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Abstract

Deep learning has achieved great success in semantic segmentation but typically requires large,
annotated datasets employed in a single-shot training. In real-world applications, this is im-
practical, especially when new tasks are introduced incrementally, and prior data is unavailable.
Continual learning aims to address this by allowingmodels to learn new classes over time with-
out forgetting previous ones, but it struggles with catastrophic forgetting. Traditional regular-
isation strategies often fail when multiple incremental steps are needed or when background
class distributions shift. Recently, a novel approach has been explored: leveraging web-crawled
data to retrieve images of old classes from online databases. The most advanced study in this
direction introduced an image selection strategy that retrieves only the most informative re-
play images from the web. This method was applied in the particularly challenging scenario of
weakly-supervised incremental learning for semantic segmentation (WILSS), where pixel-level
annotations are replaced by image-level labels.
In this thesis, I extend this line of research by proposing three advanced web image selection
strategies. The first method explores various techniques for extracting feature vectors from
both replay images and dataset images, retaining only those replay imageswhose feature vectors
are sufficiently similar to those previously computed and stored for the dataset images used as
queries during the retrieval process. The second method introduces class prototypes, which
are representations that encapsulate the average features of a class. Replay images are selected
based on their similarity to at least one prototype of the classes they are intended to represent.
The third method further refines the second by utilising more generalised information, reduc-
ing the dimensionality of both feature vectors and class prototypes.
Experimental results demonstrate that the proposed strategies significantly enhance the per-
formance of previous methods, achieving state-of-the-art results. Notably, in the most chal-
lenging and realistic setting, the best method outperforms prior work by 3.02%, showcasing
the effectiveness of these novel image selection techniques for continual learning in semantic
segmentation.
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1
Introduction

In recent years, the field of computer vision has experienced remarkable advancements, with
increasingly complex tasks being addressed through progressively sophisticated techniques. A
major turning point occurredwith the rise of neural networks, which enabled performance lev-
els previously considered unattainable with traditional methods. This revolution began with
breakthroughs in image classification, where amodel assigns a single label to an entire image. It
quickly evolved to tackle more intricate challenges, such as object detection, where models not
only identify objects within an image but also pinpoint their locations using bounding boxes.
Building on this progress, the next step involved tackling even more complex tasks like seman-
tic segmentation, where the goal is to assign a label to each individual pixel, offering a finer level
of granularity and a deeper understanding of the image’s content.

Toaddress these tasks, a variety of increasingly complex strategies have emergedover the years.
In the early stages, convolutional layers [10] were the fundamental building blocks for solving
image classification problems, representing a significant leap in the field. The widespread avail-
ability of pretrained convolutional neural network (CNN)-based architectures further accel-
erated progress, particularly in semantic segmentation. This led to the development of Fully
ConvolutionalNetworks (FCNs) [11], which utilised pre-trained classificationmodels as back-
bones, marking a significant breakthrough in pixel-level prediction tasks. However, additional
innovations were needed to push the boundaries of semantic segmentation. One such ad-
vancement came with the introduction of convolutional-based encoder-decoder architectures.
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These architectures improved the ability to capture detailed information by first encoding the
image into feature maps and then decoding them to generate precise pixel-wise predictions.
While increasing the depth of these networks promised better performance, they encountered
the vanishing gradient problem: as networks grew deeper, their ability to effectively propagate
gradients across layers diminished, leading to performance degradation. The introduction of
residual blocks [2] provided a crucial solution to this challenge. By allowing information to
bypass certain layers through shortcut connections, Residual Networks (ResNets) helped mit-
igate the vanishing gradient problem, enabling deeper architectures to maintain high perfor-
mance and achieve greater success in semantic segmentation tasks. DeepLab-v3 [12] is an ex-
cellent example of this advancement, utilising ResNet [13] as its backbone along with atrous
convolutions to preserve dense feature maps. This architecture set a new standard in semantic
segmentation and serves as the foundation for the model discussed in this thesis.

In the field of computer vision, it has often been assumed that all data samples and tasks are
available during training, allowingmodels to be trained on the entire dataset at once. However,
this assumption is often unrealistic in real-world scenarios. A significant challenge in practi-
cal applications is the necessity for models to continuously learn and adapt to new tasks while
retaining previously acquired knowledge, all without access to prior data. This has led to the
emergence of the field of continual learning, which aims to develop strategies that enable mod-
els to incrementally learn new tasks without forgetting what they have previously learned. A
common challenge in continual learning arises when models must expand the range of classes
they recognise, either by incorporating entirely new classes or by refining existing ones into
more specific subclasses. Such task expansion can have a profound impact on the model’s per-
formance, particularly when training data becomes available incrementally. A model’s perfor-
mance on previously learned tasks can rapidly decline due to a phenomenon known as catas-
trophic forgetting. This occurs when the network’s parameters are optimised for new tasks,
often at the expense of older ones, unless specific mechanisms are implemented to counteract
this issue. Only recently have continual learning strategies been applied to the domain of se-
mantic segmentation, a task that requires a model to predict a label for every pixel in an image.
The complexity of semantic segmentation, combined with the need for continuous learning
without forgetting, presents unique challenges that demand innovative solutions.

To address catastrophic forgetting, researchers have explored a variety of techniques. Knowl-
edge distillation is one such approach,where thenewmodel is trained to replicate the behaviour
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of its predecessor, thus transferring knowledge from the previousmodel. Other solutions, such
as parameter freezing or clever parameter initialisation, aim to preserve the most relevant pa-
rameters for previously learned tasks or ensure that new parameters are initialised in a way that
respects prior learning. There are also approaches that operate in the feature space, seeking
to maintain a well-organised and efficient representation of different classes. More recently,
two promising strategies have emerged that aim to recreate previous data in order to mitigate
forgetting: generative models and web-based replay. Generative models attempt to recreate
images from previous tasks using learned representations, while web-based replay leverages the
web by using information about previous tasks to retrieve relevant images online. These re-
played images can then be used to retain knowledge of earlier tasks without needing access to
the dataset. The most advanced study, conducted by Zanuttigh et al.[7], employing the web
replay technique tackles an evenmore complex challenge: weakly-supervised incremental learn-
ing for semantic segmentation (WILSS), where image-level labels replace traditional pixel-level
annotations. In thiswork, the authors introduced an image selectionmechanism to ensure that
only the most relevant images are retained during the replay process, enhancing the efficiency
and effectiveness of the technique.

The goal of this thesis is to build upon the work presented in the paper [7] to develop a
more efficient image selection technique. In this research, I introduce three novel image se-
lection methods. The first method investigates various strategies for extracting feature vectors
from both replay images and dataset images. It retains replay images only if their feature vec-
tors are sufficiently similar to those previously computed and stored for the dataset images
used as queries during the retrieval process. The second technique exploits the concept of class
prototypes—representations that encapsulate the average characteristics of a class. Replay im-
ages are preserved if they exhibit sufficient similarity to at least one prototype of the classes they
are intended to represent. Finally, the third method builds on the second by utilising more
generalised information, thereby reducing the dimensionality of both feature vectors and pro-
totypes.

The thesis is organised as follows: Chapter 2 describes the semantic segmentation task and
how it is tackled within the deep learning framework. Chapter 3 introduces the framework of
continual learning, detailing its formalism and principal strategies employed in the field. Chap-
ter 4 examines three papers that have utilised web strategies in semantic segmentation for con-
tinual learning. Chapter 5 elaborates on the three image selection strategies developed in this

3



thesis. Chapter 6 presents the dataset used to evaluate performance, while Chapter 7 discusses
the implementation aspects and reports results acrossmultiple settings. Finally, Chapter 8 con-
cludes with key considerations and insights derived from the thesis.
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2
Semantic Segmentation: A Deep Learning

Approach

With the introduction of new algorithms and models, particularly the advent of neural net-
works and deep learning, the field of computer vision has made significant strides in tackling
increasingly complex problems. Notably, we can identify three primary tasks in the field of
computer vision, each representing a progressively more difficult challenge and building upon
the previous one:

• Image classification
The task is to assign the image to one class from a set of possible classes;

• Object Detection
In addition to identification, the model must also approximately localise one or more
objects within the image, typically using bounding boxes;

• Image Segmentation
This is the most challenging task, requiring the model to identify and localise objects at
the pixel level without differentiating between individual objects of the same class.

In the computer vision task of semantic segmentation, accurately identifying each object
within an imagemeans that themachine learningmodel assigns a label to every pixel. This task
is not only one of the most challenging but also one of the most crucial, as it brings us closer
to achieve the paradigm of complete understanding of an image in its entirety. Its applications

5



span a wide range of real-world scenarios, from industrial uses to autonomous driving.

Figure 2.1: Image classification, object detection and image segmentation.

One of the first significant breakthrough in semantic segmentation was achieved by [11],
who introduced the Fully Convolutional Network (FCN) architecture. This innovative ap-
proach demonstrated that a network composed solely of convolutional layers (CNN) [10],
trained end-to-end for semantic segmentation, couldoutperformexisting state-of-the-artmeth-
ods without the need for additional components. A key feature of their workwas the introduc-
tionof skip connections, which integrate high-level semantic informationwith low-level spatial
details.
Additionally, the authors presented a method for adapting well-known image classification ar-
chitectures for use in semantic segmentation, further advancing the field.

2.0.1 Encoder-Decoder Architectures

As previously mentioned, the predominant deep learning architecture used for semantic seg-
mentation is the encoder-decoder model. In this setup, the encoder’s role is to extract mean-
ingful features from the image. This is typically accomplished through a series of convolutional
layers interspersed with max-pooling blocks. The convolutional layers identify patterns, while
the max-pooling layers progressively enlarge the receptive field. Conversely, the decoder’s task
is to map the features from the compressed representation back to the original image dimen-
sions, effectively reconstructing the spatial information that was reduced during the encoding
process.
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In semantic segmentation architectures, it is common to use a pre-trained encoder from a
model originally designed for image classification. The decoder, on the other hand, is typically
customised for the specific segmentation task, often incorporating novel approaches to better
suit the needs of the application.

Figure 2.2: Example of encoder‐decoder CNN architecture for image segmentation, from [1].

2.0.2 ResNet: The ImpactofResidualBlocksonDeep Segmenta-
tionModels

Over the years, to achieve increasingly higher performance with more detailed images and a
growing number of classes, researchers have developed progressively deeper encoder-decoder
architectures. However, they observed that due to the vanishing gradient problem, increasing
the number of layers beyond a certain point no longer improved performance. In fact, beyond
a certain depth, adding more layers began to degrade the model’s performance.
A breakthrough in addressing this issue was the invention of the residual block [2], which al-
lows information to bypass layers through a shortcut connection. This parallel path simpli-
fies the learning task, thus reducing the vanishing gradient problem. This block was crucial
in allowing architectures to become increasingly deeper while simultaneously enhancing their
performance.
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Figure 2.3: Residual block scheme, from [2]

2.0.3 DeepLab model and its Innovations

Although encoder-decoder architectures showed strong performance, they were based on ar-
chitectures originally designed for image classification tasks. As a result, they inherited charac-
teristics optimised for classification, such as invariance to local image transformations. While
this enhances abstraction, it is less suitable for tasks like image segmentation. To address these
limitations, DeepLab architectures were introduced, with a focus on improving the following
key aspects of CNN-based encoder-decoder models:

• reduced feature resolution

• existence of object at multiple scales

• reduced localisation accuracy due to deep convolutional neural network (DCNN) in-
variance.

Classical encoder-decoder CNN architectures use repeated combinations of max-pooling
and striding across consecutive layers. This increases the receptive field, enabling the model to
capture larger-scale patterns. However, this approach also significantly reduces the spatial reso-
lution of the resulting feature maps. To enlarge the receptive field of the layers without relying
on max-pooling,Atrous Convolution layers were introduced [3]. These layers apply filters with
inserted holes between the non-zero filter taps. This approach not only addresses the issue of
reduced feature resolution but also achieves this improvement without increasing the number
of parameters.
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Figure 2.4: (Top) Standard convolution followed by upsampling, (Bottom) Atrous convolution producing a denser feature map.
Image took from [3]

As previously mentioned, semantic segmentation models must also handle objects appear-
ing at different scales. To address this,Atrous Spatial Pyramid Pooling (ASPP)was introduced
[3]. The key idea is to apply multiple Atrous convolutions with different dilation rates and
then combine the resulting outputs, allowing the model to capture features at various scales
effectively.

Figure 2.5: Scheme of the Atrous Spatial Pyramid Pooling, from [3]
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3
Continual Learning

In the previous chapter, we explored how deep learning techniques in computer vision have
rapidly advanced, enabling models to tackle a wide range of tasks and often achieve perfor-
mance comparable to humans. Up to this point, we have discussed these techniques in the
fully supervised setting where all data samples and tasks are assumed to be available during the
training phase, allowing the model to train on the entire dataset at once.
However, as described in [4], this assumption is not always practical in real-world scenarios,
where various challengesmay arise. Akey challenge is the need formodels to continuously learn
and adapt to new tasks without forgetting previously acquired knowledge. Continual learning
strategies address this issue by enabling models to progressively acquire new tasks while retain-
ing their past knowledge, all without the need to retrain from scratch.
A common challenge in continual learning arises from the need to increase the number of
classes, either by adding new ones or by subdividing existing ones intomore specific subclasses.
Such changes in the training tasks can significantly influence the model’s performance. When
a model is trained on sequential tasks, where new data samples are introduced over time and
previous data cannot be accessed, the model’s performance on previously learned tasks can de-
grade rapidly. This occurs because the network’s parameters are optimised for the new tasks
without considering the older ones, unless specific measures are taken to prevent it. This phe-
nomenon is known as catastrophic forgetting.
It is only recently that continual learning strategies have been studied in the context of semantic
segmentation tasks.
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3.1 Problem Formulation

Continual Learning (CL) can be seen as a specific form of transfer learning, where the data
distribution changes at each step, and the model must perform well across all distributions. In
practice, when discussing continual learning tasks, people often refer to the simplest setting,
where tasks are introduced one at a time, and training is performed on the available data.
For example, in class-incremental learning, the model is updated to recognise new classes while
preserving its knowledge of previously learned ones.

Formally, we consider the incremental step t, where t = 1, 2, 3, ...,TMAX. At each step, we
have access to the model from the previous step,Mt−1, as well as two sets of data (X (t),Y(t)),
randomly sampled from the distribution D(t), which is a subset of the full domain D. Here,
X (t) represents the data samples for step t, whileY(t) contains the corresponding ground truth
labels.
In the class-incremental setup we are exploring, each step introduces a new learning task by
adding new classes to those from previous steps.

Figure 3.1: From [4], a graphical representation of the class‐incremental continual learning framework. The model is progres‐
sively updated to identify new classes while preserving its knowledge of previously learned ones.

An additional challenge in many real-world scenarios is that, due to storage or privacy con-
straints, it is often not possible to retain any sample data {X (s),Y(s)} from any previously
learned step s. This makes the continual learning setting even more difficult, as the objective
becomes to optimise a function that encompasses all previously learned tasks without access to
the original samples.

12



At step t, the empirical riskminimisation framework seeks to find the optimal parameters across
all classes by optimising the following expression:

argmin
θ

T∑
t̃=0

E(X (t̃),Y(t̃))

[
L
(
Mt

(
X (t̃); θ

)
,Y(t̃)

)]
(3.1)

with model’s parameters θ , loss function L andMt the model at step t. Since samples related
to previous classes may not be available, this objective function cannot be directly optimised
using standard techniques.
We refer to joint training as the scenario where all samples are available from the start. This
setup represents an upper bound on the performance of a continual learning system.

3.2 Continual learning setup in continual segmen-
tation

Although the application of continual learning to semantic segmentation is a relatively recent
area of study, several settings have already emerged. In particular, the differences between these
approaches, which are related to various target applications, lie in howD(t) is defined and how
the data (X (t),Y(t)) are sampled from it.
Let us denote withS(t−1) the previous label set, which is expanded with a set of new classes C(t)

at step t, yielding a new label set S(t) = S(t−1) ∪ C(t).
In task-incremental settings, it is typically assumed that the sets of new labels discovered at each
step are disjoint, with the exception of a special background or void class, whose behaviour and
meaning depend on the specific scenario. There are various scenarios, and one key difference
among them is how the background class is handled, which is a common aspect in many se-
mantic segmentation benchmarks. Previous approaches have identified four main scenarios:

• Sequential masked This setup represents the most straightforward approach to con-
tinual semantic segmentation: each learning step involves a unique set of images where
pixels are classified either as belonging to new classes or as part of the void class. The
void class is not predicted by the model and is masked out from both the results and the
training process.

• Sequential This setup has been proposed in Michieli and Zanuttigh ([14], [15]). Each
learning step involves a unique set of images, where pixels are classified into classes seen
either in the current step or in previous ones. At each step, labels for both new and old
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classes are present; however, the presence of a specific old class is closely related to the set
of new classes being introduced.

• Disjoint This setup has been proposed in Cermelli et al. ([16]) and in Michieli and
Zanuttigh ([15]). At each learning step, the unique set of images is identical to the se-
quential setup. The key difference from the sequential setup lies in the set of labels. In
this approach, each step includes only labels for pixels of new classes, while previously
learned classes are labeled as background in the segmentation maps. Consequently, the
background class distribution changes with each step.

• OverlappedThis setup moves from the work of Shmelkov et al. ([17]) for object detec-
tion and has been addressed in Cermelli et al. ([16]); Michieli and Zanuttigh ([18]) for
semantic segmentation. In this setup, each training step includes all images containing
at least one pixel from a new set of classes, with only these new classes annotated while
all other classes are labeled as background. Unlike other settings, images in this scenario
may include pixels from classes that will be introduced in future steps but are labeled as
background in the current step. As a result, similar to the previous setting, the distribu-
tion of the background class changes with each incremental step.

Figure 3.2: Overview of the various setups for class‐incremental continual learning in semantic segmentation, from [4].
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3.3 Incremental Learning techniques

In this section we are going to describe the main techniques used to handle the semantic seg-
mentation task in the continual learning framework.

3.3.1 Knowledge distillation

Due to its simplicity and effectiveness, knowledge distillation is one of the most widely used
techniques in continual learning, this techniquewas originally proposedbyBucilua et al. ([19])
and Hinton et al. ([20]). To preserve knowledge from previous tasks, this approach aims to
maintain the model’s responses to past data while updating it with new samples from the cur-
rent task. This is typically achieved by adding a strong regularisation term during the learning
process for the current classes, which helps the model mimic its responses to previous tasks.
This approach often leads to improved performance on both the previous and current classes.
Ozdemir and Goksel ([21]) successfully extended knowledge distillation techniques to dense
tasks by formulating a knowledge distillation loss as the cross-entropybetween the output prob-
abilities of the previous and current models. One of the earliest attempts at knowledge dis-
tillation in dense tasks was conducted by Michieli and Zanuttigh (2019), who expanded the
approach by applying knowledge distillation not only at the output level but also within the
intermediate feature space, thereby preserving the geometric relationships of the extracted fea-
tures.
A more recent study by Phan et al. [22] explores in greater detail how to transfer knowledge
from old to new classes in incremental learning scenarios. The authors observed that previous
works treat all old classes equally during knowledge distillation, which often leads to the forget-
ting of older classes, particularly those that are visually similar to the newones being introduced.
To address this issue, they proposed a novel method called Class Similarity Weighted Knowl-
edgeDistillation (CSW-KD). Themain idea behind this approach is to revise the knowledge of
old classes that are likely to be forgotten, specifically those that are similar to a new class. When
a new class is introduced, the method computes its similarity to the existing old classes. Based
on these similarity scores, the predictions of the previous model on old classes are reweighed,
with more emphasis placed on those that are similar to the new class. This similarity-weighted
knowledge is then distilled into the current model.
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3.3.2 Parameter freezing

Another approach to address catastrophic forgetting is parameter freezing, where a portion of
the network’s weights are frozen. First introduced by Rebuffi et al. ([17]), this technique is a
key strategy in continual learning and has been widely adopted in contemporary methods as a
regularisation technique to prevent knowledge degradation.
Parameter freezing has also been explored as a potential solution to prevent forgetting in dense
labelling tasks. The specific method of applying this technique is not fixed, and various ap-
proaches have been attempted over the years. In [14], Michieli and Zanuttigh proposed freez-
ing all the layers of the encoder to preserve the feature extraction capabilities while training
only the decoder parameters. Two years later, they Michieli and Zanuttigh ([15]) refined this
approach by freezing only the first few layers of the encoder, focusing on preserving the most
task-agnostic parts of the feature extractor.
Although the technique has proven effective across various tasks, the question of which layers
to freeze remains unresolved. There is an inherent trade-off between the model’s ability to effi-
ciently learn new tasks and the preservation of previously acquired knowledge.
A first attempt of automatic selection of which layers to freeze has been recently introduced by
Nguyen et al. ([23]) checking the most plastic layers of the network.

3.3.3 Geometrical feature-level regularisation

This alternative approach to addressing catastrophic forgetting focuses on the organisation of
the latent space. The idea is to find a method for disentangling features within the latent space
to better separate features related to different classes. In the continual learning setting, this ap-
proach can help the model reduce the overlap between features associated with new and old
classes.
One of the first work that applied this idea in dense tasks was Michieli and Zanuttigh ([18]),
where the latent space was constrained to reduce forgetting whilst improving the recognition
of novel classes.
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3.3.4 Weights Initialisation

Cermelli et al. ([16]) were the first to use this approach to address the atypical behaviour of
the background class in both disjoint and overlapped scenarios. To prevent the model from
being biased toward the background class when encountering unseen classes, they initialised
the classifier’s parameters for the new classes in a way that distributes the probability of the
background uniformly among the novel classes.
Building on this work, Goswami et al. [24] introduced a more advanced method for address-
ing background shift. Their approach employs a novel classifier initialisation technique using
gradient-based attribution to identify the most relevant weights from the previous classifier’s
background weights. These selected weights are then transferred to the new classifier, which
helps accelerate the learning of new classes while reducing catastrophic forgetting.

3.3.5 Generative replay

One alternative solution is to use generative models to recreate past samples. In this approach,
generative models are first trained on the current data distribution. Later, these models can
generate data from past experiences when learning new information.
This approach was initially applied to image classification tasks. In their deep generative re-
play framework, introduced by Shin et al. [25], the model preserves previously learned knowl-
edge by replaying generated pseudo-data alongside current tasks. Specifically, a deep generative
model, based on the generative adversarial networks (GANs) framework, is trained to imitate
past data. These generated data are then paired with the corresponding outputs from the past
task solver, effectively representing older tasks and enabling the model to retain prior knowl-
edge.
More recently, this approach has also been explored for solving dense prediction tasks. In par-
ticular, in [5], they used a pretrained GAN model to generate samples of old classes based on
their class labels, with the goal of mitigating the problem of catastrophic forgetting.
However, it’s important to note that only weak classification labels are available for the gener-
ated data, and some pseudo-labels need to be estimated for segmentation tasks.
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3.3.6 Webly-based Learning

This approach leverages web search samples, offers a powerful method for retrieving accurate
past examples.
The core idea of this approach is to leverage theweb to retrieve images related to past classes that
can serve as alternatives to samples that are no longer available. This method was introduced
by [5], who initially tried to retrieve images using the names of old classes as queries.
However, given the vast number of images on the web, even though the class name is used as a
query, not all the retrieved images are optimal for training a semantic segmentation model. A
major challenge is controlling the quality of the retrieved images. Additionally, like othermeth-
ods, this approach provides only weak classification labels, necessitating a pseudo-labelling
scheme.
In more recent work, [6] and [7], the same team developed new strategies to both select web
images to retain only the most useful ones and to create pseudo-labels for the retrieved images.
We will see more in detail these methods in the next chapter.
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4
Web-Driven Replay Solutions for Continual

Semantic Segmentation

Convention used by the papers

In this chapter, we will explore in detail the research that utilises web-based rehearsal strategies
to mitigate the phenomenon of catastrophic forgetting.

The primary objective of these studies is to develop a semantic segmentation model within
the continual learning framework that can effectively differentiate among C classes introduced
across multiple steps. Here, C0 denotes the set of classes present at step 0, while Ck represents
the set of classes added at step k. A special class, denoted as b, represents the background, which
is included at every step. In the standard supervised deep learning setting, the model is trained
in a single phase on a dataset T ⊂ X ×Y , where all classes and samples are accessible. In con-
trast, the class-incremental setting involves training over a sequence of steps k = 0, 1, · · · ,K.
At each step k, only the training dataset Tk ⊂ Xk × Yk is available, where the pixel anno-
tations are restricted to the classes in the subset (Ck ∪ b) ⊂ C. Pixels not belonging to the
categories in Ck are labelled as background. For any given step k, an image in the training
set Tk is denoted X ∈ Xk ⊂ R H∗W∗3, while its corresponding dense label is represented as
Y ∈ Yk ⊂ R H∗W∗(|Ck ∪ b|). At this stage, the model M is expected to make predictions across
all classes that have been added up to that point, represented as C0→k.
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4.1 RECALL: Replay-Based Continual Learning in
Semantic Segmentation

In the context of continual learning for semantic segmentation, a novel method called RE-
CALL [5] (REplay in ContinuAL Learning) has been introduced; it generates representations
of previously learned classes using two primary strategies. The first utilises a pre-trained Gen-
erative Adversarial Network (GAN) that is conditioned to generate samples of specific classes.
The second strategy, which we will focus on, involves sourcing images from the web using old
class names as search queries. Bothmethods effectively provide a substantial amount of weakly
labelled data.
Additionally, the work tackles the background shift problem by employing a self-inpainting
strategy that reassigns background regions using predictions from previous models.

4.1.1 General architecture

The modelM used to perform on semantic segmentation task is an encoder-decoder architec-
ture. In the incremental environment they examined, it was assumed that during the incremen-
tal step k, only samples related to the new classes Ck are available.
At the first step only the samples related to C0 are available (b ∈ C0) and the model at that step
is denoted as:

M0 = D0 ◦ E0 (4.1)

M0 : X → R H·W·|C0| (4.2)

At the generic step k, the model must be able to segment the classes C0→k, which are given
by the union of the new set of classes Ck and the classes learned up to that point C0→(k−1). The
model at the k-th step is:

Mk = Dk ◦ E0 (4.3)

Mk : X → R H·W·|C0→k| (4.4)
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Replay Block

In this work, they introduced a Replay Block with two primary goals. First, it aims to retrieve
images related to classes from previous steps, either by generating them from scratch or by
sourcing them from alternative databases (e.g. web databases). Second, since these images are
weakly labelled, the Replay Block is designed to obtain reliable semantic labels for them.
The Replay Block’s image retrieval task is executed by what they called Source Block:

S = Ck → X rp
Ck (4.5)

This module can take a set of class names as input and provide images whose semantic con-
tent corresponds to those classes.
In particular, in the specific case where they retrieved images from the web, they used the avail-
able Flickr website. Assuming we are at the incremental step t and have access to the names of
all previous classes, they downloaded images whose tags and descriptions contained the class
names through Flickr’s web crawler.

Since the retrieved images are weakly labelled, an additional module was needed to produce
dense predictions corresponding to the classes identified in previous steps. This module is re-
ferred to as {L Ck} Ck⊂C . For each specific set of semantic categories Ck, a distinct Label Evalua-
tion Block is used. These blocks consist of two components: a fixed part, denoted as E0, which
is common to all blocks, and a variable part,D H

Ck , which is adapted to the specific set of classes
Ck.

L Ck = D H
Ck ◦ E0 (4.6)

L Ck : X Ck → R H·W·(|Ck ∪ b|) (4.7)

Given the Source S and the Label Evaluation Block L Ck , a replay image dataset associated
with a specific set of past classes Ck can be retrieved. Using Ck as a query, a replay imageX

rp
Ck =

S(Ck) is generated and then passed through the Label Evaluation Block L Ck to produce a dense
label. This is computed as:

Y rp
Ck = argmax c ∈ Ck∪{b}L Ck(X

rp
Ck) [c] (4.8)
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By collectingmultiple replay images, it is possible to construct a replay dataset corresponding
to the specific set of classes Ck:

R Ck = {(X rp
Ck ,Y

rp
Ck)}

Nr
n=1 (4.9)

whereNr is a hyperparameter that defines the number of replay images.

Background self-inpainting

In continual learning settings, a common challenge is the phenomenon known as background
shift. This occurs because, at each learning step, the distribution of background pixels changes.
Specifically, as shown in figure 3.2, in both the disjoint and overlapping settings, only the pix-
els corresponding to the current classes in Ck are visible, while all pixels corresponding to previ-
ously learned classes are relabelled as background.
To effectively address this problem, an inpaintingmechanismwas developed to transfer knowl-
edge from the previous model to the current one. At each step k, with the training set Tk, the
background region in each ground truth map is filled with the predictions from the previous
modelMk−1, resulting in T bi

k = M(k−1)(Tk).
This allows the model to retain information from earlier tasks, as illustrated in figure 4.1.

Figure 4.1: Background self‐inpainting, from [5]
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4.1.2 Algorithm

The complete training algorithm of RECALL is illustrated in Figure 4.2. Suppose we are at
the incremental step k, where only the dataset Tk, containing images related to the class set Ck,
is available.
The first stage of the algorithm involves the Source Block, which creates k− 1 sets, containing
images from previous learned class sets C(0→k−1). These dataset are then passed through the La-
bel Evaluation Block to generate labelled replay datasetsRCi for each previous class Ci, where
i = 0, . . . , k − 1. The final replay dataset is constructed by aggregating the individual replay
datasets for each set of classes, denoted asRC0→(k−1) =

∪k−1
i=0 RCi .

To obtain the complete training dataset for themodelMk, the replay datasetRC0→(k−1) is com-
bined with T bi

k , which is generated by passing the dataset Tk through the model’s background
self-inpainting module. The resulting dataset is denoting as T rp

k = T bi
k ∪RC0→(k−1).

At this point, the segmentation modelMk can be effectively trained using the cross-entropy
loss function Lce(Mk; C0→k, T

rp
k ).

In the final stage of step k, the decoder componentDH
Ck is trained using the dataset Tk, by min-

imising the cross-entropy lossLce(LCk ; Ck ∪ b, Tk).

Figure 4.2: RECALL architecture, from [5]
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4.2 RECALL+: AdversarialWeb-based Replay for
Continual Learning in Semantic Segmentation

Two years later, the same research team developed an updated version of the RECALL algo-
rithm. In this new work [6], they concentrated on devising a image selection strategy specifi-
cally designed for retrieving web images. Additionally, they introduced a background inpaint-
ing technique, which was applied to images during the current processing step. These two
enhancements enabled them to achieve better results compared to the previous RECALL algo-
rithm.

Figure 4.3: RECALL+ architecture, from [6]

4.2.1 Image selection strategies

They observed that the images retrieved using the Source Block designed in RECALL were
somewhat uncontrolled. While some images were useful for training, others contained anoma-
lies that rendered them ineffective or even misleading. For this reason, in the new version of
the algorithm, they retained themain structure of the replay block described in 4.1.1 but added
two new components before the creation of the replay dataset. Specifically, they introduced
two image selection techniques that combine an adversarial learning method with a threshold-
based selection mechanism, enabling the model to retain only the useful replay images.

Adversarial training strategy

At step 0, to effectively train the discriminator network, web images related to the class set C0
are used as negative samples, while images associated with the dataset’s class set C0 serve as pos-
itive samples.
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Consequently, at step 1, to retrieve images related to the class set C0, each replay image X gen-
erated by the Source Block is passed to the discriminator, which returns a confidence score
z = [zp, zrp] ∈ R2

0+ for the dataset images (zp) and the web-replay images (zrp). At this point,
we can define the set of coreReplay Images Rcore

C0 as follows:

Rcore
C0 = {X rp

C0 | zp > α · zrp} (4.10)

where α is a parameter used to control the ratio between the two scores, and it is set signifi-
cantly larger than 1.
Subsequently, the domain discriminator is fine-tunedusing the setT1∪Rcore

C0 as positive samples
andXrp

C0→1
as negative samples. This step is crucial for effectively discriminating web images in

step 2.

At step k, the available discriminator has been previously trained on the datasets T(k−1) ∪
Rcore

C(k−2)
and Xrp

C0→(k−1)
, using the first as positive samples while the second as negative. In the

current step it is used to select the retrieved web-images:

Rcore
C0→(k−1)

= {X rp
C0→(k−1)

| zp > α · zrp} (4.11)

As last stage of this step the domain discriminator is fine-tuned using the set Tk ∪Rcore
C0→(k−1)

as positive samples andXrp
C0→k

as negative samples.

Image selection

Although the domain discriminator effectively reduces the shift between dataset and replay im-
ages, they noticed it is not able to differentiate between useful samples and less relevant ones.
To address this issue, they developed an Image Selectionmethod that retains only those images
containing a significant number of pixels associated with the expected class.
In particular they examined the probability distribution functions of the pixel fractions for
each class within the corresponding images to establish a reference for thresholding. Specif-
ically, for each class c they calculated the Cumulative Distribution Function (CDF,Fc) of
the distribution P c

(X,Y)∼Tk| c ∈ C0→k
[Y = c]. They then utilised this CDF to derive appropri-

ate thresholds for object sizes using a quantile-based method.
To determine the threshold value tsizec for the number of pixels belonging to class c in an image,
they computed it as follows:
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tsizec = F−1c (0.5) (4.12)

According to their strategy, a sample is deemed acceptable if the fraction of its pixels in the
corresponding class falls within the range [tsizec , 1].

4.2.2 Self-teaching strategies

In their previous work, they developed the Background Self-Inpainting Block (4.1.1) to tackle
the issue of background shift. While their previous work focused on addressing the problem
of current images containing backgrounds associated with previous class sets, this work also
explores the dual problem: the possibility that the background of replay images could contain
objects related to the current classes.
For this reason, they developed knowledge self-inpainting, which allows the model to update
the labelling of the replay images during training. In addition, they introduced a constraint
term to prevent the expansion of old classes.
The knowledge self-inpainting mechanism, shown in Figure 4.4, is define as:

Yki[h,w] =


Yrp[h,w] if Yrp[h,w] ∈ CC0→(k−1)

Ymax[h,w] if Yrp[h,w] /∈ CC0→(k−1) ∧ Ymax[h,w] ∈ Ck
b otherwise

(4.13)

Figure 4.4: RECALL+ Self‐teaching strategies, from [6]
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4.3 LearningfromtheWeb: LanguageDrivesWeakly-
Supervised IncrementalLearningforSemanticSeg-
mentation

In this third paper [7], the research teamextended theirweb-crawlermethod to amore challeng-
ing scenario: Weakly-Supervised Incremental Learning for Semantic Segmentation (WILSS).
Unlike the previously discussed Continual Incremental Learning for Semantic Segmentation
(CILSS) (3.1), where images introduced at each step t are fully labelled at the pixel level,WILSS
involves a weaker form of supervision. Specifically, in this scenario, the images introduced at
step t, which correspond to the new set of classes Ct, are only weakly labelled, meaning that the
labels are provided at the image level rather than the pixel level.
The researchers assume that only the images from the initial step are fully supervised, while
those introduced in all subsequent steps are weakly labelled.
In this newwork, more sophisticated querying and image selection techniques have been devel-
oped to retain only themostmeaningfulweb-retrieved images. Wewill focus on these advanced
image selection techniques, particularly in a scenario where, at each step t, the current images
from the dataset are accessible.
However, it is important to emphasise that they also examined an evenmore restrictive scenario.
At step t, not only are the images from previous steps unavailable, but the images introduced at
the current step are also absent. In this extreme case, the only information available is the names
of the new classes. As a result, the system must retrieve images related to these new classes di-
rectly from the web.

Problem definition forwilss task

Themain difference compared to the convention used previously (see 4) lies in the shape of the
label y ∈ Y . At step 0, the labels for the current images are at the pixel level, represented as y ⊂
R H∗W∗|C0|. However, for all subsequent steps k, the labels shift to an image-level representation
y ⊂ R |Ck|.
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Figure 4.5: General architecture, from [7]

4.3.1 Labelling forweakly-labelled images

The method for treating weakly-labelled images builds on previous work [26]. At each step t,
the architecture consists of a sheared encoder E t, a segmentation decoderD t that is incremen-
tally extended to accommodate new classes, and a localiser Lt, which is trained from scratch
at every step to provide pseudo-supervision for the segmentation model. Specifically, the lo-
caliser offers two types of guidance: one at the pixel level, represented as y t

L ∈ R H∗W∗|C0→t| ,
and the other at the image level, denoted as y t

L ∈ R |C0→t|. Consistent with previous methods,
the model from the preceding task is retained and is represented as (D ◦ E) t−1.

The image-level supervision is calculated using a multi-label soft-margin loss:

L CLS( y, y t
L ) = − 1

|C0→t|
∑

c ∈ C0→t

y c log(y c
L) + (1− y c) log(1− y c

L) (4.14)

Considering the pixel-level predictions, and following the method outlined in [26], the ini-
tial pixel-level guidance y t

L is smoothed to mitigate noise, resulting in ỹL [27].This smoothed
output is then combined with the predictions from the previous model:

ŷ =


min(y c(t−1)

D , ỹ c
L) if c = b

ỹ c
L if c ∈ C t

y c(t−1)
D otherwise

(4.15)
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where y t−1
D ∈ R H∗W∗|C0→(k−1)| is the prediction of the segmentationmodel (D◦E) t−1. Then

the pixel-level loss is obtained as:

L SEG( ŷ, y t
D ) = − 1

|I| |C0→t|
∑
i ∈ I

∑
c ∈ C0→t

ŷ c
(i) log(y

c t
(i) D) + (1− ŷ c

(i)) log(1− y c t
(i)D) (4.16)

where I = H ∗ W denotes the pixel dimension of the image, and ŷ(i) represents the
prediction for the i-th pixel.

To further enhance the segmentation capabilities of the model, two additional losses,LKDE

andLKDL, introduced in [26], are incorporated. The final objective function is as follows:

L = LSEG + LCLS + LKDE + LKDL (4.17)

4.3.2 Rehearsal strategies

In this paper, they explored the possibility of using the capabilities of a vision-language model
(VLM) to generate text descriptions of images in order to develop a new strategy for querying
and selecting images from the web. They worked under the assumption that it is possible to
store only the captions of the images. In doing so, they succeeded in using the caption model
both for querying relevant samples from the web and to provide additional supervision for
verifying whether the retrieved images are useful for training. The strategy involves two key
steps: querying based on captions and selecting based on captions.

Caption-based querying

In detail, this strategy uses a captionmodel, denoted asMCAP, which takes an imageX ∈ X ⊂
R H∗W∗3 as input.

At step 0, theMCAP model generates captions for all the current images. Consequently, in
step 1, we retrieve the replay images associated with step 0 as follows:

X web
r, 0 = {X = D web(q′) | q′ = MCAP(x) : x ∈ T0} (4.18)

whereD web represents the distribution of the images available on the web, while T0 denotes
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the training set utilised at step 0.
Similarly, at the generic step t, the replay images related to the sets of classes C0→t, are retrieved
as:

X web
r, 0→(t−1) = {X = D web(q′) | q′ = MCAP(x) : x ∈ T0→(t−1)} (4.19)

Caption-based image selection

Although this new caption-based querying is more robust concerning the class name, there is
no guarantee that the replay images are functional for training. For this reason, inspired by
classic Natural Language Processing methods, they employed the Penn TreeBank [28] and the
lexical database WordNet [29] to develop a new image selection strategy.
The idea behind this strategy is to recalculate the captions for the replay images and compare
them to those used in the queries, verifying whether the words in the captions belong to the
same semantic family.

More in detail, as precisely described in [7], assuming to be at step t the method is defined as
follows:

1. feeding the replay image x ∈ X web
r, 0→(t−1) into the caption model, a second caption q

′′ is
generated as: q′′ = MCAP(x);

2. they tokenized the two queries and identified two pairs of words (n′1, n′2) and (n′′1 , n′′2),
which represent the first twonouns from sentences q′ and q′′, respectively, based on their
syntax tags as in [28];

3. for each noun n they extracted a set of hypernyms, i.e. its cognitive synonyms, from the
WordNet Tree [29];

4. for eachnounn they created a corresponding vectorizeddescriptor v (e.g., v′1 corresponds
to n′1 , and so on) by considering the depth d of each of its hypernyms in the tree and
updating v[d]+ = 1;

5. they computed the cosinedistancebetween each vector (e.g., they compared v′1withboth
v1 and v2);

6. if at least one couple of descriptors is similar (e.g., v1 with v1 or v2 ), then the image x
is kept, meaning that it contains at least one concept that was contained in the dataset
image. They assumed two vectors vi and vj to be similar if 1 − cos(vi, vj) > T, where T
represents the threshold value.
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Figure 4.6: Illustration of caption‐based image selection method, from [7]
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5
Image Selection Techniques for Replay

Images in Semantic Segmentation

In this thesis, I extended the work of [7], focusing on a scenario where, at each step after step 0,
the current images from the dataset are available with image-level labels, and the replay images
are retrieved using the captions of the dataset images as queries (Equation: 4.19). Specifically, I
developed new image selection strategies that allow the model to retain only the most relevant
replay images for the training, with the aimof improving overall performance. All the strategies
developed in this work are based on the CLIP architecture [8] for feature extraction. As a
naming convention, throughout this thesis, I will refer to the three image selection techniques
as strategies, while the variations within each strategy will be termedmethods.

CLIP architecture

In2021,OpenAIdeveloped anewneural network architecture calledCLIP (ContrastiveLanguage–
Image Pretraining) which is efficiently able to learn visual concepts from natural language su-
pervision. The primary objective of this architecture is to effectively correlate images with their
corresponding text descriptions. It consists of two encoders: one for images and another for
text. A crucial aspect of this design is that both encoders share the same embedding space. This
method aims to ensure that images and their text counterparts are mapped to similar embed-
ding vectors, or ideally, the same vector.
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To achieve this goal, the model is trained on a dataset comprising millions of image-text pairs.
During training, for each batch, embedding vectors are calculated for both images and their
corresponding descriptive texts. These vectors are then organised into a distance matrix, as il-
lustrated in Figure 5.1. In this matrix, the diagonal elements represent the distances between
the embedding vectors of each image and its text counterpart, while the off-diagonal elements
capture the distances for all other combinations. The objective of the training was tominimise
the distances on the diagonal of the distance matrix, while simultaneously maximising the off-
diagonal distances.
The resulting architecture efficiently extracts features from both images and texts, mapping
images and texts with similar information into similar embedding vectors.

Figure 5.1: Graphical representation of the batch training step in the CLIP model, from [8].
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5.1 CLIP-Based Strategy for Image-to-Image Similar-
ity Assessment

The initial strategy involved using CLIP to verify whether the retrieved images X web were simi-
lar to the dataset one X orig used in the queries. For both the dataset and replay images, I utilised
the images as visual information and obtained the corresponding textual descriptions from the
language model Flamingo [30] [31]. Given that CLIP can process both visual and linguistic
information, all four combinations have been explored, as shown in the following table:

Dataset Image
Text Image

Replay Image
Text Text-to-Text method Image-to-Text method
Image Text-to-Image method Image-to-Image method

It is important to note that the step in which the feature vector of the current image is cal-
culated is different from the one where the feature vector of the replay image is computed.
Specifically, the caption and feature vector of the dataset image are generated only once, dur-
ing the single step inwhich the image is available. In contrast, the caption and feature vector for
the replay image are recalculated during each subsequent step. This method requires a slight
relaxation of the assumption, allowing not only the captions but also the feature vectors of the
dataset images to be stored.
To clarify the subsequent explanations of the four methods, we will assume we are at step h,
with h > k, and we will consider a dataset imageX orig

c associated with the class c ∈ Ck.

5.1.1 Similarity by comparing text-based descriptors

In this first method, called Text-to-Text method, at step k, the dataset image X orig
c is first pro-

cessed through the captionmodel, and the resulting output q′ is then used as input to theCLIP
model to derive its feature vector v orig, as follows:

q′ = MCAP(X orig
c ) (5.1)

v orig = CLIP (q′) (5.2)

35



At step h, the related replay imageX web is processed through the caption model to generate
its corresponding text description q′′. Similar to the dataset image, the text descriptor of the
replay image is used to obtain its feature vector v web as:

X web = D web(q′) (5.3)

q′′ = MCAP(X web) (5.4)

v web = CLIP (q′′) (5.5)

Finally, at step h, the replay image is considered useful for the training only if the cosine simi-
larity between the two feature vectors, v orig and v web, exceed a specified threshold.

1− cos( v orig, v web ) =

accept if ≥ threshold

reject if < threshold
(5.6)

The entire image selection process is graphically represented in Figure 5.2 and described by
Algorithm 5.1.

Dataset 
Image

Caption 
Model

Text 
descriptor

Web
Crawler CLIP 

Replay 
Image

feature vector dataset img

feature vector replay img Cosine
Similarity

path followed by the dataset image

path followed by the replay image

path followed at time step k

path followed at time step h

Comparison

Accept Reject

Threshold

Figure 5.2: Graphic representation of the image selection strategy applies on a replay image in the Text‐to‐Text method.
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Algorithm 5.1 Text-to-Text method
Step t
th = value of the threshold
X orig
0→(t−1) = dataset images related to the sets of classes C0→(t−1)

X orig
t = dataset images related to the sets of classes Ct

for X orig
t ∈ X orig

t

q′t = MCAP(X
orig
t )

v orig
t = CLIP(q′t)
store q′t
store v orig

t

end for
for X orig ∈ X orig

0→(t−1)
q′ = previously saved caption corresponding toX orig

v orig = CLIP( q′ ) = previously saved feature vector corresponding toX orig

X web = {D web(q′) | q′ = MCAP(X orig)}
for X web ∈ X web

q′′ = MCAP(X web)

v web = CLIP( q′′ )
sim = 1− cos( v orig, v web )

if sim ≥ th
Image saved
Break

else
Continue

end if
end for

end for
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5.1.2 Comparisonoftextdescriptorsofdataset imagesandweb
images descriptors

In this second method, called Text-to-Image method, at step k, the feature vector v orig
c , corre-

sponding to the dataset imageX orig
c , is obtained in the sameway as in the previousmethod (see

Equation: 5.2):

q′ = MCAP(X orig
c ) (5.7)

v orig = CLIP (q′) (5.8)

The key distinction lies in the method used to compute the feature vector v web for the re-
play image X web; in this case, at step h, the replay image is used directly as input to the CLIP
architecture as:

X web = D web(q′) (5.9)

v web = CLIP (X web) (5.10)

Finally, also in this method the replay image is considered useful for the training only if the
cosine similarity between the two feature vectors, v orig and v web, exceed a specified threshold.

1− cos( v orig, v web ) =

accept if ≥ threshold

reject if < threshold
(5.11)

The complete image selection process is illustrated in Figure 5.3 and detailed in Algorithm
5.2.
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Algorithm 5.2 Text-to-Image method
Step t
th = value of the threshold
X orig
0→(t−1) = dataset images related to the sets of classes C0→(t−1)

X orig
t = dataset images related to the sets of classes Ct

for X orig
t ∈ X orig

t

q′t = MCAP(X
orig
t )

v orig
t = CLIP(q′t)
store q′t
store v orig

t

end for
for X orig ∈ X orig

0→(t−1)
q′ = previously saved caption corresponding toX orig

v orig = CLIP( q′ ) = previously saved feature vector corresponding toX orig

X web = {D web(q′) | q′ = MCAP(X orig)}
for X web ∈ X web

v web = CLIP( X web )

sim = 1− cos( v orig, v web )

if sim ≥ th
Image saved
Break

else
Continue

end if
end for

end for
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Figure 5.3: Graphic representation of the image selection strategy applies on a replay image in the Text‐to‐Image method.

5.1.3 Comparisonofdataset imagesdescriptorsanddescriptors
of the web images

The third method, called Image-to-Text method, can be considered the dual version of the
second. In this case, the dataset image X orig

c is input directly into the CLIP model to obtain
its feature vector v orig. In contrast, the feature vector v web for the replay imageX web is derived
from its corresponding text descriptor q′′, rather than from the image itself.
At step k the following quantities are computed:

q′ = MCAP(X orig
c ) (5.12)

v orig = CLIP (X orig
c ) (5.13)

while at step h:

X web = D web(q′) (5.14)

q′′ = MCAP(X web) (5.15)

v web = CLIP (q′′) (5.16)
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Finally, as in previousmethods, the effectiveness of the replay image is evaluated through cosine
similarity, as:

1− cos( v orig, v web ) =

accept if ≥ threshold

reject if < threshold
(5.17)

The entire image selection process is depicted in Figure 5.4 and explained in Algorithm 5.3.

Algorithm 5.3 Image-to-Text method
Step t
th = value of the threshold
X orig
0→(t−1) = dataset images related to the sets of classes C0→(t−1)

X orig
t = dataset images related to the sets of classes Ct

for X orig
t ∈ X orig

t

q’t = MCAP(X
orig
t )

v orig
t = CLIP(X orig

t )

store q′t
store v orig

t

end for
for X orig ∈ X orig

0→(t−1)
q′ = previously saved caption corresponding toX orig

v orig = CLIP( X orig ) = previously saved feature vector corresponding toX orig

X web = {D web(q′) | q′ = MCAP(X orig)}
for X web ∈ X web

q′′ = MCAP(X web)

v web = CLIP( q′′ )
sim = 1− cos( v orig, v web )

if sim ≥ th
Image saved
Break

else
Continue

end if
end for

end for
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Figure 5.4: Graphic representation of the image selection strategy applies on a replay image in the Image‐to‐Text method.

5.1.4 Similarity by comparing image-based descriptors

In this final method of the first strategy, called Image-to-Image method, the captioning model
is utilised solely to retrieve the replay imageX web. Specifically, the dataset imageX orig

c and the
replay image X web are used directly as inputs for the CLIP model to compute the two feature
vectors v orig and v web.
At step k, the caption and the feature vector of the dataset image are computed:

q′ = MCAP(X orig
c ) (5.18)

v orig = CLIP (X orig
c ) (5.19)

At step h,the replay image is retrieved, and its corresponding feature vector is calculated as:

X web = D web(q′) (5.20)

v web = CLIP (X web) (5.21)

In this final method, the replay image’s effectiveness is assessed using cosine similarity, as
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follows:

1− cos( v orig, v web ) =

accept if ≥ threshold

reject if < threshold
(5.22)

The full image selection process is shown in Figure 5.5 and outlined in Algorithm 5.4.

Algorithm 5.4 Image-to-Image method
Step t
th = value of the threshold
X orig
0→(t−1) = dataset images related to the sets of classes C0→(t−1)

X orig
t = dataset images related to the sets of classes Ct

for X orig
t ∈ X orig

t

q′t = MCAP(X
orig
t )

v orig
t = CLIP(X orig

t )

store q′t
store v orig

t

end for
for X orig ∈ X orig

0→(t−1)
q′ = previously saved caption corresponding toX orig

v orig = CLIP( X orig ) = previously saved feature vector corresponding toX orig

X web = {D web(q′) | q′ = MCAP(X orig)}
for X web ∈ X web

v web = CLIP( X web )

sim = 1− cos( v orig, v web )

if sim ≥ th
Image saved
Break

else
Continue

end if
end for

end for
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Figure 5.5: Graphic representation of the image selection strategy applies on a replay image in the Image‐to‐Image method.
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5.2 ImageSelectionStrategyBasedonCLIPClassPro-
totypes

One potential limitation of the previous strategy, along with a possible way to enhance the im-
age selection process, is that the replay images were closely tied to the corresponding dataset
images used as queries. There may be instances where the dataset image, which contains the
class c̃, represents a very specific situation. In such cases, a replay image could be rejected not
due to its implausibility as an image containing the class c̃, but rather because the scenario it
depicts differs significantly from that of the dataset image.
The idea behind this second strategywas to develop amethod that allows themodel to compare
replay images, not with the specific images used as queries, but with an average representation
of the classes that the replay images are expected to contain. To explain this concept in greater
detail, the main objective is to build a prototype feature vector for each class that effectively
captures the average information representing that class. These class-specific vectors are then
leveraged to compare with the feature vectors of replay images, allowing the model to deter-
mine which images are most relevant. This method shifts the focus from direct comparison
with dataset images to a more generalised, class-based comparison.
UsingCLIP as a feature extractor, two possible methods have been explored: working with the
image caption or directly using the image itself as input for the CLIP model.

The generic step k can be divided into two distinct stages: the first focuses on the current
images, while the seconddealswith the replay images. The initial stage is particularly important,
as it lays the foundation for subsequent steps. During this stage, although the two explored
methods differ in terms of the input used by the CLIP model, the rest of the process remains
identical.
In this initial phase, captions for the current images are generated and stored. Additionally, key
quantities, essential for selecting images associated with the current set of classes in later stages,
are computed and saved. Specifically, for each class c ∈ Ck, the following quantities are crucial
for the image selection strategy:

• Class prototype , v̄c

• Class mean similarity, s̄c

• Class mean standard deviation, σc
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The class prototype v̄c is obtained by computing the average of all the feature vectors corre-
sponding to the dataset images that contain objects related to class c. Assuming that the values
of the cosine similarity between these feature vectors and the class prototype are approximately
distributed according to aGaussiandistribution, the classmean similarity s̄c and the classmean
standard deviation σc are calculated as the corresponding mean and standard deviation of the
distribution.
This new image selection strategy, compared to the first one discussed in Section 5.1, offers

greater stability and is alsomorememory-efficient. Specifically, thismethod eliminates the need
to store a feature vector for each dataset image, requiring only one feature vector for each class
instead.

5.2.1 Image-based image selection methodwith CLIP

In this section, we will explore in detail the method that leverages images directly as input for
the CLIP model.

Assuming we are at step t, Figure 5.6 and the first part of Algorithm 5.5 represent the first
stage of the step. The dataset images X orig

t are fed to the caption model to obtain the corre-
sponding textual descriptions. The related feature vectors v orig, obtained by passing the dataset
images through the CLIP model, are used for the calculation of v̄c , s̄c and σc for all c ∈ Ck.
In the second stage of the process, the new image selection strategy is implemented, as out-

lined in the second part of Algorithm 5.5 and illustrated in Figure 5.7. Once the web crawler
retrieves replay images linked to the dataset images fromprevious steps using the saved captions,
the image selection strategy is applied as follows:

1. through the CLIP model the feature vectors of the replay images are computed

2. the cosine similarities are calculated between the newly obtained feature vectors and the
prototypes of all the classes present in the dataset images used as query. In particular, a
replay image is considered useful for training if the cosine similarity between its feature
vector and at least oneprototype of the classes it is intended to represent exceeds a specific
threshold. The threshold varies for each class and is defined as the classmean similarity, s̄c,
plus a fixed coefficient, n, multiplied by the class’s standard deviation σc. The parameter
n is a hyperparameter that remains consistent across all classes. This method allows the
threshold to adapt based on how the information is distributed within each class.
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Figure 5.7: Graphical representation of the second stage of step t
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Algorithm 5.5 Image-Based Image Selection Strategy using Class prototypes
Step t
n = number of standard deviations
X orig
0→(t−1) = dataset images related to the sets of classes C0→(t−1)

X orig
t = dataset images related to the sets of classes Ct

for X orig
t ∈ X orig

t

q′t = MCAP(X
orig
t )

store q′t
v orig
t = CLIP(X orig

t )

end for
Use {v orig

t } to compute and store v̄c , s̄c and σc for all c ∈ Ct
for X orig ∈ X orig

0→(t−1)
q′ = saved caption corresponding toX orig

c = classes belonging toX orig

X web = {D web(q′) | q′ = MCAP(X orig)}
for X web ∈ X web

v web = CLIP(X web)

for c ∈ c
v̄c = prototype related to class c
s̄c =mean similarity related to class c
σc = standard deviation related to class c
sim = 1− cos( v̄c, v web )

if sim ≥ s̄c + n · σc
Image saved
Break

else
Continue

end if
end for

end for
end for
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5.2.2 Text-based image selection methodwith CLIP

This secondmethod is similar to the one previously discussed, with the core strategy remaining
unchanged.

The key difference lies in the preprocessing of images before they are fed into the CLIP
model. Instead of using the dataset images and their replay versions directly, these images are
first processed by a caption model. The captions generated from this processing serve as the
input for the CLIP model.

Assuming we are at step t, Figure 5.8 and the first part of Algorithm 5.6 illustrate the path
that the current images take during the first stage of this step. The images are fed into the
caption model to generate their corresponding textual descriptions. These captions are then
stored and used to compute the associated feature vectors through the CLIP model. These
vectors are subsequently utilised to calculate v̄c , s̄c and σc for all c ∈ Ct.
As outlined in the secondpart ofAlgorithm5.6 and illustrated inFigure 5.9, the image selection
strategy used in this second stage is nearly identical to that described in the first method. The
only difference is that, in this case, the replay images are not fed directly into CLIP; instead,
their textual captions are used as input.
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Figure 5.8: Graphical representation of the firsts stage of step t
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Figure 5.9: Graphical representation of the second stage of step t
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Algorithm 5.6 Text-Based Image Selection Strategy using Class prototypes
Step t
n = number of standard deviations
X orig
0→(t−1) = dataset images related to the sets of classes C0→(t−1)

X orig
t = dataset images related to the sets of classes Ct

for X orig
t ∈ X orig

t

q′t = MCAP(X
orig
t )

store q′t
v orig
t = CLIP( q′t )

end for
Use {v orig

t } to compute and store v̄c , s̄c and σc for all c ∈ Ct
for X orig ∈ X orig

0→(t−1)
q′ = saved caption corresponding toX orig

c = classes belonging toX orig

X web = {D web(q′) | q′ = MCAP(X orig)}
for X web ∈ X web

q′′ = MCAP(X web)

v web = CLIP( q′′ )
for c ∈ c

v̄c = prototype related to class c
s̄c =mean similarity related to class c
σc = standard deviation related to class c
sim = 1− cos( v̄c, v web )

if sim ≥ s̄c + n · σc
Image saved
Break

else
Continue

end if
end for

end for
end for
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5.3 ImageSelectionStrategyBasedonReducedCLIP
Class Propotypes using PCA

This third strategy builds on the previous idea of comparing feature vectors, not with those
from individual dataset images, butwith feature vectors that capture general information about
specific classes. I extended this method further by comparing the feature vectors of the replay
images with new class prototypes, which provide an even more generalised representation of
the class. To achieve this broader representation, I reduced the dimensionality of the feature
vectors using the Principal Component Analysis (PCA) algorithm [32]. The PCA model in
the architecture is always inserted immediately after the CLIP model. Additionally, in this
strategy, two possible methods have been developed: working with image captions or directly
using the image itself as input for the CLIP model.

5.3.1 Image-based image selection methodwith CLIP and PCA

In thismethod, both the dataset and replay images are directly used as input to theCLIPmodel.
The PCA model, which is subsequently applied for dimensionality reduction, is trained only
once at step 0. To train the PCA, all feature vectors corresponding to the dataset images avail-
able at step 0 are used. Once the PCAmodel is trained, it is used to reduce the dimensionality
of the output vectors from CLIP for all subsequent steps.
The following paragraphs will provide a more detailed explanation of the strategy.

At step 0, all the dataset available images X0 are fed the the CLIP model and the resulting
feature vectors are used to train the PCA.
Assume we are at step t and the trained PCA model is available. In the first stage of this step,
illustrated in Figure 5.10 and in the first part of Algorithm 5.7, the current images are fed into
the captionmodel, and the resulting textual captions are saved. Simultaneously, the images are
directly input into the CLIP model. The resulting feature vectors are first reduced by passing
through the trained PCA model and then used to calculate the quantities v̄ PCA

c , s̄ PCAc and
σ PCA
c for all c ∈ Ct .
In the second stage of the step, the replay images related to previous classes are selected, as
shown in the Figure 5.11 and in the second part of the Algorithm 5.7. First, the replay images
are fed into the CLIP model, and the resulting feature vectors are reduced using PCA. Next,
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the cosine similarities between the reduced feature vectors and the reduced prototypes, for all
classes present in the dataset query image, are calculated. A replay image is considered useful
for training if its cosine similarity exceeds the threshold for at least one of the associated class
prototypes. This threshold varies for each class and is defined as the class mean similarity, s̄ PCAc ,
plus a fixed coefficient, n, multiplied by the class’s standard deviation, σ PCA

c . The parameter n
is a hyperparameter that remains consistent across all classes, allowing the threshold to adapt
based on the distribution of information within each class.
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Figure 5.10: Graphical representation of the firsts stage of step t

Saved captions

Web 
crawler

Replay
images CLIP

feature vector replay img

class prototype Cosine
similarity Comparison

Accept Reject

Trained
PCA

Threshold

Figure 5.11: Graphical representation of the second stage of step t
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Algorithm 5.7 Image-Based Image Selection Strategy using Reduced Class Prototypes
Step t
d = output dimension from PCA
n = number of standard deviations
X orig
0→(t−1) = dataset images related to the sets of classes C0→(t−1)

X orig
t = dataset images related to the sets of classes Ct

for X orig
t ∈ X orig

t

q′t = MCAP(X
orig
t )

store q′

v orig
t = CLIP(X orig

t )

v orig_PCA
t = PCA(X orig

t , d )
end for
Use {v orig_PCA

t } to compute and store v̄ PCA
c , s̄ PCAc and σ PCA

c for all c ∈ Ct
for X orig ∈ X orig

0→(t−1)
q′ = saved caption corresponding toX orig

c = classes belonging toX orig

X web = {D web(q′) | q′ = MCAP(X orig)}
for X web ∈ X web

v web = CLIP(X web)

v web
PCA = PCA( v web, d )

for c ∈ c
v̄ PCA
c = prototype related to class c
s̄ PCAc =mean similarity related to class c
σ PCA
c = standard deviation related to class c
sim = 1− cos( v̄ PCA

c , v web
PCA )

if sim ≥ s̄ PCAc + n · σ PCA
c

Image saved
Break

else
Continue

end if
end for

end for
end for
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5.3.2 Text-based image selection methodwith CLIP and PCA

The secondmethod of this strategy uses the captions associated with the dataset and replay im-
ages as input for the CLIP model. The core of the image selection strategy remains the same;
the only difference is that the caption model has been inserted before the CLIP model each
time.

At step 0, all the dataset available imagesX0 are sequentially fed into the caption model and
the CLIP model. The resulting feature vectors are then used to train the PCA.
Assume we are at step t and the trained PCA model is available. In the first stage of this step,
illustrated in Figure 5.12 and in the first part of Algorithm 5.8, the current images are fed into
the caption model. The resulting textual descriptions are saved and also passed through the
CLIPmodel. As in the previous method, the resulting feature vectors are first reduced by pass-
ing through the trained PCAmodel and then used to calculate the quantities v̄ PCA

c , s̄ PCAc and
σ PCA
c for all c ∈ Ct .
In the second stage of the step, the replay images related to previous classes are selected, as
shown in Figure 5.13 and in the second part of Algorithm 5.8. The image selection procedure
remains almost identical to the previously explained method, with the only difference being
that the feature vectors for the replay images are obtained using their textual descriptions in-
stead of the images themselves. For this reason, the replay images are not fed directly into the
CLIP model; instead, they first pass through the caption model. The remaining processes of
the strategy remain the same.
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Figure 5.13: Graphical representation of the second stage of step t
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Algorithm 5.8 Text-Based Image Selection Strategy using Reduced Class Prototypes
Step t
d = output dimension from PCA
n = number of standard deviations
X orig
0→(t−1) = dataset images related to the sets of classes C0→(t−1)

X orig
t = dataset images related to the sets of classes Ct

for X orig
t ∈ X orig

t

q′t = MCAP(X
orig
t )

store q′

v orig
t = CLIP(q′)
v orig_PCA
t = PCA(X orig

t , d )
end for
Use {v orig_PCA

t } to compute and store v̄ PCA
c , s̄ PCAc and σ PCA

c for all c ∈ Ct
for X orig ∈ X orig

0→(t−1)
q′ = saved caption corresponding toX orig

c = classes belonging toX orig

X web = {D web(q′) | q′ = MCAP(X orig)}
for X web ∈ X web

q′′ = MCAP(X web)

v web = CLIP( q′′ )
v web
PCA = PCA( v web, d )

for c ∈ c
v̄ PCA
c = prototype related to class c
s̄ PCAc =mean similarity related to class c
σ PCA
c = standard deviation related to class c
sim = 1− cos( v̄ PCA

c , v web
PCA )

if sim ≥ s̄ PCAc + n · σ PCA
c

Image saved
Break

else
Continue

end if
end for

end for
end for
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6
Dataset

The PASCAL VOC 2012 dataset is one of the most widely recognized and extensively used
datasets in the field of computer vision, particularly for tasks such as object detection, image
segmentation, and image classification. It contains a rich collection of images, each depicting
objects from 20 different categories across various classes like animals, vehicles, and indoor ob-
jects. The images are annotatedwith ground-truth data,making themvaluable for training, val-
idating, and evaluatingmachine learningmodels. A key feature of the dataset is that it presents
objects in realistic scenarios, adding to its utility in real-world applications.
The 20 object classes available in PASCAL VOC 2012 are divided into four main groups:

• Person: person;

• Animal: bird, cat, cow, dog, horse, sheep;

• Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train;

• Indoor: bottle, chair, table, plant, sofa, monitor

Figure 6.1: Aeroplane Figure 6.2: Bicycle Figure 6.3: Bird Figure 6.4: Boat Figure 6.5: Bottle
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Figure 6.6: Bus Figure 6.7: Car Figure 6.8: Cat Figure 6.9: Chair Figure 6.10: Cow

Figure 6.11: Table Figure 6.12: Dog Figure 6.13: Horse Figure 6.14: Motorbike Figure 6.15: Person

Figure 6.16: Plant Figure 6.17: Sheep Figure 6.18: Sofa Figure 6.19: Train Figure 6.20: Monitor

The dataset provides several types of annotations for each image. These include bounding
boxes, segmentation masks, image-level labels, and action labels. These annotations support a
variety of computer vision tasks, enabling the dataset’s versatility across multiple applications.
PASCAL VOC 2012 is commonly used for tasks such as:

• Image classification, wheremodels are trained to classify entire images based on the pres-
ence of objects.

• Object detection, where the goal is to localize and identify objects within images using
bounding boxes.

• Image segmentation,which focuses onpixel-wise classification to segmentobjectswithin
an image.

• Object segmentation, a more fine-grained task where individual objects are segmented.

• Action recognition, using action labels to identify activities or interactions involving ob-
jects or people.
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7
Results

In this chapter, we analyse the performance of the segmentation model combined with the
threedeveloped image selection strategies. The results are primarily compared to those reported
in [7], which we will refer to as LfW. Additionally, two other values are used for comparison:
the baseline and the upper bound. The baseline is obtained by using the replay images without
applying any image selection strategies, while the upper bound is achieved by the single shot
training where all the dataset images are available at the initial step, without relying on replay
images.

7.1 Experimental setting

7.1.1 Web dataset

Following the methodology outlined in [7], the Flickr website is used as primary source for
web images due to its extensive collection of diverse content. For each class being learned, a set
of 10, 000 web images has been gathered. For the old class images, 20 images for each dataset
image caption were retrieved using the download caption equation (Eq. 4.19). However, to
ensure comparabilitywith previous results, I employed 100 rehearsal images for each previously
learned class.
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7.1.2 Implementation detail

The code for this project is implemented using PyTorch version 1.13.1 and Python version
3.10.14. The segmentation architecture is based on the method described in [7], utilising the
DeepLabV3 model [12] with ResNet101 [13] as the backbone. Training of the model is con-
ducted using Stochastic Gradient Descent (SGD) over 30 epochs in the initial step, followed
by 40 epochs in subsequent incremental steps. The initial learning rate is set to lr = 0.01. The
model is trained with pseudo annotations, integrating outputs from the localizer with predic-
tions from the previous version of the model.
For image captioning, I employ theMCAP model, in line with the methodology from [7].

Specifically, I use the pre-trained Visual Language Model (VLM) OpenFlamingo [30][31].

7.2 Setting

In this thesis, the segmentation architecture and image selection strategies are evaluated on the
PASCAL VOC 2012 dataset using three distinct settings. These settings differ based on how
new classes are introduced incrementally. Notably, pixel-level annotations are available only for
the images in step 0, while in subsequent steps, new images are annotated only at the image-
level. All evaluations are performed using an overlapping configuration. The three settings,
ordered by increasing difficulty, are described as follows:

15-5-ov

In this setting, the first 15 classes are introduced at step 0, while the remaining 5 classes are
added at step 1. The distribution of available classes at each step is outlined as follows:

Step Introduced classes

0 Aeroplane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow
Table Dog Horse Motorbike Person

1 Plant Sheep Sofa Train Monitor

10-10-ov

In this configuration, the initial 10 classes are included at step 0, with the remaining 10 classes
introduced at step 1. The class distribution for each step is as follows:
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Step Introduced classes

0 Aeroplane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow

1 Table Dog Horse Motorbike Person Plant Sheep Sofa Train
Monitor

10-10s-ov

In this setup, the first 10 classes are introduced at step 0, while the remaining 10 classes are
added sequentially, one at a time, over the subsequent 10 steps. The distribution of classes
across steps is detailed as follows:

Step Introduced classes

0 Aeroplane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow

1 Table

2 Dog

3 Horse

4 Motorbike

5 Person

6 Plant

7 Sheep

8 Sofa

9 Train

10 Monitor

Themodel’s performance is evaluated using the mean Intersection over Union (mIoU) met-
ric, which generalises the Intersection over Union (IoU) metric across multiple classes. As
shown in Figure 7.1, given an image X and a class c, the IoU is calculated as the ratio between
the intersection andunionof the predicted and ground-truthmasks, expressedby the following
equation:

IoU =
(Groud TruthMask) ∩ (PredictedMask)
(Groud TruthMask) ∪ (PredictedMask)

=
TP

FN+ TP+ FP
(7.1)
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Figure 7.1: Graphical representation of IoU metric, from [9].

For tasks involving multiple classes, themIoU is defined as the average IoU across all classes:

mIoU =
1
N

N∑
i=0

IoUi N = number of classes (7.2)

ThemIoU is a widely used metric in semantic segmentation because it provides a more ro-
bust assessment than pixel accuracy, as it accounts for both how well the model identifies the
presence of a class and howmuch it incorrectly classifies other regions.
The table below summarises themIoUperformances of the baselinemodel, the upper bound,

and the LfW under the three experimental settings:

Image selection
strategy 15-5-ov 10-10-ov 10-10s-ov

LfW 73.4% 65.3% 52.2%

Baseline 72.6% 64.9% 50.8%

Upper bound 75.4% 75.4% 75.4%

Table 7.1: mIoU performances of the baseline model, the upper bound, and the LfW image selection strategy across the
three experimental settings.

Table 7.1 shows that, as expected, reducing the number of available classes in the initial step
while increasing the number of subsequent steps makes the task more challenging.
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7.3 ResultsonCLIP-BasedStrategyfor Image-to-Image
Similarity Assessment

In the image selection strategy outlined inAlgorithms5.1, 5.2, 5.3, and5.4, a crucial distinction
is the necessity of selecting an external threshold value manually. This requirement differenti-
ates it from the other two strategies, where threshold values are automatically determined and
tailored for each class.
To identify a suitable threshold for each of the four methods, I examined the distribution of

cosine similarities between the feature vectors of replay images and those of the dataset images.

(a) Text‐to‐Text method (b) Text‐to‐Image method

(c) Image‐to‐Text method (d) Image‐to‐Image method

Figure 7.2: Distribution of cosine similarity between the feature vectors of replay images and those of the dataset images
across the four methods in the first image selection strategy. The red dashed lines represent the values of the threshold
shown in Table 7.2

Table 7.2 summarises the top three threshold selections for each of the four methods, based
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on the testing of various threshold values informed by reference distributions.
The notation used in the following table consists of two types and a value. The two types
represent how respectively the dataset and the replay images are used: Image indicates that the
images are directly used as input for the CLIP model, while text indicates that the captions of
the images are used as input. The number represents the value of the threshold used in that
specific method.

Image selection
strategy

15-5-ov Δ 10-10-ov Δ 10-10s-ov Δ

LfW 73.40% 65.35% 52.29%

Image-Image_0.5 73.30% −0.10% 66.02% +0.67% 51.73% −0.56%
Image-Image_0.6 73.70% +0.30% 65.94% +0.59% 54.62% +2.33%
Image-Image_0.7 73.27% −0.13% 65.79% +0.44% 51.58% −0.71%

Image-Text_0.15 73.33% −0.07% 65.51% +0.16% 51.17% −1.12%
Image-Text_0.2 73.81% +0.41% 65.71% +0.36% 51.52% −0.77%
Image-Text_0.25 73.31% −0.09% 65.70% +0.35% 54.58% +2.29%

Text-Image_0.1 73.22% −0.18% 65.89% +0.54% 53.29% +1.00%
Text-Image_0.2 73.27% −0.13% 65.55% +0.20% 53.51% +1.22%
Text-Image_0.3 73.31% −0.09% 65.79% +0.44% 53.35% +1.06%

Text-Text_0.4 73.22% −0.18% 65.83% +0.48% 52.11% −0.18%
Text-Text_0.5 73.61% +0.21% 65.95% +0.60% 52.49% +0.20%
Text-Text_0.6 73.04% −0.36% 64.44% −0.91% 51.77% −0.52%

Baseline 72.6% 64.9% 50.8%

Upper bound 75.4% 75.4% 75.4%

Table 7.2: Results of the three settings using the CLIP‐Based Strategy for Image‐to‐Image Similarity Assessment. This table
compares the image selection strategy against the baseline, the upper bound, and the method from the previous paper. The
Δ values represent the differences between the obtained results and those of LfW.

From Table 7.2, we can notice that the intermediate values of the threshold across the four
methods outperform the results obtained by LfW in nearly all settings, except for the 15-5-
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ov setting in the Text-Image method and for the 10-10s-ov setting in the Image-Text method.
The better performance of the intermediate threshold values can be attributed to the fact that
a higher threshold on similarity between the replay and dataset images will lead to discard too
much replay data; we aim to retrieve images representing the class, even if they differ from the
query images. However, setting the threshold too low could result in retrieving images that lack
useful information.
In the 15-5-ov setting, the method achieving the highest performance is Image-Text_0.2,

which improves upon the LfW result by 0.41%. For the 10-10-ov setting, both Text-Text_0.5
and Image-Image_0.6 achieve notable improvements, with respective increases of 0.60% and
0.59%. Furthermore, Image-Image_0.6 stands out with the best performance in the 10-10s-ov
setting, showing a significant increase of 2.33%.

Figure 7.3: Behaviour of themIoU for classes across the steps in the 10‐10s‐ov setting using the Image‐Image_0.6 method.

Given these observations, we can conclude that the Image-Image_0.6method emerges as the
overall most effective one within this image selection strategy.
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7.4 ResultsonImageSelectionStrategyBasedonCLIP
Class Prototypes

In this section, we analyse the performance achieved using the second strategy, as outlined in
Algorithms 5.5 and 5.6. In this image selection strategy, the external hyperparameter that is
manually selected is the scaling factor for the standard deviations, denoted by n. Once n is cho-
sen, the threshold for each class is dynamically determined by the formula thc = s̄c + n · σc,
where s̄c and σc represent the mean and standard deviation, respectively, of the cosine similar-
ity distribution for each class, under the assumption that the distribution follows a Gaussian
model.

(a)Distribution of cosine similarity for
images related to the car class in the
image‐driven method.

(b)Distribution of cosine similarity for
images related to the chair class in the
image‐driven method.

(c)Distribution of cosine similarity for
images related to the person class in
the image‐driven method.

(d)Distribution of cosine similarity for
images related to the car class in the
text‐driven method.

(e)Distribution of cosine similarity for
images related to the chair class in the
text‐driven method.

(f)Distribution of cosine similarity for
images related to the person class in
the text‐driven method.

Figure 7.4: Distribution of cosine similarity for images related to some class in the image‐driven method (top) and in the
text‐driven method (bottom).

Table 7.3 presents the top three selections for the number of standard deviations across both
methods.
The notation used in the table combines a type and a value. The type indicates how the dataset
and replay images are processed: Image denotes that the images are directly used as input for
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the CLIP model, while Text signifies that the captions of the images are used instead. The
accompanying number represents the value of the hyperparametern, which is used to compute
the thresholds.

Image selection
strategy

15-5-ov Δ 10-10-ov Δ 10-10s-ov Δ

LfW 73.40% 65.35% 52.29%

Image_-2 73.40% +0.00% 66.17% +0.82% 50.58% −1.71%
Image_-1 73.55% +0.15% 65.47% +0.12% 50.92% −1.37%
Image_0 73.40% +0.00% 65.75% +0.40% 55.31% +3.02%

Text_-1 73.34% −0.06% 65.42% +0.07% 50.79% −1.50%
Text_0 73.40% +0.00% 65.82% +0.47% 52.25% −0.04%
Text_1 73.28% −0.12% 65.65% +0.30% 51.22% −1.07%

Baseline 72.6% 64.9% 50.8%

Upper bound 75.4% 75.4% 75.4%

Table 7.3: Results of the three settings using the Image Selection Strategy Based on CLIP Class Prototypes. This table
compares the image selection strategy against the baseline, the upper bound, and the method from the previous paper. The
Δ values represent the differences between the obtained results and those of LfW.

From Table 7.3, we observe that using images directly as input to the CLIP model generally
yields better performance than using image captions. Specifically, in the 15-5-ov setting, the
Image_-1 method achieves the best performance with a 0.15% improvement. In the 10-10-ov
setting, the Image_-2 method leads with an increase of 0.82%. Notably, the Image_0 method
delivers the highest performance in the 10-10s-ov setting, with a significant improvement of
3.02%. Furthermore, it is the only method in this image selection strategy that consistently
outperforms LfW across all three settings. The behaviour of themIoU for classes over time in
the 10-10s-ov setting, using the Image_0 method, is illustrated in Figure 7.5.
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Figure 7.5: Behaviour of themIoU for classes across the steps in the 10‐10s‐ov setting using the Image_0 method.

Based on these findings, we conclude that the Image_0 method is the most effective overall
within this image selection strategy.
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7.5 ResultsonImageSelectionStrategyBasedonRe-
duced CLIP Class Prototypes using PCA

The results analysed in this section pertain to the third image selection strategy developed, as
outlined in Algorithms 5.7 and 5.8. In this strategy, the output vectors from the CLIP model
are reduced using PCA, with the vector dimensions set to 100 instead of the standard 512 di-
mensions used by CLIP.
Similar to the previous strategy, the notation used to define the different methods consists of
a type, which refers to how the inputs are treated for CLIP, and a number that represents
the hyperparameter n used to determine the threshold values. These thresholds are defined
as thc = s̄:PCAc + n · σ:PCAc .
Table 7.4 presents the top three selections for the number of standard deviations across both
methods.

Image selection
strategy 15-5-ov Δ 10-10-ov Δ 10-10s-ov Δ

LfW 73.40% 65.35% 52.29%

PCA_Image_-1.5 73.48% +0.08% 65.64% +0.29% 53.21% +0.92%
PCA_Image_-1 73.46% +0.06% 65.95% +0.60% 51.29% −1.00%
PCA_Image_1 73.54% +0.14% 65.56% +0.21% 51.89% −0.40%

PCA_Text_-1 73.60% +0.20% 65.62% +0.27% 54.14% +1.85%
PCA_Text_0 73.31% −0.09% 65.85% +0.50% 50.28% −2.01%
PCA_Text_1 73.23% −0.17% 65.44% +0.09% 51.65% −0.73%
Baseline 72.6% 64.9% 50.8%

Upper bound 75.4% 75.4% 75.4%

Table 7.4: Results of the three settings using the Image Selection Strategy Based on Reduced CLIP Class Prototypes using
PCA. This table compares the image selection strategy against the baseline, the upper bound, and the method from the
previous paper. The Δ values represent the differences between the obtained results and those of LfW.

From Table 7.4, we observe that both PCA-based methods, particularly PCA_Image_-1.5
and PCA_Text_-1, outperform LfW across all three settings. In the 15-5-ov and 10-10s-ov
settings, PCA_Text_-1 achieves the best results, improving upon LfW by 0.20% and 1.85%,
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respectively. In the 10-10-ov setting, PCA_Image_-1 attains the highest performance, increas-
ing the result by 0.60%.

Figure 7.6: Behaviour of themIoU for classes across the steps in the 10‐10s‐ov setting using the PCA_Text_‐1 method.

Thesefindings indicate that thePCA_Text_-1method standsout as themost effectivemethod
within this image selection strategy.
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7.6 FinalPerformanceComparisonof ImageSelection
Strategies

In this final section, we compare the three developed image selection strategies. A key observa-
tion across all strategies is that methods using the captions of the images as input for the CLIP
model tend to result in slightly lower performance compared to those using the images directly.

The best configuration for each of the three strategies are summarised in Table 7.5.

Image selection
strategy

15-5-ov Δ 10-10-ov Δ 10-10s-ov Δ

LfW 73.40% 65.35% 52.29%

Image-Image_0.6 73.70% +0.30% 65.94% +0.59% 54.62% +2.33%
Image_0 73.40% +0.00% 65.75% +0.40% 55.31% +3.02%
PCA_Text_-1 73.60% +0.20% 65.62% +0.27% 54.14% +1.85%

Baseline 72.6% 64.9% 50.8%

Upper bound 75.4% 75.4% 75.4%

Table 7.5: Results of the best method for each image selection strategy. This table compares the image selection strategy
against the baseline, the upper bound, and the method from the previous paper. The Δ values represent the differences
between the obtained results and those of LfW.

From the results inTable 7.5, we can observe that the image selection strategy based on the re-
duced prototype, PCA_Text_-1, shows the lowest improvement compared to LfW.This could
be due to twopossible reasons: either PCA is not the optimal algorithm for reducing the dimen-
sionality of the feature vectors, or the chosen size of 100 may be too small to capture sufficient
information about the classes in the images.
When comparing the first two image selection strategies, it’s not straightforward to determine
which performs better. Image-Image_0.6 shows superior performance in both the 15-5-ov and
10-10-ov settings, outperforming the other strategy by 0.30% and 0.19%, respectively. How-
ever, Image_0 exceeds Image-Image_0.6 by 0.69% in themore challenging 10-10s-ov setting. It
is important to highlight that Image_0 is less memory-intensive than Image-Image_0.6. While
both strategies utilise captions for queries, Image_0 only requires the storage of a single feature
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vector per class, whereas Image-Image_0.6 necessitates storing a feature vector for each available
image.Furthermore, Image_0 performs better in the setting considered to be themost challeng-
ing and closest to real-world applications.
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8
Conclusion

In this thesis, I developed three novel image selection strategies within the framework of a web-
based rehearsal strategy to address the challenge of catastrophic forgetting in the continual
learning task of semantic segmentation. Building upon a baseline architecture that retrieves
replay images using dataset images as queries, my objective was to enhance the existing image
selection methods to create a more efficient strategy that retains only those images contain-
ingmeaningful information. These image selection strategies leverage feature vectors extracted
from a visual language model, assessing the relevance of replay images by comparing their fea-
ture vectors to those of the dataset query images or to a generic feature vectors that encapsulate
class-specific information.

I evaluated the proposed strategies on the Pascal VOC 2012 dataset, employing three differ-
ent experimental settings with increasing levels of complexity. In all settings, pixel-level annota-
tionswere available for the images in the initial step, while in subsequent steps, only image-level
annotations were provided for the newly introduced classes. The only variation among the set-
tings was the way the dataset’s 20 classes were introduced incrementally.

The results demonstrate that the developed image selection strategies outperform existing
methods, achieving state-of-the-art performance across all tested settings. The most substan-
tial improvements were observed in the most challenging and realistic scenario, underscoring
the effectiveness of the proposed strategies. These findings highlight the viability of web-based
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rehearsal strategies for weakly-supervised incremental learning in semantic segmentation.

These results underscore the importance of ongoing research into solutions within the field
of web-based rehearsal strategies, focusing on developing new techniques for retrieving and se-
lecting replay images. In particular, given the slightly lower performance of the methods that
utilized captions, a potential improvement for the image selection strategy could involve em-
ploying amore sophisticated captioningmodel. Additionally, exploring alternative techniques
beyond PCA for reducing the dimensionality of the feature vector may yield further enhance-
ments.
Additionally, the image selection strategies developed in this thesis can be applied beyond web-
based replay. An intriguing alternative for futureworkwould be to investigate their application
within the framework of generative rehearsal strategies in semantic segmentation tasks related
to continual learning. Such explorations could further expand the utility and impact of these
image selection techniques in various contexts.

76



References

[1] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional
encoder-decoder architecture for image segmentation,” 2016. [Online]. Available:
https://arxiv.org/abs/1511.00561

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp.
770–778.

[3] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab: Se-
mantic image segmentationwith deep convolutional nets, atrous convolution, and fully
connected crfs,” IEEE transactions on pattern analysis andmachine intelligence, vol. 40,
no. 4, pp. 834–848, 2017.

[4] U. Michieli, M. Toldo, and P. Zanuttigh, “Chapter 8 - domain adaptation and
continual learning in semantic segmentation,” in Advanced Methods and Deep
Learning inComputerVision, ser. ComputerVision andPatternRecognition, E.Davies
and M. A. Turk, Eds. Academic Press, 2022, pp. 275–303. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9780128221099000175

[5] A. Maracani, U. Michieli, M. Toldo, and P. Zanuttigh, “Recall: Replay-based contin-
ual learning in semantic segmentation,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2021, pp. 7026–7035.

[6] C. Liu, G. Rizzoli, F. Barbato, U. Michieli, Y. Niu, and P. Zanuttigh, “Recall+: Adver-
sarialweb-based replay for continual learning in semantic segmentation,” arXiv preprint
arXiv:2309.10479, 2023.

[7] C. Liu, G. Rizzoli, P. Zanuttigh, F. Li, and Y. Niu, “Learning from the web: Lan-
guage drives weakly-supervised incremental learning for semantic segmentation,” arXiv
preprint arXiv:2407.13363, 2024.

77

https://arxiv.org/abs/1511.00561
https://www.sciencedirect.com/science/article/pii/B9780128221099000175


[8] A. Radford, J.W. Kim, C.Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark et al., “Learning transferable visual models from natural language
supervision,” in International conference on machine learning. PMLR, 2021, pp.
8748–8763.

[9] K. LearnOpenCV, “Intersection over union (iou) in object detec-
tion segmentation,” 2022. [Online]. Available: https://learnopencv.com/
intersection-over-union-iou-in-object-detection-and-segmentation/

[10] K. O’Shea, “An introduction to convolutional neural networks,” arXiv preprint
arXiv:1511.08458, 2015.

[11] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic seg-
mentation,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015, pp. 3431–3440.

[12] L.-C. Chen, “Rethinking atrous convolution for semantic image segmentation,” arXiv
preprint arXiv:1706.05587, 2017.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp.
770–778.

[14] U.Michieli and P. Zanuttigh, “Incremental learning techniques for semantic segmenta-
tion,” in Proceedings of the IEEE/CVF international conference on computer vision work-
shops, 2019, pp. 0–0.

[15] ——, “Knowledge distillation for incremental learning in semantic segmentation,”
Computer Vision and Image Understanding, vol. 205, p. 103167, 2021.

[16] F. Cermelli, M. Mancini, S. R. Bulo, E. Ricci, and B. Caputo, “Modeling the back-
ground for incremental learning in semantic segmentation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 9233–
9242.

[17] K. Shmelkov,C. Schmid, andK.Alahari, “Incremental learning of object detectorswith-
out catastrophic forgetting,” in Proceedings of the IEEE international conference on com-
puter vision, 2017, pp. 3400–3409.

78

https://learnopencv.com/intersection-over-union-iou-in-object-detection-and-segmentation/
https://learnopencv.com/intersection-over-union-iou-in-object-detection-and-segmentation/


[18] U. Michieli and P. Zanuttigh, “Continual semantic segmentation via repulsion-
attraction of sparse and disentangled latent representations,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 1114–1124.

[19] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil, “Model compression,” in Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining, 2006, pp. 535–541.

[20] G. Hinton, “Distilling the knowledge in a neural network,” arXiv preprint
arXiv:1503.02531, 2015.

[21] F. Ozdemir and O. Goksel, “Extending pretrained segmentation networks with addi-
tional anatomical structures,” International journal of computer assisted radiology and
surgery, vol. 14, pp. 1187–1195, 2019.

[22] M. H. Phan, S. L. Phung, L. Tran-Thanh, A. Bouzerdoum et al., “Class similarity
weighted knowledge distillation for continual semantic segmentation,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp.
16 866–16 875.

[23] G. Nguyen, S. Chen, T. Do, T. J. Jun, H.-J. Choi, and D. Kim, “Dissecting
catastrophic forgetting in continual learning by deep visualization,” arXiv preprint
arXiv:2001.01578, 2020.

[24] D. Goswami, R. Schuster, J. van de Weijer, and D. Stricker, “Attribution-aware weight
transfer: A warm-start initialization for class-incremental semantic segmentation,” in
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,
2023, pp. 3195–3204.

[25] H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual learning with deep generative replay,”
Advances in neural information processing systems, vol. 30, 2017.

[26] F. Cermelli, D. Fontanel, A. Tavera, M. Ciccone, and B. Caputo, “Incremental learning
in semantic segmentation from image labels,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2022, pp. 4371–4381.

[27] M. Lukasik, S. Bhojanapalli, A.Menon, and S. Kumar, “Does label smoothingmitigate
label noise?” in International Conference on Machine Learning. PMLR, 2020, pp.
6448–6458.

79



[28] A. Taylor, M. Marcus, and B. Santorini, “The penn treebank: an overview,” Treebanks:
Building and using parsed corpora, pp. 5–22, 2003.

[29] C. Fellbaum, “Wordnet: An electronic lexical database,”MIT Press google schola, vol. 2,
pp. 678–686, 1998.

[30] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch,
K. Millican, M. Reynolds, R. Ring, E. Rutherford, S. Cabi, T. Han, Z. Gong,
S. Samangooei, M. Monteiro, J. L. Menick, S. Borgeaud, A. Brock, A. Nematzadeh,
S. Sharifzadeh, M. a. Bińkowski, R. Barreira, O. Vinyals, A. Zisserman, and
K. Simonyan, “Flamingo: a visual language model for few-shot learning,” in Advances
in Neural Information Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh, Eds., vol. 35. Curran Associates, Inc., 2022,
pp. 23 716–23 736. [Online]. Available: https://proceedings.neurips.cc/paper_files/
paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf

[31] A. Awadalla, I. Gao, J. Gardner, J. Hessel, Y. Hanafy, W. Zhu, K. Marathe,
Y. Bitton, S. Gadre, S. Sagawa, J. Jitsev, S. Kornblith, P. W. Koh, G. Ilharco,
M. Wortsman, and L. Schmidt, “Openflamingo: An open-source framework for
training large autoregressive vision-language models,” 2023. [Online]. Available:
https://arxiv.org/abs/2308.01390

[32] J. Shlens, “A tutorial on principal component analysis,” 2014. [Online]. Available:
https://arxiv.org/abs/1404.1100

80

https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://arxiv.org/abs/2308.01390
https://arxiv.org/abs/1404.1100

	Abstract
	List of figures
	List of tables
	Introduction
	Semantic Segmentation: A Deep Learning Approach
	Encoder-Decoder Architectures
	ResNet: The Impact of Residual Blocks on Deep Segmentation Models
	DeepLab model and its Innovations


	Continual Learning
	Problem Formulation
	Continual learning setup in continual segmentation
	Incremental Learning techniques
	Knowledge distillation
	Parameter freezing
	Geometrical feature-level regularisation
	Weights Initialisation
	Generative replay
	Webly-based Learning


	Web-Driven Replay Solutions for Continual Semantic Segmentation
	RECALL: Replay-Based Continual Learning in  Semantic Segmentation
	General architecture
	Algorithm

	RECALL+: Adversarial Web-based Replay for  Continual Learning in Semantic Segmentation
	Image selection strategies
	Self-teaching strategies

	Learning from the Web: Language Drives Weakly-Supervised Incremental Learning for Semantic Segmentation
	Labelling for weakly-labelled images
	Rehearsal strategies


	Image Selection Techniques for Replay Images in Semantic Segmentation
	CLIP-Based Strategy for Image-to-Image Similarity Assessment
	Similarity by comparing text-based descriptors
	Comparison of text descriptors of dataset images and web images descriptors
	Comparison of dataset images descriptors and descriptors of the web images
	Similarity by comparing image-based descriptors

	Image Selection Strategy Based on CLIP Class Prototypes
	Image-based image selection method with CLIP
	Text-based image selection method with CLIP

	Image Selection Strategy Based on Reduced CLIP Class Propotypes using PCA
	Image-based image selection method with CLIP and PCA
	Text-based image selection method with CLIP and PCA


	Dataset
	Results
	Experimental setting
	Web dataset
	Implementation detail

	Setting
	Results on CLIP-Based Strategy for Image-to-Image Similarity Assessment
	Results on Image Selection Strategy Based on CLIP Class Prototypes
	Results on Image Selection Strategy Based on Reduced CLIP Class Prototypes using PCA
	Final Performance Comparison of Image Selection Strategies

	Conclusion
	References

