
Università degli studi di Padova
Dipartimento di Ingegneria dell'Informazione

Corso di laurea magistrale in Bioingegneria

Quantitative imaging of the

GABA-A receptor complex with

positron emission tomography data

Relatore: Dott.ssa Alessandra Bertoldo

Correlatori: Dott.ssa Gaia Rizzo

Ing. Matteo Tonietto

Laureando: Emanuele Bello

9 Dicembre 2014



Contents

1 Introduction 3

2 Material and methods 5
2.1 PET data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Linear spectral analysis . . . . . . . . . . . . . . . . . . . 7
2.2.2 Non-linear spectral analysis . . . . . . . . . . . . . . . . 8
2.2.3 Two-tissue compartment model . . . . . . . . . . . . . . 9
2.2.4 Simpli�ed reference tissue model . . . . . . . . . . . . . . 10
2.2.5 Quanti�cation of the parameters of interest . . . . . . . . 10

2.3 Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 ROI level . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Voxel level . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Genomic integration . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Quanti�cation results: spectral methods 18
3.1 Model order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Fit and weighted residuals . . . . . . . . . . . . . . . . . . . . . 19
3.3 Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Volume of distribution . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Placebo-zolpidem data set . . . . . . . . . . . . . . . . . . . . . 32
3.6 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . 36

4 Quanti�cation results: model-driven methods 37
4.1 Comparison 3-TCM and 2-TCM . . . . . . . . . . . . . . . . . . 37
4.2 Quanti�cation results of 2-TCM . . . . . . . . . . . . . . . . . . 40

4.2.1 Fit and weighted residual . . . . . . . . . . . . . . . . . 40
4.2.2 Volumes of distribution . . . . . . . . . . . . . . . . . . . 41
4.2.3 Placebo-zolpidem data set . . . . . . . . . . . . . . . . . 44

4.3 Genomic integration . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.1 mRNA data . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.2 Correlations between GABRA and volumes of distribution 50

4.4 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . 54

5 Quanti�cation results: simpli�ed reference tissue model 55
5.1 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . 60

1



CONTENTS

6 Voxel-wise results 62

7 Conclusion 64

A Region list 65
A.1 PET atlas region list . . . . . . . . . . . . . . . . . . . . . . . . 65
A.2 Region of interest list . . . . . . . . . . . . . . . . . . . . . . . . 67
A.3 Allen atlas coarse regions . . . . . . . . . . . . . . . . . . . . . . 67
A.4 PET region of interest and Allen region relation . . . . . . . . . 68

B Genomic integration histograms 69
B.1 Total volume of distribution . . . . . . . . . . . . . . . . . . . . 69
B.2 First partial volume of distribution . . . . . . . . . . . . . . . . 71
B.3 Second partial volume of distribution . . . . . . . . . . . . . . . 73

Bibliography 75

CONTENTS 2



Chapter 1

Introduction

Receptors for the major inhibitory neurotransmitter, γ-aminobutyric acid
(GABA), are divided in two main classes: GABA-A and GABA-B receptors [1].
The majority of GABA-A receptors are composed of α, β and γ subunits: α-
subunit class has six members numbered from one to six [2]. These receptors
are important drug targets representing the sites of action of benzodiazepines,
barbiturates, and neurosteroids [3] and for this reason they have been widely
studied [1�7].

Receptor complexes in the brain can be quanti�ed with positron emission
tomography (PET), which is a method that allows to measure their in vivo
distribution with high resolution and sensitivity [8].

With the additional use of tracer kinetic modeling techniques, it is possible
to improve the kind and the quality of information that can be extracted from
these biological data [9]: various physiological parameters of interest can be
obtained as, for example, volume of distribution (Vt), plasma to tissue rate
constant (K1), irreversible rate constant (Ki) and binding potential (BP ).

Two PET ligands, [11C]�umazenil and [11C]Ro15-4513, are mainly used for
in vivo neurochemical imaging of the human GABA system and both bind to
the benzodiazepine site on the GABA-A receptor [10].

In this thesis [11C]Ro15-4513 will be studied: it has a relative selectivity
for the α5 subtype of the GABA-benzodiazepine receptor [11]. However, the
concentration of the tracer does not accurately describe the distribution of α5

subtype because α1, α2 and α3 subtypes are more expressed in the brain and
their a�nities for the tracer are not negligible. Therefore, mathematical meth-
ods are then necessary to isolate the kinetics and the parameters of interest
related to receptors containing α5 subunit.

The aim of this study is to �nd a quanti�cation method that allows to
separate the contributions of di�erent subtypes.

Spectral analysis has been proposed by Myers and colleagues as one of
the most promising methods. According to [12], a fast kinetic component,
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attributed to α1 subtype, and a slow one, attributed to α5 subtype, can be
identi�ed and thus partial volumes of distribution can be calculated.

The purpose of the �rst part of this study is to evaluate and compare the
results obtained with model driven and data driven methods including spectral
analysis.

Afterwards, a data set containing subjects who were administered zolpidem
will be studied: zolpidem is a non-benzodiazepine hypnotic drug that enhances
GABA e�ects and it has a relative selectivity for α1 subtype. It acts as a
blocker for α1 subtype and thus its contribution to the biodistribution and the
kinetics of [11C]Ro15-4513 should decrease.

As regards this second data set, model driven and data driven methods will
also be applied to test their ability to extract information about α5 receptors.

CHAPTER 1. INTRODUCTION 4



Chapter 2

Material and methods

2.1 PET data

Two di�erent data sets (made available by Imperial college, Department of
Neuroscience, London) previously studied in [10] and [12] are considered.

Healthy data set Four healthy male participants (41.5 ± 4.4 years) com-
plete two [11C]Ro15-4513 PET scans with interval of 16.2 ± 5.1 days.

All participants provide written informed consent to take part in the study
which is approved both by the Hammersmith Research Ethics Committee and
the Administration of Radioactive Substances Advisory Committee, UK.

For further information about healthy data set Stokes and colleagues may
be consulted [10].

Placebo-Zolpidem data set Five healthy male volunteers (age mean ± sd:
44 ± 6 years) undergo 2 PET scans at least a week apart, after zolpidem or
placebo, the order of which is randomised (double blind protocol).

Zolpidem (20 mg) or an identical placebo is administered 90 minutes before
radioligand injection and at the start of the PET scan. Plasma zolpidem levels
are measured at the time of PET ligand injection.

For further information about placebo-zolpidem data set Myers and col-
leagues may be consulted [12].

For all subjects of both datasets, [11C]Ro15-4513 PET images, arterial
samples and magnetic resonance images are taken.

[11C]Ro15-4513 PET imaging A bolus injection of [11C]Ro15-4513 (mean
± s.d.: healthy data set 479.6 MBq ± 25.6, placebo-zolpidem data set 495±18
MBq in 3.3 ± 0.49 mL) is administered through an intravenous cannula sited
in the dominant antecubital fossa vein. In the placebo-zolpidem data set, no
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2.1. PET DATA

di�erences in cold mass injected between scans are found with paired t-tests
(mean ± s.d.: 3.22 ± 0.86 µg to 4.30 ± 3.71 µg, t=0.579, P>0.5).

A Siemens ECAT EXACT HR+ (CTI/Siemens, model 962; Knoxville, TN,
USA) scanner with an axial �eld of view of 15.5 cm is used.

A total of 63 transaxial images planes are acquired as 2.42-mm slices with
a reconstructed axial resolution of 5.4 mm and a transaxial resolution of 5.6
mm.

[11C]Ro15-4513 scans comprise 24 dynamic time frames (1 x 30, 4 x 15, 4
x 60, 2 x 150, 10 x 300, 3 x 600 seconds) of data which are all corrected for
attenuation, random coincidences, scatter error and radioactive decay.

Arterial sampling Each subject has a radial arterial cannula inserted in
the non-dominant wrist to allow continuous counting of blood radioactivity
concentration for the �rst 15 minutes of the experiment.

Discrete samples are also taken 4, 6, 8, 10, 20, 35, 50, 65, 80 and 90 minutes
after injection. An aliquot of each discrete sample is rapidly centrifuged to
obtain corresponding plasma and radioactivity concentrations.

Magnetic resonance imaging All participants undergo a structural T1
MRI scan for coregistration purposes.

As regards healthy data set, MRI scans are acquired using a 3 T Intera
Philips Medical System (TR = 9.6 ms, TE = 4.6 ms, �ip angle = 8 grades,
NSA = 1, voxel dimensions 0.94 x 0.94 x 1.2 mm3).

In the placebo-zolpidem data set, all subjects have T1-weighted magnetic
resonance imaging with a Philips 1.5-T Gyroscan Intera scanner (Philips, Best,
The Netherlands).

Preprocessing For each subject, the segmentation of T1 magnetic resonance
images is obtained using a multiatlas approach, as described in [13], from
20 Hammers atlases (Copyright Imperial College of Science, Technology and
Medicine 2007. All rights reserved) in order to de�ne 67 regions (Appendix
A.1). Afterwards, 18 regions of interest are obtained as combination of the
67 regions de�ned, for more information Appendix A.2 may be consulted.
Finally, these ROIs are placed on the [11C]Ro15-4513 images using an a�ne
transformation between the MRI image and the average PET image.

The arterial input function Cp(t) ([kBq/mL]) is calculated from the blood
concentration and subsequently metabolite corrected, thus:

Cp(t) = Cb(t) · POB(t) · PPf(t) (2.1)

where Cb(t) ([kBq/mL]) is the blood concentration of the tracer, POB(t)
([unitless]) is the plasma over blood fraction and PPf(t) ([unitless]) is the
plasma parent fraction. POB(t) and PPf(t) are �tted applying the function
proposed in [14], and the parameters of PPf(t) are calculated using a non-
linear mixed e�ect approach [15]. Afterwards, Cp(t) is �tted with a Feng

⊗rect
model [16] (where ⊗ indicates the convolution operator) and decay corrected.

CHAPTER 2. MATERIAL AND METHODS 6



2.2. MODELS

2.2 Models

2.2.1 Linear spectral analysis

Spectral analysis (SA, Cunningham and colleagues [17]) is a data driven method
that describes the system impulse response function (IRF) as a positive sum
of decaying exponentials. This technique allows the description of the tissue
time-activity curve of a tracer in terms of an optimal subset of kinetic com-
ponents selected from a far larger set [18]. Only few assumptions have to be
ful�lled in order to apply this method [19].

IRF can be written as:

IRF (t) =
N∑
i=1

αi · e−βit with αi, βi ≥ 0, ∀i (2.2)

where N is unknown while αi [mL/cm3min] and βi [min−1] have to be esti-
mated.

The concentration in the tissue (Ct(t) [kBq/cm3]) is obtained as a convolu-
tion between the Cp(t) and the IRF (t). In addition, Cb(t) is used to describe
the blood part of the signal.

Therefore, the concentration of the tissue can be written as:

Ct(t) = (1− Vb) · Cp(t)⊗ IRF (t) + Vb · Cb(t)

= (1− Vb) ·
N∑
i=1

αi ·
∫ t

0

Cp(τ)e−βi·(t−τ)dτ + Vb · Cb(t) (2.3)

with αi, βi ≥ 0, ∀i

where Vb [unitless] is the volume of blood in the region or voxel.

The estimation problem is non-linear in the parameters βi and the number
of exponential terms is unknown. However, if we de�ne a grid containing a
large number, M, of βi values it is possible to postulate the estimation problem
as:

Ct(t) = (1− Vb)
M∑
i=1

αi · Ci(t) + Vb · Cb(t) (2.4)

where Ci(t) is the convolution of Cp(t) with the exponential term e−βit.
The new estimation problem is linear in the parameters but it is overcom-

plete because M (≥ 100) is much greater than N. Therefore, the estimation
of the coe�cients αi from Equation 2.4 requires non-negativity constraints on
αi to avoid inclusion of pairs of nearly equal components with coe�cients op-
posite in sign [18]. Weighted linear non-negative least square can be used to
estimate αi values.

CHAPTER 2. MATERIAL AND METHODS 7



2.2. MODELS

αi and βi values can be plotted, respectively, on y and x axis to obtain the
"spectrum": the number of lines is equal to the number of exponential terms
and thus to the number of compartments. High frequency lines, that is the
higher βs, are related with blood kinetics while low frequency lines, i.e. βis
near zero, identify the slow components of the tracer, where βi=0 indicates
the presence of an irreversible trapping component in the tissue.

SA does not need prior information about the number of compartments
therefore it is usually used for preliminary analysis. However, only the num-
ber and the types of compartments are obtained: compartmental models are
needed to �nd the correct structure.

Vt [ml/cm3], K1 [mL/cm3min] and Ki [mL/cm3min] can be calculated
from αi and βi values. Volume of distribution is formulated as:

Vt =
M∑
i=1

αi
βi

(2.5)

Instead, K1 and Ki can be formulated as:

K1 =
M∑
i=1

αi (2.6)

Ki = α0 (2.7)

where α0 is non-zero if an irreversible compartment is found.

2.2.2 Non-linear spectral analysis

Non-linear spectral analysis (NLSA, Bertoldo and colleagues [20]) is a data-
driven method that describes the impulse response function in the same way
of the LSA that is a positive sum of decay exponentials (Equation 2.2).

However, the number and the types of compartments have to be chosen a
priori: it is a limitation but it avoids over�tting and di�erences in the number
of compartments found between regions.

In particular, in NLSA a set of model alternatives is de�ned a priori (�xing
the number of exponentials to a prede�ned range of values) and then compared.

Macroparamaters can be obtained from α and β values through equations
presented in section 2.2.1. If the model contains irreversible compartment, Ki

can be calculated and it is equal at the α value of the trapping component.
For example, 2-exponential Vt is reported:

Vt =
α1

β1

+
α2

β2

(2.8)

CHAPTER 2. MATERIAL AND METHODS 8



2.2. MODELS

2.2.3 Two-tissue compartment model

Two-tissue compartment model (2-TCM, Mintun and colleagues [21]) is a
model with two reversible compartments connected in series, see Figure 2.1.

Cp(t) C1(t) C2(t)

K1

k2

k3

k4

Figure 2.1: Two-tissue compartment model

It is described by a system of di�erential equations:

dC1(t)

dt
= −(k2 + k3) · C1(t) + k4 · C2(t) +K1 · Cp(t) (2.9)

dC2(t)

dt
= +k3 · C1(t)− k4 · C2(t) (2.10)

Ct(t) = (1− Vb) · (C1(t) + C2(t)) + Vb · Cb(t) (2.11)

where Vb is the blood volume and Cb(t) is the concentration of tracer in
the blood.

This model is widely used in PET receptor studies and the tracer's con-
centration can be usually described as follows:

• the �rst compartment, C1(t), describes free tracer and non-speci�cally
bound tracer kinetics.

• the second compartment, C2(t), describes speci�c bound tracer kinetics.

C1(t) kinetics is usually faster than C2(t) kinetics because free and non-
speci�c binding are fast phenomena.

Macroparameters can be estimated from kinetic parameters and Vt is given
by:

Vt =
K1

k2

[
1 +

k3

k4

]
(2.12)

In addition to Vt and K1, another macroparameter, called non displaceable
binding potential (BPND) [unitless], can be calculated as:

BPND =
k3

k4

(2.13)

In general, a greater amount of BP is explained with a greater amount of
receptors.

CHAPTER 2. MATERIAL AND METHODS 9



2.2. MODELS

2.2.4 Simpli�ed reference tissue model

The quanti�cation of the arterial input function (AIF) requires arterial cannu-
lation, time-consuming metabolite measurements and discomfort for the pa-
tient.

In reference tissue models, a region devoid of speci�c receptors is used as
model input.

Lammertsma and colleagues [22] have proposed a simpli�ed reference tis-
sue model (SRTM) which estimates three parameter of interest: BPND, R1

[unitless] (which accounts for any di�erences in delivery to the region of in-
terest and the reference tissue) and k2 [min−1] that is the rate constant for
transfer from tissue to plasma.

The equation of tissue concentration is given by:

Ct(t) = R1Cr(t) + [k2 −
R1k2

1 +BP
]Cr(t)⊗ e

−k2t
1+BP (2.14)

where Cr(t) is the concentration of the tracer in the reference tissue.

In this study, the cerebellum is chosen as reference region due to its lack of
α5 receptors. To note that it contains large amounts of α1 and α6 subtypes.

2.2.5 Quanti�cation of the parameters of interest

Di�erent parameters of interest will be considered in this study: Vt, partial Vts
and BPND.

In fact, the purpose of the analysis is to distinguish the α1\α5 contributes.
Therefore, two di�erent partial Vts will be considered following previous results
[12]: V1 (related to α1 subtype) and V5 (related to α5 subtype). These will be
calculated di�erently depending on the method considered.

Total volume of distribution For LSA, 2-exponential NLSA and 2-TCM,
Vt will be calculated respectively with Equation 2.5, 2.8 and 2.12.

To note that Vts calculated with 2-TCM and NLSA are almost equal ex-
cept for numerical approximation in the estimation: in fact comparing the
concentration in the tissue obtained with 2-exponential NLSA

Ct(t) = (1− Vb) ·
[
α1 · Cp(t)⊗ e−β1t + α2 · Cp(t)⊗−β2t

]
+ Vb · Cb(t) (2.15)

with that obtained with 2-TCM

Ct(t) = (1− Vb)
(

K1

β2 − β1

[
(k3 + k4 − β1)e

−β1t + (β2 − k3 − k4)e
−β2t

]
⊗ Cp(t)

)
+ VbCb(t) (2.16)

CHAPTER 2. MATERIAL AND METHODS 10



2.2. MODELS

where

β1 =
(k2 + k3 + k4)−

√
(k2 + k3 + k4)2 − 4k2k4

2
(2.17)

β2 =
(k2 + k3 + k4) +

√
(k2 + k3 + k4)2 − 4k2k4

2
(2.18)

their similarity results clear.

Partial volumes of distribution For each method, V1 and V5 will be ob-
tained as follows: in the spectral methods V1 is related to the fast component
of the spectrum while V5 to the slow one. As regards 2-TCM, V1 is the volume
of distribution of the �rst compartment while V5 of the second one.

Thus, they are formulated as:

LSA


V1 =

N∑
i=1

αi
βi

with βi ≥ βcutoff

V5 =
M∑
i=1

αi
βi

with β1 < βi < βcutoff

(2.19)

where βcutoff will be �xed according to spectrum result and β1 = 0.001
[min−1].

2− exponential NLSA


V1 =

α1

β1

V5 =
α2

β2

(2.20)

where β1 is the beta with the highest value.

2− TCM


V1 =

K1

k2

V5 =
K1k3

k2k4

(2.21)

While total Vt of 2-exponential NLSA and 2-TCM can be compared, V1

and V5 are related to di�erent compartments in the two di�erent models.
In the NLSA they are related to the �rst and to the second exponential:

C1(t) = α1e
−β1t (2.22)

C2(t) = α2e
−β2t (2.23)

where β1 > β2.
On the other hand, V1 calculated with 2-TCM is related to the �rst com-

partment, i.e. free and non-speci�c binding, while V5 to the second that is
speci�c binding (full derivation can be found in [23]):

CHAPTER 2. MATERIAL AND METHODS 11



2.3. ESTIMATORS

C1(t) =
K1

β2 − β1

[
(k4 − β1)e−β1t + (β2 − k4)e−β2t

]
(2.24)

C2(t) =
K1k3

β2 − β1

[
e−β1t − e−β2t

]
(2.25)

where β1 and β2 are de�ned in Equation 2.17 and 2.18.
Therefore, the V1 and V5 obtained with spectral methods can not be inter-

preted as free, non-speci�c or speci�c binding since model-based methods are
needed.

Non displaceable binding potential As regards BPND calculated with
SRTM, it will be compared to three di�erent parameters:

1. BPND of 2-TCM (Equation 2.13, "direct" estimate).

2. BPND obtained as:
BPND = DV R− 1 (2.26)

where DVR is the distribution volume ratio and it is equal at DV R =
Vt

Vtref
where Vt is the 2-TCM tissue volume of distribution while Vtref is

the volume of distribution of the cerebellum calculated by 1-TCM.

3. V5 of 2-TCM.

2.3 Estimators

2.3.1 ROI level

Linear spectral analysis

LSA is solved with non-negative weighted-least-square algorithm (lsqnonneg
in MATLAB): let y be the TACs measured, G a matrix containing Ci and
Cb on the columns (Equation 2.4), Σv the error covariance matrix and p the
vector of parameters, the optimization problem can be written as:

min
p
‖y −G · p‖2

Σ−1
v

with p ≥ 0 (2.27)

PET data measurement error is assumed to be additive and uncorrelated,
with zero mean and Gaussian distribution. The error covariance matrix is
diagonal (as per standard practice in PET) with variance of the i-th element,
V ar(TAC(ti)), de�ned according to the formula originally proposed by Ma-
zoyer and colleagues [24]:

V ar(TAC(ti)) = γ
TAC(ti)

∆ti

(2.28)

CHAPTER 2. MATERIAL AND METHODS 12



2.3. ESTIMATORS

where TAC(ti) represents the activity of the radioligand in a speci�c vol-
ume of interest in the frame i, and ∆ti is the duration of frame i. The pro-
portionality constant γ is an unknown scale factor estimated a posteriori as
in [25].

y, G and p can be formulated in the following way:

y =

 TAC(t1)
...

TAC(tN)

 (2.29)

G =

 C1(t1) · · · CM(t1) Cb(t1)
...

...
...

...
C1(tN) · · · CM(tN) Cb(tN)

 (2.30)

where Ci(t) is the concentration of the plasma convolved to the i-th expo-
nential term and

p =


α1
...
αM
Vb

 (2.31)

Some observations:

• ti is the i-th sampling time, with i = 1, · · · , N ,

• M is the number of βs in the grid,

• α values in p vector contain an (1− Vb) factor which must be removed.

As regards the choice of the beta grid, there are three main choices to
make: range, distribution and number of components. Various studies have
shown that the log-normal distribution is a convenient choice for most of the
tracers and 100 or 200 components are generally su�cient. On the other
hand, optimum range depends on the tracer; individual studies are made to
investigate this particular feature.

In this thesis two di�erent grids will be tested:

1. range β from 0.001 to 1 [min−1], log-distribution, M=100 components,

2. range β from 0.001 to 1 [min−1], log-distribution, M=1000 components.

CHAPTER 2. MATERIAL AND METHODS 13



2.3. ESTIMATORS

Non-linear spectral analysis

In the �rst part of this thesis, several types of NLSA models will be tested to
�nd which one best describes [11C]Ro15-4513 brain data:

• 1 reversible compartment model (1-exponential),

• 1 reversible compartment and 1 irreversible compartment model
(1-exponential with trapping component),

• 2 reversible compartments model (2-exponential),

• 2 reversible compartments and 1 irreversible compartment model (2-
exponential with trapping component),

• 3 reversible compartments model (3-exponential).

NLSA is solved with non-linear weighted least square method implemented
in home-made MATLAB functions. If y is the TAC measured, Ct(p) is the
concentration of tissue calculated with the model, Σv is the error covariance
matrix and p is the vector of parameters, the optimization function can be
written as:

min
p
‖y − Ct(p)‖2

Σ−1
v

(2.32)

where the measurement error is de�ned as for LSA.

For each model tested, various combinations of initial values are tried in
order to achieve the optimum one.

Afterwards, the best model among the �ve tested, de�ned as the one with
the lowest Akaike information criterion (AIC) under the constraint of having
the coe�cients of variation (CV) of all parameters lower than 200%, will be
compared with other methods.

Two-tissue compartment model

Two-tissue compartment model is solved with the non linear weighted least
square estimator as NLSA (Equation 2.32). The assumptions of measurement
error are equal to those of the previous methods.

The initial values of parameters required by lsqnonlin are derived from the
relationship between 2-TCM and NLSA (Equation 2.15 and 2.16).

Simpli�ed reference tissue model

Simpli�ed reference tissue model is solved with non linear weighted least square
method as NLSA and 2-TCM (Equation 2.32) and the same assumptions on
the measurement error are made.

CHAPTER 2. MATERIAL AND METHODS 14



2.4. GENOMIC INTEGRATION

2.3.2 Voxel level

Voxel level analysis solves the kinetic models for each element of the image
producing parametric maps having the same spatial resolution as the original
PET image [26]. Due to the low SNR of the voxel kinetics and very high
number of voxels to be analyzed, nonlinear estimators cannot be used [26].

In the past 10 years, various techniques have been proposed to apply non-
linear models at voxel analysis. In this thesis, hierarchical basic function
method (HBFM) will be used to obtain parametric maps for 2-exponential
NLSA and 2-TCM models. For a detailed description of the method, the
interested reader is referred to [26].

The assumptions on the measurement error are equal to those of the pre-
vious methods but in this case the error variance is de�ned as the ratio of the
activity of the radioligand in the whole brain over the frame length.

2.4 Genomic integration

The distribution and the quantity of GABA receptors in the di�erent areas of
the brain are not known precisely. According to various studies, only relative
and semi-quantitative informations are available as, for example, regions with
low or high amount of an α subtype. In Table 2.1 the main GABA-A receptors
and their quantity are reported.

Subtype(Composition)
α1 (α1β2γ2) α2 (α2βnγ2) α3 (α3βnγ2) α5 (α5β1/3γ2)

Quantity ∼ 60% ∼ 20% ∼ 15% ∼ 5%
[11C]Ro15-4513 10.4 5.5 7.8 0.5
Zolpidem 17 291 357 >15000

Table 2.1: A summary of the distribution of the four �benzodiazepine-sensitive�
GABA-A receptor subtypes, and a selection of interacting pharmacological
agents [3]. A�nities of these compounds are presented as Ki/nM [27]. Table
kindly granted by Jim F. Myers.

The Allen Human Brain Atlas (AHBA) is an anatomically comprehensive
atlas of the adult human brain transcriptome, recently made freely available
by the Allen Institute for Brain Science [28]. This atlas represents a gene
expression survey in multiple adult control brains, in 500 samples per hemi-
sphere. AHBA includes the mRNA information of > 20'000 genes, which can
be downloaded from http://human.brain-map.org/ at di�erent levels of reso-
lution ("sample", one mRNA expression level per sample, "structure", mRNA
levels are averaged in 156 regions of interest, and "coarse", where mRNA are
reported in 26 macro-regions of interest).
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AHBA is used as source of transcriptional mRNA maps for an exploratory
analysis of [11C]Ro15-4513 quanti�cation methods using mRNA distribution
to identify α1/α5 binding.

mRNA data of the genes of interest (GABA receptor α1, α2, α3, α4, α5,
α6) are downloaded at "coarse" level and mRNA levels are averaged across
the donors, in order to obtain a between-subject mean mRNA pro�le for each
receptor subtype.

2.5 Statistical analysis

To assess methods performance, several indexes are taken in consideration.
Non-physiological or non-reliable estimates, de�ned as Vt with CV higher than
50%, are removed.

Repeatability As regards test-retest healthy dataset, three indexes are used
to assess the method repeatability: Pearson's correlation coe�cient (R2), in-
traclass correlation (ICC) and mean relative di�erence (MRD).

For each method, R2 and ICC are calculated for Vt, V1 and V5 taking into
account all the ROIs of all subjects:

R2 =

 ∑n
i=1

(
Vtitest − V ttest

) (
Vtiretest − V tretest

)√∑n
i=1

(
Vtitest − V ttest

)2
√∑n

i=1

(
Vtiretest − V tretest

)2

2

(2.33)

where n is the number of reliable ROIs on all subjects, Vtitest and Vtiretest
are the volumes of distribution of the i-th ROI while V ttest and V tretest are the
mean of the volumes of distribution in test and retest.

Instead, ICC is given by:

ICC =
MS(bs)−MS(ws)

MS(bs) +MS(ws)
(2.34)

where MS is the mean sum of squares of the volumes of distribution, bs
means "between subject" and ws means "within subject".

As regards MRD, the relative di�erence for each ROI of the subjects is
calculated as:

RDi = 100 ∗

∣∣∣∣∣Vttesti − VtretestiVttesti
+Vtretesti

2

∣∣∣∣∣ (2.35)

where Vttesti and Vtretesti are the volumes of distribution of the i-th ROI. Af-
terwards, mean, i.e. MRD, and standard deviation of the RDi are separately
calculated for each subject.
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2.5. STATISTICAL ANALYSIS

Impact of zolpidem administration For the placebo-zolpidem data set,
the average on the �ve subjects of the percentage di�erences (PD) of Vt, V1

and V5 between placebo and zolpidem administration are obtained for each
ROI:

PD = MEAN

(
100 ∗

Vtplacebo − Vtzolpidem
Vtplacebo

)
(2.36)

Lastly, Spearman's rho (ρ) are calculated for each α subreceptor to as-
sess the correlation of mRNA distributions and [11C]Ro15-4513 quanti�cation
results.
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Chapter 3

Quanti�cation results: spectral

methods

In this chapter, NLSA and LSA will be compared in several aspects: model or-
der, �t, weighted residuals, spectrum and repeatability. Furthermore, placebo-
zolpidem dataset will be used to study the variation of the volumes of distri-
bution after zolpidem administration.

3.1 Model order

NLSA As regards the non-linear spectral analysis, the �ve models reported
in section 2.3.1 are applied to the healthy dataset. Table 3.1 reports the
percentage of the ROIs where each model is selected as optimal according to
parsimonia criteria (as described in section 2.3.1).

Model ROI percentage [%]
1-exponential 15
1-exponential with trapping component 20
2-exponential 53
2-exponential with trapping component 13
3-exponential 0

Table 3.1: Optimal model according to non-linear spectral analysis

In agreement with previous studies, the two components model is identi�ed
in the majority of the ROIs (73%, Table 3.1). The 2-exponentials with trapping
component model is often selected in the Pallidum (37.5%).

In 33% of the ROIs, a model with trapping component is identi�ed; two
explanations can be given to understand this contrasting result:

1. The trapping component improves the �t of the model and so it is found
even when the irreversible compartment does not belong to tracer kinet-
ics.
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3.2. FIT AND WEIGHTED RESIDUALS

2. The duration of the speci�c binding is comparable with the length of the
PET exam therefore it is identi�ed as an irreversible component.

Mono-exponential model is selected as the optimal one in the 15% of the
ROIs especially in the Cerebellum. In the 75% of subjects in fact it provides
good �ts comparable with those obtained with 2-exponentials. According to
Myers and colleagues, in the Cerebellum the one-tissue compartment model
�tted TACs almost as well as did the two-tissue compartment model [12].

Based on these results and considerations, two-exponentials model is cho-
sen as the best one for all ROIs except for the Cerebellum in which mono-
exponential is selected as the optimal model. As regards Pallidum, two-
exponentials is selected as best model although the presence of the trapping
component will be taken into account.

LSA LSA identi�es a greater number of components than NLSA, results are
reported in Table 3.2 (no trapping component is included in the grid).

Number of reversible components ROI percentage [%]
1 2
2 47
3 42
4 10

Table 3.2: Number of reversible components identi�ed by linear spectral anal-
ysis

In the 52% of the ROIs three or more components are found. Furthermore,
boundary components, i.e. those with betas equal at 0.001 or 1 [min−1], are
identi�ed with high frequency, for example 38% of the ROIs contain a lower-
bound component.

Considering the number of components, NLSA is preferable to LSA because
it avoids their overestimation.

3.2 Fit and weighted residuals

NLSA The two-exponentials model gives good �ts of data with uncorrelated
weighted residuals (in Figure 3.1 model �t and weighted residuals of the Insula
for a representative subject).

Similar results are obtained in others regions; however some di�erences can
be found:
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3.2. FIT AND WEIGHTED RESIDUALS

Figure 3.1: Fit, compartments and weighted residuals of Insula by two-
exponential NLSA model.

• Accumbens, Amygdala, Cingulate, Hippocampus and Insula have tissue
activity curve with slow kinetics.

• Whole brain, Occipital lobe and Thalamus have fast kinetics.

• Pallidum have a high acute peak and a fast wash-out in the majority of
the subjects.

• Cerebellum has the fastest kinetics.

These results are in agreement with physiological informations obtained
from GABA-A receptor studies: high expression levels are found in limbic area,
i.e. Amygdala and Hippocampus, and Accumbens nucleus while lower amounts
are reported in Cingulate cortex and Insula. On the other hand, Occipital
lobe and Thalamus contain few α5 receptors and their percentage in whole
brain is very low (5%, Table 2.1). Furthermore, the lack of α5 subunits in the
cerebellum explains its fast kinetics and the best �t obtained by one-component
model. As regards Pallidum, small amount of α5 receptors is reported in some
studies [6] [7] and thus its fast behaviour is expected, however, the acute peak
in the initial part of the curve is unusual. Further information should be
taken in consideration, such as anatomical structure, in order to understand
its kinetics.

Since the number of compartments is �xed for all regions, some failures
of estimation can be obtained with two-exponentials model due to the large
variability in the receptors distribution. For example, in the Occipital lobe a
one-exponential model might be enough in some subjects and so one compo-
nent of the two-exponentials model might collapse to a boundary limit such as
β = 0.99 or approximately zero.
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In agreement with [12], high inter-subject variability is found due to the
complexity of the GABA-A receptor system.

Given the high inter-subject variability, di�erent combinations of the values
of the initial parameters are tried for each subject.

The optimal set is:

Vb = 0.05 [unitless]

α1 = 0.3 [mL/cm3min]

β1 = 0.14 [min−1]

α2 = 0.08 [mL/cm3min]

β2 = 0.04 [min−1]

All estimated blood volumes have physiological value in all subjects and
ROI (Vb mean ± sd: 0.048 ± 0.012 [unitless]).

LSA As regards LSA, �ts, compartments and weighted residuals are obtained
with the two di�erent grids, the results are reported in Figure 3.2.

The results are grid-dependent:

• with the �rst grid (range of betas [0.001 1] [min−1] and 100 components)
poor �ts and weighted residuals are achieved compared to NLSA, see
Figure 3.2a. The weighted residuals are correlated and the predicted
concentration does not correctly �t the last part of the curve.

• on the other hand, increasing the number of components to 1000 the
results become comparable with those of NLSA (see Figure 3.2b and
3.1): weighted residuals become random and uncorrelated and the �t
explains the last part of the time activity curve of the tissue.

In LSA, the quantization of the grid signi�cantly a�ects the goodness-of-
�t of [11C]Ro15-4513 human brain data, despite several studies have reported
that 100 or 200 components are usually enough to obtain satisfying �ts and
weighted residuals.

Furthermore, a decrease of CV values is obtained, while there are negligible
change in the parameter estimates (results of Insula are reported in Table 3.3).

The biggest di�erence is related with the slow component (di�erence of 5%
in β1) and thus the highest improvement in goodness-of-�t is found in the �nal
part of the curve. The same holds in other ROIs.

One of the most signi�cant feature of the LSA is its computational cost:
being a linear method it is computationally faster compared to non-linear
techniques as NLSA. However, if the number of components is very high this
propriety is lost.
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3.2. FIT AND WEIGHTED RESIDUALS

(a) beta grid=[0.001 : 1] [min−1], number of components=100.

(b) beta grid=[0.001 : 1] [min−1], number of components=1000.

Figure 3.2: Fit, compartments and weighted residuals of Insula by LSA
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Parameter 100 components grid 1000 components grid
α1 [mL/cm3min] 0.029 0.029
CV [%] 10 4
β1 [min−1] 0.019 0.020

α2 [mL/cm3min] 0.075 0.076
CV [%] 18 7
β2 [min−1] 0.054 0.055

α3 [mL/cm3min] 0.217 0.215
CV [%] 10 4
β3 [min−1] 0.126 0.127

α4 [mL/cm3min] 0.006 0.006
CV [%] 466 194
β4 [min−1] 0.726 0.732

Vb [unitless] 0.050 0.050
CV [%] 19 8

Vt [ml/cm3] 4.572 4.574
CV [%] 0.6 0.3

WRSS [unitless] 0.0289 0.005

Table 3.3: Di�erence between parameters and their CV with di�erent grids in
Insula

Using 1000 components, the length of LSA analysis is comparable with
that of the NLSA and thus non-linear methods are preferable in the ROI level.

Given the little di�erence between the volumes of distribution calculated
and the large increase in computational time, the �rst grid is chosen as the
best one and so it will be used in comparison with NLSA.

As regards the applicability on the di�erent ROIs, LSA is more �exible
than NLSA since the number of compartments is not �xed a priori. In fact,
LSA adapts the number of components in order to �t the tissue concentration.
For example, in the cerebellum the slow component is identi�ed in 13% of the
subjects.

On the other hand, as said in the previous section, the number of compo-
nents found is often higher than necessary. In the Insula this fact is evident:
even if LSA identi�es four components (Figure 3.2a and Table 3.3) the optimal
model according NLSA is the two-exponentials model.

In most ROIs, the CVs of the parameters estimated with LSA are normally
comparable with those obtained with NLSA. However, boundary components
have very high CVs in both methods.
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Considering the �ts and the weighted residuals, NLSA is preferable to LSA
because it has better goodness-of-�t and its residuals are uncorrelated and
random.

3.3 Spectrum

NLSA and LSA spectra can be compared to study their ability to separate the
di�erent contributions of α subtypes.

NLSA As regards NLSA, two main components can be identi�ed: a slow
one containing the betas in the interval [0 : 0.09] [min−1] and a fast one with
the betas greater than 0.09 [min−1] (Figure 3.3). The separation is not clear
because the distribution is very compact, in fact most betas are smaller than
0.2 [min−1].

Figure 3.3: NLSA spectrum, possible cuto� = 0.09 [min−1].

A relative small number of boundary components is identi�ed, 14% of ROIs
contain a beta near zero while 24% have a beta in the [0.98 : 0.99] [min−1] in-
terval. These beta values are found when the two-exponentials model is unable
to identi�ed the slow or the fast component in the ROI thus one exponential
hits the upper or the lower bound.

Furthermore, very slow exponentials, i.e. betas lower than 0.001 [min−1],
suggest that the two-exponential model is collapsing to one-exponential with
trapping component. As said in section 3.1, trapping component can be related
to slow speci�c binding kinetics comparable with the length of PET exam. On
the other hand, fast exponentials, that is betas higher than 0.9 [min−1], are
associated with blood kinetics.
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Comparing the various subjects, it is possible to study the inter-subject
variability of the betas estimated. In the second and in the third subject a
fast and a slow component are easily identi�ed moreover few boundary betas
are found. On the other hand, in the �rst and in the fourth, it is di�cult to
identify the fast one: several ROIs have a beta that hits the boundary value.
For example, the test scan of the fourth subject has only 2 ROIs, Cerebellum
and Thalamus, that contain a beta in [0.09:0.5] [min−1] interval.

LSA The spectrum obtained with LSA has di�erent characteristics than
NLSA (Figure 3.4):

• a higher number of boundary components is identi�ed; in the 43% of the
ROIs a beta lower than 0.01 [min−1] is found while 42% contain a beta
higher than 0.99 [min−1].

• the separation between the two main components is clearer and a cuto�
equal at 0.09 [min−1] can be derived.

Figure 3.4: LSA spectrum, possible cuto� = 0.09 [min−1].

The presence of the boundary beta near 0 in the majority of the ROIs
creates a signi�cant di�erence in the beta values between LSA and NLSA. For
example, in the Striatum of the second subject of the healthy data set the two
main components calculated by LSA (in addition to that at 0.001) are equal at
0.046 and 0.145 [min−1] while with NLSA the two exponentials are identi�ed
in 0.019 and 0.135 [min−1]. Thus, the beta near 0.001 [min−1] produces a shift
of the main lines to higher frequencies.

On the other hand, betas higher than 0.95 [min−1] should be related to
di�erences between the "true" arterial input function and that calculated and
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used as input of the model. According to Cunnigham and colleagues, these
high-frequency terms have relatively little e�ect on the size and position of
lower-frequency components which relate to tissue retention and subsequent
release of the tracer [17]. In this study, unnoticeable changes are caused by
betas that hit the higher limit.

While the choice of the cuto� is not critical in NLSA since partial volumes
of distribution can be obtained directly from the parameters of the single
components, in the LSA it is a critical threshold. The ranges of betas related
to the two main components have to be �xed in order to derive the partial
volumes of distribution (Equation 2.19). Since LSA and NLSA give the same
result, the βcutoff is �xed at 0.09 [min−1]. Therefore, the range of the slow
component is [0.001 : 0.09] [min−1] while that relating to the fast component
is �xed as [0.09:1] [min−1].

Considering the spectra, NLSA identi�es a lower number of boundary com-
ponents and does not need to de�ne a cuto� value thus it is preferable to LSA.

3.4 Volume of distribution

Several ROIs obtained with NLSA are removed from the analysis due to non-
reliable or non-physiological results (section 2.3.1): 6% in the test scan and
17% in the retest scan. The majority of them belongs to the fourth subject,
respectively, the 75% and the 92%: this is caused by the lack of the fast
component.

On the other hand, no ROI is removed in the LSA.

As regards LSA, in agreement with Myers and colleagues [12], the betas
with values equal at the lower bound, i.e. 0.001 [min−1], are �ltered, i.e. they
are not used in the calculation of Vt and V1, because they produce errors in the
estimation of the parameters. The amplitude of the spectral lines at the lower
bound is generally of the same order of magnitude of their betas thus their
partial volumes, i.e. the ratio of amplitude over beta, are signi�cant compared
to the total volume of distribution. Furthermore, in particular ROIs such as
Accumbens, the amplitude is an order higher than the beta and thus the re-
sulting volume of distribution has non-physiological value. Then, components
with frequency equal at the lower bound have to be �ltered.

Instead, the boundary components at high frequencies have a little contri-
bution to the volume of distribution since their amplitude is normally one or
two orders of magnitude lower than their betas.

However, Myers and colleagues eliminate all the components greater than
an estimated cuto� because they should relate to blood kinetics. This approach
requires a second cuto� introducing more subjectivity therefore it is avoided.
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NLSA For each ROI, the mean and the standard deviation of Vt, V1 and V5

between the four subjects in the test data-set obtained with NLSA are reported
in Table 3.4.

ROI Vt SD V1 SD V5 SD

Whole Brain 3.89 0.51 1.52 0.95 2.38 1.37
Hippocampus 7.82 0.75 1.61 1.90 6.21 2.35
Amygdala 7.61 0.92 0.67 0.72 6.94 1.63
Cerebellum 2.24 0.24 2.24 0.24
Insula 5.12 0.55 2.05 1.16 3.07 1.43
Caudate 3.94 0.56 1.41 1.08 2.53 1.61
Putamen 4.24 0.43 2.52 0.64 1.72 0.73
Striatum 4.19 0.42 2.52 0.72 1.66 0.82
Accumbens 9.04 0.41 1.17 2.09 7.87 2.47
Thalamus 2.74 0.20 1.05 0.87 1.69 0.98
Pallidum 4.46 1.86 1.87 0.55 2.59 1.31
Cingulate 5.89 0.58 1.54 2.10 4.74 2.21
Parietal lobe 3.70 0.49 0.91 1.34 2.79 1.67
Occipital lobe 3.90 0.52 1.03 1.44 2.87 1.76
Temporal lobe 4.96 0.58 0.91 1.33 4.04 1.76
Frontal lobe 4.07 0.44 0.90 1.36 3.17 1.72
Subcortical 4.89 0.48 2.28 0.64 2.60 0.67
Cortical 4.12 0.49 1.13 1.23 2.99 1.53

Mean 4.82 0.58 1.50 1.12 3.52 1.53
SD 1.76 0.36 0.61 0.51 1.86 0.53
SD% 36 62 40 45 53 35

Table 3.4: Between subject mean and variability (mean ± sd) of the volumes
of distribution [ml/cm3] of the four subjects of the test data set obtained with
NLSA.

The higher Vts are found in Hippocampus, Amygdala, Accumbens and
Cingulate in agreement with the known distribution of α5 receptors. Moreover,
the smallest Vts are obtained in Cerebellum and Thalamus in which the amount
of α5 subunits is small.

In the majority of the ROIs, the between-subject SD is considerable (SD
%>10%) due to the high inter-subject variability. In the pallidum the SD%
is much higher (41%): the particular �t and the presence of trapping com-
ponent discussed in previous section entail large di�erence between subjects.
Accumbens is the region with lowest variability (SD%=5%).

As regards V1 and V5, according to [12] they should be related, respec-
tively, with α1 and α5 receptors. However, the two exponential terms are not
related to physiological compartments therefore some un-excepted results can
be found:
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• V5 contributes most to the total volume of distribution.

• Hippocampus contains relative large amounts of α1 subunit [1] but its V1

is small compared to other ROIs such as Insula, Putamen and Striatum.

High variability between di�erent ROIs is found in total and partial volumes
of distribution due to the uneven distribution of GABA-A receptors.

LSA Similar results are obtained with LSA, reported in Table 3.5.

ROI Vt SD V1 SD V5 SD

Whole Brain 3.74 0.52 0.87 1.15 2.88 1.57
Hippocampus 7.32 0.73 0.56 0.85 6.76 1.27
Amygdala 7.02 1.35 0.88 0.44 6.58 1.62
Cerebellum 2.22 0.27 2.06 0.48 0.31 0.44
Insula 5.38 0.71 0.65 0.81 4.73 1.49
Caudate 3.93 0.58 0.76 0.90 3.17 1.33
Putamen 4.09 0.75 1.76 1.31 2.33 1.58
Striatum 4.07 0.72 0.93 1.08 3.14 1.69
Accumbens 8.16 1.29 0.28 0.15 8.01 1.25
Thalamus 2.64 0.27 1.05 0.72 1.59 0.85
Pallidum 3.23 2.66 0.68 0.82 2.55 3.13
Cingulate 5.88 0.58 1.53 2.11 4.73 2.21
Parietal lobe 3.59 0.61 1.15 1.38 2.72 1.77
Occipital lobe 3.89 0.52 1.38 1.55 2.85 1.75
Temporal lobe 4.90 0.62 1.24 1.47 3.96 1.75
Frontal lobe 4.02 0.48 1.19 1.48 3.12 1.75
Subcortical 4.94 1.07 0.83 0.94 4.11 1.96
Cortical 4.03 0.56 1.25 1.44 3.09 1.77

Mean 4.61 0.79 1.06 1.06 3.70 1.62
SD 1.60 0.55 0.44 0.48 1.90 0.55
SD% 35 69 42 45 51 34

Table 3.5: Between subject mean and variability (mean ± sd) of the volumes
of distribution [ml/cm3] of the four subjects of the test data set obtained with
LSA.

As seen in NLSA, Hippocampus, Amygdala, Accumbens and Cingulate
have the highest Vt while the lowest are those of Cerebellum and Thalamus.
Moreover, the between-subject variability in Pallidum is very high (SD% is
equal to 83 %).

Partial volumes of distribution have more marked variations between the
two methods. In LSA the V1 is generally lower than NLSA, on average 30%,
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while the V5 is normally higher, on average 5%. Several factors contribute to
this di�erence:

1. the �ltering of the low boundary component,

2. the higher number of components in LSA, which produce di�erence in
the beta values and thus in partial volumes of distribution.

3. the choice of the cuto�.

In the majority of the ROIs, high inter-subject variability is found with
LSA, for example the SD%s of the whole brain are equal to 132% for V1 and
55% for V5. Most of the variability is due to the fourth subject.

Inconsistencies regarding the physiological informations reported with NLSA
are still found with LSA, such as very low V1 in Hippocampus.

Repeatability NLSA shows higher R2 than LSA for Vt (Figure 3.5a and
3.5b). Also in terms of V1 and V5, NLSA outperformed LSA both in correlation
(R2) and repeatability (ICC), (Table 3.6).

Model Parameter Vt V1 V5

LSA
R2 0.71 0.53 0.76
ICC 0.84 0.73 0.87

NLSA
R2 0.93 0.70 0.91
ICC 0.96 0.81 0.95

Table 3.6: Statistical index of NLSA and LSA

The cause of the lower R2 in LSA is due to Pallidum; if they are not taken
in account the R2 is comparable to that obtained with NLSA. As reported in
previous sections, Pallidum is a problematic region for both spectral methods.
However, there are no reasons to exclude these values from the analysis (reliable
and physiological estimates).

To note that V1 has the lowest ICC and R2, probably due to the lower
contribution to Vt compared to V5.

In terms of MRD, NLSA shows in general smaller MRD (Table 3.7). In
agreement with previous results, V1 has the highest variation between test and
retest.

In light of all the results (goodness of �t, residuals, outliers, repeatability),
NLSA is the method of choice in the base line dataset.
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(a) Correlation between test-retest of NLSA.

(b) Correlation between test-retest of LSA.

Figure 3.5: Correlation between test and retest scan.
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LSA NLSA

Vt MRD SD MRD SD
H1 11 13 8 8
H2 10 9 12 4
H3 7 7 6 3
H4 13 30 11 4

MEAN 10 15 9 4
SD 3 11 3 2

V1

H1 141 69 100 66
H2 30 52 18 24
H3 131 76 118 86
H4 106 73 59 96

MEAN 102 67 74 68
SD 50 11 45 32

V5

H1 38 53 16 12
H2 50 60 32 23
H3 38 60 21 15
H4 25 53 35 15

MEAN 38 57 26 16
SD 10 4 9 5

Table 3.7: Mean relative di�erence of Vt, V1 and V5 for each subject. Between
subject mean and variability are reported.
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3.5 Placebo-zolpidem data set

In the placebo-zolpidem data set, only one ROI obtained with NLSA (Amyg-
dala of the third subject with placebo administration) is removed due to non-
reliable result.

On the other hand, no ROI is removed in the LSA.

Whole brain results As regards Vt, little or no variations are found with
NLSA while one subject shows an increment in the LSA in agreement with [12],
(Figure 3.6a and 3.6d). Moreover, NLSA has a clearer reduction in V1 com-
pared to LSA where an increase of V1 is reported after zolpidem administration
(Figure 3.6b and 3.6e) in two subjects.

(a) Vt of NLSA

(b) V1 of NLSA

(c) V5 of NLSA

(d) Vt of LSA

(e) V1 of LSA

(f) V5 of LSA

Figure 3.6: Comparison of volumes of distribution between placebo and zolpi-
dem obtained with NLSA and LSA

On the other hand, an increase of NLSA V5 in four subjects is found (Figure
3.6c). Myers and colleagues do not report signi�cant increases in the slow
component however LSA produces plots less clear compared to NLSA (Figure
3.6f).
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It is important to understand that the partial volumes calculated with
spectral methods can not be matched with speci�c and non-displaceable (or
non-speci�c) volumes of distribution because only with model-based quanti�-
cation is possible to obtain them.

Regions of particular interest Between subject mean and SD of some
representative regions are reported in Figure 3.7 and 3.8.

In each region, little or no decrease of Vt is found with both LSA and
NLSA. The highest di�erence is reported in Accumbens (NLSA: PD=11%,
LSA: PD=13%).

There is an overall decrease in V1 obtained with NLSA and LSA after zolpi-
dem administration. Furthermore, an increase of V1 calculated with LSA is
found in Hippocampus while with NLSA a little decrease is achieved. More-
over, a considerable di�erence is found in cerebellum by means of LSA in
agreement with [12] (PD=22%).

In the majority of the ROIs there is an increase of V5 obtained with NLSA.
Instead, little or no increments are achieved with LSA in most regions, even
though an increase is reported in whole brain (PD=-22%).
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(a) Comparison of inter-subject mean and standard deviation of Vt between placebo-
zolpidem.

(b) Comparison of inter-subject mean and standard deviation of V1 between placebo-
zolpidem.

(c) Comparison of inter-subject mean and standard deviation of V5 between placebo-
zolpidem.

Figure 3.7: Mean and standard deviation between the �ves subjects of partial
and total volumes of distribution obtained with NLSA in placebo and zolpidem
data set.
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(a) Comparison of inter-subject mean and standard deviation of Vt between placebo-
zolpidem.

(b) Comparison of inter-subject mean and standard deviation of V1 between placebo-
zolpidem.

(c) Comparison of inter-subject mean and standard deviation of V5 between placebo-
zolpidem.

Figure 3.8: Mean and standard deviation between the �ves subjects of partial
and total volumes of distribution obtained with LSA in placebo and zolpidem
data set.
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3.6 Discussion and conclusion

Spectral methods are widely used in PET quanti�cation since they need very
few assumptions, they do not require any model structure and allow to calcu-
late several macroparameters of interest.

In this study, non-linear spectral analysis and linear spectral analysis give
reliable volume of distribution and identi�es two main components: the slow
one is likely related to GABA-A receptors containing α5 subtype while the
fastest is correlated with α1 subtype given the decrease after zolpidem admin-
istration. In the Cerebellum in general only the fastest contribute is found (as
expected since it does not contains α5 receptors).

In general NLSA outperforms LSA as it:

• avoids the overestimation of the number of components (in particular a
reduced percentage of boundary betas are found).

• better �ts the time activity curves of the in all the ROIs and random and
uncorrelated weighted residuals are achieved (which are highly correlated
in LSA). Furthermore, the quality of the �ts and the weighted residuals
of the LSA are grid-dependent.

• does not need the de�nition of a cuto� value to calculate partial volumes
of distribution.

• has higher repeatability (test-retest dataset).

On the other hand, LSA is more �exible, since the number of components
is not �xed a priori resulting in a smaller percentage of outliers. Furthermore,
it is computationally faster than NLSA.

Through the placebo-zolpidem data set, con�rmations on the relation be-
tween fast component and α1 receptors were found. Moreover, overall incre-
ment in the slow component is reported and it could be caused by the higher
bioavailability of the tracer in the extra-synaptic space.

Finally, a better separation of the partial volumes of distribution is achieved
with NLSA since similar behaviour are found between the di�erent subjects in
the placebo-zolpidem data set.

Model-based quanti�cation is now needed to study the physiological inter-
pretation of the tracer such as speci�c and non-speci�c binding.
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Chapter 4

Quanti�cation results:

model-driven methods

In the in-vivo receptor studies 2-TCM is widely used: the tissue TAC is de-
scribed by the sum of the free plus non-speci�cally bound and the speci�cally
bound ligand. This model is a simpli�cation of the general model containing
three compartments (3-TCM) that further divides the free and the non-speci�c
binding kinetics [21].

In the 13% of the ROIs 3-exponential terms are found by NLSA and thus
three tissue compartments may be identi�ed. In some representative subjects
with high frequency of these ROIs, the 3-TCM is used to describe [11C]Ro15-
4513 data and the results are compared with 2-TCM data description.

4.1 Comparison 3-TCM and 2-TCM

The structure of the 3-TCM is reported in Figure 4.1.

Cp(t) Cfree(t) Cs(t)

Cns(t)

K1

k2

k3

k4

k5 k6

Figure 4.1: Three tissue compartment model

where Cfree(t) is the concentration of free tracer, Cns(t) is the concentration
of non-speci�cally bound tracer while Cs(t) is related to the speci�c binding.
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Generally, a tracer is speci�c for only one receptor, instead the [11C]Ro15-
4513 has signi�cant a�nities to several α subtypes (Table 2.1). Since the tracer
has an a�nity 5-10 fold higher for α5 subtype than for the others, it is bound
with high speci�city and thus its binding kinetics is slow. The [11C]Ro15-4513
binding to the other subtypes has low speci�city thus the resulting kinetics are
fast phenomena comparable to the non-speci�c binding.

Therefore, the Cs(t) could be related to α5 subtype while the Cns(t) should
contain the non-speci�c binding and the GABA-A receptors with low a�nity,
i.e. α1, α2, α3, α4 and α6.

Total and partial volumes of distribution can be calculated from the kinetic
parameters in similar way as 2-TCM. They are given by:

Vt =
K1

k2

(1 +
k3

k4

+
k5

k6

) (4.1)

Vfree =
K1

k2

(4.2)

Vs =
K1k3

k2k4

(4.3)

Vns =
K1k5

k2k6

(4.4)

In three subjects of interest, the kinetics of the compartments and the
inter-subject mean of Vs (it will be called V5) are compared to those obtained
with 2-TCM (in the same subjects) in order to study their relationship.

Fit and compartments In Figure 4.2 and 4.3, model descriptions and the
kinetics of the single compartments are reported for the Hippocampus of the
second subject of the healthy dataset, described by 3-TCM and 2-TCM re-
spectively.

The kinetics of the speci�c compartment almost does not change from 3-
TCM to 2-TCM. In any case, in the majority of the regions, the 2-TCM can
not separate the non-speci�cally bound tracer from the free because they have
both fast kinetics.

Assuming therefore that the speci�c binding of 2-TCM is related to α5

binding, then the concentration of the �rst compartment obtained with 2-
TCM is related to three main components:

1. free tracer,

2. non-speci�c binding,

3. GABA-A receptors containing α1, α2, α3, α4 or α6 subunit.
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Figure 4.2: Fit and kinetics of the compartments by 3-TCM.

Figure 4.3: Fit and kinetics of the compartments by 2-TCM.
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In order to verify the equality of the speci�c compartments achieved with
the di�erent models, the V5s averaged among the three subjects are compared
(Figure 4.4).

Figure 4.4: Comparison of the V5s obtained with 3-TCM and 2-TCM.

Overall, little or no variation on V5 is found in the majority of the ROIs.
As seen in the previous chapter, the Pallidum has very high inter-subject
variability.

The di�erences in the kinetic parameters obtained with 3-TCM and 2-TCM
are calculated: the main change is found in k2 (PD=30%) while K1, k3 and k4

have small variations.

Therefore, the distribution of the α5 receptors can be determined from the
V5, i.e. the volume of distribution of the second compartment, of the 2-TCM.

4.2 Quanti�cation results of 2-TCM

In the Section 2.2.5, the similarity between the concentrations of the tissue
obtained with 2-TCM and 2-exponentials NLSA was discussed: both methods
describe the TAC with two exponential terms and no major di�erences are
expected on goodness of �t and total Vt. On the contrary, there is no direct
correspondence between single components and model compartments.

4.2.1 Fit and weighted residual

In the Figure 4.5, 2-TCM �t, weighted residuals and the tracer concentrations
of the two compartments are reported for the Insula region for one represen-
tative subject.
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Figure 4.5: Fits, weighted residuals and kinetics of the compartments of Insula
by 2-TCM.

As excepted, 2-TCM �t and weighted residuals are almost identical to
those of NLSA (Figure 3.1), few di�erences are due to the approximations in
the estimation caused by the numerical solution of the di�erential equations.

The curves related to the two compartments are instead signi�cantly dif-
ferent: the concentration of the �rst compartment of NLSA is usually lower
compared to that obtained with 2-TCM, while the second one is usually higher.

4.2.2 Volumes of distribution

The number of non-reliable and non-physiological ROIs is equal to that re-
ported in section 3.4.

The mean and the standard deviation of Vt, V1 and V5 across the four
subjects in the test data set are reported for each ROI in Table 4.1.

To note that as regards Vt, no di�erences (on average <0.002%) are found
between 2-TCM and NLSA (Table 3.4) in agreement with previous considera-
tions. Moreover, same inter-subject and inter-ROI variability are achieved.

For 2-TCM the greatest contribution to the Vt is given by V1 (instead of
V5 as with the NLSA). On average, 76% of Vt is due to V1 while 24% by V5.

The highest V5s are found in Hippocampus, Amygdala and Accumbens
in agreement with the distribution of α5 receptors. Afterwards, the lowest
ones are found in Parietal lobe and Occipital lobe in which only few GABA-A
receptors contain α5 subtype. In general, a less between-subject variability
in V5 compared to NLSA is obtained (for example in whole brain 2-TCM
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SD%=34 while NLSA SD%=58), however a higher variability between the
ROIs is present due to the uneven distribution of the α5 subtype (on average
2-TCM SD%=79, NLSA SD%=53).

The Pallidum remains a particular region: a high V5 is found even if high
expression of α5 is not reported in studies concerning the GABA-A receptor
complex.

As regards V1, it is important to recall that it does not directly describe
the α1 receptors since free tracer, non-speci�c binding and GABA-A receptors
containing α2, α3, α4, and α6 subtype contribute to the kinetics of the �rst
compartment. Thus, the interpretation of the V1 results complex.

However, some interesting observations can be made:

• the highest values are found in the limbic area, i.e. Hippocampus, Amyg-
dala and Accumbens, in which good amounts of GABA-A receptors are
found, in particular α2 and α3.

• the lowest values are found in Cerebellum and Thalamus which do not
contain high level of α5, but α1, α4 and α6.

These observations are, obviously, qualitative since the free tracer and the
non-speci�c receptors are also included in V1, even if their contribution should
be equal in each regions.

Repeatability As excepted, very similar results to NLSA for Vt are found
(Figure 4.6).

Figure 4.6: Correlation between test-retest of 2-TCM.

2-TCM instead performed di�erently as regards V1 and V5 (Table 4.2).
Overall, lower values are found with the 2-TCM compared to the NLSA.
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ROI Vt SD V1 SD V5 SD

Whole Brain 3.89 0.51 3.28 0.65 0.62 0.21
Hippocampus 7.72 0.79 4.47 0.55 3.25 0.52
Amygdala 7.61 0.92 5.19 1.39 2.42 0.52
Cerebellum 2.24 0.24 2.24 0.24
Insula 5.11 0.56 3.93 0.78 1.17 0.51
Caudate 3.94 0.56 3.14 0.66 0.80 0.35
Putamen 4.24 0.43 3.29 0.49 0.94 0.26
Striatum 4.18 0.42 3.30 0.46 0.88 0.29
Accumbens 9.02 0.47 5.87 0.89 3.15 1.23
Thalamus 2.73 0.20 2.08 0.46 0.65 0.42
Pallidum 4.45 1.85 2.45 0.70 1.99 1.14
Cingulate 5.89 0.58 5.24 1.02 0.66 0.47
Parietal lobe 3.70 0.49 3.39 0.62 0.31 0.22
Occipital lobe 3.90 0.52 3.61 0.63 0.29 0.20
Temporal lobe 4.96 0.58 4.12 0.66 0.84 0.18
Frontal lobe 4.07 0.44 3.65 0.60 0.42 0.25
Subcortical 4.88 0.48 3.41 0.52 1.47 0.25
Cortical 4.12 0.49 3.63 0.60 0.48 0.21

MEAN 4.82 0.59 3.68 0.66 1.20 0.43
SD 1.75 0.36 1.01 0.25 0.95 0.31
SD% 36 61 27 38 79 73

Table 4.1: Mean and standard deviation of volumes of distribution across the
four subjects of the test data set obtained with 2-TCM.

Model Parameter Vt V1 V5

2-TCM
R2 0.93 0.64 0.50
ICC 0.97 0.79 0.66

Table 4.2: Statistical indexes of 2-TCM
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In particular, the �rst and the fourth subject, which have poor repeatability
and some problems in the estimation for all models, in�uence signi�cantly the
robustness of the 2-TCM. In fact, the R2 and the ICC of V5 in the second
subject, which is the best one for all models, are, respectively, 0.89 and 0.90.

Moreover, V1 has a better R2 and ICC than V5 due to the greater contri-
bution to the Vt.

As regards MRD, 2-TCM Vt results are similar to those obtained with
NLSA (Table 4.3).

Vt MRD SD V1 MRD SD V5 MRD SD
H1 8 8 14 13 44 36
H2 12 4 7 4 43 25
H3 6 3 23 9 78 52
H4 11 4 3 5 70 23

MEAN 9 4 12 8 59 34
SD 3 2 9 4 18 13

Table 4.3: Mean relative di�erence of Vt, V1 and V5 with 2-TCM for each
subject. Between subject mean and variability are reported.

On the other hand, better values are found by 2-TCM for V1 compared
to NLSA while smaller repeatability is achieved for V5. These di�erence are
due to the di�erent contributions of the partial volumes of distribution in the
di�erent models: in the NLSA the greatest contribute is given by V5 while in
the 2-TCM it is given by V1.

Overall, good MRDs are found for Vt and V1 while notable variations for
V5 are reported.

4.2.3 Placebo-zolpidem data set

As reported in section 3.5, the Amygdala of the third subject is removed due
to non-reliable and non-physiological estimates.

Whole brain results As regards the whole brain of the �ve subjects, similar
results to NLSA are achieved (Figure 4.7):

• little or no variations are found in Vt for all the �ve subjects,

• there's a clearer reduction in V1 after zolpidem administration due to the
blocking of the α1 receptors,

• instead, an increase in V5 is reported.
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(a) Vt of whole brain in the �ve subjects.

(b) V1 of whole brain in the �ve subjects.

(c) V5 of whole brain in the �ve subjects.

Figure 4.7: Comparison of volumes of distribution between placebo and zolpi-
dem obtained with 2-TCM.
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A possible explanation is proposed to describe the increase of V5.
The rate constants for transfer between the speci�c and the non-displaceable

compartment, i.e. k3 and k4 are de�ned as:

k3 = konfNDBMAX (4.5)

k4 = koff (4.6)

where

• kon is the rate constant of association between the ligand, i.e. the tracer,
and the speci�c receptor,

• koff is the rate constant of dissociation of the tracer-receptor complex,

• fND is the fraction of free tracer in the non-displaceable compartment,

• BMAX is the number of speci�c receptors available to binding.

In standard receptor studies, the non-displaceable compartment contains
only the free and the non-speci�cally bound tracer thus fND is given by:

fND =
Vfree

Vfree + Vns
(4.7)

where Vfree is the volume of the free tracer while Vns is the volume related
to the non-speci�c binding.

As seen in the initial part of this chapter, with [11C]Ro15-4513 the �rst
compartment also contains the low-speci�c GABA-A receptors therefore fND
is formulated as:

fND =
Vfree

Vfree + Vns + Vα1 + Vα2 + Vα3 + Vα4 + Vα6

(4.8)

De�ning OCC as the occupancy of the α1 receptors after the zolpidem, the
fND after the administration of the drug can be written as:

f zolpidemND =
Vfree

Vfree + Vns + (1−OCC)Vα1 + Vα2 + Vα3 + Vα4 + Vα6

(4.9)

where 0 ≤ OCC ≤ 1 and therefore f zolpidemND ≥ fND.

Consequently, kzolpidem3 = konf
zolpidem
ND BMAX ≥ k3.

Therefore, the V5 obtained with 2-TCM, i.e. the speci�c binding of α5, also
increases while V1 decreases due to the lower Vα1 .
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Regions of particular interest Figure 4.8 reports between subject mean
and variation of Vt, V1, V5 of the �ve subjects after placebo and zolpidem
administration in some representative regions.

In agreement with the considerations just made, little or no variations are
found in Vt while larger di�erences are reported in V1. On the other hand,
there's an increase in V5 in each ROI taken in consideration. The Cerebellum
is described by 1-TCM therefore no V5 is present.

As seen with the NLSA, the highest percentage di�erences in Vt and V1

between placebo and zolpidem administration are found in Accumbens (Vt:
12%, V1: 28%). Furthermore, Hippocampus (Vt: 8%, V1: 24%) and Amygdala
(Vt: 5%, V1: 21%) show notable reductions. On the other hand, the lowest are
reported in Whole Brain (Vt: 6%, V1: 12%) and Cerebellum (Vt: 6%, V1: 6%).

The small variation in the Cerebellum may be due to the presence of the
α6 subtype which is insensitive to zolpidem [3] [4].

As regards V5, notable increases (PD < -15 %) are found in the majority
of the ROIs. The lowest increase is found in the Insula (PD = -7%).

Furthermore, high increases are reported in lobe areas: Parietal lobe (PD=-
38%), Occipital lobe (PD=-59%) and Frontal lobe (PD=-35%). These areas
contain high amounts of α1 receptors and thus there is a high decrease of
the Vα1 due to zolpidem administration. Consequently, a notable increase of
kzolpidem3 is obtained due to the increase of f zolpidemND (Equation 4.9). Therefore,
an higher V5 is produced.

Considering all results, the 2-TCM is the suggested model for the quan-
ti�cation of [11C]Ro15-4513 PET data at ROI level since its V5 is related to
GABA-A receptors containing α5 subtype. Instead, the NLSA V5 is a "mix-
ture" of model compartments and thus it can not be used to evaluate the
distribution of α5 receptors.

Furthermore, it is not possible to obtain the density of α1 receptors because
the non-displaceable compartment contains several contributions.

4.3 Genomic integration

In [29], it was demonstrated that brainwide mRNA mapping may be highly
predictive of in vivo protein levels.

As regards GABA-A receptor complex, no previous studies have compared
the mRNA expression data obtained from Allen Human Brain Atlas and the
parameters of interest obtained with PET images.

In this section, the Spearman's correlations between PET results and mRNA
levels will be reported to assess the correlations between their spatial distribu-
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(a) Comparison of the inter-subject mean and the standard deviation of Vt between
placebo-zolpidem.

(b) Comparison of the inter-subject mean and the standard deviation of V1 between
placebo-zolpidem.

(c) Comparison of the inter-subject mean and the standard deviation of V5 between
placebo-zolpidem.

Figure 4.8: Inter-subject mean and inter-subject standard deviation of par-
tial and total volumes of distribution obtained with 2-TCM in placebo and
zolpidem data set.
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tion.

4.3.1 mRNA data

For each α subtype, the level of GABA mRNA expression (GABRA) is calcu-
lated for several ROIs, see Appendix A.4. The Pallidum is removed from the
analysis as confounding factor.

As regards GABRA5, i.e. the gene related to α5 subunit, its expression is
in agreement with the physiological information described in several studies:
the highest values are found in Hippocampus and Amygdala while the lowest
one in Cerebellum. Furthermore, medium levels of expression are reported in
Insula, Striatum, Cingulate gyrus and Temporal lobe.

Also the expressions of the other GABRA genes are in agreement with
the distributions of the respective subtypes. For example, high GABRA1 and
GABRA6 values are found in the Cerebellum.

However, it is necessary to take in consideration that several factors can
in�uence the relationship between the measurements of mRNA and the ex-
pression of the respective subtypes such as posttranscriptional changes. Thus,
with the levels of mRNA, it is possible to obtain only "semi-quantitative"
informations.

The distributions of the di�erent GABRA mRNA levels are compared to
study their spatial correlations (Table 4.4).

GABRA1 GABRA2 GABRA3 GABRA4 GABRA5 GABRA6
GABRA1 1.00 -0.62 -0.35 -0.35 -0.62 0.89
GABRA2 -0.62 1.00 0.68 0.55 0.98 -0.35
GABRA3 -0.35 0.68 1.00 0.06 0.69 -0.28
GABRA4 -0.35 0.55 0.06 1.00 0.53 -0.21
GABRA5 -0.62 0.98 0.69 0.53 1.00 -0.37
GABRA6 0.89 -0.35 -0.28 -0.21 -0.37 1.00

Table 4.4: Spearman's ρ between all GABRA genes.

A high spatial correlation is found between GABRA2 and GABRA5 and a
notable one between GABRA3 and GABRA5. Furthermore, a signi�cant ρ is
achieved between GABRA1 and GABRA5 albeit negative.

On the other hand, GABRA4 and GABRA6 are poorly correlated with
GABRA5.

The similar spatial distribution of α2, α3 and α5 makes the statistical anal-
ysis complicated since it can produce indirect correlations between the distri-
butions of their GABRA genes and the volumes of distribution obtained with
the mathematical models.
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4.3.2 Correlations between GABRA and volumes of dis-

tribution

For each GABRA gene, the averages of Vt, V1 and V5 across the four subjects of
the test data set are compared to the mRNA expression. In Figures 4.9-4.11,
the ROIs are ordered according to increasing values of GABRA expression:
ROIs with lower expressions are on the left side while ROIs with higher values
of mRNA are on the right side of the x-axis.

Thus, if a particular volume of distribution is highly correlated to a speci�c
GABRA gene, an increase of its value from left to right of the graph should
be seen.

Total volume of distribution In Figure 4.9, Vt values obtained with 2-
TCM and NLSA are reported for GABRA1 and GABRA5. Comparison for
GABRA1,3,4 and 6 are reported in Appendix B.

ρ2s values are reported in Table 4.5.

GABRA1 GABRA2 GABRA3 GABRA4 GABRA5 GABRA6

Vt
NLSA 0.27 0.84 0.67 0.21 0.89 0.13
2-TCM 0.27 0.84 0.67 0.21 0.89 0.13

V1
NLSA 0.03 0.00 0.15 0.03 0.00 0.00
2-TCM 0.04 0.50 0.73 0.10 0.53 0.02

V5
NLSA 0.00 0.37 0.84 0.01 0.37 0.00
2-TCM 0.50 0.84 0.45 0.04 0.84 0.15

Table 4.5: Spearman's ρ2 between the volumes of distribution, obtained with
2-TCM and NLSA, and the distributions of GABRA.

As discussed in previous sections, the Vts obtained with NLSA and 2-TCM
are almost equal (Figure 4.9). Furthermore, there is a high correlation between
Vt and GABRA5 probably due to the high a�nity of the tracer for the GABA-
A receptors containing α5 subunit.

No signi�cant ρ2 are achieved for GABRA1, GABRA4 and GABRA6.
Notable correlations between Vt and GABRA2 and GABRA3 are found

due to the high correlation in the spatial distribution between GABRA5 and
GABRA2,3(Table 4.4).

Partial volumes of distribution 2-TCM V5 shows high correlation with
GABRA5 mRNA leves (and also GABRA2, due to the high genomic autocor-
relation) compared to NLSA V5.

This �nding supports the hypothesis that NLSA components describe a
"mixture" of model compartments.

Both NLSA and 2-TCM V1 do not show any correlation with GABRA,
expect 2-TCM V1 with GABRA3 (Table 4.5).
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4.3. GENOMIC INTEGRATION

(a) Order of the ROIs due to GABRA1 expression.

(b) Order of the ROIs due to GABRA5 expression.

Figure 4.9: Comparison of Vt sorted according to the expressions of the GABA
genes.
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4.3. GENOMIC INTEGRATION

(a) Order of the ROIs due to GABRA1 expression.

(b) Order of the ROIs due to GABRA5 expression.

Figure 4.10: Comparison of V1 sorted according to the expressions of the
GABA genes.
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4.3. GENOMIC INTEGRATION

(a) Order of the ROIs due to GABRA1 expression.

(b) Order of the ROIs due to GABRA5 expression.

Figure 4.11: Comparison of V5 sorted according to the expressions of the
GABA genes.
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4.4. DISCUSSION AND CONCLUSION

4.4 Discussion and conclusion

The model underlying [11C]Ro15-4513 is the full receptor model (3-TCM). The
free tracer, non-speci�c receptors and low-speci�c α receptors have similar ki-
netics and thus they are di�cult to separate. Consequently, the model collapse
to a 2-TCM.

2-TCM and 3-TCM identify the same speci�c binding kinetics (related to
GABA-A receptors with α5 subunit since the tracer has the highest a�nity
for them). Instead, the contributions of the low-speci�c α subtypes can not be
directly extracted from the tissue activity curve.

In the placebo-zolpidem data set little or no variations are found for Vt
while a notable decrease in V1 and a remarkable increase in V5 are reported.
These results are in agreement with the e�ects of zolpidem administration:
GABA-A receptors containing α1 subtype are occupied by the drugs and this
results in a higher apparent a�nity of the tracer resulting in an increment of
V5.

A high correlation is found between V5 of 2-TCM and GABRA5 (ρ2=0.84),
i.e. the gene related to α5 subunit, while a smaller value is obtained with
NLSA (ρ2=0.37).

Thus, 2-TCM can properly quantify the α5 receptor density from [11C]Ro15-
4513 PET images, while spectral methods provide only an indirect measure.

As regards V1, it does not describe a speci�c α subtype since several factors
contribute to it. However, a considerable Spearman's ρ2 are reported between
2-TCM V1 and GABRA3 (ρ2=0.73).

Therefore, 2TCM is the suggested model for the quanti�cation of the α5

receptor density measured with [11C]Ro15-4513 data at ROI level.
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Chapter 5

Quanti�cation results: simpli�ed

reference tissue model

The BPND calculated with the SRTM is compared to those derived with 2-
TCM ("direct", Equation 2.13; "indirect", Equation 2.26) and to the 2-TCM
V5.

The correlation plots of three subjects representing the best, the average
and the worst case (from placebo, zolpidem and test dataset respectively) are
reported for each comparison. The choice of the subjects is due to previous
results (such as goodness-of-�t and number of non-reliable ROIs) and the cor-
relation values obtained in this chapter.

Non-reliable "direct" BPNDs, i.e. those with CV higher than 50%, are
removed from the analysis: 41% in the healthy data set and 26% in the placebo-
zolpidem data set. In the healthy data set, the majority of them belongs to
the �rst and the fourth subject (76%).

As regards the "indirect" BPND and the V5, same outliers are removed as
in section 4.2.2 (healthy data set) and 4.2.3 (placebo-zolpidem data set) that
is the ROIs with CV of Vt higher than 50%.

"Direct" binding potential Limited correlations are obtained in most sub-
jects of healthy and placebo-zolpidem data set (Figure 5.1, Table 5.1 and 5.2).

A high correlation in the �fth subject after zolpidem administration is
reported (R2=0.92), however 13 ROIs (77%) are removed.

"Indirect" binding potential High correlations (R2>0.98) are obtained
for all subjects of the heathy and the placebo-zolpidem data set when compar-
ing SRTM and the "indirect" BPND (Figure 5.2).

Volume of distribution Lastly, the correlations between the V5 calculated
with 2-TCM and the SRTM BPND are reported (Figure 5.3).

Overall, high R2s are found in both dataset. Interestingly, the lowest values
are obtained in the �rst and in the fourth subject of the healthy data set in
agreement with the problems in their �tting. Moreover, the correlation of the
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(a) Correlation of the second subject of the placebo data set.

(b) Correlation of the �rst subject of the zolpidem data set.

(c) Correlation of the �rst subject of the healthy data set.

Figure 5.1: Correlations between BPs obtained with 2-TCM and SRTM in
three subjects.
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k3/k4 [unitless] DVR-1 [unitless] V5 [ml/cm3]

Test H1 0.03 0.99 0.50
Retest H1 0.35 1.00 0.49
Test H2 0.33 1.00 0.71
Retest H2 0.39 0.99 0.80
Test H3 0.45 1.00 0.90
Retest H3 0.16 1.00 0.59
Test H4 0.01 0.99 0.57
Retest H4 0.00 0.98 0.25

Table 5.1: Pearson's R2 between the BP obtained with SRTM and the three
di�erent parameters of interest in the healthy data set.

k3/k4 [unitless] DVR-1 [unitless] V5 [ml/cm3]

Placebo 1 0.10 1.00 0.63
Zolpidem 1 0.34 1.00 0.74
Placebo 2 0.53 1.00 0.93
Zolpidem 2 0.53 0.99 0.83
Placebo 3 0.07 1.00 0.62
Zolpidem 3 0.34 1.00 0.89
Placebo 4 0.05 1.00 0.71
Zolpidem 4 0.00 1.00 0.67
Placebo 5 0.10 1.00 0.76
Zolpidem 5 0.92 1.00 0.69

Table 5.2: Pearson's R2 between the BP obtained with SRTM and the three
di�erent parameters of interest in the placebo-zolpidem data set.
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(a) Correlation of the second subject of the placebo data set.

(b) Correlation of the �rst subject of the zolpidem data set.

(c) Correlation of the �rst subject of the healthy data set.

Figure 5.2: Correlations between BPs obtained by means of DVR and SRTM
in three subjects.
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(a) Correlation of the second subject of the placebo data set.

(b) Correlation of the �rst subject of the zolpidem data set.

(c) Correlation of the �rst subject of the healthy data set.

Figure 5.3: Correlations between V5 obtained with 2-TCM an BP calculated
by means of SRTM in three subjects.
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5.1. DISCUSSION AND CONCLUSION

retest of the fourth subject is very poor because only few regions are reliable
(29%).

5.1 Discussion and conclusion

The results can be interpreted on the basis of the SRTM assumptions [22]:

1. the reference region does not contain speci�c receptors,

2. the level of non-speci�c binding is the same in the ROI and in the refer-
ence tissue,

3. the tracer kinetics can be �tted satisfactorily to a single tissue compart-
ment model with plasma input, without signi�cant improvement when a
two-tissue compartment model is used.

While the �rst assumption is correct because the Cerebellum lacks of α5

receptors, the second one and the third one are not valid for the tracer under
study: the non-displaceable compartment contains the low-speci�c α receptors
thus its contribution is di�erent in each region. Furthermore, the 2-TCM
signi�cantly improves the �t and the weighted residuals compared to 1-TCM
in several regions.

These considerations explain the low correlations found with the "direct"
BPND.

On the contrary, the BPND derived by DVR is calculated indirectly from
the volumes of distribution of the ROI and the reference region. The Equation
2.26 can be rewritten as:

BPND = DV R− 1 (5.1)

=
Vt − Vtref
Vtref

(5.2)

=

K1

k2

[
1 + k3

k4

]
− K′1

k′2

K′1
k′2

(5.3)

where K1, k2, k3 and k4 are the kinetic parameters of the ROI while K ′1
and k′2 are related to the reference region.

Therefore, "indirect" BPND is equal at k3
k4

only if K1

k2
is equal at

K′1
k′2
.

As seen above, the V1, i.e.
K1

k2
, is di�erent for each ROI therefore the "in-

direct" BPND is not equal at k3
k4

but it is highly correlated to the BP obtained
with the SRTM. The little di�erence between them might be due to the third
assumption of the SRTM.
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5.1. DISCUSSION AND CONCLUSION

Lastly, good correlations are found between the V5 of the 2-TCM and the
BPND by SRTM.

Therefore, the BP calculated with SRTM might be used to obtain a value
highly correlated to the α5 content (described by V5 and "indirect" BPND) in
particular for the subjects in which the 2-TCM gives reliable and physiological
results.

However, further studies should be done to assess this possibility.
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Chapter 6

Voxel-wise results

Parametric maps of a representative subject are obtained with 2-TCM and
NLSA in order to evaluate the di�erent spatial distribution of the Vt and the
V5 in sections of particular interest (Figure 6.1 and 6.2).

(a) Vt obtained with
NLSA

(b) V5 obtained with
NLSA

(c) Vt obtained with
2TCM

(d) V5 obtained with
2TCM

Figure 6.1: Axial section of Vt and V5 obtained with NLSA and 2-TCM of
a representative subject. Red ellipse is Hippocampus while white ellipse is
Amygdala.
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(a) Vt obtained with
NLSA

(b) V5 obtained with
NLSA

(c) Vt obtained with
2TCM

(d) V5 obtained with
2TCM

Figure 6.2: Coronal section of Vt and V5 obtained with NLSA and 2-TCM
of a representative subject. Red ellipse is Hippocampus while white ellipse is
Insula.

Voxel-wise parametric maps con�rm ROI-level results: the Vts obtained
with NLSA and 2TCM are almost equal while notable di�erences are found in
V5.

The spatial distribution of 2TCM V5 is in agreement with that of GABA-A
receptors containing α5 subtypes. In fact, high values are found in Hippocam-
pus, Amygdala and Insula (Figure 6.1d and 6.2d).

Instead, NLSA V5 has a wider distribution compared to 2-TCM because it
is a "mixture" of model compartments and thus it does not directly describe
the speci�c binding.

Therefore, 2-TCM can be applied at voxel level to obtain parametric maps
of [11C]Ro15-4513 in order to study the distribution of α5 receptors.
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Chapter 7

Conclusion

GABA-A receptors containing α5 subunits are involved in several important
aspects such as learning and memory. Their expression is related to diseases
that a�ect the brain as, for example, Alzheimer.

[11C]Ro15-4513 has a high a�nity for α5 receptors however other α sub-
types contribute to the tissue activity curve and thus mathematical models are
needed to extract the information regarding the α5 subtype.

In this study, two di�erent techniques were applied to isolate α5 contribu-
tion: data-driven and model-driven methods.

As regards data-driven methods, NLSA outperformed LSA in several as-
pects: number of components estimated, �t, weighted residuals and repeata-
bility. Therefore, it is preferable to LSA for the quanti�cation of the total
volume of distribution of [11C]Ro15-4513 data at ROI level.

Afterwards, model-driven methods were used to study the speci�c binding
of α5 receptors: with 3-TCM and 2-TCM it is possible to derive the distribution
of GABA-A receptors containing α5 subunit. Instead, the partial volumes of
distribution obtained with spectral methods are a "mixture" of the model
compartments and thus they can not be used to achieve the distribution of a
speci�c α subtype.

In fact, the mRNA level of the gene related to α5 receptors was highly
correlated with V5 of 2-TCM while poor correlated with NLSA V5.

Subsequently, the SRTM was used to assess its applicability: good corre-
lations were found between SRTM BPND and 2-TCM V5. Therefore, it might
be used to derive the α5 content of the PET data.

Preliminary voxel-wise analysis con�rmed the ROI-level results: the spatial
distribution of 2-TCM V5 was in agreement with that of α5 receptors. Thus,
parametric maps might be used to evaluate their expression.
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Appendix A

Region list

A.1 PET atlas region list

1. Hippocampus right

2. Hippocampus left

3. Amygdala right

4. Amygdala left

5. Anterior temporal lobe, medial
part right

6. Anterior temporal lobe, media
part left

7. Anterior temporal lobe, lateral
part right

8. Anterior temporal lobe, lateral
part left

9. Parahippocampal and ambient
gyri right

10. Parahippocampal and ambient
gyri left

11. Superior temporal gyrus right

12. Superior temporal gyrus left

13. Middle and inferior temporal
gyri right

14. Middle and inferior temporal
gyri left

15. Fusiform gyrus right

16. Fusiform gyrus left

17. Cerebellum right

18. Cerebellum left

19. Brainstem

20. Insula left

21. Insula right

22. Lateral remainder of occipital
lobe left

23. Lateral remainder of occipital
lobe right

24. Gyrus cinguli, anterior part left

25. Gyrus cinguli, anterior part
right

26. Gyrus cinguli, posterior part left

27. Gyrus cinguli, posterior part
right

28. Middle frontal gyrus left

29. Middle frontal gyrus right

30. Posterior temporal lobe right

31. Posterior temporal lobe left
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A.1. PET ATLAS REGION LIST

32. Inferolateral remainder of pari-
etal lobe left

33. Inferolateral remainder of pari-
etal lobe right

34. Caudate nucleus left

35. Caudate nucleus right

36. Nucleus accumbens left

37. Nucleus accumbens right

38. Putamen left

39. Putamen right

40. Thalammus left

41. Thalamus right

42. Pallidum left

43. Pallidum right

44. Corpus callosum

45. Lateral ventricle (excluding tem-
poral horn) right

46. Lateral ventricle (excluding tem-
poral horn) left

47. Lateral ventricle, temporal horn
right

48. Lateral ventricle, temporal horn
left

49. Third ventricle

50. Precentral gyrus left

51. Precentral gyrus right

52. Gyrus rectus left

53. Gyrus rectus right

54. Orbitofrontal gyri left

55. Orbitofrontal gyri right

56. Inferior frontal gyrus left

57. Inferior frontal gyrus right

58. Superior frontal gyrus left

59. Superior frontal gyrus right

60. Postcentral gyrus left

61. Postcentral gyrus right

62. Superior parietal gyrus left

63. Superior parietal gyrus right

64. Lingual gyrus left

65. Lingual gyrus right

66. Cuneus left

67. Cuneus right
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A.2. REGION OF INTEREST LIST

A.2 Region of interest list

Name Atlas region list number
Whole Brain all regions
Hippocampus 1-2
Amygdala 3-4
Cerebellum 17-18
Insula 20-21
Caudate 34-35
Putamen 38-39
Striatum 34-39
Accumbens 36-37
Thalamus 40-41
Pallidum 42-43
Cingulate 24-27
Parietal lobe 32-33, 52-53, 60-63
Occipital lobe 22-23, 64-67
Temporal lobe 5-16, 30-31
Frontal lobe 28-29, 50-51, 54-59
Subcortical 1-4, 34-35, 38-39, 42-43
Cortical 5-16, 22-23, 28-33, 50-67

A.3 Allen atlas coarse regions

1. Frontal lobe

2. Insula

3. Cingulate gyrus

4. Hippocampal formation

5. Parahippocampal gyrus

6. Occipital lobe

7. Parietal lobe

8. Temporal lobe

9. Amygdala

10. Basal forebrain

11. Globus pallidus

12. Striatum

13. Claustrum

14. Epithalamus

15. Hypothalamus

16. Subthalamus

17. Dorsal thalamus

18. Ventral thalamus

19. Mesencephalon

20. Cerebellar cortex

21. Cerebellar nuclei

22. Basal part of pons

23. Pontine tegmentum

24. Myelencephalon

25. White matter

26. Sulci and spaces
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A.4. PET REGION OF INTEREST AND ALLEN REGION RELATION

A.4 PET region of interest and Allen region re-

lation

Region of interest Allen region
Hippocampus Hippocampal formation and Parahippocampal gyrus
Amygdala Amygdala
Cerebellum Cerebellar cortex and Cerebellar nuclei
Insula Insula
Caudate No one
Putamen No one
Striatum Striatum
Accumbens No one

Thalamus
Epithalamus, Hypothalamus, Subthalamus,
Dorsal thalamus and Ventral thalamus

Pallidum Globus pallidus
Cingulate Cingulate gyrus
Parietal lobe Parietal lobe
Occipital lobe Occipital lobe
Temporal lobe Temporal lobe
Frontal lobe Frontal lobe
Subcortical No one
Cortical No one
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Appendix B

Genomic integration histograms

B.1 Total volume of distribution

(a) Order of the ROIs due to GABRA2 expression.

(b) Order of the ROIs due to GABRA3 expression.

Figure B.1: Comparison of Vt sorted according to the expressions of the GABA
genes.
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B.1. TOTAL VOLUME OF DISTRIBUTION

(c) Order of the ROIs due to GABRA4 expression.

(d) Order of the ROIs due to GABRA6 expression.

Figure B.1: Comparison of Vt sorted according to the expressions of the GABA
genes.
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B.2. FIRST PARTIAL VOLUME OF DISTRIBUTION

B.2 First partial volume of distribution

(a) Order of the ROIs due to GABRA2 expression.

(b) Order of the ROIs due to GABRA3 expression.

Figure B.2: Comparison of V1 sorted according to the expressions of the GABA
genes.
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B.2. FIRST PARTIAL VOLUME OF DISTRIBUTION

(c) Order of the ROIs due to GABRA4 expression.

(d) Order of the ROIs due to GABRA6 expression.

Figure B.2: Comparison of V1 sorted according to the expressions of the GABA
genes.
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B.3. SECOND PARTIAL VOLUME OF DISTRIBUTION

B.3 Second partial volume of distribution

(a) Order of the ROIs due to GABRA2 expression.

(b) Order of the ROIs due to GABRA3 expression.

Figure B.3: Comparison of V5 sorted according to the expressions of the GABA
genes.
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B.3. SECOND PARTIAL VOLUME OF DISTRIBUTION

(c) Order of the ROIs due to GABRA4 expression.

(d) Order of the ROIs due to GABRA6 expression.

Figure B.3: Comparison of V5 sorted according to the expressions of the GABA
genes.
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