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ABSTRACT

In the field of information retrieval, one of the most important tasks is eval-
uating the performance of IR systems. In order to do this, a trusted ground
truth is needed. In the last years, crowdsourcing has began to be used as a
viable and cheap alternative to experts’ ground truth. In this thesis we develop
a new supervised approach to exploit crowd assessors relevance judgements
for information retrieval evaluation. Our work continues the research started
in the last years on AWARE probabilistic framework. While the common state
of the art methods aim to create a single ground truth from the assessors’
judgements, in our approach we compute evaluation measures based on the
ground truth generated from each crowd assessor. These measures are then
merged weighting each assessor on the basis of his expertise level. In our ap-
proach, assessor expertise estimation is obtained in a supervised way analysing
the closeness between the measures computed on assessors’ judgements and
the measures computed on experts’ judgements, on a training set. Such close-
ness measure has been computed following several different methodologies.
We tested our approaches against some classic approaches and a set of un-
supervised approaches from the u-AWARE framework, considering different
combinations of evaluation measure, set of IR systems and number of merged
assessors. Test results highlight the greater effectiveness of our supervised
approaches with respect to the majority of the approaches. Additionally, the
impact of the training-set size on performance has been studied, stating that
even with a small training-set is possible to achieve good results.
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CHAPTER

INTRODUCTION

In Information Retrieval, the problem of creating test collections that correctly
represent the reference scenario is crucial, in order to evaluate information
retrieval systems performance and improve them.

The concept of test collection has been introduced in ’60s by Ceryl Cleverdon
[1]: given a set of documents and a set of topics, a relevance judgement is as-
signed to each document for each topic. This evaluation process is historically
been performed by an expert team following the Cranfield paradigm, which is,
however, very economically demanding and time-consuming.

A modern approach to this task, in the field of crowdsourcing, is based on
the idea to collect and combine judgements from many crowd assessors, less
qualified than the experts but cheaper. The objective is to achieve a ground
truth as similar as possible to the expert team ground truth.

To collect this data, several crowdsourcing platforms, as Amazon Mechanical
Turk, are now available: organizations which ask for the crowd assessment can
post tasks on the platform, where users can find and perform them in exchange
for a reward.

Exploiting this new opportunity, in the last years many different approaches
have been developed in order to merge multiple crowd judgements [2—8].
Classic state of the art methods, given a set of crowd assessors’ judgements,

aim to create a merged ground truth from the judgements given by all the

1



CHAPTER 1. INTRODUCTION

assessors. The most common approaches are Majority Vote, that creates a
ground truth assigning to each document the most popular judgement among
crowd assessors, and Expectation Maximization, that iteratively estimates
until convergence the document probability of relevance, and then assigns to
each document the most probable judgement.

In this thesis, a different methodology has been followed, according to that
used in the paper “AWARE: Exploiting Evaluation Measures to Combine Mul-
tiple Assessors”[9]: the basic idea is not to combine crowd assessors’ relevance
judgements in a single ground truth, but to evaluate IR systems on the judge-
ments given by every single assessor, and then combine the obtained measures
weighting each assessor on the basis of an estimation of their expertise level.

In the original AWARE paper [9], expertise level is estimated in an unsuper-
vised way using some dissimilarity measures, called GAPs, between evaluation
measures computed using assessors’ judgements as ground truth and measures
based on three dummy random assessors: a large GAP means a not-random
behaviour and then a high level of assessor’s expertise.

In the approaches subject of this thesis, called s-AWARE (supervised-AWARE),
assessors’ expertise is obtained in a supervised way looking at their perfor-
mance on a training set of topics. Some dissimilarity scores are calculated
between the evaluation measures computed on assessors’ judgements and the
same evaluation measures computed on the experts’ ground truth: a smaller
dissimilarity value means a higher expertise level.

This thesis work is about the development of such methods and their compari-
son against the approaches presented in [9], here called u-AWARE, Majority
Vote and Expectation Maximization.

Experiments are computed considering two different sets of runs, two different
evaluation measures and many different cardinalities for the set of assessors to
be merged (from 2 to 30): all the combinations are tested in order to determine
how the different approaches behave with respect to each parameter.

To compare approaches performance, RMSE and AP-Correlation are computed
between the merged measures obtained by each approach and the measures

obtained evaluating IR systems on experts’ ground truth.



The thesis chapters are structured as follows:

Chapter 2 - Background: in the first two sections, we introduce the reader
to information retrieval and its main definitions and we describe the
evaluation measures that will be used in the experiments. In the rest of
the chapter we give an overview on crowdsourcing and its application in
information retrieval evaluation, reporting some of the state of the art

approaches

Chapter 3 - AWARE Framework: we describe AWARE motivations and

methodologies and we explain our proposed approaches

Chapter 4 - Experimental Setup: we describe experimental parameters

and the workflow of the experiments

Chapter 5 - Experimental Results: we analyse the results of our experi-
ments, highlighting how s-AWARE approaches behave with respect to all
the other approaches

Chapter 6 - Conclusions and Future Work: we summarize the results and

we outline possible future improvements of the s-AWARE framework






CHAPTER

BACKGROUND AND RELATED WORK

2.1 Information retrieval

Information retrieval is a part of information science which studies methods to
obtain relevant resources from a data collection, in order to satisfy an informa-
tion need from an user.

A more formal definition is given by Gerald Salton in 1968 [10]: "Information
retrieval is a field concerned with the structure, analysis, organization, storage,
searching, and retrieval of information."

The term "information" is very general and includes both text documents
(web pages, papers, books, articles,...) and multimedia content (music, images,
videos).

The main differences between Information Retrieval Systems (IRS) and database

management systems (DBMS) are about:

* Data structure: databases store data in a structured way, IR Systems

work with unstructured data, often using natural language
* Queries: database queries are unambiguous, IR queries are not

* Result quality: Data from databases is always correct in a formal sense,
because is unequivocally represented by the query; data retrieved by

IRSs might be or not to be relevant for the user

5
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Figure 2.1: Information retrieval process schema

The information retrieval process [10] consists of four main steps, shown in

Figure 2.1:

* Acquisition: Physical documents are digitalized and organized in collec-

tions, user’s information need is represented with a query

¢ Indexing: Documents are processed to create an inverted index, a data
structure in which all the terms are connected to the documents contain-
ing them. In order to create such an index, each document is initially
analysed to detect tokens (i.e. terms in text documents), then a list of
common words (called stopwords) is removed to keep only terms with
high information content. The resulting set of terms can then be pro-
cessed with stemming techniques, which replace each term with his root
(e.g. information, informed, informative,... — inform). Some terms which
are frequently used together are then composed (e.g. "inform retrieve"
is more specific than the two terms taken separately). At the end of the
process, a weight is assigned to each term-document pair, based on the

frequency of the term in the document.

¢ Retrieval: a retrieval model is used to find the most relevant documents
to the user query. To do this, the IRS matches query terms and inverted

index terms, searching for the best match.

6



2.2. IR EVALUATION

¢ Evaluation: to rate the effectiveness of the system, some evaluation
metrics are computed. In the next section we’ll introduce the concept of
relevance and describe the main evaluation metrics that will be used in

the thesis experiments.

2.2 IR evaluation

2.2.1 Cranfield paradigm and evaluation campaigns

The purpose of IR evaluation is to compute effectiveness measures of IRSs
comparing them and identifying strengths and weaknesses to be used to im-
prove systems performance. All the components of the IR pipeline contribute to
produce the ranked list of documents which will be evaluated, so the evaluation
process is related to all the IR process steps in Figure 2.1.

The standard for evaluation in IR is the Cranfield paradigm, developed in 60
by Ceryl Cleverdon, which introduced the concept of experimental collection.
The first experiment [11], called Cranfield 1, was run to test four different
manual indexing methods over a collection of 18000 articles and papers. Each
document has been indexed by three experts, taking two years to complete the
process. Each index has then been used to retrieve documents based on some
simple queries written by the articles’ authors.

At the end of this retrieval phase, the results highlight that 35% of the queries
didn’t retrieve the correct document [1]: analysing the possible causes, Clever-
don understood that some errors were done by the experts while choosing
documents descriptors in indexing phase.

A second experiment, named Cranfield 2, has been run in a more structured
way to further investigate the indexing methods effectiveness. The main differ-
ence with the Cranfield 1, is that documents and topics (i.e queries) has now
been selected, creating a collection of 1400 documents and 221 queries (with
its own sets of relevance judgements on documents) faithfully representing
the domain of interest. Tests were run on 33 different indexing methods, and
results show that indexing methods based single terms perform better of meth-
ods based on term combinations. This new method of running tests allows to
reuse collections for different experiments or to reproduce past experiments.

In the last decades, the Cleverdon methodology has been followed in several

7



CHAPTER 2. BACKGROUND AND RELATED WORK

evaluation Campaigns, whose purpose is creating test collections in a collabo-
rative way between different research groups.

Nowadays, the main evaluation campaigns are TREC 1(Text REtrieval Con-
ference) in the USA, CLEF 2 (Conference and Labs of Evaluation Forum) in
Europe, FIRE 3(Forum for Information Retrieval Evaluation) in India and
NTCIR 4(NII Testbeds and Community for Information access Research) in

Asia.

2.2.2 Test collection definition

According to what has just been said, we define [12] a test collection as a triple
C ={D,T,GT} where:

e D={d1,ds,...dy} is a set of documents
o T={t1,t9,...tm} is a set of topics
* (T is the ground truth.

To understand what the Ground Truth is, we first introduce the concept of
relevance. Relevance is a property that represent the capability of a document
to satisfy an user information need: relevance can be defined as a binary
property or a multi-graded property.

Let REL be a finite set of relevance degrees and let < be a total order relation
on REL so that (REL, <) is a totally ordered set.

We call non-relevant the relevance degree nr € REL such that nr = min(REL).
The Ground truth is then defined as the function that assigns a relevance
judgement to every topic-document pair, formally:

Let D bet a finite set of documents and T a finite set of topics. The ground

truth is the function

GT:TxD — REL
(t,d)—rel

Thttps:/trec.nist.gov/
Zhttp://www.clef-initiative.ew
Shttp:/fire.irsi.res.in
4http://research.nii.ac.jp/ntcir/index-en.html

8



2.2. IR EVALUATION

Assessing each document for every topic would be a too long process: the
standard approach used in TREC to reduce the amount of necessary relevance
judgements is to use pooling.

To explain pooling is first necessary to introduce the concept of run as a function
that assigns to each topic a ranked list of documents. Given a natural number

N € N* called run length, a run is defined as the function:
R:T — DV
t—r;=(d1,do,...,dy)

such as Vte T,Vj,k € [1,N]|j #k = rjl # ri k] where r{j] is the j-th ele-

ment in the vector r;.

In Figure 2.2 is represented the pooling technique: given a set of runs for
the same topic, pooling consist of assessing only the top-k documents for each

run. All the other documents are considered not relevant for the given topic.

Retrieval Depth Pooling Assessing
Sys1

lop-k =
Pool == | Relevant

Dataset

Figure 2.2: Pooling technique
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2.2.3 Evaluation measures

In this section, we will describe the most common evaluation measures as
reported in [12, 13].

2.2.3.1 Precision and Recall

The two main goals of IRS are finding all possible relevant documents and
retrieving only relevant documents. Two simple measures are defined to evalu-
ate a run based on the capability of achieving such properties.

Let D* be the the set of relevant documents for a given topic, and let D be
the set of all the documents retrieved by an IRS for the same topic. We de-

fine Precision as the fraction of relevant documents over all the retrieved

documents:
p |ID*ND|
rec=——
| D |
We define Recall as the fraction of relevant documents retrieved by the IRS:
|ID*ND |
Rec=———
| D* |

where | D* | is also called Recall Base (RB) for the topic.
Recall and Precision can be adapted to ranked lists of documents, restricting

to the first k retrieved documents: we talk therefore respectively of Rec@k and
Prec@k.

2.2.3.2 Average Precision

Precision and recall represent the two sides of the coin: trying to improve
precision, it is likely to worsen recall and vice versa. Average precision is one of
the most used measures as it tries to summarize both properties in a top-heavy
measure, meaning that runs with relevant documents on the top of the list are
judged better than the others.

Given a topic t € T , arecall base RB; , REL = {nr,r}, arun r; of size N e N*

with relevance judgements 7; such that relevance weights are defined as:

0, if Felil =nr

Viel[l,N],F; =
1, if Alil=r
we can define Average Precision (AP) as :
1 XN Yk _ il
AP = — k] ———
RBtkzlrt[ ] %

10



2.2. IR EVALUATION

We can then define Mean Average Precision (MAP) as the mean of AP over the

topics:
Y teT AP(ry)
| T |

MAP =

2.2.3.3 Normalized Discounted Cumulative Gain

Another family of measures is based on Cumulative Gain (CG): Let r; be a run
of size N € N*, where ¢ € T is a topic, and consider j e N* | 1< j < N. Let also 7;
be the relevance weights for the documents in the run, then the Cumulative
Gain at rank position j is defined as:
J
CGIljl = Z rilkl
k=1
A top heavy version of CG is called Discounted Cumulative Gain (DCG) and
uses a discounting function to progressively reduce document weight as the
ranking decrease. Given a run r; of size N € N and b € N*, we first define

discounted gain as:

b Felk] if k<b
dgrt[k] =4 rik] Vke[1l,N]
{Otgbk otherwise

Discounted cumulative gain can then be defined as:
/ b
DCGLjl=) dg; [k]
k=1

DCQG, as CG, is not a limited measure and the maximum value may be different
for every topic. To obtain a measure in range [0, 1], we introduce normalized
Discounted Cumulative Gain, a measures that compares DCG with the DCG
obtained on the ideal run.

The ideal run i(¢) is the run where all relevant documents are retrieved with
the best possible ranking, and represents the perfect retrieval scenario for a

given topic. Normalized Discounted Cumulative Gain is defined as:

i b
;e:ldgrt[k]

nDCGI[j] = =
I dgl k]

11
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2.3 Collective intelligence, Human

computation and Crowdsourcing

"The idea behind digital computers may be explained by saying that these
machines are intended to carry out any operations which could be done by a
human computer."[14, 15]: this was the Alan Turing forecast about computers
in 1950. After a few decades, we can say that there are still tasks that can be
performed by a human and are impossible for digital computers, or in which
humans largely outperform computers.

Therefore, with the development of Information Technology, the more humans
depend on computers the more computers need human computation, defined
by von Ahn in 2005 as "a paradigm for utilizing human processing power to
solve problems that computers cannot yet solve"[15, 16]. Human computation
includes several different tasks in fields as artificial intelligence, cryptography,
genetic algorithms and in general human-computer interaction [15].

In this thesis, we focus on crowdsourcing, a concept related both to human
computation and collective intelligence, the intelligence generated by the inter-
action of multiple collaborating and cooperating agents, on the basic idea that
"no one knows everything, each one knows something".

The term crowdsourcing was first used by Jeff Howe in 2006 [17], as the union
of the two words "crowd" and "outsourcing": "Crowdsourcing is the act of taking
a job traditionally performed by a designated agent and outsourcing it to an
undefined, generally large group of people in the form of an open call".

The objective of crowdsourcing is leveraging the wisdom of the crowds to
compute tasks in a more convenient way, trying to achieve equal or better
performance with respect to the designated agent[18].

Crowdsourcing should not be confused with open-source production: in crowd-
sourcing, people are invited to respond to activities promoted by an organiza-
tion and they are motivated to respond for a variety of reasons, in open-source
projects, instead, there is no need for human computation by an organization
and the work is performed and utilized only by a community of users [19, 20].
An example of crowdsourcing is Threadless, an online clothing company based
on a community of artists that create, submit and evaluate designs for the

products to be realized and put on the market. Designers are economically
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rewarded for every accepted project, and the company benefits of distributed
and fast work, saving on hiring professional designers. The classical example
of what crowdsourcing is not is Wikipedia, a free online encyclopedia written
collaboratively by volunteers, where Wikipedia organization does not indicate
what articles need to be written.

Crowdsourcing applications in information technology are often related to
artificial intelligence: in this field, crowdsourcing has become a valid method
to obtain large amounts of labelled data to use for the training of algorithms
[21-23].

The two main questions about crowdsourcing are how to motivate people to
perform a task and how to control the crowd workers performance.

Main motivation factors can be:
* Monetary reward (e.g. in Crowdsourcing platforms: 2.3.1)
* Enjoyment (e.g in Games with a purpose: 2.3.2)
* Public reputation
* Integration in other processes (e.g. ReCAPTCHA: [24])
Some methods to control work quality can be:

* Redundancy: the task is assigned to more than one user, to detect poor

answers.

* Ground truth seeding: the first few assigned tasks are used as a quality

test of the worker, comparing the worker’s answers with a trusted source.

* Multilevel review: the work done by a set of workers is then reviewed

multiple times by other users.

¢ Expert review: some submissions are manually reviewed to check work-

ers’ reliability.

* Automatic check: some tasks are difficult to compute but can be automat-

ically checked with a minimal computational effort.

¢ Justification: in the case of subjective tasks, workers are required to give

a justification for their answers, to discourage spam answers.

13
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* Expertise check: some simple questions about the topic are asked to the

worker, to guarantee a minimum degree of knowledge

2.3.1 Crowdsourcing platforms

Most of the possible applications of crowdsourcing require the repetition of
simple operations: the smallest unit of work to be performed is called Human
Intelligence Task (HIT). Requesters, which can be individuals or organizations,
post HITs on crowdsourcing platforms, where crowd workers can find them
and perform tasks in exchange for a monetary reward.

The most popular crowdsourcing platforms are called Figure Eight 5 and
Amazon Mechanical Turk ¢, which has more than 100 thousand active users
from 190 different countries [25].

Dashboard Qualifications

AILHITs  Your HITs Queus

Requester Titke HIT: Reward
MLDataLabeler Image classification task 273 $0.01
Crowdsurf Support Timing review - Eam up fo $0.18 per timed media minute 3 $0.18
Panel Exiract purchased items from a shopping receipt (3-5 items) 1 $0.04
Panel Classify Receipt 1 $0.03
Panel Extract purchased items from a shopping receipt 1 $0.08
Panel Identify if two receipis are the same 1 $0.05
Shopping Receipts Extract Data From Shopping Receipt 182 $0.01

Crowdsurf Support Spanish: Transcribe up to 35 Seconds of Spanish Language Media to Text - Earn up 1o $0.14 per HIT! 414 $0.07

Figure 2.3: Amazon Mturk

2.3.2 Games with a purpose

Another way to get useful information from the crowd is to collect data in
Games With a Purpose (GWAP). These online games are designed to drive
the user to complete intelligent tasks without him noticing. Luis von Ahn
first proposed the idea of these games [26]: his approach was based on the
competition between two users, so that every user is driven to give good
answers.

Some of the main tasks in which GWAPs can be exploited are:

Shttps://www.figure-eight.com/
6www.mturk.com
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* image annotation (e.g ESP game [27])

* object localization in images (e.g Peakaboom [28])
* document labelling (e.g GeAnn [29])

* text processing summarization (e.g Verbosity [30])
* web search improvement (e.g. PageHunt [31])

* medical tasks (e.g. Foldit [32])

YOU AND A RANDOM PARTHNER TAKE TURNS PEEKING AND BOOMING

PEEK : GUESS WHAT YOUR PARTNER IS REVEALING BOOM : REVEAL PARTS OF THE IMAGE TO YOUR PARTNER
1]
T
23 300

gy -

e | um'

HINTS HELP PASS FGF‘l GIVE HINTlS TELL YOUR PARTNER IF
YOU GUESS DIFFICULT IMAGES IF NECESSARY A GUESS IS HOT OR COLD

Figure 2.4: Peakaboom Game interface
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2.4 Crowdsourcing in IR

In the last years, Crowdsourcing has begun to be applied to Information
retrieval tasks: most research has focused on finding strategies for reducing
the time, cost and effort of the work on tasks actually done by company workers.
Such tasks include the annotation of documents to be used, for example, in
learning to rank algorithms [33], relevance assessment of documents for ground
truth creation and other manual tasks necessary to IR systems testing and
usage.

Crowdsourcing has also been used to validate search results: in [34], Yan and
Kumar proposed an image search engine for mobile phones where questionable
data is validated on Mturk by crowd workers.

In the following, we describe how crowdsourcing is leveraged for relevance

evaluation and how can spam workers be detected.

2.4.1 Crowdsourcing for relevance evaluation

Before crowdsourcing development, the only available test collections were
those created in evaluation campaigns following the Cranfield paradigm al-
ready explained in section 2.2.1. New applications and studies, however,
present some new needs that have pushed towards a different way of cre-

ating such collections:
* Fast implementation: the classic development process might be too long

* Low-cost collections: the classic process might be too costly to be per-

formed by a single company

* Domain-specific collections: Standard collections might not be useful to

test some systems

* Collection extension: during the process, may be necessary to increase

the amount of data to be used in experiments

In order to compute collections in a crowdsourced way, every topic-document
pair is then given to a set of crowd workers (in the form of a HIT on crowd-
sourcing platforms), and each of them supplies his own relevance judgement

for the document on the given topic. In Figure 2.5 are represented an example
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of HIT on Mturk, and its XML representation.

Relevance Evaluation
Instructions

Please evaluate the relevance of the following text fragment.
Iz the following text relevant to Anderra?

status and by its summer and winter resorts

Irrelevant
Marginally relevant
™ Fairly relevant

Highly relevant

Tourism, the mainstay of Andorra's tiny, well-to-do economy, accounts for more than 80% of GDP. An estimated 11.6 million tourists visit annually, attracted by Andorra's duty-free

<Question>
<QuestionIdentifier>guestioni</QuestionIdentifier:
<DisplayName>Question 1:</DisplayName>
<IsRequired>true</IsRequired>
<CuestionContent>
<FormattedContent><! [CDATA[
Iz the following text relevant to Andorra?
Tourism, the mainstay of Andorra's tiny, well-to-do economy, accounts for more than 80%
of GDP. An estimated 11.6 mil n tourists wvisit annually, attracted by Andorra's duty-free
status and by its summer and winter resorts.
]1></FormattedContent>
</QuestionContent>
<AnswerSpecification>
<SelectioniAnswer>
<5tyleSuggestion>radicbutton</StyleSuggestion®>
<Selections>
<Selection>
<SelectionTdentifier>ir</SelectionIdentifier>
<Text>Irrelevant</Text>
</Selection>
<Selection>
<SelectionIdentifier>mr</SelectionIdentifiers>
<Text>Marginally relevant</Text>
</Selection>
<Selection>
<Selectionldentifier>fr</SelectionIdentifiery>
<Text>Fairly relevant</Text>»
</Selection>
<Selection>
<SelectionTdentifier>hr</SelectionIdentifier:>
<Text>Highly relevant</Text>
</Selection>
<fSelections>
</SelectionAnswer>
</AnswerSpecification>
</Question>

Figure 2.5: Relevance evaluation task on MTurk

All the relevance judgements are then used, in place of the experts’ ground
truth, to evaluate IR systems’ performance.
A lot of studies [35-37] have been made to inspect the difference between
crowd judgements and expert judgements: the strong assumption on which
most of these studies rely on is that experts’ judgement is the gold standard,
meaning that experts’ judgement is the best judgement crowd workers can
reach. Even if this assumption is far to be proved [38], judgements provided
by crowd assessors often agree with experts’ judgements and, in particular,

crowd workers tend to agree a bit more with the experts when the document is
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relevant, and less when it is not relevant [35, 39], highlighting a limit of crowd
workers in detecting poor document performance.

Some studies analyse how different levels of expertise [40—42], nationality and
remuneration methods [43] of crowd assessors can lead to different accuracy in
results.

A more general study [44] tries to investigate what disagreement means,
saying that there’s no guarantee that all disagreement is due to workers’
ineffectiveness. In figure 2.6 we report the possible reasons for disagreement
described in [44].

Reasons for Disagreement

o S
—

-
- v -
Pl Different Pcrcep—) [ Ambiguous }

7_7_7/-""’_7_ - T

\\\
\

4-/-7-7
TS Crowd Ermor ) tion of Relevance Topic Definition Technical Issues
I+ Misunderstanding ?;Iev;n:: _Page Load Error
reshol
Missing Rele- - e .

__t P

I it Gantent Indirect Relevance edirecting Page

timedia

Relevant Rationale
+| for Not-Relevant
Judgment

Figure 2.6: Reasons for Crowd-expert disagreement

2.4.2 Noisy judgements

Connecting to what has just been said, we address now the main problem that
must be taken into consideration, reporting the main methods applied to solve
it: since most of the crowd assessors are motivated by monetary reward, a
non-negligible part of them [45] provide inaccurate judgements maximizing
earnings to the detriment of work quality.

Spam judgements can be classified [46] into:

¢ Sloppy workers, whose mistakes in judgement are honest ones, without
the intent to provide bad results. Possible causes of mistake can be
both the lack of clarity in the instructions of the HIT or a poor worker

competence.
* Random Spammers, that purposely randomize their judgements.
* Uniform Spammers, that use a fixed pattern in their judgements.
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Even if mechanisms described in section 2.3 can be used to reduce spam at the
source, to further improve crowd judgements accuracy two main strategies are
applied: spam filtering and assessor weighting.

Spam filtering is about removing spam assessors’ judgements. This approach
has been followed by Vuurens and De Vries in [46]: they provide two different
mechanisms to detect random spammers and uniform spammers. Random
spammers are detected computing the average squared distance in relevance
labels between each assessor’s judgements and the judgements of all other
assessors. Uniform spammers are detected counting the averaged squared
number of disagreements that each worker has with other workers while
repeating voting patterns. Other spam-detection algorithms are developed
using Machine Learning techniques, as reported in [47].

The risk to be taken while filtering assessors, is to falsely reject workers that
don’t agree with the majority vote [46].

Another way to take into account the different quality of assessors’ judgements
is assigning a weight to each assessor, used to aggregate judgements in a more
efficient way.

The work of this thesis follow this school of thought: in the next section will be
described some methods for aggregating crowd judgements, some of them will

be compared with the thesis work.

2.5 Crowdsourcing techniques

In this section, we present some of the state-of-the-art approaches for exploit-
ing crowd judgements in place of expert relevance judgements in retrieval

evaluation.

The classic approach to the problem is to create a merged ground truth
from assessors’ judgements, to be used in place of expert ground truth. The
most common techniques in this category are Majority vote (Section 2.5.1),
with its weighted variants [6, 48, 49], and Expectation maximization (Section
2.5.2), but several other approaches can be found in literature. In TurkRank
(Section 2.5.4) the ground truth is estimated through an algorithm working on
a graph representation of the assessors’ judgements, in GeAnn game (Section
2.5.3), ground truth is estimated merging crowd judgements on small portions

of the documents’ corpus, in Skierarchy (Section 2.5.5) machine learning, crowd
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assessors and experts are used together to compute quality judgements.

A different approach to the problem is to independently use the judgements
given by every single crowd assessor to evaluate IRS effectiveness, merging the
assessors’ data at measure level. In AWARE probabilistic framework [9] this
approach is followed weighting assessors according to accuracies computed in
an unsupervised way.

S-Aware, subject of this thesis, is proposed as a new component of the
AWARE framework, based on supervised methods for estimating assessors’

accuracies. Aware framework will be the subject of the next chapter.

2.5.1 Majority vote

The most intuitive way to achieve a ground truth based on crowd assessors’
judgement is to use the Majority Vote (MV) algorithm: for every topic-document
pair, the ground truth judgement is set to the judgement given by the majority
of crowd assessors.

Formally, let D and T be respectively a set of documents and a set of topics, let
(REL,=) be a totally ordered set of relevance degrees, let A = {W1,...,Wp,...,W;}
be a set of workers and let GT(¢,d) € {0, 1} be the relevance judgement given
by assessor & for topic ¢ on document d. The ground truth value for (¢,d) pair
can be computed as:

l

GT(t,d)=argmaxgerEL Z e, t,d)=g}
k=1

where lig1,(t,d)=g) is equal to 1 if assessor k& judged document d as relevant for
topic ¢ with relevance grade g, 0 otherwise.

Despite its simplicity, this algorithm works quite well, but does not take into
account the possible different levels of expertise among assessors.

To overcome this problem, several weighted versions of majority vote has been
developed [6, 48, 49].

The idea behind this weighted algorithms is that judgements from crowd
assessors must be weighted by a coefficient representing the assessor accuracy.
If w;, is the accuracy coefficient assigned to assessor %, the ground truth value
for (¢,d) pair can be expressed as:

l

GT(t,d)=argmaxgeruL Y WrliGT,t,d)=g)
k=1
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Algorithms [48, 49] differ in how this accuracy coefficients are computed.
In [49] the problem of compute weights is treated as a machine learning domain
adaptation problem, modelling each assessor’s knowledge with a labelling

function: weights w;, are computed minimizing

lg—wefell

where f}, is the labelling function obtained training on relevance judgements
given by assessor £ and g is an estimate of the gold labelling function obtained
training on all crowd assessors’ judgements.

In [49] a second, more advanced, version of the algorithm is then presented,
trying to use labelling functions that model assessor features.

In [48] weights are estimated in an iterative way, with an algorithm that
consists of four main steps, where steps 2, 3 and 4 are looped until results

converges:
1. Initialization: Set uniform weights for assessors

2. Loop: Estimate current gold relevance judgements with weighted MV

algorithm.

3. Loop: Compute assessor weight as

# agreements between current gold judgements and assessor k
wp, =

# documents judged by assessor k

4. Loop: Emphasize weights computing

wp =2wp -1

The operation on step 4 is done in order to give higher weight to good assessors,
rapidly downplaying spammers (spammers’ opinion is less considered).

For completeness, we present a probabilistic version of the MV algorithm,
presented in [50]. We consider each assessor’s judgement as a Binomial random
variable and we assume such variables to be i.i.d. Then, the ground truth value
for a given topic-document pair can also be modelled as a Binomial variable of

parameter:

Ly
Ptd =77 ) ASi(,d)
Mk:1

21



CHAPTER 2. BACKGROUND AND RELATED WORK

where M is the number of assessors and AS(¢,d) is the generic random vari-
able modelling the relevance judgement of assessor & on topic ¢ for document
d.

2.5.2 Expectation maximization

Expectation Maximization (EM) algorithm [2] concurrently estimates docu-
ments’ relevance and workers’ accuracy until convergence.

As described in [2, 9], we define p;[g] =P[GT(¢,-) = g] as the probability that
a given document has relevance grade g and we define a latent confusion
matrix m[-,-](k) for each assessor &, representing ¢ topic assessor’s judgements

probability based on the true ones:
il g, hl(R) =PLGT(t,)=h|GT(, ) =gl

is the probability that the assessor k provides relevance grade A for document
d, given that document d has g as true relevance judgement.

An estimate of such value can be computed as:

#assessor judgements with grade h when true grade is g

’h k = . ]
milg, h1(k) #total assessor judgements when true grade is g

The EM algorithm consists of five steps:
1. Initialize p;[ g] and m:[-,-1()
2. Compute Maximum likelihood estimates of p:[ g] and ms[-,-1(-)

y /Pl Tere,d)=gt 6Tt d)=h}
g, hl(k) = d=1 .

D
Y herEL X, UaT.a)-g WG Tut.d)=h)

D
S lerwd=g
|D |
Where 1g7(,d)=g111GT,(¢,d)=h) 1S equal to 1 if and only if assessor k judged

pilgl=

the document d as relevant with relevance grade h, given that the correct

relevance grade is g.

3. Compute the new estimate of the ground truth with:
PIGT(¢,d)=g|GT.(t,),m:[-,-1()] =

Bl gl Mherpr (Tl g, h1(R)) 16Tt
Y gcrEL Pl 8111, [IhermL (el g, ] (k) MGTxtd=h)
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4. Repeat steps 2 and 3 until the results convergence

5. Define relevance labels: for each document label g is assigned if g is the
label with maximum probability of relevance. In binary case, documents

are set to relevant if p,[1] = 0.5.

Since EM algorithm finds a local optimum value for relevance probabilities and
latent matrices, a crucial point is defining the initial values for these variables.

Several different strategies can be found in literature:

¢ random initialization [2]

* MV seeding: MV algorithm is used to find the initial ground truth rele-

vance labels [3]

¢ Semi supervised approach: a small set of expert labels is used together
with MV estimated labels[5]

* Assessors’ honesty hypothesis: variables are initialized assuming that
assessors are honestly attempting to give correct answers, so elements
in the principal diagonal of latent confusion matrices are initialized to a
high value ([ a,al(k) = 0.9) [4]

2.5.3 GeAnn

GeAnn is a term association game proposed at the TREC 2011 crowdsourcing
Track [29]. The idea behind this game is to collect relevance judgements from
the crowd using a game with a purpose.

Instead of collecting judgements on documents as a whole, the judgement
process is broken down onto term level. In Figure 2.7 is represented the game
interface: each document sentences are taken separately, and user goal is
to match the main keyword of the sentence with the correct bucket. In a
postprocessing step, sentence-level judgements are aggregated in two different
ways, using a MV algorithm or a weighted MV using a reliability function

based on assessor agreement with some gold judgements.
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Figure 2.7: screen view of the geAnn game

2.5.4 TurkRank

TurkRank [7] is a network based approach for detecting assessors’ trustwor-
thiness. Trustworthiness is incrementally updated computing both crowd as-
sessors inter-agreement and gold standard agreement: the more an assessor
agrees with the others, the greater is his trustworthiness.

In Figure 2.8 is represented an example of network model, nodes represent
assessors (both crowd and gold) and edges represent agreement between asses-
sors.

TurkRank is implemented using a modified version of the PageRank with

Priors (PRwP) algorithm [51], where assessors take the place of web pages.

Trustworthiness is computed as:
. din(v) .
()t =(1- ,B)( Y p] u)ﬂ(”(u)) +Bpy
u=1

where 0 < f <1 is a parameter, and u = 1,...,d;,(v) are the assessors that agree
with v. To the gold standard vertex is assigned a p, = 1 prior probability, setting

py =0 for all other nodes, so if f=1 only gold standard assessor can accumulate
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trust, if 0 < f < 1 assessors’ agreement and gold standard agreement will be

combined.

< = P NIST-Assessed
—— % Gold standard Set

Figure 2.8: Example of network model, showing crowd assessors agreements between
crowd assessors and with gold standard

2.5.5 Skierarchy

Skierarchy [8] is a hierarchical approach developed by SetuServ inc. to test
how crowdsourcing can be used in domain specific data analytic tasks, that are
currently managed only by domain experts.

The base idea is that experts’ judgement cannot be eliminated, but can be
significantly reduced if used together to other types of assessments: a small
number of domain experts are used to train and supervise a large set of
crowd assessors. Experts break down the complex tasks into crowdsourceable
microtasks, train and supervise crowd assessors while performing microtasks

and solve difficult microtask that crowd assessors are not able to solve.

In order to improve crowd assessor performance, a machine learning algo-
rithm is exploited to predict scores for the microtasks and to create annotation
suggestion to help the assessor in the assessing process (Figure 2.9).

The steps of Skierarchy process are:

* Crowd training: crowd workers are asked to evaluate a set of documents.

Experts then examine the results and explain to crowd assessors their
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Higher Quality

Crowd annotators
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i

Figure 2.9: Hierarchy of assessors used in Skierarchy

Higher Cost Effectiveness

errors in assessing documents.

* Machine learning Model: the judgements are then used as training set for
a ML algorithm that uses logistic regression to classify all the remaining
documents in different classes, computing a relevance score for each

document.

* Crowd annotation: the documents are divided in buckets based on the ML,
algorithm scores, each bucket is assigned to a crowd assessor. Buckets
with higher scores are assigned to the assessors that better performed in
the training phase, because this documents are like to be relevant end

we aim to avoid misses.

* Automatic error correction: ML algorithm is retrained using the com-
plete annotated dataset, and is used to compute relevance scores on the
documents using 10 fold validation. Documents for which algorithm and
assessor disagree are then revised by the assessors to determine which

is the correct judgement.
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CHAPTER

AWARE FRAMEWORK

The work of this thesis it based on the work presented in [9], that addresses
the problem of ground truth creation from a different point of view with respect
to classical approaches described in the previous chapter.
AWARE (Assessor-driven Weighted Averages for Retrieval Evaluation) [9] prob-
abilistic framework, differently from all other approaches, allows to combine
assessors’ knowledge at measure level, instead of combining judgements at
pool level: Figure 3.1 represents this methodology.
The main idea that motivates this decision is that aggregation intrinsically
implies loss of information, and then postponing the aggregation process can
lead to a more accurate measure computation.
Even small errors in merged ground truth are in fact propagated while comput-
ing evaluation measures, and the same error at pool level can have a different
impact on different measures or systems.

The AWARE framework describes different ways in which the evaluation
measures based on the ground truth generated by each assessor can be merged

in a single measure, called the AWARE version of the measure.

In order to formally define how this merged measures are computed, we
define the judged run for assessor k& as the function which assigns a relevance

degree to each retrieved document in a run.
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MERGED
CLASSIC APPROACHES cglnfpnjypﬁou EVALUATION
MEASURE
CROWD POOLS MERGED POOL
CROWD MERGED
COMPUTATION EVALUATION AWARE EVALUATION
MEASURE MEASURE

CROWD POOLS

Figure 3.1: Classic approaches methodology vs AWARE methodology

(t,rs, k) — F* = (GT*(¢t,d1),GT*(t,dy),...,GT"(t,d,))

The simplest way to aggregate crowd assessors’ measures is to assume that
all the assessors are equally responsible for relevance evaluation: in this case,
measures are aggregated giving the same importance to the measures from
each assessor.

This is the so called uniform AWARE version of the measure, defined as follows:
aware —m(t,r)uni = i i ,u(f]te)
mp-1
where m is the number of merged crowd assessors, and u (f’t"’) is the evaluation
measure computed on run r; according to k-th assessor judgements.

This methodology might already be sufficient to improve measure computa-
tion: we report a simple example [9] of the comparison between uni-AWARE
approach and the classic Majority vote approach.

Lets consider a pool containing 3 relevant documents and run of 5 documents

where first and third documents are relevant
7+=1(1,0,1,0,0)

Average precision for this run can be computed as described in section 2.2.3
2

3 —0.5556
3

==

AP (#y) =

28



Let three assessors evaluate the documents in the run, giving different judge-

ments.
#1=(1,1,0,0,0) #2=(1,1,1,0,0) #>=(0,1,1,0,1)

With MV approach, we can compute a merged ground truth and then we

can compute AP with respect to the MV pool:

o

MV MV +5+
Y =(1,1,1,0,00— AP 7}V = =

which represents a 80% error with respect to the gold version of the measure.

wlw

=1.00

With AWARE approach we compute AP using the single assessors’ judgements
and merge them into the aware version of the measure:
+£+

AP (7}) = 5 =0.67 AP(2) =122

[ L
wlw

1,2,
=1.00 AP(#F)=2225

o

=0.59

[SSRININ
O |wolno

1
aware = AP uni = 5 (AP (#}) + AP (72)+ AP (%)) = 0.75

which represents only a 35% error with respect to the gold version of the
measure.

Motivated from this results, and from the belief that real crowd assessors
are far to be uniformly experienced on the analysed topics, we move to a
weighted version of the AWARE measure, in which each assessor is weighted

by a score representing its judgement accuracy:

aware —m(t,r;) = i (f’f) ar(t)
k=1

where accuracies a(t) can be computed at an overall level or topic by topic.
AWARE framework provides a wide range of accuracy estimators for crowd
assessors accuracy, that can be divided into two main classes:

* u-AWARE approaches, presented in [9] and described in section 3.2, pro-
vide unsupervised estimators for accuracy scores based on comparisons

between crowd assessors and random assessors.

* s-AWARE approaches: original contribute of this thesis described in

section 3.3, provide supervised estimators for accuracy scores based on
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comparisons between crowd assessors and the gold standard on some

training topics.

Comparisons in both u-AWARE and s-AWARE methods use some dissimilarity
measures between assessors measures.

Since it’s not clear how the dissimilarity between two assessors can be correctly
computed, different types of measures are considered. In section 3.1 we describe

the different dissimilarity measures used in AWARE framework estimators.

3.1 Dissimilarity definitions

In order to explore a wide range of ways in which an evaluation measure can

be different from another, we analyze three categories of dissimilarities:

* Measure dissimilarity: the dissimilarity is computed using directly the

values of the measures

* Distribution dissimilarity: the dissimilarity is computed using the proba-
bility distributions of the measures, in particular we measure how much
different is each assessors’ distribution with respect to the gold standard

distribution

* Ranking dissimilarity: systems are sorted by measure value and dissimi-

larity is computed in term of ranking comparisons

3.1.1 Measure dissimilarity

Frobenius Norm Given an m x n matrix A , its Frobenius Norm is

Using Frobenius norm, the dissimilarity between two measure matrices can be

computed as | M1 —Ms ||p

Root Mean Squared Error Given an two vectors X and Y , their RMSE
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3.1.2 Distribution dissimilarity

Kullback-Leibler Divergence Kullback-Leibler Divergence is a measure
of how a probability distribution Y is different from a reference distribution X.
In order to use KLD for our purposes, we must estimate the probability dis-
tribution (PDF) of the assessors’ performance measures. To do this, we use
Kernel density estimation (KDE): given a vector X of m elements, the KDE

estimation of its PDF is:

R 1 2 x—X;
fX(x):%i:ZiK( )

b

where K is a function satisfying [, K(x)dx = 1 and b is a smoothing function
called bandwidth. Once computed PDF's, Kullback-Leibler Divergence is given
by:

Dgr(X[Y)=)In

X

fX(x) A
i @)
(fy(y))f X

3.1.3 Ranking dissimilarity

Kendall Tau Correlation Considering two vectors X and Y of m elements,
we can define their Kendall’s 7 correlation as
C-D

X Y)= m(m —1)/2

where C is the number of pairs ranked in the same order in X and Y, and D is

the number of discordant pairs.

AP correlation AP correlation is a top heavy measure inspired by Kendall’s
Tau that gives more importance to top ranked elements.
Considering two vectors X and Y of m elements, we can define their AP

correlation as

2 mc)
TAP(Y,X)—(m_l)i:Zéi_l—l

where C(1) is the number of items above rank 1 in X which are ranked above
x[i]in Y.

31



CHAPTER 3. AWARE FRAMEWORK

3.2 u-AWARE accuracy computation
u-AWARE part of the framework [9] describes several methods to merge to-

gether performance measures form multiple assessors based on unsupervised
estimators for crowd assessors’ accuracies.

To evaluate accuracy, we compute the dissimilarity between evaluation mea-
sures based on the crowd assessor’s judgements and measures based on judge-
ments coming from different types of random assessors’: the greater the dis-

similarity, the better the crowd assessor’s accuracy.

2 e

™

0 g ©
{
o

P=0.50

Figure 3.2: u-AWARE accuracy is computed with dissimilarity measures between
crowd assessors and different types of random assessors

A first classification between accuracy scores can be done looking at gran-
ularity: we can compute a score for each topic (then we have topic-by-topic
granularity - tpc) or a single score for all the topics (then we have single score
granularity - sgl).

In order to compute both sgl and tpc accuracy scores, two main steps are
followed:

* GAP computation: Evaluation measures are computed taking as ground
truth the judgements given by each crowd assessor. The same evaluation
measures are computed taking as ground truth the judgements given

by three classes of random assessors, which randomly assess documents
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3.2. U-AWARE ACCURACY COMPUTATION

with different probability of relevance (p = 0.05;p = 0.50;p = 0.95). GAP
is then computed between assessor measures and random measures
(Figure 3.2).

* Weight computation: the three GAP dissimilarities are aggregated to

compute accuracy

In the next paragraphs five different GAP approaches and three weight ap-

proaches will be described in detail. In Figure 3.3 are shown the 15 combina-
tions of GAP and weight approaches tested in [9]. AWARE algorithms for sgl

and tpc accuracy weights are shown in Algorithms 1 and 2.

Measure

Gap C;u

Random
Assessors

W

3.2.1 GAP

Crowd
Assessor

Measure Level
- Frobenius Norm
- RMSE

Distribution Level
- KL Divergence

Rankings Level
- Kendall’s Tau
- AP Correlation

Weight W},

Minimal
Dissimilarity

kld md

Minimal

Squared

Dissimilarity

T
[
i

Minimal
Equi
Dissimilarity

.........................

kld med

Figure 3.3: AWARE GAP-Weight combinations

Let S be a set of IR systems and let 7" be a set of topics: we definea | T | x | S |

matrix containing the values of a performance measure computed on the runs

generated by each system for each topic. Figure 3.4 represent such matrix and

some notation: M(-,s) and M(¢,-) are respectively the marginal mean across

the rows and across the columns.

According to definition given in section 3.1, we describe how each measure is

exploited to compute unsupervised GAPs.
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[ ﬂ-fk(ﬁh.‘il) ﬂ«ilk(f,l.ﬁ;‘j) ﬂ/fk{f,l,slbr)“ ﬂ/[k(tlj) mean 7Hk(tl;')
My = || Mg(ti, 1) --- | Me(ti,85), - | Mi(ti,8)5)) ‘ Mi(tiy-) (mean M (ti,-) | = My(T, )
(Mg (b, s1) -0 Me(tr), s) - :ﬂ’f’(‘-(t“'h5|S|)Jﬂffk(t|’r|,-)ma-.am M (t7, )
]'ka(‘,S]J Mk(-,<9j) l Mk('15|S|)
Mi(-,8) = [My(-,s1) - Mi(,85) - Ml ss)]

Figure 3.4: | T' | x | S | matrix for the assessor measures

While describing GAP computation, we describe also how each GAP is nor-
malized to obtain comparable scores: each GAP measure G’ is normalized in
the [0,1] range, where G’ = 0 means that assessor follows the behaviour of the
random assessor, G’ = 1 means that assessor k is far from being a random

assSessor.

Frobenius Norm Frobenius norm GAP is computed as the norm of the

difference between assessor’s measures and random measures
GP = My-MP g GP@®)=| My(t,) - MP,) |Ir

where M i represent measures from h-th random assessor assessing relevant
documents with probability p.
To obtain values in the range [0,1], the following normalization is applied:
;o G
VITI|-1S|
Root Mean Squared Error RMSE GAP is computed as the RMSE between

assessor’s measures and random measures. In the sgl case, measures are

averaged by topic before RMSE computation.
G} = RMSE (My(,$)-M;(,S)]  Gi(&)= RMSE (My(t,) - M} (t,)

Since evaluation measures take value in the [0,1] range, then also RMSE takes
values in that range. RMSE=0 means no difference from random assessor, so

no normalization is required.
G =G
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3.2. U-AWARE ACCURACY COMPUTATION

Kullback-Leibler Divergence KLD GAP is computed as the KLD between

the PDF of assessor measures and the PDF of random measures.
Gl =Dgr (Mp(,) M)  GL()=Dgr (M) | M (t,")

KLD takes values in [0, +00):in order to obtain values in the range [0,1],

the following normalization is applied:
G'=1-¢PC
where f is a positive real number.

Kendall Tau Correlation Tau correlation GAP is computed as the correla-
tion between the system rankings induced respectively by crowd and random

assessors’ measures.
Gp =7 (My(,9),M;(.8))  GL@®) =7 (Myt, ), Mp(2,)

High correlation means small dissimilarity from random assessors, and then a
poor performance. To obtain values in the range [0,1], the following normaliza-
tion is applied:

G'=1-1G|
AP correlation AP correlation GAP is computed as the correlation between
the system rankings induced respectively by crowd and random assessors’

measures.

GP =7ap (i), M4(,9))  GR(®)=7ap (Malt, ), MJ(2,)

To obtain values in the range [0,1], we apply the same normalization of Kendall
tau GAP:
G =1-|G|

3.2.2 Weight
The three ways we use to aggregate GAPs from random assessors are:

* Minimal Dissimilarity: the accuracy weight is computed as the minimum
GAP from the tree random assessor classes. In this case we consider the
value for which is impossible to the crowd assessor to be closer to another

random assessor.
. 3 ! 3 ! 3 /
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CHAPTER 3. AWARE FRAMEWORK

* Minimal Squared Dissimilarity: the accuracy weight is computed as the
minimum squared GAP from the tree random assessor classes. In this

case we reason sa in the previous case, but we aim to emphasize small
GAPs.

@) = min (((G2'05)')2 ’ ((G%‘E’O)')Z ’ ((G2'95)’)2)

* Minimal Equi-Dissimilarity: the accuracy weight is computed as the sum
of the three GAPs. Here we state that good assessors have to behave

different from all three random behaviour under consideration.

ar = (G3%%) +(G3™) + (64

36



3.2. U-AWARE ACCURACY COM

PUTATION

Algorithm 1: How to compute sgl accuracy with u-AWARE

W N =

[

10

11

12
13

14
15
16
17
18
19
20
21
22

23
24

25
26
27
28
2

o

Data: T set of topics; p € {0.05,0.50,0.95} probability of relevance for random assessor

judgements; H € N number of random assessors replicates Vp; f*’f Vt e T ground truth

generated by assessor k; ff , VteT ground truth generated by the h-th random

assessor of level p
Result: a;, sgl accuracy score for k-th assessor

/* Compute the measures M}, for the k-th assessor and M s for each random assessor */ ;

M}, — compute m(-) on f]te;

Mg — compute m(-) on f«fthh ={1,...,H} and Vp € {0.05,0.50,0.95};

/* compute and normalize GAP Gi’ 5 with respect to each random assessor Vi ={1,
Vp €{0.05,0.50,0.95} */

for hel,...,H do

if frobenius norm then

G}, = M —MJ | Vp €1{0.05,0.50,0.95} /* GAP computation;
;, G « -
(Gkﬁ) = o Vp €10.05,0.50,0.95) /% [0,1] normalization;
else if RMSE then
Gz,h =RMSE (Mk(-,S) —MZ(-,S)) /* GAP computation;
!
(G;j h) =GP, Vp €{0.05,0.50,0.95) /% [0,1] normalization;
else if KL divergence then
Gi »=DkL (Mk(-, Dl MZ(-, -)) /* GAP computation;
! _ 4
(G;j W) =1-e PG vp € 10.05,0.50,0.95) /% [0,1] normalization;
else if Kendall Tau then
GZ B=T (Mk(~,S),MZ(~,S)] /* GAP computation;
!
(G’Z h) =1-1G?, | Vp€{0.05,0.50,0.95) /% [0,1] normalization;
else if AP correlation then
GJZ L = TAP (Mk(-,S),Mi(-,S)) /* GAP computation;
T\
(G’z h) =1-1G%, | Vp€{0.05,0.50,0.95) /%[0,1] normalization;

/* Aggregate the GAP with respect to the random assessors replicates */

! !
r\ _ p
(6}) —mean((a1,))
/* compute assessor accuracy weight */
if minimal dissmilarity then

om0 (e (o)
else if minimal squared dissmilarity then
- oxmmin (o) e

else if minimal equi —dissmilarity then
_ ((~0.05)’ 0.50)' 0.95)'
| ar=(G0%) + (@950) + (G09)

...,H} and
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CHAPTER 3. AWARE FRAMEWORK

Algorithm 2: How to compute tpc accuracy with u-AWARE

2 M} < compute m(-) on k.

Data: T set of topics; H € N number of random assessors replicates Vp € {0.05,0.50,0.95}; f]te
AD
P

3Py, VEe T ground truth generated by the

Vt € T ground truth generated by assessor k
h-th random assessor of level p

Result: a;, vector of | T'| elements containing tpc accuracy scores for k-th assessor

/* Compute the performance measures M}, for the k-th assessor and Mﬁ for each random

assessor ¥/ ;

i

8 MY — compute m(-) on ¥, VA ={1,...,H} and Vp € {0.05,0.50,0.95};

/* compute and normalize GAP G’Z h(t) with respect to each random assessor VA ={1,...,H}
and Vp €{0.05,0.50,0.95} */

5 forhel,. H,tel,.. Tdo

10

11
12
13
14
15
16
17
18
19
20
21
2

23
24
25

26
27

N

28

29
30

if frobenius norm then
GY () =] Mp(t,) - M2 (t,) | ¥p€{0.05,0.50,0.95};

G? '—Gi”’mv 0.05,0.50,0.95};
(67 4) = == ¥p €10.05,0.50,0.95)

else if RMSE then
GP ,(t)=RMSE (M (t,) - M2 (z,) Vp €{0.05,0.50,0.95;
PN L J .
(67 ,@) =G @) ¥p €10.05,0.50,0.95);
else if KL divergence then
G? . (t)=Dgr (Mk(t,-) | MG, .)) Vp €{0.05,0.50,0.95};
/ _ p
(67, @) =1-e7P%r? vp € 10.05,0.50,0.95) ;
else if Kendall Tau then
GY ,(©)=1(My(t,), M2 (t,) Vp €{0.05,0.50,0.95} ;
P o) —1- 1P .
(67 ,®) =1-1G% ,®)| Vp €{0.05,0.50,0.95;
else if AP correlation then

GP, (D=14p (Mk(t, M2, .)) Vp €{0.05,0.50,0.95};
!
(G‘Z h(t)) =1-1G%, (1| ¥p €{0.05,0.50,0.95} ¥p € {0.05,0.50,0.95};

/* Aggregate the GAP with respect to the random assessors replicates */
! !
(G*Z(t)] — mean ((G’Z,h(t)] ]vp €1{0.05,0.50,0.95} and V¢e {1,..,|T |}
/* compute assessor accuracy weight */
forte{l,..,|T|} do
if minimal dissmilarity then
! ! !
| ap=min((62% ), (69500) (6% ) )
else if minimal squared dissmilarity then
n2 n2 n2
‘ ap(®) = min (((02-05(t)] ) (€] ) (€2 @) )
else if minimal equi—dissmilarity then
! ! !
| ar=(6%w) +(695°w) +(69% )
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3.3. S-AWARE ACCURACY COMPUTATION

3.3 s-AWARE accuracy computation

The evaluation of crowdsourcing methods is based on comparisons between
measures based on crowd ground truth and measures computed on a trusted
ground truth (e.g. NIST assessors), also called Gold standard. Based on this
known assumption, we can state that judgements given by an assessor will be
correct if they are equal to gold judgements given by experts.

As discussed in chapter 2, trustworthy data can be effectively exploited to
compute accuracy weights [5, 7].

In s-AWARE approaches we aim to combine the methodology of AWARE frame-
work and the benefits of supervised weighting techniques, providing some su-
pervised estimators for assessors’ accuracies: the main idea behind s-AWARE
approaches is that accuracy scores for assessors are computed with dissimilar-
ities between each assessor’s measures and gold measures (Figure 3.5). The

smaller the dissimilarity, the better accuracy is assigned to the assessor.

Figure 3.5: s-AWARE accuracy is computed with dissimilarity measures between
crowd assessors and the gold standard on a training topicset

In order to execute s-AWARE approaches, then, a trusted dataset is needed
to compute such scores. This prerequisite can be seen as a limit, because expert
judgements are needed, even if for a small dataset. Nevertheless, as seen in
2.3, some test assessments are often given to crowd assessors in order to detect
spammers, so data related to a small set of topics might be already computed,
or can be computed with low effort: this will be called training topicset from
now on.

Gold-crowd dissimilarities, called GAPs in analogy to dissimilarities computed
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CHAPTER 3. AWARE FRAMEWORK

for u-AWARE approaches, are then normalized and directly used as accuracy
scores. Algorithm 3 summarizes the shows the pseudo code to compute accuracy
scores with s-AWARE.

3.3.1 GAPs and normalization

According to definition given in section 3.1, we describe how each measure is
exploited to compute supervised GAPs.

GAPs are normalized in the [0,1] range, but normalized GAP in s-AWARE has
a different interpretation than normalized GAP in u-AWARE.

In u-AWARE, GAP is normalized to be a dissimilarity measure, that is an
higher GAP means an higher dissimilarity with the random assessor and then
an higher accuracy for the assessor.

In s-AWARE, on the contrary, an high GAP means high dissimilarity with the
gold standard behaviour, then the normalization must map this GAP to a low
accuracy value. Normalized GAP is used as accuracy score for the assessor, and
can be interpreted as a measure of the closeness between crowd assessor and
gold standard.

Let S be a set of IR systems and let 7" be the set of topics used in the training
phase (subsequently training topicset): we define a | T'| x | S | matrix containing
the values of a performance measure computed on the runs generated by each

system for each topic according to the judgements given by assessor k.

Frobenius Norm Frobenius norm GAP is computed as the norm of the

difference between assessor’s measures and gold measures
*
Gr=IMr—-M" |F

where M* represent the gold measures.

High accuracy is obtained when norm assumes small values. To obtain values
in the range [0,1], the following normalization is applied:

G

VITI-IST

Root Mean Squared Error RMSE GAP is computed as the RMSE between

assessor’s measures and gold measures averaged by topic.

G=1-

G, =RMSE (Mk(-,S)—M*(-,S)]
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3.3. S-AWARE ACCURACY COMPUTATION

High accuracy is achieved when RMSE is low. To obtain values in the range

[0,1], the following normalization is applied:
G=1-G

Kullback-Leibler Divergence KLD GAP is computed as the KLD between

the PDF of assessor measures and the PDF of gold measures.
G =Dgr, (Mp(,) | M*(.,"))

KLD takes values in [0, +00):in order to obtain values in the range [0,1],

the following normalization is applied:
G' =e PG

where f is a positive real number.

Kendall Tau Correlation Tau GAP is computed as the correlation between
the system rankings induced respectively by crowd and gold assessors’ mea-

sures.

Gy =7 (My(,9),M (,9))
To obtain values in the range [0,1], the following normalization is applied:

G' =G|

AP correlation AP correlation GAP is computed as the correlation between
the system rankings induced respectively by crowd and gold assessors’ mea-

sures.

G =7ap (Ma(,S),M(,9))
To obtain values in the range [0,1], the following normalization is applied:

G' =G|
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Algorithm 3: How to compute Assessor scores with s-AWARE

Data: T training topicset; f]te Vt e T ground truth generated by assessor k; 7; Vt € T experts
ground truth
Result: a;, accuracy score for assessor k
1 /* Compute the performance measures M}, for the k-th assessor and the gold standard
measures M* #/ ;

2 M} < compute m(-) on f’t"’;
3 M* — compute m(-) on F¢;
4 /* compute and normalize GAP G, with respect to the gold standard*/
5 if frobenius norm then
6 Gp =M, -M* g /* GAP computation;
7 ap=1- \/ﬁ /*[0,1] normalization;
8 if RMSE then
9 G), = RMSE (M(,S)-M"(,S)) /% GAP computation;
10 ap=1-G /*[0,1] normalization;
11 if KL divergence then
12 G =Dgr (Mp(,) | M*(.,")) /* GAP computation;
13 ap = e~ PG /*[0,1] normalization;
14 if Kendall Tau then
15 G =7 (My(,9),M"(8)) /¥ GAP computation;
16 ap =G| /*[0,1] normalization;
17 if AP correlation then
18 Gr=7ap (My(,8),M"(,9) /% GAP computation;
19 ap =G| /*[0,1] normalization;
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CHAPTER

EXPERIMENTAL SETUP

In order to test the effectiveness of s-~-AWARE approaches, several experi-
ments are performed. To get more accurate results, different experiments are
performed considering each time a different set of topics as training set for
s-AWARE, performing comparisons among approaches on the remaining part
of the dataset, called test topicset or simply topicset from now on. Data from
different topicsets is then averaged to compute the final analysis.

All the experiments are developed and run in MATLAB 2015a environment,
exploiting MATTERS library ! for the common utilities useful for information
retrieval tasks. In order to guarantee the reproducibility of the experiments,
the source code of the experiments is available on BitBucket .

This chapter is organized as follows: in section 4.1 we describe dataset, mea-
sures, approaches an parameters used for the experiments, in section 4.2 we
present the experiments workflow followed to implement s-AWARE approach

and to compare its effectiveness with a set of different other approaches.

Thttp://matters.dei.unipd.it/
2https://Lucapiaz@bitbucket.org/unipd-ferro-theses/piazzon.git
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4.1 Experimental parameters

The main purpose of our experiments is to evaluate the effectiveness of s-

AWARE approach with respect to the following approaches:

Majority vote (2.5.1)

Expectation Maximization with MV seeding (2.5.2)

AWARE with uniform accuracy weights

sgl and tpc u-AWARE approaches with minimum squared dissimilarity
weight(3.2)

First two approaches are the two different classic approaches usually taken as
baseline, AWARE-uni is used to figured out if accuracy computation is effective,
msd u-AWARE approaches are selected among all the u-AWARE approaches
because, in most cases, msd weight performed better than other weighting
techniques in the original paper [9].

The experiments are repeated several times, considering different combination

of the following parameters:

* Kuple: is a set of assessors, whose data will be merged by each approach.

The cardinality of a kuple is called kuple size.
¢ Evaluation Measure

¢ System/Run set: used interchangeably to indicate a set of ranked lists of
documents, each of them generated by an IRS while searching relevant

documents about a topic.
* Topicset: is the portion of the dataset (subset of the topics) used in every

single experiment.

4.1.1 Dataset

4.1.1.1 Crowd assessors collection

As data for crowd assessors, we considered the data submitted to the TREC 21,

2012 Crowdsourcing track [52]. Research groups were asked to simulate the
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relevance judgements given by the NIST assessors for 10 topics, selected from
those of TREC 08. Topics IDs and descriptions are described in Table 4.1. A
binary relevance judgement is given for each document in the judging pool of

each topic.

Topic ID | Description
Find information on shipwreck salvaging: the
1 | 411 recovery or attempted recovery of treasure from
sunken ships
2 | 416 What is the status of The Three Gorges Project?
3 | 417 Find ways of measuring creativity
How widespread is carbon monoxide poisoning on
4 | 420
a global scale?
Find documents that discuss the damage ultraviolet (UV)
5 | 427 .
light from the sun can do to eyes.
6 | 432 Do police departments use "profiling" to stop motorists?
What countries are experiencing an increase in
7 | 438 .
tourism?
8 | 445 What other countries besides the United States are considering
or have approved women as clergy persons?
9 | 446 Where are tourists likely to be subjected to
acts of violence causing bodily harm or death?
What new developments and applications are there
10 | 447 . . .
for the Stirling engine?

Table 4.1: Description for topics used in TREC 21 Crowdsourcing Track

The set of documents used in the experiments contains about 528K news
documents from Financial Times (F'T), Federal Register (FR), Foreign Broad-
cast Information Service (FBIS) and Los Angeles Times (LA) [52]. This dataset
corresponds to disk 4 and 5 of the TIPSTER collection minus the Congressional
Record.

In total 33 pools were submitted to TREC 21: we used 31 of them, excluding
INFLB2012 and Orc2Stage because, for some topics, they did not assess any
document as relevant. Pools information is reported in Table 4.3. Each pool,

from now on is considered as a crowd assessor.

The gold standard of our experiments is the set of adjudicated relevance
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Topic | # | NIST| % # % Izil 1\1211 Total
ID | Docs | Rel | REL | Disag | Disag Non | Rel Rel
1 411 2056 | 27 1 15 1 1 1 27
2 416 1235 | 42 4 17 1 0 3 45
3 417 2992 | 75 3 60 2 3 3 75
4 | 420 1136 | 33 3 23 2 1 5 37
5 | 427 1528 | 50 3 42 3 14 1 37
6 432 2503 | 28 1 34 1 7 1 22
7 438 1798 | 173 11 118 7 16 5 162
8 445 1404 | 62 5 29 2 3 1 60
9 446 2020 | 162 9 119 6 15 9 156
10 | 447 1588 | 16 1 2 0 0 0 16

Table 4.2: Gold standard relevance judgements. From left to right: topic id, the total
number of assessed documents by TREC partecipants, the number of NIST relevance
judgements in the pool and its fraction, the number of NIST/assessors disagreements
and its fraction, the number of NIST relevant documents finally labelled as non
relevant, the number of NIST non relevant documents finally labelled as relevant, the
total relevant documents per topic after the process

judgements of TREC 21, that are NIST judgements combined with the majority
vote judgements from the submitted pools. In case of disagreement, documents
have been manually assessed by TREC organizers. In table 4.2 is reported, for
each topic, the fraction of relevant documents according to NIST and TREC

organizers.
4.1.1.2 Retrieval Systems

Runsets utilized in our experiments came from the two TREC tracks which
used the selected topics: the TREC 08 Ad-hoc track [53], which contains 129
runs and the TREC 13 Robust track [54], which contains 110 runs and whose

goal was to test retrieval systems against hard topics.

4.1.2 Evaluation measures

Evaluation measures taken into consideration are a subset of the measures

used in the original paper [9]:

* Average Precision (AP) (See Section 2.2.3.2) represents the most informa-
tive and stable measure in IR, since combines information from Precision

and Recall in a top heavy way.
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# 1D Research Group

1 BUPTPRISZHS | Beijing University of Posts and Telecommunications
2 NEUEM1 Northeastern University

3 NEUEIlo2 Northeastern University

4 NEUEIlo3 Northeastern University

5 NEUEIlo4 Northeastern University

6 NEUEIlo5 Northeastern University

7 NEUNugget12 | Northeastern University

8 Orc2G University of Oxford and University of Southampton
9 Orc2GUL University of Oxford and University of Southampton
10 | Orc2GULConf University of Oxford and University of Southampton
11 | OrcVB1 University of Oxford and University of Southampton
12 | OrcVB1Conf University of Oxford and University of Southampton
13 | OrcVBW16Conf | University of Oxford and University of Southampton
14 | OrcVBWS80 University of Oxford and University of Southampton
15 | OrcVBWS80Conf | University of Oxford and University of Southampton
16 | OrcVBW9Conf | University of Oxford and University of Southampton
17 | SSEC3excl University of Oxford and University of Southampton
18 | SSEC3incl SetuServ

19 | SSEC3incIML SetuServ

20 | SSECML2t099 SetuServ

21 | SSECML50pct | SetuServ

22 | SSECML75pct SetuServ

23 | SSML2pct SetuServ

24 | SSNoEC SetuServ

25 | UlowaSO01r University of Iowa

26 | UlowaS02r University of Iowa

27 | UlowaS03r University of Iowa

28 | yorkul2es01 York University

29 | yorkul2cs02 York University

30 | yorkul2cs03 York University

31 | yorkul2cs04 York University

Table 4.3: List of the crowd Pools used un the experiments

* Normalized Discounted Cumulative Gain @ 20 (nDCG@20) (see section
2.2.3.3), meaning nDCG computed up to rank 20.
We used a log base b=2 and gains 0 and 5 respectively for non relevant

and relevant documents.

4.1.3 Analysis measures

To compare the effectiveness of the different approaches we compared the
evaluation measures computed with each approach against the measures

computed on the gold standard. To do this we used two different methods:

* rank comparison: AP correlation (See section 3.1) is computed between

47



CHAPTER 4. EXPERIMENTAL SETUP

the ranking of the systems induced by the assessor, and the ranking
of the system induced by gold standard. With AP correlation, we are
interested in understanding to what extent each assessor can lead to the

correct system ranking, for each evaluation measure.

* score comparison: RMSE (See section 3.1) is computed between the aver-
age assessor’s measures and the average gold measures. With RMSE we

want to figure out how accurate are each assessor’s measures.

4.1.4 Parameters

4.1.4.1 Topicsets

In order to study how the dimension of the training set affects s-aware perfor-

mance, we computed three group of test, with different topicset sizes:

e 7 training topics: we selected 35 different topicsets of 3 topics among the
(130)=120 possible. For each topicset, the remaining 7 topics are used as
training set for s-AWARE.

* 5 training topics: we selected 20 different topicsets of 5 topics among
the (150)=252 possible. In this case, s-Aware and u-AWARE accuracy

computation is performed on the same amount of data.

¢ 3 training topics: we selected 15 different topicsets of 7 topics among the
(170)=120 possible.

The list of the topicsets is reported in Tables 4.4, 4.5 and 4.6.
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Topicset Topic IDs

411 | 416 | 417
2 411 | 416 | 438
3 411 | 416 | 446
4 411 | 416 | 447
5 411 | 417 | 420
6 411 | 417 | 438
7 411 | 420 | 447
8 411 | 427 | 445
9 411 | 427 | 446
10 411 | 420 | 445 Topicset Topic IDs
11 416 | 417 | 438 1 411 | 416 | 417 | 427 | 446
12 416 | 420 | 438 2 411 | 416 | 420 | 438 | 447
13 416 | 427 | 445 3 411 | 416 | 427 | 438 | 445
14 416 | 432 | 446 4 411 | 416 | 445 | 446 | 447
15 416 | 438 | 445 5 411 | 417 | 427 | 432 | 445
16 416 | 445 | 446 6 411 | 417 | 432 | 438 | 446
17 417 | 420 | 427 7 411 | 420 | 427 | 432 | 446
18 417 | 420 | 438 8 411 | 420 | 427 | 438 | 447
19 417 | 420 | 445 9 411 | 420 | 432 | 446 | 447
20 417 | 427 | 446 10 416 | 417 | 427 | 438 | 446
21 417 | 432 | 445 11 416 | 417 | 432 | 438 | 445
22 417 | 438 | 447 12 416 | 420 | 438 | 445 | 447
23 417 | 446 | 447 13 416 | 420 | 438 | 446 | 447
24 420 | 427 | 432 14 416 | 420 | 427 | 432 | 445
25 420 | 432 | 446 15 416 | 427 | 438 | 445 | 447
26 420 | 432 | 447 16 417 | 420 | 432 | 445 | 447
27 420 | 438 | 447 17 417 | 420 | 432 | 446 | 447
28 427 | 432 | 438 18 417 | 420 | 438 | 446 | 447
29 427 | 432 | 446 19 417 | 427 | 445 | 446 | 447
30 427 | 432 | 447 20 427 | 432 | 438 | 445 | 446
31 427 | 445 | 446
39 497 | 445 | 447 Table 4.5: topicsets used in experiments
33 427 | 446 | 447 with 5 training topics and 5 test topics
34 432 | 438 | 445
35 432 | 445 | 447

Table 4.4: topicsets used
in experiments with 7
training topics and 3 test

topics
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Topicset Topic IDs
1 411 | 416 | 417 | 420 | 427 | 432 | 438
2 411 | 416 | 417 | 420 | 432 | 438 | 447
3 411 | 416 | 417 | 420 | 445 | 446 | 447
4 411 | 416 | 417 | 427 | 445 | 446 | 447
5 411 | 416 | 420 | 427 | 432 | 445 | 446
6 411 | 416 | 420 | 432 | 445 | 446 | 447
7 411 | 417 | 420 | 427 | 432 | 438 | 445
8 411 | 417 | 420 | 432 | 438 | 445 | 446
9 411 | 420 | 427 | 432 | 438 | 446 | 447
10 411 | 420 | 427 | 432 | 438 | 446 | 447
11 416 | 417 | 420 | 427 | 438 | 445 | 446
12 416 | 417 | 420 | 427 | 438 | 445 | 447
13 416 | 417 | 427 | 432 | 438 | 446 | 447
14 416 | 417 | 432 | 438 | 445 | 446 | 447
15 417 | 427 | 432 | 438 | 445 | 446 | 447

Table 4.6: topicsets used in experiments with 3 training topics and 7 test topics

4.1.4.2 Kuples

For both AP and nDCG, for each topicset we merged measures from different
sets of assessors, of cardinality k=2,3,...,30. For each value of k, 100 kuples are

randomly selected between the (3}:)=W§Tlik)! possible kuples.

4.1.4.3 Other parameters

In u-AWARE approaches, we considered 100 replicates for each of the three
classes of random assessors (probability of relevance p € 0.05,0.50,0.95).

For the computation of AP correlation in the case of ties, we sample and average
over 100 randomly generated orderings.

For the estimation of probability density of measures with KDE (see Section
3.1), we use 100 equally spaced bins in the range[0,1], a Gaussian kernel, and
a bandwidth b=0.015.

For the EMMYV algorithm we set a limit of 1000 iterations and a tolerance of
1073.
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4.2 Experimental workflow

In this section we describe the main steps of the experiments performed in

Data import
|

Random pool Base measures
s memlng generaﬂun
POOL LEVEL ‘

_______________________________________________________________________________________________________________________________

order to compare the different methods.

Accuracy Accuracy
computation computation

Pool measure Measure Measure
computation merging merging

MEASURE LEVEL

AWARE s-AWARE

s - Foneis e
i}
Topicset Topicset Topicset Topicset
averaging averaging averaging averaging
ANALYSIS LEVEL |
CLASSIC u- AWARE s-AWARE BASE
A 4

ANOVA analysis

Figure 4.1: Experimental workflow
In Figure 4.1 is represented the workflow of the experiments that will be
explained in the next sections:
* Data import: dataset is parsed and organized into data structures

* Base measures computation: Evaluation measures are computed with
respect to crowd pools and gold pool. Crowd measures are compared

against the gold measures to analyse the quality of the crowd assessors.

* Classic Approaches: in MV and EMMYV approaches, a merged pool is

performed. All the measures are first computed with respect to the ground
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truth generated by the merged pool and then compared against the gold

measures.

* u-AWARE approaches: in u-AWARE, measures are computed with re-
spect to the ground truth generated by every single crowd assessor. Mea-
sures are then merged weighting with accuracy scores computed with
Algorithms 1 and 2.

* s-AWARE approaches: in s-AWARE, measures are computed with respect
to the ground truth generated by every single crowd assessor. Measures
are then merged weighting with accuracy scores computed on training

topicset with Algorithm 3.

¢ ANOVA analysis: a second layer of analysis, based on ANalysis Of VAri-
ance framework, is computed to summarize the results and to highlight

strength and weaknesses of each approach.
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4.2.1 Data import

The first step is the data import: Pool files and Run files are parsed and orga-
nized into data structures, Figure 4.2 and Algorithm 4 represent the import
process.

For each topic, every assessor’s pool is represented by a table containing docu-
ment identifiers and relevance judgements given by the assessor.

For each set of systems, data of the runs is organized in a Topic-System table
in which each cell contains the ranked list of document IDs performed by that

system on that topic.

Doc_D RJ
Doc#1 |  Relevant |
5 ; | Doc#2 | MotRelevant |
o GT(t) >
o) .
= [ Doct.. |
POOL [ oo#N | Relevant |
FILE
SYSTEM (j=1...8)
~ ER KUl =
= : i
= IECR K s ]
Q T .
o ; :
2 : : L™
RUN [T ]------ (@ J-----{ s ] ri(t) |
FILES Doc_ID | Rank | Score
Doc # 1 #
Doc # 2 #
Doc # 3 #

Figure 4.2: Data import: pools and runs are organized into data structures
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Algorithm 4: Import collection pseudocode

/* Import Gold Pool*/ ;

goldpool — structured version of GT
/* Import Crowd Pools*/ ;

P — number of crowd pool files;

RS — number of run sets;
for 2 €{1,...,P} do

pooly, — structured version of GT'p,
/* Import Runs*/ ;
forie{l,...,RS}do

S < number of run files in runset i;

for je{1,...,S} do

‘ runset;(j) — structured version of run file

© ® g N TR0 N =

- e
N = O

4.2.2 Base measures

Algorithm 5 describes the computation steps which involve the assessors’ judge-
ments: we first compute the evaluation measures on the runs to obtain the
performance of the systems according to the gold standard ground truth and

each crowd assessor’s ground truth. This process is represented in figure 4.3.

SYSTEM (j=1...5)

1) f------1 1) == 1)
L IUN g WO ey TN
5 E ;
; | {‘TU I-| r-[,“ |1 rgf!] | SYSTEM (j=1...5)
o A i
2 : : ] W1 1)] === M1 - === WM1.5)
= H H — K k! 3
[n® ]------- [ om ]----- {rm ] = | . | l v | 1 . |
compute measures = ' H '
| nasedonjudgememsofassessorl> L‘L, |Mk(!.1]} _______ [ Mk“-l]] ______ ‘{M‘k[LSJ'l
QO T v
g i
: <) ! : :
: [MT. 0] --- - [M(Th]------ m(Ts)]
8] '
5
o] v
= i

GT(T)

Figure 4.3: Base measure computation: for each assessor k, measures on runs are
computed taking the assessor’s judgements as gold standard

Base measure analysis Within each topicset, each assessor’s measures
are then averaged by topic and compared with the average gold measures:

looking at figure 4.4, each column of the orange matrix is compared to the
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gold measures column. Comparison is done with AP Correlation and RMSE, as

discussed in the previous section.

=] =
SYSTEM (=1..8F | @ | sl
5 3

£ mean over = :
1 topics _g —

L4 o = -

1 o 7 —
i 2
ASSESSORS
(k=1...P)
SYSTEM (j=1...5)
& ::> ASSESSOR (k=1,...F)
£ [aa----prag)----- sy * T
& - B apc | [APC(1) |----{ APClk) }--=--- {aPCiF) |
- : i u T
il L . o T
3 ; RMSE | [RMSE(1)]----{RMSE(k) } ------ {RMSE(P)]
= B i w
o g : = .
g i i )
[ - e .
g

Figure 4.4: Base measure analysis: measures are averaged by topic and analysed with
AP Correlation and RMSE

Average analysis over topicsets In order to summarize the analysis, an
average over the topicsets is computed. In figure 4.5 is represented this process:
each cell in the table on the right is computed as the arithmetic mean of the
corresponding cells of topicset tables on the left.

In the next chapter, we will use this analysis on the input data to better

understand the behaviour of each merging approach.

: o
u I 1
I 1 ‘
ASSESSOR (k=1....,P) | ASSESSOR (k=1,...,P)
ﬁ arc | [ APC1) |----{ APCiKk) }------ { apcip) | mean aver APC H APC(1) |----{ aPCik) }------{ aPC(P) |
topicsets 1
\ f Rmse [RMSE(1)]----{RMSE(K) }------ {rRMSER)] RMSE |[RMSE(1)] - [RMSE(K) | [RMSE(P)]
TOPICSET - :

(1,.TS)

Figure 4.5: APC and RMSE average over the topicsets
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Algorithm 5: Compute base measures pseudocode

1 P — number of crowd pools;
2 RS < number of run sets;
3 foriel,..,RS do
4 foreach Measure do
/* Compute measures with respect to gold pool */;
M* — Measure(goldpool, runset;)
/* Compute measures with respect to crowd pool*/ ;
forkel,...,P do
M}, — Measure(pooly, runset;) ;

[J-J CIREN - P

10 /* Analyse base measures */;
11 fori¢sel,.., TS do// for each topicset

12 M; — mean(M*,topicset;s) // average gold measures on current topicset;

13 foricl,..,RS do// for each runset

14 foreach Measure do

15 forkel,..,P do// for each assessor

16 /*average base measures over topics in the current topicset */;

17 Mk,ts — mean(My, topicsetss);

18 /*compute AP correlation and RMSE between base average measures and
gold average measures*/;

19 APCys(k) — AP-correlation(Mk’ts,M:s);

20 RMSE5(k) — RMSE(M}, 15, My,);

21 /* Average analysis over topicsets */;
22 foriel,..,RS do// for each runset

23 foreach Measure do

24 forkel,..,Pdo// for each assessor
25 APC(k) — mean(APC(R));

26 RMSE(k) — mean(RMSEs(k));
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4.2.3 Classic Approaches

Both Majority vote and Expectation Maximization algorithms aim to create
a merged ground truth at pool level. In order to compare s-AWARE with this
methods, we compute measures based on MV and EMMYV pools to be compared
with measures obtained by s-AWARE approaches.

In the following paragraphs we explain the main computation steps, Algorithm

6 describes the entire process.

Pool merging For each kuple x, we consider the crowd pools relative to the
assessors in the kuple. A merged pool is computed for each kuple, according to
Majority Vote an Expectation Maximization methods, explained in Sections
2.5.1 and 2.5.2.

L
|

: merge pools

~
ASSESSORS
in kuple x

TOPIC
TOPIC

Figure 4.6: Pool merging: a single merged pool is computed using the relevance
judgements coming from all the assessors

Pool measures computation For each kuple x, all the runs are evaluated

based on the ground truth generated by the assessors in the kuple (Figure 4.7).
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SYSTEM (j=1...s)

[ 3o Jr+=-= (a0 |

=
E : : 7 ;
o | - o] L =t s | SYSTEM (j=1..S)
o : : '
ol : - _
' : : R TR Ma(1,j) |-+ Mx(1,S
Blrwm | [ {0 ] - [Mx(1.1)|-=--=-1 !{3 1 | M )|
‘ compute measures ‘II-. ¥
based on merged pool x 3 Mx{11)] _______ | M"Qﬂ] ______ Mx([S}l
&| | !
i = : : :
} [Me(T1)|-=----- { Mx(Tjp |------ {Mx(1.8)|

TOPIC
i
A : et

Figure 4.7: Pool measure computation: for each kuple, measures are computed taking
the merged pool of the kuple as ground truth

Pool measures analysis Within each topicset, measures are averaged by
topic and compared with the average gold measures (Figure 4.8). Comparison
is done with AP correlation and RMSE to understand to what extent the
crowdsourcing approach can lead to the same ranking of systems (APC) and

similar scores (RMSE), for each evaluation measure.

=

. SYSTEM (j=1..S)
TETRIRE GRERet [VITRRT) Rt 1.5

----- -----
Toa e T

mean over
topics

L
KUPLES

(x=1...X)

TOPIC (t=1...T)
SYSTEM (j=1...8)

- ¢

I:> RUBEE et x).

APC || APC(1) |-==={ APC{x) }====== 1 APCIX) |

SYSTEM (j=1..S)

-----

mean over
topics

RMSE | [RMSE(1)]----{RMSE(x}}------ {RMSEX)]

TOPIC (t=1...T)

SYSTEM (j=1...S)

Figure 4.8: Pool measure analysis: measures are averaged by topic and analysed with
AP Correlation and RMSE



4.2. EXPERIMENTAL WORKFLOW

Average analysis over topicsets In order to summarize the the measures
analysis and run ANOVA analysis, an average over the topicsets is computed.

In figure 4.9 is represented this process.

[ ] KUPLE (x=1,...,X) KUPLE (x=1,...X)
| APC 1| APC(1) |----{ APCix) }------ { APcix) | mean aver apc |[ APC1) |----{ APC(x) }------ {apcix) ]
3 topicsels +

F‘ RMSE \ [RMSE(1)]----{RMSE(x) }------ {RMSE(X)] RMSE | [RMSE(1) RMSE(x) [RMSEX]]
1 |

Figure 4.9: APC and RMSE average over topicsets

TOPICSE
(1,.TS)

Algorithm 6: Classic approaches pipeline pseudocode

P — number of crowd pools;

RS — number of run sets;

X — number of kuples V kuple size ;

TS — number of topic sets;

/* Merge Pools */

foreach kuple size do

forxel,..,.X do// for each kuple
GT, — MergePools({pools in kuple x})

© 0 SO AW N =

/* Compute measures with respect to merged pools */

e
=]

foreach kuple size do

11 forxel,..,.X do// for each kuple

12 foriel,..,RS do// for each runset

13 foreach Measure do

14 ‘ M, — Measure(GTy, runset;) ;

15 /* Analyse merged pools measures */;

16 forisel,.., TS do// for each topicset

17 M:s — mean(M*,topicsetss) // average gold measures on current topicset;

18 foriel,..,RSdo// for each runset

19 foreach Measure do

20 foreach kuple size do

21 forxel,..,X do// for each kuple

22 /*average pool measures over topics in the current topicset */;

23 Mx,ts — mean(My,topicsets);

24 /*compute AP correlation and RMSE between pool average measures
and gold average measures*/;

25 APCis(x) — AP-correlation(Mx,ts,M;);

26 RMSE5(x) — RMSE(M y 45, M ,);

27 /* Average analysis over topicsets */;
28 foriel,..,RSdo// for each runset

29 foreach Measure do

30 foreach kuple size do

31 forxe€1l,..,.X do// for each kuple
32 APC(x) — mean(APCs(x));

33 RMSE(x) — mean(RMSE (x)),
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4.2.4 u-AWARE and s-AWARE approaches

u-AWARE and s-AWARE have very similar pipelines, since both of them aim to
merge assessors judgements at measure level, and differ only in the accuracy
computation step. In the following paragraphs we explain the main steps of
AWARE pipeline, highlighting some crucial differences: Algorithms 7 and 8
describe, u-AWARE and s-AWARE pipelines.

Accuracy computation Accuracy computation is the most important phase
of AWARE pipelines. In our experiments, dataset is split into two parts, called
training topicset and test topicset (or simply topicset).

In u-AWARE, three sets of random assessors are generated, and GAP is com-
puted between each assessor’s measures and the measures computed on each
random assessor replicate. To compute this GAPs, only test topics are used, in
order to be compared with s-AWARE results.

= S— o E
I e oy 4
e Ly SYSTEM (j=1...8) i
= {] = i
o i g : —
- T | 0.05 - w 0.08)" '
| Q 5
o o
REPLICATES S 2
(h=1,..RP) Hel
[ me—— =
Ly 'SYSTEM (=1..5) | %
[ :
Q ] = 3 .
B (el s AN o e -
¥ . : - v Gy erag 0.50
3 "|E§ GTy % M, 950t j) GAP g( h™ ) GAP (Gk ) m
] : : —
REPLICATES <] 2]
(h=1,..RP) 5. |
i e = T
= =l SYSTEM (=1...8) A
- ol - v
x 550 % = 1
= 0.95 mpute - | 95)" . !
"Iﬁ_§ GTy asures % M,955¢t)) g(;;“‘ns) m
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Figure 4.10: AWARE accuracy scores computation: GAPs are computed with respect to
each random replicate. The mean GAPs are then combined with Weight computation
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GAPs are then normalized and averaged by random replicate: this is done to
guarantee a good estimate of random assessors. Accuracy computation is done
combining the three random GAPs following algorithms 1 and 2: in sgl case we
have an accuracy score for each assessor, in tpc case we have an accuracy score

for each topic in the topicset.

In s-AWARE, GAP is computed between each assessor’s measures and
gold standard measures on training topics, following algorithm 3 described in
Section 3.3.

SYSTEM (j=1...8)
b . N
9 - co'llpu[e k norgj;ze ak
¢ |E| e E mw
= o
o
LV :
e
SYSTEM (j=1...S)
(] e
9) "E compute
: x| GTg = Mic(t.i) GAP
&’ :
o
(@]
[~

Figure 4.11: s-AWARE accuracy scores computation: normalized GAPs are directly
used as accuracy scores

Measure merging For each kuple of assessors, measures are weighted with
the so calculated accuracies and merged into a single matrix of measures.

Measure merging is done on the test topicset.

L dg
N
SYSTEM (j=1...8) SYSTEM (j=1...8)
- |Mk|:\‘1}] »»»»»»» [w:1.n| ~~~~~~ {Mki:‘S]] e Imx;:l.n} ------- { M.-.(:1u| ------ {Mu;.sa\
= : ! ; = : 1 H
= |M..t.1.1)] ------- | Mklu.j)l ------ {mesi] :(>X :> ; |ml[.x_n} ------- | Mxltl.ﬂl ------ iM‘('LSI‘
g | | 5 | ; .
| = . : : =
\5 T [ MTir]------{MT.8)] [marn]--== - s ] {mairs)]
ASSESSORS *
in kuple x

Figure 4.12: AWARE measure computation: merged measures are computed
weighting assessors’ by the accuracy scores
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Pool measures analysis Kuple measures, similarly as previously described,
are then averaged within the topicset and compared with gold measures. To do
this, AP correlation and RMSE between the average measures is computed.

It’s important to highlight that even if this computation is similar to GAP
computation, here the usage of RMSE and APC has a different meaning: in
GAP computation, the goal is to get a dissimilarity measure to obtain each
assessor accuracy, in analysis the goal is to understand how far the approach

achieves similar results with respect to gold standard.
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Figure 4.13: AWARE measures analysis: measures are averaged by topic and analysed
with AP Correlation and RMSE

Average analysis over topicsets Analysis are then summarized averaging
data over the topicsets. We obtain APC and RMSE mean values for each
AWARE approach and s-AWARE approach, that will be analyzed with ANOVA.

= ;
# KUPLE (x=1,...X) KUPLE (x=1....,X)
M apc | [APC() |----{ APCp) }------{APCiX) || | mean over APC |[ APCU) |--=-{ APCx) }------{ APC(X) |
|| topicset L
\ FiRMSE [RMSE(1)]----{RMSE(e) } --=--- {RMSEX)] RMSE | [RMSE(1)]- -~ {RMSE() | [RMSEX)]
TOPICSET )

(1,.TS)

Figure 4.14: APC and RMSE average over topicsets
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Algorithm 7: u-AWARE approaches pipeline pseudocode

1 P — number of crowd pools;
2 RS < number of run sets;
3 X — number of kuples V kuple size ;
4 TS — number of topic sets;
5 RP — number of random pool replicates for each class;
6 /* generate random Pools */
7 for (p €{0.05,0.50,0.95}) do
8 for (he{l,...,.RP}) do
9 pooli «— random judgements with probability of relevance=p;
10 fori¢sel,...,TS do
11 forie{l,..,RS}do // for each runset
12 foreach Measure do
13 M:s — mean(M*,topicsetis) // average gold measures in topicset;
14 weight = minimal squared dissimilarity;
15 for granularity € {sgl,tpc} do
16 for GAP € {fro,rmse,kld,tau,apc} do
17 /* Compute accuracy scores with algoritms 1 and 2%/
18 aj, — computeScores(granularity, GAP,weight,ts)
19 /* Compute u-AWARE measures */
20 foreach kuple size do
21 forxel,..,.X do// for each kuple
22 /* rescale accuracy scores */
23 sumgp = Ypex ak;
24 for ke x do
25 ‘ a), =
26 /* compute u-aware measures */
27 My — Y hex (Mk *a}e);
28 /*average u-AWARE measures in the current topicset */;
29 Mx,ts — mean(My,topicsetys);
30 /*compute AP correlation and RMSE between aware average
measures and gold average measures*/;
31 APCys(x) — AP-correlation(Mx,ts,M:s);
32 RMSE 5(x) — RMSE(M . 45, M ,);
33 /* Average analysis over topicsets */;
34 forie{l,..,RS}do // for each runset
35 foreach Measure do
36 for granularity € {sgl,tpc} do
37 for GAP € {fro,rmse,kld,tau,apc} do
38 foreach kuple size do
39 forxel,..,.X do// for each kuple
40 APC(x) — mean(APC;s(x));
41 RMSE(x) — mean(RMSE5(x));
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Algorithm 8: s-AWARE approaches pipeline pseudocode

© ® T B A W N
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27

28
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30
31
32

33

34
35
36

T — all topics;

P — number of crowd pools;

RS — number of run sets;

X «— number of kuples V kuple size ;

TS — number of topic sets;

RP — number of random pool replicates for each class;
fortsel,..., TS do

forie{l,..,RS}do // for each runset

foreach Measure do

M; — mean(M*,topicset;s) // average gold measures in topicset;
for GAP € {fro,rmse,kld,tau,apc} do

/* Compute accuracy scores with algoritm 3%/
traingg — T —topicsetss;

ap —computeScores(GAP,traints);

/* Compute s-AWARE measures */

foreach kuple size do

forxel,..,X do// for each kuple
/* rescale accuracy scores */

SuMgp = Yhex Ok;

for ke x do

I _ Qg
‘ AL = Sumgp

/* compute s-aware measures */
My — Y hex (Mk *a;e) ;

/*average s-AWARE measures in the current topicset */;

Mx,ts — mean(My,topicsetys);
/*compute AP correlation and RMSE between aware average
measures and gold average measures*/;
APCys(x) — AP-correlation(Mx,ts,M:s);
RMSE;5(x) — RMSE(M . 15, M ,);
/* Average analysis over topicsets */;
forie{l,..,RS}do // for each runset
foreach Measure do
for GAP € {fro,rmse,kld,tau,apc} do
foreach kuple size do
forxel,..,.X do// for each kuple
APC(x) — mean(APCs(x));
RMSE(x) — mean(RMSE (x));
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4.2.5 ANOVA analysis

In order to obtain more summary results and to evaluate how approaches per-
formance is affected by the different combinations of kuple size, measure and
systems, a second layer of analysis is computed, using ANalisys Of VAriance
(ANOVA) methodology. With ANOVA we aim to investigate which are the main

sources of variance within the analysis scores performed so far.

ANalysis Of VAriance ANOVA was introduced by Ronald Fisher in early
1900s [55] as a parametric statistical technique to be used to compare different
distributions of data. This technique is based on the hypothesis testing done to
understand whether or not the means of the different distributions are equal:

the hypothesis testing model used in ANOVA analysis is so:

H():,Ltlz,UQZ...:,un
H1:otherwise

where H) is called null hypothesis and H; is the alternative hypothesis. We re-
ject null hypothesis if the different distributions are unlikely to be a realization
for the null hypothesis (in this case, if means are "not equal") with respect to a
chosen threshold «a, called significance level, which represent the probability of
wrongly label as statistically significant some means that are not. In order to
compare distributions, F distribution is used [55].

In order to run ANOVA analysis, we have to compute the variable under ex-
amination for all the possible combinations of a set of parameters, also called
factors. This data is then modelled with a GLMM (General Linear Mixed
Model), where each value is seen as sum of two components, one is due to the

Model and the other is an error.

Data =Model + Error

To explain how ANOVA works, we report a simple example of ANOVA [56] in
which data depends only by a factor. Figure 4.15 represent the different values
of the variable Y: each column of the table is dependent on a specific value of
Factor A. There are n subjects for each distribution and p possible values for
factor A.
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Factor A (Systems)
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Figure 4.15: Different values of Y, relative to different combinations of topics and
factor A values

The GLMM model, in this example is:
Yij=p. +1,+a;+¢
where
* Y;;is the single data point
* p. is the grand mean of the data fi.. = pin X 25:1 Y;;
* 7, is the effect on Y;; given by i-th subject, estimated as 7; = fl;. — ..
* aj is the effect of the j-th value of factor A, estimated as &; = fi.; — fi..

* ¢;j is the error committed by the model in representing Y, ;, estimated as

€ij=Yi;— (. +fr.j—f.)

If we had multiple samples for each point Y, ;, we could have separated from the

error the interaction effects 7a;; between i-th subject and j-th factor, computed

as
(Taf)ij = ﬂij. —(ﬂ + fi + ﬁfj)
P 1 |replicates|y,
where Hij- = |replicates| Z:rzl Yl]

Starting from our model, we can rewrite it highlighting the different compo-
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nents of the deviation from the grand mean:

Yi'—,ﬁ.. = ﬂi.—ﬂ.. + ﬂ‘j—ﬂ.. +Yij_(,ai-+,a-j_,a--)
N—— Hf—d —— ~ . _
TotalEffects SubjectEffects FactorEffects ErrorEffects

From this equation we can compute the Sum of Squares (SS) and the mean

squares (MS) of different components as:

LIRS . SS otal
SStotar = SSSUbj‘?CtS +SSfact0r+SSerr0r = Z Z(Yij_ﬂ..)z MS;ota1 = DFtOta
i=1j=1 total
S SSsubjects
SSsubjects =P Y (P — fi..)’ MS, oy ivers = —20IeCts
subjects Lgl “l M jects DFsubjects
s (1 7y SS tor
szactor =n Z(/J'J' - “")2 MSfactor = DFf&
J=1 factor
= Sy 0 0 PNV _ SSerror
SSerror— Z Z(YLJ_(:u’l-i_M]_ﬂ)) MSerror—T
i=1j=1 error

where DF indicates the degrees of freedom of the data, which are respectively
DFyo4q1 = pn—1, DFsubjects =n-1, DFfactor =p-land DF,or = (p—1)(n-1).
To find out whether the factor effect is statistically significant or not, we

compute the F statistics defined as:

MSfactor

Ffactor = MSerror

and we compare it with the F distribution with (DFt4ctor, DFerror) degrees of
freedom. We search for the p value for which Fr,.s,r can be observed by chance
under the null hypothesis, if this is lower than significance level a, means that
null hypothesis is less probable than our minimum threshold and then we
reject null hypothesis, saying that factor statistically influences the data.

If we had multiple factors under examination, for each factor we can com-
pute a sum of squares and determine whether the factor is significant or not.
For each combination of factors, we can then compute the interaction effects
between factors, determining if the combination of two or more factors can lead
to significant variance. This analysis is called k-way-ANOVA, where k is the
number of considered factors.

Up to here, we just found out if a factor is statistically significant, that is if

the different values for that factor cause a significant variation in means. We
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can now compute a further step, investigating how much each factor affects
the variance of the data. To do this we use Strength Of Association (SOA)
coefficients.

We compute SOA as:

~2 DF¢actor(Fractor —1)

) =
factor DFfactor(Ffactor -1+N

where N is the number of points in our Grid of Points. This is an unbiased esti-
mator of the influence of each factor: a common rule [55] states that SOA < 0.06
is considered a small effect, 0.06 < SOA < 0.14 is considered a medium effect
and SOA =0.14 is considered a large effect.

Experiments’ analysis In our experiments, we use AWARE analysis to
determine how the different approaches behave with different combination of
kuple sizes, evaluation measures and runsets. To summarize such analyses,
we compute ANOVA analysis on APC and RMSE values.

For both APC and RMSE, we use then the following GLMM to compute three-

way ANOVA with repeated measures analysis:

Yijpi=p.+xi+aj+Pr+yi+af+ayj+Pyr+e€ijr
L. 7 N J N J

Vv v~
MainEffects InteractionEffects  Error

where:
* Y;jn is the single APC or RMSE value, given a combination of parameters
® ... 1s the grand mean
* x; is the kuple size (x=2,...,30)
* qa; is the effect of the j-th approach
* B is the effect of the k-th evaluation measure (AP, nDCG@20)
* v, is the effect of the 1-th Runset (Trec 08, Trec 13)
* afj; in the interaction effect between approaches and measures
* ayj; in the interaction effect between approaches and runsets
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* By in the interaction effect between measures and runsets
* ¢;jr is the error committed by the model in predicting Yz,

Figure 4.16 represents the ANOVA computation in our experiments, the aver-
age analysis for each approach, kuple size, measure and runset are analysed
obtaining ANOVA analysis for APC and RMSE.
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Figure 4.16: ANOVA analysis
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CHAPTER

EXPERIMENTAL RESULTS

In this chapter we describe the results coming from the experiments we de-
scribed so far. We will highlight in which case s-AWARE methods outperform
unsupervised methods and classic methods.

In section 5.1, we first look at the analyses on assessors’ pools, which will
be compared to our results. In section 5.2 we look at the analyses relative to
the tests performed using an equal size for training and test set. In section
5.3, we analyse if different sizes of the training set affect the performance of

supervised approaches.

5.1 Base measures analysis

5.1.1 AP Correlation

Figure 5.1 represents the mean AP correlation between each assessor’s mea-
sures and gold measures, averaged across measures and runsets. This plot
highlights that assessors have very different behaviours (we remind that what
we call assessor, is it’s actually a pool submitted to TREC21 Crowdsourcig
track). Skierarchy pools, in green, perform better than all the others as ex-
pected, since they are obtained from a complex interaction process between
crowd assessors, machine learning and experts (section 2.5.5). The worst pool

in terms of system ranking is NEUEM1, obtained with Expectation Maximiza-
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tion algorithm as described in section 2.5.2.
Looking at figures 5.2 and 5.3 we observe that the most part of assessors ranks
better the systems based on AP measures than nDCG measures, and that

systems from TRECO08 are ranked more efficiently by most of the assessors.
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Figure 5.1: APC for base measures
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5.1.2 RMSE

When we look at the RMSE computed between assessor’s measures and gold
measures (Figure 5.4), we see that Skierarchy pools achieve the best perfor-
mances and that Nothern Eastern University pools generally achieve bad
results in terms of RMSE, with the exception of NEUNugget12 pool. NEU
pools result to be bad in terms of RMSE but perform quite well in terms of
APC: this probably means that NEU pools have the ability to correctly rank
the top systems (AP correlation is top heavy), but are not good in estimating
the real values of the gold measures.

Figure 5.5 shows that measure is affecting the assessor measure accuracy.
For example, taking OrcVBW16Conf and NEUEIo pools we can observe that
OrcVBW16Conf leads to better results on AP measures than NEUElIo pools,
while this ones outperform OrcVBW16Conf in nDCG measures.

This behaviour strengthen the motivations behind AWARE: errors in pool
computation affect in a different way the different evaluation measures. Merg-
ing assessors at measure level, we can take into account this phenomenon,
otherwise neglected.

Figure 5.6 shows that the assessors measures computed on TRECO0S8 runs are

slightly more accurate than measures on TREC13.
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Figure 5.4: RMSE for base measures
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5.2 Results with equal Train-Test size

5.2.1 AP Correlation
Table 5.1 is the ANOVA table for AP Correlation: looking at SOA coefficients

we see that all the considered factors are large size effects. The largest effect is

the Approach effect, highlighting that different approaches can lead to very
different performance. Measure and Systems effects are smaller than Approach
effect, but their values support the intuition behind the AWARE framework of
computing the merging of multiple assessors at measure level, when different
measures and systems are taken into account.

This can be even better observed analysing the interaction effects: Approach*Measure
effect is a large interaction effect, stating that different measures have a great

and potentially different impact on each approach performance.
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SS DF MS F p- value SOA
K-uple Size 1,37679 28 0,04917 | 232,49984 | <0.0001
Approach 1,33129 17 0,07831 | 370,28459 | <0.0001 | 0,75041
Measure 0,41956 1 0,41956 | 1983,84163 | <0.0001 | 0,48708
Systems 0,37419 1 0,37419 | 1769,29570 | <0.0001 | 0,45855

Approach*Measure | 0,34205 17 0,02012 95,13682 <0.0001 | 0,43389

Approach*Systems | 0,13625 17 0,00801 37,89693 <0.0001 | 0,23101

Measure*Systems 0,59299 1 0,569299 | 2803,86943 | <0.0001 | 0,57308

Error 0,42404 | 2005 | 0,00021

Total 4,99716 | 2087

Table 5.1: ANOVA table for AP Correlation (5 test topics)
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Figure 5.7: APC Approach main effect (5 test topics)
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In Figures 5.7-5.10 are represented the marginal means of AP correla-
tion values: each plot represents how the performance is affected by different
approaches, different number of merged assessors, different measures and
runsets.

Figure 5.7 show the average performance of each approach in terms of system
ranking. Yellow and blue bars represent u-Aware approaches, green bars are
s-Aware approaches and red bars are the baselines. We can see that all the
s-AWARE methods outperform AWARE-uni and most of them perform better
than u-AWARE approaches, meaning that the s-AWARE accuracy computation
is effective. s-AWARE methods based on ranking and distribution GAPs per-
form better, in average, than all the other approaches.

In Figure 5.8 we can see that increasing the number of merged assessor im-
proves the average performance. Figures 5.9 and 5.10 show that measures

computed by the approaches follow the behaviour of the assessors measures.
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Figure 5.8: APC Kuple main effect (5 test topics)
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Figures 5.11-5.13 show how Kuple size, measures and runsets affect each
approach performance in terms of AP Correlation: dashed lines are for single-
score u-AWARE, dotted lines are for topic-by-topic u-AWARE, solid lines are
for s~ AWARE and thicker lines are for the baselines.

All the approaches benefit of the increasing number of merged assessors, as
shown in figure 5.11. All s-AWARE approaches perform better than the uni-
form case even merging a small number of assessors. Sup_kld and sup_apc are
the best approaches in terms of AP correlation, and all s-AWARE approaches
generally outperform the corresponding u-AWARE approaches.

Majority vote reaches AWARE-uni results with kuples of 7 assessors, and
perform better than all the other approaches when merging more than 24 as-
sessors. This behaviour can be partially due to the nature of the gold standard:
as described in section 4.1.1, the gold pool is created from NIST assessments
and MV assessments, manually adjudicating the documents for which the ma-
jority vote of the pools and the NIST assessments disagreed. The performance
of MV, in our experiments can then overestimate the real performances of MV.
Expectation Maximization algorithm achieves the worst results, improving its
performances only with a large number of merged assessors.

Both supervised and unsupervised approaches follow the same ascending trend,
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achieving good behaviour even with small kuple sizes and ensuring a more
stable behaviour.

Figure 5.12 shows the Approach*Measure interaction effect. Systems are
ranked better if we look at AP measures than nDCG measures. In particular
we note that sup_kld, sup_tau and and sup_apc perform better than MV or at
least as MV for both measures; sup_kld, however, is the approach for which
we have the largest difference between AP and nDCG performances. In Figure

5.13 we see that most approaches perform better on TO8 runs than T13 runs.

K-uple Size*Approach Interaction
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Figure 5.11: APC Approach*Kuple interaction effect (5 test topics)
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Measure*Approach Interaction System*Approach Interaction

AP Correlation Marginal Mean
AP Correlation Marginal Mean
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Figure 5.12: APC Approach*Measure Figure 5.13: APC Approach*Runset

interaction effect (5 test topics) interaction effect (5 test topics)

5.2.2 RMSE
Table 5.2 shows the ANOVA table for RMSE. Measure and Approach are the

two largest main effects and Approach*Measure is the largest interaction effect.
These three values confirm that approaches behave differently with different
measures and then that AWARE methodology is hopeful.

Looking at the Approach main effects plot (Figure 5.14), we see that sup_apc
and sup_tau confirm their good performance with respect to all the other ap-
proaches. All s-AWARE approaches perform better than the uniform case and
most of them outperform Majority vote. In particular we can notice that sup_fro
and sup_rmse behaves slightly better than MV, while perform worse in terms
of AP correlation. A more evident behaviour is about sup_kld: when we look at
RMSE, it performs as AWARE-uni and MV even if it was the best approach in
terms of APC. This an be explained saying that sup_kld accuracy scores lead to
a good system ranking for the top positions, but in general are not so effective
in computing the real values for the measures.

In Figure 5.15 we can see that RMSE improves with the increasing number of
merged assessors. Figures 5.16 and 5.17 show that measures computed by the

approaches follow the behaviour of the assessors measures.
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SS DF MS F p- value SOA
K-uple Size 0,07822 28 0,00279 41,24387 <0.0001
Approach 0,47972 17 0,02822 | 416,63970 <0.0001 | 0,77190
Measure 0,65403 1 0,65403 | 9656,47963 | <0.0001 | 0,82220
Systems 0,03584 1 0,03584 | 529,10047 <0.0001 | 0,20187
Approach*Measure | 0,55030 17 0,03237 | 477,94009 <0.0001 | 0,79521
Approach*Systems | 0,01574 17 0,00093 13,67330 <0.0001 | 0,09353
Measure*Systems 0,00443 1 0,00443 65,47980 <0.0001 | 0,02996
Error 0,13580 | 2005 | 0,00007
Total 1,95407 | 2087
Table 5.2: ANOVA table for RMSE (5 test topics)
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Figure 5.14: RMSE Approach main effect (5 test topics)
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Looking at interaction effects (Figures 5.18-5.20) we can see that the major-
ity of the approaches improve their performance increasing the kuple size, with
the exception of Expectation maximization and u-AWARE approaches based
on fro and rmse GAP. s~-AWARE approaches, with the exception of sup_kld, per-
form better than AWARE-uni, MV and its unsupervised version. This confirms
the intuition behind s-AWARE approaches: AWARE can outperform baseline
approaches merging assessors at measure level, and in order to improve per-
formance is useful to use information from a small set of trusted judgements
instead of basing only to the non-random behaviour of assessors.

Sup_tau and sup_apc perform better than all the other approaches even with
small kuples.

Figure 5.19 shows the Approach*Measure interaction effect. All the approaches
achieve very similar performance with AP measures, but some of them (EM,
sup_kld, sgl_fro, sgl_rmse and tpc_rmse) worsen their performance with nDCG
measures. In particular sup_kld seems to be the best approach with AP mea-
sures, but underperform all the other s-AWARE approaches and most of the
other approaches with nDCG measures.

In Figure 5.20 we see that most of the approaches achieve smaller values
of RMSE for T13 runs, but this is probably due to the smaller value of the
evaluation measures for T13 systems. Reasoning by comparison, we can say
that most of the Approaches perform worse than Majority vote with TO8 runs,
and better than MV with T13 runs. Sup_tau and sup_apc perform better than
all the other approaches with both T08 and T13 runs.

Summarizing the results explained so far, we can say that:

* s-AWARE approaches behave better than the uniform case, proving the

effectiveness of supervised accuracy computation

* s-AWARE approaches usually perform better than the corresponding
u-AWARE approaches using the same GAP measure

¢ s-AWARE approaches outperform Majority vote while estimating the real
value of the measures, while MV achieves a better performance in terms

of the system ranking when we merge a large number of assessors
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RMSE Marginal Mean

0.15

0.14

the best s-AWARE approaches are sup_kld, sup_tau and sup_apc: sup_kld
achieves different performance with different combination of the factors
and is better in determining the top systems than in estimating the real
value for the measures. Sup_apc seems to be the most stable measure,
achieving always the best results when looking at RMSE and very good
results if we consider AP correlation analysis. Sup_tau follows sup_apc
behaviour, achieving slightly worse performance.

This good results in terms of APC can partially be due to the similarity
between GAP and analysis computation: sup_apc trusts assessors which
correctly rank the top systems in the raining topicset, and is then desir-
able that this property is inherited by the merged measure. Good RMSE
results, however, prove that sup_apc and sup_tau measures are accurate

not only for the top systems, but for the full set of runs.

K-uple Size*Approach Interaction
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tpc_kld_msd
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sup_tau
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Figure 5.18: RMSE Approach*Kuple interaction effect (5 test topics)
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5.3 Results with different topicset sizes
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Figure 5.20: RMSE Approach*Runset

interaction effect (5 test topics)

In order to understand how the size of training and test topicsets affects

s-AWARE performances, we analyse now the results of the experiments per-

formed using 7 and 3 training topics.
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Figure 5.21: AP Correlation of approaches for different topicset sizes
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Figure 5.22: RMSE of approaches for different topicset sizes
Figures 5.21 and 5.22 represent respectively the trends of AP Correlation and

RMSE between gold measures and approach measures with different topicset
size.

Increasing the number of topics used for the test, all the approaches improve
their performance in terms of both AP Correlation and RMSE, exploiting the
greater quantity of available data for measure merging. While this behaviour
is in some way desired and plausible for classic approaches and u-AWARE, we
expected s-AWARE performance being negative affected by the smallest dimen-
sion of the training set used for the accuracy computation, getting closer to the
AWARE-uni performance. Motivated by this results, we further investigated
the possible causes for which this doesn’t happen, that will be discussed below.
ANOVA tables and plots relative to the 3-topicset and 7-topicset experiments
follow the same trend of those presented in the previous section: sup_apc and
sup_tau still perform better than all the other approaches, expectation maxi-
mization improves its performance more than the other approaches, reaching
AWARE-uni in terms of AP correlation for big kuples but remaining far from
s-AWARE performance. The full set of plots and ANOVA tables from the exper-
iments is reported in Appendix A.

We briefly discuss about the good performances of s~-AWARE approaches even
with a small training set: to better understand this behaviour we investigated

the quality of the assessors’ pools. We extracted a small pool taking the first 20
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TOPIC

ASSESSOR 411 | 416 | 417 | 420 | 427 | 432 | 438 | 445 | 446 | 447
BUPTPRISZHS |0.9577|0.8601|0.9257{0.9026|0.8792|0.9752|0.8193|0.8916|0.8364 |0.9487
NEUEM1 0.9423|0.8497|0.4053(0.3377(0.9101|0.3665|0.83680.8940(0.7262|0.4103
NEUElo2 0.9442|0.8357|0.9221{0.8896|0.9045|0.9752|0.83360.8819|0.8381|0.9615
NEUElo3 0.9481|0.8357|0.9209{0.8896|0.9045|0.97890.7702|0.8916|0.8214|0.9637
NEUElo4 0.9442|0.8357|0.9209{0.8896|0.9045|0.9752|0.7718|0.8916|0.8214|0.9615
NEUElo5 0.9442|0.8357|0.9221{0.8896|0.9045|0.9752|0.7971|0.8819|0.8381|0.9615
NEUNugget12 |0.9442|0.8252(0.9209|0.8896|0.8961|0.9516(0.8082|0.8313|0.7997(0.9637
Orc2G 0.8654|0.4895|0.7998|0.5552|0.68540.6994|0.6197|0.6530|0.8314|0.6197
Orc2GUL 0.8538(0.5070(0.7962|0.5519|0.6882|0.6795|0.6149|0.6313|0.7012|0.6175
Orc2GULConf [0.8500/0.5140(0.7938(0.5292|0.6938|0.6820|0.6181|0.6241|0.7012|0.6197
OrcVB1 0.7481]0.5070(0.7614|0.5747|0.7022|0.7404|0.5578|0.5976|0.7295 |0.6987

OrcVB1Conf 0.7442|0.5070|0.7614|0.5747|0.7022|0.7391|0.5578|0.6000|0.7295|0.6987
OrcVBW16Conf|0.7385|0.4790(0.7602|0.5974|0.7472|0.6820|0.5959 |0.5494 | 0.6845 |0.6560
OrcVBWS80 0.7115|0.5979|0.8165|0.6948|0.6517|0.7714|0.6292|0.6265|0.7279|0.7201
OrcVBWS80Conf|0.7115(0.5979(0.8165|0.6948|0.6517|0.7714|0.6292|0.6265|0.7279|0.7201
OrcVBW9Conf [0.8115|0.4720(0.7626|0.50000.8034|0.7056|0.5737|0.5639|0.6845|0.7009
SSEC3excl 0.9500{0.9790|0.9580{0.9286|0.9719|0.9466|0.9303|0.9614|0.9199|0.9808
SSEC3incl 0.9385|0.9580(0.9412{0.9058|0.9663|0.9354|0.8875[0.9590(0.9149|0.9936
SSEC3incIML |0.9423]0.9685|0.9532(0.9188(0.9719(0.9404|0.8954|0.9614|0.9182|0.9957
SSECML2t099 (0.9327]0.9580(0.9412|0.9058|0.9691|0.9354|0.8843|0.9590|0.9098 |0.9957
SSECML50pct (0.9365(0.9580(0.9400/0.9026|0.9691|0.9404|0.8859(0.9614|0.9065 0.9957
SSECML75pct (0.9365]0.9615|0.9400(0.9026|0.9691|0.9404|0.8859|0.9614|0.9032|0.9957
SSML2pct 0.9327|0.9615|0.9388{0.9091{0.9579|0.9478|0.8827[0.9590{0.9165|0.9936
SSNoEC 0.9327|0.9615|0.9365|0.9091|0.9635|0.9441|0.8811{0.9639|0.9065|0.9936
UlowaS01r 0.9462|0.7902|0.9089{0.8831|0.8989|0.9776|0.8019|0.8602|0.8013|0.9637
UlowaS02r 0.9462|0.7867|0.9029(0.8701|0.8989|0.9702|0.7892|0.8554|0.7947|0.9637
UlowaS03r 0.9462|0.7902|0.9053|0.8831{0.9017|0.9764|0.8035|0.8651|0.8047|0.9637
yorkul2cs01 0.7923|0.6818|0.8765[0.6364|0.7219|0.9255|0.7132|0.6554|0.7596 | 0.8483
yorkul2cs02 0.8038|0.6573|0.8321{0.5974|0.7416|0.8981|0.7496 |0.6771|0.7813|0.9338
yorkul2cs03 0.7654|0.6329(0.8921|0.5487|0.7022|0.7888|0.6910|0.6892|0.8598 |0.8312
yorkul2cs04 0.7654|0.6503|0.8909|0.59740.7022|0.8050|0.6878|0.6916|0.8581|0.8526

Table 5.3: assessors average agreement with gold standard considering the top 20
documents for each run

retrieved documents from each run of TREC08 and TREC13, and we examined
the fraction of agreement between each assessor judgements and the gold stan-
dard judgements on each topic. The results of this analysis are shown in table
5.3. We notice that a the most part of the assessors achieve similar agreement
scores across most of the topics. This pool agreement drives to similar mean
measures when averaging among 3, 5 or 7 topics, even if (from the APC and
RMSE results) we can notice that performances slightly improve increasing the
number of topics. Similar mean measures lead to similar accuracy scores and
then to similar behaviour. This indicates that, almost for this dataset, different
sets of topics are not a discriminative factor for assessor accuracy. If we are
able to determine a small set of topics on which assessors presumably behave
as in the majority of topics, we can then achieve good results with s~ AWARE

approaches at very low cost.
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CHAPTER

CONCLUSIONS AND FUTURE WORK

In this thesis we proposed a new supervised approach to exploit crowd asses-
sors relevance judgements for information retrieval evaluation. We proposed
this approaches as a new part of the AWARE probabilistic framework, that
follow a different methodology with respect to the classic approaches.
AWARE aim to combine multiple assessors merging the evaluation mea-
sures computed considering each assessor’s judgements as ground truth. This
methodology, unlike the classic approaches that aim to create a single ground
truth combining assessors’ pools, allows to consider the not negligible different
impact that mislabelled documents at pool level can lead on different evalua-
tion measures or systems.

S-AWARE approach, combines assessors’ measures based to accuracy scores
computed with a set of different dissimilarity measures between the gold stan-
dard and each assessor: evaluation measures are computed for each retrieval
system on a training set of topics, an accuracy score for each assessor is com-
puted to be proportional to the closeness between assessor measures and gold
standard measures. In order to consider different ways in which an assessor
can be "close" to the gold standard, we developed two approaches based on
the real value distance between the measures (named sup_fro and sup_rmse),
one approach based on the comparison between probability distribution of the

measures (sup_kld) and two approaches based on the comparison between the
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK

system ranking induced by the measures (sup_tau and sup_apc).

To test our approaches we considered as crowd assessors 31 pools submitted
to TREC 2012 Crowdsourcing track and we used this pools to evaluate the
performance of the runs coming from TREC 08 AdHoc and TREC 13 Robust
evaluation campaigns.

The evaluation measures used in our experiments were Average Precision
and normalized Discounted Cumulative Gain computed up to rank 20. After
the measure computation, we analysed the results using AP correlation to
understand how different approaches perform on ranking the systems and
RMSE to determine which approach is better in estimating the gold measure
values.

We tested our five approaches against:

* Majority Vote and Expectation Maximization, that are two classic and

common approaches

e AWARE-uni approach, that uses AWARE methodology with uniform

accuracy weights for all the assessors

* u-AWARE approaches, the unsupervised part of the AWARE framework
that exploit the same dissimilarity functions to compute accuracy scores
proportional to the remoteness of assessors measures from random as-

Sessors measures.

We merged together different kuples of 2 to 30 assessors, to investigate how
the number of merged assessors affect the approaches performance. Different
approaches, measures, systems and kuples constitute a set of factors for which
all the combinations are tested. ANOVA analysis is then computed to determine
how these factors and combinations of factors influence the behaviour of the
approaches.

Experimental results show that measures, approaches and its interaction
largely impact on performance, strengthening the motivations behind AWARE
methodology.

S-AWARE approaches always perform better than the uniform case and most
of s-~-AWARE approaches behave better than Majority vote, in particular with a
small set of merged assessors.

S-AWARE often outperform the corresponding u-AWARE approaches, and
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approaches based on ranking dissimilarity usually work better than the others
approaches.

We repeated then all the experiments varying the size of test set and training
set of topics for s-AWARE approaches.

Results from this further experiments state that some s-AWARE approaches
still perform better than the other approaches.

6.1 Future Work

Results presented in this thesis are based on a small set of measures and a
small set of topics. Further research should use a larger dataset to validate the
results obtained so far, also considering a greater set of evaluation measures.
A bigger dataset would allow us also to move to more complex algorithms for
accuracy computation.

In our experiments we noticed that some GAPs perform better with a cer-
tain evaluation measure than another: a first idea should then be to combine
multiple GAPs for different evaluation measures using for each measure the
GAP, or the combination of GAPs, which better perform in terms of similarity
between assessor and gold measures on the training topics. The aggregation
of different GAPs could be done in a similar way to weight computation in
u-AWARE approaches.

Another result from the experiments is that s~-AWARE accuracy scores are
sometimes flattened by the similar values of the measures. In order to better
highlight good and poor assessor performance, several techniques can be tested.
The first, simple idea is to compute the squared GAP, as done in u-AWARE
approaches.

A more complex approach could involve some machine learning techniques:
after the s-AWARE training phase, we could perform a validation phase to
tune accuracy scores in order to achieve better results. The goal of this process
should be finding a local optimum configuration of accuracy scores for which

the maximum AP correlation is achieved on a validation set of topics.
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APPENDIX

PLOTS AND ANOVA TABLES

In this appendix we report plots and tables for the tests performed on topicsets
of 3 topics (A.1) and 7 topics (A.2)

A.1 Results with topicset of 3 topics

A.1.1 AP Correlation

SS DF MS F p- value SOA
K-uple Size 1,53301 28 | 0,05475 | 289,05128 | <0.0001
Approach 1,29790 17 | 0,07635 | 403,06873 | <0.0001 | 0,76600
Measure 0,37522 1 0,37522 | 1980,96093 | <0.0001 | 0,48672
Systems 0,29149 1 0,29149 | 1538,90365 | <0.0001 | 0,42414

Approach*Measure | 0,41113 17 0,02418 | 127,67679 | <0.0001 | 0,60772
Approach*Systems | 0,081336 17 0,00478 25,25937 <0.0001 | 0,16493
Measure*Systems 0,41538 1 0,41538 | 2192,97619 | <0.0001 | 0,61215
Error 0,37978 | 2005 | 0,00019
Total 4,78525 | 2087

Table A.1: ANOVA table for AP Correlation (3 test topics)
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A.1.2 RMSE
SS DF MS F p- value SOA
K-uple Size 0,09226 | 28 | 0,00330 53,67149 <0.0001
Approach 0,47308 17 | 0,02783 | 453,28833 <0.0001 | 0,78644
Measure 0,76346 1 0,76346 | 12435,79244 | <0.0001 | 0,85623
Systems 0,02778 1 0,02778 | 452,50846 <0.0001 | 0,17779

Approach*Measure | 0,49570 17 0,02916 474,96009 <0.0001 | 0,79419

Approach*Systems | 0,01206 17 0,00071 11,55128 <0.0001 | 0,07911

Measure*Systems 0,00173 1 0,00173 28,12493 <0.0001 | 0,01282

Error 0,12309 | 2005 | 0,00006

Total 1,98916 | 2087

Table A.2: ANOVA table for RMSE (3 test topics)
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A.2 Results with topicset of 7 topics

A.2.1 AP Correlation

SS DF MS F p- value SOA

K-uple Size 1,05321 28 0,03761 151,00729 <0.0001
Approach 1,45821 17 | 0,08578 | 344,35860 | <0.0001 | 0,73653
Measure 0,66655 1 0,66655 | 2675,94252 | <0.0001 | 0,56162
Systems 0,07361 1 0,07361 | 295,50691 | <0.0001 | 0,12361
Approach*Measure | 0,26757 17 0,01574 63,18643 <0.0001 | 0,33612
Approach*Systems | 0,20151 17 | 0,01185 | 47,58593 <0.0001 | 0,27499
Measure*Systems 0,94652 1 0,94652 | 3799,90612 | <0.0001 | 0,64531
Error 0,49943 | 2005 | 0,00025
Total 5,16660 | 2087

Table A.3: ANOVA table for AP Correlation (7 test topics)
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A.2. RESULTS WITH TOPICSET OF 7 TOPICS

A.2.2 RMSE
SS DF MS F p- value SOA
K-uple Size 0,06799 | 28 | 0,00243 | 32,06742 <0.0001
Approach 0,51858 17 | 0,03050 | 402,82432 | <0.0001 | 0,76589
Measure 0,68148 1 0,68148 | 8999,23970 | <0.0001 | 0,81166
Systems 0,03675 1 0,03675 | 485,29366 | <0.0001 | 0,18827

Approach*Measure | 0,58751 17 0,03456 | 456,37173 <0.0001 | 0,78757
Approach*Systems | 0,01922 17 0,00113 14,92999 <0.0001 | 0,10186
Measure*Systems 0,00566 1 0,00566 74,75456 <0.0001 | 0,03412
Error 0,15183 | 2005 | 0,00008
Total 2,06903 | 2087

Table A.4: ANOVA table for RMSE (7 test topics)
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APPENDIX A. PLOTS AND ANOVA TABLES
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