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Introduction

One of the most important problems of nowadays theoretical physics is the uni-
fication of Quantum Mechanics with General Relativity. This kind of unified
description is allowed only if we are dealing with a theory of Quantum Gravity
and one of the most promising candidate to this role is String Theory. For a good
introduction to its formalism see [1], [8], [10] and [11].
String Theory is actually believed to be only a formally consistent theory of Quan-
tum Gravity and that is because there are huge experimental difficulties that arise
when we want to verify its validity.
The simplest type of String Theory, the Bosonic String Theory, shows some phys-
ical inconsistencies like particles with a negative squared mass (Tachyons) or
space-time without any fermion, namely without matter, therefore we understand
a priori that this kind of theory will never riproduce the reality. Those inconsis-
tencies however may be removed by introducing a symmetry between bosons and
fermions, i.e. some special transformations that allow us to link them each other.
This kind of transformations are called Supersymmetries (SUSY).
By introducing SUSY in a String Theory context ([14] and [15]), we can build five
different, and mathematically dual, formulations of Superstring Theory, which
are: Type I, Type IIA, Type IIB, Heterotic (HO) and Heterotic (HE).
Again, also those theories present some phenomenological issues and the most
evident one is the fact that they are based on a 10-dimensional space-time. Our
daily experience is clearly based only on four dimensions, therefore there should
exist a mechanism that allows us to "hide" the additional ones. A good way of
trying to solve this problem consists in thinking the whole 10-dimensional space-
time as product of a four dimensional space-time, namely the usual Minkowski
one, and a set of different 6-dimensional (Ricci-flat) compact manifolds that we
call Internal Manifolds. The mechanism used to hide the additional dimensions,
called Compactification, consists in thinking that the internal manifolds are actu-
ally too small to be seen in today experiments, namely their typical length scale
could be set between the Planck scale and an unknown experimentally verifiable
scale.
There are an infinite possible consistent choices of internal manifolds and the most
studied, actually, because of their properties of preserving a certain amount of Su-
persymmetries, are: T6, CY3, CY2 × T2, where CYn stands for an n-dimensional
complex and Ricci-flat surface called Calabi-Yau n-folds. The unique CY2 class
of manifolds that there exists is the topological class of K3 surfaces.
K3 surfaces are very interesting objects because of their property to conserve a
certain number of Supercharges after having compactified a particular Superstring
Theory. One of the most important example of the phenomenological implications
of Superstring models built on K3, is the derivation, under specifical conditions,
of the Bekenstein-Hawking law describing the Entropy of Black Holes (see [24]).
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vi INTRODUCTION

The study of every possible phenomenological implication of the theory is thus
of great importance and what we would like to do with this thesis is to give a
contribution to this work.
A lot of different formal tools are required to study a String theory defined on
these tiny structures. The most important one is with no doubt the 2-dimensional
Conformal Field Theory (CFT). The great importance of this kind of theories is
due to the fact that they are used to describe the World-sheet spanned by a closed
or open string. Most of the arguments we will present will be based on [1], [6], [4]
and [5]. We understand thus that CFT is the language of the String Theory and,
after the introduction of supersymmetry transformations, Superconformal Field
Theory (SCFT) is the correspective one for Superstring theory.
More in detail, the great importance of SCFT in our context comes from the fact
that, when we compactify the Type IIA or IIB Superstring Theory on a K3 sur-
face, 2-dimensional superconformal field theories with 8 supersymmetries arise.
These, in a String Theory context, are called Non-linear Sigma Models (NLSMs)
on K3. The main properties of K3 surfaces and the role they play in a String
Theory context, are described in [28].
K3 surfaces are rather complicated objects to study and there is actually no pos-
sibility to compute explicitly some of the tipically interesting quantities of a CFT,
just like, for example, the Partition Function of the model. One of the solution
we have thus is to consider a special type of K3 that can be described as a Torus
Orbifold, more precisely K3 ≃ T4/Z2. This last surface is much simpler than a
generic K3 surface and, in fact, by considering that structure, we are able to com-
pute explicitly the Partition Function of our NLSM and other similar objects like
the Elliptic Genus and the Twining Genera. We will see later that the validity
of both these calculations can be extended to K3 surfaces that are different from
the Torus Orbifold.
More in detail the Elliptic Genus and the Twining Genus are obtained by op-
portunely modifying the partition function with the insertion of some interesting
discrete symmetry operators of the model. There is a finite number of discrete
symmetries of a NLSM on K3 and they have all been classified in [18]. The inter-
esting thing is that, for each one of them, the corresponding Twining Genus can
be potentially computed explicitly.
A lot of Twining Genera has been already computed and what we would like to
do with this thesis is to continue the completion program of the classification.
Thanks to those calculations, we are able to see how the fields of the NLSM be-
have under these special symmetries and, as previously said, this study may be
relevant because symmetries of the model at very high-energy scale may have an
impact on the low-energy effective field theory.

In the first chapter we present the Classical Bosonic String Theory, in partic-
ular the Nambu-Goto and Polyakov actions and the solutions of their equations
of motion.

In the second chapter we introduce the canonical quantization of the bosonic
string, its spectrum and the algebra of the stress-energy tensor: the Virasoro
Algebra.

In the third chapter we present the Conformal Field Theory by introducing the
fundamental concepts of Primary Fields and their Operator Product Expansion
(OPE). At the end of the chapter, we make some examples of quantization of
fields on the cylinder.
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In the fourth chapter we introduce the perturbation approach to String Theory
and we study the Moduli Space of metrics for manifolds with different genera g. At
the end of the chapter we introduce the concept of Non linear σ-Model (NLSM).

In the fifth chapter we introduce the Supersymmetry and we apply it to both
String Theory and Superconformal Field Theory.

In the sixth chapter we finally concentrate on a Conformal Field Theory de-
fined on the Torus. We compute the Partition Function for some interesting
systems and we present the concept of Elliptic and Twining Genus.

In the seventh and last chapter, we introduce Non linear σ-Models on T4 and
on K3 surfaces and their Moduli Space of metrics. By choosing the proper dis-
crete symmetries of a suitable NLSM on K3, we finally compute some interesting
Twining Genera. This work may be helpful in order to prove the validity of the
conjecture formulated in [19].
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Chapter 1

Classical Bosonic String

In this chapter we will introduce the formalism needed to describe the dynamics
of the classical bosonic string. This will be done by making an analogy between
the free relativistic point particle and the classical bosonic string. We will then
find the solution of the equation of motion for the fields Xµ for the case of a single
free closed and open string.

1.1 The Relativistic Particle

Let us start with the description of a free relativistic particle of mass m moving in
a d-dimensional Minkowski space-time. It is action is simply given by the length
of its world-line:

S = −m

 s1

s0

ds = −m

 τ1

τ0

dτ


−dxµ

dτ

dxν

dτ
ηµν (1.1)

where τ is an arbitrary parameter with which we parametrize the world-line and
ηµν = diag(−1,+1, ...,+1) is the usual flat Minkowski metric. We notice that
the action is invariant under reparametrization of the parameter τ , in particular
under a transformation τ → τ̃(τ). We can write the infinitesimal form of this
reparametrization taking into account also how coordinates change under this
kind of transformation:

τ → τ + ξ(τ), δxµ(τ) = −ξ(τ)∂τx
µ(τ)

with the condition that ξ(τ0) = 0 = ξ(τ1) and x′µ(τ ′) = xµ(τ).
If we now define ẋµ ≡ ∂τx

µ and we take the functional derivative of the action
S with respect to the coordinates xµ, we obtain:

δS

δxµ
= 0 =⇒ 0 =

d

dτ


mẋµ√
−ẋ2


=

dpµ

dτ

where we have defined pµ = ∂L
∂∂τxµ

= m ẋµ
√
−ẋ2

. Using now this definition we can
obtain the dynamical constraint1 of our system: φ ≡ p2 +m2 = 0.

In general it is possible to establish a relationship between the number of
constraints of the system and the characteristics of the lagrangian (or the action),
in particular it can be shown that the number of constraints of the system is equal

1This is the usual on-shell condition for a propagating relativistic massive particle

1



2 CHAPTER 1. CLASSICAL BOSONIC STRING

to the number of null eigenvalues of the Hessian matrix ∂2L
∂ẋµ∂ẋν .

Constraints obtained in this way are called primary constraints. When the Hessian
matrix has no maximal rank, i.e. we have at least one constraint, we can express
the Hamiltonian of the system as H = Hcan +


k ckφk

2, where the ck are the
Lagrangian multipliers, so it will contain every dynamical information about the
system.

In order now to generalize the action of a free massive relativistic particle
to the massless case, we introduce a new auxiliary variable e(τ) that should not
contain any new dynamical degree of freedom. The new action is:

S =
1

2

 τ1

τ0

e(e−2ẋ2 −m2)dτ (1.2)

Since now this action has no square roots, the equation of motion appear simpler
than before:

δS

δe
= 0 =⇒ ẋ2 + e2m2 = 0

δS

δxµ
= 0 =⇒ d

dτ


e−1ẋµ


= 0

We immediately notice that e(τ), being an auxiliary variable, satisfies an algebraic
equation of motion, in particular its equation of motion has no derivatives in it.
This means that it has no dynamical role because it can be written in term of the
other true dynamical variables: the coordinates xµ. By substituting now in the
action (1.2) and in the equation of motion for xµ, the expression of e(τ) computed
by solving its equation of motion, we find again the action (1.1). This means that
both actions are dinamically equivalent.
Finally we notice that, in this case, the Hessian matrix has maximal rank, so
there are no primary constraints on the dynamics: the constraint φ can now be
obtained by imposing the definition of pµ and the equation of motion of e(τ) and
xµ. Constraints obtained in this way are called secondary constraints.
We know that the action is invariant under reparametrization of τ , therefore it is
necessary to fix it. A possible choice we could do is to impose: ẋ2 = −1. This
operation of choosing a particular value of τ is properly a Gauge Fixing.

1.2 Polyakov and Nambu-Goto actions

Let us now generalize the arguments of the previous section about the free rela-
tivistic particle, to the string case. Strings are 1-dimensional objects that can be
open or closed, depending on whether its extremal points are respectively identi-
fied or not. Now, the action of a string, analogously to the free relativistic point
particle, is the area of the so called World-Sheet, i.e. the bidimensional analogous
of the world-line. The world-sheet now, being a 2-dimensional object, has to be
parametrized by two parameters that we call τ and σ.

2Hcan is the canonical Hamiltonian Hcan = ∂L
∂ẋµ ẋ

µ − L



1.2. POLYAKOV AND NAMBU-GOTO ACTIONS 3

1.2.1 The Nambu-Goto action

In the string case the action is called Nambu-Goto Action and its expression is:

SNG = −T



Σ
dA

= −T



Σ
d2σ



−detαβ


∂Xµ

∂σα

∂Xν

∂σβ
ηµν



= −T



Σ
d2σ


Ẋ ·X ′

2
− Ẋ2X ′2

= −T



Σ
d2σ

√
−Γ

(1.3)

where we have defined · = ∂
∂τ , ′ = ∂

∂σ , σα = (τ,σ) and Σ is the world-sheet.
The coordinates Xµ(σ, τ), with µ = 0, ..., d − 1, are now d maps from the 2-
dimensional world-sheet to the Minkowski d-dimensional space. The parameters
σ and τ , that respectively parametrize the spatial and temporal dimension of the
world-sheet, are defined in the domains: τi < τ < τf and 0 ≤ σ < l.
We have also defined for simplicity:

Γαβ ≡ ∂Xµ

∂σα

∂Xν

∂σβ
ηµν

and detαβΓαβ ≡ Γ. From the definition of Γαβ , we can interprete it as the induced
metric inherited from the d-dimensional Minkowski space-time3.
It is important to notice that we introduced a new dimensional constant, the
string tension T , with [T ] = M−2. It is needed to normalize the action and make
it adimensional. It is possible now, using the string tension T , to define some
quantities as a scale to which our theory refers to, in particular we have:

α′ =
1

2πT
Regge Slope

ls = 2π
√
α′ String length Scale

Ms =
1√
α′

String Mass Scale

The NG action is invariant, just like the one of the pointlike particle, under
global Poincarè transformations, X ′µ = Xµ + aµ, and under local reparametriza-
tions of σ e τ .
In order now to find the equation of motion for the Xµ fields, let us vary the ac-
tion keeping the extremal points of the trajectories fixed, i.e. with the condition:
δXµ(σ = 0, l) = 0. The equation we obtain is thus:

∂

∂τ

∂L

∂Ẋµ
+

∂

∂σ

∂L

∂Ẋν
= 0

Now the boundary conditions that we have to impose are different between open
and closed strings, indeed we have that:

∂L

∂X ′µ δX
µ = 0 when σ = 0, l (open string)

Xµ(σ + l, τ) = Xµ(σ, τ) (closed string)
3This kind of metric has not to be confused with the world-sheet intrinsic metric hαβ that

we will introduce later.
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In the open string case we have that the boundary condition can be satisfied by
imposing two different condition, the first is:

∂L

∂X ′µ = 0 ∀δXµ Neumann Condition

that its physical meaning is that no momentum flows off the end of the string,
while the second condition we can impose is:

δXµ = 0 Dirichlet Condition

that means that the extremal points of the string remain fixed along the Xµ

direction4. We immediately notice that keeping the extremal points fixed breaks
space-time translation invariance, therefore, because of the Noether’s theorem, we
break the conservation of the momentum5.
Because of the presence in the action (1.3) of a square root, the equation of
motion are rather complicate. It can be shown that the Hessian matrix has two
null eigenvalues that corresponds to the primary constraints:


ΠµX

′µ = 0

Π2 + T 2X ′2 = 0

It can be easily shown, starting from the NG action and imposing the constraints
we have just found, that Hcan = 0. We understand thus that the dynamics is
completely determined by the primary constraints.

1.2.2 The Polyakov action

In order now to simplify the action (1.3) and extend his validity, exactly like we did
previously for the point-like particle, let us introduce an auxiliary field hαβ(σ, τ)
with signature (−,+). This new kind of action is called Polyakov Action and it
is:

SP = −T

2



Σ
d2σ

√
−hhαβ∂αX

µ∂βX
νηµν (1.4)

where we have defined h ≡ dethαβ . Let us now define the stress-energy tensor of
the world-sheet theory as the tensor that quantify the response of the system to
the changes of the world-sheet metric:

Tαβ =
4π√
−h

δSP

δhαβ

Using the fact that δh = −hαβ(δh
αβ)h, we can find its explicit expression:

Tαβ = − 1

α′


∂αX

µ∂βXµ − 1

2
hαβh

γδ∂γX
µ∂δXµ



4Let us notice that we can choose indipendently and differently the boundary conditions for
the first or second extremal point of the open string. The notation that we will use to indicate
that will be NN, ND, DN or DD.

5This condition should not worry us because, imposing the Dirichlet condition, we are asking
that the extremal points of the string are attached to a space-time’s subspace called D-Brane.
By considering a system made of a D-brane and an open string attached to it, the momentum
is conserved again.
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Always from the definition of Tαβ we notice that we can write the variation of the
action as:

δSP =
1

4π



Σ
d2σ

√
−h Tαβ δhαβ

Computing now the equation of motion, we can obtain:





Tαβ = 0

□Xµ =
1√
−h

∂α(
√
−h hαβ∂βX

µ) = 0

Now the boundary condition for the closed string are the same as before, while
for the open string they become:

nα∂αX
µδXµ = 0 for σ = 0, l

with nα the normal vector at the boundary. The invariance under diffeomorphisms
of the Polyakov’s action gives us the conservation of the stress-energy tensor,
∇αTαβ = 0, where the covariant derivative is ∇α = ∂α + Γα.6

Starting now from the equation of motion that we found in the case of the
NG action, in particular the vanishing of the stress-energy tensor, we can obtain
an useful identity:

detαβ(∂αX
µ∂βXµ) =

1

4
h(hγδ∂γXµ∂δX

µ)2 (1.5)

If we now substitute this identity into the Polyakov’s action, we can check that
what we recover is the NG action. For this reason the two actions are classically
equivalent.

1.2.3 Symmetries of the Polyakov action

Let us now discuss the symmetries of the Polyakov’s action:

1. Global Symmetries:

• Poincarè invariance:

δXµ = aµνX
ν + bµ (aµν = −aνµ)

δhαβ = 0

2. Local Symmetries:

• Reparametrization invariance

δXµ = −ξα∂αX
µ

δhαβ = −(ξγ∂γhαβ + ∂αξ
γhγβ + ∂βξ

γhγα)

= −(∇αξβ +∇βξα)

δ
√
−h = −∂α(ξ

α
√
−h)

• Weyl rescaling:
δXµ = 0

δhαβ = 2Λhαβ
6Remember that Γγ

αβ = 1
2
hγδ(∂αhδβ + ∂βhαδ − ∂δhαβ)
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Let us first consider the invariance under Weyl rescaling7. An immediate conse-
quence of this is that the trace of the stress-energy tensor vanishes, i.e. Tα

α =
hαβT

αβ = 0. Let us indeed take a rescaling transformation for the intrinsic metric
of the world-sheet hαβ → e2Λhαβ . We can then write:

0 = δS =


d2σ


−2

δS

δhαβ
hαβ +



i

δS

δφi
diφi


δΛ

If now the invariance holds for every δΛ, then we can conclude that:

−2
δS

δhαβ  
∝Tαβ

hαβ = 0 ⇐⇒ hαβT
αβ = Tα

α = 0

We can now ask if there are other terms, that we can add a priori, that satisfy all
the symmetries we have required. In particular, if we want also a 2-dimensional
power-counting renormalizable theory, we can add to more expressions to SP :

S1 = λ1



Σ
d2σ

√
−h (1.6)

S2 =
λ2

4π



Σ
d2σ

√
−hR = λ2χ(Σ) (1.7)

It can be shown that the first term, called Cosmological Term, it is identically
null because of the tracelessness condition of the stress-energy tensor, Tα

α = −λ1
T ,

that is satisfied if and only if λ1 = 0. We can also show that also the second term8

does not contribute to the equation of motion because it is a total derivative.
Let us now consider the reparametrization invariance. Using the reparametriza-

tion transformations it can be shown that is always possible locally to put the
world-sheet metric proportional to the flat metric, i.e.:

hαβ = Ω2(σ, τ) ηαβ

where the flat metric ηαβ is the one for which ds2 = −dτ2 + dσ2.
Explicitly we will then have that:

ds2 = −Ω2(dτ2 + dσ2) = −Ω2ηαβdσ
αdσβ

Let us now consider the following change of coordinates: let us take two null
vectors at each point and take their integral curves labelled by σ+ e σ−. If we
now write this set of coordinates as σ± = τ ± σ we can write ds2 = −Ω2dσ+dσ−.
Those kind of coordinates are called Light-Cone Coordinates or Conformal Coor-
dinates.
In general, when we act on a symmetric tensor, that has 1

2d(d + 1) independent
components, with some reparametrization transformations, we can remove d de-
grees of freedom and obtain a tensor with only 1

2d(d−1) independent parameters.
When d = 2 we have clearly only one independent parameter that, using the Weyl

7It is important to notice that Weyl rescalings are not conformal transformations, indeed
Weyl transformation acts only on the metric and not on the coordinates, while conformal trans-
formations act on the coordinates causing the factorization of a certain common factor of every
entry of the metric.

8χ(Σ) it is the Euler Number of the manifold Σ and it is a topological invariant.
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invariance property of the metric, it can be eliminated. In our case we can use
the Weyl rescaling in order to remove the Ω2 factor and put the metric in the
form hαβ = ηαβ . From this arguments, we can finally put the metric in the form:
ds2 = −dσ+dσ−.
We notice that the metric now is no more diagonal, in particular:

hαβ = ηαβ =


η++ η+−
η−+ η−−


=


0 −1

2
−1

2 0



hαβ =


0 −2
−2 0



The derivatives with this choice of coordinates are: ∂± = 1
2(∂τ ± ∂σ).

In order to preserve the invariance under diffeomorphisms (i.e. reparametriza-
tions) and Weyl rescalings locally, we require that δhαβ = 0. Writing explicitly
the non vanishing Christoffel’s symbols in the light-cone coordinates, we obtain
the following condition on the gauge: ∂−ξ

+ = 0 = ∂+ξ
−. That obviously means

that ξ± = ξ±(σ±). We notice that the same gauge condition would have been
statisfied also taking a generic σ̃± = σ̃±(σ±), so we immediately see that this
choice of the gauge is not complete but admit a residual gauge.
We would like now to see if the considerations hold also globally. We can explicitly
see that, after a generic Weyl rescaling and reparametrization transformation, the
variation of the metric becomes:

δhαβ = − (∇αξβ +∇βξα) + 2Λhαβ

≡ (P ξ)αβ + 2Λ̃hαβ

where we have defined:

(P ξ)αβ = ∇αξβ +∇βξα − (∇γξ
γ)hαβ

2Λ̃ = 2Λ−∇γξ
γ

We decomposed the variation of the metric into a symmetric traceless and a trace
term, but the last one can always be cancelled out by a suitable choice of Λ. We
can notice that the operator P maps vectors into symmetric traceless tensors.
We ask now if the imposition of a certain condition on the metric allow us to fix
completely the gauge or it admits some non-trivial transformations of the metric
that leave the condition satisfied. This kind of transformations are exactly the
conformal transformations. We understand therefore that the Residual Gauge are
the conformal transformations globally defined on the surface.
Let us now see if it admits a kernel, i.e. it has some zero modes. As we said, the
operator acts as:

(P ξ)αβ = tαβ = tβα with tα
α = 0

Now it may happen that, for a certain t, P does not admit a unique solution ξ. In
particular, if P admit some zero modes, i.e. (P ξ0)αβ = 0, the most general solution
could be written as ξ + ξ0. The existence of a diffeomorphism corresponding to a
zero mode of the P operator, does not affect the variation of the metric, therefore,
it is a residual gauge. The zero modes of the P operator are called Conformal
Killing Vectors and the equation (P ξ)αβ = 0 is called Conformal Killing Equation.
We could ask now if we can always globally put the metric in a conformally flat
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form and not only locally as we showed previously. Let us first define the inner
product between two tensors on the world-sheet as:

(tαβ , tγδ) ≡


d2σ
√
−h hαγhβδtαβtγδ (1.8)

respect to which we define the dagger operator of P:

P †t



α
= −∇βtαβ (1.9)

We see that the P † operator now maps symmetric traceless tensors in vectors. If
it admits zero modes then we have:

0 =

ξ, P †t0


= (P ξ, t0) ∀ξ

We see thus that the tensor t0, one of the zero modes of P †, is perpendicular to
every tensor written as (P ξ)αβ , or, equivalently, it belongs to the space perpen-
dicular to the imagine space of the P operator. This means that it cannot be
written as (P ξ)αβ , ∀ξ. We can conclude therefore that if P † admits a zero mode,
then is not always possible globally to put the intrinsic metric in a conformally
flat term, but only locally.
In conclusion, we can always, locally, put the metric in the form hαβ = e2φηαβ
using the reparametrization invariance and the e2φ factor can be then removed by
using a Weyl rescaling. After this procedure we obtain: hαβ = ηαβ . This gauge
choice is also called Conformal Gauge choice.
The Polyakov action in the conformal gauge becomes:

Sp = −T

2


d2σ ηαβ∂αX

µ∂βX
νηµν

=
T

2


d2σ


Ẋ2 −X ′2



= 2T


d2σ ∂+X · ∂−X

Let us now compute the equation of motion for the Xµ fields in this particular
gauge choice, with the condition δXµ(τ0) = 0 = δXµ(τ1):

0 = δS = T


d2σδXµ


∂2
σ − ∂2

τ


Xµ − T

 τ1

τ0

dτX ′µ[δXµ]σ=l
σ=0 − T

 ll

0
dσ [∂τX

µδXµ]
τ1
τ0

where the last two terms vanish because of the boundary conditions for the closed
and open string. We see now that the equation of motion is the same for both
the open and closed string and it is:


∂2
σ − ∂2

τ


Xµ = 4 · ∂+∂−Xµ = 0 (1.10)

The most general solution of this equation is:

Xµ (σ, τ) = Xµ
L


σ+


+Xµ

R


σ−

For the closed string, the left and right-moving modes are actually independent
just imposing the boundary conditions, while for the open string, both modes are
mixed because of the boundary conditions for the extremal point of the string.9

9This situation is exactly analogous to a wave that moves on a string and reflects in the
extremal point coming back in the other direction.
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Let us now come back to the equation of motion we computed for the NG
action, in particular, let us impose that, in the conformal gauge, the stress-energy
tensor must vanish:

T01 = T10 = −2πT (Ẋ ·X ′) = 0

T00 = T11 = −πT (Ẋ2 +X ′2) = 0

This constraints can be expressed alternatively as:

(Ẋ ±X ′)2 = 0

In the light-cone coordinates the stress-energy tensor becomes:

T++ = −2πT (∂+X · ∂+X) = 0 (1.11a)
T−− = −2πT (∂−X · ∂−X) = 0 (1.11b)
T+− = T−+ = 0 (1.11c)

We notice that the (1.11c) expresses the traceless condition of the stress-energy
tensor.10 The condition of stress-energy tensor conservation, ∇αTαβ = 0, in the
light-cone coordinates becomes:

∂−T++ = 0

∂+T−− = 0

therefore T++ = T++(σ
+), T−− = T−−(σ

−). We can notice from this condition
that there is an infinite number of conserved charges, indeed:

∂−f(σ
+) = 0 −→ ∂−(f(σ

+)T++) = 0

We can then associate to this expression a new conserved current with its corre-
sponding conserved charge:

Ll = 2T

 l

0
dσf


σ+


T++


σ+


(1.12)

the same is true for σ−.
The Hamiltonian in the conformal gauge and with the light-cone coordinates
becomes:

H = T

 l

0
dσ


(∂+X)2 + (∂−X)2



that, as we saw for the NG action, it vanishes imposing the equation of motion
and the constraints. The generic Hamiltonian can be written, as we saw in the
case of the free relativistic particle, as a combination of the constraints of the
system when the Hessian matrix has not maximal rank, so now we have:

H =

 l

0
dσ


N1 (σ, τ)Π ·X ′ +N2 (σ, τ)


Π2 + T 2X2



Using the usual expressions of the Poisson brakets at equal τ for Xµ and Πµ:

Xµ (σ, τ) , Xν


σ′, τ


PB

= 0 =

Πµ (σ, τ) ,Πν


σ′, τ


PB

Xµ (σ, τ) ,Πν

σ′, τ


PB

= ηµνδ(σ − σ′)

10Remember that, in the light-cone coordinates, the metric is made of only off diagonal com-
ponents.
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we can compute Ẋ = {X,H}PB, so what we obtain is:

Ẋµ = N1X

′µ + 2N2Π
µ

Π̇µ = ∂σ(N1Π
µ + 2T 2N2X

′µ)

Imposing now that the equation of motion (1.10) has to be satisfied, we obtain
that N1 = 0, N2 = 1

2T . We see that this particular choice of N1 and N2 equates
to put ourselves in the conformal gauge. With this choice the Poisson brakets
becomes:


Xµ (σ, τ) , Xν


σ′, τ


PP

= 0 =

Ẋµ (σ, τ) , Ẋν


σ′, τ



PP
Xµ (σ, τ) , Ẋν


σ′, τ



PP
=

1

T
ηµνδ(σ − σ′)

Using this expression of the Poisson brakets, it can be shown that

−T


Ẋ ·X ′dσ and

T

2


(Ẋ2 +X ′2)dσ

generate respectively constant σ and τ -traslations, while the conserved charges
Lf generates transformations σ+ → σ+ + f(σ+), indeed:

{Lf , X(σ)}PB = −f(σ+)∂+X(σ)

We notice that this kind of transformations are exactly the ones that we expected
because of the not complete gauge choice. Transformations like σ+ → σ++f(σ−)
are not allowed because they would introduce some diagonal terms in the intrinsic
metric that obviously, in the light-cone coordinates, wouldn’t leave the metric
invariant.11

Let us finally concentrate on the global Poincaré invariance. By using the
Noether’s theorem for Lorentz rotations and space-time traslations, we can obtain
the usual set of conserved currents:

Pα
µ = −T

√
hhαβ∂βXµ Jα

µν = XµP
α
ν − Pα

µXν

and conserved charges (computed by integrating over a space-like section of the
world-sheet at τ = 0):

Pµ =

 l

0
dσP τ

µ = T

 l

0
dσ∂τXµ

Jµν =

 l

0
dσJτ

µν = T

 l

0
dσ (Xµ∂τXν −Xν∂τXµ)

Using the Poisson brakets we can check that Pµ e Jµν generate, as we expected,
the Poincaré algebra:

{Pµ, P ν}PB = 0

{Pµ, Jρσ}PB = ηµσpρ − ηµρpσ

{Jµν , Jρσ}PB = ηµσJνρ + ηνσJµρ − ηνρJµσ − ηµσJνρ

11It is easy to check by computing the ds2 element using the σ̃+ generic expression.
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1.3 Oscillator Expansion for Closed String

Let us now solve the equation of motion of closed string in the conformal gauge.
The generic solution of the equation of motion (1.10) for a closed string, with the
periodic condition Xµ(σ, τ) = Xµ(σ + l, τ), is:

Xµ (σ, τ) = Xµ
R (τ − σ) +Xµ

L (τ + σ)

explicitly:

Xµ
R (τ − σ) =

1

2
xµ +

πα′

l
pµ (τ − σ) + i


α′

2



n ∕=0

1

n
αµ
ne

− 2π
l
in(τ−σ) (1.13)

Xµ
L (τ + σ) =

1

2
xµ +

πα′

l
pµ (τ + σ) + i


α′

2



n ∕=0

1

n
αµ
ne

− 2π
l
in(τ+σ) (1.14)

where the αµ
n and αµ

n are the Fourier modes of the expansions. We define now
conventionally that the Fourier modes are positive when n < 0 and negative when
n > 0 and this will be very important when we will introduce the quantization of
the bosonic string. Imposing also that the Xµ fields have to be real, we obtain:

αµ
−n = (αµ

n)
∗ and αµ

−n = (αµ
n)

∗

If we now define αµ
0 = αµ

0 =


α′
2 p

µ we can write in a compact way:

∂−X
µ = Ẋµ

R =
2π

l


α′

2

+∞

n=−∞
αµ
ne

− 2π
l
in(τ−σ) (1.15a)

∂+X
µ = Ẋµ

L =
2π

l


α′

2

+∞

n=−∞
αµ
ne

− 2π
l
in(τ+σ) (1.15b)

Computing now:

Pµ =

 l

0
dσΠµ =

1

2πα′

 l

0
dσẊµ = pµ (1.16)

qµ (τ) ≡ 1

l

 l

0
dσXµ = xµ +

2πα′

l
pµτ (1.17)

we learn that pµ is the total space-time momentum of the string and xµ is the
center of mass position of the string when τ = 0. We can also compute the total
angular momentum:

Jµν =

 l

0
dσ (XµΠ−XνΠµ) =

1

2πα′

 l

0
dσ


XµẊν −XνẊµ



= lµν + Eµν + E
µν

where 




lµν = xµpν − xνpµ

Eµν = −i

+∞

n=1

1

n


αµ
−nα

ν
n − αν

−nα
µ
n
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with E
µν the analogous of Eµν . Using now the Poisson brakets for Xµ and Ẋµ

we can derive:

{αµ
m,αν

n}PB = {αµ
m,αν

n}PB = −imδm+nη
µν (1.18a)

{αµ
m,αν

n}PB = 0 (1.18b)
{xµ, pν}PB = ηµν (1.18c)

where δm+n stands for δm+n,0.
Using the oscillators expansion of the fields, the Hamiltonian becomes:

H =
π

l

+∞

n=−∞
(α−n · αn + α−n · αn)

We can now choose the infinite functions f(σ±), that have to satisfy the correct
periodicity conditions, as:

fm(σ±) = exp(
2πi

l
mσ±)

With this choice of the fm(σ±) functions, we can define the Virasoro Generators
from the equation (1.12) at τ = 0:

Ln = − l

4π2

 l

0
dσ e−

2πi
l
nσT−− =

1

2



m

αn−m · αm

Ln = − l

4π2

 l

0
dσ e+

2πi
l
nσT++ =

1

2



m

αn−m · αm

The Hamiltonian can be written now as:

H =
2π

l
(L0 + L0)

The generator of constant σ-traslations, namely the momentum operator P , be-
comes:

P = −T


Ẋ ·X ′dσ =

2π

l
(L0 − L0)

and then, being no special point on a closed string, we require that L0−L0 = 0.12

Inverting the expression of Ln and expliciting the stress-energy tensor, we obtain,
being it a real tensor, that:

Ln = L∗
−n, Ln = L

∗
−n

Using (1.18) we can compute the Poisson brakets for L0 and L0:

{Lm, Ln}PB = −i(m− n)Lm+n (1.19a)

Lm, Ln


PB

= −i(m− n)Lm+n (1.19b)

Lm, Ln


PB

= 0 (1.19c)

This set of equations have to be satisfied from the Virasoro generators and rep-
resent the Centerless Virasoro Algebra.13

12This condition will be important, after the quantization, in building the Fock space of the
bosonic string theory.

13In literature the equations we wrote identify actually the Witt Algebra, namely the Virasoro
algebra modified by a central term.



Chapter 2

Bosonic String Quantization

In this chapter we will discuss the quantization of the bosonic string, in particular
we will compute the critical dimension (that in our case will be D = 26) of
the theory, for which the string could consistently propagate, and finally we will
introduce and study the mass spectrum of the bosonic string.

2.1 Canonical Quantization

Let us quantize the bosonic string using the canonical procedure of substituting
the Poisson brakets with the Lie brakets and considering the Xµ(σ, τ) fields as
quantum mechanical operators:

{ , }P.B. →
1

i
[ , ]L.B.

In this way we obtain the following commutators:

Xµ (σ, τ) , Xν


σ′, τ


= 2πiα′ηµνδ


σ − σ′


Xµ (σ, τ) , Xν


σ′, τ


=


Ẋµ (σ, τ) , Ẋν


σ′, τ


= 0

and consequently we obtain:

[xµ, pν ] = iηµν (2.1a)
[αµ

m,αν
n] = [αµ

n,α
ν
n] = mδm+nη

µν (2.1b)
[αµ

n,α
ν
n] = 0 (2.1c)

where obviously we will have only αµ
m for the open string and both αµ

m, αµ
m for

the closed string1. The reality condition for the Xµ(σ, τ) fields now becomes the
hermicity condition for the operators, then we have (αµ

m)† = αµ
−m e (αµ

m)† = αµ
−m.

Rescaling this operators by αµ
m → 1√

m
αµ
m, the equation (2.1b) becomes:

[αµ
m,α

ν
n
†] = δm,nη

µν (2.2)

We can now interpret the αµ
m operators as the creation and annihilation opera-

tors of the m oscillation mode of the string. We take conventionally αµ
m as an

annihilation operator when m > 0 and a creation operator when m < 0.
1Remember the different solution of the equation of motion for the open and closed string.

13
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What we want to do now is to build the Fock Space of the bosonic string theory.
The ground state of the Fock Space, can be defined in this way:

αµ
m |0; pµ〉 = 0 m > 0

p̂µ |0; pµ〉 = pµ |0; pµ〉

from which we generate all the remaining states of the space, namely the excited
bosonic string states, by acting with the oscillator modes operator α−m and ᾱ−m,
with m > 02.
We can now also define the number operator N̂m ≡: αm ·α−m := α−m ·αm where
the ":...:" is the normal ordering prescription.
We notice now that when we take the equation (2.2) and we impose m = n and
µ = ν = 0, we obtain −1. This facts allow us to write:

〈0|α0
mα0

−m |0〉 = −1 〈0|0〉 < 0

This kind of states with negative norm are called Ghosts 3 and they have to be
removed from our Fock space in order to make it a physical Hilbert space. It is
possibile to demonstrate (no-ghost theorem) that the ghost states decouple for
our physical Hilbert space if and only if the Minkowski space-time dimension is
exactly D = 26. This value is exactly the critical dimension of the theory because,
we will see later more precisely, it is exactly the value for which the theory preserve
the Lorentz invariance and also Weyl invariance4.

Let us now introduce the Xµ fields propagator with their usual definition:

〈Xµ(σ, τ)Xν(σ′, τ ′)〉 = T [Xµ(σ, τ)Xν(σ′, τ ′)]− : [Xµ(σ, τ)Xν(σ′, τ ′)] :

where T is the time ordering operator. Let us define the vacuum state of the
theory as a traslationally invariant state, therefore we have : pµxν := xνpµ, with
pµ |0〉 = 0.
Using now a new set of variables for a closed string with length l, (z, z) =

(e2πi
(τ−σ)

l , e2πi
(τ+σ)

l ) ∈ S1 × S1, we can obtain:

〈Xµ
L(z)X

ν
L(w)〉 =

1

4
α′ηµν ln z − 1

2
α′ηµν ln (z − w) (2.3a)

〈Xµ
R(z)X

ν
R(w)〉 =

1

4
α′ηµν ln z − 1

2
α′ηµν ln (z − w) (2.3b)

〈Xµ
R(z)X

ν
L(w)〉 =

1

4
α′ηµν ln z (2.3c)

〈Xµ
L(z)X

ν
R(w)〉 =

1

4
α′ηµν ln z (2.3d)

Considering instead the undecomposed Xµ(σ, τ) fields, we have:

〈Xµ(z, z)Xν(w,w)〉 = −α′

2
ηµν ln ((z − w)(z − w))

2We notice that this is not the usual "second quantization procedure" because the number
of particles stays the same.

3This is exactly the same problem of the Faddeev-Popov ghosts in a generic Yang-Mills
theory.

4The Weyl invariance, in a generic dimension D, is broken at quantum level, i.e. it is an
Anomaly of the theory, but it can be shown that we can recover it by imposing that D = 26.
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We can notice that the equations (2.3d) and (2.3c) don’t vanish because Xµ
R and

Xµ
L have in common the same zero mode operators. If we then define:

Xµ
R(z) = xµR +

π

l
α′pµR(τ − σ) + oscill. terms

Xµ
L(z) = xµL +

π

l
α′pµL(τ + σ) + oscill. terms

with also the conditions:

[xµR, p
ν
R] = [xµL, p

ν
L] = iηµν

[xµR, p
ν
L] = [xµL, p

ν
R] = 0

we obtain that the mixed propagators vanish while the only non vanishing prop-
agators becomes:

〈Xµ
L(z)X

ν
L(w)〉 = −1

2
α′ηµν ln (z − w)

〈Xµ
R(z)X

ν
R(w)〉 = −1

2
α′ηµν ln (z − w)

In the open string case with length l, we can analogously obtain:

〈Xµ(z, z)Xν(w,w)〉NN,DD = −α′

2


ln |z − w|2 ± ln |z − w|2


ηµν

〈Xµ(z, z)Xν(w,w)〉ND,DN = −α′

2


ln



√
z −

√
w√

z +
√
w


2

± ln



√
z −

√
w√

t+
√
w


2

ηµν

where with ND we denotes the Neumann boundary condition for the first extremal
point and the Dirichlet boundary condition for the second extremal point of the
open string.

After the introduction of the canonical quantization for the bosonic string, let
us now consider the Virasoro generators and let us quantize them. We remember
that at classical level we had that: T++ = T−− = 0. The same condition expressed
with the Fourier components of the stress-energy tensor, becomes: Ln = Ln = 0.
At quantum level we have to promote also Ln and Ln to operators. Indeed we
saw in the previous section, that they can be written as functions of the creation
and annihilation operators αµ

n. Let us now notice that the quantization procedure
reveals an ambiguity for a particular operator among all the Ln operators: the
L0 operator. At classical level we define:

L0 =
1

2

+∞

n=−∞
α−n · αn

but, at quantum level, L0 has to be defined using the normal ordering prescription.
We see now that the normal ordering prescription causes an ambiguity due to the
fact that: [αµ

n,α
µ
−n] ∝ a ∕= 0, where a is a generic constant. This can also be

thought as an ambiguity in the definition of the L0 operator itself. We are thus
allowed to redefine in the following way the L0 operator: L0 → L0 + a.
The definition, at quantum level, of Ln thus becomes:

Ln =
1

2

+∞

n=−∞
: αn−m · αm :
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from which we obtain:

L0 =
1

2
α2
0 +

+∞

n=1

α−m · αm

where the constant coming from the commutator has been absorbed by redefining,
as seen above, the L0 operator.
If we compute explicitly the commutator between Ln ed Lm, we can find that5:

[Lm, Ln] = (m− n)Lm+n +
c

12
m


m2 − 1


δm+n

where c is called Central Charge. This is the relation that defines the Virasoro
algebra and, as we saw in (1.19), it represents the so called Central Extension of
the Witt algebra. We can in general write a central extension of an algebra g as
ĝ = g


Cc, caraterized by the following commutators:

[x, y]ĝ = [x, y]g + cp (x, y) x, y ∈ g

[x, c]ĝ = 0

[c, c]ĝ = 0

with c that belongs to the center of ĝ, so it commutes with all the other generators.
We can notice that, thanks to the Schur’s Lemma, c is a constant in any irreducile
representation of the algebra ĝ. The value of c has an important physical meaning
because it can be shown that, in a theory with d free bosons, c = ηµµ = d.

Let us now come back to the Virasoro generators. We see that, at quantum
level, the condition Ln = 0, ∀n, cannot hold for all the states |ψ〉 of our Fock
Space. Indeed we see that:

〈φ |[Ln, L−n]|φ〉 = 〈φ |2nL0|φ〉+
c

12
n

n2 − 1


〈φ|φ〉 ∕= 0

The best we can do therefore is to require that:

Ln |phys〉 = 0 n > 0

(L0 + a) |phys〉 = 0

The conditions we have required are called Virasoro Conditions. The Ln oper-
ators, when n ≥ 0, form a closed subalgebra of the Virasoro algebra. Taking
the condition Ln |phys〉 = 0 for n > 0 only, we effectively obtain the physical
consistent constraint6:

〈phys′ |Ln| phys〉 = 0 ∀n ∕= 0

For closed string, the arguments about Ln are exactly analogous.
We notice that if we define a transformation like Uδ = e2πi

δ
l
(L0−L0), when it acts

on the Xµ(σ, τ) fields, it generates the rigid σ-traslations, indeed:

Uδ
†Xµ (σ, τ)Uδ = Xµ (σ + δ, τ)

so what we can impose now at quantum level, just like we did at classical level,
is that:

(L0 − L0) |phys〉 = 0

5We will show the complete calculations in the dedicated appendix.
6This condition is analogous to the imposition of the Gupta-Bleuler condition when we build

the physical QED space states, i.e. 〈phys′ |∂µA
µ| phys〉 = 0
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Taking now, in the closed string case, the expression of L0 and L0:

L0 −→ L0 + a =

+∞

n=1

α−n · αn +
1

2
α2
0 = N +

α′

4
p2

with also:
m2 = −pµpµ = m2

L +m2
R

where:
α′m2

L = 2(N + a)

α′m2
R = 2(N + a)

and imposing the condition L0 − L0 = 0, we obtain m2
L = m2

R and then N = N .
This condition is called Level Matching Condition. We notice that the mass of
the string in the ground state (when N = N = 0) is determined by the normal
ordering constant a. The final mass relation for a closed string is then:

α′m2 = 4(N + a)

For the open string, if we define the number operator as:

N =

+∞

n=1

(αµ
−nαµ,n + αi

−nαi,n) +


r∈N0+
1
2

αa
−rαa,r

where µ label the NN directions, i the DD directions and a the ND and DN
directions. Using again the expression for L0 + a and imposing the Virasoro
constraints, we can obtain:

α′m2 = N + α′(T∆X)2 + a

where (∆X)2 = ∆Xi∆Xi is the distance between two ends of the open string in
the DD directions.

2.2 Light-Cone Coordinates Quantization

Now we want to introduce, just like we did for the world-sheet, the light-cone
coordinates for the Minkowski space-time. With this choice of the coordinates we
will be able to fix the gauge but, on the other side, we will lose the manifest Lorentz
invariance. We will show that we will recover this invariance (not manifestly) by
choosing the dimension of the ambient space-time exactly as D = 26, the usual
critical dimension of our theory. The light-cone coordinates now are defined as:

X± =
1√
2
(X0 ±X1)

In this set of coordinates the non-vanishing metric’s entries are:

η+− = η−+ = −1, ηij = δij per i, j = 2, ..., D − 1

We saw, in the previous chapter, that the conformal gauge is a not complete
gauge and it admits a residual gauge because of the existence of at least one zero
mode of the P operator, therefore we had that the trasformations that put the
metric in the form hαβ = e2φηαβ are not uniquely identified. This residual gauge
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can be seen as a freedom on the choice of the coordinates on the world-sheet,
(σ+,σ−), indeed they can be consistently redefined as: σ± → σ± + ξ±(σ)±. In
terms of the parameters τ and σ, therefore we have:

τ → τ̃ =
1

2
[σ̃+(τ + σ) + σ̃−(τ − σ)]

σ → σ̃ =
1

2
[σ̃+(τ + σ)− σ̃−(τ − σ)]

We can notice that τ̃ is consistently a solution of the wave equation:


∂2

∂σ2
− ∂2

∂τ2


τ̃ = 0

then fixing the parameter τ̃ allows us to fix automatically σ̃ and therefore the
gauge becomes completely fixed. A possible choice of τ̃ is to take τ̃ ∝ X+.7

This is a consistent choice because also Xµ(σ, τ), in on-shell condition, has to
satisfy the same equation. From the equation (1.16) it is possible to determine
the proportionality constant obtaining:

X+ =
2πα′

l
p+τ

From this expression it is obvious that in the X+ directions all the oscillation
modes, except the zero mode, have to vanish8, therefore, consistently with the
previous solutions, we take:

α+
0 = α+

0 =


α′

2
p+ (closed string), α+

0 =
√
2α′p+ (open string)

In the light-cone gauge the action becomes:

S =
1

4πα′


dτdσ((Ẋi)2 − (X ′i)2)−


dτp+q̇− =


dτL

where qµ has been defined in the (1.17). The canonical momenta now are:

p− = −p+ =
∂L

∂q̇−

Πi =
∂L

∂Ẋi
=

1

2πα′ Ẋ
i

The canonical Hamiltonian becomes:

Hcan = p−q̇
− +

 l

0
dσΠiẊ

i − L =
1

4πα′

 l

0
dσ((Ẋi)2 + (X ′i)2)

Using now the constraints (Ẋµ ±X ′µ)2 = 0, we can express X− as a function of
the transverse coordinate Xi and we obtain:9

∂±X
− =

l

2πα′p+
(∂±X

i)2

7It can be shown that, in this gauge, the theory becomes unitary and can be described only
through physical degrees of freedom. It can be shown also that the ghosts decouple from the
physical Hilbert states space.

8Obviously the X± fields have to satisfy the corresponding boundary conditions for each
kind of string, in particular, for the open string, they has to satisfy the Neumann condition

9Let us specify that ∂± = ∂
∂σ± and not ∂

∂X±



2.2. LIGHT-CONE COORDINATES QUANTIZATION 19

By summing up now ∂+X
− and ∂−X

−, we obtain:

∂τX
− =

l

2πα′p+
((Ẋi)2 + (X ′i)2)

and knowing that pµ = 1
2πα′


dσẊµ, we find:

p− =
l

2πα′p+
Hcan (2.4)

For the closed string, by subtracting ∂+X
− and ∂−X

−, and integrating in dσ, we
can obtain:  l

0
dσX ′iΠi =

1

2πα′

 l

0
dσX ′iẊi X(0)=X(l)

= 0

This is the usual condition for the rigid σ-traslations in the closed string case.
The dynamical variables of the theory expressed with the light-cone coor-

dinates are finally: p−, q
−, Xi,Πi. Using now the oscillators expansion of the

previous chapter, let us impose the canonical commutation relations:

q−, p+


= −i


qi, pj


= iδij


αi
n,α

j
m


= nδijδn+m,0

αi
n,α

j
m


= nδijδn+m,0

We notice now that, writing the Hamiltonian as a function of the αµ
n operators,

we find the same ambiguity that we have already seen in the L0 expression. So, if
we define the Hamiltonian with the normal ordering prescription, we can obtain:

Hcan =
2π

l




n>0

(αi
−nα

i
n + αi

−nα
i
n) + a+ a


+

πα′

l
pipi (Closed Strings)

Hcan =
π

l



n>0


αi
−nα

i
n + a


+

πα′

l



NN

pipi +
1

4πα′l



DD

(xi1 − xi2)
2 (Open Strings)

where a and a are the usual normal ordering constant and the sum is done over
the NN and DD directions for the open string 10.
Let us now concentrate on the closed string and let us compute, with a partic-
ular mathematical trick, the normal ordering constant. We can thus now write
explicitly the normal ordered expression of the operators and put in evidence the
normal ordering constant that comes out from the non vanishing commutator:



n ∕=0

α−nαn =


n ∕=0

: α−nαn : +

+∞

n=1

n = 2

 ∞

n=1

α−nαn +
1

2

∞

n=1

n


(2.5)

We clearly see that in the last term, the second series diverges so it has to be
regolarized using a cut-off parameter for which we will take the limit at infinity.
But let us now for a moment consider the following series

∞
n=1 n

−s ≡ ζ (s), i.e.
the definition of the Riemann Zeta-function. The zeta-function converges when

10It can be shown that the number mode n for the NN and DD conditions can assume only
integer values, while for the mixed conditions DN and ND it can assume only semi-integer values
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ℜ(s) > 1 but it admits a unique analytic extension at s = −1 and it can be shown
that ζ(−1) = − 1

12 . A more general expression of the analytic extension of the
zeta-function given by:

∞

n=0

(n+ q)−s = ζ (−1, q) = − 1

12


6q2 − 6q + 1



By taking now the equation (2.4), the Hamiltonian in the light-cone gauge and
the mass operator, m2 = 2p+p− − pipi, we can compute for a closed string11:

m2 = m2
L +m2

R

with

α′m2
L = 2



N tr −
1

24
(d− 2)

  
=a



 , α′m2
R = 2


Ntr −

1

24
(d− 2)



and
m2

L = m2
R

From this results we obtain again:

Ntr = N tr

where this time the level-matching condition take into account only the transverse
directions. The final formula that we can compute for the mass operator of a
closed string is:

α′m2 = Ntr −
d− 2

24
(2.6)

We can now use this general formula to compute the mass spectrum of every
string physical state and that is what we are going to discuss in the next section.

2.3 String Spectrum

We have seen in the previous section that, in the light-cone gauge, the string
oscillation states are obtained when the transverse creation operators act on the
ground state. The excitated states must clearly remain invariant under a subgroup
of the d-dimensional Lorentz group, called Little Group. In the case of a massive
particle, it is always possible to choose a Lorentz boost in order to go to its rest
frame, i.e. where pµ = (m, 0, ..., 0) , with p2 = −m2, therefore the little group
for this kind of particles will be the isotropy group of the momentum pµ, i.e.
SO(d − 1). This means that, for a massive particle, we can label every possible
excitation with the irreducible representation of the SO(d− 1) group. We can do
the same argument for a massless particle, for which now the Lorentz boost can
only take us in the frame where pµ = (E, 0, ..., E), with p2 = 0. The little group
for a massless particle will be then E(d−2), i.e. the (d−2)-dimensional Euclidean
group. The real group of isostropy, in this case, will not be the entire Euclidean
group, but only the subgroup that is connected to the identity transformation,

11We have to remember that the canonical Hamiltonian is identically null
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i.e. SO(d − 2). Now let us concentrate on the Lorentz invariance of the theory,
in particular, let us compute the normal ordering constant a and the dimension
of the ambient space-time d.

Let us write the generators of the Lorentz algebra using the creation and
annihilation operators αµ

n:

Mµν = xµρν − xνpµ − i

∞

n=1

1

n


αµ
−nα

ν
n − αν

−nα
µ
n



Those have to satisfy the commutation relation for the generators:

[Mµν ,Mρσ] = ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ

Choosing now the light-cone gauge and taking the commutator betweeen M i−

and M j−, it can be shown that the results is:

0 =

M−i,M−j


=

1

αp+2

∞

n=1


αi
−nα

j
n − αj

−nα
i
n


·

n


1− (D − 2)

24


+

1

n


D − 2

24
+ a



and this is true ∀n ∈ Z+ if and only if:

D = 26, a = −1

Let us now consider the closed string spectrum. We see that, in this case, we have
both left and right excitation states, so the final complete excited state will be the
tensor product of the single left and right representation. Clearly, because of the
level-matching condition, the left and right states must have the same excitation
number.
The equation for the closed string mass spectrum is:

α′m2 = 4(Ntr − a)

When Ntr = 0, namely when we consider the ground state, we notice that a
Tachyon appear12, namely a particle with negative squared mass. Its value is:
α′m2 = −4a.
As we said right above, we can write the first excited state as the action of both
left and right creation operators on vacuum state, i.e. αi

−1α
j
−1 |0〉. The value of

the mass corresponding to this state is: α′m2 = 4(1 − a). If we decompose it in
the different irreducible representations of the SO(d− 2) group, we obtain:

αi
−1α

j
−1 |0, p〉 =


α
(i
−1α

j)
−1 −

1

d− 2
δijαk

−1α
k
−1



  
Traceless Symmetric Tensor

|0, p〉+ α
[i
−1α

j]
−1  

Antisymmetric Tensor

|0, p〉+

+
1

d− 2
δijαk

−1α
k
−1

  
Singlet

|0, p〉

12This is actually a problem of the bosonic string theory, indeed, when we will consider
Superstrings, Tachyons will not appear in its mass spectrum.
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Taking now D = 26 and a = 1, we can identify the traceless symmetric tensor
as a massless particle with spin 2, called Graviton, the scalar term as a scalar
massless field called Dilaton, and finally the last part as an antisymmetric tensor
field. The Regge trajectory for closed string now becomes jmax = 1

2α
′m2 + 2.
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2.4 Appendix: the Virasoro Algebra

In this appendix we will explicitly compute the algebra satisfied by the Virasoro
generators. We notice that we will use the euclidean metric as our conventional
metric, therefore we won’t have to distinguish between upper and lower indices.
Let us start computing the useful commutator:


αi
m, Ln


=

1

2

+∞

p=−∞


αi
m, : αj

pα
j
n−p :



Let us drop the normal ordering symbol because αi
m obviously commutes with

complex numbers. Use the commutators’ property [A,BC] = [A,B]C +B [A,C]
we get:


αi
m, Ln


=

1

2

+∞

p=−∞


αi
m,αj

p


αj
n−p + αj

p[α
i
m,αj

n−p]


=
1

2

+∞

p=−∞


δm+pα

j
n−p + αj

pδm+n−p


mδij = mαi

m+n

Let us now compute:

[Lm, Ln] =
1

2

+∞

p=−∞


: αi

pα
i
m−p :, Ln


=

1

2

0

p=−∞


αi
pα

i
m−p, Ln


+

1

2

+∞

p=1


αi
m−pα

i
p, Ln



=
1

2

0

p=−∞


(m− p)αi

pα
i
m+n−p + pαi

n+pα
i
m−p



+
1

2

+∞

p=1


(m− p)αi

m+n−pα
i
p + pαi

m−pα
i
n+p



Let us now change variable in the second and fourth term, so let us define q = p+n:

[Lm, Ln] =
1

2

 0

p=−∞
(m− p)αi

pα
i
m+n−p +

n

q=−∞
(q − n)αi

qα
i
m+n−q

+

+∞

p=1

(m− p)αi
m+n−pα

i
p +

+∞

q=n+1

(q − n)αi
n+m−qα

i
q



Considering now n > 0 (the n ≤ 0 case is analogous), we can get, working a little
bit on the series:

[Lm, Ln] =
1

2

 0

q=−∞
(m− n)αi

qα
i
m+n−q +

n

q=1

(q − n)αi
qα

i
m+n−q

+

+∞

q=n+1

(m− n)αi
m+n−qα

i
q +

n

q=1

(m− q)αi
m+n−qα

i
q



We notice now that all terms are already normal ordered except for the second
term, so let us compute the expression of the second term only:

n

q=1

(q − n)αi
qα

i
m+n−q =

n

q=1

(q − n)αi
m+n−qα

i
q +

n

q=1

(q − n) qdδm+n
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where we have used the fact that δii = d. Now we can then write:

[Lm, Ln] =
1

2

+∞

q=−∞
(m− n) : αi

qα
i
m+n−q : +

1

2
d

n

q=1


q2 − nq


δn+m

Using now the formulas:

n

q=1

q2 =
1

6
n (n+ 1) (2n+ 1) and

n

q=1

q =
1

2
n (n+ 1)

we finally obtain the Virasoro algebra:

[Lm, Ln] = (m− n)Lm+n +
d

12
m


m2 − 1


δm+n

We notice, as we said previously, that the central charge is exactly c = d, where d
is the space-time dimension. Clearly the proof would have also worked using the
Minkowski metric and the central charge would have been c = ηµµ = d.
In order to find the exact value of the dimension of the ambient space-time, we
can consider another important interpretation of the central charge and this is
connected to the fact that Weyl invariance is anomalous at quantum level. When
we try to quantize the theory through a Path Integral quantization and to fix the
gauge of reparametrizations and the Weyl invariance, we need to introduce two
anti-commuting scalar fields, called ghosts. It can be shown that the algebra of
the creation and annihilation operators of the ghost fields it is exactly the Virasoro
algebra with a central charge cgh = −26. If we now consider a theory made of
bosonic fields and ghost fields, and we compute the Virasoro algebra, considering
the ghosts contributions to the Virasoro generators, we obtain that the central
charge term (that we can for simplicity call "anomaly") cancels out if and only
if c = d = −cgh = 26, that was exactly the value we computed by requiring
the Lorentz invariance of the theory. Therefore what we obtained is that ghosts
contributes to the Weyl anomaly but, choosing the correct number of dimensions
of our space-time, i.e. the number of our bosonic fields, we can preserve the Weyl
invariance also at quantum level, making the anomaly vanish.



Chapter 3

Introduction to Conformal Field
Theory

In this chapter we would like to introduce conformal field theory (CFT) which
is the main tool we can use to study the perturbative string theory. Feynman
diagrams in string theory are substituted by some surfaces with a suitable topology
that are fundamental to compute the scattering amplitude of the string processes.
That is because, in practice, the mechanism of computing scattering processes,
as we will see more in detail later, consists in computing the correlation functions
of a certain type of CFT defined on this particular surfaces. For this reasons we
will concentrate firstly on CFTs defined on the most simple surface we can take:
the complex plane.

3.1 General introduction

Under a general coordinate trasformation, the metric transforms as:

gµν −→ g′µν(x
′) =

∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x)

Let us now consider a subgroup of this kind of transformations that leaves the
metric invariant up to a rescaling, namely:

g′µν(x
′) = Ω(x)gαβ(x)

Those transformations are called Conformal Transformations. We notice that the
Poincaré group, for flat space-time only, is a subgroup of the group of the confor-
mal transformations, indeed we can obtain it by imposing Ω(x) = 1.
In string theory we are interested in 2-dimensional conformal transformations be-
cause the 2-dimensional conformal field theory is the theory that describes the
dynamic of the string world-sheet. Let us take a general infinitesimal trasforma-
tion x′µ = xµ + µ. The metric will thus transform as:

δgµν = −(∂λµgλν + ∂λνgλµ)− λ∂λgµν

Taking now the flat euclidean metric we obtain that the first correction in  of the
metric is δµν → δµν − (∂µεν + ∂νεµ). Now if we require that we are acting with
conformal transformations, we expect that the variation must be proportional to
the flat metric itself, namely:

∂µεν + ∂νεµ = f (x) δµν

25
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The function f(x) can be found contracting both sides by δµν :

f(x) =
2

d
(∂ · )

so the final equation for the metric variation becomes:

∂µν + ∂νµ =
2

d
(∂ · )δµν (3.1)

Acting now with ∂µ on both sides we can obtain:

□ν +


1− 2

d


∂ν(∂ · ) = 0 (3.2)

Acting this time with □ on the equation (3.1) we can obtain another useful ex-
pression:

∂µ□ν + ∂ν□µ =
2

d
δµν□(∂ · )

Now, combining this equation with the previous equation (3.2), we can finally
obtain the constraint equation for the parameter :

[δµν□+ (d− 2)∂µ∂ν ]∂ ·  = 0

The last equation we will need can be obtained by contracting with δµν the pre-
vious equation, namely:

(d− 1)□(∂ · ) = 0

For d > 2 we can see that (∂ · ) has to satisfy the equations:

□(∂ · ) = 0

∂µ∂ν(∂ · ) = 0

therefore it can be at most a linear function of xµ, namely: (∂ · ) = A + Bxµ.
From this result it is clear that instead µ will be a quadratic function in xµ,
therefore its general expression will be:

µ = aµ + bµνx
ν + cµνρx

νxρ

It can be shown now that the only possible solutions we can get are:

1. µ = aµ, where aµ is constant. This corresponds to constant traslations.

2. µ = ωµ
νx

ν where ωµ
ν is an antisymmetric tensor. This corresponds to

infinitesimal Lorentz trasformations.

3. µ = λxµ, λ ∈ C. This corresponds to scale trasformations.

4. µ = bµx2 − 2xµ(b · x). This kind of transformations are called special con-
formal transformations. In this case the corresponding finite trasformations
are: xµ → x′µ = xµ+x2aµ

1+2x·a+2x2a2

This set of transformations forms the d-dimensional conformal group which, it
can be shown, is isomorphic to the SO(2, d) group.
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Let us now see what happens if we take d = 2. By taking the the euclidean
flat metric, the equation (3.1) reduces to:

∂11 = ∂22 (3.3a)
∂12 = −∂21 (3.3b)

Defining then a new set of variables z, z = x1± ix2 and ,  = 1±2 the equations
in (3.3) becomes:

∂ = 0 ∂ = 0

where we have defined ∂ ≡ ∂z. This means that  can be an arbitrary function
of z but independent from z and viceversa the . It follows that the conformal
transformations for d = 2 are exactly the analytic coordinate transformations.
We can then write:

(z) = −


anz
n+1

and the generators corresponding to this kind of transformations are:

Ln = −zn+1∂z

It can be shown that this generators satisfy the following relations:

[Ln, Lm] = (m− n)Lm+n
Ln, Lm


= (m− n)Lm+n

Ln, Lm


= 0

but this is exactly the Virasoro algebra that we derived in Chapter 1.
What we can conclude therefore is that, in d = 2 and for an euclidean flat metric,
the conformal transformations group is an infinite-dimensional group and the
algebra of the conformal transformations group is the Virasoro algebra.

3.2 Radial Quantization

Let us now introduce the basical concepts of CFT. We found previously that, only
for the Euclidean flat metric, the Poincaré group is a subgroup of the conformal
group and, in d = 2, the algebra of the conformal group is the Virasoro algebra. It
is indeed more useful to work with a flat Euclidean metric, so what we have to do
is to make an analytic continuation of the world-sheet metric from Minkowskian
to Euclidean. Let us therefore consider a Wick rotation, i.e. τ → −iτ , or, for the
light-cone coordinates, σ± = τ ± σ → −i(τ ± iσ).
We can define complex coordinates on the cylinder of circumference l (namely the
world-sheet of a free closed string):

w = τ − iσ

w = τ + iσ
with w ∼ w + l

and then define the map from the cylinder to the complex plane via conformal
transformation:

z = e
2π
l
w = e

2π
l
(τ−iσ) (3.4a)

z = e
2π
l
w = e

2π
l
(τ+iσ) (3.4b)



28 CHAPTER 3. INTRODUCTION TO CONFORMAL FIELD THEORY

We see also that σ-traslations become rotations and τ -traslations become scale
trasformation. An important point to stress is that now the time-ordering oper-
ator is replaced by the radial-ordering operator defined as1:

R(φ1(z)φ2(w)) =


φ1(z)φ2(w) for |z| > |w|
φ2(w)φ1(z) for |w| > |z|

We can then define the equal radius commutator as:

[φ1(z),φ2(w)]|z|=|w| = lim
δ→0

{φ1(z)φ2(w)|z|=|w|+δ − φ2(w)φ1(z)|z|=|w|−δ} (3.5)

We notice now that lines at equal time τ are mapped into circles around the origin,
for this reason the integration over σ will be now the contour integral around the
origin, namely:  

dσB,A


=



Cw

dzR(B(z)A(w)) (3.6)

The main objects with which we build a conformal field theory are the confor-
mal fields, also called Primary Fields, φ(z, z). Under a generic conformal trasfor-
mation z → z′ = f(z), z → z′ = f(z), primary fields transform as tensors:

φ(z, z) → φ′(z′, z′) =


∂z′

∂z

−h∂z′

∂z

−h

φ(z, z)

Under infinitesimal transformations z′ = z + ξ(z), z′ = z + ξ(z) we obtain then:

φ(z, z) → φ′(z, z) = φ(z, z) + δξ,ξφ(z, z)

with:
δξ,ξφ(z, z) = −(h∂ξ + h̄∂̄ξ̄ + ξ∂ + ξ̄∂̄)φ(z, z) (3.7)

where we defined ∂ ≡ ∂
∂z and ∂ ≡ ∂

∂z . h and h are2 called conformal weight of φ
under analytic and anti-analytic transformations. Tensors with h = 0 (or h = 0)
are called holomorphic (or anti-holomorphic) tensors.
Fields that are functions purely of z or z are called Chiral Fields3. We notice also
that (anti-)chiral fields have to transform necessarily with h = 0 (h = 0). We
can now link chiral fields4 on the cylinder and chiral fields on the complex plane
through the expression:

φplane(z) =


l

2π

h

z−hφcyl(w) (3.8)

If now φcyl admit a mode expansion, we can write:

φcyl(w) =


2π

l

h 

n∈Z

φne
− 2π

l
nw

and substituting this expression into (3.8), we obtain:

φplane(z) =


n∈Z

φnz
−n−h (3.9)

1For anti-commuting fields there will be a relative minus sign
2Note that h is not the complex-conjugate of h
3This is clear from (3.4) where we see that z = f(σ−) and z = f(σ+)
4The generalization to arbitrary primary fields is immediate
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From now on we will consider all the fields as fields defined on the complex plane.
The inverse of the equation (3.9) is:

φn =



C0

dz

2πi
φ (z) zn+h−1 (3.10)

where C0 is an arbitrary contour around the origin and the integration is coun-
terclockwise.
Let us now have a look at the stress-energy tensor for the conformal field theory.
We saw in Chapter 1 that, for a conformally invariant theory, the stress-energy
tensor is traceless, i.e Tα

α = 0. Expressed in the light-cone coordinates σ± and
then in the conformal coordinates, we obtain:

Tzz = 0

The energy-momentum conservation becomes:

∂zTzz = 0 ∂zTzz = 0

so we can use the notation T (z) ≡ −2πTzz(z) and T (z) ≡ −2πTzz(z). T and T
are therefore chiral and anti-chiral fields respectively.
Analogously to what we saw in the first chapter, if T (z) is conserved, also ξ(z)T (z)
is a conserved quantity5, therefore we have an infinite number of conserved charges
and this is related to the fact that the conformal algebra in two dimensions
is infinite-dimensional. The conserved charge related to the conserved current
ξ(z)T (z) is:

Tξ =



C0

dz

2πi
ξ(z)T (z)

which generates the infinitesimal conformal transformation z → z′ = z + ξ(z).
This means that we can write:

δξφ(w) = −[Tξ,φ(w)]

Using now the definition (3.5) we obtain:

δξφ(w) = −


|z|>|w|

dz

2πi
ξ(z)T (z)φ(w) +



|z|<|w|

dz

2πi
ξ(z)φ(w)T (z)

= −


Cw

dz

2πi
ξ(z)T (z)φ(w)

where Cw is a contour encircling the point w.
Comparing this result6 with the expression in (3.7), taking ξ̄ = 0 and using the
Cauchy-Riemann formula:



Cz

dw

2πi

f(w)

(w − z)n
=

1

(n− 1)!
f (n−1)(z)

we find that the R-ordered operator product with T (z) is:

T (z)φ(w) =
hφ(w)

(z − w)2
+

∂φ

(z − w)
+ finite terms (3.11)

5We should write ξ(z)zTzz(z)
6Remember the identity [


dσB,A] =


dzR(B(z)A(w))
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this is the operator product expansion (OPE) between the stress-energy tensor
and our conformal field. Notice that this equation can be used to define a primary
field with conformal weight h.
Analogously we can use the property:

[δξ1 , δξ2 ] = δ(ξ2∂ξ1−ξ1∂ξ2)

and find:

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
+ finite terms (3.12)

This expression can be rewritten in this way:

δξT (z) = −2∂ξ(z)T (z)− ξ(z)∂T (z)− c

12
∂3ξ(z)

We see that the stress-energy tensor transforms as a chiral tensor of weight two
under those transformations for which ∂3ξ(z) = 0. Classically we have that c = 0
while, as we will see later, here we have that c ∕= 0. This fact represents the
so called Conformal Anomaly, which is a purely quantum mechanical effect. We
conclude that the stress-energy tensor is not a primary field while instead it is
called a Quasi-Primary Field. This argument is related to the anomaly in the
Virasoro algebra, indeed we will now show the equivalence between the OPE of
T (z)T (w) and the Virasoro algebra with central charge c. Let us expand T (z) in
modes:

T (z) =


n

z−n−2Ln

The inverse relation becomes:

Ln =


dz

2πi
zn+1T (z) (3.13)

where the Ln’s are the Virasoro generators.
We remark that for chiral fields with conformal weight h, the hermitian conjugate
is defined as:

[φ(z)]† = φ†

1

z


1

z2h

and in general for the modes we have:

(φ†)−n = (φn)
†

We see now that, being T (z) Hermitian, the Virasoro generators satisfy the Her-
micity condition:

(Ln)
† = L−n

The Virasoro algebra can be obtained from the equation:

[Lm, Ln] =



C0

dw

2πi



Cw

dz

2πi
zm+1wn+1


c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)



=
c

12
m


m2 − 1


δn+m,0 + (m− n)Lm+n

It can be also shown that the holomorphic and anti-holomorphic algebras com-
mute:

[Ln, Lm] = 0
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As we see in (3.13), Ln is associated to the corresponding infinitesimal transfor-
mation ξ(z) = −zn+1, therefore the generators L0, L1, L−1 will generate the in-
finitesimal transformation δz = α+βz+γz2. Those are the generators of sl(2,C),
the maximal closed finite dimensional subalgebra of the Virasoro algebra. The
corresponding finite trasformation of the three generators are:

L−1 : z −→ z + α Translations
L0 : z −→ λz Scalings

L+1 : z −→ z

1− βz
Special Conformal

This SL(2,C) group is actually called the Special Restricted Conformal Group.
The finite transformations can be summarized in the following general expression:

z −→ z′ =
az + b

cz + d
(3.14)

with: 
a b
c d


∈ SL(2,C)

We notice that the conformal transformation in (3.14) does not change if we
substitute (a, b, c, d) → (−a,−b,−c,−d), so the actual conformal group we are
dealing with is PSL(2,C) = SL(2,C)/Z2. This group is the conformal group
which we will refer to because it is the only group of globally defined invertible
conformal mappings of the Riemann sphere onto itself.

3.3 The Correlation Functions

What we would like now to introduce are the correlation functions in the CFT.
The correlation functions are the vacuum expectation values of the R-ordered
products of field operators, so, in order to derive their explicit form, we first
need to understand which are the symmetries that they have to satisfy. Let us
try to justify that the global conformal group we are interested in is exactly the
SL(2,C) group. We have to require the regularity of the stress-energy tensor for
the in-vacuum asymptotic state |0〉 :

lim
z→0

(τ→−∞)



n∈Z

Lnz
−n−2 |0〉 = regular

We see that this condition7 becomes the following condition for the Virasoro
generetors:

Ln |0〉 = 0 for n > −2

Analogously, for the out-vacuum asymptotic state 〈0|, what we get is that:

Ln 〈0| = 0 for n < 2

We see therefore that the only generators that satisfies the conditions above are
exactly the generators L−1, L0, L+1, namely the sl(2,C) generators are the only
ones that annihilate both the in and out-vacuum state.

7When T(z) is not regular then Ln must compensate this behaviour, indeed for n > −2 the
T(z) diverges, therefore Ln, for n > −2, must annihilate the in-vacuum state.
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We conclude thus that the vacuum state must be invariant under the action of
SL(2,C) and the same will be for every correlation functions.
A generic n-points correlation function of n primary fields φi with conformal
weight hi and hi can be written as:

G(n)(zi, zi) ≡ 〈R(φ1(z1, z1)...φn(zn, zn))〉 with i = 1, ..., n

We immediately see from the definition that it has to satisfy the following relation
for a generic conformal trasformation z → w(z):

〈φ1 (w1, w1) . . .φn (wn, wn)〉 =
n

i=1


dw

dz

−hi

w=wi


dw

dz

−hi

w=wi

〈φ1 (z1, z1) . . .φn (zn, zn)〉

Let us initially focus on the two-point correlation function. If we start from the
request of translational and rotational invariance, the generic two-points function
must depend on the modulus of the difference of the coordinate, namely rij =
|xi − xj |. With this first consideration, we can write:

〈φi(z, z)φj(w,w)〉 = Gij(z − w)−(hi+hj)(z − w)−(hi+hj)

Invariance under special conformal transformations require that hi = hj = h and
hi = hj = h. The final expression of the two-point correlation function is:

〈φ1(z1, z1)φ2(z2, z2)〉 =


C12

(z1−z2)2h(z1−z2)2h
if h1 = h2 = h and h1 = h2 = h

0 otherwise

where C12 is a constant which cannot be determined from SL(2,C) invariance
but it can be set to δ1,2 by choosing a suitable fields normalization. The same
arguments can be applied to the three-points function case and its expression will
be:

〈φ1 (z1, z1)φ2 (z2, z2)φ3 (z3, z3)〉 = C123
1

zh1+h2−h3
12 zh2+h3−h1

23 zh3+h1−h2
13

× 1

zh1+h2−h3
12 zh2+h3−h1

23 zh3+h1−h2
13

where we have defined zij ≡ (zi−zj) and zij = (zi−zj). Again C123 is a constant
that depends on the theory we are dealing with8.
For the four-points function things are more complicated. The explicit form of
the four-points function cannot be determined from symmetry properties because
we have another invariant term under special conformal transformations, that can
contribute. The Cijkl term will not be anymore just a constant, as we saw for
the two and three-point functions, but a generic function of this invariant objects
called Anharmonic Ratios. The anharmonic (or cross) ratio is defined as:

η =
zijzkl
zikzjl

with zij = (zi − zj)

8It can be shown that the three-points function always depends only on a single constant
that here we called C123.
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It can be shown that in two dimensions, for n-points functions, there are n − 3
independent cross ratios, therefore the four-points function has only one indepen-
dent cross ratio. The final expression for the four-points function will be then:

〈φ1(z1, z1)...φ4(z4, z4)〉 = f(η, η)

4

i<j

z
h/3−hi−hj

ij z
h/3−hi−hj

ij

where h =
4

i=1 hi and the same for h. Clearly this expression can be simplified
by taking certain physical condition, in particular, taking a single field φ with
conformal weight h = h, we can obtain:

〈φ1(z1, z1)...φ4(z4, z4)〉 = f(η, η)× [(z12z13z14z23z24z34)
−2/3h × c.c.]

where c.c. stand for complex conjugate term.

3.3.1 Descendant States

We saw previously that the vacuum state must belong to our Hilbert space and
therefore, requiring the regularity of the stress-energy tensor at the origin, it has to
satisfy the condition of being annihilated by Ln when n ≥ −1 for the asymptotic
in-state and n ≤ 1 for the asymptotic out-state.
Primary fields, when they act on the vacuum state, create asymptotic states,
namely the eigenstates of the Hamiltonian. In order to see how to build the
asymptotic states, let us start by computing, for a primary field φ(z, z) with
conformal weight (h, h), when n ≥ −1, the following commutator:

[Ln,φ (w,w)] =



Cw

dz

2πi
zn+1T (z)φ (w,w)

=



Cw

dz

2πi
zn+1


hφ (w,w)

(z − w)2
+

∂φ (w,w)

(z − w)
+ . . .



= h (n+ 1)wnφ (w,w) + wn+1∂φ (w,w)

(3.15)

and the antiholomorphic counterpart is analogous. If we now define the in-
asymptotic state as:

|h, h〉 ≡ φ(0, 0) |0〉

we see that:

L0 |h, h〉 = h |h, h〉 and L0 |h, h〉 = h |h, h〉

therefore |h, h〉 is consistently an eigenstate of the Hamiltonian. The asymptotic
state |h, h〉 is called Highest Weight State.
From (3.15), it is easy to see that:

Ln |h, h〉 = 0

Ln |h, h〉 = 0
if n > 0

Using now the expansion in (3.10), we can again compute the relation in (3.15)
and obtain:

[Ln,φm] = (n(h− 1)−m)φn+m

Taking n = 0 it then becomes:

[L0,φm] = −mφm (3.16)
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This means that the φm operators act as lowering and raising operators for the
eigenstates of L0, i.e. the asymptotic states, and increasing (or decreasing) their
conformal weight by m. Also L−m, for m > 0, acts in the same way, indeed,
considering the Virasoro algebra relation:

[L0, L−m] = mL−m

we see that it increase the conformal weight of the eigenstates of L0 by m.
What we can finally conclude is that if we act with the L−m operators on a generic
asymptotic state |h, h〉, we can obtain a sort of "excited states" that are usually
called Descendant States.

The asymptotic state, created by the action of a primary field on the vac-
uum state, is source of an infinite set of descendant states of higher conformal
dimension. We can indeed write:

L−n |h〉 = L−nφ (0)| 0〉 = 1

2πi


dzz−(n−1)T (z)φ (0) |0〉

The natural definition of a descendant field becomes:

φ(−n) (w) ≡ (L−nφ) (w) =
1

2πi



Cw

dz
1

(z − w)n−1T (z)φ (w) (3.17)

One simple example of descendant field is the stress-energy tensor. Indeed if we
now consider the identity operator and the level n = 2, what we obtain is:

(L−2 · 1) (w) =


Cw

dz

2πi

1

(z − w)
T (z) · 1 = T (w)

We see therefore that the stress-energy tensor is a 2-level descendant field of the
identity operator.
From the definition (3.17), expanding the terms in the integral with the usual
OPE of T with primary fields, we find that:

φ(0)(w) = hφ(w) and φ(−1)(w) = ∂φ(w)

The physical properties of this fields can be then derived from the corresponding
primary field, for example, let us consider the correlator:

〈(L−nφ)(w)X〉

where X = φ1(w1)...φN (wN ) is a product of N primary fields with conformal
weight hi each. It can be shown that:

〈φ(−n)(w)X〉 = L−n 〈φ(w)X〉 for n ≥ 1

with:
L−n ≡



i


(n− 1)hi
(wi − w)n

− 1

(wi − w)n−1∂wi



We see that for n = 1 we have −


i ∂wi and this is exactly equivalent to ∂w be-
cause the operator ∂w+


i ∂wi annihilates the correlator because of its invariance

under translations. We can also define in general:

φ(−k,−n) (w) = (L−kL−nφ) (w)

=
1

2πi



Cw

dz (z − w)1−k T (z) (L−nφ) (w)
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In particular we see that:

φ(0,−n) (w) = (h+ n)φ(−n) (w) and φ(−1,−n) (w) = ∂wφ
(−n) (w)

so we find again the role of L0 and L1 as generators respectively of dilations and
translations. It can be also shown that we have:

〈φ(−k1,...,−kn) (w)X〉 = L−k1 . . .L−kn〈φ (w)X〉

so what we can finally conclude is that correlation functions of descendant fields
can be reduced to correlation functions of primary fields.

3.4 Free Fields and Operator Product Expansion (OPE)

In this section we would like to find an useful method to obtain the OPE in
some kinds of CFTs that are relevant in a string and superstring context. More
specifically we will concentrate on the free boson and free fermion system. We
have found in the previous section the OPE of the stress-energy tensor acting on a
generic conformal field and on itself. What we would like now to do is to rederive
those expressions in an alternative way.

3.4.1 The Free Boson System

Let us start by studying the free massless boson case with the following action:

S =
1

2
g


d2x∂µφ∂

µφ

The equation of motion is:
∂∂φ = 0

Let us now compute explicitly the propagator. We can write the action in an
useful way:

S =
1

2


d2xd2yφ(x)A(x, y)φ(y)

where A(x, y) = −gδ(x − y)∂2, the propagator is then K(x, y) = A−1(x, y), or
equivalently it has to satisfy the equation:

−g∂2
xK(x, y) = δ(x− y)

If we require translational and rotational invariance then the propagator will be
a function of the radius r = |x − y|. By writing the previous equation in polar
coordinate (ρ,φ) and integrating on both sides between 0 and r, we obtain:

1 = 2πg

 r

0
dρρ


− 1

ρ

∂

∂ρ


ρ
∂K(ρ)

∂ρ



= 2πg


− r

∂K(r)

∂r



The solution is then:
K(r) = − 1

2πg
ln r + const.
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or equivalently:

〈φ(x)φ(y)〉 = − 1

4πg
ln (x− y)2 + const.

that in complex coordinates becomes:

〈φ(z, z)φ(w,w)〉 = − 1

4πg
[ln (z − w) + ln (z − w)] + const.

We can now consider only the holomorphic components of the two-points function
by taking the derivative respect to z and w. What we obtain is:

∂φ(z)∂φ(w) = − 1

4πg

1

(z − w)2

This expression can be interpreted as the OPE of this fields. We can notice that
if we exchange the two factors we have the same correlator, that is because the
fields we are considering are bosonic fields.

The stress-energy tensor of the system is:

Tµν =
∂L

∂∂µφ
∂νφ− ηµνL = g(∂µφ∂νφ− 1

2
ηµν∂ρφ∂

ρφ)

that in its quantum version, using complex coordinates, becomes:

T (z) = −2πTzz = −2πg : ∂φ(z)∂φ(z) : (3.18)

The normal ordering prescription is as usual taken into account in order to ensure
the vanishing of its vacuum expectation value. Let us now compute:

T (z)∂φ(w) = −2πg : ∂φ(z)∂φ(z) : ∂φ(w)

= −4πg : ∂φ(z)∂φ(z) : ∂φ(w) + ...

=
∂φ(z)

(z − w)2
+ ...

=
∂φ(w)

(z − w)2
+

∂2φ(w)

(z − w)
+ ...

We notice that we considered only the singular part of the complete expression
(namely the propagator) because it is the only term that contributes to the integral
as we can see from the equation (3.6). If we now use the equation (3.11) as a
definition of a primary field with conformal weight h, we understand that ∂φ is a
primary field with weight h = 1.
We can use the same argument in order to find the OPE of the stress-energy
tensor:

T (z)T (w) = 4π2g2 : ∂φ (z) ∂φ (z) :: ∂φ (w) ∂φ (w) :

=
1/2

(z − w)4
− 4πg : ∂φ (z) ∂φ (w) :

(z − w)2
+ . . .

=
1/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
+ . . .

and we clearly see that the stress-energy tensor is not a primary field because
of the presence of the anomalous term 1/2

(z−w)4
. Making the comparison between

this expression and (3.12), we understand that the central charge for a single free
bosonic field system is c = 1.



3.4. FREE FIELDS AND OPERATOR PRODUCT EXPANSION (OPE) 37

Vertex Operator There is now another bosonic primary field, besides the ∂φ
field, that can be constructed by exponentiating the scalar field φ. This kind
of field is usually called Vertex Operator. The definition of vertex operator thus
becomes:

Vk(z, z) =: eikφ(z,z) :

We can now easily find the OPE of the vertex operator with the bosonic field ∂φ:

∂φ(z)Vk(w,w) = − ik

4πg

Vk(w,w)

(z − w)
+ ...

Using this result, it can be shown that it is effectively a primary field by computing
the OPE of the stress-energy tensor acting on it. What we can found namely is
that:

T (z)Vk(w,w) =
k2

8πg

Vk(w,w)

(z − w)2
+

∂Vk(w,w)

(z − w)
+ ...

so we can conclude that the vertex operator is a primary field with conformal
weight:

h(k) = h(k) =
k2

8πg
(3.19)

The OPE with T is exactly analogous. Using the Wick’s theorem we can also
write another useful identity:

: eaφ1 :: ebφ2 :=: eaφ1+bφ2 : eab〈φ1φ2〉

and applying it to the vertex operator we can obtain:

Vα(z, z)Vβ(w,w) = |z − w|2αβ/4πgVα+β(w,w) + ... (3.20)

We remember now that the two-points correlation function of primary fields does
not vanish if and only if the two fields have the same conformal weight. This
means that:

h(α) = h(β) =⇒ α2 = β2

Furthermore we need to impose that the correlator does not grow with distance
and this leads to the condition α = −β9. This means that the equation (3.20)
becomes:

Vα(z, z)V−α(w,w) = |z − w|−2α2/4πg + ...

3.4.2 The Free Fermion System

Let us now make the same exercise for the free fermion case. The action of a free
Majorana fermion10 in two dimensions is:

S =
1

2
g


d2xΨ†γ0γµ∂

µΨ

where the Dirac gamma matrices11now are:

γ0 =


0 1
1 0


γ1 = i


0 −1
1 0



9It can be shown that, for the correlation function of several vertex operators, the more
general condition is


i αi = 0

10It can be shown that in d = 2, spinors can be real, i.e. there may exist Majorana spinors in
d = 2.

11Choosing ηµν = diag(1, 1), they have to satisfy the fundamental relation γµγν+γνγµ = 2ηµν
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Therefore we have that:

γ0γµ∂µ = γ0

γ0∂0 + γ1∂1


= 2


∂z 0
0 ∂z



If we now define Ψ = (ψ,ψ), the action becomes:

S = g


d2x


ψ∂ψ + ψ∂ψ



In this case the equations of motion are:

∂ψ = 0

∂ψ = 0

Again we want to compute the propagator, therefore, just like the case of the free
boson, we can write:

S =
1

2


d2xd2yΨ†

i (x)Aij (x, y)Ψj (y)

where A(x, y) = gδ (x− y)

γ0γµ


ij
∂µ and K(x, y) = A−1(x, y). The equation

for K(x, y) now becomes:

g

γ0γµ


ik
∂µKkj (x, y) = δ (x− y) δij

In complex coordinates it becomes:

2g


∂z 0
0 ∂z


〈ψ (z, z)ψ (w,w)〉 〈ψ (z, z)ψ (w,w)〉
〈ψ (z, z)ψ (w,w)〉 〈ψ (z, z)ψ (w,w)〉


=

1

π


∂z

1
z−w 0

0 ∂z
1

z−w



where we have used the identity for the delta ∂z
1
z = ∂ z

|z|2 = limε→0 ∂
z

|z|2+ε2
= 2πδ.

The solution of the equation above can be immediately written:

〈ψ (z, z)ψ (w,w)〉 = 1

2πg

1

(z − w)

〈ψ (z, z)ψ (w,w)〉 = 1

2πg

1

(z − w)

〈ψ (z, z)ψ (w,w)〉 = 0

From the correlation functions we just found above, we can write the OPE of the
fermionic field with itself:

ψ (z)ψ (w) =
1

2πg

1

(z − w)

We can notice that again the propagator reflects the fermionic nature of the fields,
indeed by exchanging the two factors we get a minus sign.
Let us now again compute the stress-energy tensor of the system. From the
definition:

T (z) = −2πTzz = −1

2
πT zz = −π

∂L

∂∂ψ
∂ψ = −πg : ψ(z)∂ψ(z) : (3.21)
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Let us then compute the OPE of the stress energy tensor acting on the fermion
ψ:

T (z)ψ(w) = −πg : ψ(z)∂ψ(z) : ψ(w)

=
1

2

ψ(z)

(z − w)2
+

1

2

∂ψ(z)

(z − w)
+ ...

=
1

2

ψ(w)

(z − w)2
+

1

2

∂ψ(w)

(z − w)
+

1

2

∂ψ(w)

(z − w)
+ ...

=
1

2

ψ(w)

(z − w)2
+

∂ψ(w)

(z − w)
+ ...

Therefore we see that the fermion ψ is a field with conformal dimension h = 1/2.
Let us compute again the OPE of the stress-energy tensor acting on itself:

T (z)T (w) = π2g2 : ψ(z)∂ψ(z) :: ψ(w)∂ψ(w) :

= ... =
1/4

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
+ ...

What we obtain is again that the stress-energy tensor is not a primary field
beacuse of the presence of the anomalous term (that is different from the one in
the bosonic case). We see that the central charge for the single free Majorana
fermion system now is c = 1/2.

3.4.3 The Ghost System

Another simple system that we can study is the ghost system. We are interested
in this kind of system because this is what we obtain when we transform the
Faddeev-Popov determinant (namely the Jacobian coming from the change of
variables in the metric integration measure) into the exponential of the action of
two anticommuting bosonic fields. The ghost action is:

S =
1

2
g


d2xbµν∂

µcν

where bµν is a symmetric traceless tensor and both bµν and cµ are anticommuting
fields. Their equation of motions are:

∂αbαµ = 0 ∂αcµ + ∂µcα = 0

that in holomorphic coordinates become:

∂b = 0

∂b = 0

∂c = 0

∂c = 0

∂c = −∂c

Again we can compute the ghost propagator by writing the action as:

S =
1

2


d2xd2ybµν(x)A

µν
α (x, y)cα(y)

with:
Aµν

α (x, y) =
1

2
gδναδ(x− y)∂µ
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where the 1
2 factor compensate the double counting in the sum of the indices (µ, ν)

because of the fact that bµν is a symmetric tensor. The propagator now has to
satisfy the equation:

1

2
gδµα∂

νKβ
µν(x, y) = δ(x− y)δαβ

that in complex coordinate12 becomes:

g∂zK
β
zz =

1

π
∂z

1

z − w
δβz

The solution of the equation is:

〈b(z)c(w)〉 = Kz
zz(z, w) =

1

πg

1

z − w
= 〈c(z)b(w)〉

where last equality is due to the fact that also Kα
µν(x, y) must be a symmetric

tensor in the (µ, ν) indices.
The stress-energy tensor of the ghost system is:

Tµν
(c) =

1

2
g(bµα∂νcα − ηµνbαβ∂αcβ)

and we see that it is clearly not symmetric. In order to put it in a completely
symmetric form we can use the Belinfante procedure by adding a term like ∂ρBρµν .
With some calculations what we can obtain is the completely symmetric stress-
energy tensor, called also Belinfante tensor:

Tµν
B =

1

2
g

bµα∂νcα + bνα∂µcα + ∂αbµνcα − ηµνbαβ∂αcβ



If we take µ = ν = z and remembering that T zz = 4Tzz we obtain that:

T (z) = πg : (2b∂c+ c∂b) :

We can now compute, just like we did previously, the OPE for the stress-energy
tensor acting on the ghost fields and on itself. After the usual calculations, re-
membering that the c and b ghost fields anticommute, we can obtain:

T (z)c(w) = − c(w)

(z − w)2
+

∂c(w)

(z − w)
+ ...

T (z)b(w) = 2
b(w)

(z − w)2
+

∂b(w)

(z − w)
+ ...

T (z)T (w) =
−13

(z − w)4
+ 2

T (w)

(z − w)2
+

∂T (w)

(z − w)
+ ...

We understand from this results that c and b are primary fields with conformal
weight h = −1 and h = 2 respectively. We also notice that the central charge for
a ghost system is c = −26, exactly the opposite value of the dimension of space-
time that we chose in Chapter 2 and this is not a coincidence. If we consider a

12Remember that the metric expressed with holomorphic coordinates has only out-diagonal
not null entries, namely gzz = gzz = 0.
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system made by 26 bosonic fields, namely in string theory the coordinates13 Xµ

with µ = 0, ..., 25, we find that the stress-energy tensor of the whole system is

Ttot(z) = Tgh(z) + 26 · Tbos(z) = 2
T (w)

(z − w)2
+

∂T (w)

(z − w)
+ ...

so it is finally a primary field because the anomaly has been removed. What we
can conclude is therefore that a string theory based on d = 26 is a consistent
theory because the conformal anomaly has been cancelled out and therefore all
the simmetries are preserved from classical to quantum level.
Let us now see another more physical interpretation of the central charge c. Let
us recall for a moment the infinitesimal transformation of the stress-energy tensor
under the transformation z′µ = zµ + :

δξT (z) = −2∂ξ(z)T (z)− ξ(z)∂T (z)− c

12
∂3ξ(z)

it can be shown that the corresponding finite transformation14 is:

T ′(w) =


dw

dz

−2
T (z)− c

12
{w; z}



where { ; } is called Schwarzian Derivative and it is defined as:

{w; z} =
d3w/dz3

dw/dz
− 3

2


d2w/dz2

dw/dz

2

We see that if we apply this transformation law to the conformal transformation
w = L

2π ln z we find that:

Tcyl(w) =


2π

L

2
Tplane(z)z

2 − c

24


(3.22)

If we assume that the vacuum expectiation value of the stress-energy tensor must
vanish on the plane, then we obtain that the vacuum expectation value of the
stress-energy tensor on the cylinder in not zero, in particular:

〈Tcyl(w)〉 = − π2c

6L2

The central charge is therefore proportional to the Casimir Energy.

3.5 Free Boson Quantization on the Cylinder

In Section 3.4 we analyzed different kinds of systems, in particular we focused
on the free Boson, Fermion and Ghosts systems. What we would like now to
introduce is the canonical quantization of the free boson system on a different
kind of surface respect to the plane: the cylinder. We know that the cylinder
and the plane are linked each other through conformal transformations and we
will use this correspondance to define the conformal generators and the vacuum
energies.

13But this is exactly the dimension of space-time
14It can be shown that this finite transformation is preserved in form from any transformation

of the SL(2,C) group
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Let us introduce a bosonic field φ(x, t) defined on a cylinder of circumference L
and flat Minkowski metric. What we initially require is that φ(x+L, t) = φ(x, t).
The Fourier representation of the field then becomes:

φ(x, t) =


n

e2πinx/Lφn(t)

φn(t) =
1

L


dx e−2πinx/Lφ(x, t)

The Lagrangian of the system becomes:

L =
1

2
g


dx ∂µφ(x, t)∂

µφ(x, t) =
1

2
g


dx [(∂tφ)

2 − (∂xφ)
2]

In terms of the Fourier coefficients becomes:

L =
1

2
gL



n


φ̇nφ̇−n −


2πn

L

2

φnφ−n



The conjugate momentum of φn is πn = gLφ̇−n and it satysfies the canonical
relation [φn,πm] = iδnm. The Hamiltonian is:

H =
1

2gL



n


πnπ−n + (2πng)2φnφ−n



We notice immediately that π†
n = π−n and similarly φ†

n = φ−n. The Hamiltonian
represent a sum of n decoupled harmonic oscillators with frequencies ωn = 2π|n|

L .
We know also that it can be as usual written in terms of the annihilation and
creation operators ãn and ã†n:

ãn =
1

4πg |n|
(2πg |n|φn + iπ−n)

but this expression of the operators does not work when n = 0. The problem can
be solved by introducing a new set of operators:

an =


−i

√
n ãn (n > 0)

i
√
−n ã†−n (n < 0)

ān =


−i

√
n ã−n (n > 0)

i
√
−n ã†n (n < 0)

with the commutation relations:

[an, am] = nδn+m [an, am] = 0 [an, am] = nδn+m

The Hamiltonian therefore becomes:

H =
1

2gL
π2
0 +

2π

L



n ∕=0

(a−nan + a−nan)

Computing the commutator:

[H, a−m] =
2π

L
ma−m

we understand that applying a−m to an eigenstate of the Hamiltonian, we obtain
another eigenstate with shifted energy E+2πm/L. In terms of constant operators,
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namely the operators a and ā computed at t = 0, the mode expansion field
becomes:

φ (x, t) = φ0 +
1

gL
π0t+

i√
4πg



n ∕=0

1

n


ane

2πin(x−t)/L − a−ne
2πin(x+t)/L



If we now perform a Wick rotation, i.e. t → −iτ , and use the conformal coordi-
nates z = e2π(τ−ix)/L and z = e2π(τ+ix)/L we can finally obtain:

φ (z, z) = φ0 −
i

4πg
π0 ln (zz) +

i√
4πg



n ∕=0

1

n


anz

−n + anz
−n



We know that in conformal field theory only ∂φ is a primary field so let us write
the holomorphic primary field we need:

i∂φ(z) =
1

4πg

π0
z

+
1√
4πg



n ∕=0

an z−n−1

We can now define the operators:

a0 = a0 =
π0√
4πg

(3.23)

and write in a compact way our primary field:

i∂φ(z) =
1√
4πg



n

an z−n−1 (3.24)

Analogously to what we saw in the closed string case, the operator an can be
interpreted as the creation or annihilation operator of the right-moving excitations
while the an operator, the counterpart for the left-moving excitations.

3.5.1 Compactified Boson

We can notice that the free boson Lagrangian is invariant under a shift of a
constant quantity of the bosonic field, namely φ → φ+ const., so we can impose
consistently a new boundary condition for the φ field:

φ(x+ L, t) = φ(x, t) + 2πmR

with m the winding number of the field configuration. We notice that here the
bosonic field has assumed the role of an angular variable because we restricted the
domain of variation of the field to a circle of radius R. After this considerations,
the new expression of the mode expansion of the field becomes:

φ(x, t) = φ0 +
n

gRL
t+

2πmR

L
x+

i√
4πg



k ∕=0

1

k


ake

2πik(x−t)/L − a−ke
2πik(x+t)/L



Performing now the Wick rotation and expressing everything in complex coordi-
nates what we obtain is:

φ(z, z) = φ0 − i


n

4πgR
+

1

2
mR


ln z +

i√
4πg



k ∕=0

1

k
akz

−k

− i


n

4πgR
− 1

2
mR


ln z +

i√
4πg



k ∕=0

1

k
akz

−k
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We can also write:

i∂φ(z) =


n

4πgR
+

1

2
mR


1

z
+

1√
4πg



k ∕=0

akz
−k−1

We can also write the expression of the L0 and L0 operators:

L0 =


n>0

a−nan +
1

2
a20 =



n>0

a−nan + 2πg


n

4πgR
+

1

2
mR

2

(3.25)

L0 =


n>0

a−nan +
1

2
a20 =



n>0

a−nan + 2πg


n

4πgR
− 1

2
mR

2

(3.26)

We notice that the second term represent now the new conformal dimension of
the vacuum state15. We can therefore now label the vacuum state with the state
|n,m〉, with its conformal dimension:

hn,m = 2πg


n

4πgR
+

1

2
mR

2

annihilated by all the a−n operators with n > 0. We should notice that the state
|k, n,m〉 is the state generated by acting with the vertex operator Vk(z, z̄) on |0〉,
where the momentum k is quantized16.

3.6 Free Fermion Quantization on the Cylinder

Let us now quantize, analogously to what we have done in the free boson case, a
free fermion system on the cylinder. In this case the action will be:

S =
1

2
g


d2x Ψ†γ0γµ∂µΨ

where Ψ = (ψ, ψ̄). Now, just like we did for the boson case, let us write the Fourier
mode expansion of the fermionic field that lives on a cylinder of circumference L:

ψ(x, t) =


2π

L



k

bk e2πik(x−t)/L

with the operators of creation and annihilation bk that obey to the anticommu-
tation relation:

{bk, bq} = δq+k,0 (3.27)

Making the usual Wick rotation of the time variable and defining w = τ − ix, we
get the holomorphic fermionic field expression:

ψ(w) =


2π

L



k

bk e−2πkw/L

We can now notice that there are two possible choices of boundary conditions for
the fermionic field, that are compatible with the Action:

ψ(x+ L, t) ≡ ψ(x, t) Ramond Sector (R)
ψ(x+ L, t) ≡ −ψ(x, t) Neveau-Schwarz Sector (NS)

(3.28)

15Indeed this is the eigenvalue of the L0 operator.
16This can be easily verified by looking at (3.19) and noting that h is quantized, since n,m ∈ Z
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In order to take into account the antiperiodicity of the fermionic field, in the NS
sector, k takes half-integer values, i.e. k ∈ Z + 1

2 , while in the R sector, as usual,
it takes integer value, i.e. k ∈ Z.
The Hamiltonian could be written in general as:

H =


k>0

ωk b−kbk + E0 ωk =
2π|k|
L

where E0 is a constant having the meaning of a vacuum energy.
We can now see that in the R sector there exists a zero-mode operator b0 that
does not contribute to the Hamiltonian and therefore leads to a degeneracy of the
vacuum state. If we consider indeed the b0 |0〉 state, we clearly see that it has the
same energy of the vacuum state and it is annihilated from all the annihilation
operator because of the relation (3.27). Using again the relation (3.27), we can
find that b20 =

1
2 .

Let us now map the fermionic field from the cylinder to the plane. This map
is given by the relation z = e2πw/L. Remembering now that the conformal weight
of the fermionic field is h = 1

2 , what we obtain is that:

ψplane(z) =


dw

dz

1/2

ψcyl(w) =


L

2πz
ψcyl(w)

The final mode expansion of the field on the plane becomes then:

ψ(z) =


k

bk z−k−1/2 (3.29)

From this expression we can notice that the meanings of the two types of boundary
conditions has been interchanged, indeed:

ψ(e2πiz) = ψ(z) NS Sector

ψ(e2πiz) = −ψ(z) R Sector

Let us compute now the two-point function on the complex plane for each kind
of sector. If we consider first the NS sector, we have:

〈ψ(z)ψ(w)〉 =


q,k∈Z+ 1
2

〈bkbq〉 z−k−1/2w−q−1/2

=


k∈Z+ 1
2
, k>0

z−k−1/2wk−1/2

=

∞

n=0

1

z


w

z

n

=
1

z − w

and that is consistent to what we found in Section (3.4.2). If we consider secondly
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the R sector, we have:

〈ψ(z)ψ(w)〉 =


q,k∈Z

〈bkbq〉 z−k−1/2w−q−1/2

=
1

2
√
zw

+

∞

k=1

z−k−1/2wk−1/2

=
1√
zw


1

2
+

∞

k=1


w

z

k

=
1√
zw

z + w

2(z − w)

=
1

2


z/w +


w/z

z − w

We notice that this result coincide with the previous one by taking the z → w
limit. This means that the behaviour of the theory at short distances is indepen-
dent of the boundary conditions.
We can now compute the stress-energy tensor in the two types of sectors. Starting
from the NS sector, we can write the expression of the strees-energy tensor:

T (z) = −πg : ψ (z) ∂ψ (z) :

that trivially gives, usign the normalization g = 1/2π:

〈T (z)〉 = 1

2
lim
ε→0


−〈ψ (z + ε) ∂ψ (z)〉+ 1

ε2


= 0 (3.30)

In the R sector we have instead:

〈T (z)〉 = 1

2
lim
w→z


−1

2
∂w


z/w +


w/z

z − w


+

1

(z − w)2



=
1

16z2

(3.31)

We can now turn back to the cylinder and compute the vacuum expectation value
of the stress-energy tensor. It can be easily shown, using the equation (3.22),
that:

〈Tcyl(z)〉 =






− 1
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2π

L

2

NS Sector

1

24


2π

L

2

R Sector

3.7 Affine Current Algebras

In Sections (3.4.1) and (3.4.2) we discussed the free boson and fermion systems. In
both cases we computed explicitly the stress-energy tensor but there may be also
conserved currents that we didn’t compute directly. These currents thus satisfy
the following equations:

∂µJµ = 0 µν∂µJν = 0
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Using complex coordinates, the equations above give us the (anti-)holomorphicity
conditions:

∂zJz̄ = 0 ∂z̄Jz = 0

If we now consider the whole set of holomorphic conserved currents of the theory,
we can write the most general OPE of them compatible with their properties,
namely:

Ja(z)Jb(w) =
Gab

(z − w)2
+

ifab
cJ

c(w)

z − w
+ finite

where Gab and fab
c are respectively symmetric and antisymmetric in the a and

b indices. By writing the OPE product expansion of Ja(z)Jb(w)Jc(y) and using
the associativity property, it can be shown that fabc = fab

d Gdc is completely
antisymmetric and satisfy the Jacobi identity. We understand therefore that fabc

are the structure constants of a Lie algebra g with invariant Killing metric Gab.
If we now expand the currents:

Ja(z) =


n

Ja
n z−n−1 (3.32)

Ja
n =



C0

dz

2πi
znJa(z) (3.33)

where C0 is an arbitrary contour taken anticlockwise around z = 0, we can com-
pute the following commutator:

[Ja
n , J

b
m] = m Gabδn+m,0 + ifab

c J
c
n+m (3.34)

We immediately see that this algebra ĝ is an infinite-dimensional generalization
of the Lie algebra g and it is called Affine or Current Algebra. We can also notice
that the algebra of the zero modes Ja

0 is exactly the algebra g with fab
c structure

constants.
The currents Ja, having conformal weight h = 1, are necessary primary field

in a positive theory. The OPE with the stress-energy tensor therefore will be:

T (z)Ja(w) =
Ja(w)

(z − w)2
+

∂Ja(w)

z − w
+ finite

Let us now consider a simple group G. If we perform an opportune change of
basis, we can set the Killing metric as Gab = kδab, where k is called the level of
the affine algebra ĝk. We can notice now that, writing the operator:

TG(z) =
1

2(k + h̃)
: Ja(z)Ja(z) :

it satisfies the Virasoro algebra with central charge cG = kDG

k+h̃
, where h̃ is called

Dual Coxeter Number17 of G and DG is the dimension of the G group. The TG(z)
operator is called Sugawara affine stress-energy tensor..
In order to build the representations of the affine algebra ĝ, we can take a set
of states |Ri〉 that transforms in the representation R of the zero-mode current
subalgebra and is annihilated by all the positive modes of the currents, namely:

Ja
m>0 |Ri〉 = 0 Ja

0 |Ri〉 = (T a
R)ij |Rj〉 (3.35)

17For SU(N) it is h̃ = N , while for SO(N) it is h̃ = N − 2.
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The states |Ri〉 are generated by local operators Ri(z, z̄) acting on the vacuum
state. We notice that there is a parallelism between the Virasoro algebra and
the affine current algebra. Indeed we can see that currents play the role of the
Virasoro generators Ln and the Ri(z, z̄) operators play the role of the primary
field φn modes operators.
Using now the expression of the current modes in (3.33), the (3.35) relation be-
comes:

Ja(z)Ri(w, w̄) =
(T a

R)ij
z − w

Rj(w, w̄) + finite (3.36)

This can be seen as the definition of Affine Primary Fields, exactly analogously
to what we did in the case of the Virasoro algebra. From the (3.36) expression, we
can compute the conformal weight of the Ri(z, z̄) operators from the Sugawara
affine stress-energy tensor expression:

∆R =
CR

k + h̃

where CR is the quadratic Casimir of the representation R of the G group.



Chapter 4

String Perturbation Theory

In this chapter we will present how scattering amplitudes in String Theory are
defined and we will study some of the possible surfaces that describe the World-
sheet of such processes. The surfaces on which we will focus will be, in particular,
the Sphere and the Torus. We will introduce also the concepts of Low-Energy
Effective Action and Non-Linear σ−Model.

4.1 String Perturbation Expansion

In QFT we are used to compute the physical quantities of our interest by ex-
panding them in powers of a small parameter and by computing order by order
every contribution to the series. In string theory there are no interaction terms
but, as we will show later, we have coupling constant that allow us to define a
perturbative expansion that is analogous to the one we have usually in QFT.
Let us therefore start considering the most simple scattering process: the freely
propagating closed string. The Feynman diagram in this case is clearly a cylinder,
where its two ends are the asymptotic incoming and outcoming closed string.
The cylinder can be described by the Euclidean flat metric ds2 = dτ2 + dσ2 with
−∞ < τ < +∞, 0 ≤ σ < 2π. Through the conformal transformation τ = ln r,
the cylinder can be mapped in a puntured plane with metric:

ds2 = r−2(dr2 + r2dσ2)

where now 0 < r < ∞.
Again, by rescaling the metric with the factor 4r2(1+ r2)−2 and taking z = r eiσ,
we can map the plane to the sphere. The metric we can obtain is then:

ds2 =
4 dzdz

(1 + |z|2)2

namely the metric of the sphere stereographically projected onto the plane.
Choosing z = cot ( θ2)e

iφ, we can get the usual metric of the sphere with radius
r = 1, ds2 = dθ2 + sin2 θ dφ2.
Let us now consider a tree-level scattering between four closed strings. The Feyn-
man diagram, namely the world-sheet, that we obtain is four cylinders that all
meet on a sphere.
Through the usual conformal transformations, the world-sheet can be mapped
into a sphere with four punctures which correspond to the four external legs of

49
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the scattering process. This way to describe string diagrams remains also use-
ful for loop corrections of the process, in particular the external strings will be
mapped to points on a sphere with g handles, where g indicates the number of
loops. The amplitude of a generic process will be therefore a sum over all possible
topologies of the spheres with g handles.
It can be shown that two-dimensional compact oriented surface without bound-
aries are topologically described as spheres with g handles. This means that the
total amplitude of the process has to be defined by the following path-integral:

An =

∞

g=0

A(g)
n

=

∞

g=0

e−λ·χ(Σ)


DhDXµ

 n

i=1

d2zi Vi(zi, zi) e
−S[X, h]

(4.1)

where V (z, z) are the conformal vertex operator for the massless closed string
excitation. We have now to notice that the coefficient e−λ·χ(Σ) contains all the
informations about the topology of the world-sheet, indeed it holds the following
relation:

−χ (Σ) · λ =
λ

4π


d2σ

√
h R = 2 (g − 1)λ

where g is also called the Genus of the surface and χ(Σ) is its Euler number.
The complete action will be therefore made by the sum of two terms:

S = Sp + χλ

If we now define gs ≡ eλ, we see that the perturbative expansion in surfaces with
increasing genus g, becomes a perturbative expansion in powers of gs. For this
reason we are allowed to interpret it as the string coupling constant. Considering
for example the scattering amplitude at two-loops order, we see that it receives
contributions from the sphere (g = 0), the torus (g = 1) and a g = 2 surface.
This becomes an expansion in powers of the gs coupling: g−2

s for the sphere, g0s
for the torus and g2s for the last surface.

4.1.1 Vertex Operators in String Theory

Let us now discuss the physical meaning of vertex operators in string theory. Let
us define the vertex operator of our interest as:

Vk(z, z) ≡: eikX(z,z) :

We can now apply this operator to the vacuum state in order to create a state
with momentum k:

|k〉 = lim
z,z→0

Vk(z, z) |0〉

Let us show that k is the momentum associated to the state |k〉. From the
definition of the momentum operator Pµ = 2

α′


dz
2πi i∂X

µ(z), we can compute:

Pµ |k〉 = 2

α′


dz

2πi
i∂Xµ (z) : eik·X(z,z) : |0〉 OPE

= kµ |k〉

Imposing now the physical state condition on |k〉, h = h = 1, we obtain that m2 =
−k2 = −8πg < 0, therefore a state with negative mass. What we understand
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now is that the state Vk(z, z) |0〉 has to be interpreted as a tachyon, i.e. the
ground state of the bosonic closed string spectrum. It can also be shown that the
annihilation operators an and an, for n > 0, annihilate the state |k〉, therefore
we can refer to this state as the Conformal Vacuum. From this consideration,
the Fock Space associated to |k〉 can be constructed by acting with the creation
operators on it. This is straightforward because we can increase or decrease the
conformal dimension1 of the state using the an and an operators and therefore
modify the energy and consequently the mass of the state.
Using this procedure, we can introduce the vertex operator also for the next level
of excitation of the closed bosonic string. Indeed we may have:

|k, 〉 = − 2

α′ µν (k) lim
z,z→0

: ∂Xµ (z) ∂Xν (z) eik·X(z,z) : |0〉

= αµ
−1α

ν
−1 |k〉 µν

where µν is the polarization tensor. By computing the OPE of the stress-energy
tensor acting on this vertex, we can find that:

T (z) :µν∂X
µ (w) ∂Xν (w) eik·X(w,w) := −i

α′

2

kµµν

(z − w)3
: ∂Xν (w) eik·X(w,w) :

+


α′

4 k
2 + 1

(z − w)2
+

∂w
(z − w)


µν : ∂Xµ (w) ∂Xν (w) eik·X(w,w) : +...

We have now to impose that the vertex operator transforms as a physical primary
field operator2, therefore we need to require that:

kµµν = 0 = µνk
ν

k2 = 0

This last condition is exactly the on-shell condition for a massless tensor parti-
cle which we can identify with the graviton, antisymmetric tensor and dilaton,
depending on whether µν is respectively symmetric traceless, antisymmetric or
pure trace.

4.2 The Moduli Space

We recall that Polyakov’s action is invariant under Weyl transformations and dif-
feomorphisms, therefore the direct computation of the amplitude in (4.1) is highly
divergent because we are integrating over an infinite number of equivalent metrics.
In order to remove the infinite factors that would come out of the computation,
we need to change the functional integration measure:


DhDXµ −→

 DhDXµ

V ol(diff)× V ol(Weyl)
=



Mg

DhDXµ (4.2)

The meaning of the new functional integration measure is that we are now inte-
grating over a manifold Mg, called Moduli Space, defined in the following way:

Mg =
{metrics}

{Weyl}× {diff}
1Remember that it is the eigenvalue of the L0 operator and then of the Hamiltonian
2Namely we have to require that h = 1 and we have to remove the cubic singularity.
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A point of Mg is an equivalence class of metrics on a surface of genus g, where two
metrics are equivalent if they can be transformed into each other by Weyl trans-
formations and diffeomorphisms. The moduli space Mg can then be parametrized
by a certain number of parameters τi, called moduli. Fixing thus the value of the
moduli τi corresponds to choose a representative of a specific equivalence class of
metrics, namely a so called Fiducial Metric, hαβ .
The space Mg has a natural structure of a fiber bundle with a finite dimensional
base space and infinite dimensional fibers. We can thus think this space as com-
posed by gauge slides labelled by a finite number of moduli τi and, over this gauge
slides, an infinite numbers of fibers labelled by every possible diffeomorphism and
Weyl transformation that we can apply to the metric at that point3.
The integration measure of the metric in (4.2) therefore becomes:

Dh = J DΛD′ξ


i

τi

where the J matrix is the Jacobian arising from the change of coordinates and
the prime index means that we do not have to integrate over the zero modes of
P because we already counted them in the integration over the Weyl factor.
We notice also that Mg parametrizes every possible complex structure, namely
every possible choice of local complex coordinates, on a surface of a given topol-
ogy. If we have indeed, for example, a metric with Minkowski signature, ds2 =
2e2φ ((dσ1)2 − (dσ0)2), we have showed that it is always possible, locally, by
performing a Wick rotation σ0 = −iσ2 and defining the complex coordinate
z = σ1 + iσ2, to put the metric in the form:

ds2 = 2e2φ dzdz ≡ 2hzz dzdz

This means that an equivalence class of metrics admits a representative that can
be always locally put in the form above. We understand thus that there is a
one-to-one correspondence between complex structures and equivalence classes of
metrics of a surface of a given topology.
Metrics that are linked to each other through conformal transformations are called
conformally related. We already know that if P † admits zero modes, then there
exist metrics that are not conformally related. It can be actually shown that
the number of moduli is the number of zero modes of the P † operator defined in
(1.9)4.

We now ask ourselves how many moduli parameters τi exist for a two-dimensional
compact Riemann surface of genus g without boundaries. The answer comes from
the Riemann-Roch theorem that states that:

dimC kerP − dimC kerP † = 3− 3g =
3

2
χ

We see that, thanks to this theorem, if we are able to find the number of Killing
vectors for our surface, we are also immediately able to find the number of moduli.

Let us now apply the theorem to the case of a surface with genus g = 0, namely
the Sphere. Recalling now the metric of the sphere stereographically projected

3In fact we apply Weyl transformations and diffeomorphisms to the representative of the
equivalence class specified by the modulus τi.

4This is clear since that zero modes of the P † operator are the variations of the metric that
cannot be reached by diffeomorphisms and Weyl transformations.
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onto the plane and solving for that the equation (3.1), what we can obtain is that
the only globally defined analytic vector fields are:

∂z, z∂z, z2∂z

That is not a coincidence because we already know that those fields are the
one generated by the L0, L±1 Virasoro generators, which generate the Conformal
Killing Group SL(2,C) on the sphere.
We find therefore that there exist three Killing vectors for the sphere, so, through
the Riemann-Roch theorem, we know that the number of moduli is exactly zero.
This statement is really very important because it says that on the sphere all the
metrics are conformally equivalent.

4.2.1 The Torus

We can now extend those arguments to the torus, namely a surface with genus
g = 1. The torus admits a global flat metric ds2 = dzdz and then the Ricci scalar
will be R = 0. The conformal Killing equations in this case are very easy to solve,
indeed:

∂zV
(n) = 0 = ∂zV

(n) =⇒ V (n) = const.

This means that there is only one globally defined Killing vector and therefore,
thanks to the Riemann-Roch theorem, the number of moduli is exactly one. The
Killing group in this case is U(1)× U(1), namely the group of translations along
the two main cycles of the torus.
What we learned from this analysis is that there exists only one parameter that
characterize two conformally inequivalent tori. We know that taking two complex
numbers on the complex plane λ1,λ2 ∈ C with Im(λ2/λ1) ∕= 0, they generates a
lattice Λ = {nλ1 + mλ2|n,m ∈ Z}. The definition of the torus follows immedi-
ately:

z ∼ z + nλ1 +mλ2, n,m ∈ Z, λ1,λ2 ∈ C, Im(λ1/λ2) ∕= 0

namely the torus is defined as T ∼ C/Λ with C its covering space. Since now
the modulus has necessarily to be invariant under Weyl transformations and dif-
feomorphisms, namely a conformal invariant parameter, the only one complex
parameter that we can build that satisfies those requests is:

τ =
λ1

λ2
≡ τ1 + iτ2

Without loss of generalities we can restrict the domain of τ in Im τ > 0. The new
domain of the τ parameter is called Teichmüller Space and it is indicated with H+.
We have now to notice that there are some residual transformations not connected
to the identity of the global group of diffeomorphisms, i.e. those transformations
that cannot be obtained by exponentiating the infinitesimal corresponding ones,
that changes the parameters τ without changing the torus itself. Those transfor-
mations are called Dehn Twists. Those kind of transformations consists in the
rotation of 2π of two different points around respectively the "cycle a" and the
"cycle b" of the torus.
The twist around the "cycle a" practically becomes the following transformation
on our parameters:


λ1 → λ1

λ2 → λ2 + λ1
=⇒ τ → τ + 1
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while the twist around the "cycle b" becomes:

λ2 → λ2

λ1 → λ1 + λ2
=⇒ τ → τ

τ + 1

We can summarize a generic transformations that changes the τ parameter with-
out changing the torus, in the following expression:


λ1 → cλ2 + dλ1

λ2 → aλ2 + bλ1
=⇒ τ → aτ + b

cτ + d
with ad− bc = 1

where the condition on the coefficients a, b, c, d means that we want to take
into account only invertible trnasformations of λ1, λ2, that also preserve the
orientation of the surface. We also notice that performing the transformation
(a, b, c, d) → (−a,−b,−c,−d), we generates the same transformation of τ , there-
fore we need to remove this other residual condition. What we can therefore say
is that those residual transformations generates the so called Modular Group of
the torus: SL(2,Z)/Z2 ∼ PSL(2,Z).
Clearly the real domain of τ in which we are interested in will be:

M1 =
Teichmüller space
Modular group

∼ H+/PSL(2,Z)

We can also alternatively see that the Modular group can be generated from other
two transformations:

T : τ → τ + 1

S : τ → −1

τ

(4.3)

so any element of PSL(2,Z) can be composed of S and T transformations. It can
be easily seen that, through the T and S transformations, we can reach any point
in the Teichmüller space by starting from a small region of it. This particular
domain is called Fundamental Region and, in the case of the torus, it can be
identified as:

F =


−1

2
≤ Re τ ≤ 0, |τ |2 ≥ 1 ∪ 0 < Re τ <

1

2
, |τ |2 > 1



We can notice also that τ = i is a fixed point of the S transformation with
S2(τ = i) = 1, while τ = e2/3πi is a fixed point of the ST transformation with
(ST )3(τ = e2/3πi) = 1. This means that the moduli space of the torus M1 is
not a smooth manifold but admits singularities at the fixed points. These kind of
structures are called Orbifolds.

4.3 Non-Linear Sigma Models

In discussing the Polyakov action we focused on the properties of the world-sheet
metric only, assuming that the space-time metric was simply flat. What does it
happen then if we consider a background given by a curved space-time? Let us
answer to this question starting from the Polyakov action in which we consider a
curved space-time metric:

Sσ =
1

4πα′



Σ
d2σ

√
g gabGµν(X)∂aX

µ∂bX
ν (4.4)
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Let us now assume that the metric Gµν(X) is a small perturbation of the flat
metric, namely:

Gµν(X) ∼ ηµν + χµν(X)

we can now see that, in this approximation, we have:

e−Sσ = e−SP


1− 1

4πα′



Σ
d2σ

√
g gabχµν(X)∂aX

µ∂bX
ν


(4.5)

Assuming now that the small perturbation is a plane wave:

χµν(X) = −4πgc e
ik·Xsµν

with sµν a symmetric tensor, we immediately recognize the graviton’s vertex oper-
ator. We are therefore allowed to interpret, consistently with General Relativity,
the curved space-time background as a coherent state of gravitons.
Let us now try to go beyond this arguments and include also the other mass-
less excitation states of the closed bosonic string as our background fields. The
immediate generalization of the previous action is:

Sσ =
1

4πα′



Σ
d2σ

√
g


gab Gµν(X) + iabBµν(X)


∂aX

µ∂bX
ν + α′R Φ(X)



(4.6)

where R is the scalar curvature of the world-sheet metric, Bµν(X) is the antisym-
metric tensor field and Φ(X) is a scalar field that, with the diagonal part of the
Gµν(X) tensor, contributes to the dilaton background.
We notice that we can interprete the Bµν tensor as the corresponding rank-2 gauge
field of the Aµ gauge field that we have in QED. Indeed gauge invariance on a
1-dimensional world-sheet requires a gauge vector fields, while on a 2-dimensional
world-sheet it requires a gauge tensor field of rank 2.
Analogously to the QED gauge trasformation Aµ → Aµ + ∂α, we have that the
gauge trasformation Bµν → Bµν + ∂µζν − ∂νζµ leaves the string action invariant.
Again, exactly like we usually do in QED, we could write a gauge invariant object
also in this case:

H = dB −→ Hµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν

called also field strength.
Let us now turn back to the Sσ action. We can immediately notice that the

kinetic term is a non-quadratic function of the fields Xµ. Models with this kind
of kinetic terms are called Non-Linear Sigma Models.
In order to simplify the kinetic term expression, we can expand the metric around
the classical field solution x0, namely Xµ(σ) = xµ0+

√
α′ Y µ(σ), so what we obtain

expanding the metric is:

Gµν(X) ∂aX
µ∂bX

ν =


Gµν(x0)+

√
α′ ∂ωGµν(x0)Y

ω+
1

2
α′ ∂ω∂ρGµνY

ωY ρ+...


∂aY

µ∂bY
ν

In this expression we can see the standard quadratic term in the Y µ fields but also
an infinite number of always higher order interacting terms. From a dimensional
point of view, the first derivative term of the metric has one mass dimension, i.e.
the dimension of the inverse of a length. Indeed we can write:

∂G

∂X
∼ 1

Rc
with [Rc] = −1
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with Rc the radius of curvature of space-time5. The effective dimensionless cou-
pling of the theory becomes therefore:

√
α′

Rc
with

√
α′

Rc


= 0

The previous expansion is then perfectly allowed if and only if
√
α′/Rc ≪ 1.

This means that we are working at length scales that are much larger than the
typical string length . This means clearly that we are completely ignoring the
internal strings structure, therefore what we are doing is to work with a Low-
Energy Effective Field Theory. Always from a dimensional point of view, we can
notice that [X] = −1 and [Y ] = 0, therefore the interactions terms in Y µ have all
dimension two. We can conclude then that the non-linear sigma model (4.4) is a
renormalizable theory.

4.3.1 Low Energy Effective Action

Let us now occupy of the Weyl invariance of the action (4.6). Following the
perturbative expansion of the action in (4.5), we are allowed to write:

Gµν(X) = ηµν − 4πgc sµν eik·X (4.7a)

Bµν(X) = −4πgc aµν eik·X (4.7b)

Φ(X) = −4πgc φ eik·X (4.7c)

By substituting the expressions (4.7) in the action (4.6) and expanding its expo-
nential to the second order in χµν , Bµν and Φ, we can compute the stress-energy
tensor of the theory. Computing its trace what we obtain is:

T a
a = − 1

2α′β
G
µνg

ab∂aX
µ∂bX

ν − i

2α′β
B
µνε

ab∂aX
µ∂bX

ν − 1

2
βΦR

where:

βG
µν = α′Rµν + 2α′∇µ∇νΦ− α′

4
HµλwHν

λω +O

α′2 (4.8a)

βB
µν = −α′

2
∇ω Hωµν + α′∇ωΦHωµν +O


α′2 (4.8b)

βΦ =
D − 26

6
− α′

2
∇2Φ+ α′∇ωΦ∇ωΦ− α′

24
HµνλH

µνλ +O

α′2 (4.8c)

where in βΦ we took into account the ghost contribution to the Weyl anomaly.
We notice also that in the expression of βG

µν , the Rµν tensor is the space-time,
and not the world-sheet, Ricci tensor.
Requiring now Weyl invariance means to require that the stress-energy tensor is
traceless. This means to have:

βG
µν = βB

µν = βΦ = 0 (4.9)

Those set of conditions are also called Background Field Equations.
We can notice that those equations physically consistent, indeed we can interpret
the first condition as the Einstein’s equation with a source term given by the

5We can alternatively call it the Target Space of the Xµ fields.



4.3. NON-LINEAR SIGMA MODELS 57

antisymmetric tensor field and dilaton, while the second condition as the gener-
alization of the Maxwell’s equation for the divergence of the Hµνρ field strenght.
A consistent choice (and not the only possible one) of the background fields is:

Gµν(X) = ηµν

Bµν(X) = 0

Φ(X) = Φ0 = const. = λ

with necessarily, the already seen condition, D = 26. It may seems that, changing
the background fields, we are giving birth to a new theory but this is not true:
we have always the same theory but with different background choices.
Interpreting now the conditions (4.9) as the physical equations of motion, it can
be shown that they can be derived from the following space-time action:

S =
1

2κ20


dDX

√
−G e−2Φ


−2 (D − 26)

3α′ +R− 1

12
HµνλH

µνλ + 4∂µΦ∂
µΦ+O


α′



(4.10)
where κ0 is a normalization constant that can be absorbed from the redefinition
of the fields, therefore it has no physical meaning. The action (4.10) is called
Low-Energy Effective Action because it is the one that governs the low-energy
behaviour of space-time fields.
Making now the useful redefinition of the metric:

G̃µν(X) = e2ω(X)Gµν(X)

where ω (X) = 2Φ
D−2 ≡ 2(Φ−Φ0)

D−2 . The Ricci scalar becomes:

R̃ = e−2ω(X)

R− 2 (D − 1)∇2ω − (D − 2) (D − 1) ∂µω∂

µ ω


Redefining also the normalization constant as κ = κ0 eΦ0 , the action (4.10) be-
comes:

S =
1

2κ


dDX


−G̃


−2 (D − 26)

3α′ e
4φ̃

D−2 + R̃− 1

12
e−

8φ̃
D−2HµνλH̃

µνλ − 4

D − 2
∂µΦ̃∂̃

µΦ̃+O

α′



(4.11)
where the ∼ symbol means that the indices have been raised with the G̃µν metric.
This new expression of the action is very important because we put in the canon-
ical form the kinetic term of the dilaton and also recovered the Hilbert action
term. Indeed we have:

SH =
1

2κ


dDx


−G̃ R̃

from which we can find that:

κ =
D=4


8πGN =

8π

MP
= (2, 43 · 10−8 GeV )−1

In the action (4.11) we can also notice that the dilaton has no potential or mass
term. This means that it gives rise to long-range forces that mix with gravitational
interactions and therefore cause the violation of the equivalence principle. The
equivalence principle holds actually very well, so we expect that there will be a
certain mechanism that would give mass to the dilaton6.

6We have to remember that forces carried by massive particles has a decreasing range pro-
portionally to the mass of the carrier.
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Chapter 5

Supersymmetry and Superstrings

In this chapter we would like to introduce the concept of Supersymmetry1 and,
without going into details, see its application to String Theory and Conformal
Field Theory.

5.1 Brief Introduction

String Theory is one of the best candidates for describing gravitational interac-
tion at quantum level and give a unified vision of all fundamental interactions.
However, the only kind of strings we have seen so far are bosonic strings and this
leads to two great problems. The first problem is the fact that we do not have
space-time fermions and this is clearly not accettable if we want to reproduce,
under a certain limit, the Standard Model. The second problem is that the closed
bosonic string spectrum contains tachyons which are clearly unphysical states.
In order to solve the first problem, we could introduce a transformation that takes
bosons and gives us fermions, in other words we would like to introduce what is
usually called a Supersymmetry.
Supersymmetry is realized through generators, that we call Q, that behave like
space-time fermions with 1/2 spin and satisfy the anticommutation relation:

{Q,Q†} ∼ pµ

Just like any other symmetry, supersymmetry can be local or global. This im-
plies that we can have a parameter  that may depend on space-time coordinates,
namely, (x)Q or simply Q. A locally supersymmetric theory is necessarily dif-
feomorphism invariant, moreover, it can be shown that a theory with local super-
symmetry is consistent if and only if it is a theory of gravity, namely a Supergravity
theory. This fact allow us to think that if local supersymmetry is realized in na-
ture, then an elegant extension of Standard Model that includes also gravity is
permitted.
There are other advantages of considering a supersymmetric Standard Model2.
The first is that the so called Hierarchy Problem is automatically solved, i.e.

1A detailed discussion about the role of Supersymmetry in String Theory and SM can be
found in [12].

2In this contest, one of the theories that is actually studied is the Minimal Supersymmetric
Standard Model. "Minimal" here means that we consider the Standard Model with the minimum
number of supersymmetric partners, consistently with the actual particle fenomenology, because,
in fact, we still haven’t seen any supersymmetric particle.

59
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supersymmetry allow us to fix the electroweak energy scale and thus predict the
correct scale of the mass of the Higgs boson. The second is that the gauge coupling
constants of the weak, strong and electromagnetic interactions, αs, αw and αem,
collapse to a unique gauge coupling constant αg at the energy scale of Λ ∼ 1015

Gev3. This means that it may exist a unified theory describing these three funda-
mental interactions as a unique more fundamental one, called Great Unification
Theory (GUT).
We just saw that there are strong motivations to introduce supersymmetry into
SM, therefore there are good formal and phenomenological reasons to introduce
supersymmetry also in String Theory.
Now, there are two ways of introducing supersymmetry in string theory: impose
supersymmetry on the world-sheet (Ramond-Neveau-Schwarz procedure), or im-
pose supersymmetry in the target-space (Green-Schwarz procedure). It can be
shown that those procedures are perfectly equivalent. For simplicity, we will dis-
cuss only the RNS procedure.
We will see later that the introduction of the supersymmetry will luckily solve also
the second problem, indeed, through a particular procedure called Gliozzi-Scherk-
Olive projection or GSO projection, we will remove all the unphysical states from
the closed string spectrum, tachyons included.
The world-sheet of a Closed Bosonic String is described by a 2-dimensional Con-
formal Field Theory while the world-sheet of a Closed Superstring is described
by a 2-dimensional Superconformal Field Theory (SCFT). It is therefore useful to
introduce the so called Superconformal Symmetry in the Conformal Field Theory
context.

5.2 Superconformal Symmetry

We have seen previously, in the CFT context, many chiral operators: the stress-
energy tensor T (z), the fermionic and bosonic field Ψ = (ψ(z), ψ̄(z̄)) and φ(z),
and finally the currents Ja(z). The currents, in particular, are present when a
system shows a certain symmetry and they are conserved thanks to the Noether’s
theorem. What we would like to do now is to introduce the conserved currents
related to the supersymmetry trasformations and study their properties.

5.2.1 The N = 1 case

Let us consider the action of a free bosonic field and a free Majorana fermion:

S =
1

2πl2s


d2z (∂X∂̄X − (ψ∂̄ψ + ψ̄∂ψ̄)) (5.1)

The action is invariant under a particular symmetry that exchange bosons and
fermions, called, as written above, supersymmetry. The left-moving (or chiral)
transformations are:

δX = (z)ψ, δψ = (z)∂X, δψ̄ = 0

while the right-moving (or anti-chiral) transformations are:

δX = (z̄)ψ̄, δψ̄ = (z̄)∂̄X, δψ = 0

3Actually into Standard Model, the three gauge couplings only approximately meet, while,
considering also supersymmetry, they meet exactly in a single point.
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with (z) and (z̄) anticommuting objects. The invariance of the action under
left-moving transformations is easy to prove:

δS =
1

2πl2s


d2z(∂δX∂̄X + ∂X∂̄δX − (δψ∂̄ψ + ψ∂̄δψ + δψ̄∂ψ̄ + ψ̄∂δψ̄  

=0

))

=
1

2πl2s


d2z(∂(ψ)∂̄X + ∂X∂̄ψ − ∂X∂̄ψ − ψ∂̄∂X)

=
1

2πl2s


d2z(−ψ∂∂̄X − ψ∂̄∂X)

= 0

where in the last step we used the fact that {,ψ} = 0. The proof for the right-
moving transformations is exactly analogous. In our conventions, if the action is
invariant under both left and right-moving transformations, we say that we have
N = (1, 1)2 supersymmetry.
The conserved currents, also called Supercurrents, associated to this kind of su-
persymmetry are:

G(z) = i

√
2

l2s
ψ∂X, Ḡ(z̄) = i

√
2

l2s
ψ̄∂̄X

with clearly ∂̄G = 0 = ∂Ḡ. Remembering now the two-points functions:

〈∂X(z)∂X(w)〉 = − l2s
2

1

(z − w)2

〈ψ(z)ψ(w)〉 = l2s
1

z − w

〈ψ̄(z̄)ψ̄(w̄)〉 = l2s
1

z̄ − w̄

we can find the OPE of the chiral current G(z):

G(z)G(w) =
1

(z − w)3
+ 2

T (w)

z − w
+ finite

T (z)G(w) =
3

2

G(w)

(z − w)2
+

∂G(w)

z − w
+ finite

where we used the following expression for the stress-energy tensor:

T (z) = − 1

ls
: ∂X∂X : − 1

2l2s
: ψ∂ψ :

We see therefore that the chiral current G(z) is a primary field with conformal
weight h = 3/2. Introducing now the following expression for the currents:

G(z) =


r

Gr z−r−3/2

Gr =



C0

dz

2πi
zr+1/2 G(z)

and using the usual mode expansion for the stress-energy tensor, we obtain the
relations:

{Gr, Gs} =
ĉ

2


r2 − 1

4


δr+s,0 + 2Lr+s

[Lm, Gr] =


m

2
− r


Gm+r

(5.2)
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where we have defined ĉ = 2c/3. We notice that the algebra in (5.2) shows the
symmetry G → −G and T → T , therefore NS and R boundary conditions are
possible also for supercurrents. In the NS sector we have that r ∈ Z + 1/2 and
Gr |0〉 = 0 for r > 0. The R sector is analogous but the modes now take integer
values, namely r ∈ Z.
The zero mode clearly exists only in the R sector and, according to (5.2), it
satisfies:

{G0, G0} = 2G2
0 = 2L0 −

ĉ

8

A unitary theory requires that h ≥ ĉ/16. We see that when h > ĉ/16 the state
to which we apply the G0 operator is doubly degenerate and G0 links the two
degenerate states. On the other hand, when h = ĉ/16, we have that the eigen-
values are G2

0 = 0 that implies G0 = 0. Just like the fermion case, we can insert
the operator (−1)F , with F the usual fermion number, that anticommutes with
the supercurrent G. This is useful because, when we compute the trace of (−1)F

in the R sector, the only contributions will come from the ground states with
h = ĉ/16. This kind of trace is called the Witten Index of the supersymmetric
theory.

5.3 Superstring Theories

Let us now turn back to String Theory. The simplest way to present the RNS
procedure is to make a parellelism with the previous bosonic theory. In the
bosonic string case we have the coordinates Xµ(σ, τ) that are world-sheet scalars
but target-space vectors, while in the supersymmetric case, we add a set of fields
ψµ(σ, τ) that behave like world-sheet spinors and target-space vectors. Analo-
gously, we should also add to the action a fermionic superpartner of the world-
sheet metric hαβ , that we call Gravitino, χα. The gravitino, just like the world-
sheet metric, behaves like a target-space scalar but like a spin 3/2 world-sheet
fermion.
Now, it can be shown that the local supersymmetric action becomes:

S = − 1

8π


d2σ

√
−h


2

α′h
αβ∂αX

µ∂βXµ + 2iψ
µ
ρα∂αψµ

− iχαρ
βραψµ


2

α′∂βXµ − i

4
χβψµ

 (5.3)

where ψµ, χα are the chiral (left-moving) spinors, while ψ̄µ, χ̄α are the antichiral
(right-moving) spinors. We have also ρα that is:

ρα = (ρ0, ρ1) with ρ0 =


0 1
1 0


, ρ1 =


0 −i
i 0



the two-dimensional Gamma matrices.
The action (5.3) is invariant under the supersymmetric version of the groups of
the bosonic string action, namely (sDiff)×(sWeyl)×(Poincarè), where the first
two are local trasformations of the world-sheet.
By choosing, analogously to the bosonic case, a gauge fixing for the metric, namely
by setting locally hαβ = ηαβ and the gravitino χα = 0, we find that the residual
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gauge trasformations are the superconformal symmetries. The action, with this
gauge choice, thus reduces to:

S = − 1

8π


d2σ


2

α′∂αX
µ∂αXµ + 2iψ̄µρα∂αψµ


(5.4)

Proceeding then with the Faddeev-Popov quantization, because of the presence
of the gravitino, we find the usual chiral and antichiral ghosts b, c, b̄, c̄ but also
the so called Ghostini β, γ, β̄, γ̄.4

As we can expect now, ghostini give a not null contribution to the central charge
of the theory, therefore we can compute the new dimension for which the central
charge vanishes:

0 = c = d+
d

2  
bos.+ferm.

−26
ghosts

+11
ghostini

=⇒ 3

2
d = 15

Thus the dimension for which the theory does not show anomalies is d = 10,
differently from the bosonic theory case where we had d = 26.

5.3.1 Physical states and GSO projection

With the introduction of world-sheet fermions, we are allowed to choose the pe-
riodicity conditions for ψµ and ψ̄µ separately. Again, just like we saw previously,
periodic fermions belong to the R sector while the antiperiodic ones to the NS
sector5. Combining all the possibilities, we give rise to four different sectors of
the theory, namely: (NS-NS), (R-NS), (NS-R), (R-R).

Now the physical superstring spectrum can be found by imposing some phys-
ical state conditions, similarly to what has been done for the Bosonic String case.
It is useful thus to define two independent left and right-moving worldsheet
fermion numbers, FL and FR, and then define two left and right-moving oper-
ators, called G-Parity operators, as GL,R ≡ (−1)FL,R+1. We can thus associate to
each sector four different combinations of the eigenvalues of the operators GL,R,
namely: (+, +), (+, −), (−, +) and (−, −).
We can now notice that, because of the level-matching condition, we have to act
necessarily with an equal number of fermion operators bµ−n and b̄µ−n, therefore the
possible NS sectors reduces to (NS+, NS+) or (NS−, NS−).
In the NS sector we do not have zero modes, therefore we will have only a unique
ground state, i.e. we can act only with a vertex operator with charge k and build
the state |k〉 in the (NS−, NS−) sector. If we impose the physical state condition
on this state, exactly like we saw at the end of Section (2.2) for the bosonic theory,
we obtain k2 = −1/2. Therefore this state represents a tachyon and it should be
eliminated from the spectrum.
The first fermionic excited state we can build is bµ−1/2 b̄ν−1/2 |k〉 and it belongs to
the (NS+, NS+) sector. By imposing again the physical state condition on it,
what we obtain is k2 = 0. We thus find again the graviton, the dilaton and the
B-field, just like in the bosonic theory.

4It can be shown that ghostini behave like commuting fermions, exactly the opposite of the
usual ghosts that behave like anticommuting bosons.

5The choice of the sectors is consistent with the one in Section (3.7), because our world-sheet
is still a cylinder.
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Let us now take into account also the R sector. In the R sector we have that the
zero modes of the ψµ and ψ̄µ fields satisfy the Dirac algebra:

{ψµ
0 ,ψ

ν
0} = 2ηµν , {ψ̄µ

0 , ψ̄
ν
0} = 2ηµν , {ψµ

0 , ψ̄
ν
0} = 0

therefore they can be expressed in term of 2d×2d matrices that acts on the ground
state of the Fock space. The dimension of the Fock space generated is 2d/2, with
d the dimension of the target-space. Choosing now d = 10 we generate 32 ground
states6 that we can generically write as |α〉. Let us notice that the zero-modes
behave like target-space vectors but the 32 ground states form a 10-dimensional
spinor representation of the Dirac algebra.
In order to see this fact, let us take a transformation g ∈ SO(1, 9), and ρ(g)
its representation on the ground states |α〉. This representation will act on the
generic ground state |α〉 as ρ(g) |α〉. In order to fix which representation ρ(g) we
are using, let us take another ground state ψµ

0 |α〉. The action of the symmetry g
on the fields ψµ

0 is ψµ
0 → gµνψ

ν
0 .

We can now act in two different ways on the ground state ψµ
0 |α〉: the first consist

in acting separately on both ψµ
0 and |α〉, namely

ψµ
0 |α〉 −→ gµν ψν

0 ρ(g) |α〉 ,

while the second consist in acting directly with ρ(g) on the whole ground state
ψµ
0 |α〉, namely

ψµ
0 |α〉 −→ ρ(g) ψµ

0 |α〉

Imposing now that the two transformations have to be the same, since they hold
∀ |α〉, what we get is:

ρ(g) ψµ
0 = gµν ψν

0 ρ(g) =⇒ ρ(g) ψµ
0 ρ−1(g) = gµν ψν

0

This relation means that ρ(g) is the spinorial representation of the SO(1, 9) and
therefore that the generic state |α〉 transforms as a 10-dimensional spinor, namely
a space-time spinor. That is exactly what we asked for when we initially intro-
duced supersymmetry, indeed we have now a target-space made of bosons and
fermions.
Now, a generic massless state belonging to the (R±, NS+) sector can be written
as |α〉 ⊗ ψ̄µ

−1/2 |k〉, with clearly k2 = 0. The lowest states in this sector can be in-
terpreted as Gravitinos or Dilatinos, depending on the properties of the tensorial
decomposition.
Finally, if we consider the (R±, R±) sector, we can write all the possible states
(32×32 possibilities) as |α〉 ⊗ |β〉. Being respectively |α〉 and |β〉 target-space
spinors, their tensor product is a target-space boson.

We see now that, keeping all the possible states that can be generated by acting
with all kinds of creation operators, tachyons are still present in our spectrum. In
order to eliminate them, we should apply a procedure that allow us to select in a
consistent way the physical sectors of the theory. This procedure is called GSO
projection and it consists in selecting the sectors for which the following requests
are satisfied:

6When we act with a zero mode on the ground state |0〉, we create a degenerate state of the
fundamental ground state because we are not changing its energy but only its fermonic number.
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1. The OPEs of fields belonging to selected sectors must be closed7: the fields
appearing in the OPE must not be elements of projected-out sectors.

2. The OPEs of fields belonging to selected sectors must be consistent (or
local): the OPEs must not show branch cuts.

3. The partition function on the two-dimensional torus must be modular in-
variant.

Let us start by removing the NS− sector, for which the spectrum contains tachyons8.
The remaining sectors can be chosen by imposing the previous conditions and by
looking at the possible results of the OPEs:






NS+ ×NS+ = NS+

R± ×NS+ = R±

R± ×R± = NS+

A consistent choice of physical sectors is thus (NS+, NS+), (Rα, Rβ), (NS+, Rα)
and (Rα, NS+), where α,β ∈ {+,−}. It can be also shown that (R+, R+) and
(R−, R−) sectors give rise to perfectly equivalent theories and the same is true
also for (R+, R−) and (R−, R+) sectors. The possible inequivalent choices thus
reduces to (R+, R+) and (R+, R−) sectors.
We see therefore that there are two consistent possibilities of choosing the R
sectors and this arbitrariness give rise to two possible superstring theories:

(NS+, NS+), (R+, R+), (R+, NS+), (NS+, R+) Type II B
(NS+, NS+), (R+, R−), (R−, NS+), (NS+, R−) Type II A

The two theories we built are called "Type II" because, it can be seen, they
present two space-time supersymmetries, namely they are N = 2 theories. It is
also important to notice that Type II A and Type II B superstring theories are
made exclusively of closed bosonic and fermionic strings.

It may seem that Type II theories are the only two possible consistent super-
string theories. It can be seen instead that there are other possible constructions
of a superstring theory, in particular there are three more theories that can be
formulated by including also open strings or mixing the superstring formulation
with the bosonic one. There exists indeed a theory called Type I superstring
theory that includes also unoriented open strings. In this theory we do not have
left and right-moving operators, therefore there are less possible choices of the
physically consistent sectors. This theory, it can be seen, has N = 1 space-time
supersymmetry. There exists also another theory that presents N = 1 space-time
supersymmetry and it is called Heterotic superstring theory. This theory is built
by constructing chiral fields with the usual superstring theory prescription, while
anti-chiral fields with the bosonic string prescripton. Here, similarly to Type II
theories, ghostini arise from the Faddeev-Popov quantization procedure of the
chiral gravitino. By introducing then by hand sixteen anti-chiral bosons, it can

7Notice that the OPEs are defined on the plane, therefore the role of the two sectors is
reversed, namely we have antiperiodic fermions in the R sector and periodic fermions in the NS
sector.

8Clearly the NS− sector can be eliminated also by requiring that the R sectors are present
in the theory. That is because the OPEs will not be local anymore as we can easily see right
below.
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be seen that the central charge vanishes if and only if the dimension of the target-
space is d = 10 and therefore the theory becomes physically consistent because
free from anomalies.
We can notice that the set of sixteen anti-chiral bosons forms an anti-holomorphic
conformal field theory with a central charge c = 16. It can be seen that the only
possible conformal field theories with this properties admit only two kinds of al-
gebra that are SO(32) and E8 × E8. There are therefore in reality two types
of Heterotic superstring theories and those are called respectively HO and HE
superstring theories.
It is finally believed that there exists a 11-dimensional theory, called M-Theory,
that contains the all known five superstring theories. In particular, it can be seen
that the five superstring theories can be obtained by taking some limit cases of
the M-theory itself.

5.3.2 Compactifications

As we saw in the previous section, a consistent formulation of superstring theory
requires a 10-dimensional target-space. The main question we may ask therefore
is, we live in a 4-dimensional space-time, where are the remaining six dimensions?
The standard mechanism to explain this discrepancy is to think that the other
six dimensions extend along Riemannian compact manifolds that are too small to
be investigated from nowadays experiments. Therefore these six more dimensions
are said to be compactified. From this point of view, the whole 10-dimensional
space-time can be thought as the product of two different terms:

M10 = M1,3 ×K6

where M1,3 is the usual 4-dimensional Minkowski space-time and K6 is a 6-
dimensional Riemannian Ricci-flat compact manifold. The procedure of going
from a theory defined on M10 to a theory defined on M1,3 is properly called
Compactification.
There is a huge number of K6 manifolds that could a priori be chosen and the
choice depends on the theory we would like to study. The choice is strictly related
to the number of conserved supercharges as we will immediately show9.
If we call Q the supercharge related to a supersymmetry and  the supersymme-
try trasformation parameter10, then the condition for the supersymmetry to be
unbroken is:

Q |0〉 = 0

If we now take a generic field φ, taking its supersymmetric variation, we obtain:

〈δφ〉 ≡ 〈0| δφ |0〉 = 〈0| [Q,φ] |0〉 = 0 (5.5)

Since in a supergravity theory there exists always the gravitino χ, it can be shown
that:

δχ = ∇µ+ ...

9Supersymmetric extensions of the Standard Model require d = 4 and N = 1, therefore, in
general, one should pay attention on the choice of the K6 manifold and verify that the number
of conserved supercharges after the compactification is compatible with the required properties
of the SM extension.

10Notice that both  and Q are SO(1, 9) spinors.
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where "..." stands for other fields contributions (B-field, dilaton and so on). Now
the condition (5.5) becomes a condition on the supersymmetry transformation
parameter :

∇µ = 0 =⇒ ∇m = 0 (5.6)

where µ = 0, ..., 9 is the whole target-space coordinates index, while m = 4, ..., 9
is the index of the coordinates on K6. The condition of unbroken supersymmetry
thus reduces to compute the covariantly constant spinors on K6. It can be shown
that a necessary condition for the existence of at least a solution of the (5.6) on a
Riemannian manifold, is the vanishing of its Ricci tensor. This therefore impose
a constraint on the possible choices of the K6 manifold.

The equation above admits solutions depending on the Holonomy of the man-
ifold11. In general, if we take an oriented manifold with six real dimensions, the
Holonomy group will be SO(6) or one of its proper subgroups. It can be shown
that the equation (5.6) admits solutions if and only if the Holonomy group is a
proper subgroup of SO(6). Those kind of manifolds are called Restricted Holon-
omy Manifolds.
The torus case is the easiest one because its holonomy group is trivial and the
equation (5.6) always admits a solution. A more complicated case is when we
take H = SU(3) as possible subgroup of H ⊆ SO(6). Three-dimensional com-
plex manifolds whose holonomy group is SU(3) are called Calabi-Yau 3-folds.
Another possibility is H = SU(2) that is the holonomy group of the class of 2-
dimensional complex manifolds called Calabi-Yau 2-folds. Actually the only class
of CY2 that there exist is the K3 class of manifolds12 and for our purpose this is
the most important. If we want instead to take a 3-dimensional complex manifold
whose holonomy group is H = SU(2), the only possible choice we could make is
to take K6 ≃ K3× T2.
We are interested in K3 manifolds because the equation (5.6) admits only two
solutions and, with some work, it can be seen that, compactifying on this kind of
manifolds, are preserved exactly 1/2 of the initial amount of supercharges. This
may be relevant for a phenomenological point of view if we want, for example,
compute the entropy of a black hole that preserve a certain number of super-
charges. This kind of computations has been done by Strominger and Vafa in
[24].

5.4 Extended Superconformal Symmetry

In order now to describe supersymmetric systems with two or more supercurrents,
we need to extend the concept of superconformal symmetry previously introduced.
This extension will be relevant when we will consider NLSM whose target-space
is T4 or, for example, a K3 surface.

5.4.1 The N = 2 case

The simplest case of extended superconformal algebra is the N = (2, 0)2 case.
This kind of algebra contains now two supercurrents, that we can call G±, and a

11If we perform the parallel transport of a vector on a closed path on a manifold, what we
obtain is not always the same initial vector v1 but a different one v2. Writing v2 = R v1, we can
define the group of all possible transformations R as the Holonomy Group of the manifold.

12All K3 surfaces share the same topology but may have different metrics. This will be the
key point for our purposes.
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U(1) current that we call J . The OPEs of this new set of currents are:

G+(z)G−(w) =
2c

3

1

(z − w)3
+


2J(w)

(z − w)2
+

∂J(w)

z − w


+

2

z − w
T (w) + ... (5.7)

T (z)G±(w) =
3

2

G±

(z − w)2
+

∂G±

z − w
+ ... (5.8)

J(z)G±(w) = ± G±

z − w
+ ... (5.9)

T (z)J(w) =
J(w)

(z − w)2
+

∂J(w)

z − w
+ ... (5.10)

J(z)J(w) =
c/3

(z − w)2
+ ... (5.11)

and
G+(z)G+(w) = finite G−(z)G−(w) = finite (5.12)

In general we can introduce a superconformal algebra by choosing the number of
supercurrents that generate the algebra and writing their consistent OPEs13, or
simply writing the conserved supercurrents for a particular action that has two
supersymmetries, namely for example:

S =
1

2πl2s


d2z



i

∂Xi∂̄Xi −


j


ψj ∂̄ψj + ψ̄j∂ψ̄j



with i, j = 1, 2.
We notice that if we now take the real combinations G1 = G+ + G− and G2 =
i(G+−G−), the algebra shows a SO(2) ∼ U(1) symmetry. Moreover we have also
a Z2 symmetry due to the transformations G1 → G1, G2 → − G2. The global
symmetry group of the N = (2, 0)2 algebra is thus O(2).
We can use now the SO(2) ∼ U(1) symmetry in order to impose different bound-
ary coinditions to the supercurrents G±(z). We can therefore write:

G±(e2πiz) = e∓2πi(α+1/2)G±(z)

When α = 0 we have the NS sector where the mode expansion index takes half-
integer values. When α = ±1/2 we have the R sector where instead the index of
the mode expansion takes integer values.
Being the U(1) symmetry an automorphism, then the algebras of the two sectors
are isomorphic. This isomorphism is called Spectral Flow and it gives a continuous
link between the two sectors. It can be written explicitly as:

Jα
n = Jn − α

c

3
δn,0

Lα
n = Ln − αJn + α2 c

6
δn,0

Gα,+
r+α = G+

r

Gα,−
r−α = G−

r

(5.13)

where n ∈ Z and r ∈ Z + 1/2.
As usual, in the NS sector, every state is generated by acting with the negative

13We have to look at the total conformal weight of the radial ordered supercurrents and write
every possible singular term with any possible consistent combination of primary fields. One
simple example is exactly the equation (5.7).
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modes of T, J and G± on the ground state |h, q〉, where h is the eigenvalue of L0

and q the eigenvalue of J0. In the R sector we have also to take into account the
zero mode of the two supercurrents, in particular the fact that:

(G±)2 = 0, {G+
0 , G

−
0 } = 2


L0 −

c

24



Just like the N = (1, 0)2 case, the unitarity of the theory requires that h ≥ c/24.
When h > c/24, the G+

0 and G−
0 operators do not anticommute therefore their

algebra admits, it can be shown, a 2-dimensional representation. This means that
the ground states space is 2-dimensional and thus there is degeneracy. instead
when h = c/24, we have that the G±

0 operators anticommute and therefore their
algebra admits a 1-dimensional representation. This means again that the ground
states space is 1-dimensional and therefore there is no degeneracy.
Inserting, just like in the N = 1 case, the (−1)F operator in the trace computed
in the R sector, we see that the only contributions that do not cancel each others
are the ground states ones. We will see later how this fact will affect our final
calculations.
From the relations in (5.13), we deduce that:

JR±
0 = JNS

0 ∓ c

6
, LR±

0 − c

24
= LNS

0 ∓ JNS
0 (5.14)

From this relation we find that the non degenerate ground state in the R sector,
namely the ones that have h = c/24, correspond to NS states with 2h = q. This
kind of states are called Chiral States and they are generated from the chiral field
operators acting on vacuum state. We notice also that the states in NS sector
with h = 0 = q correspond to R states with h = c/24, q = ±c/614. Applying
again the spectral flow to this R states we obtain the NS states with h = c/6,
q = ±c/3, therefore we understand that there must exist a chiral operator with
this particular parameters.

5.4.2 The N = 4 case

The last case of superconformal algebra that is relevant to our interests, and
in general to superstring theory, is the N = (4, 0)2 superconformal algebra. It
contains the usual stress-energy tensor, the four supercurrents Gα and Ḡα with
α = 1, 2 and three current that generate the current algebra of SU(2)k where k
is called the level of the SU(2) algebra. The Virasoro central charge is related to
k as c = 6k. The OPEs of the objects we introuced above are:

Ja(z)Jb(w) =
k

2

δab

(z − w)2
+ iabc

Jc(w)

z − w
+ finite (5.15)

Ja(z)Gα(w) =
1

2
σa
αβ

Gβ

z − w
+ finite (5.16)

Ja(z)Ḡα(w) = −1

2
σa
αβ

Ḡβ

z − w
+ finite (5.17)

Gα(z)Ḡβ(w) =
4kδαβ

(z − w)3
+ 2σa

αβ


2Ja(w)

(z − w)2
+

∂Ja(w)

z − w


+ 2δαβ

Tαβ

z − w
finite

(5.18)

14Notice that they are the maximal "charged" ground states in the R sector.
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and:
Gα(z)Gβ(w) = finite Ḡα(z)Ḡβ(w) = finite

where σa
αβ , a = 1, 2, 3, are the Pauli matrices.

Analogously to the N = (2, 0)2 there are different boundary conditions that can
be imposed to the supercurrents Gα and Ḡα. Again we have an NS and R sector
and, as usual, the index of the mode expansion of the supercurrents will take
half-integer values (NS) or integer values (R). We have also another spectral flow,
similar to the one in the N = (2, 0)2 case, that link the NS and R sectors.
Again primary states are annihilated by the positive modes of the expansion and
are labelled by the conformal weight h and the SU(2)k spin j. A unitary theory
requires that j ≤ k/2.
The case of k = 1 is relevant for superstring compactification, in particular for
non-linear sigma models built on K3 surfaces.



Chapter 6

CFT on a Torus

In this chapter we would like to introduce the Conformal Field Theory on a torus
worldsheet, in particular we will compute the partition function of the theory and
study the properties of Bosons and Fermions fields defined on it.

6.1 The Partition Function

As we already saw in Section (4.2.1), the torus is a surface that can be defined as
T ∼ C/Λ, where Λ is the lattice generated by two complex numbers ω1,ω2 which
we can call the periods of the lattice. The parameter that univocally identifies
the conformal structure of the torus is what we called the modular parameter (or
modulus) τ ≡ ω2

ω1
= τ1 + iτ2.

Now, before proceeding to the direct calculation of the partition function, we can
notice that a torus is simply a cylinder with the boundary circles glued together.
We can therefore extend the operator formalism defined on the cylinder to the
torus, by imposing periodic boundary conditions along it.
By taking the the equation (3.22) we can see that:

Tcyl(w) =


n∈Z

Ln z−n − c

24
=



n∈Z


Ln − c

24
δn,0


z−n

and therefore:
L0,cyl = L0,pl −

c

24

and analogously we can obtain the relation for L0,cyl. 1

We can now define the partition function on the torus by just choosing the spatial
and time directions respectively as the real and imaginary axis of C/Λ. We can
now define the partition function as:

Z(τ1, τ2) ≡ TrHe−2π(τ2H−iτ1P )

where the trace is taken over all states in the Hilbert space H. We have also:

H =
2π

l


L0 + L0 −

c

24
− c

24



P =
2π

l


L0 − L0 −

c

24
+

c

24



1From now we will call L0,pl ≡ L0.
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that are respectively the Hamiltonian and the momentum operator defined on the
cylinder. If we now consider to have a theory in which c = c and the length of
the circumference of the cylinder as l = 2π, the partition function becomes:

Z(τ, τ̄) = TrH eπi[(τ−τ̄)(L0+L0− c
24

− c
24

)+(τ+τ̄)(L0−L0)]

= TrH e2πi[τ(L0− c
24

)+τ̄(L0− c
24

)]

If we now define:
q ≡ e2πiτ and q ≡ e−2πiτ̄

what we obtain is:

Z(τ, τ̄) = TrH

qL0− c

24 qL̄0− c
24


= (qq)−c/24 TrH


qL0 q̄L̄0


(6.1)

We have now to remember that, as we saw in Section 4.2.1, the domain of the
parameter τ is the moduli space of the torus, namely M1 ∼ H+/PSL(2,Z).
We know also that different tori, whose parameters τ can be linked by a certain
modular transformation, have the same conformal structure2. This means that
also their partition functions can be linked with a modular transformation. Since
now we are working with a theory that is invariant under conformal transforma-
tions, also the partition function must be invariant under modular transforma-
tions. The partition function thus will be a function Z(τ, τ̄) that are invariant
under the transformations:

τ → aτ + b

cτ + d
, τ̄ → aτ̄ + b

cτ̄ + d

with ad− bc = 1 and a, b, c, d ∈ Z.

6.1.1 The Free Boson System

What we would like to do now is the partition function in (6.1) for a single free
boson system. We can now anticipate that what we will find is:

Zbos(τ) =
1

√
τ2|η(τ)|2

=
1√

Imτ |η(τ)|2
(6.2)

We can verify that the partition function is modular invariant. Since every modu-
lar transformation can be written as the composition of T and S transformations,
using the definition we saw in (4.3), we need only to check how those two act on
the Dedekind function:

ηT (τ) = η(τ + 1) = e
2πi
24 η(τ)

ηS(τ) = η


− 1

τ


=

√
−iτ η(τ)

It is easy now to check that the partition function is actually invariant under a
generic modular transformation.

Let us now show how to obtain the result in (6.2). We have initially the
following expression for the partition function:

Z(τ, τ̄) = (qq)−c/24 TrH

qL0 q̄L̄0



2This means that the metrics of both tori are linked with a conformal transformation.



6.1. THE PARTITION FUNCTION 73

Using now the stress-energy tensor expression obtained in (3.18) and substituting
the expansion of the bosonic field in (3.24), we can obtain the full expression of the
L0 and L̄0 operators. The trace therefore breaks up into a sum over the occupation
numbers Nµn and Ñµn for each µ and n and an integral over momentum kµ. The
dependence from the momentum kµ of the Virasoro generators is straightforward
by looking at the expression of a0 in (3.23). What we can finally obtain is:

Z (τ, τ) = Vd (qq)
−d/24


ddk

(2π)d
e−πτ2α′k2

d

µ=1

∞

n=1

∞

NµnÑµn=0

qnNµn q̄nÑµn

where we substituted:


k

−→ (Vd)


ddk

(2π)d

We know now that: ∞

N=0

qnN =
1

1− qn

therefore the partition function becomes:

Z (τ, τ) = iVdZX(τ, τ̄)d

with:
ZX(τ, τ̄) =

1√
4π2α′τ2

1

|η (τ)|2

where the i factor in the previous expression comes from the Wick rotation needed
to have a well defined integral over momenta. By fixing the constant α′ = 1

4π2 ,
we can obtain exactly the expression in (6.2).

6.1.2 The Free Fermion System

Analogously to the free boson system, we can start doing the same calculations
also for the free fermion case and find the partition function of this system. The
action in this case is:

S =
1

2π


d2x (ψ̄∂ψ̄ + ψ∂̄ψ)

The most general periodicity conditions for a fermionic field defined on a torus
are:

ψ (z + ω1) = e2πivψ (z) ψ (z + ω2) = e2πiuψ (z)

but, as we saw in (3.28), the only ones that are compatible with the action are:

(v, u) = (0, 0) or (R,R)

(v, u) = (0,
1

2
) or (R,NS)

(v, u) = (
1

2
, 0) or (NS,R)

(v, u) = (
1

2
,
1

2
) or (NS,NS)

(6.3)

where "NS" stands for Neveau-Schwarz sector and "R" for Ramond sector. We
shall assume now that the same periodicity conditions are satisfied by the antiholo-
morphic fermionic field ψ̄. We can now denote the partition function computed
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with the (v, u)3 periodicity conditions, with Zv,u. Because of the decoupling be-
tween ψ and ψ̄, denoting by dv,u the partition function computed only for the
holomorphic component, the complete partition function will assume the follow-
ing structure:

Z =


v,u

|dv,u|2

What we would like to do now is to compute the partition function, analogously
to what we did for the free boson case, by using the operator formalism. In order
to do this, we need to implement the periodicity conditions in time direction. As
we saw in Section 3.7, we have to remember that, when we chose a periodicity
condition for the fermionic field on the plane, it would get exchanged on the
cylinder4. In order then to have the natural antiperiodicity condition in time
direction, since we are working with the L0 operator defined on the plane and
with the partition function defined on the cylinder, we need to insert in the case
of periodic condition u = 0, an operator that anticommutes with ψ(z), whatever
the value of z is. This operator is (−1)F , with:

F =


k≥0

Fk with Fk = b−kbk (k > 0)

where F0 is defined in the space-periodic case, equal to 0 when it acts on |0〉 and 1
when it acts in b0 |0〉. F is called Fermion Number. It can be defined analogously
a fermion number F̄ for the antiholomorphic component ψ̄
With this kind of procedure, the holomorphic partition functions dv,u become:

d0,0 =
1√
2
Tr (−1)F qL0−1/48 =

1√
2
Tr (−1)F q


k kb−kbk+1/24

d0, 1
2
=

1√
2
Tr qL0−1/48 =

1√
2
Tr q


k kb−kbk+1/24

d 1
2
,0 = Tr (−1)F qL0−1/48 = Tr (−1)F q


k kb−kbk−1/48

d 1
2
, 1
2
= Tr qL0−1/48 = Tr q


k kb−kbk−1/48

where the factor 1/
√
2 for the first two lines is conventional. We notice that we

used the expressions of L0 obtained by substituting the fermionic field expansion
(3.29), in the expression (3.21) of the stress-energy tensor, namely:

L0 =


k>0

kb−kbk (NS : k ∈ Z +
1

2
)

L0 =


k>0

kb−kbk +
1

16
(R : k ∈ Z)

with the adding constant fixed from the relations (3.30) and (3.31).
Let us now explicitly compute:

d 1
2
,0 = q−1/48TrH



k>0

qkb−kbk (−1)Fk

= q−1/48


k>0


TrHk

qkb−kbk (−1)Fk



3They are also called spin structure for the fermion.
4A torus is simply a cylinder with its two ends glued together.
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where we have used the fact that Tr(AB) with A and B operators acting on
different factors of a tensor product, is simply Tr(A)Tr(B). Indeed what we did
in this case is to write our Hilbert space as H ≃ ⊗∞

k>0 Hk with Hk the two-
dimensional Hilbert subspace5 generated by |0〉 and bk |0〉, with k ∈ Z + 1/2.
Trivially the fermion number can assume only the values 0 or 1, therefore we can
compute the previous traces:

Tr qkb−kbk = 1 + qk

Tr qkb−kbk (−1)Fk = 1− qk

Doing these computations for all the dv,u we need, what we can obtain is:

d0,0 =
1√
2
q1/24

∞

n=0

(1− qn) = 0

d0, 1
2
=

1√
2
q1/24

∞

n=0

(1 + qn) =


θ2(τ)

η(τ)

d 1
2
,0 = q−1/48

∞

r=1/2

(1− qr) =


θ3(τ)

η(τ)

d 1
2
, 1
2
= q−1/48

∞

r=1/2

(1 + qr) =


θ4(τ)

η(τ)

where we have defined the Theta functions as:

θ2 (τ) = 2q1/8
∞

n=1

(1− qn) (1 + qn)2

θ3 (τ) =

∞

n=1

(1− qn)

1 + qn−1/2

2

θ4 (τ) =

∞

n=1

(1− qn)

1− qn−1/2

2

We can notice that the vanishing of d0,0 is a consequence of the fact that the
b0 operator creates, when applied to a generic state with a certain energy and
fermion number, a state with the same energy but with opposite fermion number6.
Because of this effect, every state b0 |n〉 cancels every contribution coming from
the |n〉 state and therefore d0,0 is identically null.
We are now ready to write the final expression of the fermionic partition function:

Z = Z0,0 + Z 1
2
,0 + Z0, 1

2
+ Z 1

2
, 1
2

= |d 1
2
,0|

2 + |d0, 1
2
|2 + |d 1

2
, 1
2
|2

=


θ2(τ)

η(τ)

+

θ3 (τ)

η (τ)

+

θ4 (τ)

η (τ)



5This is clear since every combination of the creation operators like (bk)
l with l > 1 is

identically null because of the anticommutation relation.
6We saw explicitly this fact in Section 3.7.
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It can be now shown that the partition function is invariant under modular trans-
formations, that is exactly what we need. It can be seen that, for the modular
transformation τ → −1/τ we have:

d0,1/2 (−1/τ) = d1/2,0 (τ)

d1/2,0 (−1/τ) = d0,1/2 (τ)

d1/2,1/2 (−1/τ) = d1/2,1/2 (τ)

while for the modular transformation τ → τ + 1:

d0,1/2 (τ + 1) = eiπ/8 d0,1/2 (τ)

d1/2,0 (τ + 1) = e−iπ/24 d1/2,1/2 (τ)

d1/2,1/2 (τ + 1) = e−iπ/24 d1/2,0 (τ)

so what we can conclude is that the partition function is invariant under modular
transformations.

6.2 Compactified Boson

We would like now to extend the discussion we did in Subsection (3.6.2) to a free
boson compactified on a circle. The main difference is that now the bosonic field
has two possible winding numbers on the target space (m,m′) because of the two
possible cycles that the field describe on the worldsheet, that is, analogously to
the previous discussion, a torus. We can therefore consider:

ϕ

z + kω1 + k′ω2


= ϕ (z) + 2πR


km+ k′m′ k, k′ ∈ Z

The doublet of integers (m,m′) specify the topological class of configurations
of field that obey to the previous periodicity conditions. We can then define a
partition function Zm,n obtained by integrating over the configurations of the
class we are considering. What we do thus is to perform the path-integral after
we decomposed φ in a classical term φcl

m,m′ that satisfies the classical equation of
motion, namely ∂∂̄φcl

m,m′ = 0, and in a periodic field φ̃. It can be shown that this
procedure consists in writing:

φ = φcl
m,m′ + φ̃

with:
φcl
m,m′ = 2πR


z

ω1

mτ −m′

τ − τ
− z

ω∗
1

mτ −m′

τ − τ



It can be checked that the field φ decomposed in this way has the right periodicity
condition and it is real.
The action of the φ field becomes now:

S[φ] = S[φcl
m,m′ ] + S[φ̃]

Since now ∂∂̄φcl
m,m′ = ∇2φcl

m,m′ = 0, the crossed term in the action are null after
integrating by parts, namely:


d2x ∇ϕcl

m,m∇ϕ̃ = −


d2x ϕ̃∇2ϕcl
m,m = 0
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We can now compute easily:

S[ϕcl
m,m′ ] =

1

8π


d2x


∇ϕcl

m,m′

2

=
1

2π


dzdz ∂ϕcl

m,m′∂ϕcl
m,m′

= 2πR2A
1

|ω1|2


mτ −m′

τ − τ


2

= πR2 |mτ −m′|2

2 Imτ

with A = Im(ω2ω
∗
1) the area of the torus. The partition function therefore is:

Zm,m′(τ) = Zbos(τ) e
−πR2|mτ−m′|2

2 Imτ

where Zbos(τ) is the partition function obtained by integrating over the periodic
field φ̃. We computed its expression in (6.2). We have now to verify if the total
partition function is invariant under modular transformations. It can be easily
checked that:

|mτ −m′|2
2 Imτ

−→ |maτ + bm−m′cτ −m′d|2
Imτ

therefore the doublet (m,m′) transforms like:


m
m′


−→


a −c
−b d



  
≡R


m
m′



We can notice that the R matrix is the inverse matrix of SL(2,Z) with which we
transform the module τ . This means that the doublet transforms like the periods
(k1, k2) of the reciprocal lattice.
By taking now a = b = d = 1, c = 0 and a = d = 0, c = −1 = −b, namely taking
the T and S transformations respectively, we see that:

Zm,m′(τ + 1) = Zm,m′−m(τ)

Zm,m′


−1

τ


= Z−m′,m(τ)

What we can do now is, in order to obtain a modular invariant partition function,
to sum over all the doublets (m,m′) ∈ Z2 with equal weights Zbos(τ), namely we
can write:

Z(τ, R) =
R√
2
Zbos(τ)



m,m′

e−
πR2|mτ−m′|2

2 Imτ (6.4)

which is clearly invariant under modular transformations. Notice that the factor
R√
2

can be derived from a zero-mode integration of φ.
Let us now introduce an important formula that we can use to rewrite in a useful
way the previous partition function. The formula is called Poisson’s resummation
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formula and it is7:



n∈Z

e−πan2+bn =
1√
a



k∈Z

e−
π
a
(k+b/2πi)2

Setting now a = R2/2τ2, b = πmR2τ1/τ2, with τ = τ1+iτ2, the partition function
in (6.4) becomes:

Z(τ, R) =
1

|η(τ)|2


e,m∈Z

q(e/R+mR/2)2/2 q̄(e/R−mR/2)2/2 (6.5)

where we notice that the
√

Imτ factor, contained in the Zbos(τ) pre-factor, has
been reabsorbed in the resummation formula. The partition function is compat-
ible with the expression of L0 and L̄0 in the (3.25) and (3.26). The compactifi-
cation of the free boson give rise to an adding term in the conformal dimension
expression, namely:

he,m =
1

2


e

R
+

mR

2

2

h̄e,m =
1

2


e

R
− mR

2

2

We can now see that fields with e ∕= 0 correspond to vertex operator eieφ/R

with charge e/R, namely we can consistently interprete, as we saw in the (3.6.1)
Subsection, the e/R charge as the momentum of the created state. Instead when
m ∕= 0 we can interprete the contribution coming from the value of m, as some
vortex configurations of the field φ that correspond to lines on which the fields
have discontinuity of 2πmR. A field with e,m ∕= 0 is a superposition of these two
possibilities.
We can at last notice that this model, by performing the interchanges R ↔ 2/R
and e ↔ m, shows an interesting e-m duality that is usually called T-Duality.

6.2.1 Multi-component Compactified Bosons

We would like now to compute the modular invariant partition functions of a set
of n compactified free bosons, namely a multi-component boson system. However,
before proceeding, we need to introduce the concept of multidimensional lattice.
A n-dimensional lattice Γ is a set of points in Rn with the property that its
elements can be written in the following way:

Γ =


x =



i

xii
 xi ∈ Z



with i a set of n basis vectors. A lattice is said to be Lorentzian if the signature
of its inner product is:

(+, ...,+  
=s

,−, ...,−  
=s̄

)

7The demonstration is easy by starting from the identity:


n∈Z

δ(x− n) =


k∈Z

e2πikx

and integrating it over e−πax2+bx.
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with s the number of + signs and s̄ the number of − signs. We define then the
volume of the lattice to be:

Vol(Γ) = det[i · j ]

We can analogously define the dual lattice Γ∗ as the set of points p that satisfy
the relation x · p ∈ Z. A natural set of basis vectors for Γ∗ are ∗i , satisying the
relation i · ∗j = δij . The volume of the dual lattice is Vol(Γ∗) = 1/Vol(Γ).
A lattice is called self-dual if Γ∗ = Γ, from which it follows that Vol(Γ) = 1.
Moreover we call integer a lattice whose elements satisfy the property x · y ∈ Z
and even-integer if, for all its elements, x2 ∈ 2Z.
Considering now the partition function in (6.5), with the useful ridefinition e → m
(momentum) and m → w (winding), and defining:

p =
m

R
+

wR

2
p̄ =

m

R
− wR

2

we can write:

Z(τ) =
1

|η(τ)|2


p,p̄

eiπτp
2−iπτ̄ p̄2

where the sum is taken over all possible integer values of e and m. We notice now
that we can write (p, p̄) = me1+we2, with e1 = (1/R, 1/R) and e2 = (R/2,−R/2).
If we now take the Lorentzian product as:

(x, y) · (x′, y′) = xx′ − yy′

we see that the points (p, p̄) forms an even-integer, self-dual and Lorentzian lattice
Γ̃ generated by e1 and e2 basis vectors8. Let us now see why this fact is closely
related to the modular invariance of the partition function.
Let us consider n bosons with only holomorphic modes and analogously n̄ bosons
with only antiholomorphic modes. The Virasoro generators are:

L0 =
1

2
p2 +

n

i=1



k>0

a
(i)
−ka

(i)
k

L̄0 =
1

2
p̄2 +

n̄

i=1



k>0

ā
(i)
−kā

(i)
k

where (p, p̄) belongs to a lattice Γ̄ with signature (n, n̄), analogous to the lattice
Γ̃ we described above. The partition function of the system is:

Zn,n̄(τ) =
1

η(τ)nη̄(τ)n̄



p,p̄

eiπτp
2−iπτ̄ p̄2

Let us now see how modular transformations act on Zn,n̄(τ). It can be easily
checked that under the transformation τ → τ + 1 we have:

Zn,n̄(τ + 1) = Zn,n̄(τ)e
2πi

(n−n̄)
24 (6.6)

8It can be immediately checked that e1 · e1 = e2 · e2 = 0 and e1 · e2 = 1.
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where we have used the fact that p2 − p̄2 ∈ 2Z.
In order now to see how the transformation τ → −1/τ acts on Zn,n̄(τ), we need
to use an extended version of the Poisson’s resummation formula, that is:



q∈Γ
e−πaq2+q·b =

1

Vol(Γ)
1

an/2



p∈Γ∗

e−
π
a


p+ b

2πi


(6.7)

where a is a constant with Re a > 0 and b an n-dimensional constant vector.
Applying now the (6.7) formula to the (6.6) partition function, it can be shown
that, remembering that Γ̃ is self-dual, the partition function Zn,n̄(τ) is invariant
under the transformation τ → −1/τ .
We can conclude now that Zn,n̄(τ) is a modular invariant partition function if
and only if the lattice of the momentum vectors Γ̃ is even-integer and self-dual.
Moreover we require that the number of holomorphic and antiholomorphic bosons
satisfy the constraint:

(n− n̄)

24
∈ Z

or alternatively n− n̄ = 0 mod 24.

6.3 The Elliptic and Twining Genus

We have computed untill now only partition functions in the case of boson and
fermion systems. As we saw in Subsection (6.1.2), chiral and anti-chiral fermions
may have different periodicity conditions, in particular they may be periodic or
anti-periodic in space and time direction respectively. Let us now specify the
notation we are going to use: we will write "(Chiral fermionic sector, Anti-chiral
fermionic sector)" to specify the periodicity conditions for the corresponding type
of fermionic field, for example, the compact notation (R,NS) means that we take
a periodic chiral fermion and an anti-periodic anti-chiral fermion9.
It is in general very complicated to compute explicitly the partition function for
some NLSMs defined over some kinds of manifolds, like the Calabi-Yau manifolds.
In particular it can be seen that the partition function will depend on the metric
and the B-field of the target-space manifold. It is thus useful to introduce, for a
superconformal field theory, a new quantity that is independent of the metric and
the B-field choice but depends only on the topology of the target-space manifold.
This quantity is called Elliptic Genus. By opportunely modifying the Elliptic
Genus, one can also obtain another interesting quantity: the Twining Genus.
In order now to give a precise definition of Elliptic and Twining Genus, let us
recall the partition function for a generic N = 2 or N = 4 superconformal field
theory. Let us take, for simplicity, the partition function computed in the R-R
sector, namely where ψi(z) and ψ̄i(z̄) are periodic in space direction. What we
have thus is:

ZRR(τ) = TrRR


qL0−c/24 q̄L̄0−c/24(−1)F+F̄



where the F and F̄ operators are respectively the world-sheet fermion and the
anti-fermion numbers. Their insertion in the partition function, as we have already
discussed, is necessary in order to ensure anti-periodicity in time direction. We can
now insert another operator which weighs every state contribution with different
coefficients. The operator we insert, following the definition given by Witten in

9Clearly all the periodicity conditions are taken on the cylinder.
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[25], is the zero mode of the J3 current, J3
0 . The J3 current is an operator that

belongs to the superconformal algebra, as we can see in (5.15).
The partition function modified in this way is usually called Elliptic Genus and
becomes:

Z(τ, z)RR = TrRR


qL0−c/24 q̄L̄0−c/24(−1)F+F̄ yJ

3
0


(6.8)

where y ≡ e2πiz, with z a real parameter.
The Elliptic Genus a very interesting quantity because shows two interesting prop-
erties: it is an holomorphic function10 of τ and z, and it is invariant under defor-
mations of the model, in particular by taking deformations of the metric Gµν and
the B-field Bµν , as we will see later.
Our study is focused on how fields behave under a certain set of discrete symme-
tries that fix the N = 4 superconformal algebra, therefore we can try to insert a
symmetry operator g ∈ G, where G is the discrete symmetry group of our super-
conformal field theory, and see how the result depend on g. The Elliptic Genus
modified in this way is called Twining Genus and it is:

Zg(τ, z)RR = TrRR


qL0−c/24 q̄L̄0−c/24(−1)F+F̄ yJ

3
0 g


(6.9)

Also the Twining Genus is an interesting object because, it can be shown, it is
invariant under deformations of the model as long as g is a symmetry. We will
actually exploit this property to compute the Twining Genus when it is easy to
do it.

10This is discussed by Witten in [25]
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Chapter 7

The T4/Z2 Orbifold

In this last chapter we would like to introduce non linear sigma-models on T4

and K3, and compute the Twining Genus for some discrete symmetries g. More
specifically, the object we are going to compute will be the Twining Genus for
a symmetry g of a N = (4, 4) superconformal field theory with target-space the
orbifold T4/Z2. The motivation is that the computation of the Twining Genus
of the theory is a good way of studying how fermionic and bosonic fields of this
superconformal field theory, that arises from Type IIA and Type IIB superstring
compactifications on K3 surfaces, behave under some discrete symmetries of the
orbifold1, in particular, the ones that preserve the OPEs of the model and fix the
N = 4 superconformal algebra. This could be relevant because symmetries of the
fields at very high-energy level, may have an impact on the low-energy physics,
namely on the properties of the compactified superstring theory.
As we said at the end of Section (5.3), we are interested in K3 surfaces, so it is
natural to ask ourselves why we are focusing on the T4/Z2 orbifold. The fact is
that, as we will see in Section (7.3), this orbifold can be obtained by taking an
opportunely deformation of the metric of a K3 surface. An interesting property
of the Twining Genus we are going to compute, is that it should not depend on
small deformations of the metric as long as the symmetry g remains a symmetry
of the corresponding NLSM.

7.1 Orbifold, a simple example: S1/Z2

In order to present our final calculations, we need now to introduce the concept
of a particular topologic structure called Orbifold and to make a simple example
of how a partition function on this structure has to be computed.
If we consider a manifold M and discrete group G acting on a generic point x ∈ M
with x → gx, we can define the corresponding orbifold M/G in the following way:

M/G = {x ∈ M | x ∼ gx, ∀g ∈ G}

An example of orbifold is S1/Z2. The structure of this orbifold can be understood
by considering the following relations:

x ∼ x+ 2πR, x ∼ −x

1The complete classification of all discrete symmetries of the orbifold T4/Z2 can be found in
[16].
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where x ∈ R and R is the radius of the circle. In this case the orbifold is simply
a segment of length π. Notice that the boundaries, namely x = 0 and x = π, are
the two fixed points under the action of Z2 on the circle.

Let us now consider a free compactified boson with the assumption that the
bosonic field φ can be identified with −φ, namely the field now take its values on
the space where we have perfomed the quotient by the action of the Z2 group.
In order to identify the class of bosonic fields we are dealing with, we label the
lowest weight states generated by the vertex operator with winding number n and
momentum m, with |m,n〉. Taking now the non-trivial transformation h ∈ Z2,
namely the one that maps a generic field of our theory φ → −φ, we have the
following transformation property h |m,n〉 = |−m,−n〉 with h anticommuting
with the mode creation and annihilation operators α−n and ᾱ−n. In order now
to compute the partition function, we need to project on the states of the Hilbert
space that are invariant under the action of h. We need therefore to introduce
the projector (1 + h)/2 in the trace:

Z invar(R) =
1

2
Tr[(1 + h) qL0−1/24 q̄L0−1/24]

where:
L0 =



k∈Z

α−kαk

The previous trace can be splitted in two contributions:

Z invar(R) =
1

2
Z(R) +

1

2
Tr[h qL0−1/24 q̄L0−1/24]

where the first term is exactly the partition function of a compactified boson. In
order now to compute the h trace term, we notice that we can build two vacua
states |a〉 = |m,n〉+|−m,−n〉 and |b〉 = |m,n〉−|−m,−n〉 respectively symmetric
and antisymmetric under the action of h. We see that the contributions coming
from the excited states built upon |a〉 and |b〉 cancel out because both have the
same L0 eigenvalue but, because of the presence of the h transformation, have
opposite signs. We conclude then that the only states that contribute to the h
trace are the ones built upon the vacuum |0, 0〉.
The direct computation now gives us:

Tr

h q


n α−nαn−1/24


= q−1/24

∞

n=1

TrHnh qα−nαn

= q−1/24
∞

n=1

(1− qn + q2n − q3n + ...)

= q−1/24
∞

n=1

∞

k=0

(−qn)k

= q−1/24
∞

n=1

1

1 + qn

=


2η(τ)

θ2(τ)

where we decomposed the Hilbert space H ≃ ⊗∞
n=1Hn, where Hn is the infinite-

dimensional Hilbert subspace built upon the vacuum |0, 0〉 and generated by |0, 0〉
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and (α−n)
k |0, 0〉 with k = 1, ...,∞.

The result thus becomes:

Z invar(R) =
1

2
Z(R) +


η(τ)

θ2(τ)



We notice that we clearly obtained a partition function that is not modular in-
variant. That is because we considered the contributions of the h invariant states
coming from the so called Untwisted Sector, namely the periodic boson fields
φ(σ + 2π, τ) ∼ φ(σ, τ). Let us now thus consider the so called Twisted Sector in
which we have instead φ(σ + 2π, τ) ∼ −φ(σ, τ). It can be shown that, in this
sector, the mode expansion of the bosonic field becomes:

φ(σ, τ) = φ0 +
i√
4πg



n∈Z


αn+1/2

n+ 1/2
ei(n+1/2)(σ+τ) +

ᾱn+1/2

n+ 1/2
e−i(n+1/2)(σ−τ)



The ground state φ0 now, imposing the twisted sector condition, has necessarily
to assume the values φ0 = 0 and φ0 = π. Differently from the untwisted sector
case therefore now we have two ground states |0, 0〉0 and |0, 0〉π on which we can
act with the creation operators α−n and ᾱ−n with n > 0, and build all the possible
bosonic excited states.
Again, just like we did for the untwisted sector, we need to compute the trace on
the invariant states under the action of the h transformation. Thus we need to
insert again the projector (1 + h)/2 into the trace:

Ztw(R) =
1

2
Tr[(1 + h) qL0−1/24 q̄L0+1/24]

where we used the expression of L0 obtained by substituting the bosonic field
expansion (3.24), setting the coupling constant as g = 1/4π, in the expression of
the stress-energy tensor in (3.18), namely:

L0 =


k∈Z+ 1
2

α−kαk +
1

16

with the additive constants fixed by computing the vacuum expectation value of
the stress-energy tensor considering a bosonic field with respectively periodic and
antiperiodic conditions on the plane2.
The direct computation leads to:

Ztw(R) =
1

2
Tr[(1 + h) qL0−1/24 q̄L0−1/24]

=
1

2
Tr[(1 + h) q


n α−nαn+1/48 q̄


n α−nαn+1/48]

=
1

2
(qq̄)1/48

 ∞

n=1

1

(1− qn−1/2)(1− q̄n−1/2)
+

∞

n=1

1

(1 + qn−1/2)(1 + q̄n−1/2)



=


η(τ)

θ4(τ)

+

η(τ)

θ3(τ)



2Since the conformal dimension of the bosonic field is h = 1, the boundary conditions defined
on the cylinder, unlike what happens in the fermionic case, stay the same when mapping the
cylinder onto the plane.



86 CHAPTER 7. THE T4/Z2 ORBIFOLD

The complete partition function therefore becomes:

Zorb(R) = Zuntw(R) + Ztw(R)

=
1

2
Z(R) +


η(τ)

θ2(τ)

+

η(τ)

θ4(τ)

+

η(τ)

θ3(τ)



=
1

2


Z(R) +

|θ2θ3|
|η|2

+
|θ2θ4|
|η|2

+
|θ3θ4|
|η|2



where we use the identity θ2θ3θ4 = 2η3. We notice now that, by adding the
missing piece, namely the twisted sector trace term, the total partition function
is modular invariant as expected.
This construction can be generalized to Td/Z2 orbifolds, with d > 1, where the
symmetry h maps the fields φi → −φi where i = 1, ..., d. In the next sections we
will consider the d = 4 supersymmetric case: the T4/Z2 orbifold.

7.2 Non linear σ-Models on T4 and its Symmetries

As previously introduced, we need to study a N = (4, 4) superconformal field
theory and see its possible application for superstring compactification. Let us
thus recall the action:

S =
1

2π


d2z



a

∂Xa∂̄Xa −


b

ψb∂̄ψb + ψ̄b∂ψ̄b



with a, b = 1, ..., 4. Introducing now the currents ja(z) = i∂Xa(z) and j̃a(z̄) =
i∂̄Xa(z̄), the OPEs of our objects become:

ja(z)jb(w) ∼ δab

(z − w)2
, ψa(z)ψb(w) ∼ δab

z − w

where the anti-holomorphic counterparts satisfy analogous relations and all other
possible combinations vanish. Their mode expansion follows immediately:

ja(z) =


n∈Z

αa
n z−n−1, ψa(z) =



r∈Z+ν

ψa
r z−r−1/2

with ν = 0 if we are in the R sector or ν = 1/2 if we are in the NS sector. The
mode operators satisfy the following commutation and anticommutation relations:

[αa
m,αb

n] = mδabδm+n, {ψa
r ,ψ

b
s} = δabδr+s

Let us now define a useful set of chiral bosonic fields:

∂Z(1)(z) ≡ 1√
2
(j1(z) + ij3(z)), ∂Z(1)∗(z) ≡ 1√

2
(j1(z)− ij3(z))

∂Z(2)(z) ≡ 1√
2
(j2(z) + ij4(z)), ∂Z(2)∗(z) ≡ 1√

2
(j2(z)− ij4(z))

chiral fermionic fields:

χ(1)(z) ≡ 1√
2
(ψ1(z) + iψ3(z)), χ(1)∗(z) ≡ 1√

2
(ψ1(z)− iψ3(z))

χ(2)(z) ≡ 1√
2
(ψ2(z) + iψ4(z)), χ(2)∗(z) ≡ 1√

2
(ψ2(z)− iψ4(z))
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and, analogously, anti-chiral bosonic and fermionic fields ∂Z̃(1), ∂Z̃(2), ∂Z̃(1)∗,
∂Z̃(2)∗, χ̃(1), χ̃(2), χ̃(1)∗, χ̃(2)∗.
We can now build the four supercurrents using the definitions above:

G+(z) ≡ i
√
2(: χ(1)∗(z)∂Z(1)(z) : + : χ(2)∗(z)∂Z(2)(z) :)

G−(z) ≡ i
√
2(: χ(1)(z)∂Z(1)∗(z) : + : χ(2)(z)∂Z(2)∗(z) :)

G
′+(z) ≡

√
2(− : χ(1)∗(z)∂Z(2)∗(z) : + : χ(2)∗(z)∂Z(1)∗(z) :)

G
′−(z) ≡

√
2(: χ(1)(z)∂Z(2)(z) : − : χ(2)(z)∂Z(1)(z) :)

(7.1)

We notice now that our torus model contains four chiral fermions from which, it
can be shown, we can build an so(4) algebra. By using now the property that
so(4) ≃ su(2)⊕ su(2), we can define two inequivalent commuting su(2) algebras
that are generated respectively from the following set of currents:

J3(z) ≡ 1

2


: χ(1)∗(z)χ(1)(z) : + : χ(2)∗(z)χ(2)(z) :



J+(z) ≡ i : χ(1)∗(z)χ(2)∗(z) :

J−(z) ≡ i : χ(1)(z)χ(2)(z) :

(7.2)

and:
A3(z) ≡ 1

2


: χ(1)∗(z)χ(1)(z) : − : χ(2)∗(z)χ(2)(z) :



A+(z) ≡ i : χ(1)∗(z)χ(2)(z) :

A−(z) ≡ i : χ(1)(z)χ(2)∗(z) :

(7.3)

We can now notice that the first set of affine currents, J3(z) and J±(z), are exactly
the ones that appear in the definition of the N = 4 superconformal algebra, in
particular in the OPEs of the four supercurrents, as we can see from the equation
(5.18).

After having introduced all the fields we will need for our calculations, let
us now give a qualitative description of all possible discrete symmetries of the T4

manifold that preserves all the OPEs and fixes the N = 4 superconformal algebra,
namely that act trivially on the supercurrents in (7.1) and the currents in (7.2).
In a N = (4, 4) superconformal field theory, the fields we are dealing with are:
the bosons ∂Xi(z), the fermions ψi(z), their anti-holomorphic counterparts and
the vertex operators Vλ(z, z̄).
We have now to remember that:

lim
z,z̄→0

Vλ(z, z̄) |0〉 = |λ〉

with λ = (λL,λR), and that |λ〉 satisfy the following conditions:

αi
0 |λ〉 = λi

L |λ〉
ᾱi
0 |λ〉 = λi

R |λ〉
(7.4)

As we saw in Subsection (6.2.1), λ forms a 8-dimensional lattice Γ4,4 that must
be, in order to have a modular invariant partition function, even-integer and self-
dual (or unimodular). We have thus that λ2

L − λ2
R ∈ 2Z, therefore the lattice has

signature (4, 4) and the metric is clearly gab = diag(1, ..., 1,−1, ...,−1).
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In order to find the symmetries we need, let us recall the OPEs of the fields we
are considering:

∂Xi(z)∂Xj(w) ∼ − δij

(z − w)2
(7.5)

ψi(z)ψj(w) ∼ δij

z − w
(7.6)

∂Xi(z)Vλ(w, w̄) ∼ −i
λi
L

z − w
Vλ(w, w̄) (7.7)

Vλ(z, z̄)Vµ(w, w̄) ∼ ξ(λ, µ) (z − w)
λL·µL (z̄ − w̄)

λR·µR Vλ+µ(w, w̄) (7.8)

with ξ(λ, µ) a phase that satisfies the condition ξ(λ, µ) = (−1)λLµL−λRµR ξ(µ,λ).
The first transformation we could do in order to preserve the equation (7.5),

is ∂X ′j(z) = Rij∂Xi(z), with Rij ∈ O(4)L. A necessary condition for this trans-
formations to act trivially on the four supercurrents is to transform exactly in
the inverse way the set of four fermionic fields of the model. This implies that
the fermionic fields must transform with (R−1)ij = Rji. Focusing now on the
equation (7.7), we notice that, in order to preserve the OPE, the same O(4)L
transformation that acts on ∂Xi, has also to act on λi

L. Taking into account now
also the anti-chiral components and making analogous considerations, the allowed
transformations have to belong necessarily to the group O(4)L ×O(4)R

3.
As we saw before, the o(4)L algebra can be divided in two commuting algebras:
su(2)J and su(2)A. Now the group SU(2)A acts trivially on the three currents
J3 and J± while transforms in a non-trivial way, up to a Z2 transformation, the
other three currents A3 and A±. Therefore, in order to fix the three currents
J± and J3, we have to require that the allowed transformations belong only to a
subgroup of O(4)L, in particular to SU(2)A ≡ SU(2)L. Analogous considerations
hold for the right-moving terms.
We need also to impose another very important constraint: the transformed vec-
tor λ′

L/R has still to belong to the lattice Γ4,4. We know that the metric of the
lattice is left invariant from a SO(4, 4) transformation, but only a group of dis-
crete transformations can map a point of the lattice to another point of the same
lattice. We can call for simplicity this group SO(Γ4,4).
We conclude thus that λ ∈ Λ has to transform with a transformation belonging
to (SU(2)L × SU(2)R) ∩ SO(Γ4,4).
We notice that we can still act on Vλ(z, z̄) and preserve the equations (7.7) and
(7.8), with the following transformations:

Vλ(z, z̄) −→ Vλ(z, z̄) · e2πi(L·
λL−R·λR)

where L/R ∈ Γ4,4∗ ⊗ R.4 The group generated by the transformations above is
U(1)4L × U(1)4R.
We can now finally conclude that the symmetry group we are looking for is:

G = (U(1)4L × U(1)4R)⋊ (SU(2)L × SU(2)R) ∩ SO(Γ4,4)

Since the transformation λL/R → −λL/R is always allowed, we can rewrite the

3Notice that L and R components have both to transform independently from each other.
4This notation means that  · λ ∈ R, λ ∈ Γ4,4.
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previous group decomposition as5:

G = (U(1)4L × U(1)4R) : Z2 . G0 (7.9)

with:
G0 = ((SU(2)L × SU(2)R) ∩ SO(Γ4,4))/Z2

The complete classification of all possible symmetries g ∈ G0 and their eigenvalues
can be found in [16], Table 2, pag.20.

7.2.1 The Moduli Space

We have already seen that, in order to classify all the possible metrics over a
certain manifold, we can build the so called Moduli Space of (pseudo-)Riemannian
metrics of the corresponding manifold. In general, the Moduli Space is a space
that parametrize every possible property of a class of mathematical objects. In
our context, it is very important to study this space for T4 and K3 surfaces
cases because we can parametrize all possible choices of the metric and, possibly,
the B-field on those manifolds. Indeed the metric Gµν and the B-field Bµν are
the quantities that determine the NLSM on that manifold. We can thus build
a Moduli Space whose points correspond to a fixed metric and B-field, namely,
every point corresponds to different NLSMs defined over the manifold itself.

If we now consider the T4 case, we know that the winding-momentum lat-
tice is Γ4,4 ⊆ R4,4 and, because of modular invariance properties of the partition
function, it must be even-integer and self-dual6. This lattice is also called Narain
lattice. The signature of the metric of the lattice is (4, 4), therefore we can sep-
arate the lattice in two 4-dimensional subspaces: a definite positive one denoted
by Π and a definite negative one denoted by Π⊥. A generic vector of the lattice
can be written as p = (pL, pR), with pL,R the eigenvalues respectively of the αi

0

and ᾱi
0 operators, with i = 1, ..., 4, and the relation p2L− p2R ∈ 2Z. We notice now

that, since the momentum depends on the geometric properties of the manifold,
fixing the lattice Γ4,4, means to fix the geometry of the manifold, i.e. the metric,
and the B-field.
In order now to build the Moduli Space of the metrics and B-fields for the torus
T4, we can start considering the generic group that preserves the metric on R4,4,
namely O(4, 4). Since we divided the lattice into two subspaces Π and Π⊥, we
should remove all the possible transformations that rotate every vector of a sub-
space into another vector of the same subspace, i.e. the group O(4)Π × O(4)Π⊥ .
At this point what we obtained is:

M1 = O(4, 4)/(O(4)×O(4))

and the meaning of M1 is to be the space of all possible couples (Gµν , Bµν). We
have now to notice that, since the B-field can be deduced from the momenta of
the Narain lattice, we should remove all the possible transformations that give us
different B-fields but corresponding to equivalent NLSMs. We have therefore to
take the quotient of M1 by the so called Duality Group of the Lattice, namely
the group of all possible basis changing transformations, B-field shifting with

5Since the product of the groups in (7.9) is neither direct nor semi-direct, we indicate with
"." and ":" their kind of group product.

6Notice that self-dual lattices can exist if and only if, by taking a genirc lattice Γm,n, we
have that m− n = 8l, with l ∈ Z.
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an anti-simmetric integer matrix Nij , and exchanging between winding numbers
and momenta (called also T-Duality transformations). The final structure of the
Moduli Space thus becomes:

M = O(Γ4,4)\O(4, 4)/(O(4)×O(4))

This is finally the space of the couples (Gµν , Bµν) corresponding to all possible
inequivalent NLSMs on the torus T4.

7.3 Non-linear σ-Models on K3

As discussed in Subsection (5.3.2), K3 surfaces are two-dimensional complex and
Ricci-flat manifolds whose holonomy group is H = SU(2). This allows us to
find non trivial solutions to the equation (5.6) that fixes the number of conserved
supercharges after the compactification on them of a superstring theory. That is
why they are so important in this context, so let us now consider non-linear σ
models on K3.
NLSM defined on K3 surfaces are two-dimensional superconformal field theories
with N = (4, 4) superconformal symmetry and central charge c = 6. Unfortu-
nately, for a generic NLSM on K3, we are not able to compute directly even basic
quantities such as the partition function of the theory or, for example, the Elliptic
Genus.
K3 surfaces are a class of manifolds that share the same topology but not the same
metric (and B-field) therefore, as we saw right above, we can consider the Moduli
Space parametrizing all the possible choices of metric and B-field. It can be shown
that the Moduli Space of NLSMs built on K3 has the following structure7:

MK3 = O(Γ4,20)\O(4, 20)/(O(4)×O(20)) (7.10)

with Γ4,20 the unique, up to isomorphisms, even, self-dual lattice, of signature
(4, 20) and O(Γ4,20) its infinite discrete group of symmetry. As usual, we will
focus in symmetries preserving the N = 4 superconformal algebra, just like we
did for the T4 case. In [18] and [22] it is shown that, in each point of MK3, those
kind of symmetries form a finite proper subgroup of O(Γ4,20).
It can be now shown that there are some special points of (7.10) for which the
corresponding NLSM on K3 is exactly equivalent to a NLSM defined on the orb-
ifold T4/Z2, namely, with a proper choice of the couple (Gµν , Bµν), we have that
K3 ≃ T4/Z2. This kind of orbifold has a much simpler structure than a generic
K3 surface and, in particular, we are able to compute explicitly a lot of interest-
ing quantities such as the partition function, the Elliptic Genus and many of its
Twining Genera.
As discussed in Section (6.3), the Elliptic Genus is invariant under deformations
of the metric and B-field. Since now the Moduli Space MK3 is connected, this
implies that the Elliptic Genus is the same for every point of MK3, namely the
same for all NLSMs on K3. It is therefore sufficient to compute it in a special
point of the Moduli Space, i.e. where K3 ≃ T 4/Z2. The same holds for the
Twining Genus of a discrete symmetry g, at least for the subspace of MK3 where
g remains a good symmetry of the K3 model. We will now finally show how to
compute these quantities.

7The construction of the Moduli Space in this case is very complicated and it is accurately
presented in [17].
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7.4 The Elliptic Genus of K3

As we said right above, the Elliptic Genus computed for K3 surfaces and the
T4/Z2 orbifold is exactly the same. That is because it has the property of being
invariant under deformations of K3 models, namely it stays the same for every
point of MK3, therefore it can be computed for the orbifold case. Following the
definition given in (6.8) and inserting in the trace the projector (1 + h)/2, with
h ∈ Z2 the transformation that maps the generic fields φi → −φi, the Elliptic
Genus defined on T4/Z2 orbifold becomes:

Zorb(τ, z) = Tr(h−untw)


(1 + h)

2
qL0−c/24 q̄L̄0−c/24(−1)F+F̄ yJ

3
0



+ Tr(h−tw)


(1 + h)

2
qL0−c/24 q̄L̄0−c/24(−1)F+F̄ yJ

3
0



≡ Zorb
untw(τ, z) + Zorb

tw (τ, z)

(7.11)

As we already know, in order to compute explicitly the trace, we need to specify
how the Hilbert space H has to be factorized in this case. This is useful because
of the well known property of traces Tr(AB) =Tr(A)Tr(B) when A and B are
operators that act on different factors of the Hilbert space.
As usual, we can start from a generic ground state |Ω〉 and build, acting with
the mode creation operators of the fields of the theory, the corresponding Hilbert
subspace Hfi , with fi the index that specify the kind of field we are considering,
for example, ∂Z(1) or χ̃(2)∗.
We have also to remember that in the R-R sector there exist fermionic zero modes
forming a non-trivial algebra. This implies that the ground states must be degen-
erate, with the zero modes mapping the ground states into each other. We can
call states created in this way as ground states. The chiral and anti-chiral zero
modes satisfy the following non-vanishing anticommutation relations:

{χa
0,χ

b∗
0 } = δab, {χ̃a

0, χ̃
b∗
0 } = δab

therefore they can be represented as matrices living in a 2d/2-dimensional space,
with d the total number of fermionic operator. Being d = 8, we have that the
zero modes generate a 16-dimensional Hilbert space. Since there is no canonical
choice of creation and annihilation operators by starting from the zero modes, we
conventionally assign to χ(1)∗, χ(2)∗, χ̃(1)∗, χ̃(2)∗ the role of creation operator and
to χ(1), χ(2), χ̃(1), χ̃(2) the role of annihilation operators.
In order to explicitly describe the 16-dimensonal Hilbert space of ground states
Hgs, we can conveniently choose a basis of eigenstates for the current operators
J3
0 , J̃3

0 , A3
0, Ã3

0, namely |s1, s2, s̃1, s̃2〉, with s1,2 = ±1/2 and s̃1,2 = ±1/2.
In order to generate the whole 16-dimensional space, we can choose a state
|s1, s2, s̃1, s̃2〉, that is annihilated from all the annihilation operators, and act
in all possible ways with the creation operators. The consistent relations that
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have to be satisfied in order to obtain 16 states are:

χ
(1)∗
0 |−1

2
, s2, s̃1, s̃2〉 = |1

2
, s2, s̃1, s̃2〉

χ
(2)∗
0 |s1,−

1

2
, s̃1, s̃2〉 = |s1,

1

2
, s̃1, s̃2〉

χ
(1)∗
0 |1

2
, s2, s̃1, s̃2〉 = 0

χ
(2)∗
0 |s1,

1

2
, s̃1, s̃2〉 = 0

χ̃
(1)∗
0 |s1, s2,−

1

2
, s̃2〉 = |s1, s2,

1

2
, s̃2〉

χ̃
(2)∗
0 |s1, s2, s̃1,−

1

2
〉 = |s1, s2, s̃1,

1

2
〉

χ̃
(1)∗
0 |s1, s2,

1

2
, s̃2〉 = 0

χ̃
(2)∗
0 |s1, s2, s̃1,

1

2
〉 = 0

and the same holds, with opposite signs, for the corresponding annihilation oper-
ators. The action of the current operators on a generic state of Hgs is described
by the following relations:

J3
0 |s1, s2, s̃1, s̃2〉 = (s1 + s2) |s1, s2, s̃1, s̃2〉

J̃3
0 |s1, s2, s̃1, s̃2〉 = (s̃1 + s̃2) |s1, s2, s̃1, s̃2〉

A3
0 |s1, s2, s̃1, s̃2〉 = (s1 − s2) |s1, s2, s̃1, s̃2〉

Ã3
0 |s1, s2, s̃1, s̃2〉 = (s̃1 − s̃2) |s1, s2, s̃1, s̃2〉

The last factor of the Hilbert space factorization we need to consider is the Hilbert
space generated by vertex operators. It can be written as HVλ

=


λ∈Γ4,4 Hλ, with
Hλ the 1-dimensional Hilbert subspace generated by the vector |λ〉.
Since now λ has to satisfy the conditions in (7.4), we understand that the eigen-
state |λ〉 may exist if and only if the bosonic zero mode operators are present.
This is not true if we consider the h-twisted sector, indeed, in that sector, the
bosonic and fermionic zero modes are labelled with r ∈ Z + 1/2.
The role of the vertex operators thus is different in the h-untwisted and the h-
twisted sector: in the first they give rise to the Hilbert space defined above as
HVλ

, while in the second, as we will see more precisely later, they are the opera-
tors that map a twisted ground state into another twisted ground states, namely
they generate Htw

gs .
The final decomposition of our Hilbert space for the h-untwisted sector thus finally
becomes:

H =



λ∈Λ
|λ〉


⊗Hgs ⊗H∂Z(1) ⊗H∂Z(2) ⊗Hχ(1) ⊗Hχ(2)

⊗H∂Z(1)∗ ⊗H∂Z(2)∗ ⊗Hχ(1)∗ ⊗Hχ(2)∗ ⊗ ...

where "..." stand for the Hilbert spaces generated with right-moving operators.
Before starting with the calculations, we can notice now that it is useful to

rewrite the trace in (7.11) into four different terms:

Z(1)(τ, z) =
1

2
Tr(h−untw)


qL0−c/24 q̄L̄0−c/24(−1)F+F̄ yJ

3
0


(7.12)

Z(2)(τ, z) =
1

2
Tr(h−untw)


qL0−c/24 q̄L̄0−c/24(−1)F+F̄ yJ

3
0 h


(7.13)

Z(3)(τ, z) =
1

2
Tr(h−tw)


qL0−c/24 q̄L̄0−c/24(−1)F+F̄ yJ

3
0


(7.14)

Z(4)(τ, z) =
1

2
Tr(h−tw)


qL0−c/24 q̄L̄0−c/24(−1)F+F̄ yJ

3
0 h


(7.15)

with clearly:

Zorb(τ, z) =

4

i=1

Z(i)(τ, z)
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We can now notice that every Z(i)(τ, z) can be decomposed as the product of
three different terms. One of each term take into account contributions coming
from, respectively, the ground states, the oscillator terms (mode operators with
index −n, n ∕= 0) and the vertex operators. We can thus write:

Z
(i)
untw(τ, z) =

1

2
Z(i)
gs (τ, z) · Z(i)

osc(τ, z) · Z
(i)
λ (τ, z)

Z
(i)
tw (τ, z) =

1

2
Z(i)
gs (τ, z) · Z(i)

osc(τ, z)

(7.16)

We are now ready to compute the ground states contribution to Z(1)(τ, z). In the
R-R sector the ground states has conformal weight h = h̄ = c/24, therefore we
don’t get any contribution to the trace from the operators qL0−c/24 and q̄L̄0−c/24.
Let us take the state |−1

2 ,−
1
2 ,−

1
2 ,−

1
2〉 ≡ |gs〉 as the state from which we can

generate Hgs. Applying the operators in the trace to the |gs〉 state we obtain:

(−1)F yJ
3
0 |gs〉 = (+1) · (y−1) |gs〉 = y−1 |gs〉

Acting now for example with the creation operator χ
(1)∗
0 on |gs〉, calling it for

simplicity |χ(1)∗
0 〉, we can find:

(−1)F yJ
3
0 |χ(1)∗

0 〉 = (−1)F yJ
3
0

+
1

2
,−1

2
,−1

2
,−1

2


=

= (−1) · (+1) |χ(1)∗
0 〉 = − |χ(1)∗

0 〉

using now |χ(2)∗
0 〉 we find:

(−1)F yJ
3
0 |χ(2)∗

0 〉 = (−1)F yJ
3
0

−
1

2
,+

1

2
,−1

2
,−1

2


=

= (−1) · (+1) |χ(2)∗
0 〉 = − |χ(2)∗

0 〉

and analogously with |χ(2)∗
0 χ

(1)∗
0 〉 we get:

(−1)F yJ
3
0 |χ(2)∗

0 χ
(1)∗
0 〉 = y |χ(2)∗

0 χ
(1)∗
0 〉

Acting now also with all the possible combinations of right-moving operators, we
can obtain the remaining contributions. By computing then the trace what we
can obtain is:

Z(1)gs(τ, z) = y−1(1− y)2 · 0 = 0 (7.17)

From this result is immediate to understand that

Z(1)(τ, z) = 0 (7.18)

Let us now focus on the Z(2)(τ, z) term. Since the effect of the h operators
is to give us a −1 every time it acts on a single bosonic or fermionic field, we
can compute Z(2)gs(τ, z) following the previous considerations. This time what
we can indeed obtain is:

Z(2)gs(τ, z) = y−1(1 + y)2 · 4 (7.19)

where the factor four comes from the right-moving operators contribution.
In order now to compute the Z(2)osc term, we need first to understand how the
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operator yJ3
0 acts on fermionic fields. As we can see from (7.2), being yJ

3
0 defined

with only fermionic operators, it will not act on bosonic fields and therefore their
eigenvalues will be simply 1. Using thus the definition of J3

0 , for fermionic fields,
we can find:

χ(1)∗ χ(2)∗ χ(1) χ(2) χ̃(1)∗ χ̃(2)∗ χ̃(1) χ̃(2)

yJ
3
0 y y y−1 y−1 1 1 1 1

We are now ready to proceed with the computation of Z(2)osc(τ, z). Let us start
with the factor of the Hilbert space generated by the ∂Z(1)

−n operators. Analogously
to the previous case, we can start computing, using the table above:

(−1)F qL0 q̄L̄0 yJ
3
0 h |Ω〉 = (+1) · |Ω〉 = |Ω〉

(−1)F qL0 q̄L̄0 yJ
3
0 h ∂Z

(1)
−n |Ω〉 = −qn ∂Z

(1)
−n |Ω〉

(−1)F qL0 q̄L̄0 yJ
3
0 h (∂Z

(1)
−n)

2 |Ω〉 = q2n (∂Z
(1)
−n)

2 |Ω〉
...

The contribution to the trace then can be expressed in a compact way:

1− qn + q2n + ... =

+∞

l=0

(−qn)l =
1

1 + qn

Repeating the same calculations for the ∂Z(1)∗ case, we get:

(−1)F qL0 q̄L̄0 yJ
3
0 h |Ω〉 = (+1) · |Ω〉 = |Ω〉

(−1)F qL0 q̄L̄0 h ∂Z
(1)∗
−n |Ω〉 = −qn ∂Z

(1)∗
−n |Ω〉

(−1)F qL0 q̄L̄0 yJ
3
0 h (∂Z

(1)∗
−n )2 |Ω〉 = q2n (∂Z

(1)∗
−n )2 |Ω〉

...

Again we can use the geometric series to express the previous results:

1− qn + q2n + ... =

+∞

l=0

(−qn)l =
1

1 + qn

The same can be done for the ∂Z(2) and ∂Z(2)∗ fields.
Let us now consider the fermionic contributions. We can start by considering the
χ(1) contribution, therefore what we obtain is:

(−1)F qL0 q̄L̄0 yJ
3
0 h |Ω〉 = |Ω〉

(−1)F qL0 q̄L̄0 yJ
3
0 h χ

(1)
−n |Ω〉 = y−1qn |Ω〉

The contribution to the trace therefore becomes: 1 + y−1qn. The same obviously
has to be done with the remaining chiral fields. We can notice that we are not
considering the anti-chiral field terms and that is because, it can be shown, the
only contributions coming from the right-moving field operators are the ground
states contributions. The motivation, that we are not going to present here, is the
fact that the anti-chiral bosonic and fermionic contributions exactly cancel each
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other because of supersymmetry, except for ground states contributions. After
this statement, we have finally that:

Z(2)osc(τ, z) =

∞

n=1

(1 + y−1qn)2(1 + yqn)2

(1 + qn)4
(7.20)

In order now to find the final expression of Z(2)(τ, z), we still need to compute
the contribution to the trace coming from the vertex operators.
It can be now shown that vertex operators contribute only under specifical con-
dition that, for the Z(2)(τ, z) case, are not satisfied. This will become more clear
when we will compute directly the Twining Genus on K3, but the key point is
that the eigenvalues we are dealing with in this case are ζL = ζR = −1, where
the minus sign arises from the action of the h symmetry. In conclusion what we
obtain is that Z(2)λ(τ, z) = 1, therefore there is no contribution from the vertex
operators.
We can now use the special functions defined in the Appendix (7.3), in particular
the relation (7.51), to write in a useful way the expression in (7.20). What we
can finally obtain thus is:

Z(2)(τ, z) = 4y−1(1 + y)2  
gs

· θ2(z|τ)2
θ2(0|τ)2

4

y−1(1 + y)2  
osc

· 1
vertex

= 16 · θ2(z|τ)
2

θ2(0|τ)2
(7.21)

Let us now focus on the h-twisted sector terms, namely on Z(3)(τ, z) and Z(4)(τ, z).
In the h-twisted sector, the oscillation modes of the fields have an half-integer
index, namely r ∈ Z + 1/2. As we said previously, we cannot have zero modes
now, so we will see later how to define the twisted ground states Hilbert space
and compute their contribution to the trace in (7.11).
We can start computing the Z(3)osc(τ, z) term first. Just like we did for the
untwisted sector, we can start computing the ∂Z(1) contribution to the trace:

(−1)F qL0 q̄L̄0 yJ
3
0 |Ω〉 = |Ω〉

(−1)F qL0 q̄L̄0 yJ
3
0 ∂Z(1)

r |Ω〉 = qr ∂Z(1)
r |Ω〉

(−1)F qL0 q̄L̄0 yJ
3
0 (∂Z(1)

r )2 |Ω〉 = q2r (∂Z(1)
r )2 |Ω〉

...

The contribution to the trace can be written again as:

1 + qr + q2r + ... =

∞

l=0

(qr)l =
1

1− qr

Proceeding now analogously with the remaining bosonic and fermionic chiral
fields, the oscillator term assume a very similar form to the term in (7.20), namely:

Z(3)osc(τ, z) =


r∈N+1/2

(1− y−1qr)2(1− yqr)2

(1− qr)4

Using the functions defined in the Appendix (7.3), in particular the relation (7.49),
we can rewrite the previous term as:

Z(3)osc(τ, z) =
θ4(z|τ)2
θ4(0|τ)2

(7.22)
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The Z(4)osc(τ, z) term can now be immediately obtained by considering, like we
did previously, the action of the h operator. What we can finally obtain thus,
using the relation (7.48) in the Appendix, is:

Z(4)osc(τ, z) =
θ3(z|τ)2
θ3(0|τ)2

(7.23)

Let us now compute the Z(3)gs(τ, z) and Z(4)gs(τ, z) terms. We can start by
noting that in the h-twisted R-R sector there are no zero mode operators for
the bosonic and fermionic fields, therefore we can’t build the Hilbert subspace of
ground states Htw

gs analogously to the previous case. In this case the construction
of Htw

gs involves the vertex operators. The vertex operator in the h-twisted sector
is:

Vλ(z, z̄) = E−
λ (z, z̄)E

+
λ (z, z̄)eλ

with:
E±

λ = exp


−



n∈Z+1/2

λL · αn
z−n

n
−



n∈Z+1/2

λR · ᾱn
z̄−n

n



The OPE of vertex operators defined in this way must be the same as (7.8),
namely:

Vλ(z, z̄)Vµ(w, w̄) = ξ(λ, µ)(z − w)λL·µL(z̄ − w̄)λR·µRVλ+µ(w, w̄)

where the operators eλ commute with the oscillators E±
λ and have to satisfy the

following consistency condition:

eλeµ = ξ(λ, µ)eλ+µ = (−1)λLµL−λRµR ξ(µ,λ)eλ+µ (7.24)

Now, as usual, we define the twisted ground states through the following condi-
tions:

αi
n |gs〉 = 0, ψi

n |gs〉 = 0 n ∈ N + 1/2

and we can thus notice that:

lim
z,z̄→0

Vλ(z, z̄) |gs〉 = eλ |gs〉

Since now the eλ operators commute with the oscillator terms, we deduce that also
eλ |gs〉 is a twisted ground state. What we obtain thus is that eλ maps a twisted
ground state to another twisted ground state, therefore, in other words, Htw

gs is the
representation of the algebra of the eλ operators. Let us now find the irreducible
representaion of this algebra. If we now consider a basis {w1, ..., w4,m1, ...,m4}
of the winding-momentum lattice Γ4,4 satisfying the following conditions:

mi ◦mj = 0 = wi ◦ wj , mi ◦ wj = δij

where "◦" is the bilinear form of signature (4, 4) of Γ4,4, the relation (7.24) for
the emi , ewi operators becomes:

[emi , emj ] = 0 = [ewi , ewj ], emiewj = (−1)δij ewjemi (7.25)

For each λ ∈ Γ4,4, i.e. λ =


i aiwi + bimi, we can now define:

eλ ≡ ea1w1
· · · ea4w4

eb1m1
· · · eb4m4
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that satisfies the relation (7.24), as we can easily check. We can now see that
the operators e2wi = e2wi

and e2mi = e2mi
commute with every eλ, therefore, in an

irreducible representation, they must be proportional to the identity. Since now
we are free to rescale by a phase eλ without modifying its algebra relations and
the OPE of the vertex operators, we can set:

e2wi = e2wi
= 1, e2mi = e2mi

= 1

We notice now that the four operators em1 , ..., em4 , thanks to the relations in
(7.25), commute with each other, therefore we can find a simultaneous eigenvector
of them that we can call |r1, r2, r3, r4〉. Since e2mi

= 1 we have then that ri = ±1,
with i = 1, ..., 4. Using again the relations in (7.25), the vector ewi |r1, r2, r3, r4〉
is still an eigenvector of emi with eigenvalues (−1)δijrj . We can thus use the
operators ewi to obtain all 16 possible eigenvectors of em1 , indeed, starting for
example from the eigenvector |1, 1, 1, 1〉, what we can obtain is:

|1, 1, 1, 1〉
ew1 |1, 1, 1, 1〉 = |−1, 1, 1, 1〉
ew2 |1, 1, 1, 1〉 = |1,−1, 1, 1〉
ew3 |1, 1, 1, 1〉 = |1, 1,−1, 1〉

ew4 |1, 1, 1, 1〉 = |1, 1, 1,−1〉
ew1ew2 |1, 1, 1, 1〉 = |−1,−1, 1, 1〉
ew1ew3 |1, 1, 1, 1〉 = |−1, 1,−1, 1〉
ew1ew4 |1, 1, 1, 1〉 = |−1, 1, 1,−1〉

ew2ew3 |1, 1, 1, 1〉 = |1,−1,−1, 1〉
ew2ew4 |1, 1, 1, 1〉 = |1,−1, 1,−1〉
ew3ew4 |1, 1, 1, 1〉 = |1, 1,−1,−1〉

ew1ew2ew3 |1, 1, 1, 1〉 = |−1,−1,−1, 1〉

ew1ew2ew4 |1, 1, 1, 1〉 = |−1,−1, 1,−1〉
ew1ew3ew4 |1, 1, 1, 1〉 = |−1, 1,−1,−1〉
ew2ew3ew4 |1, 1, 1, 1〉 = |1,−1,−1,−1〉

ew1ew2ew3ew4 |1, 1, 1, 1〉 = |−1,−1,−1,−1〉
(7.26)

Those vectors form in fact a basis for Htw
gs , namely they are the 16 twisted ground

states of our model. Since now all the operators inserted in the trace act trivially
on those states, namely their eigenvalues are identically 1, what we obtain is
simply:

Z(3)gs(τ, z) = Z(4)gs(τ, z) = TrHgs [1] = 16 (7.27)

We are now finally able to write the final expressions for Z(3)(τ, z) and Z(4)(τ, z).
By putting together every contribute what we obtain is:

Z(3)(τ, z) = 16
θ4(z|τ)2
θ4(0|τ)2

(7.28)

Z(4)(τ, z) = 16
θ3(z|τ)2
θ3(0|τ)2

(7.29)

The Elliptic Genus for K3 thus results:

Zorb(τ, z) = 8 ·

θ2(z|τ)2
θ2(0|τ)2

+
θ4(z|τ)2
θ4(0|τ)2

+
θ3(z|τ)2
θ3(0|τ)2


(7.30)

7.5 Some Twining Genera of K3

We are now ready to present our goal: the computation in the R-R sector of some
Twining Genera of the N = (4, 4) superconformal field theory whose target-space
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is the T4/Z2 orbifold. Notice that, although the Twining Genus is defined on the
R-R sector, we can get informations also about the NS sectors using the spectral
flow that we defined in Subsection (5.4.1).
In order now to obtain the Twining Genus, we need to take the expression seen
in (7.11) and insert a generic discrete symmetry g ∈ G of our NLSM. A possible

choice of the operator representation of g acting on fermionic fields is g ≡ ζ
A3

0
L ·ζÃ

3
0

R .
The final object we would like to compute thus is:

Zorb
g (τ, z) = Tr(h−untw)


(1 + h)

2
qL0−c/24 q̄L̄0−c/24(−1)F+F̄ yJ

3
0 g



+ Tr(h−tw)


(1 + h)

2
qL0−c/24 q̄L̄0−c/24(−1)F+F̄ yJ

3
0 g

 (7.31)

Again, it is useful to rewrite the trace above into four different terms:

Z(1)
g (τ, z) =

1

2
Tr(h−untw)


qL0−c/24 q̄L̄0−c/24(−1)F+F̄ yJ

3
0 g


(7.32)

Z(2)
g (τ, z) =

1

2
Tr(h−untw)


qL0−c/24 q̄L̄0−c/24(−1)F+F̄ yJ

3
0 g h


(7.33)

Z(3)
g (τ, z) =

1

2
Tr(h−tw)


qL0−c/24 q̄L̄0−c/24(−1)F+F̄ yJ

3
0 g


(7.34)

Z(4)
g (τ, z) =

1

2
Tr(h−tw)


qL0−c/24 q̄L̄0−c/24(−1)F+F̄ yJ

3
0 g h


(7.35)

with:

Zorb
g (τ, z) =

4

i=1

Z(i)
g (τ, z) (7.36)

We can notice that the decomposition we saw in (7.16) holds also in this case,
namely after the insertion of the symmetry g in the Elliptic Genus. We thus can
start computing the ground states contribution to Z

(1)
g (τ, z). Again, let us take

the state |−1
2 ,−

1
2 ,−

1
2 ,−

1
2〉 ≡ |gs〉 as the state from which we can generate Hgs.

Applying the operators in the trace to the |gs〉 state we obtain:

(−1)F yJ
3
0 ζ

A3
0

L ζ
Ã3

0
R |gs〉 = (+1) · (y−1) · (+1) · (+1) |gs〉 = y−1 |gs〉

Acting now for example with the creation operator χ
(1)∗
0 on |gs〉, calling it for

simplicity |χ(1)∗
0 〉, we can find:

(−1)F yJ
3
0 ζ

A3
0

L ζ
Ã3

0
R |χ(1)∗

0 〉 = (−1)F yJ
3
0 ζ

A3
0

L ζ
Ã3

0
R

+
1

2
,−1

2
,−1

2
,−1

2


=

= (−1) · (+1) · (ζL) · (+1) |χ(1)∗
0 〉 = −ζL |χ(1)∗

0 〉

using now |χ(2)∗
0 〉 we find:

(−1)F yJ
3
0 ζ

A3
0

L ζ
Ã3

0
R |χ(2)∗

0 〉 = (−1)F yJ
3
0 ζ

A3
0

L ζ
Ã3

0
R

−
1

2
,+

1

2
,−1

2
,−1

2


=

= (−1) · (+1) · (ζ−1
L ) · (+1) |χ(2)∗

0 〉 = −ζ−1
L |χ(2)∗

0 〉

and analogously with |χ(2)∗
0 χ

(1)∗
0 〉 we get:

(−1)F yJ
3
0 ζ

A3
0

L ζ
Ã3

0
R |χ(2)∗

0 χ
(1)∗
0 〉 = y |χ(2)∗

0 χ
(1)∗
0 〉
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Acting now also with all the possible combinations of right-moving operators, we
can obtain the remaining contributions. By computing then the trace what we
can obtain is:

Z(1)gs
g (τ, z) = y−1(1− ζLy)(1− ζ−1

L y)(1− ζR)(1− ζ−1
R ) (7.37)

Let us now compute Z
(1)osc
g (τ, z). In order to simplify the calculations, it is useful

to compute firstly all the eigenvalues of the g symmetry operator when they act
on the oscillator terms of the bosonic and fermionic fields. The eigenvalues can
be explicitly computed using the fact that the four supercurrents we defined in
(7.1) have to be invariant under the action of the g symmetry. For simplicity
we provide the tables of the eigenvalues of both yJ

3
0 and g operators. For the

fermionic fields we can find:

χ(1)∗ χ(2)∗ χ(1) χ(2) χ̃(1)∗ χ̃(2)∗ χ̃(1) χ̃(2)

yJ
3
0 y y y−1 y−1 1 1 1 1
g ζL ζ−1

L ζ−1
L ζL ζR ζ−1

R ζ−1
R ζR

while for the bosonic fields we get:

∂Z(1)∗ ∂Z(2)∗ ∂Z(1) ∂Z(2) ∂̃Z(1)∗ ∂̃Z(2)∗ ∂̃Z(1) ∂̃Z(2)

yJ
3
0 1 1 1 1 1 1 1 1
g ζL ζ−1

L ζ−1
L ζL ζR ζ−1

R ζ−1
R ζR

We are now ready to proceed with the computation of Z(1)osc
g (τ, z). Let us start

with the factor of the Hilbert space generated by the ∂Z(1)
−n operators. Analogously

to the Elliptic Genus case, we can start computing, using the tables above:

(−1)F qL0 q̄L̄0 yJ
3
0 g |Ω〉 = (+1) · |Ω〉 = |Ω〉

(−1)F qL0 q̄L̄0 yJ
3
0 g ∂Z

(1)
−n |Ω〉 = ζ−1

L qn ∂Z
(1)
−n |Ω〉

(−1)F qL0 q̄L̄0 yJ
3
0 g (∂Z

(1)
−n)

2 |Ω〉 = ζ−2
L q2n (∂Z

(1)
−n)

2 |Ω〉
...

The contribution to the trace then can be expressed in a compact way:

1 + ζ−1
L qn + ζ−2

L q2n + ... =

+∞

l=0

(ζ−1
L qn)l =

1

1− ζ−1
L qn

Repeating the same calculations for the ∂Z(1)∗ case, we get:

(−1)F qL0 q̄L̄0 yJ
3
0 g |Ω〉 = (+1) · |Ω〉 = |Ω〉

(−1)F qL0 q̄L̄0 g ∂Z
(1)∗
−n |Ω〉 = ζL qn ∂Z

(1)∗
−n |Ω〉

(−1)F qL0 q̄L̄0 yJ
3
0 g (∂Z

(1)∗
−n )2 |Ω〉 = ζ2L q2n (∂Z

(1)∗
−n )2 |Ω〉

...



100 CHAPTER 7. THE T4/Z2 ORBIFOLD

Again we can use the geometric series to express the previous results:

1 + ζL qn + ζ2L q2n + ... =

+∞

l=0

(ζLq
n)l =

1

1− ζLqn

The same can be done for the ∂Z(2) and ∂Z(2)∗ fields.
Let us now consider the fermionic contributions. We can start by considering the
χ(1) contribution, therefore what we obtain is:

(−1)F qL0 q̄L̄0 yJ
3
0 ζ

A3
0

L ζ
Ã3

0
R |Ω〉 = |Ω〉

(−1)F qL0 q̄L̄0 yJ
3
0 ζ

A3
0

L ζ
Ã3

0
R χ

(1)
−n |Ω〉 = −y−1ζ−1

L qn |Ω〉

The contribution to the trace therefore becomes: 1−y−1ζ−1
L qn. The considerations

about right-moving operators hold also in this case, therefore we will not consider
the anti-chiral field contributions to the oscillator term. What we have finally is:

Z(1)osc
g (τ, z) =

∞

n=1

(1− y−1ζ−1
L qn)(1− y−1ζLq

n)(1− yζLq
n)(1− yζ−1

L qn)

(1− ζ−1
L qn)2(1− ζLqn)2

(7.38)
In order now to find the final expression of Z(1)

g (τ, z), we still need to compute
the contribution to the trace coming from the vertex operators.
The action of the symmetry g on the charge of the vertex operator, namely the
momentum λ ∈ Γ4,4, is g : λ → g(λ) ≡ µ. Considering the action of g on the
entire set of Hilbert subspaces, we obtain g : Hλ

→ H
g(λ)

. If we represent g as a
matrix that maps a Hilbert subspace Hλ∈Γ4,4 to another point Hµ∈Γ4,4 , the only
contributions to the trace will come from the elements on the diagonal of the
matrix. The problem therefore reduces to find the fixed points of the g symmetry
acting on λ. A trivial solution is clearly λ = 0, namely a obvious contribution to
the trace is given by the calculations performed in the Hilbert space where there
are no vertex operators acting, but that is what we have already computed.
We can now show that, if ζL = 1, there exists a vector λ′, belonging to the lattice
Γ4,4, that is fixed.
Let us consider a symmetry g of order two8. We are always allowed to take a
generic vector λ ∈ Γ4,4 and build a new vector λ′ ∈ Γ4,4 of the form λ′ = λ+g(λ),
since g is an automorphism of the lattice. We notice that λ′ is invariant under
the action of g by construction. If now all the eigenvalues of g are −1, namely the
eigenspace relative to the eigenvalue −1 is the whole space, then λ′ = 0, because
it necessary holds that g(λ) = −λ. Instead, if g admits at least an eigenvalue
+1, then, since λ will not even be an eigenvector of g, λ′ will be a non-vanishing
g-invariant vector of Γ4,4. We can thus conclude that, if g admits at least an
eigenvalue +1, then there always exists a vector of the lattice Γ4,4 that it is fixed
under the action of g.
The contribution to the final result, given by the existence of this fixed vector, is
a phase multiplied by the conformal weight of the vector |λ〉, namely:

Z(1)λ
g (τ, z) =



fixed λ=(λL,λR)∈Γ4,4

qλ
2
L/2 q̄λ

2
R/2 eiφ

8The order of the symmetries we consider is indicated in Table 2 of [16], pag.20, as o(±g0).
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For simplicity we consider ζL ∕= 1 and ζR ∕= 1, therefore what we obtain is
Z

(1)λ
g (τ, z) = 1.

We can now use the special functions defined in the Appendix (7.3), in particular
the relation (7.50), to write in a useful way the final expression of Z(1)

g (τ, z). What
we can finally obtain thus is:

Z(1)
g (τ, z) =

θ1(z + rL|τ) θ1(z − rL|τ)
θ1(rL|τ) θ1(−rL|τ)

· (2− ζL − ζ−1
L )(2− ζR − ζ−1

R ) (7.39)

where we defined ζL,R ≡ e2πirL,R , with rL,R ∈ Q/Z.
Since now the effect of the h operator can be equivalently thought as flipping the
sign of the eigenvalues of the g operator, namely mapping ζL,R → −ζL,R, it is
very easy to find the expression also of Z(2)

g (τ, z). What we can indeed obtain,
through the relation (7.51), is:

Z(2)
g (τ, z) =

θ2(z + rL|τ) θ2(z − rL|τ)
θ2(rL|τ) θ2(−rL|τ)

· (2 + ζL + ζ−1
L )(2 + ζR + ζ−1

R ) (7.40)

Notice that if we impose the condition g ≡ 1, namely ζL,R = 1 and rL,R = 0, for
the expressions (7.39) and (7.40), we respectively recover (7.18) an (7.21).

Let us now focus on the h-twisted sector terms, namely on Z
(3)
g (τ, z) and

Z
(4)
g (τ, z). We can start computing the Z

(3)osc
g (τ, z) term first and, following the

previous considerations, obtain also the Z
(4)osc
g (τ, z) term. Just like we did for

the untwisted sector, we can start computing the ∂Z(1) contribution to the trace:

(−1)F qL0 q̄L̄0 yJ
3
0 g |Ω〉 = |Ω〉

(−1)F qL0 q̄L̄0 yJ
3
0 g ∂Z(1)

r |Ω〉 = ζ−1
L qr ∂Z(1)

r |Ω〉

(−1)F qL0 q̄L̄0 yJ
3
0 g (∂Z(1)

r )2 |Ω〉 = ζ−2
L q2r (∂Z(1)

r )2 |Ω〉
...

The contribution to the trace can be written again as:

1 + ζ−1
L qr + ζ−2

L q2r + ... =

∞

l=0

(ζ−1
L qr)l =

1

1− ζ−1
L qr

Proceeding now analogously with the remaining bosonic and fermionic chiral
fields, the oscillator term assume a very similar form to the term in (7.38), namely:

Z(3)osc
g (τ, z) =



r∈N+1/2

(1− y−1ζ−1
L qr)(1− y−1ζLq

r)(1− yζLq
r)(1− yζ−1

L qr)

(1− ζ−1
L qr)2(1− ζLqr)2

Using the functions defined in the Appendix (7.3), in particular the relation (7.49),
we can rewrite the previous term as:

Z(3)osc
g (τ, z) =

θ4(z + rL|τ) θ4(z − rL|τ)
θ4(rL|τ) θ4(−rL|τ)

(7.41)

The Z
(4)osc
g (τ, z) term can now be immediately obtained by considering the fact

that, as we did previously, the h operator flips the sign of the eigenvalues of g.
What we can finally obtain thus, using the relation (7.48) in the Appendix, is:

Z(4)osc
g (τ, z) =

θ3(z + rL|τ) θ3(z − rL|τ)
θ3(rL|τ) θ3(−rL|τ)

(7.42)
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7.5.1 Action of g on h-twisted Ground States

Now, since we chose for simplicity to take ζL,R ∕= 1, the only terms that we need
to compute are Z

(3)gs
g (τ, z) and Z

(4)gs
g (τ, z). We need therefore to present how

the allowed discrete symmetries g ∈ G act on those states. We know that any
symmetry g ∈ G of our NLSM commuting with the symmetry h, with respect to
which we take the orbifold, induces a symmetry of the orbifold9. An easy proof is
the following: consider a field φ(σ+2πl, τ) ∈ Hh−tw, what we can write therefore
is

φ(σ + 2πl, τ) = h · φ(σ, τ).

If we now consider:

g · φ(σ + 2πl, τ) = g · h φ(σ, τ) = ghg−1 · gφ(σ, τ)

we obtain that the symmetry g maps a field from Hh−tw to Hghg−1−tw, therefore,
if gh = hg, we obtain that g is an endomorphism of Hh−tw, from which follows
what we initially stated.
As we will explicitly see however, it will not be unique but fixed up to an overall
sign, so there will be actually two different symmetries.
Let us take a representation ρ(g) of the g symmetry on the twisted ground states.
From the definition in (7.24), we have that:

g(eλ) = ρ(g)eλρ(g)
−1 = κg(λ)eg(λ) (7.43)

where κg(λ) is a phase that is completely determined, up to a sign, after choosing
a basis of the lattice Γ4,4. Imposing this condition we can fix ρ(g) up to a non-zero
rescaling constant. We notice also that we can choose a basis of Htw

gs in which the
corresponding fields Φk(z, z̄), with k = 1, ..., 16, obey the following OPE:

Φi(z, z̄)Φj(w, w̄) =
δij

|z − w| + ...

since the conformal weight of the twisted ground states is (1/4, 1/4). Here ρ(g) ∈
SO(16,R), so its eigenvalues will be roots of unity and Trρ(g) ∈ R.
Those arguments fix the matrix ρ(g) up to an overall sign and that is the best we
can do.
The procedure of finding the matrix ρ(g) is the following:

• Choose a basis for the matrix ρ(g). For example, we could take the basis
computed in (7.26).10

• Find the action of g on the basis wi, mi, i = 1, ..., 4 of the lattice Γ4,4.
Using the relation (7.43) and possibly fixing in a trivial way the arbitrary
constants κg(emi) and κg(ewi), one can find the corresponding relations
g(emi) = κg(mi)eg(mi) and g(ewi) = κg(wi)eg(wi).

• Find, up to a normalization constant, a simultaneous eigenvector |χ〉 for the
operators g(emi).

9For more mathematical considerations see [23].
10For simplicity, we will always use it in our following examples.
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• Act on |χ〉 in all possible ways with the operators g(ewi) and find all the 16
simultaneous eigenvectors of g(emi).

• Projecting now all those 16 states onto the basis we initially chose, we obtain
the coefficient that, opportunely ordered, will form our final matrix.

Examples of ρ(g) matrices: Let us make some explicit examples. We can
take, as previously adviced, the basis written in (7.26), namely the one generated
from the vector |1, 1, 1, 1〉 by acting in all possible ways with the operators ewi .
The tranformations of the windings and momenta wi and mi, basis of the lattice
Γ4,4, that we consider are:

g(w1) = −w1

g(wi) = wi, i = 2, 3, 4

g(mj) = mj , j = 1, ..., 4

We have to notice now that the transformations above are not automorphisms of
the lattice11 and therefore they cannot lead to a symmetry of our model. We take
this first example just as an exercise.
The corresponding transformations of the basis of Htw

gs , by fixing opportunely
every arbitrary constant ξg(λ), are, for i = 2, 3, 4 and j = 1, ..., 4:

g(ew1) = −e−w1 = −e−1
w1

= −ew1

g(ewi) = ewi

g(emj ) = emj

κg(w1) = −1

κg(wi) = 1

κg(mj) = 1

We have therefore that:

g(emi)  
ρ(g)emiρ(g)

−1

ρ(g) |1, 1, 1, 1〉 = ρ(g)emi |1, 1, 1, 1〉 = ρ(g) |1, 1, 1, 1〉

= emi ρ(g) |1, 1, 1, 1〉

from which we understand that the form of the eigenvector of g(emi), |χ〉 ≡
ρ(g) |1, 1, 1, 1〉 is |χ〉 = |1, 1, 1, 1〉.
Following now the procedure we presented above, we should apply in all possible
ways the operators g(ewi) and obtain 16 linearly independent states. Projecting
every state onto the basis we initially chose, we obtain a list of coefficients that
form the rows of the final matrix. In practice, the first eigenvector we have is
|χ〉 = |1, 1, 1, 1〉, therefore the first row of the matrix ρ(g) is:

ρ(g)1,j = (1, 0, ..., 0  
15 times

) j = 1, ..., 16

In order thus to obtain the second row of our matrix we should apply the operator
g(ew1) to the eigenvector |χ〉 = |1, 1, 1, 1〉. What we obtain is:

g(ew1) |χ〉 = g(ew1) |1, 1, 1, 1〉 = − ew1 |1, 1, 1, 1〉 = − |−1, 1, 1, 1〉
11Indeed the relations in (7.25) are not preserved by the symmetry g.
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The second row of the matrix ρ(g) therefore is:

ρ(g)2,j = (0,−1, 0, ..., 0  
14 times

) j = 1, ..., 16

Proceeding in the same way for the remaining eigenvectors, the final matrix re-
sults:

ρ(g) = ± diag(1,−1, 1, 1, 1,−1,−1,−1, 1, 1, 1,−1,−1,−1, 1,−1)

It can be easily verified that Trρ(g) = 0, det ρ(g) = 1 and clearly ρ(g)ij ∈ R,
i, j = 1, ..., 16.

2B Class

We can now start considering automorphisms of the lattice Γ4,4 that lead to
interesting symmetries of a suitable NLSM on T4. The first class of symmetries
we want to consider is the 2B class in the notation of [16]. Let us therefore
consider the following action on the basis of Htw

gs :

g(em1) = em2

g(em2) = −e−1
m1

= −em1

g(em3) = em4

g(em4) = −e−1
m3

= −em3

g(ew1) = ew2

g(ew2) = −e−1
w1

= −ew1

g(ew3) = ew4

g(ew4) = −e−1
w3

= −ew3

As usual let us take as basis of our matrix, the one in (7.26). Let us now compute
the simultaneous eigenvector of the operators g(emi) with all the corresponding
eigenvalues +1. Taking again |χ〉 ≡ ρ(g) |1, 1, 1, 1〉, we get:

g(em1) |χ〉 = (+1) · |χ〉
= em2 |χ〉

g(em2) |χ〉 = (+1) · |χ〉
= −em1 |χ〉

g(em3) |χ〉 = (+1) · |χ〉
= em4 |χ〉

g(em4) |χ〉 = (+1) · |χ〉
= −em3 |χ〉

All this conditions are simultaneously saisfied by the eigenvectors |χ〉 = |−1, 1,−1, 1〉.
Projecting now this state onto the initial fixed basis, what we obtain is:

ρ1,j(g) = ± (0, 0, 0, 0, 0, 0, 1, 0, ..., 0) j = 1, ..., 16

The next eigenvector we have to compute is:

g(ew1) |χ〉 = ew2 |−1, 1,−1, 1〉 = |−1,−1,−1, 1〉

therefore the second row of the matrix will be:

ρ2,j(g) = ± (0, ..., 0, 1, 0, 0, 0, 0) j = 1, ..., 16
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Following the same procedure, what we can finally obtain is:

g(ew2) |χ〉 = −ew1 |−1, 1,−1, 1〉 = − |1, 1,−1, 1〉
g(ew3) |χ〉 = ew4 |−1, 1,−1, 1〉 = |−1, 1,−1,−1〉
g(ew4) |χ〉 = −ew3 |−1, 1,−1, 1〉 = − |−1, 1, 1, 1〉

g(ew1)g(ew2) |χ〉 = −ew2ew1 |−1, 1,−1, 1〉 = − |1,−1,−1, 1〉
g(ew1)g(ew3) |χ〉 = ew2ew4 |−1, 1,−1, 1〉 = |−1,−1,−1,−1〉
g(ew1)g(ew4) |χ〉 = −ew2ew3 |−1, 1,−1, 1〉 = − |−1,−1, 1, 1〉
g(ew2)g(ew3) |χ〉 = −ew1ew4 |−1, 1,−1, 1〉 = − |1, 1,−1,−1〉
g(ew2)g(ew4) |χ〉 = ew1ew3 |−1, 1,−1, 1〉 = |1, 1, 1, 1〉
g(ew3)g(ew4) |χ〉 = −ew4ew3 |−1, 1,−1, 1〉 = − |−1, 1, 1,−1〉

g(ew1)g(ew2)g(ew3) |χ〉 = −ew2ew1ew4 |−1, 1,−1, 1〉 = − |1,−1,−1,−1〉
g(ew1)g(ew2)g(ew4) |χ〉 = ew2ew1ew3 |−1, 1,−1, 1〉 = |1,−1, 1, 1〉
g(ew1)g(ew3)g(ew4) |χ〉 = −ew2ew4ew3 |−1, 1,−1, 1〉 = − |−1,−1, 1,−1〉
g(ew2)g(ew3)g(ew4) |χ〉 = ew1ew4ew3 |−1, 1,−1, 1〉 = |1, 1, 1,−1〉

g(ew1)g(ew2)g(ew3)g(ew4) |χ〉 = ew2ew1ew4ew3 |−1, 1,−1, 1〉 = |1,−1, 1,−1〉

After the proper projections, the final matrix ρ(g) becomes:

ρ(g2B) = ±





0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0





where, again, can be easily checked that det ρ(g2B) = 1 and Trρ(g2B) = 0.

3A Class

Another interesting example of symmetry of our model is the one generated from
the following transformations:

g(em1) = −e−1
m1

em2

g(em2) = −e−1
m1

g(em3) = −e−1
m3

em4

g(em4) = −e−1
m3

g(ew1) = ew2

g(ew2) = e−1
w1

e−1
w2

g(ew3) = ew4

g(ew4) = e−1
w3

e−1
w4
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The conditions needed to determine the simultaneous eigenvector are:

g(em1) |χ〉 = −em1em2 |χ〉 = |χ〉
g(em2) |χ〉 = −em1 |χ〉 = |χ〉
g(em3) |χ〉 = −em3em4 |χ〉 = |χ〉
g(em4) |χ〉 = −em3 |χ〉 = |χ〉

from which we understand that |χ〉 = |−1, 1,−1, 1〉.
Now, as we have already seen previously, we have to build all the remaining 16
eigenstates. What we can obtain thus is:

g(ew1) |h〉 = ew2 |h〉 = |−1,−1,−1, 1〉
g(ew2) |h〉 = ew1ew2 |h〉 = |1,−1,−1, 1〉
g(ew3) |h〉 = ew4 |h〉 = |−1, 1,−1, 1〉
g(ew4) |h〉 = ew3ew4 |h〉 = |−1, 1, 1,−1〉

...

and so on. The resulting matrix ρ(g) becomes:

ρ(g3A) = ±





0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0





for which one can check that det ρ(g3A) = 1 e Trρ(g3A) = 1.

2E Class

The last class of interesting symmetries of our model we would like to present is
the 2E Class. It arises from the transformations on the basis of Htw

gs :

g(emi) = ewi g(ewi) = emi , i = 1, ..., 4

from which we can obtain, as usual, the form of the |χ〉 eigenstate:

|χ〉 = 1√
16


|1, 1, 1, 1〉+ew1 |1, 1, 1, 1〉+ew2 |1, 1, 1, 1〉+...+ew1ew2ew3ew4 |1, 1, 1, 1〉
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With some tedious calculations one can apply the same arguments in order to
build the 16 eigenstates and the project them. The final matrix one can find is:

ρ(g2E) = ±


1√
16

16

·





1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 −1 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1 1 −1
1 1 −1 1 1 −1 1 1 −1 −1 1 −1 −1 1 −1 −1
1 1 1 −1 1 1 −1 1 −1 1 −1 −1 1 −1 −1 −1
1 1 1 1 −1 1 1 −1 1 −1 −1 1 −1 −1 −1 −1
1 −1 −1 1 1 1 −1 −1 −1 −1 1 1 1 −1 −1 1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
1 −1 1 1 −1 −1 −1 1 1 −1 −1 −1 1 1 −1 1
1 1 −1 −1 1 −1 −1 1 1 −1 −1 1 −1 −1 1 1
1 1 −1 1 −1 −1 1 −1 −1 1 −1 −1 1 −1 1 1
1 1 1 −1 −1 1 −1 −1 −1 −1 1 −1 −1 1 1 1
1 −1 −1 −1 1 1 1 −1 1 −1 −1 −1 1 1 1 −1
1 −1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 1 −1
1 −1 1 −1 −1 −1 1 1 −1 −1 1 1 1 −1 1 −1
1 1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 −1 −1
1 −1 −1 −1 −1 1 1 1 1 1 1 −1 −1 −1 −1 1





where again one can verify that det ρ(g2E) = 4294967296
(
√
16)16

= 168

(
√
16)16

= 1 and
Trρ(g2E) = 0.

The Symmetry πg1 = 18 2−8 48

Let us now find the final result for some types of classified symmetries g ∈ G but
for which the corresponding matrix ρ(g) has never been computed.
We want now to present the calculations about the symmetry corresponding to
πg1 = 18 2−8 48, as can be seen from Table 3 in [19], pag.46. Now, the first
thing we have to do is to correctly interpret the meaning of the values of πg. The
notation πg = na · m−b means that we have to consider a-times the n-roots of
unity and remove from these b-times the m-roots of unity. The remaining set of
values will be the eigenvalues of the symmetry g on the ground states of both
untwisted and twisted sector.
Let us explicitly compute them:

18

+1, ...,+1  
8 times

·
2−8

+1, ...,+1  
8 times

,−1, ...,−1  
8 times

·
48

+1, ...,+1  
8 times

,−1, ...,−1  
8 times

, i, ..., i  
8 times

,−i, ...,−i  
8 times

Removing from the set above the values corresponding to the 2−8 term, the eigen-
values we get12 18, i8,−i8.
It can be shown that 18 are the eight eigenvalues corresponding to the matrix
representation of g on untwisted ground states, while i8,−i8 are the sixteen eigen-
values corresponding to the matrix representation of g on twisted ground states,
namely the already introduced ρ(g) matrix13.

12With this notation, this time, we indicate the value of the single eigenvalue with, as exponent,
its multiplicity.

13The motivation is the fact that in the untwisted sector there are 16 ground states which,
under the action of the h symmetry, 8 have eigenvalues +1 while 8 eigenvalues −1. Since we
are looking for h-invariant states only, the 8 ones with negative eigenvalues are projected out.
This does not happen with the 16 ground states in the twisted sector because they are taken,
by definiton, all with +1 eigenvalues.
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Following the already showed procedure, we can compute the ρ(g) matrix for the
1A class using the following automorphisms of the Γ4,4 lattice:

g(em1) = − em1

g(ew1) = − ew1

g(emi) = emi

g(ewi) = ewi

i = 2, 3, 4

The matrix ρ(g) thus results:

ρ(g1) = ±





0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0





An easy and rapid check shows us that Trρ(g1) = 0, det ρ(g1) = 1 and the eigen-
values are i8,−i8. After the considerations we made previously, these eigenvalues
are exactly the ones we expected, for the twisted sector ground states, of the
symmetry πg1 = 18 2−8 48.

The Symmetry πg2 = 24 4−4 84

Always looking at the Table 3 in [19], pag.46, we would like to compute the matrix
ρ(g) corresponding to the symmetry πg2 = 24 4−4 84. The eigenvalues of the g2
symmetry acting on twisted ground states, exactly like we did previously, can
be easily computed and result: e2πi/8, e6πi/8, e10πi/8, e14πi/8, each taken with
multiplicity four.
The matrix ρ(g) satisfying our requests can be generated in different ways. We
choose, in particular, to take the following transformations belonging to the 2E
class14:

g(em1) = − ew1

g(emi) = ewi

g(ewi) = emi

i = 2, 3, 4 (7.44)

A different matrix but with the same set of eigenvalues can be obtained, as we
just said, by taking as transformations on the basis of Htw

gs :

g(ew1) = −em1

g(ew3) = −em3

g(ew4) = −em4

g(ew4) = em4

g(emi) = ewi

i = 1, ..., 4

14The class symmetry notation will be always referred to the notation used in [16].
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Let us now build the matrix ρ(g) corresponding to the set of transformations in
(7.44). It can be shown with the usual procedure that the eigenvector of the
g(emi) operators, with all its eigenvalues set to +1, |χ〉 is:

|χ〉 = 1√
16


|1, 1, 1, 1〉−ew1 |1, 1, 1, 1〉+ew2 |1, 1, 1, 1〉+...−ew1ew2ew3ew4 |1, 1, 1, 1〉



In particular it appears a "−" sign every time an ew1 operator is present in the
previous formula. Again, the final matrix one can find is:

ρ(g2) = ±


1√
16

16

·





1 −1 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1 1 −1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 −1 −1 1 1 1 −1 −1 −1 −1 1 1 1 −1 −1 1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
1 −1 1 1 −1 −1 −1 1 1 −1 −1 −1 1 1 −1 1
1 1 −1 1 1 −1 1 1 −1 −1 1 −1 −1 1 −1 −1
1 1 1 −1 1 1 −1 1 −1 1 −1 −1 1 −1 −1 −1
1 1 1 1 −1 1 1 −1 1 −1 −1 1 −1 −1 −1 −1
1 −1 −1 −1 1 1 1 −1 1 −1 −1 −1 1 1 1 −1
1 −1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 1 −1
1 −1 1 −1 −1 −1 1 1 −1 −1 1 1 1 −1 1 −1
1 1 −1 −1 1 −1 −1 1 1 −1 −1 1 −1 −1 1 1
1 1 −1 1 −1 −1 1 −1 −1 1 −1 −1 1 −1 1 1
1 1 1 −1 −1 1 −1 −1 −1 −1 1 −1 −1 1 1 1
1 −1 −1 −1 −1 1 1 1 1 1 1 −1 −1 −1 −1 1
1 1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 −1 −1





This matrix has the property to have Trρ(g2) = 0, det ρ(g2) = 1 and its eigenval-
ues are exactly the ones corresponding to the symmetry πg2 = 24 4−4 84 for the
twisted ground states.

The Symmetry πg3 = 14 22 44

The eigenvalues corresponding to the symmetry πg3 = 14 22 44, of the matrix
ρ(g3) acting on the twisted ground states are: −12, 16, i4, −i4. Let us consider
again an automorphism of the lattice Γ4,4 corresponding to the 2E class. We can
try with the following transformations:

g(ewi) = emi

g(emi) = −ewi

i = 1, ..., 4

The eigenstate |χ〉 of can be easily computed:

|χ〉 = 1√
16


|1, 1, 1, 1〉−ew1 |1, 1, 1, 1〉−ew2 |1, 1, 1, 1〉+...−ew2ew3ew4 |1, 1, 1, 1〉+ew1ew2ew3ew4 |1, 1, 1, 1〉
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where a "−" sign appears every time an operator ewi is present. With the usual
procedure we can find the final matrix:

ρ(g3) = ±


1√
16

16

·





1 −1 −1 −1 −1 1 1 1 1 1 1 −1 −1 −1 −1 1
1 1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 −1 −1
1 −1 1 −1 −1 −1 1 1 −1 −1 1 1 1 −1 1 −1
1 −1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 1 −1
1 −1 −1 −1 1 1 1 −1 1 −1 −1 −1 1 1 1 −1
1 1 1 −1 −1 1 −1 −1 −1 −1 1 −1 −1 1 1 1
1 1 −1 1 −1 −1 1 −1 −1 1 −1 −1 1 −1 1 1
1 1 −1 −1 1 −1 −1 1 1 −1 −1 1 −1 −1 1 1
1 −1 1 1 −1 −1 −1 1 1 −1 −1 −1 1 1 −1 1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
1 −1 −1 1 1 1 −1 −1 −1 −1 1 1 1 −1 −1 1
1 1 1 1 −1 1 1 −1 1 −1 −1 1 −1 −1 −1 −1
1 1 1 −1 1 1 −1 1 −1 1 −1 −1 1 −1 −1 −1
1 1 −1 1 1 −1 1 1 −1 −1 1 −1 −1 1 −1 −1
1 −1 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1 1 −1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1





with again the properties: Trρ(g3) = 16√
16

= 4, det ρ(g3) = 1. The set of eigenval-
ues is exactly −12, 16, i4, −i4, namely the ones of the symmetry πg3 = 14 22 44

for the twisted ground states.

7.5.2 Final Results

Let us now compute the Twining Genus defined with the insertion of some of the
symmetries we explicitly found above.
After all the considerations we made in this last chapter, the expression of the
Twining Genus in (7.36), with the condition ζL ∕= 1, can be rewritten in a more
useful form:

Zorb
g (τ, z) =

1

2


θ1(z + rL|τ) θ1(z − rL|τ)

θ1(rL|τ) θ1(−rL|τ)
· (2− ζL − ζ−1

L )(2− ζR − ζ−1
R )

+
θ2(z + rL|τ) θ2(z − rL|τ)

θ2(rL|τ) θ2(−rL|τ)
· (2 + ζL + ζ−1

L )(2 + ζR + ζ−1
R )

+


θ4(z + rL|τ) θ4(z − rL|τ)

θ4(rL|τ) θ4(−rL|τ)
+

θ3(z + rL|τ) θ3(z − rL|τ)
θ3(rL|τ) θ3(−rL|τ)


· TrHtw

gs
[ρ(g)]



(7.45)

We can now start computing, for example, the Twining Genus corresponding to
the symmetry g2B. By looking at Table 2 of [16], pag.20, we are allowed to choose
the eigenvalues of g2B when it acts on the fermions and bosons: ζL = ζR = i. By
considering also the condition Trρ(g2B) = 0, from the expression (7.45), we get:

Zorb
g2B

(τ, z) = 2 ·

θ1(z +

1
4 |τ) θ1(z −

1
4 |τ)

θ1(
1
4 |τ) θ1(−

1
4 |τ)

+
θ2(z +

1
4 |τ) θ2(z −

1
4 |τ)

θ2(
1
4 |τ) θ2(−

1
4 |τ)
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Considering now the symmetry g3A, we can analogously choose ζL = ζR = e
2πi
3

and impose the condition Trρ(g3A) = 1. From the expression (7.45) we get:

Zorb
g3A

(τ, z) =
1

2


θ1(z +

1
3 |τ) θ1(z −

1
3 |τ)

θ1(
1
3 |τ) θ1(−

1
3 |τ)

· 9 +
θ2(z +

1
3 |τ) θ2(z −

1
3 |τ)

θ2(
1
3 |τ) θ2(−

1
3 |τ)

+


θ4(z +

1
3 |τ) θ4(z −

1
3 |τ)

θ4(
1
3 |τ) θ4(−

1
3 |τ)

+
θ3(z +

1
3 |τ) θ3(z −

1
3 |τ)

θ3(
1
3 |τ) θ3(−

1
3 |τ)



Let us now focus on the symmetry πg1 . By looking again at Table 2 of [16],
pag.20, we are allowed to choose the eigenvalues: ζL,R = −1. By taking into
account also the condition Trρ(g1) = 0, the Twining Genus for the πg1 symmetry
becomes simply:

Zorb
g1 (τ, z) = 8 ·

θ1(z +
1
2 |τ) θ1(z −

1
2 |τ)

θ1(
1
2 |τ) θ1(−

1
2 |τ)

Now, in the case of the πg2 and πg3 symmetries, since they belong to the 2E class,
ζL or ζR may assume the value +1. We understand thus that, in this case, we
cannot avoid the contribution from Vertex operators to the corresponding Twining
Genus. We will not compute this kind of contribution explicitly therefore, for
simplicity, we will only indicate it with a Θλ

g2,3 , also called Theta Series.
Let us compute now the Twining Genus for the πg2 symmetry. We are now allowed
to choose ζL = +1 and ζR = −1. We notice that clearly the relation (7.45) does
not hold anymore. By following the procedure we presented along this chapter,
one can easily find also the expression of the Twining Genus15 when ζL = +1.
By taking also into account the condition Trρ(g2) = 0, the Twining Genus for πg2
becomes:

Zorb
g2 (τ, z) = −2 · θ1(z|τ)

2

η(τ)6
· Θλ

g2

For the πg3 symmetry we are again allowed to choose ζL = 1 and ζR = −1 with the
condition that Trρ(g3) = 4. The Twining Genus for this symmetry thus becomes:

Zorb
g3 (τ, z) = −2 ·


θ1(z|τ)2
η(τ)6

·Θλ
g3 −


θ4(z|τ)2
θ4(0|τ)2

+
θ3(z|τ)2
θ3(0|τ)2



15One should only pay attention on substituting in the explicit calculaitons, the correct ex-
pression of the Theta and Dedekind functions.
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7.6 Appendix: Dedekind and Theta Functions

In this appendix we collect some of the tools we used in the computation of
the Twining Genus in Chapter 7. Let us start from the definition of the Theta
functions:

θ1(z|τ) = −iy1/2 q1/8
∞

n=1

(1− qn)

∞

n=0

(1− y qn+1)(1− y−1qn) (7.46)

θ2(z|τ) = y1/2 q1/8
∞

n=1

(1− qn)

∞

n=0

(1 + y qn+1)(1 + y−1qn) (7.47)

θ3(z|τ) =
∞

n=1

(1− qn)

∞

r∈Z+1/2

(1 + y qr)(1 + y−1qr) (7.48)

θ4(z|τ) =
∞

n=1

(1− qn)

∞

r∈Z+1/2

(1− y qr)(1− y−1qr) (7.49)

where y = e2πiz and q = e2πiτ . Another very important function we used for
other calculations, is the Dedekind function:

η(τ) = q1/24
∞

n=1

(1− qn)

that is linked with the Theta functions by the following relation:

η(τ)3 =
1

2
θ2(τ) θ3(τ) θ4(τ)

where θi(τ) = θi(τ |0).
We notice that we can rewrite in a useful way the relations (7.46) and (7.47),
namely:

θ1(z|τ) = −i(y1/2 − y−1/2) q1/8
∞

n=1

(1− qn)(1− y qn)(1− y−1qn) (7.50)

θ2(z|τ) = (y1/2 + y−1/2) q1/8
∞

n=1

(1− qn)(1 + y qn)(1 + y−1qn) (7.51)
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