections)

uσα(k)uσα′
†(k) ≡ ρσαα′(k), vσα(k)vσα′

†(k) ≡ ρ̃σαα′(k) , (3.12)

and (3.9), (3.10) become

M(1σ1
b1

2σ2
a2
→ 1σ1

b3
2σ2
a4

) = ρσ1
α1α3

(p1)Oα1α2
α3α4

(p1, k2, {b}, {a})ρσ2
α2α4

(p2) (3.13)

M(1̄σ̄1

b̄3
2σ2
a2
→ 1̄σ̄1

b̄1
2σ2
a4

) = (−1)2S ρ̃σ̄1
α1α3

(p̄1)Oα1α2
α3α4

(−p̄1, k2, {b}, {a})ρσ2
α2α4

(p2) (3.14)

3For a generic irreducible representation (A,B) of the Lorentz group SO(3, 1) × SU(2) × SU(2) where

A and B are positive half-integer numbers that label the irreps of (2A+ 1)(2B + 1) dimension, the relation

(3.6) becomes uσα(p) = (−1)2B+S+σv−σα (p) where S is the spin of the particle, see [6].
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respectively, see Fig. 3. The overall sign of the crossed process is determined by the spin S of

the crossed particles 1 and 3. Since the number of fermions in the amplitude must be even,

for a given ordering of the spectator states 2 and 4 there are necessarily an odd number of

particles exchanges, hence the overall (−1)2S factor from the statistics of the particles.

Fig. 3: We show schematically the action of crossing symmetry (3.10) that in the forward

limit reduces to (3.14) and then to simply s↔ u exchange, thanks to locality, as explained

in the main text.

The expressions (3.13) and (3.14) become more closely related to each other by choosing4

σ̄ = −σ because of the relations (3.6). We are also going to take the same physical 4-

momentum for the crossed particles: p̄i = pi. For simplicity let's consider �rst the massless

case:

M(1σ1
b1

2σ2
a2
→ 1σ1

b3
2σ2
a4

) = ρσ1
α1α3

(p1)Oα1α2
α3α4

(p1, k2, {b}, {a})ρσ2
α2α4

(p2) (3.15)

M(1̄−σ1

b̄3
2σ2
a2
→ 1̄−σ1

b̄1
2σ2
a4

) = (−1)2S ρσ1
α1α3

(p1)Oα1α2
α3α4

(−p1, k2, {b}, {a})ρσ2
α2α4

(p2) . (3.16)

Compared to the scalar forward scattering we are facing here a di�culty since the 4-

momentum is reversed in the crossed process only inside the amputated Green-function

but not in the external wave-function polarizations which are a priori function of three-

momentum p only, and not the 4-momentum p = (p0,p). Moreover, there is an extra minus

sign for fermions that are exchanged under crossing. In other words, crossing symmetry

does not look, at �rst sight, as simple as exchanging p1 ↔ −p3 = −p1 nor s ↔ u. But

in fact there is more than meet the eyes. The density matrix can be indeed uniquely ex-

tended analytically to a function ρ(p) of the whole 4-momentum p with de�nite parity under

re�ection

ρ(p) = (−1)2Sρ(−p) . (3.17)

This can be directly checked on the generic expression of ρ(p) for arbitrary massless spins

that have been calculated long ago by Weinberg [14, 15, 11]. For example, for a massless

spin-1/2 particle we have

ρ−(p) = u−(p)u−
†
(p) = v+(p)v+†(p) = ρ̃+(p) = pµσ

µ . (3.18)

4Actually, for massless particles this is not a choice: the anti-particle can carry only the opposite helicity

than its particle.
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which is a linear, odd, monomial of the 4-momentum, whereas for a massless spin-1 one

can always choose the gauge with ρ±µν = −ηµν which is constant, hence trivially even in the

4-momentum. More generally, it is locality that requires (3.17) to hold true. One quick way

to see this is realizing that the analytically continued density matrices with de�nite parity

for massless particles have to exist since they are nothing but the numerators of the Lorentz

covariant version of the propagators [11, 12]

〈0|Tψα1(x1)ψ†α2
(x2)|0〉 =

∫
d4k

(2π)4
e−ik(x1−x2) iρα1α2(k)

k2 − iε
= (−1)2S〈0|Tψ†α2

(x2)ψα1(x1)|0〉

(3.19)

= (−1)2S

∫
d4k

(2π)4
e−ik(x1−x2) iρ̃α1α2(−k)

k2 − iε
. (3.20)

Locality implies the spin-statistic theorem for which fermions have half-integer spin and anti-

commute, hence the second equality in (3.19), which can be expressed as in (3.20) implying

therefore the relation (3.17). Another way to reach the same conclusion is by looking at the

commutator or anti-commutator of two �elds at equal times and requires that it vanishes

for x1 6= x2, as required by locality.

The case of massive integer spins works similarly, e.g. ρµν = −gµν + pµpν/m
2 for a spin-1,

which is an even function of the 4-momentum as it is claimed. The massive Dirac fermions

are slightly more complicated because the representation is reducible, (1/2, 0) ⊕ (0, 1/2),

which is re�ected in the presence of a γ5 in (3.6). Nevertheless, by direct inspection of the

Dirac density matrices

ρσ(k) = uσ(k)uσ†(k) = (/k +m)
1 + γ5/aσ(k)

2
γ0 (3.21)

ρ̃σ(k) = vσ(k)vσ†(k) = (/k −m)
1− γ5/a−σ(k)

2
γ0 (3.22)

where aσµ(k) = −aσµ(−k) is the (analytically continued) polarization 4-vector [6, 31], one sees

that indeed ρ̃−σ(k) = γ5ρσ(k)γ5 = −ρσ(−k).

All in all, the crossed amplitudes can be obtained for spinning particles, in the forward limit,

simply by �ipping the spin, taking the complex conjugate representation of the internal quan-

tum numbers, and reversing the 4-momentum not only in the amputated Green-functions

but also in the (analytically continued) wave-function polarizations. Expressing the ampli-

tudes in terms of Mandelstam variables at t = 0, crossing symmetry corresponds thus to the

following statement:

M(1σ1
b1

2σ2
a2
→ 1σ1

b3
2σ2
a4

)(s) =M(1−σ1

b̄3
2σ2
a2
→ 1−σ1

b̄1
2σ2
a4

)(u) (3.23)

which is almost identical to expression (2.23) that holds for particles without spin. We

remark once more that this relation on the amplitudes is true only for the special kinematical

con�guration of the forward scattering.
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3.2 The crossing matrix for spinning particles

Given that the crossing relation (3.23) in the complex s-plane at t = 0 di�ers from the one

for scalars (2.23) just because of the spin �ip, the crossing matrix relations are also very

similar. Indeed, we are considering only internal symmetries which do not act on the spin

indexes that are inert under the internal transformations. The decomposition in irreps inside

N⊗N and N⊗N works exactly as for scalars, producing i.e. eigen-amplitudes M̂σ1σ2 and

M̃−σ1σ2 respectively, up to �ipping the spin in the crossed channel. Therefore, Eq. (2.30)

and (2.34) read now

M̂σ1σ2(s) = X1M̃−σ1σ2(u) M̃−σ1σ2(u) = X2M̂σ1σ2(s) , (3.24)

where the crossing matrices Xi are given by the same expression (2.31) and (2.33), enjoying

thus all their geometric properties.

Again as in (2.45), it is convenient to de�ne the general crossing involutory matrix X

X =

(
0 X1

X2 0

)
(3.25)

that acts on the master eigen-amplitudeM

M≡

(
M̂σ1σ2

M̃−σ1σ2

)
(3.26)

as

M(s) = XM(u) M(u) = XM(s) . (3.27)

3.3 Positivity bounds for fermions

Positivity bounds can be obtained now for fermions following the same steps that we dis-

cussed in the previous chapter for scalars, yielding again the twice subtracted dispersion

relation (2.63), the crossing constraint (2.64), the positivity (2.67), and the optimal bounds

(2.74). We restrict for de�niteness and simplicity to the case of scattering amplitudes for

massless fermions which always have the same analytic structure of the amplitudes for

scalars5, i.e. as in Fig.2 with no light poles and sIR → 0 in the massless limit.

To derive positivity bounds, we make use of the dispersion relations (2.63) and consider a

theory that starts with dimensional-8 operators for four massless fermions6.

5There may exist some extra IR branch-cuts of �nite extension of the type
√
s(s− 4m2) that is coming

from the discontinuities of the wave-function polarizations, but only in certain parity-violating theories for

massive fermions as discussed in [6]. Being �nite in extension and residing in the IR, they pose actually

no real problem and positivity conditions can be derived as well [6], although the discussion becomes more

involved. The e�ect of these extra IR branch-cuts is e�ectively very small and disappears in the massless

limit.
6Should we start with lower dimensional operators the dispersion relation would not be IR convergent,
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3.3.1 Positivity for fermions in the fundamental of SU(N)

More speci�cally, we consider the SU(N) invariant e�ective theory that besides the kinetic

terms for the massless fermions starts with

L = c1O1 + c2O2 + c3O3 + c4O4 (3.28)

where

O1 = ψ̄a∂µχ̄b∂
µχaψb , (3.29)

O2 = ψ̄a∂µχ̄b∂
µχbψa , (3.30)

O3 = ψ̄aχ̄b∂µχ
a∂µψb + h.c. , (3.31)

O4 = ψ̄aχ̄b∂µχ
b∂µψa + h.c. , (3.32)

The spinor contractions with dotted and undotted greek indexes in the 2-component notation

of [17], e.g. O1 = ψ̄a α̇∂χ̄
α̇
b ∂χ

a βψbβ , are left understood whenever clear. The lagrangian L in

(3.28) is the most general EFT, up to Fierz identities and �eld rede�nitions, that involves

two Weyl fermion species χ and ψ which transform under the fundamental representation

N of SU(N), and that contains two derivatives. We can compute the forward scattering

amplitude

M(ψaσ1
(p1)χbσ2

(p2)→ ψcσ1
(p1)χdσ2

(p2)) =M3 +M4 (3.33)

where we wrote explicitly the contributions to the amplitude which come from the operators

O3 andO4 (the contributions ofO1 andO2 vanish in the forward limit). Using the expression

of the density matrices (3.12) we obtain the amplitudes for polarized Weyl fermions

iM3
(σ1σ2)
ab→cd = −is c3δ

a
dδ
b
cε
α̇β̇εαβρσ1

αα̇(p1)ρσ2

ββ̇
(p2) (3.34)

iM4
(σ1σ2)
ab→cd = −is c4δ

a
c δ
b
dε
α̇β̇εαβρσ1

αα̇(p1)ρσ2

ββ̇
(p2). (3.35)

Since the particles are massless they carry de�nite helicity, say σ1,2 = −, and therefore

ρ−αα̇(p) = pµσ
µ
αα̇ and εα̇β̇εαβρ−

ββ̇
(p) = pµ(σ̄µ)α̇α. Using Tr[σµσ̄ν ] = 2ηµν we get

M3
(−−)
ab→cd = −c3δ

a
dδ
b
cs

2 (3.36)

M4
(−−)
ab→cd = −c4δ

a
c δ
b
ds

2 (3.37)

and therefore

M(−−)
ab→cd = −s2(c3δ

a
dδ
b
c + c4δ

a
c δ
b
d) . (3.38)

in the strict massless limit. For example, the interaction (ψ̄ψ)2/Λ2 produces an amplitude which behaves

as ImM(s → 0) ∼ s2/Λ4 which is not enough to grant the IR convergence of (2.62) for m2 = µ2 = 0 with

n = 2. We recall that n = 1, which would yields an IR convergent dispersion relation, is no longer necessarily

UV convergent; moreover, the integrand for n = 1 (or odd in generality) is not necessarily positive de�nite

even for a UV convergent theory [2].
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We can decompose the amplitude in eigen-amplitudes inside N⊗N using (2.20) and (2.25)

M(−−)
ab→cd =

∑
I∈Y

[
P̂I

]ab
cd
M̂(−−)

I (3.39)

whereas the crossed eigen-amplitudes in N⊗N are obtained by the exchanging a↔ c̄ and

using (2.26)

M(+−)
c̄b→ād =

∑
I∈Z

[
P̃I

]ab
cd
M̃(+−)

I . (3.40)

We collect the the eigen-amplitudes in the vector

M(s) ≡


M̂(−−)

A (s)

M̂(−−)
S (s)

M̃(+−)
1 (s)

M̃(+−)
Adj (s)

 (3.41)

Because of crossing symmetry

M(+−)
c̄b→ād(−s) =M(−−)

ab→cd(s) (3.42)

we see thatM(−−)
ab→cd(s) is enough to derive the positivity bounds. In order to do so, we use

the projectors (2.78)÷(2.81) together with

1

dimI

∑
abcd

[
P̂I

]ab
cd

[
P̂J

]cd
ab

= δIJ ,
1

dimI

∑
abcd

[
P̃I

]ab
cd

[
P̃J

]cd
ab

= δIJ (3.43)

In this way, we get the eigen-amplitudes (the sum over the SU(N) indices is understood)

M̂(−−)
A (s) =

2

N(N − 1)

[
P̂A

]ab
cd
Mab→cd(s) = s2(c3 − c4) (3.44)

M̂(−−)
S (s) =

2

N(N + 1)

[
P̂S

]ab
cd
Mab→cd(s) = −s2(c3 + c4) (3.45)

M̃(+−)
1 (s) =

[
P̃1

]ab
cd
Mc̄b→ād(s) = −s2(Nc3 + c4) (3.46)

M̃(+−)
Adj (s) =

1

N2 − 1

[
P̃Adj

]ab
cd
Mc̄b→ād(s) = −s2c4 (3.47)

and hence, using the inequality (2.91), we get from (3.44) and (3.45)

c4 ≤ 0, c3 + c4 ≤ 0 . (3.48)

Incidentally, these bounds happen to be the same than those that one would obtain by using

the positivity (2.67) for each pair of �avor a = b or a 6= b in the ordinary amplitude, namely

M(−−)′′
ab→cd(0) = −2(c3δ

a
b + c4) ≥ 0 . (3.49)

In conclusion, there is no UV completion that gives rise to O1 and O3 with negative Wilson

coe�cients. Moreover, the inequality is saturated only for the free theory.
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Chapter 4

Composite quarks and

pseudo-Goldstini at the LHC

An EFT is a theory with a limited range validity but which is very e�ective in capturing the

low-energy features of phenomena below a certain energy cuto� Λ. 1 The associated e�ective

Lagrangian is an in�nite tower of operators Oi of increasing dimension ∆i = dimOi,

LEFT =
∑
i

ci
Λ∆i−4

Oi , (4.1)

where ci are the so-called Wilson coe�cients. Despite the in�nite number of operators

and Wilson coe�cients, EFT's are predictive for E � Λ because only a �nite number of

operators a�ect appreciably (that is above the �xed experimental resolution) the value of

low-energy observables. For E ∼ Λ, in�nitely many terms become important and the theory

should be superseded by a UV completion or another EFT that includes the new degrees of

freedom that start propagating at around Λ.

In a generic setup where all Wilson coe�cients are sizeable, one expects by dimensional

analysis that higher dimensional operators contributing to a certain process become quickly

less important in the IR than the lower dimensional operators that contribute to the same

process for E � Λ. Generically, one can thus truncate the in�nite tower of operators to

the lowest dimensional ones in the IR. However, symmetries can forbid or suppress certain

Wilson coe�cients so that the would-be leading lower dimensional operators may actually be

dominated by some higher dimensional operator at intermediate energy, i.e. still below the

cuto�, consistency with the EFT expansion. In this chapter we are going to see precisely an

example of such a sort, where marginal and dim-6 operators that enter in 2-to-2 scattering

of fermions have suppressed Wilson coe�cients, so that the amplitude is actually dominated

by dim-8 operators, hence scaling as E4 for E larger than any IR scale but still well below

the cuto� Λ. For those dim-8 operators we can apply the positivity conditions that we have

derived on a �rm theoretical ground in the previous chapters. The set of rules, symmetries,

1We are focusing on relativistic EFTs for particles only, for an introduction see e.g. [19]. The general

ideas of EFT have actually found applications in a much wider range of subjects and �elds.

47
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and spurions that determine which operator enters with a sizeable Wilson coe�cient versus

those which are suppressed are known as �power counting�. For de�niteness in the following

we adopt the one-coupling one-scale power counting of composite Higgs models, although

several of the results that we present actually extend beyond that framework.

4.1 Power counting and composite dynamics

Strongly-coupled models of the electroweak symmetry breaking and the Higgs sector provide

a solution to the hierarchy problem of the SM. Inspired by the power counting of the chiral

Lagrangian in QCD and by holographic dual models, the dynamics of the states that emerge

from these strong sectors is usually assumed to be broadly described by a simple one-coupling

(g∗) one-scale (Λ) power counting [20]

LC =
Λ4

g2
∗
L̂C
[
∂

Λ
,
g∗σ

Λ
,
g∗χ

Λ3/2

]
. (4.2)

where L̂C is a dimensional function that can be taylor expanded in its arguments with O(1)

coe�cients. This power counting encompasses the naive dimensional analysis (NDA) of fully

strongly coupled sectors with g∗ ∼ 4π like in QCD [19, 21], and the moderate coupling limit

g∗ ∼ O(1). The σ and χ �elds in (4.2) represent generic composite spin-0 and spin-1/2

resonances, respectively. However, particular resonances can enjoy extra selections rules

dictated by symmetries that forbid certain interactions.

For example, the 2→ 2 scattering among generic scalar resonances would giveM∼ g2
∗, e.g.

from a marginal operator g2
∗σ

4. But should the scalar resonances be composite Goldstone

Bosons (GB) π emerging from a symmetry broken spontaneously by the strong sector, we

know that the amplitudes should actually be dependent on the momentum, as the GBs

are derivatively coupled. This means that GBs interactions come from higher dimensional

operators that requires at least two extra derivatives, schematically of the type g2
∗∂

2π4/Λ2,

giving rise to the desired scaling at leading orderM ∼ g2
∗E

2/Λ2. Should the spontaneosly

broken symmetry be approximate, the π would actually be pseudo-GBs and admit a potential

schematically of the type ε2
(
g2
∗π

4 + Λ2π2 + . . .
)
. The spurion ε � 1 that slightly breaks

the symmetry generates thus lower dimensional operators which, being less irrelevant that

the symmetry preserving interactions, change the amplitude in the deep IR,

M∼ g2
∗ε

2 + g2
∗
E2

Λ2
. (4.3)

But for intermediate energy above the IR and yet below the cuto�

εΛ� E � Λ (4.4)

the amplitude is still dominated by the irrelevant higher dimensional operator,

M(εΛ� E � Λ) ∼ g2
∗E

2/Λ2 , (4.5)
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within the validity of the EFT. In Composite Higgs model where the Higgs boson is one of

the GB's of the strong sector, the spurion ε is provided by the ratio of couplings ε = gSM/g∗
where gSM is a gauge coupling or a Yukawa coupling. 2

The lesson to be drawn from this speci�c example is in fact quite general: higher dimensional

operators may dominate lower dimensional ones because of selection rules that require to go

high enough in operator dimension to construct a singlet under the symmetry. In the case

of the GBs one had to add at least two extra derivatives because of the GB shift symmetry;

see e.g. [9, 22] for other explicit examples. In the next sections we show that the same may

happen for other resonances of the strong sector, and we discuss in detail the case of the

Goldstone fermion of SUSY, the Goldstino. The leading interactions for a Goldstino do no

start at dim-6 with (χ†χ)2-type of 4-fermion interaction as one could naively expect for a

generic spin-1/2 resonance, but rather at dim-8 as the fermionic shift symmetry from SUSY

breaking requires two extra derivatives to be inserted, schematically χ†χ†∂2χ2.

Fig. 1: Cartoon of the partial compositeness framework where states from a weakly coupled

elementary sector mix linearly with composite resonances of a strongly coupled sector.

Beside composite particles of the strong sector there are also elementary particles, for ex-

ample the transverse gauge bosons, that we need to include in the EFT in the IR. In order

to couple them consistently to the strong sector, the latter must contain currents Jµi asso-

ciated to the SM symmetry group. Essentially, the strong sector must have a su�ciently

large symmetry group G to include SU(3)×SU(2)×U(1); the associated currents are thus

weakly gauged by coupling the currents to the elementary gauge �elds

Lg,mix = giA
i
µJ

µ
i . (4.6)

Since the currents of the strong sector will generically produce spin-1 resonances acting on

the vacuum, 〈0|Jµ(0)|p, σ〉 ∝ εσµ(p), the Lagrangian (4.6) represents a mixing between the

2In composite Higgs models, in contrast to pions of QCD that get a tree-level potential from the insertion

of Yukawas, the potential is actually further suppressed because it is generated at one-loop.
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spin-1 resonances and the elementary ones, the angle of the mixing being controlled by

εi = gi/g∗ . Analogously, a spin-1/2 �eld ψ of the elementary sector can source a spin-1/2

operator OF of the strong sector

Ly,mix = λψ̄OF (4.7)

which generates spin-1/2 resonances χ when acting on the vacuum, 〈0|OF (0)|p, σ〉 ∝ uσ(p).

The Lagrangian (4.7) represents again a linear mixing controlled by ε = λ/g∗ between

elementary and composite states ψ and χ respectively. Since the physical states are a mixture

of the particles in the two sectors, this scenario is known as �partial compositeness�. The

physical states inherit couplings from both sector upon insertions of the ε's. For example,

4-fermi interactions that are present for the resonance χ of the strong sector generate in

turn 4-fermion interactions for the physical state, although containing 4 insertions of ε's. In

the regime where λ/g∗ � 1, the fermion ψ couples very weakly to the strong sector and it is

thus mostly elementary, the 4-fermion interaction being strongly suppressed. On the other

hand, for λ/g∗ ∼ 1, the fermion as O(1) mixing and becomes part of the strong sector, it is

i.e. (almost) fully composite and it enjoys unsuppressed 4-fermion interactions. When this

happens we can drop the distinction from ψ and χ and use just a single letter χ.

Since the couplings of the elementary gauge �elds Aµ and matter �elds ψ to the strong

sector pass only through gi and yi, the e�ective Lagrangian is summarized, apart from extra

selection rules, by the following scaling

LEFT =
Λ4

g2
∗
L̂EFT

[
∂

Λ
,
g∗σ

Λ
,
g∗χ

Λ3/2
,
g

Λ
Aµ,

λL,R

Λ3/2
ψL,R

]
+ Lelem.(Aµ, ψ) , (4.8)

where Lelem. contains the kinetic term and the weak interactions of the elementary sec-

tor. Notice that the strong sector produces corrections to the elementary kinetic terms of

O(λ2/g2
∗) or O(y2/g2

∗). We should also mention that, given a leading operator to a certain

process, the insertion of extra derivatives or �elds sitting at their VEVs, produces small

corrections suppressed by

k2
v =

(g∗v
Λ

)2
, k2

E =

(
E

Λ

)2

. (4.9)

4.2 Constraints on dim-8 four-fermion operators

Let us specialize now to the 2 → 2 scattering of fermion �elds. The amplitude, due to SM

interactions and dim-6 four-fermion operators, goes approximately as

M(χχ→ χχ) ∼ g2
SM +

g2
∗E

2

Λ2
(4.10)

at energy well above the fermion and gauge boson masses. 3 We are assuming that the

fermion mix almost maximally with the strong sector, i.e. ψ ∼ χ is essentially fully com-

posite, so that the insertions of ε = y/g∗ can be omitted in the 4-fermion vertex. We are

3This scaling is simply understood by dimensional analysis: each fermion wave-function for E � m goes

like
√
E, while the gauge boson propagators go as 1/E2 above its mass.
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also provisionally assuming that these dim-6 operators are unsuppressed by symmetries of

the strong sector; we will relax this assumption later.

Since g∗ � gSM , in the validity range of the e�ective theory E < Λ, the contributions of the

higher-dimensional operator can beat the SM gauge coupling and dominate the amplitude

for (
gSM
g∗

)
× Λ < E < Λ . (4.11)

This is no surprise since irrelevant operators grow with energy and can eventually beat

marginal operators (such as the gauge interactions) within the validity of the EFT because

the gauge coupling is small compared to g∗. Adding the contribution from dim−8 operators

(with two more derivatives) does not change anything in this picture

M(χχ→ χχ) ∼ g2
SM +

g2
∗E

2

Λ2
+
g2
∗E

4

Λ4
(4.12)

since they are always subdominant to the dim-6 for E < Λ, given that both dim-6 and dim-8

Wilson coe�cients are unsuppressed.

But let's suppose now that for because of a symmetry, or some dynamical reasons, the dim-6

four-fermion operators from the strong sector are actually suppressed by a small spurion ε

M(χχ→ χχ) ∼ g2
SM + ε2

g2
∗E

2

Λ2
+
g2
∗E

4

Λ4
+ . . . (4.13)

In this case the dim-8 operators dominate the amplitude within the range of the EFT

max{εΛ ,
√
gSM/g∗Λ} < E < Λ (4.14)

while even higher dimensional operators are still suppressed.

Through the remainder of this chapter we will assume precisely this latter scenario where

(some or all) dim-6 operators of four-fermion interactions are suppressed, while dim-8 four-

fermion operators with two extra derivatives dominate the amplitude at high enough energy,

but still below the cuto� such that our EFT approach is valid. We will assume that some

of the quarks of the SM are fully composite, i.e. they mix by an O(1) factor with the

fermions of the strong sector, inheriting the unsuppressed 4-fermion interactions with two

derivatives. We will be agnostic about the precise dynamics or symmetry that forbids the

dim-6 operators, although we provide an explicit example of symmetry of the strong sector

that does so. It is a spontaneously broken extended N -SUSY where the composite fermions

are (pseudo-)Goldstini protected by a fermionic shift symmetry

χ(x)→ χ′(x) = χ(x) + ξ − vµ(ξ, χ)∂µχ(x) + . . . (4.15)

where vµ(ξ, χ) = i
(
ξσµχ† − χσµξ†

)
, as discussed in detail in the appendix D. The SM as

composite pseudo-Goldstini is actually a hold idea by Bardeen and Visnjic [23] that was

recently invoked in [9] in the context of composite Higgs models. We revive this idea and

make it more concrete by comparing a simple realization against the LHC data.
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In Tab. 4.1, we list the expressions of dimension-8 operators involving four Weyl fermions

based on the symmetry they respect4. The SU(NC)×SU(NF ) is eventually identi�ed with

the color and �avor group carried by χ.

U(1) U(1)× SU(N) U(1)× SU(NC)× SU(NF )

(∂χ†)χ†(∂χ)χ ∂µχ̄aχ̄b∂
µχaχb ∂χ†

α
aχ
†β
b ∂χ

a
αχ

b
β

∂µχ̄aχ̄b∂
µχbχa ∂χ†

α
aχ
†β
b ∂χ

a
βχ

b
α

∂χ†
α
aχ
†β
b ∂χ

b
αχ

a
β

∂χ†
α
aχ
†β
b ∂χ

b
βχ

a
α

Table 4.1: Dim-8 operators involving massless right-handed Weyl fermions charged under

the fundamental or bi-fundamental representation of the symmetries listed in the headlines.

We use the two-component spinor notation with spinor indexes not displayed, χ†χ† = χ†α̇χ
†α̇

, χχ = χαχα. The Lorentz indexes of the derivatives are contracted between each other and

not displayed. We use upper(lower) indexes χ ≡ χa (χ† = χa) for the (anti-)fundamental of

SU(N). Greek and Latin letters label SU(NC) and SU(NF ) indexes respectively.

4.2.1 Positivity bounds

As a concrete example, we identify χ with a fully composite right-handed down-type quark

dR which carries two SU(3) indexes, �avor and color, on top of the hypercharge. As we

stressed above, we assume that dim-6 four-dR operators are suppressed, either by dynamics

or symmetry, (e.g. an extended SUSY, see appendix D and Eq. D.66).

The independent hermitian dim-8 operators are

O(8)
1 = ∂d̄R

α
a d̄R

β
b ∂dR

a
αdR

b
β (4.16)

O(8)
2 = ∂d̄R

α
a d̄R

β
b ∂dR

a
βdR

b
α (4.17)

O(8)
3 = ∂d̄R

α
a d̄R

β
b ∂dR

b
αdR

a
β (4.18)

O(8)
4 = ∂d̄R

α
a d̄R

β
b ∂dR

b
βdR

a
α (4.19)

where Greek and Latin letters stand for color and �avor indexes respectively, and the e�ective

Lagrangian takes the form

Leff = LSM +
∑
i

gi
Λ4
O(8)
i . (4.20)

The amplitude of a generic scattering is is5

M(−−)ab,αβ

cd,γδ = 〈4− (d δ)3− (c γ)|M|1− (aα)2− (b β)〉 (4.21)

4A sketched derivation of this list is given in the Appendix B.
5We recall the notation (2.12) which gives the position of the indexes in the amplitude. For instance

〈2− (d δ)| transforms as a tensor T of SU(3)C × SU(3)F with components Tcd,γδ whereas 〈2− (d δ)1̄+ (ā ᾱ)| as
T a ,α
d, δ.
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and it reads

M(−−)ab,αβ

cd,γδ = u†
α̇
(p4, σ)u†α̇(p3, σ)uσ(p1, σ)uσ(p2, σ) [M1 +M2 +M3 +M4] (4.22)

where we are omitting the indexes in the r.h.s. and the polarization is �xed, say σ = − (for

dcR), giving rise to

M1 = −g1

(
t · δαγ δ

β
δ δ

a
c δ
b
d + u · δαδ δβγ δbcδad

)
(4.23)

M2 = −g2

(
t · δαδ δβγ δac δbd + u · δαγ δ

β
δ δ

b
cδ
a
d

)
(4.24)

M3 = −g3

(
t · δαγ δ

β
δ δ

a
dδ
b
c + u · δαδ δβγ δbdδac

)
(4.25)

M4 = −g4

(
t · δαδ δβγ δadδbc + u · δαγ δ

β
δ δ

b
dδ
a
c

)
. (4.26)

In the elastic forward limit p1 = p3 = p, p2 = p4 = k, we can apply the positivity bounds

we derived for fermions transforming in the fundamental of SU(N) in section (2.6) In this

limit, the wave-function polarization can be written in terms of the density matrix (3.12)

u†
α̇
(k, σ)u†α̇(p, σ)uσ(p, σ)uσ(k, σ) = ρ−(p)σα̇ε

σβεα̇β̇ρ−(k)ββ̇. (4.27)

Then, setting t = 0 and replacing (4.27) in (4.22), the amplitude becomes

M = s2
[
δac δ

b
da1 + δadδ

b
ca2

]
(4.28)

where

a1 = +g4δ
α
γ δ

β
δ + g3δ

α
δ δ

β
γ (4.29)

a2 = +g2δ
α
γ δ

β
δ + g1δ

α
δ δ

β
γ . (4.30)

We can decompose the amplitude in eigenamplitudes respect to the �avor group SU(NF )

using the projectors (2.78)÷(2.81). Indeed, the amplitude of the process can be written as

M(−−)ab,αβ

cd,γδ =
∑
I∈Y

[
P̂I

]ab
cd

[
M̂

(−−)
I

]αβ
γδ

(4.31)

whereas, exchanging 1↔ 3 in the forward limit we get the crossed amplitudeM(+−)ab,αβ
cd,γδ =

〈2− (d δ)1̄+ (ā ᾱ)|M|3̄1〉+ (c̄ γ̄)
2− (b β) which can be decomposed as

M(+−)ab,αβ

cd,γδ =
∑
I∈Z

[
P̃I

]ab
cd

[
M̃

(+−)
I

]αβ
γδ
. (4.32)

By crossing symmetry, M(+−)ab,αβ
cd,γδ (−s) = M(−−)ab,αβ

cd,γδ (s) in the forward limit, and since

(4.2.1) is an even function of s, we can extract the eigen-amplitudes from M(−−)ab,αβ
cd,γδ (s).

The completeness relations in the �avour space

1

dimI

∑
abcd

[
P̂I

]ab
cd

[
P̂J

]cd
ab

= δIJ ,
1

dimI

∑
abcd

[
P̃I

]ab
cd

[
P̃J

]cd
ab

= δIJ . (4.33)
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allow us to extract the eigen-amplitudes6. To avoid clutter of notation, in the following we

omit the tilde and the hat over the amplitudes (and then the projectors) since the irrep

index labels uniquely the components of the master eigen-amplitude

M(s) ≡


M̂(−−)

A (s)

M̂(−−)
S (s)

M̃(+−)
1 (s)

M̃(+−)
Adj (s)

 (4.34)

where we are again omitting the color indexes.

MA =
2

N(N − 1)
[PA]abcdM

cd
ab = s2(a1 − a2) (4.35)

MS =
2

N(N + 1)
[PS]abcdM

cd
ab = s2(a2 + a1) (4.36)

M1 = [P1]abcdM
cd
ab = s2(Na1 + a2) (4.37)

MAdj =
1

N2 − 1
[PAdj]

ab
cdM

cd
ab = s2a2. (4.38)

Applying now the general positivity bound (2.91) we get the constraints

a1 ≥ 0 a2 ≥ 0 . (4.39)

Setting α = γ 6= β = δ we extract the positivity bounds for g4 and g2 whereas setting

α = δ 6= β = γ we constraint g1 and g3

g1 ≥ 0, g2 ≥ 0, g3 ≥ 0, g4 ≥ 0 . (4.40)

This result matches the positivity condition found in [6] for a = b = c = d and α = β = γ = δ

with the identi�cation χ = dR.

4.3 Dijets analysis

The goal of this section is twofold. First, we want �rst derive the exclusion region on the

parameter space of dim-8 four-fermion operators using the data from the experiments at the

LHC. Second, we want to determine the quantitative impact of the positivity constraints on

those experimental bounds. This will be done by studying the dijets angular distribution

at
√
s = 13 TeV measured at LHC by ATLAS [24]. We thus we need to say something

about the interactions of the other quarks that can signi�cantly a�ect the LHC analysis for

pp→ jj that we use. We impose a �avor symmetry

GF = U(3)qL × U(3)dR × U(3)uR (4.41)

6Notice that the sum over the SU(N) indices is understood and we do not write the color indexes which

are included in the de�nition of a1 and a2.
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which rotates the three left-handed qL doublets, the three right-handed down-type and up-

type quarks. This symmetry is obviously broken by the Yukawa couplings of the SM, that is

their masses, but we assume it is respected by the strong sector. The bounds will be placed

using events with large momentum transferred compared to the masses of the quarks that

can thus be neglected. Notice that, while dR is taken fully composite, we haven't committed

yet to a particular choice of degree of compositeness of the qL and uR. For a sizable fraction

of compositeness of the quarks other than dR, we will need to include also dim-6 four-fermion

operators involving them.

We study the angular distribution of dijets processes pp → jj at LHC, which allows to

probe the size of four-quark contact interaction [25],[26],[27],[28]. We will closely follow the

strategy put forward by [29] but using the analysis of [26].

The process is dominated by QCD interactions which may interfere with the higher-dimension

operators that are generated by the strong sector. Since we are after operators that grow

with energy, we look at the events with pretty high dijets invariant mass7, in the range

[3.4TeV, 4.0TeV]. In this range of energy, the SM gives(
σ(uū→ uū)

σ(uu→ uu)

)
SM

' 0.04

(
σ(uc→ uc)

σ(uu→ uu)

)
SM

' 0.02 ,

(
σ(gg → gg)

σ(uu→ uu)

)
SM

' 0.35 ,

(4.42)

so that the the dominant contributions in pp → jj come from uu, dd, du, gg initial states.

Initial states involving other quark families are suppressed as well. As example, we show in

Fig.2 the MSTW2008NNLO PDFs for each quark (anti-quark) �avour at the factorization

scale 3.4 TeV. The contribution from gg does not receive contribution from the operators

of the strong sector that we want to bound, it is purely QCD and does not interfere at

tree-level with the BSM sector.

Processes with di�erent quark families in �nal states such as uu→ ss do not arise by four-

fermion interaction thanks to the �avour symmetry.

The dimension-6 operators involving only the relevant quarks from the �rst family are [29]8

O(6)
uu = (ūRσ̄

µuR)(ūRσ̄µuR) (4.43)

O(6)
qq = (q̄Lσ̄

µqL)(q̄Lσ̄µqL) (4.44)

O(6)
qu = (q̄Lσ̄

µqL)(ūRσ̄µuR) (4.45)

Q(6)
qq = (q̄Lσ̄

µTAqL)(q̄Lσ̄µT
AqL) (4.46)

Q(6)
qu = (q̄Lσ̄

µTAqL)(ūRσ̄µT
AuR) (4.47)

where qL = (uL, dL) and TA are the generators of SU(3)C .

The relevant dimension-8 operators involving right-handed down-type quarks are those in

7The dijets invariant mass mjj is the characteristic energy of the partonic process, mjj =
√
ŝ where ŝ is

the partonic Mandelstam variable. These kinematical variables will be de�ned later.
8Contrary to [29], we construct the operators using Weyl spinors.
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Fig. 2: Parton distribution functions fqi(x) plotted respect to the momentum fraction carried

by the parton qi at the factorization scale
√
Q = 3.4TeV.

(4.16)÷(4.19) that we write again

O(8)
1 = ∂d̄R

α
a d̄R

β
b ∂dR

a
αdR

b
β (4.48)

O(8)
2 = ∂d̄R

α
a d̄R

β
b ∂dR

a
βdR

b
α (4.49)

O(8)
3 = ∂d̄R

α
a d̄R

β
b ∂dR

b
αdR

a
β (4.50)

O(8)
4 = ∂d̄R

α
a d̄R

β
b ∂dR

b
βdR

a
α. (4.51)

In Fig.3 we show an example of the partonic processes we are interested in. All physical

quantities at partonic level are given in terms of the partonic Mandelstam variables which

are de�ned by the momenta carried by partons inside the protons

ŝ = (k1 + k2)2 = (k3 + k4)2, (4.52)

t̂ = (k1 − k3)2 = (k2 − k4)2 (4.53)

û = (k1 − k4)2 = (k2 − k3)2. (4.54)

In pp collisions, QCD contributes mainly with a t-channel gluon exchange, giving rise to a

di�erential cross-section which grows approximately as(
dσ̂

dt̂

)
QCD

∝ α2
s

t̂2
(4.55)

where t̂ = −ŝ/2(1− cos θ̂), θ̂ being the scattering angle in the collision center of mass frame.

Since in general the center of mass frame of the parton-parton scattering is boosted respect

the collision one, it is convenient to describe the processes using kinematical variables which

transform fairly well under longitudinal boosts. For massless particles, one of these variables
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Fig. 3

is the rapidity y which is addictive under boosts along the beam axis. The de�nition of

rapidity is

y =
1

2
ln

(
E + pz
E − pz

)
(4.56)

where the pz is the particle momentum component along the beam line. The rapidity is

used to de�ne another variable χ which is useful to study the angular distribution of dijets,

χ = e|η1−η2| = e2|η∗| where η1,2 are the pseudorapidities (or rapidity in the massless limit)

of the two leading jets and η∗ = (η1 − η2)/2. The variable χ can be expressed also in terms

of the scattering angle θ̂ as

χ =
1 + | cos θ̂|
1− | cos θ̂|

' 1

1− | cos θ̂|
∝ ŝ

t̂
(4.57)

Under this approximation the di�erential cross-section (4.55) behaves as(
dσ̂

dχ

)
QCD

∝ α2
s

ŝ
(4.58)

for �xed ŝ which means that we always produce dijets with the same invariant mass. At

the hadronic level, this means also that the product of the PDFs is approximately �xed (up

to logarithmic scaling variations with the factorization scale) and then the cross-section is

approximately constant as well. We therefore expect a �at distribution for dσ̂/dχ in the

SM.

Taking into account now the contributions of higher-dimension operators, the distribution

of the partonic di�erential cross section becomes peaked for small values of χ, see Fig. 4.

New physics signals should thus emerge as deviation in the distributions for small values of

χ. In order to observe signi�cant deviations, we will use an useful measurable variable Fχ
which is de�ned as the ratio of events

Fχ =
N(χ < χc,m

min
jj < mjj < mmax

jj )

N(χ < χmax,mmin
jj < mjj < mmax

jj )
(4.59)
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Fig. 4: Distribution of the normalized di�erential dijets cross-section respect to the variable

χ at
√
s = 13TeV and with 3.4TeV < mjj < 4TeV. We show two distributions: Standard

Model and BSM. In the latter, we turned on only O(8)
1 in addition to the SM.

for some values of χc and χmax. The interval |y∗| < 0.6 de�nes the region where the variable

is most sensitive to new physics e�ect and corresponds to the angular region χ < χc ≡ 3.32

whereas |y∗| < 1.7 corresponds to χ < χmax ≡ 30 i.e. the region where QCD contribution

dominate. We will follow the same analysis approach of [26].

To obtain the total dijets cross-section, we need to weight each partonic process with the

parton density functions (PDF's). The general expression of the total cross-section is

σ(pp→ jj) =

initial
states∑
i1,i2

�nal
states∑
f1,f2

1

1 + δi1,i2

∫ 1

0
dτ

∫ 1

τ

dx

x
fi1(x,

√
ŝ)fi2(

τ

x
,
√
ŝ)σ̂(i1i2 → f1f2) + (1↔ 2)

(4.60)

where σ̂ is the partonic cross-section computed analytically for di�erent quark states, and

fqj (x,
√
ŝ) is the PDF corresponding to the quark qj carrying x fraction of the proton

momentum at the factorization scale
√
ŝ.

The variable Fχ can be also written in terms of the total dijets cross section (at hadronic-

level)

Fχ =
σ(pp→ jj)χ<3.32

σ(pp→ jj)χ<30

∣∣∣
mminjj <mjj<mmaxjj

(4.61)

and then it can be computed analytically using the e�ective lagrangian

L = LSM +
∑
i,j

c
(6)
qi,qj

Λ2
O(6)
qi,qj +

∑
i,j

w
(6)
qi,qj

Λ2
Q(6)
qi,qj +

∑
i

g
(8)
i

Λ4
O(8)
i . (4.62)

where c
(6)
qi,qj and w

(6)
qi,qj are respectively the Wilson coe�cients of the dim-6 operators O(6)

ij and

Q(6)
ij in Eq. (4.43), (4.44), (4.45), (4.46), and (4.47). We can calculate partonic and hadronic
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level cross sections with (4.62) and the QCD Lagrangian. The relevent BSM contributions

in the massless quarks limit are reported in the Appendix C. Within this approach, the

partonic cross-section of a speci�c process can be written schematically as (see Appendix C)

σ̂ =
ŝ3

Λ8
σ̂3,0 +

ŝ2

Λ6
σ̂2,0 +

ŝ

Λ4
σ̂1,0 +

ŝαs(ŝ)

Λ4
σ̂1,1 +

αs(ŝ)

Λ2
σ̂0,1 +

α2
s(ŝ)

ŝ
σ̂−1,2 (4.63)

where the σ̂i,j is the coe�cients of the term that scales as ŝiαjs which are obtained by

integrating over χ ∫
dχ
dσ̂

dχ
. (4.64)

Notice that σ̂−1,2 comes purely from QCD contributions and represent the SM contribution

in isolation.

As we stated at the beginning of this section, we can neglect di�erent initial states from

uu, dd, ud, gg. Within this approximation, and taking the expasion (4.63) into account, the

dijets cross-section can be written schematically as

σ(pp→ jj) '
∑
j,k

1

Λ2(j+1)
~Pj,k · ~̂σj,k + σgg→gg(pp→ jj) (4.65)

where

~Pm,n =
(
P uum,n, P

dd
m,n, P

ud
m,n

)
(4.66)

P
qjqk
m,n =

1

1 + δj,k

∫ 1

0
dτ

∫ 1

τ
dxfqj (x,

√
ŝ)fqk(

τ

x
,
√
ŝ)
ŝmαs(ŝ)

n

x
+ (j ↔ k) (4.67)

~̂σj,k = (σ̂j,k(uu→ uu), σ̂j,k(dd→ dd), σ̂j,k(ud→ ud)) . (4.68)

We have factored out the gluon initiated contribution because it does not interfere at leading

order with the 4-fermion operators. Using the expression (4.65) and implementing the la-

grangian (4.62) in MadGraph5, we can compute the coe�cients P
qj ,qk
m,n by �tting the formula

for the hadron-level process

σ(qjqk → qjqk) =
P
qj ,qk
m,n

Λ2(1+m)
σ̂m,n(qjqk → qjqk). (4.69)

The values of P
qj ,qk
m,n and σ̂m,n depend on the dijets momentum cuts which translate on the

invariant mass cut mmin
jj < mjj < mmax

jj . We will consider the energy window 3.4 TeV <

mjj < 4 TeV and we will take the data from [24]. All the simulations are performed �xing

both the factorization and the renormalization scale to 3.4 TeV and imposing the cuts as

described in [24], i.e. we require the pT
9 of the leading and subleading jets greater than 440

GeV and 50 Gev respectively and |y∗| < 1.7. The radius parameter is 0.4 and the PDF's

selected are the NNPDF2.3 grid.

The parameters that we obtain in this way are reported in Table 4.2. These values have

9The transverse momentum is the component perpendicular to the beam direction.
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P3,0(pb−3) P2,0(pb−2) P1,0(pb−1) P1,1(pb−1) P0,1

uu � � 7.4E-4 � 1.4E-3

dd 1.4E-7 � 1.2E-4 8.2E-6 2.6E-4

du � � 3.0E-4 � 5.8E-4

Table 4.2: Partonic coe�cients Pm,n computed using MadGraph and checked analytically

with the NNPDF2.3 set. The values which are not useful for our purposes are labelled with

the dash.

been checked with the analytic expression (4.67) using the NNPDF2.3 partonic distribution

functions and imposing the cuts on the invariant mass which translates into the integration

intervals x ∈ [τ, 1] and τ ∈ [mmin
jj

2
/s,mmax

jj
2/s].

The variable Fχ can be decomposed as

Fχ =
σχ<3.32
SM + σχ<3.32

BSM

σχ<30
SM + σχ<30

BSM

≡
FSMχ + σχ<3.32

BSM /σχ<30
SM

1 + σχ<30
BSM/σ

χ<30
SM

(4.70)

where FSMχ = σχ<3.32
SM /σχ<30

SM = 0.08. From the data reported in [24], we extract Fχ =

0.084± 0.0039 and therefore the 2σ con�dence level bound

0.076 < Fχ < 0.092. (4.71)

4.3.1 Bounds on composite quarks

Bounds on the Wilson coe�cients (over a positive power of the BSM scale Λ) follow from

(4.71) and the positivity constraints (4.40). Example of excluded regions obtained by turning

on just two Wilson coe�cients are shown in Fig.5 , Fig.6 as illustration of the bounds.

These �gures are obtained by drawing the contour plot of the Fχ function for values at 1σ

and 2σ away from the central value. In these �gures, the regions allowed experimentally are

colored in green (1σ) and yellow (2σ). The dashed parts are those that do not respect the

positivity conditions (4.40), and are thus theoretically excluded. As we see, the positivity

conditions (4.40) strongly improve the impact of the experimental bounds. This e�ect is

dramatic for the plot on the right-hand side in Fig.5 where the positivity conditions resolve

a �at direction unbounded by the data at LHC.

Range of validity

Since we are working in an EFT, we should make sure that the bounds are obtained con-

sistently within its range of validity, namely E < Λ. To illustrate this general point, let us

focus for example on g1/Λ
4 and write the bound as

δexp− ≤ g1

Λ4
≤ δexp+ (4.72)
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Fig. 5: Allowed regions at 1σ (green) and 2σ (yellow) in the g1/Λ
4 � g2/Λ

4 (left) and g1/Λ
4

� g3/Λ
4 (right) plane, obtained by setting the other Wilson coe�cients to zero. The dashed

darker regions correspond to values of Wilson coe�cients that do not satisfy the positivity

conditions (4.40), and then are excluded theoretically.

Fig. 6: Allowed regions at 1σ (green) and 2σ (yellow) in the g1/Λ
4 � c

(6)
qq /Λ2 (left) and g1/Λ

4

�w
(6)
qq /Λ2 (right) plane, obtained by setting the other couplings to zero. The dashed darker

regions correspond to values Wilson coe�cients that do not satisfy the positivity conditions

(4.40), and are thus excluded. The w(6) and c
(6)
qq can take either signs because are associated

to dim-6 operators which are not subject to the positivity constraints.
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where δexp± are the values at 2σ obtained by the plots taking the positivity constraints into

account. In particular, δexp− = 0. Since g1/Λ
4 < g1/m

4
jj,max, our bounds add non-trivial

information only for a coupling g1 such that δexp+ < g1/m
4
jj,max, i.e. only for su�ciently

large values of g1

g1 ≥ m4
jj,maxδ

exp
+ . (4.73)

This is why strongly coupled models are better suited for these type of analysis. One can

extend the region of validity to smaller values of couplings by working with a sliding energy

window for the cuts where mjj,max is taken smaller, as advocated e.g. in [22].

Bounds on One-Coupling-One-Scale models

In a One-Coupling-One-Scale model where we also take fully composite dR quarks we have

gi = aig
2
∗ with ai = O(1) and g∗ can be taken as large as 4π. We can thus translate the

experimental constraints on lower bound on the scale Λ

Λ ≥ 4

√
(4π)2

δexp+

( g∗
4π

)1/2
(4.74)

where δexp+ is taken in the direction g1/Λ
4 = g2/Λ

4 and we choosen for de�niteness a1 =

a2 = 1 (the scaling of the bound being obvious for other values). In this example the plot

on the left in Fig.5 gives δexp+ ' 0.013TeV−4 which corresponds to

Λ ≥ 10.5
( g∗

4π

)1/2
TeV . (4.75)

This bound can be consistently applied only for g∗ ≥ 1.83, such that our EFT expansion

didn't break down, see 4.73. We group in Table 4.3 the lower bounds on the composite scale

Λ depending on the coupling g∗.

g∗ Λmin (TeV)

2 4.2

3 5.1

5 6.6

10 9.4

4π 10.5

Table 4.3: Compositeness scale Λ depending on the value of the coupling g∗. The value

g∗ = 4π corresponds to a maximally strongly coupled theory.

Bounds on the SUSY breaking scale

Let's assume now that the dim-8 operators actually arise from a spontaneously broken

extended SUSY of the strong sector, the dR being identi�ed with the Goldstini that interact
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Fig. 7: Left: Allowed regions in the g1/Λ
4 � g4/Λ

4 plane at 1σ (green) and 2σ (yellow). The

shaded region is excluded by our positivity bounds. Right: zoom of the same regions where

the predictions from spontaneously broken SUSY are the red dots, for di�erent values of the

decay constant F .

with a strength set by the decay constant F (see the Appendix D). We recall that [F ] = 2,

since F 2 is proportional to the SUSY breaking contribution to the vacuum energy.

We take in particular N = 9 and embed the dR quarks (with color and �avor indexes) in

the same multiplet of the R-symmetry

U(9)R ⊃ SU(3)× SU(3)× U(1) , (4.76)

identifying the various subgroup factors with color, �avor and hypercharge. The de�ning

representation of SU(9) has one index i that can take 3 · 3 values; it can be replaced by a

pair of indexes i = (α, a) where α, a = 1, 2, 3, realizing the embedding

9y = (3,3)y (4.77)

as one can promptly check, see e.g. [30]. Within this embedding, the dimension-8 Goldstini

interactions (D.66)
1

F 2
χ† i∂χ† j∂χiχj (4.78)

can be identi�ed with O(8)
4 in (4.51). In fact, i and j are pairs of indexes, i.e. i = (α, a) and

j = (β, b) where Greek and latin letters stand for color and �avor indexes respectively. In

practice, only one dim-8 operator is allowed by the non-linearly realized SUSY. Moreover,

its coe�cient is precisely the (inverse squared) decay constant F that we want to bound

g4

Λ4
=

1

F 2
, g1 = g2 = g3 = 0 , (4.79)
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The experimental bounds on g4/Λ
4 can be interpreted as lower bound on the SUSY decay

constant F , see Fig.7 . The experimental bounds imply

g4

Λ4
=

1

F 2
≤ δexp+ ⇒ F ≥

√
1

δexp+

. (4.80)

From the plot, δexp+ = 0.026TeV−4 and then

F ≥ 6.2TeV2 (4.81)

that is
√
F & 2.5TeV.



Conclusions

In this thesis we discussed the fundamental consistency conditions that Wilson coe�cients

must respect in order for an EFT to admit a UV completion that is Lorentz invariant,

unitarity and crossing symmetric. These consistency conditions take the form of sum rules

and positivity constraints for the low-energy scattering amplitudes that are expressed in

terms of the Wilson coe�cients. We extended signi�cantly the results from earlier literature

by treating in full generality particles carrying arbitrary spin and arbitrary representations

of internal symmetry groups. We applied these positivity constraints to certain EFTs for

physics beyond of the SM, and probe them with data from the current run of the LHC.

Several of the results presented in this work are based on crossing symmetry of scattering

amplitudes. In chapter 2 we encapsulated these properties in a general crossing matrix for

particles with arbitrary spin, and that carry a (generically complex) representation r of an

internal symmetry group. We found that the crossing matrix X is an involutory matrix which

is also unitary with respect to the diagonal and positive de�nite metric made of the dimen-

sions of all the irreps exchanged in the elastic scattering where the initial state transforms

as r ⊗ r (s-channel) or r ⊗ r (u-channel). The crossing matrix takes an anti-diagonal form

and it is built out of two sub-matrices X1,2 which relate the s- and u-channel to each other.

For real representations these two matrices become equal and one recovers the results of [2]

that we have generalized to the case of arbitrary complex irreps. In Chapter 2, we have also

obtained rigorous positivity constraints that follow from the analyticity, crossing symmetry

and unitarity of the S-matrix. These principles allow us to obtain dispersion relations for the

scattering amplitudes: projecting those dispersion relations on the positive eigenspace of the

general crossing matrix we obtain positivity bounds that must be respected by the scatter-

ing amplitudes evaluated in the IR. In chapter 3 we extended these results to particles with

arbitrary spin, and discussed the physically relevant example of positivity constraints for

particles carrying fundamental and anti-fundamental representations of an internal SU(N)

symmetry group. These low-energy eigen-amplitudes must satisfy the following positivity

constraints

M′′A(2m2) +M′′S(2m2) > 0 , M′′Adj(2m
2) > 0 , M′′1(2m2) + (N − 1)M′′Adj(2m

2) > 0 .

where m is the mass of the particles and 1, A, S and Adj are the singlet, symmetric, anti-

symmetric and adjoint irreps either found in the decomposition ofN⊗N = A⊕S orN⊗N =

65
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1 ⊕Adj of SU(N). In turn, these conditions translate on certain positivity conditions of

the Wilson coe�cients of the EFT that are used to calculate such an amplitudes.

In chapter 4 we discussed an application of the positivity bounds to the scenario of fermion

compositeness. We showed that the positivity constraints have a tremendous impact on the

experimental bounds that one can put on dimension-8 four-fermion operators generated by a

strongly coupled sector that is responsible for the electroweak symmetry breaking. Indeed,

we �rst obtained the experimental bounds on dimension-8 four-quark interactions of the

schematic type O(8) = ψ†∂ψ†ψ∂ψ by studying the distributions of dijets at the LHC. Then

we imposed our theoretical positivity constraints that removed most of parameter space that

was otherwise experimentally viable. As illustration of these bounds, in Fig. 8 we show the

allowed parameter space at 1σ and 2σ C.L. for the Wilson coe�cients associated to two

dim-8 operators involving the down-type quarks. The dashed darker region is theoretically

excluded by our positivity bounds based on crossing symmetry and unitarity, while the

lighter green or yellow regions are experimentally and theoretically allowed.

Fig. 8: Allowed region of parameter space in the g1 − g4 and g3 − g4 planes, where gi
are the Wilson coe�cients of four-dR dim-8 operators O(8)

1 = ∂d̄R
α
a d̄R

β
b ∂dR

a
αdR

b
β , O

(8)
2 =

∂d̄R
α
a d̄R

β
b ∂dR

a
βdR

b
α, O

(8)
3 = ∂d̄R

α
a d̄R

β
b ∂dR

b
αdR

a
β , and O(8)

4 = ∂d̄R
α
a d̄R

β
b ∂dR

b
βdR

a
α. Darker

dashed regions are theoretically excluded by the positivity constraints. The red line in

the plot on the left hand side represents the prediction from a model of spontaneously bro-

ken extended-SUSY where its N = 9 Goldstini are identi�ed with the three down-type

right-handed quarks, and the R-symmetry is the maximal UR(9) group. The dots on the

red line correspond to di�erent choices of the SUSY decay constant F in units of TeV2.

There could be dynamical reasons or a symmetry that explain why dim-8 four-fermion

operators are the leading operators of the EFT in the IR for this process, rather than the

familiar dim-6 four-fermion operators with no derivatives. We actually provided an example
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where it is a spontaneously broken extended N -SUSY of the strong sector that suppresses

indeed all dim-6 four-fermion operators for the N Goldstini that transform non linearly, with

a fermionic shift symmetry. Within this setup we identi�ed the down-type right-handed

quarks with fully composite N = 9 (pseudo-)Goldstini, and interpreted the experimental

constraints on the Wilson coe�cients as lower bounds the SUSY decay constant

√
F > 2.5TeV at 95% C.L. ,

see Fig. 8. It would be very interesting to push this idea of SM fermions as pseudo-Goldstini

even further, and try to embed all quarks inside the same R-symmetry multiplet of pseudo-

Goldstini, alhtough probably giving up maximal R-symmetry.

In conclusion, not all EFTs are born equal: some live in the �swampland� i.e. in the space

of EFTs that do not admit sensible UV completions. 10 In this work we proved rigorously

certain necessary conditions that an EFT must satisfy not to live in such a swampland. They

take the form of positivity constraints for the scattering amplitudes in the IR, and hence for

the Wilson coe�cients of the EFTs. Should these positivity conditions be violated, the EFT

at hand would thus live in such a swampland as its UV completion does not have an unitary,

crossing symmetric, and analytic S-matrix. Finally, we showed with a concrete example that

these positivity constraints are relevant also phenomenologically for the searches of physics

beyond the SM that are done at the LHC.

10The concept of swampland in the space of EFTs was originally introduced in the context of string

theory and its landscape by Cumrun Vafa [32], with the weak gravity conjecture [33] being perhaps the most

concrete example of condition that an EFT with gravity and electric type of forces should satisfy.
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Appendix A

Analyticity and Causality

In this appendix we brie�y review the relation between causality and the analytic structure

of the forward elastic amplitude Mπφ→πφ(s, t = 0) that was initiated in the classic works

[42] and [43]. For the sake of simplicity, we restrict to the case where particles 2 and 4 are

actually massless, m2 = m4 = 0 as in ref. [11]. The general case can be found in several

textbooks, e.g. [44, 45, 46], as well an in more specialized monographs [47, 48].

Let us use the LSZ reduction formula (1.32) only for particles 2 and 4 which move in the

background of 1 and 3,

〈p3, p4|S − 1|p1, p2〉 =

[
i

∫
d4xe−ip2·x (�x)

] [
i

∫
d4ye+ip4·y (�y)

]
〈p3|Tφ(y)φ(x)|p1〉 (A.1)

Since we are interested in the forward elastic scattering we go in kinematics p1 → p3 (and

hence p2 → p4 is enforced by momentum conservation). Using the following identity

Tφ(y)φ(x) =θ(y0 − x0)[φ(y), φ(x)] + φ(x)φ(y) (A.2)

we can rewrite the amplitude as

〈p1, p4|S − 1|p1, p2〉 =

[
i

∫
d4xe−ip2·x (�x)

] [
i

∫
d4ye+ip4·y (�y)

]
(A.3)[

θ(y0 − x0)〈1|[φ(y), φ(x)]|1〉+ 〈p1|φ(x)φ(y)|p1〉
]
.

The last term without the retarded commutator does not actually contribute to the ampli-

tude for physical values of the momenta. Indeed, inserting a complete set of states in in

(A.3) and using the invariance under spacetime translations i.e. φ(x) = eiPxφ(0)e−iPx, we

get [
i

∫
d4xe−ip2·x (�x)

] [
i

∫
d4ye+ip4·y (�y)

]
〈p1|φ(x)φ(y)]|p1〉 (A.4)

= −(2π)4δ4(p2 − p4)

∫
dβ

Nβ
(2π)4

(
−p2

2

)2 |〈p1|φ(0)|β〉|2
∣∣
pβ=p1−p2
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This expression is almost a total cross-section except that would require the non-physical

negative energy p0
2 to appear in the initial state1. Actually, by crossing symmetry it is

proportional to the decay width of particle 1 → anything, which would be a violation of

our initial assumption that it was a stable asymptotic one-particle state. Therefore, for this

physical kinematics such a matrix elements must vanish. In turn, the scattering amplitude

for elastic forward scattering evaluated for physical momenta can be written in terms of an

integral over the forward lightcone alone

〈p1, p4|S − 1|p1, p2〉 =

[
i

∫
d4xe−ip2·x (�x)

] [
i

∫
d4ye+ip4·y (�y)

]
θ(y0 − x0)〈p1|[φ(y), φ(x)]|p1〉 . (A.5)

Using again invariance under translations and recalling the de�nition of the scattering am-

plitudeM in (1.13) where a i(2π)4δ4(p2−p4) factor is removed, we get the actual expression

that we wish to analytically continue to complex momenta

M(s, t = 0) = i

∫
d4ye+ip2·y�2

y

{
θ(y0)〈p1|[φ(y), φ(0)]|p1〉

}
. (A.6)

By Lorentz invariance, it is a function of the Mandelstam variable s. As long as we are

concerned about the analytic properties of M, we can safely move the θ(y0) to the left of

the �2
y-operator, the mismatch between the two expressions being only a polynomial in p2,

hence analytic, because of the microcausality condition for [φ(y), φ(0)]: its time derivatives

vanish at equal times, y0 = 0, except at coincidence points y = 0 where a delta function

may occur. The Fourier transform of a di�erential operator acting on such a delta functions

returns the claimed analytic polynomial.

Microcausality and the presence of the step function imply that the integrand vanishes

outside the forward lightcone {y2 > 0 , y0 > 0}. This allows us to analytically continueM
in the upper complex s-plane, assuming polynomially bounded correlation functions. One

simple way to see this is by working in the rest frame of particle 1, p1 = (m1,0)T . In this

frame s is just a linear combination of the energy of particle 2

s = 2m1p
0
2 +m2

1 , (A.7)

so that analyticity with respect to p0
2 trivially implies the analytic structure with respect to

s. In this frame the correlation function inside (A.6) is actually a function of |y|2 and y0

only, given that any rotation leaves p1 invariant. Therefore, the integral over the angular

variables d3Ωy in spherical coordinates can be carried out explicitly2

M(s, t = 0) ∼ 2π2

∫ ∞
0

d|y|y2

∫ +∞

0
dy0eip

0
2y

0

(
sin |y||p2|
|p2|

)
〈p1|�2

y[φ(y), φ(0)]|p1〉 (A.8)

1Moreover, for identical particles in the center of mass frame, it would require pβ = 0 which corresponds

only to the vacuum state. The stability of the vacuum forbids such a process.
2The ∼ symbol means that we are omitting the analytic polynomial contribution from the Fourier trans-

form of the delta functions that arise from the time derivatives in � that hit the step function.
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where |p2| = p0
2 because m2 = 0, and we restricted the integration to y0 > 0 thanks to the

step function of the retarded commutator. The analyticity in the upper complex p0
2-plane

(hence upper s-plane) ofM is now established because of the exponential damping that eip
0
2y

0

provides for Im p0
2 > 0, given that y0 > 0 too in the integration region. Even for p0

2 →∞ in

the complex upper plane the integral over |y| can be carried out. The would-be dangerous

terms from the sin function in (A.8) have the following behavior Exp i
(
p0

2y0 ± |p2||y|
)

=

Exp ip0
2 (y0 ± |y|) which is integrable for Im p0

2 > 0 and y0 ≥ |y|, i.e. inside the forward

lightcone selected by the retarded commutator.

In practice, the integral representation (A.8) provides an analytic extension of the amplitude

for Im s > 0, while the physical amplitude is recovered as the boundary value on the real

axis approached from above

Mπφ→πφ(s, t = 0) =Mπφ→πφ(s+ iε, t = 0) , s ≥ smin = (m1 +m2)2 , (A.9)

and ε→ 0+ limit is always understood.

Assuming there exists an open interval on the real axis where the amplitude is real, meaning

M(s, t = 0) = M∗(s∗, t = 0) on such an interval, one can actually extend it as a real

function to the lower complex s-plane too. In fact, using the Schwarz re�ection principle

the amplitude is analytically extended everywhere in the complex s-plane:

M(s∗, t = 0) =M∗(s, t = 0) , (A.10)

except for some discontinuities on the real axis that come from stable particles and branch-

cuts of multiparticle states. Crossing symmetry relates the discontinuities between the s- and

u-channel that are boundary value of the analytic function approached either from above or

below, see Eq. (1.41) and (1.42). Remarkably, crossing symmetry, unitarity and the Schwarz

re�ection principle are all consistent with each other as one can check re-running for M†

the analysis that have presented above forM. In particular, the time-ordered product can

be replaced by the advanced commutator

Tφ(y)φ(x) =− θ(x0 − y0)[φ(y), φ(x)] + φ(y)φ(x) (A.11)

which e�ectively allows one to extendM∗αα in the lower complex plane, consistently with the
extension presented above in terms of the Schwarz re�ection principle because of unitarity

(1.18).
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Appendix B

Dim-8 four-fermion operators

In this appendix, we want to show a sketch of the derivation of the most general dimension-8

operators involving a right-handed Weyl fermion �eld as those listed in Table 4.1.

B.1 Spinor notation

Since we will work with an big number of operators, it is convenient to de�ne a notation to

make easier the lecture of this appendix. A generic fermion bilinear takes the form

ψ̄ΓAψ (B.1)

where ΓA is an arbitrary combination of gamma matrices which do not annihilate the oper-

ator. The choice of the gamma matrices basis will be performed in the next section. In the

following, we use the notation

ψ̄ΓAψ =
(
ΓA
)

(B.2)

where the brackets stands for the fermions �eld attached to ΓA. In presence of more bilinears

involving di�erent species of fermion �eld, we use a di�erent kind of brackets. For instance,

ψ̄ΓAψχ̄ΓBχ =
(
ΓA
)

[ΓB] . (B.3)

If some derivative acts on the �elds, we write its Lorentz index on the top of the bracket.

For example,

∂µψ̄ΓA∂νψ∂ρχ̄ΓB∂σχ =
µ

( ΓA
ν

)
ρ

[ ΓB
σ

] . (B.4)

B.2 Chiral basis and Fierz identities

Since we assumed to work with massless fermions, the most convenient choice of the gamma

matrices basis is the chiral one which is de�ned as

{ΓA} = {R,L, γµL, γµR,Σµν}, {ΓA} = {R,L, γµR, γµL,
1

2
Σµν}, (B.5)
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where

R =
1 + γ5

2
, L =

1− γ5

2
, Σµν =

i

2
[γµ, γν ] , (B.6)

and we use the Weyl representation of the gamma matrices, i.e.

γµ =

(
0 σ̄µ

σµ 0

)
γ5 =

(
−1 0

0 1

)
(B.7)

where σµ = (1, σi) and σ̄µ = (1,−σi) with σi the Pauli matrices.
The orthogonality property of the chiral basis is

Tr
[
ΓAΓB

]
= 2δBA (B.8)

and the completeness relation, written in terms of the spinor notation de�ned above, is [16]

( ) [ ] = −1

2
(ΓA]

[
ΓA
)

(B.9)

where the sum over A is understood and the minus is due to the anticommuting nature of

the fermionic �elds. From this relation we obtain the chiral Fierz identites(
ΓA
) [

ΓB
]

= −1

4
Tr
[
ΓAΓCΓBΓD

] (
ΓD
] [

ΓC
)
. (B.10)

Some useful relations follow from (B.10)

(γµR)[γµR] = (γµR][γµR) (B.11)

(γµR)[γνR] = −1

2

{
(γµR][γνR) + (γνR][γµR)− ηµν(γλR][γλR) + iεµνρσ(γρR][γσR)

}
.

(B.12)

The following relations will be useful

σµν =
i

4
(σµσ̄ν − σν σ̄µ) (B.13)

σµσ̄ν + σν σ̄µ = 2gµν (B.14)

χ†α̇χ
†
β̇ = −1

2
εα̇β̇

(
χ†
)2

(B.15)

∂νχ
†
β̇ (σ̄µ)β̇β (σ̄ν)α̇α ∂µχα = −2∂µχ

†α̇∂µχβ (B.16)

(σ̄µ)α̇α(σ̄µ)β̇β = 2εαβεα̇β̇ (B.17)

B.3 Lorentz structure for dimension-8 operators

Let us consider a massless right-handend Weyl spinor χ. The dimension-8 operators we can

construct with only this fermion species involve two derivatives ∂'s and four �elds. We can

group these operators in three classes.
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• Class I) Operators involving the Levi-Civita tensor

C1 = εµνρσ(σ̄µ
ρ

)
σ

[ σ̄ν ] C2 = εµνρσ(σ̄µ
ρ

) [σ̄ν
σ

] (B.18)

C3 = εµνρσ(σ̄µ)
ρ

[ σ̄ν
σ

] . (B.19)

Other arrangements of the derivatives can be neglected up to integration by parts.

• Class II) Operators involving derivatives with same Lorentz indices (i.e. contracted

derivatives)

A1 = ∂χ†σ̄µ∂χχ†σ̄µχ A2 = ∂χ†σ̄µχ∂χ†σ̄µχ (B.20)

A3 = ∂χ†σ̄µχχ†σ̄µ∂χ A4 = χ†σ̄µ∂χ∂χ†σ̄µχ (B.21)

A5 = χ†σ̄µ∂χχ†σ̄µ∂χ A6 = χ†σ̄µχ∂χ†σ̄µ∂χ (B.22)

Using the identity (B.17), we can simplify this list

A1 = A3 = A6 = A4 = 2(∂χ̄)χ†(∂χ)χ (B.23)

A2 = A†5 (B.24)

A5 = (χ†)2�(χ2). (B.25)

Integrating by parts, we end up with only one operator. We choose A5.

• Type III) Derivatives with di�erent Lorentz indices ( i.e. derivatives contracted with

ΓA and ΓD). The possible operators for a massless fermion �eld are

O1 = (σ̄ν
µ

)
ν

[ σ̄µ] O2 = (σ̄ν
µ

) [σ̄µ
ν

] (B.26)

O3 =
µ

( σ̄ν)
ν

[ σ̄µ] O4 =
µ

( σ̄ν)[σ̄µ
ν

] . (B.27)

Integrating by parts (IBP) and using Fierz identities, we can reduce this sets of op-

erators. The calculus are tedious and not so illuminating. What we learn is that the

operators of the �rst class can be expressed in terms of the third class ones, and so we

can neglect C1, C2, C3. Integrating by parts, we can neglect also O3,O4 and O2

O3
IBP
= −O1 (B.28)

O4
IBP
= −O2 (B.29)

O2
IBP
= −O1. (B.30)

Then, we end up with O1. Using the identity (B.16), we can write O1 = −2(∂νχ
†)χ†(∂νχ)χ.

Integrating by parts, A5 = 2O1 and then only one operators remains, that is O1.
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B.4 SU(N)-invariant operators

Now, we demand that χ transforms under the fundamental representation of SU(N), i.e.

χ ≡ χa where a is a SU(N) fundamental index. We normalize the generators of the SU(N)

algebra as

Tr[TATB] =
1

2
δAB. (B.31)

Expressions involving TA's can be further simpli�ed using the Fierz Identity for SU(N)∑
A

TAabT
A
cd =

1

2

(
δadδbc −

1

N
δabδcd

)
. (B.32)

Now, a little remark is indispensable. Let us consider for example the not Lorentz invariant

operator of the form

∂ρχ
†aΓAabσ̄µ∂σχ

bχ†
c
ΓAcdσ̄νχ

d (B.33)

where ΓAij can be δij or a generator of SU(N). Using the Fierz Identity (B.32), we can

express it as the linear combination

1

2
∂ρχ

†aσ̄µ∂σχ
bχ†

b
σ̄νχ

a − 1

2N
∂ρχ

†aσ̄µ∂σχ
aχ†

b
σ̄νχ

b. (B.34)

Then, in order to classify the dimension-8 four-fermion operators, each of them carrying an

SU(NC) index, we can restrict ourselves to those where the color indexes are contracted in

the same bilinear or in di�erent bilinears, because otherwise the operator which contains a

combination of TA's can be simpli�ed.

If the �elds carry an additional SU(N)F index (for example a �avor index) the same argu-

ment holds. Indeed, let us consider

∂ρχ
†a
αΓCabΓ

F
αβσ̄µ∂σχ

b
βχ
†c
γΓCcdΓ

F
γδσ̄νχ

d
δ . (B.35)

The only relevant case to study is when the Γ's are the generators of the groups. Using the

Fierz Identity (B.32) for both kinds of generators

ΓCabΓ
F
αβΓCcdΓ

F
γδ =

1

4

(
δadδbc −

1

NC
δabδcd

)(
δαδδβγ −

1

NF
δαβδγδ

)
. (B.36)

Then we can write (B.35) as

1

4

(
∂ρχ

†a
ασ̄µ∂σχ

b
βχ
†b
βσ̄νχ

a
α −

1

NF
∂ρχ

†a
ασ̄µ∂σχ

b
αχ
†b
δσ̄νχ

a
δ (B.37)

− 1

NC
∂ρχ

†a
ασ̄µ∂σχ

a
βχ
†b
βσ̄νχ

b
α −

1

NFNC
∂ρχ

†a
ασ̄µ∂σχ

a
αχ
†b
βσ̄νχ

b
β

)
. (B.38)

Then, also in this case we can restrict ourselves to the cases with all possible SU(N)⊗SU(N)-

indices contracted with the deltas.

The procedure to derive the list of independent operators is the same as above. The inde-

pendent SU(N)-invariant operators involving the massless right-handed �eld χa are

O1 = ∂χ†aχ
†
b∂χ

aχb (B.39)

O2 = ∂χ†aχ
†
b∂χ

bχa. (B.40)
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B.5 Implementing four-fermion operators in MadGraph

In this thesis we used MadGraph5_aMCNLO [18] to compute the partonic coe�cients in

the table 4.2 and to quantify the e�ects of higher-dimension operators (dim-6 and dim-8).

However, when identical particles are involved in the same vertex, MadGraph5 does not

handle directly with four-fermion interactions since there is an ambiguity on deriving the

correct fermionic �ow. The splitting of the vertex by means of an heavy auxiliary �eld is

necessary and here we give an example of how to generate dim-6 operators.

To reproduce the dim-6 operators in (4.43)÷(4.47), it is enough to use a spin-1 �eld which

couples with the current

Jµ(x) = c1q q̄Lγ
µqL + c1dd̄Rγ

µdR + c1uūRγ
µuR. (B.41)

Notice that we want to reproduce also dim-6 operators for dR quarks.

Integrating an heavy �eld at tree-level means solving the equations of motion for this �eld

evaluating the lagrangian at zero momentum. Then, we get

L =
1

2
M2
auxV

µVµ + V µJµ =⇒ V µ = −Jµ/M2
aux (B.42)

and the lagrangian becomes

L = − 1

2M2
aux

JµJµ = − 1

2M2
aux

(
c2

1q q̄Lγ
µqLq̄LγµqL + c2

1dd̄Rγ
µdRd̄RγµdR (B.43)

+ c2
1uūRγ

µuRūRγµuR + 2c1qc1dq̄LγµqLd̄Rγ
µdR (B.44)

+ 2c1qc1uq̄Lγ
µqLūRγµuR + 2c1dc1ud̄Rγ

µdRūRγµuR
)
.

(B.45)

We have generated some of the desired operators and by matching the coe�cients we identify

−c2
1q,d,u

2M2
aux

=
c

(1)
qq,dd,uu

Λ2
(B.46)

−c1(u,q)c1d

M2
aux

=
c

(1)
(u,q)d

Λ2
(B.47)

−c1qc1u

M2
aux

=
c

(1)
qu

Λ2
. (B.48)

We can generate the remaining operators (those with the SU(N) generators) by adding a

spin-1 �eld transforming in the adjoint of SU(N). The lagrangian becomes

Ltot = L+
1

2
M2
auxV

A
µ V

A
µ + JAµ V

µ
A

where the currents are given by

JAµ (x) = c8q q̄Lγ
µTAqL + c8dd̄Rγ

µTAdR + c8uūRγ
µTAuR.
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Performing the same integration as before gives the same matching conditions. Note that,

using the Fierz identities both for spinors and SU(N) generators, we can write

c2
8dd̄Rγ

µTAdRd̄Rγ
µTAdR =

1

3
c2

8dd̄Rγ
µdRd̄Rγ

µdR (B.49)

then, we can rede�ne

c2
1d +

1

3
c2

8d → c2
1d. (B.50)



Appendix C

Partonic BSM cross-sections

We give the list of the at partonic-level cross-sections due to higher-dimensional operators.

We recall that we assume the �avor symmetry GF = U(3)qL × U(3)dR × U(3)uR together

with color SU(3)C .

σ̂(dd→ dd)BSM

dt̂
=

2αs(ŝ)ŝ

9Λ2t̂û
Add1 +

αs(ŝ)

9Λ4

(
t̂

2û
Bdd

1 +
û

2t̂
Bdd

1 +Bdd
2

)
+

1

3πΛ4
Cdd (C.1)

+
1

64πΛ8

[
t2Ddd

1 + tuDdd
2 + u2Ddd

1

]
(C.2)

σ̂(uu→ uu)BSM

dt̂
=
αs(ŝ)

Λ2

[
ŝ

9t̂û
Auu1 +

1

9ŝ
Auu2

(
1− t̂

û
− û

t̂

)]
+

1

9πΛ4

[(
t̂2 + û2

2ŝ2

)
Cuu1 + Cuu2

]
(C.3)

σ̂(ud→ ud)BSM

dt̂
=
αs(ŝ)

9t̂Λ2

[
Aud1 +

û2

ŝ2
Aud2

]
+

1

4πΛ4

[
Cud1 +

û2

ŝ2
Cud2

]
(C.4)
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where

Add1 = c(6)
qq +

1

3
w(6)
qq (C.5)

Bdd
1 = g1 + g3 (C.6)

Bdd
2 = g2 + g4 (C.7)

Cdd = −c(6)
qq

2 − 2

3
c(6)
qq w

(6)
qq −

1

9
w(6)
qq

2
(C.8)

Ddd
1 =

1

6

(
3g1

2 + 2g1(g2 + 3g3 + g4) + 3g2
2 + 2g2(g3 + 3g4) + 3g3

2 + 2g3g4 + 3g4
2
)

(C.9)

Ddd
2 =

1

3

(
g1

2 + 2g1(3g2 + g3 + 3g4) + g2
2 + 2g2(3g3 + g4) + g3

2 + 6g3g4 + g4
2
)

(C.10)

Auu1 = −2c(6)
qq −

2

3
w(6)
qq − 2c(6)

uu −
2

3
w(6)
uu (C.11)

Auu2 = w(6)
qu (C.12)

Cuu1 =
9

2
c(6)
qq c

(6)
uu + w(6)

qq w
(6)
uu (C.13)

Cuu2 = 3c(6)
qq

2
+ 2c(6)

qq w
(6)
qq +

1

3
w(6)
qq

2
+ 3c(6)

uu

2
+ 2c(6)

uuw
(6)
uu +

1

3
w(6)
uu

2
(C.14)

Aud1 = 2w(6)
qq (C.15)

Aud2 = 2(6)
qu

2
(C.16)

Cud1 = c(6)
qq

2
+

2

9
w(6)
qq

2
(C.17)

Cud2 = c(6)
qq c

(6)
uu +

2

9
w(6)
qq w

(6)
uu (C.18)



Appendix D

Extendend N -SUSY and e�ective

action for Goldstini

In this appendix we derive the e�ective action for N Goldstini which emerge from a sponta-

neously broken N -SUSY, extending the original work of Akulov and Volkov [41] for N = 1.

We do not investigate the details of the mechanism that breaks the symmetry, focusing

ourselves instead on the impact of such symmetry breaking in the IR. We will follow a

CCWZ-like construction, see e.g. [36, 37, 38, 39, 40], although we believe to have improved

in clarity earlier derivations. The CCWZ formalism is also better suited than alternative

approaches, such as the constraint super�eld formalism [34],[35] for what concerns the cou-

pling to matter and gauge �elds in an extended SUSY.

In addition to the Poincaré generators, the N -SUSY algebra includes N spinor supercharges.

The relevant part of this algebra is

[Pµ, Q
i
α] = [Pµ, Q

†
α̇ j ] = 0 (D.1)

{Qiα, Q
j
β} = {Q†α̇ i, Q

†
β̇ j
} = 0 (D.2)

{Qiα, Q
†
β̇ j
} = 2σµ

αβ̇
Pµδ

i
j (D.3)

where i, j = 1, ...,N . These (anti-)commutation relations are invariant under a U(N )R
symmetry which transforms the Qiα among themselves and we assume thus such symmetry.

The elements of U(N )R = SU(N )R × U(1)R act by means of the N 2 generators Ra which

transform the supercharges as

[Ra, Qiα] = (Ua)ij Q
j
α , [Ra, Q†α̇ i] = − (U∗ a)ij Q

†
α̇j , a = 1, ...N 2 . (D.4)

where N 2 − 1 matrices are the generators of SU(N )R and the last one is just a phase due

to U(1)R.

The symmetry breaking pattern that we assume is

SUSY and maximal R-symmetry→ U(N )R × Poincaré. (D.5)
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Thus, let us consider the generic group element made of unbroken and broken generators

U = eiχ(x)Q+iχ(x)†Q†eixµP
µ

(D.6)

where the adopted notation is χQ = χαi Q
i
α and χ†Q† = χ† iα̇ Q

† α̇
i . From (D.3) we see that

the dimension of the supercharges is [Q] = 1/2 and the �elds χ(x) are not canonically

normalized, i.e. [χ] = −1/2.

We want to derive the Goldstino transformation in the particular case of Poincaré (unbroken)

and broken transformations. To this purpose, we will use the fact that, in general, the

commutators among broken (T̂ â) and unbroken generators (T a) can be written schematically

as [
T a, T b

]
= ifabc T

c (D.7)[
T a, T̂ b̂

]
= ifab̂ĉ T

ĉ (D.8)[
T̂ â, T̂ b̂

]
= if âb̂c T

c + if âb̂ĉ T
ĉ (D.9)

where fabc are the structure constants of the algebra. In this way, we can always write the

action of a general transformation g on U as

gU = U ′ · (unbroken group element). (D.10)

From (D.10), we see that we can derive the Goldstino transformation from U ′.

Let us begin with an unbroken transformation, for example a Lorentz transformation L. It

acts as

LU(x, χ(x)) = Leiχ(x)Q+iχ(x)†Q†L−1Leix
µPµL (D.11)

and this transformation de�nes U ′(x′, χ′(x′)) where

xµ −→ x′µ = Λµνx
ν (D.12)

χα(x) −→ χ′α(x′) = χβ(x(x′)) Λ̃ α
β = χβ(Λ−1x′) Λ̃ α

β (D.13)

χ†α̇(x) −→ χ†′α̇(x′) = χ†
β̇
(x(x′)) Λ̂β̇α̇ = χ†

β̇
(Λ−1x′) Λ̂β̇α̇ (D.14)

because the supercharges Qα,Q
†
α̇ and Pµ carry irreducible representations of the Lorentz

group which are (1
2 , 0) = Λ̃,(0, 1

2) = Λ̃∗ and (1
2 ,

1
2) = Λ respectively, i.e.

LPµL
−1 = PνΛνµ , LQiαL

−1 = Λ̃ β
α Qiβ , LQ† α̇i L−1 = Λ̂α̇

β̇
Qβ̇i (D.15)

where Λ̂ = Λ̃−1 †. Analogously, under space-time translations T = eia
µPµ we get

TU = U ′ = eiχ
′(x′)Q+iχ† ′(x′)Q†eix

′µPµ (D.16)

where

x′µ = xµ + aµ, χ′(x′) = χ(x(x′)) = χ(x′ − a). (D.17)
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We now want to derive how a general SUSY transformation generated by the supercharges

acts on the Goldstini. We write such transformation as

gξ = eiξQ+iξ†Q† (D.18)

where ξ is an anticommuting global variable. Acting with gξ on U , we get the non-linear

transformation of the Goldstini under a general broken transformation

gξU(x, χ(x)) = eiξQ+iξ†Q†eiχ(x)Q+iχ(x)†Q†eixµP
µ

(D.19)

= eiχQ+iξQ+iχ†Q†+iξ†Q†− 1
2 [ξ†Q†,χQ]− 1

2 [ξQ,χ†Q†]eixµP
µ

(D.20)

= ei(χ+ξ)Q+i(χ†+ξ†)Q†+χσµξ†Pµ−ξσµχ†Pµ+ixµPµ (D.21)

≡ eiχ′(x′)Q+iχ′,†(x′)Q†+ix′µPµ (D.22)

where we used the BHC formula1 eiAeiB = eiA+iB− 1
2

[A,B] and
[
ξ†Q†, χQ

]
= −2χσµξ†Pµ

(see SUSY algebra (D.3)). From (D.22), we get the non-linear SUSY representation on χ(x)

vµ(ξ, χ(x)) ≡ i
(
ξσµχ(x)† − χ(x)σµξ†

)
(D.23)

x→ x′µ = xµ + vµ(ξ, χ(x)) (D.24)

χ(x)→ χ′(x′) = χ(x(x′)) + ξ (D.25)

χ†(x)→ χ′ †(x′) = χ†(x(x′)) + ξ†. (D.26)

One can invert (D.24) by expanding in ξ

xµ = x′µ − vµ(ξ, χ(x′)) + ... (D.27)

from which we obtain the variation of the �eld χ at a given point

χ(x)→ χ′(x) = χ(x′(x)) + ξ = χ(x) + ξ − vµ(ξ, χ)∂µχ(x) + . . . (D.28)

χ†(x)→ χ′†(x) = χ†(x′(x)) + ξ† = χ†(x) + ξ† − vµ(ξ, χ(x))∂µχ
†(x) + . . . (D.29)

For matter �elds Φ(x), i.e matter (non-gauge) �elds that aren't Goldstini, a representation

is obtained simply by omitting the non-linear shift, that is

Φ(x)→ Φ′(x) = Φ(x′(x)) = Φ(x)− vµ(ξ, χ(x))∂µΦ(x) + . . . (D.30)

In order to construct an e�ective action for Goldstini, we want to build all the objects

which transform covariantly under SUSY transformations. First of all, let us focus on the

derivative terms. We would like derivative-like terms transforming covariantly, that is

∇aχ(x)→ (∇aχ)′(x) = ∇aχ(x′(x)). (D.31)

1Notice that all higher commutators vanish because of the SUSY algebra (D.1), (D.2) and (D.3) and Pµ
commutes with everybody.
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for some operator ∇a. It is straightforward to see that the standard derivative do not

transform like (D.31). At a given point

∂µχ(x)→ ∂µχ
′(x) = ∂µχ(x′(x)) = (∂νχ)(x′(x))

∂x′ν

∂xµ
= ∂µχ(x′(x))− ∂νχ(x′(x)) vν(ξ, ∂µχ(x)) + ...

(D.32)

In order to obtain objects transforming covariantely, it is useful to introduce the Maurer-

Cartan 1-form built with the group element U

(U−1dU)(x) = U−1(x, χ(x))dU(x, χ(x)) d = dxµ∂µ = dx′µ∂′µ. (D.33)

Notice that the Maurer-Cartan 1-form is invariant under SUSY transformations. Since the

ξ spinor in (D.18) is coordinate-independent

(U−1dU)(x) −→ (U−1dU)′(x′) = U(x, χ(x)−1g−1
ξ dxµ∂µ (gξU(x, χ(x))) = (U−1dU)(x).

(D.34)

We can write (U−1dU) in terms of the SUSY generators

(U−1dU)(x) = idxµE a
µ

(
Pa +∇aχQ+∇aχ†Q†

)
(D.35)

where for future convenience we have factored out the coe�cient E a
µ of the momentum

E a
µ = δ a

µ + i∂µχσ
aχ† − iχσa∂µχ† = E a †

µ , (D.36)

∇aχ = (E−1) µ
a ∂µχ , (D.37)

∇aχ† = (E−1) µ
a ∂µχ

† . (D.38)

We de�ne the inverse of E a
µ which satis�es

(E−1) µ
a ≡ E µ

a , E µ
a E b

µ = δba , E a
µ E ν

a = δνµ. (D.39)

The transformation of the Maurer-Cartan form at a given point

(U−1∂µU)(x)→ (U−1∂µU)′(x) =
∂x′ν

∂xµ
(U−1∂′νU)(x′(x)) (D.40)

suggests that E a
µ and its inverse transform with the Jacobian (anti-Jacobian)

E a
µ (x)→ E′ aµ (x) =

∂x′ν

∂xµ
E a
ν (x′(x)) , (D.41)

E µ
a (x)→ E′ µa (x) =

∂xµ

∂x′ν
E ν
a (x′(x)) . (D.42)

It is clear now that ∇aχ transforms covariantly

∇aχ(x)→ (∇aχ)′ (x) = E′ µa (x)∂µχ
′(x) (D.43)

=
∂xµ

∂x′ ν
E ν
a (x′(x))∂µχ(x′(x)) (D.44)

=
∂xµ

∂x′ ν
∂x′ ρ

∂xµ
E ν
a (x′(x))∂′ρχ(x′(x)) (D.45)

= ∇aχ(x′(x)). (D.46)
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We can now render covariant the derivatives of any �elds by acting

∇b∇aΨ(x) = Eµb ∂µ (Eνa∂νΨ(x)) . (D.47)

There is another tensor built out of the Goldstini,

F a
bc (x) ≡ E µ

b (x)E ν
c (x) (∂µE

a
ν (x)− ∂νE a

ν (x)) (D.48)

which transforms covariantly

F a
bc (x)→ F ′ a

bc (x′(x)) (D.49)

because the term ∂2x′ρ/∂xµ∂xνEaρ cancels out in the di�erence µ↔ ν. Moreover, it is easy

to see that

[∇b,∇a] Ψ(x) = −F c
ba ∇cΨ(x). (D.50)

Gauge �elds Aµ associated to local internal symmetry groups behave just as the ordinary

derivatives (they are 1-forms) and should thus be compensated by Goldstino insertions as

well

Aa ≡ E µ
a Aµ (D.51)

so that gauge covariant derivatives

Da ≡ ∇a − igAa (D.52)

transform covariantly under the SUSY and gauge transformations. The gauge �eld strength

is de�ned analogously by compensating the two lorentz indexes with the Vielbien E µ
a .

Now we have all the useful object to construct the e�ective lagrangian. We want an invariant

measure in the action. Thus let's de�ne E(x) ≡ detE a
µ (x). We have

E(x)→ E ′(x) = |∂x
′

∂x
|E(x′(x)) (D.53)

and therefore the invariant measure we were looking for is

d4xE(x)→ d4x|∂x
′

∂x
|E(x′(x)) = d4x′E(x′) (D.54)

that we use to build actions2

S[χ,Φ] =

∫
d4xE(x)L(∇aχ(x),Φ(x),∇aΦ(x), F a

bc (x), . . .) (D.55)

where the ellipses denote other possible covariant object we can build. For our purposes,

the Goldstini and matter �elds are enough. The actions (D.55) are invariant under the

transformations of the �eld at a given point

S[χ,Φ]→ S[χ′,Φ′] = S[χ,Φ] . (D.56)

2To avoid clutter of notation we are showing only neutral matter �elds Φ. Including charged �elds

and gauge �elds is straightforwardly done by promoting the ∇a → Da and by adding the �elds strengths

E µ
a E ν

b (∂µAν − ∂νAµ).



86APPENDIX D. EXTENDENDN -SUSY AND EFFECTIVE ACTION FORGOLDSTINI

because

S[χ′,Φ′] =

∫
d4xE ′(x)L((∇aχ)′(x),Φ′(x), (∇aΦ)′(x), F ′ a

bc (x), . . .) (D.57)

=

∫
d4x|∂x

′

∂x
|E(x′(x))L(∇aχ(x′(x)),Φ(x′(x)),∇aΦ(x′(x)), F a

bc (x′(x)), . . .)

(D.58)

=

∫
d4x′E(x′)L(∇aχ(x′),Φ(x′),∇aΦ(x′), F a

bc (x′), . . .) = S[χ,Φ] . (D.59)

We can build the action by expanding the lagrangian with respect to the �elds and their

derivatives. The �rst term may be just a constant, L = −F 2 + ... where [F ] = 2. The sign

is determined by the correct sign of the Goldstino kinetic term which arises from E(x)

E = 1+
(
i∂µχσ

µχ† + h.c.
)

+
1

2

[(
i∂µχσ

µχ† + h.c.
)2
−
(
i∂µχσ

aχ† + h.c.
)(

i∂aχσ
µχ† + h.c.

)]
+. . .

(D.60)

and it generates a positive vacuum energy Evac = F 2 > 0, as it must be for a spontaneously

broken SUSY. Notice that
√
F has the physical meaning of the SUSY breaking scale. The

sign and the coe�cient of 4-fermion interactions are �xed in terms of F only

−F 2E(x)→ −2F 2
(
χ†σ̄a∂µχ

)(
χ†σ̄µ∂aχ

)
+ (vanish on-shell or total der.) (D.61)

If we canonically normalize the Goldstino �elds,χ → χ/(
√

2F ), the dimension-8 operator

(D.61) enters in the e�ective lagrangian as

− 1

2F 2

(
χ†σ̄a∂µχ

)(
χ†σ̄µ∂aχ

)
(D.62)

The overall square-two factor is due to the presence of the hermitian conjugate of the kinetic

term, since the latter is hermitian up to integration by parts.

Integrating by parts we can rewrite (D.62) as

1

2F 2

(
χ†σ̄a∂µχ

)(
∂aχ

†σ̄µχ
)

=
1

2F 2

(
χ† iα̇ σ̄

ν α̇α∂µχi α

)(
∂νχ

† j
β̇
σ̄µ β̇ βχj β

)
(D.63)

= − 1

2F 2
χ† iα̇ ∂νχ

† j
β̇
σ̄µ β̇ βσ̄ν α̇α∂µχi αχj β (D.64)

=
1

F 2
χ† iα̇ ∂µχ

† j α̇∂µχβi χj β (D.65)

=
1

F 2
χ† i∂χ† j∂χiχj (D.66)

where we used (B.16). When we choose N = 1, this operator reduces to the quartic term

that appears in the Goldstino lagrangian in [34]

1

F 2
χ†∂χ†∂χχ =

1

4F 2
∂
(
χ†χ†

)
∂ (χχ) = − 1

4F 2
χ†χ†� (χχ) . (D.67)
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