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Abstract

This thesis presents a framework for distributed localization of camera sensor
networks, based on the use of quaternions.

We begin by providing a brief overview of the fundamental tools needed for
understanding our framework, introducing key elements of the theory, such as
quaternions’ properties and graph theory, as well as some details about the esti-
mation problem in the camera calibration framework, and an analysis of hybrid
dynamical systems.

Then we include an overview of two approaches already present in the liter-
ature, that inspired this work.

Lastly, we introduce our proposed model and we show its effectiveness and
robustness with respect to various parameters.
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Chapter 1

Introduction

Several dynamical systems evolve on angular type of variables, such as the pose
of rigid bodies. Perhaps the most suitable mathematical tool for describing such
dynamics corresponds to the n-dimensional sphere, that is the manifold of dimen-
sion n embedded in the (n+1) dimensional Euclidean space and corresponding
to all the vectors having unit norm. A relevant example corresponds to the
3-sphere and the ensuing quaternion-based coordinate system, which is largely
used for describing the pose of rigid bodies. One of the challenges in describing
dynamics evolving on the n-dimensional sphere is the fact that global robust
stabilization of a point cannot be accomplished with continuous feedback laws.
It is then necessary to resort to alternative solutions, to ensure robustness of
the closed-loop stability properties. Hybrid dynamical systems [1] are a possible
answer to this and will be investigated in this thesis, where existing works on the
distributed calibration of camera networks will be first overviewed, and hybrid
solutions will be proposed and tested.

In camera networks, the distributed calibration problem refers to the chal-
lenge of achieving accurate and consistent calibration of multiple cameras in
the network. Camera calibration is the process of determining the internal and
external parameters of a camera that are necessary for accurate measurements
and 3D reconstruction from its 2D image data. In a camera network, there
can be multiple cameras deployed at different locations and orientations. To
ensure accurate reconstruction and measurement across multiple cameras, it is
essential to calibrate them. The distributed calibration problem arises when
the calibration process needs to be performed without a centralized authority
or a single point of reference. This can occur in scenarios where cameras are
deployed in a distributed manner, such as in surveillance systems [2], smart en-
vironments [3], or robotic applications [4]. Several factors contribute to the com-
plexity of the distributed calibration problem such as lack of global knowledge,
heterogeneous camera characteristics, and communication and synchronization
constraints. Solving the distributed calibration problem requires developing al-
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gorithms and techniques that can handle these challenges.
Distributed calibration algorithms aim to iteratively refine camera parame-

ters based on local information and limited communication, gradually aligning
the calibration of cameras across the network. Techniques like bundle adjust-
ment, self-calibration, and consensus-based estimation are commonly used to
tackle this problem. Overall, the distributed calibration problem in camera net-
works is a complex task that requires robust algorithms to achieve accurate and
consistent calibration across multiple cameras in a distributed and decentralized
environment.

We address the distributed calibration of Camera Sensor Networks using the
quaternion representation to describe the pose of the cameras in the network,
we exploit this representation by taking inspiration from [5]. A similar approach
is used in [6], where double quaternions are exploited to address the calibration
problem.

The starting point of the work is the Tron-Vidal approach [7], also called TV
algorithm. The biggest innovation proposed in this paper is that the optimiza-
tion in the manifold SE(3) is split into two steps, since SE(3) = SO(3)×R

3. The
first step consists of the estimation of the rotational part of the absolute pose,
computing a Riemannian gradient descent on SO(3); secondly, the translations
are estimated computing a gradient descent step on the Euclidian space R

3. The
main drawbacks of this approach are that it is able to find a good solution only
if the first estimate of the camera’s attitude is sufficiently close to the real one
and that the estimation error is not distributed equally among the two pose
components. In fact, being the translation estimated after the rotation the error
accumulated is much greater.

The envisaged steps are as follows:

• Study of state of art and of Matlab implementation of TV algorithm;

• Definition of a new estimation law, using unit quaternions, and subsequent
implementation;

• Definition of a hybrid law for the further minimization of the cost function.



Chapter 2

Background material

We introduce brieŕy some background material that is needed to understand
better the next chapters. Here, you will find a concise overview of key concepts
related to quaternions, graph theory, camera calibration, and hybrid dynamical
systems.
These notions will help to better understand the approaches taken from the
literature on distributed calibration and the new approach that we will introduce
later.

2.1 Quaternion Basics: Definitions and Properties

We summarize here some definitions and properties of quaternion [8], that will
be useful later.
A quaternion represents an extension of a complex number in a higher dimen-
sional space, hence it is a hyper-complex entity represented by four parameters,
the real one η and the complex part ϵ:

q = η + xϵx + yϵy + zϵz = η + ϵ =

[

η

ϵ

]

(2.1)

A quaternion is called of unity norm if ∥q∥2 = 1, hence:

∥q∥2 = η2 + ϵ2x + ϵ2y + ϵ2z = η2 + ϵ
T
ϵ = 1 (2.2)

For a unit quaternion we can write:

q =

[

η

ϵ

]

=

[

cos( θ2)

u sin( θ2)

]

∈ S
3 (2.3)
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We can define the Rodriguez rotation formula for unit quaternions, thanks to
which we can relate matrix and quaternion rotations.

R(q) = I3 + 2ηS(ϵ) + 2S2(ϵ) with S(ϵ) =






0 −ϵz ϵy
ϵz 0 −ϵx
−ϵy ϵx 0




 (2.4)

=






2(η2 + ϵ2x)− 1 2(ϵxϵy − ηϵz) 2(ϵxϵz + ηϵy)
2(ϵxϵy + ηϵz) 2(η2 + ϵ2y)− 1 2(ϵyϵz − ηϵx)

2(ϵxϵz − ηϵy) 2(ϵyϵz + ηϵx) 2(η2 + ϵ2z)− 1




 (2.5)

From (2.4) we can observe the double coverage property of quaternions,
in fact, R(q) = R(−q), so the rotation matrix R is associated with two different

quaternions: q =

[

η

ϵ

]

and −q =

[

−η

−ϵ

]

.

The Hamilton product, or quaternion multiplication, is the product of two
quaternions that gives as a result another quaternion, hence S

3 × S
3 → S

3. It is
defined as follows:

q1 ⊙ q2 =

[

η1η2 − ϵ
T
1 ϵ2

η1ϵ2 + η2ϵ1 + ϵ1 × ϵ2

]

(2.6)

=

[

η1 −ϵ
T
1

ϵ1 η1I3 + S(ϵ1)

][

η2
ϵ2

]

= F (q1)q2 with F (q) =

[

η −ϵ
T

ϵ ηI3 + S(ϵ)

]

(2.7)

=

[

η2 −ϵ
T
2

ϵ2 η2I3 − S(ϵ2)

][

η1
ϵ1

]

= G(q2)q1 with G(q) =

[

η −ϵ
T

ϵ ηI3 − S(ϵ)

]

(2.8)

The quaternion inverse is defined as:

q−1 =

[

η

−ϵ

]

(2.9)

And we have a null rotation if we combine a rotation with its inverse:

q ⊙ q−1 =

[

η

ϵ

]

⊙

[

η

−ϵ

]

=

[

1
0

]

= qI (2.10)
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Notice also that:

F T (q) =

[

η ϵ
T

−ϵ ηI3 − S(ϵ)

]

= F (q−1) (2.11)

GT (q) =

[

η ϵ
T

−ϵ ηI3 + S(ϵ)

]

= G(q−1) (2.12)

In rigid body motion, the variation of q along a motion with angular velocity
ω ∈ R

3 linearly depends on ω. Thus, the quaternion derivative results in:

q̇(t) =
1

2
q ⊙

[

0
ω

]

(2.13)

=
1

2
F (q)

[

0
ω

]

(2.14)

=
1

2
F2(q)ω with F2(q) =

[

−ϵ
T

ηI3 + S(ϵ)

]

(2.15)

The distance between two quaternions may be defined as follows:

d(q1, q2) =(q−1
1 ⊙ q2)

T

[

0 0

0 I3

]

(q−1
1 ⊙ q2) (2.16)

=(q−1
1 ⊙ q2)

T

[

0

I3

]
[

0 I3

]

(q−1
1 ⊙ q2) (2.17)

=

∣
∣
∣
∣

[

0 I3

]

F (q−1
1 )q2

∣
∣
∣
∣

2

(2.18)

=

∣
∣
∣
∣
∣
∣

[

−ϵ1 η1I3 − S(ϵ1)
]
[

η2
ϵ2

]
∣
∣
∣
∣
∣
∣

2

(2.19)

=
∣
∣η1ϵ2 − η2ϵ1 − S(ϵ1)ϵ2

∣
∣2 (2.20)

=
∣
∣−η1ϵ2 + η2ϵ1 + S(ϵ1)ϵ2

∣
∣2 (2.21)

=
∣
∣η2ϵ1 − η1ϵ2 − S(ϵ2)ϵ1

∣
∣2 (2.22)

=

∣
∣
∣
∣

[

0 I3

]

F (q−1
2 )q1

∣
∣
∣
∣

2

(2.23)

From the above derivations, we immediately obtain:

d(q1, q2) = d(q−1
1 , q−1

2 ) = d(q2, q1) = d(q−1
2 , q−1

1 ) (2.24)
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2.2 Elements of Graph Theory

We represent a network of N nodes as a directed, symmetric, and connected
graph G = (V, E) [9].
A graph is defined by a set V = v1, ..., vN of vertices that represent the nodes in
the network and by a set E ⊆ V × V of edges that indicate pairs of nodes that
can interact with each other, i.e., that can communicate or that can measure
their relative rotation and translation. These sets are disjoint.

We consider finite graphs only, meaning that the sets V and E are both al-
ways finite.
We use single indexes for nodes (i.e., ’i’ for i ∈ V ) and double indexes for edges
(i.e., ’ij’ for (i, j) ∈ E).

The set of vertices adjacent to a vertex i ∈ G is said to be the neighbourhood
of i. Given the graph G, we define its adjacency matrix A = AG = (aij). The
matrix AG ∈ R

n×n is defined as follows, for an undirected graph:

aij =

{

1 if (i, j) ∈ E

0 otherwise
(2.25)

2.3 Camera Calibration

When we talk about camera calibration we mean the essential process in visual
servoing that involves determining the intrinsic and extrinsic parameters of a
camera system, which are essential for accurately relating the 2D image coordi-
nates of objects in the camera’s field of view to their corresponding 3D world
coordinates. It is a crucial aspect of computer vision and robotics, particularly
in applications where a camera is used to guide or control the motion of a robotic
system.

The internal parameters of cameras are their own attributes. In traditional
visual calibration theory, it is generally considered that intrinsic parameters are
unchanged, which includes effective focal length, optical center, image coordi-
nate origin, non-vertical factor, radial distortion, and tangential distortion. The
external parameters of cameras are the mapping relationship between the 3-
dimensional world and the image coordinate system, which consists of a rotation
matrix and a translation vector.
More in detail we have:

• Intrinsic parameters: Intrinsic parameters characterize the camera’s inter-
nal properties and distortions. These parameters include:

ś Focal Length (f): The focal length determines how much the camera
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lens converges or diverges incoming light rays, affecting the field of
view and magnification;

ś Principal Point (cx, cy): The principal point represents the optical
center of the image sensor, where the optical axis intersects it. It is
essential for mapping image coordinates to the camera’s optical axis;

ś Lens Distortion Parameters(k, s, p): Cameras often introduce distor-
tion due to the shape of the lens. Two very common distortion models
are radial distortion and tangential distortion. It is fundamental to
account for these if we want to have an accurate and undistorted
image;

• Extrinsic Parameters: Extrinsic parameters describe the camera’s position
and orientation in the world coordinate system. They define the trans-
formation matrix between the camera’s coordinate frame and the world
coordinate frame. These parameters include:

ś Rotation Matrix (R): Describes the orientation of the camera with
respect to the world coordinate system;

ś Translation Vector (t): Specifies the position of the camera’s optical
center in the world coordinate system;

Camera calibration techniques can be divided into three main categories:
traditional calibration method, self-calibration method, and calibration method
based on active vision.[10] [11]

The traditional method of camera calibration is known to calculate intrin-
sic and extrinsic parameters of cameras through mathematical transformations,
given correspondences between points in the image (or images) and actual co-
ordinates of these points in 3D reality. The parameters are then obtained using
an optimization algorithm.
The traditional methods can use any camera model and have a high precision
of calibration, so when applications require high accuracy, this approach is often
used. The typical representatives are as follows: the direct linear transforma-
tion method, nonlinear optimization method, two-step method, planar template
method, biplane method, and so on.
This category of methods is considered the most accurate but also requires the
most manual work to obtain the point correspondences data.

The need for a self-calibration method arises when the camera can not be
calibrated by choosing the appropriate calibration object.
This method does not depend on the calibration reference object of the camera
and is unrelated to the scenes and camera movements, only making use of the
self-constraints of camera intrinsic parameters. It is a very ŕexible method, but
the mathematical computation process of the self-calibration method is complex



8 Background material

and is only applicable to situations where less precision is accepted, such as vir-
tual reality applications.
Self-calibration techniques can be divided into: Based on Active Vision camera
self-calibration techniques, using essential matrix E = [t]xR and fundamental
matrix F = k−T

b Ek−1
a self-calibration method (ka and kb are the intrinsic pa-

rameter matrices of camera a and b respectively), using the absolute conic and
polar transform the nature of camera self-calibration method, using blanking
points or blanking line camera calibration method and calibration method un-
der considering the case of non-linear distortion of camera.

The active calibration method is a special class of self-calibrated methods.
The methods require multiple images acquired by a moving camera with con-
trolled and known motion and perform analysis based on the known motion track
of the camera and corresponding images. Even though it is relatively accurate,
it has high requirements of cost and equipment to track the camera motion ac-
curately.
The active calibration method has the advantage of a simple algorithm and the
disadvantage of that the camera movement can not be applied beyond the con-
trol of an unknown or occasion.
Calibration based on three-orthogonal translational motion and the orthogonal
motion method based on planar homography matrix are both examples of this
category.

The distributed camera calibration problem in visual servoing is an extension
of the traditional camera calibration problem that arises when multiple cameras
or sensors are used in a distributed or networked manner to guide or control
a robotic system. In this scenario, the goal is to determine the intrinsic and
extrinsic parameters of each camera or sensor in the network, allowing for a
coordinated and accurate perception of the robot’s environment. Distributed
camera calibration is essential for multi-camera visual servoing systems to en-
sure that the information obtained from each camera is adequately synchronized
and aligned, enabling effective robot control and decision-making.

2.3.1 Estimation problem

Regarding the camera calibration problem, we will focus on the estimation part.
Namely, we want to estimate the rotation and translation of each camera. To
simplify the problem we will focus on the rotation estimation only.
Instead of using the rotation matrices to represent the problem, we will use
quaternions
Let us start with a simple case in which the network is made of only two nodes.
We need to consider absolute (with respect to a world frame) and relative rota-
tions.
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We can define the absolute rotations as:

q0 = [1 0 0 0]T
rot. equiv.
−−−−−−→ R0 = I3

q1 → R1

Recalling that qij = qj ⊙ q−1
i , and similarly Rij = RT

i Rj ; we can define also the
relative ones:

q01 → R01

q10 → R10

Hence the objective rotation is calculated as

R∗
1 = argminR1

(J)

where J = suitable average of (R0R
T
1 R10, R1R

T
0 R01) is the cost function .

If

size(q) = d





[

η

ϵ

]

,

[

1
0

]

 = ϵ
T
ϵ = sin2

θ

2
= |q1|

2
ϵ
= qT

[

0 0
T

0 I3

]

q (2.26)

then the cost function J can be defined as follows

J =d(q−1
1 ⊙ q10 + d(q1 ⊙ q01) (2.27)

=|G(q10)q
−1
1 |2

ϵ
+ |G(q01)q1|

2
ϵ

(2.28)

=|F (q−101)q1|
2
ϵ
+ |G(q01)q1|

2
ϵ

(2.29)

The derivative of the cost function is

J̇ =2(F (q−1
10 )q1)

T

[

0 0
T

0 I3

]

F (q−1
10 )q̇1 + 2(G(q01)q1)

T

[

0 0
T

0 I3

]

G(q01)q̇1 (2.30)

=2



qT1 F (q−1
10 )

T

[

0 0
T

0 I3

]

F (q−1
10 ) + qT1 G(q01)

T

[

0 0
T

0 I3

]

G(q01)



 q̇1 (2.31)

=2



F (q−1
10 )

T

[

0 0
T

0 I3

]

F (q−1
10 )q1 +G(q01)

T

[

0 0
T

0 I3

]

G(q01)q1





T

q̇1 (2.32)

=2MT (q1, q01, q10)q̇1 (2.33)

2.15
= 2MT (q1, q01, q10)

1

2
F2(q1)ω1 (2.34)

=MT (q1, q01, q10)F2(q1)ω1 (2.35)

Where ω1 = k(q1, q01, q10) is given by the feedback.
In order to have stability and robustness we need negative semi-definiteness:
ω1 = −µF2(q1)

TM(q1, q01, q10), with µ arbitrary gain.
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2.4 Introduction to Hybrid Dynamical Systems

Dynamical systems are commonly classified into two fundamental categories:
continuous-time and discrete-time dynamical systems. Extensive research has
been dedicated to the investigation of these two classes within the academic lit-
erature, often in parallel streams of inquiry [1]. Nonetheless, there exists a subset
of dynamical systems that manifest characteristics of both continuous and dis-
crete behavior. Examples of such hybrid systems include digitally controlled
mechanical apparatuses or electronic circuits that seamlessly integrate analog
and digital components. Moreover, when it comes to mathematical modeling,
reliance solely on differential and difference equations proves inadequate, par-
ticularly in scenarios involving phenomena such as impacts and event-triggered
dynamics. Hence hybrid dynamical systems are a class of mathematical models
used to describe and analyze complex systems that exhibit both continuous and
discrete behaviors.
These systems combine elements of continuous-time dynamics, characterized by
differential equations ẋ = f(x), x ∈ R

n, and discrete-event dynamics, charac-
terized by first-order equations x+ = g(x), x ∈ R

n.

A formal framework for characterizing hybrid dynamical systems is distin-
guished by its amalgamation of continuous-time and discrete-time dynamics,
which can be represented as:

H

{

ẋ = f(x), x ∈ C

x+ = g(x), x ∈ D
(2.36)

The expression 2.36 delineates that the state of the hybrid system denoted
as x, exhibits two modes of evolution: one governed by a differential equation,
ẋ = f(x), while residing in the set C, and another dictated by a difference equa-
tion, x+ = g(x), when situated within the set D.
Here, the symbol ẋ signifies the continuous-time derivative of x, while x+ desig-
nates the state’s value following a discrete transition, or jump.

Key components of hybrid dynamical systems H include:

• C constitutes the ŕow set: It designates the region where solutions are
allowed to evolve continuously (ŕow);

• f represents the ŕow map: It characterizes how the state evolves along a
continuous trajectory;

• D constitutes the jump set: This is the realm in which solutions can evolve
discretely (jump);

• g represents the jump map: It specifies how the state changes across dis-
crete transitions.
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It is noteworthy that the formalism presented in equation 2.36 can be ef-
fectively employed to encapsulate classical continuous-time dynamical systems
(when C = R

n and D = 0) as well as discrete-time dynamical systems (when
C = 0 and D = R

n), thereby encompassing these well-established paradigms as
special cases within this comprehensive framework.

A simple example to understand better how hybrid systems work is the ther-
mostat one (Fig.2.1).

Figure 2.1: Simple model of a thermostat as a hybrid system (image taken from
[12])

The thermostat has three locations. The first two, Heat and Cool, represent
states in which the thermostat heats and cools the environment it operates in,
respectively. The third, check, is a self-diagnostic state. The continuous state
space of the thermostat contains two continuous variables, namely a clock t ∈
R ≥ 0 and a temperature T ∈ R ≥ 0.
We can limit the continuous state-space, such that both the clock t and the
temperature T are within an interval, hence the continuous state is (t, T ) ∈
[0, 100]2.
Each location has an associated invariant predicate defining the set of permitted
values for the continuous variables while in that location. The invariants for the
thermostat are:

InvHeat(t, T ) := T ≤ 10 ∧ t ≤ 3

InvCool(t, T ) := T ≥ 5

InvCheck(t, T ) := t ≤ 1

The initial states of a hybrid system are determined by a predicate Initial condi-
tion. For the thermostat, Init(l, t, T ) is defined as l = Heat∧t = 0∧5 ≤ T ≤ 10.
The discrete transitions between locations describe the logic of the software sys-
tem. Each such transition is comprised of two components: a ŕow predicate
defining a subset of the continuous state space in which the transition is enabled
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(permitted), and a jump function describing an instantaneous change applied as
a side effect of the transition.

The invariant in the Heat location is T ≤ 10∧t ≤ 3, that is, the system cannot
remain in this location when the temperature exceeds ten and the clock exceeds
three-time units. The control can switch to the Cool location, which models
that the thermostat is switched off when the guard T ≥ 9 is enabled. Hence
the inherent non-determinism in a Hybrid Systems specification: when in Cool,
the system can jump to Heat whenever the temperature T is in the interval [5, 6].

Hybrid dynamical systems provide a powerful framework for modeling and
analyzing the complex and often unpredictable behavior of systems that exhibit
both continuous and discrete dynamics, making them essential in various fields
of engineering and science.
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An in-depth analysis of related

works

In this chapter, we will analyze in detail the two primary papers used as inspi-
ration and a starting point for the new approach that will be proposed in the
next chapter.

3.1 Tron-Vidal approach

We will refer to the paper called "Distributed image-based 3D localization of
Camera Sensor Networks" [7].
The problem addressed is the distributed estimation of N camera poses in CSN,
using image measurements only.
The goal is to localise the network, i.e. to find cameras’ relative poses, up to a
global reference frame and scale factor from image measurements. In order to do
that a suitable cost function is defined and it is shown how it an be minimized
on SE(3)N . This space can be decomposed as SO(3)×R

3, where the first space
is used to estimate the attitude of the cameras and the second one to estimate
the position.
Few assumptions are made in order to resolve the problem. We have:

• Low power sensor nodes equipped with a camera, able to communicate
with each other;

• Each camera can extract a set of 2D points from each camera, neighboring
cameras can match this 2D point to estimate the relative rotation and the
direction of translation (two-view vision techniques);

• The scene is static (or equivalently all cameras are synchronized);

• The communication is lossless.
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We analyze now the method used to obtain the pose estimation of the cameras.
Firstly, the feature points extracted from the images obtained from each camera
i and j are used to obtain a noisy estimate (R̃ij , t̃ij). Each camera can extract

Pi feature points x
(pi)
i , where pi = 1...Pi, in homogeneous coordinates, i.e. they

are points in P
2 and correspond to the projection of points in 3D space. Then it

is assumed that there is correspondence in each edge (i, j) ∈ E between points

in images i and j that can be established, namely x
(pi)

T

i T̂ijRijx
(pj)
j = 0. Given

enough points, the epipolar constraint estimates E = T̂ijRij allows to define

t̃ij =
T̃ij

||T̃ij ||
and R̃ij up to a scale factor on Tij . The goal now is to find a set of

relative transformations gij such that the localised network is as close as possible
to the relative measurements g̃ij , where gij = g−1

i ⊙ gj .
This can be done using the least squares, where the cost function is defined as

φ =
1

2

∑

i→j

d2g(gij , g̃ij) =
1

2

∑

i→j

(

d2
SO(3)(Rij , R̃ij) + ||Tij − T̃ij ||

2
)

(3.1)

To minimize the function in a distributed way and keep the network localised
there is the need to reparametrize every transformation gij with absolute trans-
formations gi and gj .

φ({Ri}, {Ti}, {λij}) =
1

2

∑

i→j

d2g(g
−1
i gj , g̃ij) (3.2)

=
1

2

∑

i→j

(

d2
SO(3)(R

T
i Rj , R̃ij) + ||RT

i (Tj − Ti)− λij t̃ij ||
2
)

(3.3)

=
1

2

∑

i→j

(
φR({Ri}) + φT ({Ri}, {Ti}, {λij})

)
(3.4)

The complete cost function φ has multiple local minima if the starting point is
a random configuration.
Regarding the estimation of the rotations, the consensus framework with Rie-
mannian gradient descent is used. Ri is the rotational part of the absolute pose
gi, each node k compute the gradient of φR with respect to its rotation Rk.
For the estimation of the translation, the approach is similar to the one used
above, hence the goal is to minimize φT subject to λij ≥ 1 using gradient descent
with respect to both Tk and λlk.
The right choice of the step size is fundamental in order to minimize φT and
can be chosen by considering the degrees of the nodes

E ∈
(

0, 2(max{9, 4∆G})
−1

)

(3.5)
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3.2 Dual quaternion approach

We will refer to the paper called "Distributed dual quaternion based localization
of visual sensor networks" (DDQL)[6].
The problem addressed here is the localization for a VSN, hence the self-
estimation of the position and attitude of each visual sensor.
The goal here is to resolve the problem of the Tron-Vidal approach regarding
the accumulation of the errors: since the orientation estimation in SO(3) is done
first, the position estimates accumulate more errors. This means that the good-
ness of the final estimation strictly depends on the initial guess. This approach
uses the unit dual quaternion to unitarly represent the camera pose and con-
sequently redefine the least square cost function so that the estimation error is
balanced and the algorithm is more robust.
Some assumptions are made also here. We have:

• Dual quaternion is used d = qr + εqd ∈ DH (double quaternion space)
where qr, qd ∈ H, ε2 = 0, ε ̸= 0. A dual quaternion is called unit dual
quaternion when ||qr||

2 = 1, qTr qd = 0 so that d ∈ DHu (double unitary
quaternion space) and can be used to describe a pose transformation in
3D space;

• VS of n cameras in which each device is associated with a local frame
Fi = {Oi, (Xi, Yi, Zi)}. The pose gi ∈ SE(3) is identified by the position
and orientation of Fi with respect to the global inertia frame;

• The network is modeled as an undirected graph G = (V, E);

• Each camera uses standard computer vision algorithms to recover a noisy
measurement g̃ij ∈ SE(3) of the relative pose with respect to any device in
its neighborhood;

• The body frame of camera 1 coincides with the global reference frame di.

They want to compute the set of relative transformations ĝij , that satisfy the
consistency constraint along network cycles and are as close as possible to the
available noisy measurements g̃ij .
The method used here is to define a least squares cost function

ρ({ĝij}) =
∑

i∈V

∑

j∈Ni

1

2
d2g(ĝij , g̃ij) (3.6)

Hence,

ρ({ĝi}) =
∑

i∈V

∑

j∈Ni

1

4

(

d2g(ĝ
−1
i ⊙ ĝj , g̃ij) + d2g(ĝ

−1
j ⊙ ĝi, g̃ji)

)

(3.7)

=
∑

i∈V

ρi(ĝi) (3.8)
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This cost function can be reformulated using dual quaternions

ρ({d̂i}) =
∑

j∈Ni

1

4

(

||U(d̃⋆ij)Ṽ (d̂j)d̂i||
2 + ||U(d̃⋆ji)Ṽ (d̂i)d̂j ||

2
)

(3.9)

=
∑

i∈V

ρi(d̂i) (3.10)

The minimization of ρ({d̂i}) can be performed in a distributed fashion with each
device locally exploiting an iterative optimization strategy:
After the initialization step:

1. Determine the derivative of ρi(t) with respect to d̂i(t);

2. Determine the estimation d̂i(t+ 1) using steepest gradient descent;

3. Compute a normalization step since d̂i(t + 1) may violate the constraints
of DHu, the pose estimate d̂′i(t+1) is then communicated to all the neigh-
boring nodes j ∈ Ni

3.3 Main differences between TV and DDQL

It is easy to notice that the biggest differences are the spaces over which the es-
timation is done and the divided/united estimation of the pose of each camera.
The TV algorithm finds a good solution only if the initial guess is close enough
to the real cameras’ poses and the error is not evenly distributed between ro-
tation and translation estimation since the rotation step is done before and the
translation error is bigger (accumulation of rotation error + translation error).
The dual quaternion approach is superior to the one above since it is able to
converge to a good solution, despite the goodness of the initial guess with a
small error.

In Fig. 3.1 we can see the performance comparison of the two algorithms.
We have the TV one in Fig. 3.1a, and the DDQL in Fig. 3.1b.
In both cases, the setup is noise-free meaning that relative and real poses corre-
spond and the network has 6 cameras. As we can clearly see the initial estimates
(in red) are really far from the real camera poses (in blue). Moreover, the first
camera pose is initialized with its true one, otherwise, the estimation will not
be possible, and all the other pose estimates are initialized as one of the other
cameras’ true poses (camera 2 in the example).

In the comparison figures the final estimates are represented in green and it
is obvious that the TV algorithm is not able to obtain an accurate final estimate
if the initial one is not good. The algorithm, after a few initial iterations, gets
stuck in a local minimum. Lastly, as expected, the decrease in the rotation error
is bigger than the one regarding the transition one.
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Figure 3.1: Performances confront, from [6]

On the other hand, it is clear that the DDQL algorithm is more robust with
respect to initial conditions, in fact, the final estimated poses are very close to the
real ones, the cost function decreases without getting stuck in a local minimum
and the errors (rotational and translational) tends to zero.

3.4 New contribution

The idea, which we introduce now but will be explained in the next chapter,
is to find a better solution to the TV algorithm that does not depend on the
initialization configuration and possibly has an evenly distributed error between
the rotation and translation steps.
To do so, instead of using space separation or double quaternion, we will exploit
the simple unit quaternion q, remembering that there is the ’double coverage’
property.



Chapter 4

Distributed Hybrid Unit

Quaternion Localisation of CSN

4.1 The idea

The problem we address is the self-estimation of the position for a Visual Sensor
Network, made up of N cameras, using image measurements only.
The goal is to localise the network using the unit quaternion, hence the space
where the optimization takes place is the 3−n sphere S

3. The idea is to optimize
(on the manifold) using the simple unit quaternion as the main object to define
a suitable cost function and minimize it.

We want to solve the big problem that arises with the TV approach, hence
the fact that the optimization goodness depends on the goodness of the initial-
ization. To do so we decide to use the unit quaternion, and not double one,
because we want to exploit the double coverage property using a hybrid law.
The idea is that, since R(q) = R(−q) we could, at random points, jump from qi
to −qi to try to obtain a faster convergence to an almost zero error solution.

We suppose that:

• Unit quaternion is used q ∈ H to describe the pose transformation in the
3D space;

• All cameras are synchronized;

• The network is modeled as an undirected graph G = (V, E);

• Each camera can extract a set of 2D points from the scene and, using
standard computer vision algorithms, is able to recover a noisy measure-
ment g̃ij ∈ SE(3) of the relative pose with respect to any device in its
neighborhood;
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• The position of camera 1 is fixed and coincides with the global reference
frame (q1 = qI).

The method used here is to generate a random network with n nodes, that
is not fully connected in order to have afterward a distributed algorithm, similar
to what obtained in Fig. 4.1.
From the adjacency matrix of the graph (using computer vision techniques), we
are able to retrieve all the noisy measurements g̃ij ∈ SE(3) of the network.
After, we define a suitable cost function using quaternions and we try to minimize
it.

Figure 4.1: Possible configuration with 6 nodes
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4.2 The setup

We define the following quaternions, see Fig.(4.2):

1. qi → Real quaternion (unknown)

2. q̂i → Local estimates of the real quaternions (associated with each node)

3. q̃ij → Relative noisy measurements of qj ⊙ q−1
i available to nodes i and j

Figure 4.2: Quaternions description on the camera setup

We use a graph that is undirected for the representation, namely:

(i, j) ∈ E ⇐⇒ (j, i) ∈ E

Notice that q̃ij is different from q̃ji, due to the fact that q1 ⊙ q2 ̸= q2 ⊙ q1 and
the noise on the measurement.

4.3 Cost function calculation

Consider measurements q̃ij of qj ⊙ q−1
i for each (i, j) ∈ E , that are fixed. Then,

following what has been introduced previously in 2.3.1, we introduce the reason-
able cost

J =
1

2

∑

(i,j)∈E

d(q̃ij , q̂j ⊙ q̂−1
i ) (4.1)

=
1

2

∑

(i,j)∈E

d(q̃−1
ij , q̂i ⊙ q̂−1

j ) (4.2)

=
1

2

∑

(i,j)∈E

|δij |
2 (4.3)
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Where we may express

δij =
[

0 I3

]

F (q̃−1
ij )(q̂j ⊙ q̂−1

i ) =
[

0 I3

]

F (q̃−1
ij )G(q̂−1

i )q̂j (4.4)

or equivalently

δij =
[

0 I3

]

F (q̃ij)(q̂i ⊙ q̂−1
j ) =

[

0 I3

]

F (q̃ij)G(q̂−1
j )q̂i (4.5)

We consider then the derivative of our cost function J , namely J̇ that is defined
as

J̇ =
∑

i

(∇iJ(q))
T q̇i (4.6)

Where ∇iJ(q) ∈ R
4 denotes the gradient of the cost with respect to qi.

We can define the vector q = (q̂1, q̂2, ..., q̂N ).
Using the expression above we may compute the gradient ∇iJ(q) of J with
respect to a generic qk as follows:

(∇kJ(q))
T =

∑

(k,j)∈E

δTkj

[

0 I3

]

F (q̃kj)G(q̂−1
j ) +

∑

(i,k)∈E

δTik

[

0 I3

]

F (q̃−1
ik )G(q̂−1

i )

(4.7)

=
∑

(k,j)∈E

q̂Tk G(q̂j)F (q̃−1
kj )

[

0
T

I3

]
[

0 I3

]

F (q̃kj)G(q̂−1
j ) (4.8)

+
∑

(i,k)∈E

q̂Tk G(q̂i)F (q̃ik)

[

0
T

I3

]
[

0 I3

]

F (q̃−1
ik )G(q̂−1

i )

=
∑

(k,j)∈E

q̂Tj G(q̂k)F (q̃kj)

[

0
T

I3

]
[

0 I3

]

F (q̃kj)G(q̂−1
j ) (4.9)

+
∑

(i,k)∈E

q̂Ti G(q̂k)F (q̃−1
ik )

[

0
T

I3

]
[

0 I3

]

F (q̃−1
ik )G(q̂−1

i )

That is a row vector of dimension 1× 4, hence ∇kJ(q) is a column vector of
dimension 4× 1.
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And finally, the derivative of the cost function becomes:

J̇ =
∑

k∈N

(∇kJ(q))
T ˙̂qk (4.10)

=
∑

k∈N

(∇kJ(q))
T 1

2
F2(q̂k)ωk (4.11)

=
∑

k∈N

1

2
∇kJ(q))

T

︸ ︷︷ ︸

1×4

[

−ϵ̂
T
k

η̂kI3 + S(ϵ̂k)

]

︸ ︷︷ ︸

4×3

ωk (4.12)

symbolically
=

∑

k∈N

1

2

[

∗ ∗ ∗
]

︸ ︷︷ ︸

1×3

ωk (4.13)

To have negative semi-definiteness:

ωk =− µ
(

(∇kJ(q))
TF2(q̂k)

)T

(4.14)

=− µF2(q̂k)
T∇kJ(q) (4.15)

=− µ
[

−ϵ̂k η̂kI3 + S(ϵ̂k)
]

︸ ︷︷ ︸

3×4

∇kJ(q)
︸ ︷︷ ︸

4×1

(4.16)

being µ an arbitrary gain.
We can finally rewrite J̇

J̇ = −
∑

k

1

2
µ(∇kJ(q))

TF2(q̂k)F2(q̂k)
T∇kJ (4.17)

4.4 Matlab implementation

Regarding the Matlab implementation, as stated above, we start with the cre-
ation of a random graph, not fully connected. On this graph, each node rep-
resents a camera, defined by a quaternion. From each camera, we are able to
retrieve noisy measurements q̃ij . These measurements are corrupted by a white
Gaussian noise that has a standard deviation of 5deg.

We have then to initialize the optimization algorithm. This can be either
done by initializing all the cameras at qI , so at the identity quaternion, or by
initializing them in a neighborhood of the final solution (as done in the TV
approach).
In Fig.4.3 it is shown the continuous-time implementation in Simulink.

The minimization of the cost function 4.3 is performed following the dis-
tributed formalism. In detail, each device in the network is able to locally exploit
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Figure 4.3: Simulink implementation scheme

an iterative optimization strategy to minimize the cost. For the implementation,
at every timestamp t each node i computes the following procedure:

• After receiving the relative measurements, we initialize the quaternions
estimate q̂i = qI ;

• We calculate the cost J(t)4.3, the gradient of the cost ∇iJ(t)4.7, the deriva-
tive of the cost function J̇(t)4.11 and ω(t)4.14;

• We update q̇i(t) =
1
2F2(qi(t))ωi(t)2.15;

• We perform a normalization step on q̇i(t+ 1);

• We integrate, finding q̂i(t + 1). This new estimate will be communicated
to all the neighboring nodes j ∈ Ni.

Algorithm 1 Distributed Unit Quaternion

//tmax time length of the simulation
//n number of cameras in the network
Input: relative noisy measurements {q̃ij ∈ E}
Initialization: (t=0):
initial pose estimates {q̂i(0), i ∈ V}, q̂1(0) = qI
for t = 1 : tmax do

q̂1(0) = qI
for i = 2 : n do

Calculate: J(t), ∇iJ(t), J̇(t), ωi

Update: q̇i(t) =
1
2F2(qi(t))ωi(t)

Normalization: of q̇i(t+ 1)
Integration: to find q̂i(t+ 1)

end for

end for
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The algorithm stops after an amount of time tmax ∈ N, large enough to guaran-
tee the achievement of a minimum for the cost function.

4.4.1 Hybrid approach

As stated above we would like to introduce a hybrid law to make the convergence
to the desired solution faster. This involves leveraging the dual coverage char-
acteristic of quaternions, allowing a suitable quaternion jump at each instance.

The method is the following:

• We compare the value of the cost function at t and at t− 1, if
J(t−1)−J(t) < δ we will "jump", where δ is the threshold. This threshold
has to be chosen small enough so that jumps are recurrent, but at the same
time big enough such that we do not have a jump at every iteration;
→ So, if the cost function is not decreasing enough, we can apply a hybrid
law.

• We change the value of one quaternion at a time from qi to −qi and we
calculate the new value of the cost function;

• We confront the various cost functions and we keep the one with the small-
est value, meaning that the difference between the value of the cost function
at the previous instance and the one that we are keeping will be the biggest
possible;

• If the transition leads to a significant decrease in the cost function, the
quaternion that corresponds to the changed cost function at −q, will be
kept to −q, while all the others are back to their original value.

Thus, if the transition leads to a significant decrease in the cost function, the
quaternion q will jump to −q to achieve accelerated convergence.
In this way, we should be able to have an algorithm that performs much better
than the original one.

What we saw from the simulations is that there are no jumps at all, even
when the threshold is set to be very small. This happens because the cost func-
tion is symmetric, hence every sign change will be canceled.

A solution could be to change the norm of the cost function or to directly
change the function itself, in order to have something not symmetric. We tried
to keep the cost function as it is and to use a different hybrid approach.
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Algorithm 2 Hybrid approach #1

//n number of cameras in the network
//δ improvement threshold
//J(t) value of cost function at iteration t

//J(t− 1) value of cost function at iteration t− 1
if J(t− 1)− J(t) < δ then

for i = 1 : n do

Change the value of q̂i to −q̂i
Calculate: J(t)′qi
Change the value of −q̂i back to q̂i

end for

Compare all new values of cost function J(t)′qi , keep the smallest one
if J(t− 1)− J(t)′qi < δ then

Switch the value of q̂i with −q̂i
else

Do not change any quaternion to the corresponding negative
end if

end if

The second idea is to find bad enough initial conditions, so as to have a very
slow decrease in the cost function or possibly get stuck in a local minimum.
In order to do so, we use the function fmincon() in Matlab and as the objective
function we use

obj = β
(
J(q0)− J(qf )

)
− αJ(qf ) (4.18)

where α and β are arbitrary coefficients, and α is possibly bigger than β so that
the fact that the final estimation of qf needs to be bad is stressed. What we are
trying to look for is an initial condition, so values for q0, that do not enable the
cost function do decrease significantly. Hence we will have a final condition on
q, called qf , not close to the real one. The error in the estimation will be big
and we will have to resume to hybrid techniques to make the converge faster.

The idea here is the following:

• Use fmincon() to find bad initial conditions for the quaternions;

• For every iteration randomly choose if we want to perform the hybrid
optimization (i.e. is done with a probability of 20%);

• If we decide to do it, we need to choose (could be done randomly) a camera
i, hence a quaternion qi, of which the value will be changed;

• Using the adjacency matrix, we check to which cameras i is connected
and we choose (again, this could be done randomly) a camera j, hence a
quaternion qj so that q̃ij exists;
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• We define a new value for qi as follows

q̂inew = q̃−1
ij ⊙ q̂j (4.19)

Thus, if we have a slow convergence we can try to make it faster by changing
the value of a quaternion qi at a time.

Algorithm 3 Hybrid approach #2

//n number of cameras in the network
//q0 initial set of conditions for the quaternions
//σ probability of applying hybrid law (i.e. if we want to apply it with 20%
probability, σ = 80%)
Initialize: fmincon()

→ Constraints: −1 ≤ q0jk ≤, ∀j, k and
∥
∥q̂0i

∥
∥2 = 1

→ Objective function: β
(
J(q0)− J(qf )

)
− αJ(qf )

Generate a random number x (between 1-100)
if x > σ we apply hybrid law then

Choose at random a quaternion q̂i, i = 2...n to change (q1 is fixed and do
not change)

Find the quaternions connected to the one we want to change using the
adjacency matrix

Choose at random one of the quaternions connected to q̂i, say q̂j
Calculate: q̂inew = q̃−1

ij ⊙ q̂j
end if

4.5 Numerical results

We will show in this section the results obtained using the techniques described
above.
We will consider only the rotation estimation therefore for the representation of
the 3D space we will place the cameras at the same height and in the positions
retrieved from the communication graphs, such as the ones in Fig. 4.1. Networks
of different sizes (i.e. with n = 6, n = 12 and n = 30) will be considered to show
the effectiveness of our approach.

In every simulation, we have that the blue cameras are the real cameras’
poses, the red ones represent the initial position, notice that camera 1 is initial-
ized with its true position, and the green ones represent the final estimate.

The estimation error is calculated by summing all the single errors on the
quaternions

eq(t) =
∑

i∈V

∥
∥qi − q̂i(t)

∥
∥2 (4.20)
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4.5.1 Complete simulations of networks of different sizes

Figure 4.4: 3D of a 6 a-camera network

Figure 4.5: 3D representation of a 6-camera network, without cameras repre-
senting the initial estimate

Figure 4.6: Cost and error functions, of a 6 a-camera network

As we can see, for a small network made by n = 6 cameras, the error on the
quaternions tends to zero and the cost function is almost reaching zero too.
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Figure 4.7: 3D representation of a 12-camera network

Figure 4.8: 3D representation of a 12-camera network, without cameras repre-
senting the initial estimate

Figure 4.9: Cost and error functions, of a 12-camera network

The same reasoning can be done for a slightly bigger network made by n = 12
cameras, where the error on the quaternions tends to zero and the cost function
is almost reaching zero too.
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Figure 4.10: 3D representation of a 30-camera network

Figure 4.11: 3D representation of a 30-camera network, without cameras repre-
senting the initial estimate

Figure 4.12: Cost and error functions, of a 30-camera network

Again, it can be done for a big network made by n = 30 cameras, where the
error on the quaternions tends to zero and the cost function is almost reaching
zero too.
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4.5.2 Comparison with a setup where different values of σ on q̂1

are used

We consider different-sized networks and an ideal setup where the relative mea-
surement q̃ij is exact (i.e. the noise variance on this measure is zero).

Figure 4.13: Comparison of different values of σ on initial estimate (n = 6)

Figure 4.14: Comparison of different values of σ on initial estimate (n = 12)

In order to prove robustness with respect to the initial estimate on the quater-
nions, we illustrate the results obtained with various initial conditions.
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These initial conditions are obtained by perturbing the quaternion representing
the real pose with a white Gaussian noise of varying standard deviation σ.

For each network we use the following values of σ: 30deg, 90deg, 120deg,
180deg, 360deg.

Figure 4.15: Comparison of different values of σ on initial estimate (n = 30)

From all the simulations it is clear that, in every network considered and for
every initial condition both the values of cost function and error on quaternion
estimation converge toward zero.

We can say that we have strong robustness with respect to initial conditions
values.
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4.5.3 Comparison with a setup where different values of σ on

q̃ij are used

Here we will show what happens if we consider different values for the white
Gaussian noise standard deviation parameter, used to corrupt the relative mea-
sure q̃ij .

Figure 4.16: Network representation
with σ = 5deg

Figure 4.17: Network representation
with σ = 10deg

Figure 4.18: Network representation
with σ = 15deg

Figure 4.19: Network representation
with σ = 20deg

In the pictures above we can see the 3D representation of the same network
composed of 6 cameras, where we omit the plot of the initial estimate in order
to have a clearer view of the cameras (we are using the same setting and the
same network of Fig. 4.4).
It is clear that, as expected, the more variance we add, the less accurate the final
estimation of the camera rotation will be.

In Fig. 4.20 we have the comparison of cost function J and estimation error
on the quaternion eq for all the different values of σ. We start from the ideal case
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where we have no corruption at all, σ = 0, and, incrementing by a value of 5 in
each simulation, we arrive at σ = 20. There is a need to take into consideration
that, for precision application, such a big variance will never appear, but it is
still interesting to see the behavior of the algorithm with this value.

Figure 4.20: Comparison of different values of σ (n = 6)

Figure 4.21: Comparison of different values of σ (n = 12)

For the small network, we can see that with the very realistic parameter
σ = 5 we have the convergence of J to a value very close to zero.
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Regarding what is obtained with σ = 10 and σ = 15 we have very comparable
results. In fact, we have that for both values the cost function reaches a steady
state value close to one.
As expected, with a standard deviation value too big we have very bad perfor-
mances. This is visible from both the cost function plot and the 3D network
representation of Fig. 4.19.

In Fig. 4.21 we do the same comparison, with a network made by 12 cam-
eras. The increasing size of the network implies the growing difficulty in the
estimation.
Similarly to the 6 cameras network, with a small deviation σ = 5, we obtain very
good results. For all the other values of standard deviation, we have convergence
towards big values for the cost function.

Figure 4.22: Comparison of different values of σ (n = 30)

In Fig. 4.22 we analyze a very big network made by 30 cameras.
The results are similar to the ones obtained for the 12 cameras network, with
a small steady-state value when σ = 5, while we have convergence towards big
values for all the other values.
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4.5.4 Hybrid algorithm #1

We have already introduced above the reason why the first hybrid algorithm is
not working, but in this section, we will present a detailed analysis of the prob-
lem of this approach.

We start by plotting the cost function in the cases where do not or do apply
the hybrid algorithm 2.
The two plots in Fig. 4.23 are overlapping; this happens because the hybrid
approach produces no jumps at all, despite the value of δ used in
J(t− 1)− J(t) < δ.

Figure 4.23: Comparison of the cost function with and without the use of the
hybrid algorithm

To have a better understanding of what exactly is happening we consider a
network made by 6 cameras. It is fundamental to have the adjacency matrix
that describes the network connections, hence

A =












0 0 1 1 1 1
0 0 0 0 1 1
1 0 0 1 1 1
1 0 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0












(4.21)
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It is useful to recall the explicit formulation of δij

δij =
[

0 I3

]

F (q̃ij)G(q̂−1
j )q̂i

=






a

b

c






and of the cost function

J =
1

2

∑

(i,j)∈E

|δij |
2

=
1

2

∑

(i,j)∈E

[

a b c
]






a

b

c






We can analyze what happens when we jump from q to −q, step by step.
If we look at 4.22 we can see that are highlighted all the connections of node 2,
hence all the values of δij that will be affected from a jump of q2 to −q2.

A2 =














0 0 1 1 1 1

0 0 0 0 1 1

1 0 0 1 1 1

1 0 1 0 1 1

1 1 1 1 0 1

1 1 1 1 1 0














(4.22)

More in detail what happens is that the only thing changing when we jump
is, of course, the sign of the quaternions that jump (one jump at a time). Looking
at the effect of a jump of q2, we have that the value of δij becomes

δ2j =
[

0 I3

]

F (q̃2j)G(q̂−1
j )q̂2

=






−a

−b

−c






and, for symmetry

δi2 =
[

0 I3

]

F (q̃i2)G(q̂−1
2 )q̂i

=






−a

−b

−c





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We have that the value of F (q̃ij) is fixed since it is a measure; then there is one
change of sign in either G(q̂−1

j ) or in q̂i.
It is obvious that, being the sign of δij the only change, this will be canceled
when we calculate the cost function by multiplying δ for itself. This multiplica-
tion makes the jump completely useless.

The same exact reasoning can be done for the jumps of all the other nodes.
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4.6 Comparison with Tron-Vidal algorithm

We can compare the rotation estimation of the TV algorithm and of our unit
quaternion approach.

Figure 4.24: Network representation
with the use of quaternions

Figure 4.25: Network representation
obtained with TV

Figure 4.26: Network representation
with the use of quaternions, without
cameras representing the initial esti-
mate

Figure 4.27: Network representation
obtained with TV, without cameras
representing the initial estimate

Figure 4.28: Cost function, using
quaternions Figure 4.29: Cost function, using TV
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To obtain the results in the figures above we choose to use a network made
of 6 cameras, initialized with bad initial conditions. In fact, also here cameras 2
through 6 are initialized with the identity value (camera 1 is initialized with its
true pose). Moreover, the setup is noise-free.

On the left side of the previous page, we can see that the use of quaternions
on the cost function is really effective. The fact that we have no noise on the
relative measures ensures that the cost function converges toward zero.
On the right side, we have the results obtained with the use of the TV algorithm.
It is clear that the initial and final rotation estimates are completely different
and the cost function value is very far from zero.

A comparison with the DDQL algorithm is difficult since we are considering
only the rotation estimation.



Chapter 5

Conclusions

We presented a distributed algorithm able to optimally solve the localization
problem for camera networks. The original part of this work is the use of unit
quaternion to represent the pose of the camera on the network and the applica-
tion of hybrid ideas for the further optimization of the initial algorithm.

Even if only the rotation estimation is considered, we can say that Alg. 1
works very well and is robust with respect to the white Gaussian noise standard
deviation σ applied to initial estimate and relative quaternion measures.
Indeed, we were able to prove the effectiveness of the use of the quaternion
paradigm for the estimation of the orientation of cameras in sensor networks,
with different dimensions, when both the initial conditions and the relative mea-
sures are perturbed.

Regarding the hybrid approaches, we were not able to apply them. The first
one, described in Alg.2, does not work due to the symmetry of the cost function
J . The second one, described in Alg.3, should work but despite the numerous
simulations done, we were not able to find a set of initial conditions that would
allow its use (i.e. a set of conditions that allows a slower convergence of the cost
function).

To conclude, in every realistic scenario, Alg. 1 is able to guarantee rapid con-
vergence towards the optimal solution, without getting stuck in a local minimum.

A future development of this work is to consider the translation estimation.
In this way, the algorithm would be able to estimate the full pose of each camera.
The innovation of applying a hybrid law could be included in this part of the
work.



Bibliography

[1] R. Goebel, R. G. Sanfelice, and A. R. Teel, łHybrid dynamical systems,ž
IEEE control systems magazine, vol. 29, no. 2, pp. 28ś93, 2009.

[2] I. Fedorov, N. Lawal, B. Thőrnberg, H. Alqaysi, and M. O’Nils, łTowards
calibration of outdoor multi-camera visual monitoring system,ž in Proceed-
ings of the 12th International Conference on Distributed Smart Cameras,
ICDSC ’18, (New York, NY, USA), Association for Computing Machinery,
2018.

[3] B. D. Olsen and A. Hoover, łCalibrating a camera network using a domino
grid,ž Pattern Recognition, vol. 34, no. 5, pp. 1105ś1117, 2001.

[4] M. Khan, E. Dannoun, M. Nofal, and M. Mursaleen, łSignificance of camera
pixel error in the calibration process of a robotic vision system,ž Applied
Sciences, vol. 12, p. 6406, 06 2022.

[5] G. Michieletto, A. Cenedese, L. Zaccarian, and A. Franchi, łHierarchical
nonlinear control for multi-rotor asymptotic stabilization based on zero-
moment direction,ž Automatica, vol. 117, p. 108991, 2020.

[6] L. Varotto, M. Fabris, G. Michieletto, and A. Cenedese, łDistributed dual
quaternion based localization of visual sensor networks,ž in 2019 18th Eu-
ropean Control Conference (ECC), pp. 1836ś1841, 2019.

[7] R. Tron and R. Vidal, łDistributed image-based 3-d localization of camera
sensor networks,ž in Proceedings of the 48h IEEE Conference on Decision
and Control (CDC) held jointly with 2009 28th Chinese Control Conference,
pp. 901ś908, IEEE, 2009.

[8] J. Yan-Bin, łQuaternions and rotations,ž Com S, vol. 477, p. 577, 2014.

[9] B. Bollobás, Modern graph theory, vol. 184. Springer Science & Business
Media, 1998.

[10] L. Song, W. Wu, J. Guo, and X. Li, łSurvey on camera calibration tech-
nique,ž in 2013 5th International conference on intelligent human-machine
systems and cybernetics, vol. 2, pp. 389ś392, IEEE, 2013.



42 BIBLIOGRAPHY

[11] W. Qi, F. Li, and L. Zhenzhong, łReview on camera calibration,ž in 2010
Chinese Control and Decision Conference, pp. 3354ś3358, 2010.

[12] R. Alur, T. Dang, and F. Ivančić, łPredicate abstraction for reachability
analysis of hybrid systems,ž ACM Trans. Embed. Comput. Syst., vol. 5,
p. 152â199, feb 2006.

[13] R. Tron, Distributed Optimization on Manifolds for Consensus Algorithms
and Camera Network Localization. PhD thesis, USA, 2012. AAI3536513.

[14] R. Tron, R. Vidal, and A. Terzis, łDistributed pose averaging in camera
networks via consensus on se(3),ž in 2008 Second ACM/IEEE International
Conference on Distributed Smart Cameras, pp. 1ś10, 2008.



List of Algorithms

1 Distributed Unit Quaternion . . . . . . . . . . . . . . . . . . . . . 23
2 Hybrid approach #1 . . . . . . . . . . . . . . . . . . . . . . . . . 25
3 Hybrid approach #2 . . . . . . . . . . . . . . . . . . . . . . . . . 26



List of Figures

2.1 Simple model of a thermostat as a hybrid system (image taken
from [12]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Performances confront, from [6] . . . . . . . . . . . . . . . . . . . 17

4.1 Possible configuration with 6 nodes . . . . . . . . . . . . . . . . . 19

4.2 Quaternions description on the camera setup . . . . . . . . . . . 20

4.3 Simulink implementation scheme . . . . . . . . . . . . . . . . . . 23

4.4 3D of a 6 a-camera network . . . . . . . . . . . . . . . . . . . . . 27

4.5 3D representation of a 6-camera network, without cameras repre-
senting the initial estimate . . . . . . . . . . . . . . . . . . . . . . 27

4.6 Cost and error functions, of a 6 a-camera network . . . . . . . . . 27

4.7 3D representation of a 12-camera network . . . . . . . . . . . . . 28

4.8 3D representation of a 12-camera network, without cameras rep-
resenting the initial estimate . . . . . . . . . . . . . . . . . . . . . 28

4.9 Cost and error functions, of a 12-camera network . . . . . . . . . 28

4.10 3D representation of a 30-camera network . . . . . . . . . . . . . 29

4.11 3D representation of a 30-camera network, without cameras rep-
resenting the initial estimate . . . . . . . . . . . . . . . . . . . . . 29

4.12 Cost and error functions, of a 30-camera network . . . . . . . . . 29

4.13 Comparison of different values of σ on initial estimate (n = 6) . . 30

4.14 Comparison of different values of σ on initial estimate (n = 12) . 30

4.15 Comparison of different values of σ on initial estimate (n = 30) . 31

4.16 Network representation with σ = 5deg . . . . . . . . . . . . . . . 32

4.17 Network representation with σ = 10deg . . . . . . . . . . . . . . . 32

4.18 Network representation with σ = 15deg . . . . . . . . . . . . . . . 32

4.19 Network representation with σ = 20deg . . . . . . . . . . . . . . . 32

4.20 Comparison of different values of σ (n = 6) . . . . . . . . . . . . 33

4.21 Comparison of different values of σ (n = 12) . . . . . . . . . . . . 33

4.22 Comparison of different values of σ (n = 30) . . . . . . . . . . . . 34

4.23 Comparison of the cost function with and without the use of the
hybrid algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.24 Network representation with the use of quaternions . . . . . . . . 38



LIST OF FIGURES 45

4.25 Network representation obtained with TV . . . . . . . . . . . . . 38
4.26 Network representation with the use of quaternions, without cam-

eras representing the initial estimate . . . . . . . . . . . . . . . . 38
4.27 Network representation obtained with TV, without cameras rep-

resenting the initial estimate . . . . . . . . . . . . . . . . . . . . . 38
4.28 Cost function, using quaternions . . . . . . . . . . . . . . . . . . 38
4.29 Cost function, using TV . . . . . . . . . . . . . . . . . . . . . . . 38


	1 Introduction
	2 Background material
	2.1 Quaternion Basics: Definitions and Properties
	2.2 Elements of Graph Theory
	2.3 Camera Calibration
	2.3.1 Estimation problem

	2.4 Introduction to Hybrid Dynamical Systems

	3 An in-depth analysis of related works
	3.1 Tron-Vidal approach
	3.2 Dual quaternion approach
	3.3 Main differences between TV and DDQL
	3.4 New contribution

	4 Distributed Hybrid Unit Quaternion Localisation of CSN
	4.1 The idea
	4.2 The setup
	4.3 Cost function calculation
	4.4 Matlab implementation
	4.4.1 Hybrid approach

	4.5 Numerical results
	4.5.1 Complete simulations of networks of different sizes
	4.5.2 Comparison with a setup where different values of  on 1 are used
	4.5.3 Comparison with a setup where different values of  on ij are used
	4.5.4 Hybrid algorithm #1

	4.6 Comparison with Tron-Vidal algorithm

	5 Conclusions
	Bibliography
	List of Figures

