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Abstract

The mission planning (MP) is a crucial aspect of Earth Observation (EO) that targets the opti-
mal scheduling of satellites’ orbits for the data collection of Earth information upon end-users’
requests. This task is a complex combinatorial problem that involves the optimization of a set
of variables, describing both the acquisition of target images of the Earth’s surface and the sub-
sequent downloading of the acquired information to ground stations. The MP problem can be
formulated as a knapsack problem (NP-hard problem), where the cost function consists of bi-
nary variables, whose optimal configuration provides the time-ordered shortlist of the possible
observations and downlinks - the planned mission - according to some selected constraints. This
Thesis represents the output of a six-month internship within the research division of Thales Ale-
nia Space Italia (TASI). Starting from a mathematical formulation of the MP problem provided
by TASI, we first map the original classical problem into a ground-state search for the corre-
sponding quantum many-body Hamiltonian, reminiscent of spin glass models. We then explore
the feasibility of reaching the optimal solution for a representative set of small problem instances
using quantum-inspired algorithms based on Tree Tensor Networks (TTN), which allow for an
efficient representation of the ground state of many body systems. This study concludes with a
comparison to a Quadratic Program (QP) classical solver.
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Introduction

Many problems of theoretical and practical relevance can be framed as combinatorial optimiza-
tion problems over discrete configuration spaces, where the goal is determining the optimal
arrangement of discrete variables to maximize or minimize a designated objective function.
Their application spans across various domains, including graph theory, where optimization
techniques serve as finding the shortest path between the nodes, network flow maximization,
and minimizing traversal costs. Of notable interest are quadratic unconstrained binary optimiza-
tion (QUBO) problems, appearing in diverse fields such as machine learning, materials design,
software verification, flight traffic control, constraint satisfaction problems, portfolio manage-
ment, and logistics. Enhancing our capability in effectively addressing real-world problems, es-
pecially those concerning operational planning and scheduling, represents a promising avenue
for potential breakthroughs in emerging computational paradigms, such as quantum computing.
Classical approaches to such problems often rely on heuristic methods, which may lack perfor-
mance guarantees or runtime efficiency. Even marginal enhancements in the solution quality
can impact resource costs including time and energy consumption required for practical solution
implementation.
This Thesis represents the output of a six-month internship with the research division of Thales
Alenia Space Italia (TASI), whose main scope is studying and solving problems in the Earth Ob-
servation (EO) scenario. Earth observation refers to the use of remote technologies to monitor
land, atmosphere, seas, rivers, and lakes. The monitoring is performed by ground-state stations
or satellites, and the acquisition of images and high-resolution data provides valuable informa-
tion on Earth processes, thus enabling global monitoring for applications ranging from climate
monitoring and natural resource management to disaster response and urban planning. In this
context, constellations of satellites continuously acquire data from the Earth, but this process
has limitations due to the different factors, such as the organization of the mission for the con-
stellations, the data acquisitions, the processing of the raw data and the analysis of them.
This Thesis focuses on the solution of optimization problems related to the scheduling of the
satellites mission and the raw data acquisition, which is defined asMission Planning (MP) prob-
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lem. MP specifically refers to the scheduling of satellites observations to fulfil a given list of
acquisition requests in a certain time horizon, from one day to a few days. The mathematical
formulation of the MP problem resides in those problems defined as combinatorial problems,
whose computational complexity is known to be NP-hard [1]. Specifically, we consider a math-
ematical formulation of theMP problem in terms of the knapsack problem [2], where the optimal
mission accounts for all the users requests while fulfilling other operational constraints.
Possible classical approaches to solve this type of problems are Linear Programming Solvers,
as Dynamic Programming[2], Greedy algorithm[3], Branch and Bound[4], approximation al-
gorithms [5] and metaheuristic algorithms [6]–[8]. With the advent of quantum computing [9],
[10], other approaches based on quantum algorithms have become available. This is the case
of quantum annealing, where the solution of the combinatorial problem is obtained by adiabat-
ically preparing the ground state of the corresponding Ising Hamiltonian, or Quantum Neural
Networks, in which a classical machine learning algorithms is adapted to run on a quantum com-
puter[11].
The strategy employed for this Thesis is to apply methods based on quantum physics which
operate on classical computers, specifically, Tensor Network (TN) methods [12]. In quantum
many-body physics, TN numerical techniques have been developed to represent the states of
quantum many-body problems [13]. The underlying idea involves decomposing a wave func-
tion into local tensors connected by bonds. Each tensor captures the local entanglement structure
within a subsystem, while the bonds encode the correlations between neighboring subsystems.
This arrangement is achieved by organizing the tensors into a hierarchical configuration, where
the entanglement between distinct regions is captured through the auxiliary indices connecting
the tensors. The level of information captured can be regulated by the bond dimension Ç.
This thesis introduces the optimization of the Mission Planning problem using a specific ansatz
for the wavefunction, namely the Tree Tensor Network (TTN) ansatz. Starting by defining in-
depth Earth Observation, characterized by different use cases in which it is divided, the chapter
1 has the aim to strictly explain the Mission Planning problem for Earth Observation, giving
an overview of the challenge. Consequently, in Sec.1.2, the mathematical formulation of the
Mission Planning is explored, introducing essential parameters and the considered Constraints,
important to define the objective function that must be minimized. Subsequently, in Sec. 1.3,
the problem is transformed into a QUBO problem, accompanied by a concise explanation of
what QUBO problems entail. Finally, in sec.1.4, the quadratic formulation is mapped onto an
Ising-like Hamiltonian, which is the final formulation used to apply the TTN approach.
The chapter 2, gives an explanation of quantum many-body problems (sec. 2.1), more specif-
ically focusing into Ising Spin-glasses models, sec.2.2. After a little introduction of Exact Di-
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agonalitazion techniques in sec. 2.3, the entanglement in quantum system is explained (sec.
2.4). Finally, the Tensor Network methods are introduced, given an overview of their property,
required to introduce the Tree Tensor Network ansatz, sec. 2.5.
Chapter 3 begins by providing an overview of the mission planning instances and the desired
outcomes of interest, namely the mission plan, the fulfilled constraints and the mission cost.
The exploration begins with an examination of how the bond dimension impacts the ground-
state search for small systems (N = 16,32,64), demonstrating the direct correlation between
the energy convergence behaviour and the bond dimension. As the mission planning problem
is a classical NP-hard problem characterized by an exponential number of local minima, an ad-
ditional transverse field is incorporated into the MP Hamiltonian within the framework of the
TTN approach, aiming to facilitate escape from local minima. To assess the effectiveness of
this field, two systems are scrutinized through iterative random initializations, a pivotal aspect
of the algorithm. After demonstrating the effects of this field, further instances are considered,
encompassing various system sizes ranging fromN = 16 toN = 1024 and comparing the TTN
results with a classical solver.
In the concluding chapter 4, all significant points will be summarized. It will be shown that the
TTN optimization algorithm, implemented in the Quantum Green Tea library, can be an optimal
approach for the analyzed instances. Particularly, our results show that an additional transverse
field applied to the MP Hamiltonian helps to escape from local minima, increasing the probabil-
ity to find the ground state. Considering the purpose of the mission planning, we then focus on
the mission quality, that is the accuracy of the satisfied constraints. To have a comparison with
a classical solver, the outcomes obtained by the TTN algorithm are compared with the solution
of the CPLEX solver, which have similar, almost identical, solutions in terms of satisfied con-
straints, when considering instances with at most 256 qubits. Instead, the computational time
to reach the optimal solution is significantly worse for the TTN algorithm. Finally, to push the
limit of our implementation other instances with 512 and 1024 qubits are taken into account,
showing that the TTN maintains stability in terms of quality of the mission.
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1 | Mission Planning for Earth
Observation

This chapter is dedicated to the Mission Planning problem within the framework of Earth Ob-
servation. Sec. 1.1 begins with the definition and an in-depth analysis of Earth Observation,
encompassing its significance, various Use Cases, and the nuanced subdivision into various
issues and aspects. By scrutinising Earth Observation from multiple angles, we gain valuable
insights that pave the way for a focused examination of the challenges and considerations in-
herent in Mission Planning. Sec. 1.2 then explores the mathematical formulation of the Mission
Planning problem, introducing essential parameters and Constraints necessary for this formu-
lation, providing a comprehensive overview. This Constraints are explained highlighting their
significance and the underlying equations used to describe them. With the understanding of Mis-
sion Planning and its formulation established, Sec.1.3 offers an introduction of the Quadratic
Unconstrained Binary Problem (QUBO), providing a comprehensive overview of QUBO’s im-
portance within this context and its significance in relation to Mission Planning. Such insights
are valuable for transforming this problem into an Ising-like Hamiltonian, explained in Sec.1.4.
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CHAPTER 1. MISSION PLANNING FOR EARTH OBSERVATION

1.1 The Earth Observation challenge

Earth Observation (EO) is gathering data on the Earth’s physical, chemical and biological
systems, using remote sensing technologies. This activity can be performed by remote
technologies, such as satellites or ground-based platforms, such as weather stations. Aligned
with the investigation conducted by Thales Alenia Space Italia (TASI), this thesis will focus
on the satellite perspective. Through satellites, Earth Observation involves the utilization of
satellite-mounted payloads to acquire imaging data that capture the Earth’s characteristics.
Earth observation images provide a global outlook, capturing large-scale phenomena with pre-
cision and completeness, which would require a substantial number of ground-level observers
to achieve. Long-term, continuous monitoring of the environment of the Earth will allow a
reliable assessment of the worldwide repercussions of human activities and the future scope of
climate change expected. Examples of what types of data are extracted by Earth observation
are surface thermal data, through termed optical instruments, recording the reflecting energy
coming from the Sun across various wavelengths, including visible light and invisible infrared
bands[14][15]. Typically, Earth Observation presents itself as a multifaceted challenge that
encompasses various Scenarios, each delineating a specific Use Case (UC). These Scenarios,
for satellite-based EO missions, span mission analysis, data acquisition, processing, and data
analysis. The integration of these scenarios is depicted in Fig.1.1. illustrating the four phases
that encapsulate the essence of EO in terms of the tasks at hand, where these phases are depicted
alongside a distribution of the identified scenarios.

Figure 1.1: Steps of the Earth Observation, with the percentages representing the proportion of
identified scenarios corresponding to each phase.

6



1.1. THE EARTH OBSERVATION CHALLENGE

Various studies are conducted for each phase of the EO problem, with the aim of maximising
the efficiency of each component. However, this thesis focuses solely on the initial two phases:
mission analysis and raw data acquisition. The accomplishment of these tasks strongly depends
on the optimal scheduling of satellite observations.
Nowadays, satellites have become powerful scientific tools and they continuously acquire
images of our planet from orbit. Typically, missions for collecting earth images involves
constellations of satellites (∼10), which are appealing for their robustness and flexibility, espe-
cially in adapting to expected and unexpected events. Despite their excellent capabilities, when
considering how to schedule a mission of a constellation of satellites, other considerations must
be addressed, such as limitations from various sources of nature, economic, and manufacturing.
There are also limitations related to time, memory, and other aerospace considerations that
must be addressed. Then, it is essential that satellite deployment is efficient, ensuring optimal
use. This challenge is known as the satellite Mission Planning (MP) problem. The purpose
of mission planning is to optimise the scheduling of satellite observations to fulfil a given list
of user requests in a certain time horizons, which can vary from one day to few days. Current
approaches to this problem are based on both deterministic and metaheuristic algorithms,
capable of generating optimal solutions for the current constellation of a few satellites [16].
However, a growing trend involves the deployment of extensive constellations of small satel-
lites (∼100), making the identification of an optimal solution to the mission planning problem
increasingly challenging, even for short planning time horizons. The emerging extensive
satellite constellations are becoming increasingly intricate, especially with the implementation
of the Inter-Satellite Link (ISL). This technology enables satellite-to-satellite communication,
creating a network where satellites can share information, without the need, for the satellites
which makes the acquisition, to orbit over a ground station for data download. Then, the goal
of the mission planning algorithm is to reduce the system’s response time, particularly the
delay from when a user request is submitted to when the product is downloaded, by evenly
distributing tasks among the satellites that are accessible.
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CHAPTER 1. MISSION PLANNING FOR EARTH OBSERVATION

1.2 Mathematical formulation

The objective of Mission Planning for Earth Observation is to devise an efficient solution for
managing the resources of the constellation to fulfil mission objectives. This involves optimiz-
ing the scheduling of satellite observations for a given list of user requests. These user requests
involve capturing specific information of a specific target, such as specific area of the Earth’s
surface. A given set of these targets, called Acquisition Requests (ARs), must be fulfilled during
the EO mission. This problem is described by two type decision variables, ”data take oppor-
tunities” (DTOs), which refer to instances when each satellite has the opportunity to capture a
specific AR at various times during the mission timeframe. These opportunities are character-
ized by the instantaneous time in which the acquisition can occur. The ”downlink opportunities”
(DLOs), which describes the transmission of acquired information from the individual satellite
to receptive ground stations. Each satellite is constrained by limited onboard storage capacity,
necessitating compactness to mitigate satellite launch costs and other manufacturing consid-
erations. In addition, storing data onboard poses significant challenges, causing the need to
optimize the downlink of acquired targets to ground stations. The DLOs represents the list of
possible occasions on which each satellite can download this information.
The optimizer generates a list of feasible observations and downlinks by considering various
constraints. This Mission Planning problem can be described by the following cost function:

C(x⃗,y⃗) =
N∑

i=1

M∑

j=1

¹i,j∑

k=1

(

³tki,jx
k
i,j −

µ

M
xki,j

)

+
N∑

i=1

M∑

j=1

Ãi∑

r=1

(
´sri,jy

r
i,j

)
=

=
N∑

i=1

M∑

j=1

¹i,j∑

k=1

³ki,jx
k
i,j +

N∑

i=1

M∑

j=1

Ãi∑

r=1

´ri,jy
r
i,j,

(1.1)

and must be minimized with respect to the x⃗ and y⃗, which describe the DTOs and DLOs,
respectively. The ³ki,j and ´ri,j represent the inclusion of weights and temporal aspects. When
xki,j is equal to 1, the i-th satellite acquires the j-th target at the k-th occurrence, it is 0 if it is not
acquired; similarly, yri,j is equal to 1 if the i-th satellite schedules the downloading of the j-th
acquired target at the r-th opportunity, or 0 otherwise.







xki,j = 1 acquisition completed

xki,j = 0 otherwise







yri,j = 1 download completed

yri,j = 0 otherwise
(1.2)
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1.2. MATHEMATICAL FORMULATION

The cost function, Eq. 1.1, is characterized by the following parameters:

• N ∈ N: the number of satellites in the constellation;

• M ∈ N: the number of acquisition requests characterizing the mission;

• ¹i,j ∈ N: the number of possible opportunities in which satellite i can acquire target j;

• Ãi ∈ N: the number of possible opportunities in which satellite i can perform the downlink
of an acquired target;

• tki,j ∈ R: instantaneous time in which satellite i acquires target j at the opportunity k;

• sri,j ∈ R: instantaneous time in which satellite i perform the downlink of target j at the
opportunity r;

• ³,´,µ ∈ R: weights associated with the problem.

x(1)

i,2

x(3)

i,2

i

DLOs ( j = 1) = {y(1)

i,1
y(2)

i,1
y(4)

i,1
y(3)

i,1 }, , ,

= { }0 1 0, 0 , ,

x(2)

i,2

y(1)

i,1

y(2)

i,1
y(3)

i,1
y(4)

i,1

DTOs ( j = 2) = {x(1)

i,2
x(2)

i,2
x(3)

i,2 }, ,

= { }0 1 0, ,

Figure 1.2: Visualization of the mission planning problem is depicted graphically. Each satel-
lite i is presented with multiple chances to capture the requested scene (AR) and subsequently
transfer them due to memory constraints. Mission planning focuses on determining the most
efficient schedule for these data acquisition requests.
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CHAPTER 1. MISSION PLANNING FOR EARTH OBSERVATION

As illustrated in the Fig.1.2, a typical satellite i assigned the duty of acquiring M ARs during
its orbit. The dashed lines directly connected to the satellite represent the opportunities ¹i,j for
the i-th satellite to acquire the j-th AR, i.e. the DTOs. Meanwhile, the dashed line connected
to the gray cube signifies the possible data downlink attempts Ãi for the i-th satellite.
The goal of an algorithm, designed to solve the MP problem, is to find x⃗ and y⃗ that minimize
Eq.1.1, more specifically:

argmin
x⃗,y⃗

C(x⃗,y⃗) + ΩE/I, (1.3)

where ΩE is the set of constraints representing the problem. Moreover, while the equation 1.1
presents a fundamental aspect, the main complexity of this problem arises from the need to
minimize it, taking into account a multitude of constraints. These constraints play a crucial role
in shaping the solution space and ensuring that the resulting schedule meets all the necessary
criteria and requirements. For this work, the applied constraints are:

1. One acquisition attempt per target:

N∑

i=1

¹i,j∑

k=1

xki,j − 1 = 0 ∀j ∈ [1,M ], (1.4)

2. One download attempt per target:

N∑

i=1

Ãi∑

r=1

yri,j − 1 = 0 ∀j ∈ [1,M ], (1.5)

3. Each acquisition must be downloaded:

¹i,j∑

k=1

xki,j −

Ãi∑

r=1

yri,r = 0 ∀i ∈ [1,N ], ∀j ∈ [1,M ], (1.6)

4. Target acquisition precedes download:

¹i,j∑

k=1

xki,jt
k
i,j −

Ãi∑

r=1

yri,js
r
i,j f 0 ∀i ∈ [1,N ], ∀j ∈ [1,M ], (1.7)

5. Sufficient preparation time between two acquisitions:

xki,sp
k
i,s − |x

k
i,st

k
i,s − x

k′

i,jt
k′

i,j| f 0 ∀i ∈ [1,N ], ∀j,s ∈ [1,M ],

∀k ∈ [1,¹i,s], ∀k
′ ∈ [1,¹i,j],

(1.8)
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1.2. MATHEMATICAL FORMULATION

6. Sufficient preparation time between two downlinks:

yri,gd
r
i,g − |y

r
i,gs

r
i,g − y

r′

i,js
r′

i,j| f 0 ∀i ∈ [1,N ], ∀j,g ∈ [1,M ],

∀r ∈ [1,Ãi], ∀r
′ ∈ [1,Ãi].

(1.9)

Where other parameters are introduced:

• pki,j ∈ R: the preparation time of the i-th satellite to gain j-th target at k-th occurrence;

• dri,j ∈ R: the preparation downlink time of the i-th satellite to download j-th target at r-th
occurrence.

In table 3.1, there are described some realistic range of value, which we aspect they can be
associated to the Mission planning in coming years. Involving a large number of variables to be
optimized, considering and satisfying numerous constraints, make this task really challenging.
However, the focus of this thesis lies on approaching this problem from a novel perspective,
with the aim of identifying an optimal solution.

Realistic range of variables and parameters

Parameter ID Description Domain Range Values

N number of satellites N [1-1000]

M number of ARs N [200-50k]

¹i,j number of DTOs N [2-50]

Ãi number of DLOs N [10-100]

tki,j Instant acquisition time R [1hr-few days]

sri,j Instant downlink time R [1hr-few days]

pki,j
Preparation time after
one acquisition R [10 sec - 60 sec]

dki,j
Preparation time after
one downlink R [10 sec - 60 sec]

Table 1.1: Information on the realistic range of variables and parameters in the mathematical
model
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1.3 QUBO formulation

The MP problem, due to its limitation and definition, belongs to the so-called knapsack prob-
lem. The knapsack problem is a classic combinatorial optimization problem where the goal is to
maximize the value of items selected to fit within a given weight constraint of a knapsack. Sim-
ilarly, in the mission planning problem, we are required to maximize the number of ARs within
a given horizon time. For this reason, the cost function targets the arrangement of binaries that
minimize the time (mission cost) while satisfying the constraints [17]. Different classical models
and algorithms can be implemented to solve knapsack problems, as Dynamic Programming[2],
Greedy algorithm[3], Branch and Bound[4], approximation algorithms [5] and metaheuristic
algorithms [6]–[8].
The objective of this study is to apply a different approach to find a solution to the Mission
Planning (MP) problem, as defined in Equation 1.1, by employing techniques drawn frommany-
body physics, notably tensor network methods. To accomplish this, it is first necessary to re-
frame the existing mathematical formulations into a quadratic unconstrained binary optimiza-
tion (QUBO) problem [18]. QUBO serves as a unified model capable of representing a wide
range of combinatorial optimization problems [19][20].
QUBO problem represents challenging mathematical optimization tasks involving the mini-
mization of a quadratic objective function:

f(x⃗) = x⃗TQx⃗, (1.10)

where x⃗ is a vector of binary variables and Q is a symmetric matrix. Here, f : Bn ⇒ R is a
Pseudo-Boolean function, with n a positive integer,B = {0,1} andR the set of real numbers[21].
These problems are known to be NP-hard, implying that finding an optimal solution generally
requires exponential time with respect to the size of the problem. Where QUBO problem can
be written as:

arg min
x⃗∈Bn

f(x⃗) = arg min
x⃗∈Bn

(
n∑

j=1

n∑

k>j

Qj,kxjxk +
n∑

j=1

Qjjxj

)

. (1.11)

However, when comparing the QUBO formulation, as represented by Equation 1.10, to
the Mission Planning problem described by Equation 1.1, it becomes apparent that they
share similarities, albeit without the consideration of previously introduced constraints. The
objective of an algorithm tasked with minimizing the cost function is to find a solution that
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1.3. QUBO FORMULATION

adheres to the associated constraints. If the domain set of these constraints is denoted by
ΩE , then the optimal solution must reside within this domain, that is, x⃗opt ∈ ΩE , satisfying
f(x⃗opt) f x⃗ ∀f(x⃗) ∈ ΩE . Then it is important to incorporate the constraint into the QUBO
formulation, usually achieved by converting a binary Integer Linear Programming (ILP)
problem into a quadratic one. In this context, the ILP problems correspond to the constraints
inherent in MP.
For the case of mission planning problem, the considered linear constraints can be categorised
into two types: equality constraints and inequality constraints. Then the general quadratic
problem is defined as:







argminx⃗∈Bn f(x⃗)

Ceqx⃗ = k⃗eq

Cinx⃗ f k⃗in

(1.12)

For the equality constraints, such as the second equation in 1.12, it is feasible to convert Ceqx⃗
into a parameter that is dependent on x⃗, denoted as cmeq(x⃗) with m = 1, . . . ,p. Consequently,
this leads to a set of equations defined as:

{ceqm(x⃗) = k⃗
eq

m}.

These set of equality constraints can be converted in a quadratic problem and incorporated into
f(x⃗) as a term of penalty, expressed as:

Pm(x⃗) =
(

ceqm(x⃗)− k⃗
eq

m

)2

. (1.13)

Where,






Pm(x⃗) = 0 x⃗ feasible

Pm(x⃗) g 0 x⃗ infeasible
(1.14)

In certain scenarios, achieving a zero value for these penalty terms might not be feasible;
therefore, the objective is to minimize them as much as possible.
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Now, considering the third equation in 1.12, which represents the inequality constraints, an
analogous approach to the one used for the equality constraints needs to be identified. A
collection of these constraints is specified as:

{cinl (x⃗) f k⃗
in

l },

where l = 1, . . . ,q. Which can be converted by a simple equality c(x⃗) + s = k, where s ∈ N

and s f k. This gives the opportunity to define an inequality as a penalty terms for a quadratic
problem:

Pl(x⃗) =
(

cinl (x⃗) + sl − k⃗
in

l

)2

. (1.15)

Where,

sl =

ml−1∑

³=0

2³bl,³ with ml = +log2 k
in
l ,+ 1 and bl,³ ∈ B. (1.16)

Then,







Pl(x⃗) = 0 x⃗ feasible

Pl(x⃗) g 0 x⃗ infeasible
(1.17)

When dealing with a set of inequality constraints, there is a strategy to convert them into addi-
tional terms within the objective function f(x⃗). This adaptation might involve the introduction
of additional slack variables, to supplement existing N variables [19].
At the end, having converted the linear constraint into a quadratic problem, it is possible to
rewrite a final objective function:

Obj(x⃗) = f(x⃗) +

p
∑

m=1

µmPm(x⃗) +

q
∑

l=1

µlPl(x⃗). (1.18)

The parameters µl and µm, being constraint prefactors greater than zero, hold pivotal roles in the
objective function minimization process. Their values influence the degree of emphasis placed
on individual constraints. By assigning suitable weights to these parameters, the optimization
algorithm can effectively navigate towards an optimal solution that appropriately balances the
competing objectives and constraints inherent in the problem.
To incorporate the constraints of the Mission Planning problem, reported previously in Sec.1.2,
to the cost function 1.1, they can be reformulated as quadratic problems, as discussed earlier,
to yield a final objective function represented as a QUBO problem.
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1.3. QUBO FORMULATION

The first three constraints, 1.4, 1.5 and 1.6, which are simple equalities, can be expressed as
Eq.1.13, resulting in the following.

Eq.1.4 ⇒ CDTO(x⃗) =
M∑

j=1





N∑

i=1

¹i,j∑

k=1

xki,j − 1





2

. (1.19)

Eq.1.5 ⇒ CDLO(y⃗) =
M∑

j=1

[
N∑

i=1

Ãi∑

r=1

yri,j − 1

]2

. (1.20)

Eq.1.6 ⇒ CME(x⃗,y⃗) =
N∑

i=1

M∑

j=1





¹i,j∑

j=1

xki,j −

Ãi∑

r=1

yri,j





2

. (1.21)

For the remaining constraint, 1.7, 1.8 and 1.9, a different strategy is pursued. Introducing
slack variables may not be the most efficient approach, as the incorporation of extra variables
substantially escalates the computational time and intricacy of the problem, potentially hin-
dering the optimization process. As reported by Kochenberger in [19], this type of inequality
constraint, such as xi + xj f 1, is very common, and penalty terms can be written as a
multiplication over them, µxixj . For these three constraints, the inequality is determined by
fixed parameters, such as predetermined instantaneous and preparation times. By processing
these parameters, it becomes apparent which couple of binary variables cannot both be set to 1
simultaneously. Then, for the constraint (1.7), yri,j is allowed in conjunction with xki,j only if
tki,j f sri,j . Then the forbidden domain is:

Fi,j =
{
(r,k) | tki,j > sri,j

}
. (1.22)

Identical approach was employed to define the forbidden domains for constrains (1.8) and
(1.9). Respectively:

Gi =
{

(s,j,k,k′) | pki,s − |t
k
i,s − t

k′

i,j| > 0
}

, (1.23)

Ji =
{

(g,j,r,r′) | dri,g − |s
r
i,g − d

r′

i,j| > 0
}

. (1.24)

Then, the penalty terms become:

Eq.1.7 ⇒ CAD(x⃗,y⃗) =
N∑

i=1

M∑

j=1

∑

(k,r)∈Fi,j

xki,jy
r
i,j, (1.25)
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Eq.1.8 ⇒ CPDTO(x⃗,y⃗) =
N∑

i=1

∑

(s,j,k,k′)∈Gi

xki,sx
k′

i,j, (1.26)

Eq.1.9 ⇒ CPDLO(x⃗,y⃗) =
N∑

i=1

∑

(g,j,r,r′)∈Ji

yri,gy
r′

i,j. (1.27)

All of these, leads into a cost function defined by a QUBO problem, where each penalty is
multiplied by a corresponding pre-factor:

CQUBO(x⃗,y⃗) = C(x⃗,y⃗) + ¼1CDTO(x⃗) + ¼2CDLO(y⃗)+

+ ¼3CME(x⃗,y⃗) + ¼4CAD(x⃗,y⃗)+

+ ¼5CPDTO(x⃗,y⃗) + ¼6CPDLO(x⃗,y⃗).

(1.28)
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1.4 Mapping into an Ising model

QUBO problems are recognized as NP-hard due to the significant amount of time required to
find an optimal solution. NP-hard refers to a category of problems that are as hard as the most
challenging problems in NP, where NP (Non-deterministic Polynomial time) comprises decision
problems for which solutions can be verified efficiently. These problems do not necessarily
belong to NP andmay not even be decidable. One potential approach to solve NP-hard problems
is through adiabatic quantum optimization (AQO), the logic behind using quantum algorithms,
such as quantum annealing [22], [23], or numerical methods based on quantum physics, to solve
hard optimization problems lies in reformulating the problem into a Hamiltonian, specifically
an Ising-like Hamiltonian, known to be NP-hard for conventional computers [24], [25] and
commonly referred to as a QUBO problem[26], [27]. By formulating an optimization problem
as a QUBO problem, it becomes feasible to map it into an Ising-like Hamiltonian, as thoroughly
explained by Lucas[1], converting the problem into a ground-state search of a quantum many-
body Hamiltonian. The most important step consists of transforming the two binary variables
into spin-1

2
variables:

xki,j ∈ {0,1} −→ Ä ki,j ∈ {−1,1} ,

yri,j ∈ {0,1} −→ ¿ri,j ∈ {−1,1} .
(1.29)

With the following transformations:






Ä ki,j = 1− 2xki,j

¿ri,j = 1− 2yri,j

←→







xki,j =
1
2

(
1− Ä ki,j

)

yri,j =
1
2

(
1− ¿ri,j

) (1.30)

Applying these transformations to Eq.1.28 we obtain a classical Ising-like Hamiltonian:

HMP [Ä⃗ ,¿⃗] = Cte× 1+HSP [Ä⃗ ] +HSP [¿⃗] +HINT [Ä⃗ ] +HINT [¿⃗] +HINT [Ä⃗ ,¿⃗] . (1.31)

Where the second and third terms of Eq.1.31 represent the Ising magnetic fields terms:

HSP [Ä⃗ ] =
N∑

i=1

M∑

j=1

¹i,j∑

k=1

[

Ãi

2

( µ

M
− ³tki,j

)

+ ¼1
1

2

(
N∑

i′=1

¹i′,j − 1

)

+ ¼3
1

2
(Ãi + ¹i,j)

]

Ä ki,j

−

N∑

i=1

M∑

j=1

∑

k∈Fi,j

1

4
¼4Ä

k
i,j −

1

4
¼5

∑

(s,j,k,k′)∈Gi

(Ä ki,s + Ä k
′

i,j),

(1.32)
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HSP [¿⃗] =
N∑

i=1

M∑

j=1

Ãi∑

r=1

[

−
1

2
´¹i,js

r
i,j + ¼2

(

1−
3

2
Ãi −

1

4
(N tot

2 − 1) +NÃi

)

+

+¼3
1

2
(¹i,j − Ãi)

]

¿ki,j −

N∑

i=1

M∑

j=1

∑

r∈Fi,j

1

4
¼4¿

r
i,j+

−
1

4
¼6

∑

(g,j,r,r′)∈Ji

(¿ri,g + ¿r
′

i,j).

(1.33)

The last three therms of Eq.1.31 describe the interactions between spins:

HINT [Ä⃗ ] =
N∑

i=1

M∑

j=1




1

2
(¼1 + ¼3)

¹i,j∑

k=1

¹i,j∑

k′>k

Ä ki,jÄ
k′

i,j +
1

2
¼1

N∑

i′>i

¹i,j∑

k=1

¹i′,j∑

k′=1

Ä ki,jÄ
k′

i′,j



+

+
1

4
¼5

N∑

i=1

∑

(s,j,k,k′)∈Gi

Ä ki,sÄ
k′

i,j,

(1.34)

HINT [¿⃗] =
N∑

i=1

M∑

j=1

[

1

2
(¼2 + ¼3)

Ãi∑

r=1

Ãi∑

r′>r

¿ri,j¿
r′

i,j +
1

2
¼2

N∑

i′>i

Ãi∑

r=1

Ãi′∑

r′=1

¿ri,j¿
r′

i′,j

]

+

+
1

4
¼6

N∑

i=1

∑

(g,j,r,r′)∈Ji

¿ri,g¿
r′

i,j,

(1.35)

HINT [Ä⃗ ,¿⃗] =
N∑

i=1

M∑

j=1



−
1

2
¼3

¹i,j∑

k=1

Ãi∑

r=1

Ä ki,j¿
r
i,j +

1

4
¼4

∑

(k,r)∈Fi,j

Ä ki,j¿
r
i,j



 , (1.36)

The first term represent an offset, which is proportional to the identity:

Cte =M(¼1 + ¼2) +
1

4
(3¼3N

tot − 2¼1N
tot
DTO − 2¼2N

tot
DLO)+

+
N∑

i=1

M∑

j=1





¹i,j∑

k=1

(

³tki,j −
µ

M

)

Ãi +

Ãi∑

r=1

´¹i,js
r
i,j +

1

4
¼1¹i,j(¹i,j − 1)+

+
1

4
¼2Ãi(Ãi − 1) +

1

4
¼3(¹i,j − Ãi)

2 +
N∑

i′ ̸=i

1

4
(¼1¹i,j¹i′,j + ¼1ÃiÃi′)+

+ ¼4|Fi,j|

]

+
N∑

i=1

[¼5|Gi|+ ¼6|Ji|] .

(1.37)
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Where N tot
DTO and N tot

DLO are the numbers of DTO and DLO spins respectively, and N tot is the
total number of spins.
However, the structure of this Hamiltonian resembles that of a spin-glass model. Which can be
written in terms of Pauli matrices:

H =
Ntot
∑

j=1

hjÃ
z
j +

Ntot
∑

ïj,kð

Jj,kÃ
z
jÃ

z
k + const. (1.38)

Where N is the number of variables, h is the single-particle term corresponding to equations
1.32 and 1.33, J is the interaction term between spins, i.e. equations 1.34,1.35, and 1.36, and:

Ã̂zj Ã̂
z
k = 1¹ · · · ¹ Ãz

j-th
¹ · · · ¹ Ãz

k-th
¹ · · · ¹ 1. (1.39)

In the current context, the original optimization problem revolves around determining the ground
state of the Hamiltonian 1.31. This involves minimizing the original cost function, Eq.1.1, with
all the constraints considered. By accessing the eigenstate with the lowest energy, the spin
orientation is discerned, enabling the extraction of a bit string that delineates the Mission plan.
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This Chapter is focused on exact and approximated methods to address the so-called many
body problem. The section commences with a brief explanation of the many-body problem,
specifically focusing on the Ising spin-glass model (sec. 2.1), as the Hamiltonian describing the
mission planning problem belongs to this class of problems. After reviewing how to compute
the exact spectrum of the Ising Hamiltonian (Sec.2.3), a brief discussion of the Entanglement
for quantum many-body systems, sec.2.4. Subsequently, the Chapter delves into tensor networks
methods (Sec. 2.5), employing a Tree Tensor Network configuration for the system, that allows
the exploration of larger system sizes.

2.1 The Many-Body problem

The quantum many-body problem refers to the study of several interacting quantum degrees of
freedom composing a quantum system, and it is transversal to multiple scientific domains such
as Condensed Matter Physics, Quantum Chemistry, and Atomic and Nuclear Physics[12]. The
challenges of the quantum many body problem arises from the exponential growth of Hilbert
space with the system size. The total Hilbert space of an N-body system is the tensor product of
N single-body or local Hilbert spaces:

HT = H1 ¹ · · · ¹HN . (2.1)

The single-body constituents of the system can be any quantum degree of freedom. Chosen a
basis for each constituent {|³jð}, j = 1, . . . , dim(Hj), a general state inHT can be represented
as:

È =
∑

c³1,³2,…,³N
|³1,³2,…, ³Nð. (2.2)
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In the following we will work in the computational basis: the local basis are the the states of the
Pauli matrix Ãz namely,

|³jð = {|0ð,|1ð}.

Assuming that the local dimension of each single body is d, then size of the total Hilbert space
is dN . Then the number of coefficients needed to express a general state is dN . This means that
this problem is extremely hard to attack numerically. For this reason, the exact computation of
a quantum many-body problem poses significant challenges due to the extensive memory and
time resources it demands. Consequently, researchers have turned to a variety of numerical
approximation methods to tackle such complexities. These include mean-field theory, Monte
Carlo methods, renormalization group techniques, and tensor network approaches. [12]

2.2 Spin-Glass models

Spin glasses are a class of disordered materials that exhibit complex behaviors due to the in-
terplay of competing interactions among their constituent [28]. Spin glasses represent a diverse
class of materials beyond simple alloys such as the Au-Fe system. Another example is the dilute
magnetic semiconductor, where magnetic ions are sparsely distributed within a non-magnetic
host lattice. In these materials, such as GaMnAs, the presence of magnetic ions introduces dis-
order into the system, leading to the formation of a spin glass state. The random distribution of
magnetic ions results in frustration and competing magnetic interactions, akin to those found in
alloy systems. Unlike conventional magnets, where magnetic moments align to produce ordered
magnetic states, spin glasses possess a disordered arrangement of spins, similar to the random-
ness found in amorphous solids like glass. This disorder stems from the presence of competing
magnetic interactions, resulting in frustration and the absence of a well-defined magnetic ground
state. As the strength of the interaction between magnetic moments depends on their random
distance, a spin glass can be understood as a magnetic system with randomly distributed inter-
actions. The first mathematical formulation of this problem is by S. Edward and P. Anderson
[29]:

H = −
∑

ïj,kð

Jj,kSjSk. (2.3)

The local magnetic moments are represented by Ising spins Si = ±1. J is the coupling matrix,
whose entries are non-zero when lattice j and k are interacting, and the sum over ïj,kð refers to
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the sum over neighboring lattice points j and k.
From this formulation it is clear the connection to the Ising model that plays a central role in
providing a first understanding of magnetic phenomena. The general expression for an Ising
model is as follows.

HIsing =
∑

i

hiSi +
∑

ïi,jð

JijSiSj, (2.4)

where hi is a local field applied on each site and the bracket ïi,jð are neighboring spins in the
chosen lattice geometry. Clearly, the lattice geometry affects the interaction pattern. In the case
where the system is described by graph G = (V,E), with V denoting the system’s degrees of
freedom (nodes) and E representing the interactions among them (edges), the previous Hamil-
tonian differs only on the sum indices, becoming a sum over the graph edges. Then the general
Ising Hamiltonian for a general graph is:

Hgraph =
∑

i

hiSi +
∑

i,j∈E(G)

JijSiSj. (2.5)

Being interested in a lattice system with local dimension 2, to represent the spin-1
2
variables, the

Si interaction terms, in the Ising Hamiltonian, represent the z-component of the Pauli matrix.
Then, a Hamiltonian of spin-1

2
variables is described as follows:

H =
N∑

j=1

hjÃ
z
j +

N∑

ïj,kð

Jj,kÃ
z
jÃ

z
k. (2.6)

2.3 Exact Diagonalization

In the previous chapter we saw the relation between aQUBOproblem and the IsingHamiltonian;
then being interested in optimizing the MP problem we have to find the ground state. At this
point, one has to study the eigenvalue problem, i.e. solving the Time-Independent Schödinger
Equation:

H|Èið = Ei|Èið, ∀i = 1, . . . ,N. (2.7)

In the case of Mission Planning the Hamiltonian is described as:

H =
N∑

j=1

hjÃ̂
z
j +

N∑

j>k

Jj,kÃ̂
z
j Ã̂

z
k + const. (2.8)
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Considering each lattice site has local base 2, since the are spin-1
2
, for sizesN < 30 it is possible

to use exact method, as exact diagonalization, to compute the ground state. In such cases, it is
necessary to use an algorithm to address the eigenvalue problem. Commonly used algorithms
include the Power Method, which begins from a random state and iteratively seeks the most
significant eigenvalue, and the QR algorithm [30][31]. However, in certain situations, these
algorithms may not be efficient in solving the eigenvalue problem when dealing with large ma-
trices. An alternative solution is the Lanczos Method, which identifies the transformation from
a general matrix to a tridiagonal form to effectively tackle the eigenvalue problem [32][12].
The Mission Planning Hamiltonian is a classical one, defined in real-space, whose size is
(2N × 2N), and it is diagonal by constructions, which requires three terms to be built:

• constant term, which is equivalent to the first term of the Eq. 1.31;

• field term h, described by the second and third term of the Eq.1.31. This terms is an array
of dimension (1×N)

• spins interaction term J, described by the last three terms of the Eq. 1.31. This term is a
matrix of dimension (N ×N) which is a symmetric matrix.

The main complex task involves constructing the Hamiltonian by summing over the variables,
specificallyO(N · 22N). When dealing with a classical Hamiltonian, one can explore the eigen-
state by arranging the diagonal elements of the matrix in ascending order. This process enables
the extraction of the system’s energy spectrum, namely the eigenvalues.

2.4 Entanglement in Quantum System

Taking a generic state |Èð, one can use the density matrix formalism to extract information about
the entanglement of the system.

Ä = |ÈðïÈ|, (2.9)

which has the following properties:

1. Ä = Ä ;

2. Tr(Ä) = 1;

3. Tr(Ä2) f 1.
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In the context of a quantum lattice system, where the lattice sites are divided into two setsA and
B, forming a bipartition of the system, the state of this system is denoted as |ÈðAB. The density
matrix of the system, ÄAB, is given by Eq.2.9. One can introduce the reduced density matrix as
a way to characterize the system:

ÄA = TrB(ÄAB) =
∑

k

ïBk|ÄAB|Bkð, (2.10)

which correspond to the partial trace with respect to the partition B.
In this setting, a way to quantify the entanglement for quantum states, the von Neumann entropy,
also known as the entanglement entropy, may be proposed. Considering a state È, described by
its density matrix Ä, the von Neumann entropy of the subsystem A is defined as:

S(ÄA) = −Tr[ÄA log2 ÄA] = −
∑

j

¼j log(¼j), (2.11)

with ¼j the j-th eigenvalue of ÄA.
To quantify entanglement in a system, a bipartition of the system intoA and B must be applied.
Computing the entanglement entropy of the reduced density matrix of one subsystem reveals
whether the state is separable or not. Where, for a bipartite state |ÈABð two orthonormal bases,
|ÈA,ið and |ÈB,jð, exist such that the state, |ÈABð, can be expressed as:

|ÈABð =
∑

i

¼
[AB]
i |ÈA,ið|ÈB,ið. (2.12)

This decomposition is called the Schmidt decomposition, where the ¼[AB]
i are the Schmidt-

coefficient. In practice, this decomposition can be achieved through the singular value decom-
position (SVD), where the state can be expressed as Æ = UÃV  , where Ã is the matrix with the
Schmidt coefficients, while U and V form the orthonormal basis.
Using the Schmidt decomposition, it is possible to quantify the entanglement between the two
subsystems, A and B, by the von Neumann entropy, which takes the form:

S(ÄA) = S(ÄB) = −
∑

i

|¼
[AB]
i |2log

(

|¼
[AB]
i |2

)

. (2.13)

The number of nonzero Schmidt coefficients is also referred to as Schmidt rank. One may
observe that the set of ¼i corresponds to the eigenvalues of the reduced density matrix of the
bipartition A (B). This is called entanglement spectrum.
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2.5 Tensor Network methods

The aim of this section is to introduce the Tensor Network (TN) methods for many body prob-
lems. Given a many-body quantum state, its complete representation contains all the available
information and is described by dN parameters.

|Ψð =
∑

³⃗

c³1,³2,...,³N
|³1³2 . . . ³Nð.

Adescription of the state in terms ofmean-field approximation reduces the number of parameters
to N , which is described as:

|ΨMF ð = |È1ð ¹ |È2ð ¹ · · · ¹ |ÈNð.

Tensor Network methods interpolates between these two representations of the many body wave
function. On this representation on of the most prominent techniques to address many body sys-
tems is is the Density Matrix Renormalization Group (DMRG), pioneered by S. White in the
1990s[33][34]. The central concept revolves around executing the renormalization procedure
within the density matrix eigenstate domain, rather than the real space. In doing so, all pertinent
information, crucial for representing quantum many-body states, resides within the degrees of
freedom associated with the entanglement of the quantumwave function. Tensor Networkmeth-
ods have demonstrated their efficacy in successfully addressing quantum many-body problems
on classical computers. They achieve this by efficiently representing quantummany-body states,
leveraging the inherent entanglement properties of the system. Other possible representations of
a variational state are theMatrix Product States (MPS) [35], which employ Tensor Networks for
addressing both equilibrium and out-of-equilibrium [36] problems in one-dimensional systems.
Multi-scale Entanglement Renormalization Ansats (MERA) [37] offers an efficient represen-
tation tailored for critical systems, and Tree Tensor Network (TTN) [38], which can represent
systems with high dimensionality.
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2.5.1 Tensors Network: Definition

The concept underlying Tensor Networks revolves around efficiently parameterizing the wave
function of a physical system using a network structure comprised of interconnected tensors.
This network comprises tensors interconnected to encode information within the complex
network. This arrangement significantly decreases the overall parameter count from an
exponential O(eN) to a polynomial O(poly(N)). By decomposing a large tensor into multiple
smaller tensors connected by additional indices referred to as bond-links, the number of links
is dictated by the bond-dimension Ç. Increasing Ç allows for better control over information
retention in the Tensor Network. In practical terms, the bond-link that joins two tensors defines
the entanglement structure in the quantum state, with the bond dimension quantifying the level
of entanglement present. A tensor can be defined as follows:

Tensor Definition: A complex tensor T ∈ Cd1×···×dR is defined as a dense R-dimensional
array of complex numbers mapping the R-dimensional manifold to a complex scalar:

T : V1 × · · · × VR −→ C. (2.14)

Figure 2.1: Graphical representation of a scalar c ∈ C, a one-link tensor (i.e. a vector) v ∈ Cd1 ,
a two-link tensor (i.e. a matrix)M ∈ Cd1×d2 , a three-link tensor T ∈ Cd1×d2×d3 and a generic
tensor of order R.[13]

Where, it becomes evident that a vector is equivalent to an order-1 tensor, a matrix is an order-2
tensor and a 3-order tensor is a three-dimensional array, and for each dimension there is associ-
ated a corresponding link. Typically, the overall count of indices in a tensor is called its rank,
while its dimension aligns with the dimension of the vector space from which it originated. A
standard representation of a tensor is as follows:

T³1,...,³N
.

Dealing with tensors that have multiple indices can be quite complex, but it can be made much
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more manageable by representing each tensor operation as a tensor network. Viewing the ma-
nipulation of tensors in this way can be considered an extension of linear algebra.
Some of these manipulations are as follows:

• Fusion: combine adjacent tensor links into a single fused-link;

• Splitting: split the fused-link into the original links;

• Contraction: given two tensors, they can be combined over all shared links.

In quantummechanics, Tensor Network states serve as representations of arbitrary pure quantum
many-body states, denoted as |Ψð, in the Hilbert spaceH . Here, the lattice L is a D-dimensional
lattice that encompasses N sites. Each site k ∈ [1, . . . ,N ] is characterized by a local Hilbert
space Hk that has a finite dimension dk. Consequently, the complete Hilbert space of L is
spanned by H = ¹Nk=1Hk. The most comprehensive form of a pure state existing on such a
lattice can be expressed as:

|Èð =

d1∑

i1=1

d2∑

i2=1

· · ·

dN∑

iN=1

Ψi1,i2,...,iN |i1ð ¹ |i2ð ¹ . . . |inð, (2.15)

where |ikð denotes the local state of the site k. This gives dim(Ψ) = dN . A Tensor Network
shall be defined as a tuple G = (T,R) consisting of a set T = {T } of two or more tensors and
a set R = {³} of corresponding links. The set R is divided into internal links connecting the
tensors with each other and external or physical link which are connected to one tensor only.
Depending on how the complete state vector Ψi1,i2,...,iN will be decomposed, it may be repre-
sented by various geometries. The most notable system configurations include theMatrix Prod-
uct State (MPS), Multi-scale Entanglement Renormalization Ansatz (MERA) and Tree Tensor
Network (TTN), which is the TN structure used for the purpose of this thesis.

2.5.1.1 Bond Dimension and Area Law

An important role in the Tensor Network approach is given by the bond dimension Ç, which rep-
resents the dimension of the bond link connecting two tensors, and the underlying entanglement
structure. From this perspective, breaking down a random state into a tensor network would re-
quire an exponentially large bond dimension to exactly depict the wave function. However, most
physical quantum states adhere to specific entanglement bounds under real-space bipartition, a
principle known as the Area Law. The area law of entanglement holds for ground states of local
gapped Hamiltonians, where the interactions are limited to a finite range[39]. This restriction
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ensures that entanglement between distant parts of the system decays rapidly. It states that for
a ground state of a local gapped Hamiltonian, the amount of entanglement between two regions
is proportional to the surface area that separates them, rather than the volume of either region
individually. Then the entanglement entropy between two regions of a d-dimensional system
scales ad: S ∼ ld−1[40]. However, there are exceptions to this rule. In certain systems with
long-range interactions or unconventional symmetries, the entanglement entropy may exhibit
behavior that deviates from the area law. For example, critical systems near a quantum phase
transition may display logarithmic violations of the area law, where the entanglement entropy
scales logarithmically with the volume of the subsystem. This principle enables the effective
decomposition of such states into a tensor network, highlighting that the entanglement proper-
ties of tensor network states can be managed by the network’s topology. Taking into account a
pure state |Ψð represented by a tensor network, the bipartition, A and B, is made between the
physical link, and then this network can be bipartitioned with respect to the two physical parti-
tions by cutting through a set of internal links. Given this partition, the von Neumann entropy
satisfies the following inequality:

S
[A,B]
TN f min

k

[
∑

i

logÇk

]

. (2.16)

where Çk is the bond dimension of the broken link ik, i.e. the links in which the separation
occurs. In other words, the network which represents the state is divided into two sub-networks.
Every broken link can maximally give an entropy of logÇk, upper-bounded by its bond
dimension Çk.

2.5.2 Tree Tensor Network

A Tree Tensor Network (TTN) follows a hierarchical structure with different layers, where as
shown in figure 2.2, the first layer Λ1 consists of two tensors connected via the root-link, which
is the topmost-link in the network, while the other tensors connected to these first layer come
from the second layer Λ2, and so on. In this structure, each tensor in layer Λl>1 has exactly one
neighbour in layer Λl−1, which is defined as its parent tensor, and may have several neighbours
in layerΛl+1 which are defined as its child tensors. The depth of a TTN is defined as the number
of layers L, that is, the longest path between a tensor and the root link.
Given that the computational complexity of contracting a network increases with the multipli-
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l = 1

l = 2

l = 3

1 2 3 4 5 6 7 8 9 10 11

Figure 2.2: Structure of a general binary Tree Tensor Network, where the green line is the only
possible path from tensor at position 4 to tensor at position 9[13]

cation of the bond dimensions of all connections linked to the tensors, it is advisable to reduce
the number of connections per tensor in order to create a tensor network that can be contracted
efficiently. Hence, a specific class of interest is the binary Tree Tensor Network (TTN), utilized
for this thesis, wherein each tensor can have at most three neighbors, namely, two children in
the hierarchical structure. In general, there are two categories of binary TTNs:

(a) (b)

Figure 2.3: Structure of a perfect TTN (a) filled with N = 2L tensors, and a complete TTN
(b).[13]

• Perfect TTN, as shown in Fig.2.3a, where each layer l is completely filled with the max-
imum number of tensors, i.e. 2l. Each tensor with layer Λl<L has two child tensors, while
the tensors within the last layer ΛL have only one internal link connecting it to its parent
tensor and two physical links that address the local Hilbert spaces of the system. Then
this type of network is only able to capture system with N = 2L.

• Complete TTN, as shown in Fig.2.3b, as for the perfect TTN, each layer is completely
filled, except for the last layer ΛL which is filled form the left.
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2.5.2.1 Ground-State Search on TTN

The results obtained in this thesis are based on the ground state search on a TTN as developed in
Quantum Green Tea library 1. In the following we briefly sketch the algorithm fo the optimiza-
tion. This optimization capitalizes on the independence of each single tensor within the network,
allowing them to be treated as individual variables. The fundamental concept in optimizing a
tensor network state |Èð involves optimizing one tensor at a time[41].
Now, let H ∈ H be the Hamiltonian of a quantum many-body system, and Ψ a TTN to repre-
sent a wave function of the same Hilbert space. Then the ground state of H is the solution of
the following minimization problem:

min
Ψ
{E (Ψ)} = min

Ψ
{ïΨ|H|Ψð}, (2.17)

the variational parameters of the TTN are then optimized to minimize the energy E(Ψ). The
TTN enables the optimization process by considering each tensor as a distinct set of variational
parameters. The overall optimization is achieved through a process called sweeping across the
network, which involves carrying out local optimizations. If we focus on optimizing a specific
tensor, it involves holding the other tensors constant.

(a) (b)

H Heff

Figure 2.4: Optimization to find the Ground state for a target tensor (red), (a)its environment
(shaded area) is contracted into the effective Hamiltonian of the local problem. (b) Ending at an
eigenproblem withHeff [13]

1https://www.quantumtea.it/
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To conduct this local optimization, the Tensor Network can be differentiated with respect to any
single arbitrary tensor T i:

∂Ψ

∂T i
≡ Ψi

env.

From this definition, the expected energy can be reformulate with respect to a single tensor:

E (Ψ) = ïΨ|H|Ψð = ïT i|Ψi
envHΨ

i  
env |T

ið = ïT i|Hi
eff |T

ið.

By contracting the Hamiltonian with all the other tensors in the network, a new tensor network
emerges, which represents an eigenvalue problem for the selected tensor and the effectiveHamil-
tonian Heff , as shown in Fig.2.4. Upon solving this eigenvalue problem, the selected tensor is
replaced by the eigenvector corresponding to the lowest energy eigenvalue. This process, per-
formed for all tensors in the network, constitutes a single sweep optimization. This procedure
can be applied iteratively until convergence to the global ground state is achieved.
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2.5.2.2 Local Observables

As for the Ground-State search, to compute an observable the procedure is quite similar. After
the optimization of all tensors, it is possible to use the ground state to calculate the expected
value of an observable.
An efficient way to achieve this expected value of a general observable, defined as:

ïO[i]ðÈ = ïÈ|O[i]|Èð,

is to isometrize the TTN towards the selected tensor, which acts at the physical site i. Using
this isometry, the computation of ïO[i]ðÈ can be executed by the contraction of the other tensors,
as shown in Fig.2.5 [41], with a complexity of only O(d3m) + O(d2m) where d is the local
dimension of the physical system.

(a) (b)

Figure 2.5: Contraction scheme for the computation of an expected value of a local observable
(orange block) acting on a generic site (a). Isometrising the network toward the tensor directly
connected to the operator simplifies the computation to a contraction of three tensors (b), since
the other tensors act as isometries and effectively become an identity when contracted with their
corresponding complex conjugate.[13]
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3 | Results

In this chapter, the mission planning problem is analyzed from the perspective of the TTN ap-
proach. Before detailing how to access the optimal solution, we describe the numerical gener-
ation of a pool of Mission Planning instances Sec.3.1. In Sec.3.2, some features of the Mission
Planning Hamiltonian will be highlighted. Finally, in Sec.3.3, the key results achieved are pre-
sented, detailing the different strategies adopted to improve the quality of the results.

3.1 MP instance generation and reconstruction of
the optimized mission

In this Section we construct a set of optimization problems characterized by random values of
parameters such as acquisition, download and preparation times, and an increasing number of
optimization variables. Since realistic MP instances are not available for this study, we generate
this dataset of problems randomly. We generate a certain number of instances for each system
size, with time parameters randomly drawn from a uniform probability distribution within the
range of values specified in Table 3.1, as indicated by TASI, see Chapter 1. Overall, the total
number of variables considered is defined as:

N var
tot =

N∑

i=1

M∑

j=1

¹i,j +M

N∑

i=1

Ãi,

For simplicity, since the TTN ansatz consists of a number of physical sites that is a power
of two, we deal with variables that can also be expressed as powers of two. Therefore, each
particular instance describes a specific mission to be optimized, characterized by certain random
parameters that impose a certain number of constraints on the minimization of the cost function,
as elaborated in detail in Sec.1.3.
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Mission Planning instance

Parameter ID Description Domain Range Values

N number of satellites N [2-10]

M number of ARs N [2-15]

¹i,j number of DTOs N [2-5]

Ãi number of DLOs N [2-5]

tki,j Instant acquisition time R [1hr-24hr]

sri,j Instant downlink time R [1hr-24hr]

pki,j
Preparation time after
one acquisition R [1hr-4hr]

dki,j
Preparation time after
one downlink R [1hr-4hr]

Table 3.1: This table reports the range values and the domains of the randomly generated pa-
rameters, used to create a set of MP instances to be studied applying the methods explained in
chap.2

Once the MP instance dataset is obtained, we construct the corresponding ground-state search
problem for each random instance as described in Chapter 2. At this point, it is important to
clarify that the outcome obtained from the TN variational ground-state search requires addi-
tional post-processing to determine the quantities of interest of the original optimization prob-
lem, namely the optimal planned mission and the corresponding cost. The optimized plan is
described by a sequence of 0s and 1s representing the values of the decision variables, referred
to as the MP bitstring, along with its associated cost obtained by substituting the optimal val-
ues of the DTO and DLO binaries directly into the cost function of Eq. 1.30. Specifically, the
outcome of the TN variational optimization is an approximation of the true ground state of the
many-qubit system. This state encodes a given MP instance along with its corresponding en-
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ergy.
The strategy we adopt to reconstruct the optimal mission from the TTN ground state is as fol-
lows: we compute the expectation value of the spin-1/2 operator corresponding to each site of
the 1D chain where the qubits are arranged, i.e., we compute the quantum average over each site
given by

ïÈ|Ã̂zi |Èð, (3.1)

where,
Ã̂zi = 1¹ · · · ¹ 1¹ Ã̂z

i-th
¹ 1¹ · · · ¹ 1. (3.2)

In the quantum mapping, the expectation value of each operator represents the optimal value
of the single binary variable of the original problem. Once we obtain this expectation value
for each site, which will be either +1 or −1, we use the mapping from spin variables to binary
variables to reconstruct the complete MP bitstring.
Subsequently, having reconstructed the optimal mission plan, it is possible to calculate its cost
directly from the cost function (Eq. 1.1), which can be compared with the outcomes of classical
solvers to evaluate the effectiveness of this approach, see Sec.3.3. Furthermore, apart from
reconstructing the MP bitstring and evaluating its associated cost, an equally significant metric
in this context is the ”quality” of the optimized mission. This quality is quantified by the number
of constraints fulfilled by the optimized mission relative to the total number of constraints in
the cost function minimization, see Sect.1.4. Once the MP bitstring is identified, its quality
can be assessed by verifying that all equations and inequalities are met. This can be done by
substituting the binary values into the equations and inequalities and then counting the number
of constraints that are satisfied. The ratio of constraints satisfied to the total number can be
expressed as a percentage. Therefore, if the bitstring satisfies all the constraints, its quality will
be 100%, otherwise it will be lower.
Another important factor is the arrangement of the MP variables, which define the 1D chain of
the MP Hamiltonian. The choice of variable ordering could significantly influence the search
for the ground state since the arrangement of the 1D chain determines how the local tensors
are connected to each other. In this case, the variables ordering consists of the DTO variables
followed by the DLO variables, with respect to the target. The variables order representing the
1D chain is as follow:




Ä

1
1,1,Ä

2
1,1,¿

1
1,1

︸ ︷︷ ︸

1st target

, . . . . . . , Ä 1i,j, . . . Ä
k
i,j,¿

1
i,j, . . . ¿

r
i,j
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j-th target

, . . . . . . , Ä 1N,M , . . . Ä
k
N,M ,¿

1
N,M , . . . ¿

r
N,M
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M-th target




 .
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3.2 Features of MP Hamiltonian

Before presenting the results of applying Tensor Network methods to solve the MP instances
outlined in the preceding section, we initially illustrate certain characteristics common to these
instances by examining small-size cases. This is done to offer insight into the problems we aim
to solve and to visually demonstrate where the difficulty in optimizing these tasks lies. We recall
that the spin-glass Hamiltonian encoding each instance has the following form:

H =

Nvar
tot∑

j=1

hjÃ̂
z
j +

Nvar
tot∑

j>k

Jj,kÃ̂
z
j Ã̂

z
k, (3.3)

where N var
tot is the number of spins (qubits) in the systems and the longitudinal magnetic field

hj , and the couplings Jj,k of the spin-spin interactions contain the information regarding a
specific instances to be solved, as explained in sec.1.4.
When constructing an MP Hamiltonian, the offset term in Eq.1.31 is set aside, since it is
identical for all terms. Instead, the spin-glass couplings hj and Jjk are adjusted to a range
of [−1, 1] for numerical efficiency. These adjustments do not affect the exploration of the
ground state and can be incorporated after the optimization process. However, the Hamiltonian
spectrum does not correspond to the mission cost and requires further processing.
One of the challenges in solving this type of Hamiltonian lies in the long-range nature of
spin-spin interactions. In general, J is a symmetric matrix, and the distances between two
interacting spins are typically greater than one, meaning spins beyond nearest neighbors can
interact with each other. An example is the interaction matrix J for an MP instance with 16
binary variables represented in Fig.3.1, where the long-range interactions and the symmetric
structure are evident. It is also noted that the majority of the long-range interactions involve
binary variables describing the acquisition and/or the downloading of the same target identified
by the index j. This aspect is characteristic of the optimization problem we are considering
in this thesis and justifies the choice of ordering DLO and DTO qubits along the 1D chain on
which to build the TTN ansatz.
Another important aspect to highlight is that although the MP Hamiltonian 3.3 is diagonal,
finding its ground state is complicated due to the presence of a large number of local minima,
which is a peculiar feature of glassy systems [42]. This extremely rugged energy profile makes
the search for the global minima difficult because during the optimization there is a high
probability of getting stuck in a local minimum depicted as a very narrow valley from which it
is challenging to escape, as shown in figure 3.2 for a very small instances with 8 qubits.
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Figure 3.1: The color map represents the matrix J, which takes values in [−1,1], for a 16 vari-
ables instance, with 7 DTOs and 9 DLOs. On the axes are reported the DTO and DLO variables,
Ä ki,j and ¿ri,j . Every square corresponds to a matrix element that reflects the interaction among
the spin variables indexed on the row and column. The white squares indicate the absence of
interactions between the column spins and the row spins, whereas the colored ones depict the
interaction terms that define a specific instance.

39



CHAPTER 3. RESULTS

Figure 3.2: Spectrum energy landscape of the MP Hamiltonian for all possible configurations,
for an 8 qubits instance, with 28 possible configurations over which to search for the ground
state. In the y-axis it is represented the Hamiltonian energy, and in the x-axis there are the
possible configurations of the spins orientation.

One implication of this profile is that the outcomes produced by the selected algorithm could
significantly vary based on the initial setup for the optimization process. A key objective of
this study is to investigate whether the TTN approach can overcome this issue or is affected by
it, and in case, to understand which strategy can be adopted to overcome this issue, as it will be
discuss in the following sections.
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3.3 Tree Tensor Network approach

In this section we report and discuss the results obtained by solving the MP Hamiltonians via
Tree Tensor Network (TTN) ground-state search algorithm.

3.3.1 TTN energy convergence

A fundamental numerical analysis in evaluating a TN-based approach involves studying the
energy convergence during the tensors optimization (see Chapter 2) as a function of the bond
dimension, which is the main control parameter in this type of variational ansatz. Understanding
the energy convergence of the TTN allows us to assess the scaling of the bond dimensionwith the
problem size increases. To this end, we consider three different random instances characterized
by three different problem sizes.

• 16 qubits system, composed with 7 DTOs and 9 DLOs;

• 32 qubits system, composed with 16 DTOs and 16 DLOs;

• 64 qubits system, composed with 36 DTOs and 28 DLOs.

In Figure 3.3, we display the absolute value of the relative energy difference compared to the
exact ground-state energy. By exact ground-state energy, we mean the energy obtained by ex-
plicitly writing the matrix representing the Hamiltonian operator and identifying the smallest
value along the diagonal in the case of 16 qubits. For the other two instances, characterized
by a number of qubits that cannot be tackled using exact techniques, we computed this energy
through a TTN ground-state search - as implemented in the Quantum Green TEA library - con-
sidering a very large bond dimension, Ç = 300 for the 32 qubits instance and Ç = 180 for the 64
qubits instance. We emphasize that in the limit of infinite bond dimension, the TTN provides
an exact but inefficient representation of the system’s wave function.
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Figure 3.3: TTN energy convergence as a function of the sweeps for different values of the
bond dimension. In the y-axis there is the absolute value of the relative energy with respect to
the exact diagonalization (16 qubits case) and TTN ground-state search with the largest possible
bond dimension in the case of 32 and 64 qubits, with Ç = 300 and Ç = 180, respectively. In the
16 qubits case, the blue and black lines corresponding to bond dimensions 4 and 8 overlap. For
32 qubits, the yellow and green lines (Ç = 32,64) overlap and the other three corresponding to
bond dimensions 4,8,16 overlap each other.
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We observe that, the larger bond dimension, the quicker the energy convergence. This does not
apply to the case of 64 qubits, where the best results are obtained with Ç = 8 possibly as a re-
sult of the random initialization of the algorithm. However, as we will observe in the following
sections, the outcomes from this instance display a particular behavior.
The parameters used to quantify whether the energy converged - as they appear into the TNCon-
vergenceParameters class of the Quantum Green tea library - are: absolute and relative devia-
tions that establish the convergence threshold, the number of check points where the deviations
are evaluated, and the maximum number of sweeps to prevent non-converging energy behavior.
The values assigned to these parameters are shown in table 3.2.

Convergence Parameters

max_iter 30

abs_deviation 10−9

rel_deviation 4 · 10−9

n_points_conv_check 5

Table 3.2: Convergence Parameters for ground-state search, applied to the TTN optimization
algorithm of the Quantum Green Tea library. The max_iter is the maximum number of sweeps,
useful to prevent non-converging energy behavior. The abs_deviation is the absolute devia-
tion threshold, rel_deviation is the relative deviation threshold; if the values of these deviation
computed over the number of check points are smaller than the thresholds the optimization is
stopped. The n_points_conv_check are the number in which the deviations are computed.
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3.3.2 Escaping local minima using random transverse fields

As mentioned in sec.3.2, the spectrum of an MP Hamiltonian is characterized by a large number
of local minima, and given that the optimization starts selecting a random initial state, it can be
intuitive to understand that depending on the chosen random state, the optimization could get
stuck in a local minimum. A possible approach to avoid this problem is to include an additional
factor in the Mission Planning Hamiltonian, a local transverse field. The idea is to introduce
a new term that non-commutes with the MP Hamiltonian, where the intensity of the transverse
field is several orders of magnitude smaller than the coupling term J which describes the MP
Hamiltonian. In a first approximation, we expect that the energy spectrum order will not be
modified. At this point, the new Hamiltonian reads as follows:

HMP + 10−À
Ntot

var∑

i=1

qiÃ
x
i , (3.4)

where q is a random array in [−1,1], Ãx is the the x-component of the Pauli matrices, and À is a
parameter to be tuned.
To understand whether the presence of this field can affect the convergence to better minima,
the energy convergence with different weights for the transverse field is studied. The study was
carried out showing the convergence of the energy density, which is the energy of the system
divided by the number of spins, of three systems with different sizes (N tot

var = 32,64,128), setting
the bond dimension Ç to 64. In the following figure 3.4, the convergence of the energy density is
shown in the presence of a transverse field with different weights. For different-sized instances,
the transverse field affects in different ways; to have significant changes in the ground state
search the magnitude of the transverse field must be increased with respect to the system size.
For the following analysis, when the transverse field is taken into account, the magnitude of it
will be 10−7 for all 32 qubits systems, 10−5 for the 64 ones, and 10−4 for the systems at least
with size 128; according to the figure.
At this point, figure 3.5 shows, for the 64 qubits system, the differences between the energy
convergence of the previous caseswith different bond dimensions, and the convergence applying
the transverse field with the selected order of magnitude (10−5) and bond dimension Ç set to
64. As displayed, the application of this field helps to achieve a better minima. In this case, the
presence of the transverse field leads us to consider it as a potentially optimal strategy. However,
in the following section, additional analysis are conducted to verify its effectiveness.
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Figure 3.4: Energy density convergence during sweeps progression for three different-sized
instances with different weights of Transverse field. In the x-axis there are the sweeps required
to achieve the convergence. In y-axis is shown the energy density, which is the Energy of the
state divided by the number of qubits. The trends show that with the increasing of the system
size the À factor have to be decrease to find a better solution.
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Figure 3.5: Energy convergence during sweeps progression for the 64 qubits system, considering
the cases without transverse field and with transverse field, with the chosen order of magnitude
(10−5). In the y-axis there is the relative energy compared to the ground state energy computed
with Ç = 300. In the x-axis there are the required sweeps to complete the convergence process
in according to the convergence parameter explaind in table3.2. The transverse field added to
the Hamiltonian shows a clear improvement.

3.3.3 Random Inizialization

As stated in the preceding subsection, the TTN approach, to solve an eigenvalue problem, start
the optimization from a random state. To see how random initialization influences the opti-
mization, the ground-state search of a given system is made iterating over different random
initializations. This approach can give an important result on how the bond dimension and the
transverse field affect the optimization. To illustrate these results, we define a frequency, which
means the number of times the optimization reaches the reference ground state. The first ana-
lyzed system is the one with N=32.
In figure 3.6, the frequency of the found ground state is shown for different bond dimensions and
different number of random initializations for the initial state. The energy of the ground-state to
which it is compared is computed with a high bond dimension (Ç = 300) and the transverse field
with À = 7. From the figure, it is evident that in this case the bond dimension plays a crucial role
in finding the ground state: when the bond dimension is too small, the algorithm does not reach
the target ground-state. In the case of Ç = 20, which represent a factorized state, even realizing
105 different initializations out of the 232 possible configurations, the TTN algorithm does not
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reach the ground state even once. Then, applying a higher bond dimension, which increases the
quantum correlations represented, the frequency of found ground state increases. We observe
that, with at least a bond dimension Ç = 16, the probability to access the reference ground-state
is ∼ 0.9. Contrarily, the presence of the transverse field does not seem to show any substantial
advantage.

Figure 3.6: Random initializations with (bottom) and without (upper) transverse field for differ-
ent bond dimensions, in the case of a 32 qubits system. The color bar represents the frequency,
which defines the number of time the target ground state is reached. For this case the most sig-
nificant parameter is the bond dimension. In the x-axis there is the bond dimension, and in the
y-axis there are the number of random initializations. In the color bar, the black represent only
the 0.0 value. The order of magnitute of the transverse field is 10−7.

47



CHAPTER 3. RESULTS

We consider now larger instances. Taking into account a system with 64 qubits with different
random initializations, the reference ground state energy is computed by setting Ç = 180, and
transverse field À = 5. In figure 3.7, the frequency of the ground state is shown for different
random initializations, with and without transverse field.

Figure 3.7: Random initializations with (bottom) and without (upper) transverse field for dif-
ferent bond dimensions, for 64 qubits system. Showing the frequency of found ground state.
The bond dimension does not affect the optimization if the transverse filed is not present. In
the x-axis there is the bond dimension, and in the y-axis there are the number of random initial-
izations. In the color bar, the black represent only the 0.0 value.The order of magnitude of the
transverse field is 10−5.

Differently from the previous 32 qubits case, in the 64 qubits system the transverse field are
playing a crucial role. Without the transverse field, even increasing the bond dimension does
not have any affects, and it is almost impossible to reach the target ground state, even with
104 different initializations, reporting a probability smaller than 0.1. But looking at the bottom
figure in 3.7 the transverse field increases the probability to∼ 0.5, with Ç g 32, compared to the
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result without this field there is a clear improvement of the optimization, but it is not significant
enough.

Figure 3.8: Frequency of 100% satisfied constraints. Random initializations with (bottom) and
without (upper) transverse field for different bond dimensions, for a 64 qubit system.The order
of magnitude of the transverse field is 10−5. In the x-axis there is the bond dimension, and in
the y-axis there are the number of random initializations. In the color bar, the black represent
only the 0.0 value.

In the context of the MP problem, the goal is to optimize the cost function while taking various
constraints into account. Then, it could exist alternate missions that satisfy all the specified
constraints. In this case, the energy difference between two mission plans, both 100% accurate,
would be due to the different DTOs and DLOs variables used to satisfy the mission. At this
point, we can focus on themission quality by changing themetrics used to evaluate the algorithm
efficiency into the frequency of 100%satisfied constraints. The term ”satisfied constraint” refers
to the percentage of indices in the entire bit string that meet the given constraints. In figure 3.8
we show the previous scenario with a different metric. The figure illustrates that, using a metrics
based on the quality of the mission, the 64-qubit system has multiple feasible combinations that
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meet all the specified constraints, however this metric shows clear changes compared to the
previous cases. In the presence of a transverse field, there is a probability of around 0.8 to find
a solution that satisfies all constraints when Ç = 64. But in the case where there is no transverse
field, the results are still poor: even with the increasing the bond dimension, the algorithm is able
to find not even one solution satisfying all the constraints. One possible answer to this behavior
could be that during the optimization we get stuck in a local minima which does not satisfy the
100% of the constraints. To understand if this is the case, in figure 3.9, there is shown the same
analysis of before with the only difference that the metrics is based on satisfying at least the 98%
of the constraints.

Figure 3.9: Frequency of at least 98% satisfied constraints. Random initializations without
transverse field for different bond dimensions, for a 64 qubit system. The optimization ends
up getting stuck in a local minima. In the x-axis there is the bond dimension, and in the y-axis
there are the number of random initializations. The with color in the color bare represents the
frequency equal to 1.0

However, it seems that even if we increase the bond dimension, one can at most satisfy 98% of
the constraints.
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3.3.4 Comparison with a classical solver

We now focus on the qualities of the mission plans in terms of satisfied constraints. To have a
general overview of how the algorithm behaves, different instances are taken into account, with
dimensions: 32, 64, 128, 256, 512 and 1024. Approximately 20 random instances have been
generated, as explained in Sec.3.1, for each of these dimensions. We emphasize that since
these instances are generated using random parameters, it is impossible to determine in advance
if there is a solution that fulfills all the specified constraints. To have a comparison with the
TTN algorithm, we use here a classical solver to assess the mission quality. The solver used
is the CPLEX algorithm, developed by Robert E. Bixby and now owned by IMB (incorporated
into the Qiskit library) [43], is a high-performance mathematical programming solver for integer
programming problems, and convex quadratic constrained problems.

Figure 3.10: Comparisons of the mission accuracy between the TTNwith different bond dimen-
sions (blue) and the CPLEX solver (brown). In the x-axis there are the bond dimension for the
TTN optimizer, in the y-axis there is the mean accuracy of the missions, computed over different
instances, with their errors.
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Starting with system sizes from 32 to 256 qubits, Figure 3.10 shows histograms, where each blue
bar corresponds to the mean accuracy across all instances of a given dimension, for different
bond dimensions. The brown bar represents the mean of the quality of the solution obtained by
the CPLEX solver. By comparing the cases with bond dimension Ç = 64 to the results obtained
with CPLEX, the percentage of the satisfied constraint is approximately equal or better for the
TTN case.

Figure 3.11: Mission accuracy for system with 512 and 1024 qubits, applying the TTN opti-
mization algorithm, In the x-axis there are the bond dimension for the TTN optimizer, in the
y-axis there is the mean accuracy of the missions, computed over different instances, with their
error. The TTN algorithm shows a stable quality of the output even with the increasing of the
system size.

To understand how the TTN optimizer behaves with the increasing of the system size, the same
analysis is done for 512 and 1024 qubits. In figure 3.11, the mean accuracy of the mission
plan is shown for different bond dimensions. In this case, it was not feasible to compare the
outcomes with the CPLEX solver due to a size limit over the licence-free software. Moreover,
due to limitations in time and memory, conducting a ground state search with a higher bond
dimension has been challenging for all instances with 512 and 1024 qubits. Considering the
accuracy shown in the figure, even with small bond dimension, the optimization is able to reach
99.7% of the satisfied constraints. This is a very good result, considering the stability of the
missions quality with the instance size.
Another important factor is the computational time to reach the optimal solution. Figure 3.12
shows the time required to find the optimal solution with the TTN algorithm as compared to
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the CPLEX solvers. In the range of the explored instance sizes, the time needed by CPLEX is
clearly better than the TTN optimization. Then for system with a small number of variables,
such as from 32 to 256, CPLEX returns an optimal solution in terms of satisfied constraints,
as like the TTN, but has an improvement on the computational time. On the contrary, without
the ability to show the performance of the CPLEX solver on larger systems, it is difficult to
determine which optimizer is more effective, especially considering the favorable results of the
TTN approach on systems with 512 and 1024 qubits.

Figure 3.12: Computational time: TTN vs CPLEX. In the x-axis there is the number of qubits
shown in logarithmic scale. In the y-axis there is shown the computational time to reach the
optimal solution. For the studied system with the CPLEX solver it shows a better scalability in
terms of time.
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In this thesis, we employed Tensor Network (TN)methods from theQuantumGreen TEA library
to investigate the Mission Planning (MP) problem numerically. This problem, central to Earth
Observation (EO), is pivotal for understanding our planet’s state, encompassing the analysis of
atmospheric events and climate change impacts. Firstly, we outlined the MP problem in EO,
where the ultimate goal is coordinating satellite activities to acquire and download Earth surface
images efficiently. Mathematically, we formulated this complex task as a Quadratic Program
(QP), aiming to minimize a suitable cost function under feasibility constraints.

From theQP formulation, we rephrased theMP problem into the ground-state search of a cor-
responding many-qubit system, making it amenable to TN methods. This entailed constructing
the Quadratic Unconstrained Binary Optimization (QUBO) problem, integrating constraints into
the cost function as quadratic penalty terms. Furthermore, we implemented a post-processing
strategy to circumvent the introduction of additional optimization variables. After obtaining the
QUBO for a generic MP instance, we mapped binary variables to spin-1/2, yielding the Ising
spinglass Hamiltonian describing long-range interacting spins. Subsequently, we promoted spin
variables to quantum operators representing qubits, resulting in a many-body Hamiltonian that
can be studied using TN-based numerical techniques.

We efficiently searched for the ground state by representing the system’s wavefunction as a
Tree Tensor Network (TTN). Exploring the convergence to the ground-state energy with differ-
ent bond dimensions on random MP problem instances, we observed a significant reliance on
tensor initialization. Moreover, we found that the variational ground-state search algorithm can
get stuck in local minima characterizing the energy landscape of this hard optimization problem,
particularly evident in instances with 64 qubits.

To address this issue, we introduced additional transverse field terms to escape local min-
ima, leveraging their non-commutativity with the problem’s Hamiltonian. We showed that by
adjusting the magnitude of these terms, energy convergence can be improved.

We then explored how the random initialization of TTN tensors impacts the number of op-
timal missions with energy matching the reference ground-state energy. We conducted this
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analysis with and without transverse field terms in the Hamiltonian at different bond dimen-
sions. This underscores the importance of the transverse field in optimizing quantum systems,
especially in the 64-qubit setup. Unlike smaller systems, it plays a critical role, significantly im-
pacting our ability to achieve the desired state. Furthermore, we shifted our focus to prioritizing
meeting all constraints rather than solely optimizing the cost function, as various combinations
of variables can satisfy constraints, leading to differing energy levels between mission plans.
Results indicate that the transverse field significantly enhances the probability of finding solu-
tions meeting all constraints in the 64-qubit system. Conversely, without it, outcomes are less
favorable.

Finally, we extended our simulations up to instances with 1024 qubits. For system sizes
between 32 and 256 qubits, we compared TTN with results from the CPLEX classical solver.
TTN with a bond dimension of 64 showed comparable or superior constraint satisfaction per-
centages to CPLEX.However, for larger instances (512 and 1024 qubits), direct comparisonwith
CPLEX was hindered by software and computational limitations. Despite this, TTN achieved
up to 99.7% constraint satisfaction even with small bond dimensions. Yet, CPLEX proved more
computationally efficient for smaller systems. Comparing their effectiveness for larger systems
remains challenging due to unavailable CPLEX data. Nevertheless, TTN demonstrated promis-
ing results for systems with 512 and 1024 qubits, suggesting its potential in large-scale quantum
optimization problems.

Future directions worth exploring for the TTN approach to the MP problem include incor-
porating additional constraints into the QUBO, such as considering memory limits for satellite
data acquisition, devising better strategies to escape local minima, and comparing with classical
solvers the performance of the TTN optimization of real-case problem instances relevant to the
EO aerospace sector.
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