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ABSTRACT

In the field of information retrieval, one of the most important tasks is eval-
uating the performance of IR systems. In order to do this, a trusted ground
truth is needed. In the last years, crowdsourcing has began to be used as a
viable and cheap alternative to experts’ ground truth. In this thesis we develop
a new supervised approach to exploit crowd assessors relevance judgements
for information retrieval evaluation. Our work continues the research started
in the last years on AWARE probabilistic framework. While the common state
of the art methods aim to create a single ground truth from the assessors’
judgements, in our approach we compute evaluation measures based on the
ground truth generated from each crowd assessor. These measures are then
merged weighting each assessor on the basis of his expertise level. In our ap-
proach, assessor expertise estimation is obtained in a supervised way analysing
the closeness between the measures computed on assessors’ judgements and
the measures computed on experts’ judgements, on a training set. Such close-
ness measure has been computed following several different methodologies.
We tested our approaches against some classic approaches and a set of un-
supervised approaches from the u-AWARE framework, considering different
combinations of evaluation measure, set of IR systems and number of merged
assessors. Test results highlight the greater effectiveness of our supervised
approaches with respect to the majority of the approaches. Additionally, the
impact of the training-set size on performance has been studied, stating that
even with a small training-set is possible to achieve good results.
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1
INTRODUCTION

In Information Retrieval, the problem of creating test collections that correctly

represent the reference scenario is crucial, in order to evaluate information

retrieval systems performance and improve them.

The concept of test collection has been introduced in ’60s by Ceryl Cleverdon

[1]: given a set of documents and a set of topics, a relevance judgement is as-

signed to each document for each topic. This evaluation process is historically

been performed by an expert team following the Cranfield paradigm, which is,

however, very economically demanding and time-consuming.

A modern approach to this task, in the field of crowdsourcing, is based on

the idea to collect and combine judgements from many crowd assessors, less

qualified than the experts but cheaper. The objective is to achieve a ground

truth as similar as possible to the expert team ground truth.

To collect this data, several crowdsourcing platforms, as Amazon Mechanical

Turk, are now available: organizations which ask for the crowd assessment can

post tasks on the platform, where users can find and perform them in exchange

for a reward.

Exploiting this new opportunity, in the last years many different approaches

have been developed in order to merge multiple crowd judgements [2–8].

Classic state of the art methods, given a set of crowd assessors’ judgements,

aim to create a merged ground truth from the judgements given by all the
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CHAPTER 1. INTRODUCTION

assessors. The most common approaches are Majority Vote, that creates a

ground truth assigning to each document the most popular judgement among

crowd assessors, and Expectation Maximization, that iteratively estimates

until convergence the document probability of relevance, and then assigns to

each document the most probable judgement.

In this thesis, a different methodology has been followed, according to that

used in the paper “AWARE: Exploiting Evaluation Measures to Combine Mul-

tiple Assessors”[9]: the basic idea is not to combine crowd assessors’ relevance

judgements in a single ground truth, but to evaluate IR systems on the judge-

ments given by every single assessor, and then combine the obtained measures

weighting each assessor on the basis of an estimation of their expertise level.

In the original AWARE paper [9], expertise level is estimated in an unsuper-

vised way using some dissimilarity measures, called GAPs, between evaluation

measures computed using assessors’ judgements as ground truth and measures

based on three dummy random assessors: a large GAP means a not-random

behaviour and then a high level of assessor’s expertise.

In the approaches subject of this thesis, called s-AWARE (supervised-AWARE),

assessors’ expertise is obtained in a supervised way looking at their perfor-

mance on a training set of topics. Some dissimilarity scores are calculated

between the evaluation measures computed on assessors’ judgements and the

same evaluation measures computed on the experts’ ground truth: a smaller

dissimilarity value means a higher expertise level.

This thesis work is about the development of such methods and their compari-

son against the approaches presented in [9], here called u-AWARE, Majority

Vote and Expectation Maximization.

Experiments are computed considering two different sets of runs, two different

evaluation measures and many different cardinalities for the set of assessors to

be merged (from 2 to 30): all the combinations are tested in order to determine

how the different approaches behave with respect to each parameter.

To compare approaches performance, RMSE and AP-Correlation are computed

between the merged measures obtained by each approach and the measures

obtained evaluating IR systems on experts’ ground truth.

2



The thesis chapters are structured as follows:

• Chapter 2 - Background: in the first two sections, we introduce the reader

to information retrieval and its main definitions and we describe the

evaluation measures that will be used in the experiments. In the rest of

the chapter we give an overview on crowdsourcing and its application in

information retrieval evaluation, reporting some of the state of the art

approaches

• Chapter 3 - AWARE Framework: we describe AWARE motivations and

methodologies and we explain our proposed approaches

• Chapter 4 - Experimental Setup: we describe experimental parameters

and the workflow of the experiments

• Chapter 5 - Experimental Results: we analyse the results of our experi-

ments, highlighting how s-AWARE approaches behave with respect to all

the other approaches

• Chapter 6 - Conclusions and Future Work: we summarize the results and

we outline possible future improvements of the s-AWARE framework

3
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2
BACKGROUND AND RELATED WORK

2.1 Information retrieval
Information retrieval is a part of information science which studies methods to

obtain relevant resources from a data collection, in order to satisfy an informa-

tion need from an user.

A more formal definition is given by Gerald Salton in 1968 [10]: "Information

retrieval is a field concerned with the structure, analysis, organization, storage,

searching, and retrieval of information."

The term "information" is very general and includes both text documents

(web pages, papers, books, articles,...) and multimedia content (music, images,

videos).

The main differences between Information Retrieval Systems (IRS) and database

management systems (DBMS) are about:

• Data structure: databases store data in a structured way, IR Systems

work with unstructured data, often using natural language

• Queries: database queries are unambiguous, IR queries are not

• Result quality: Data from databases is always correct in a formal sense,

because is unequivocally represented by the query; data retrieved by

IRSs might be or not to be relevant for the user

5



CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.1: Information retrieval process schema

The information retrieval process [10] consists of four main steps, shown in

Figure 2.1:

• Acquisition: Physical documents are digitalized and organized in collec-

tions, user’s information need is represented with a query

• Indexing: Documents are processed to create an inverted index, a data

structure in which all the terms are connected to the documents contain-

ing them. In order to create such an index, each document is initially

analysed to detect tokens (i.e. terms in text documents), then a list of

common words (called stopwords) is removed to keep only terms with

high information content. The resulting set of terms can then be pro-

cessed with stemming techniques, which replace each term with his root

(e.g. information, informed, informative,... → inform). Some terms which

are frequently used together are then composed (e.g. "inform retrieve"

is more specific than the two terms taken separately). At the end of the

process, a weight is assigned to each term-document pair, based on the

frequency of the term in the document.

• Retrieval: a retrieval model is used to find the most relevant documents

to the user query. To do this, the IRS matches query terms and inverted

index terms, searching for the best match.

6



2.2. IR EVALUATION

• Evaluation: to rate the effectiveness of the system, some evaluation

metrics are computed. In the next section we’ll introduce the concept of

relevance and describe the main evaluation metrics that will be used in

the thesis experiments.

2.2 IR evaluation

2.2.1 Cranfield paradigm and evaluation campaigns

The purpose of IR evaluation is to compute effectiveness measures of IRSs

comparing them and identifying strengths and weaknesses to be used to im-

prove systems performance. All the components of the IR pipeline contribute to

produce the ranked list of documents which will be evaluated, so the evaluation

process is related to all the IR process steps in Figure 2.1.

The standard for evaluation in IR is the Cranfield paradigm, developed in ’60

by Ceryl Cleverdon, which introduced the concept of experimental collection.

The first experiment [11], called Cranfield 1, was run to test four different

manual indexing methods over a collection of 18000 articles and papers. Each

document has been indexed by three experts, taking two years to complete the

process. Each index has then been used to retrieve documents based on some

simple queries written by the articles’ authors.

At the end of this retrieval phase, the results highlight that 35% of the queries

didn’t retrieve the correct document [1]: analysing the possible causes, Clever-

don understood that some errors were done by the experts while choosing

documents descriptors in indexing phase.

A second experiment, named Cranfield 2, has been run in a more structured

way to further investigate the indexing methods effectiveness. The main differ-

ence with the Cranfield 1, is that documents and topics (i.e queries) has now

been selected, creating a collection of 1400 documents and 221 queries (with

its own sets of relevance judgements on documents) faithfully representing

the domain of interest. Tests were run on 33 different indexing methods, and

results show that indexing methods based single terms perform better of meth-

ods based on term combinations. This new method of running tests allows to

reuse collections for different experiments or to reproduce past experiments.

In the last decades, the Cleverdon methodology has been followed in several
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evaluation Campaigns, whose purpose is creating test collections in a collabo-

rative way between different research groups.

Nowadays, the main evaluation campaigns are TREC 1(Text REtrieval Con-

ference) in the USA, CLEF 2 (Conference and Labs of Evaluation Forum) in

Europe, FIRE 3(Forum for Information Retrieval Evaluation) in India and

NTCIR 4(NII Testbeds and Community for Information access Research) in

Asia.

2.2.2 Test collection definition

According to what has just been said, we define [12] a test collection as a triple

C = {D,T,GT} where:

• D = {d1,d2, ...dn} is a set of documents

• T = {t1, t2, ...tm} is a set of topics

• GT is the ground truth.

To understand what the Ground Truth is, we first introduce the concept of

relevance. Relevance is a property that represent the capability of a document

to satisfy an user information need: relevance can be defined as a binary

property or a multi-graded property.

Let REL be a finite set of relevance degrees and let ¹ be a total order relation

on REL so that (REL,¹) is a totally ordered set.

We call non-relevant the relevance degree nr ∈ REL such that nr = min(REL).

The Ground truth is then defined as the function that assigns a relevance

judgement to every topic-document pair, formally:

Let D bet a finite set of documents and T a finite set of topics. The ground

truth is the function

GT :T ×D → REL

(t,d)→ rel
1https://trec.nist.gov/
2http://www.clef-initiative.eu/
3http://fire.irsi.res.in
4http://research.nii.ac.jp/ntcir/index-en.html
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Assessing each document for every topic would be a too long process: the

standard approach used in TREC to reduce the amount of necessary relevance

judgements is to use pooling.

To explain pooling is first necessary to introduce the concept of run as a function

that assigns to each topic a ranked list of documents. Given a natural number

N ∈N+ called run length, a run is defined as the function:

R :T → DN

t → r t = (d1,d2, ...,dn)

such as ∀t ∈ T,∀ j,k ∈ [1, N]‖ j 6= k ⇒ r t[ j] 6= r t[k] where r t[ j] is the j-th ele-

ment in the vector rt.

In Figure 2.2 is represented the pooling technique: given a set of runs for

the same topic, pooling consist of assessing only the top-k documents for each

run. All the other documents are considered not relevant for the given topic.

Figure 2.2: Pooling technique

9
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2.2.3 Evaluation measures

In this section, we will describe the most common evaluation measures as

reported in [12, 13].

2.2.3.1 Precision and Recall

The two main goals of IRS are finding all possible relevant documents and

retrieving only relevant documents. Two simple measures are defined to evalu-

ate a run based on the capability of achieving such properties.

Let D∗ be the the set of relevant documents for a given topic, and let D be

the set of all the documents retrieved by an IRS for the same topic. We de-

fine Precision as the fraction of relevant documents over all the retrieved

documents:

Prec = | D∗∩D |
| D |

We define Recall as the fraction of relevant documents retrieved by the IRS:

Rec = | D∗∩D |
| D∗ |

where | D∗ | is also called Recall Base (RB) for the topic.

Recall and Precision can be adapted to ranked lists of documents, restricting

to the first k retrieved documents: we talk therefore respectively of Rec@k and

Prec@k.

2.2.3.2 Average Precision

Precision and recall represent the two sides of the coin: trying to improve

precision, it is likely to worsen recall and vice versa. Average precision is one of

the most used measures as it tries to summarize both properties in a top-heavy

measure, meaning that runs with relevant documents on the top of the list are

judged better than the others.

Given a topic t ∈ T , a recall base RBt , REL = {nr, r}, a run r t of size N ∈N+

with relevance judgements r̂ t such that relevance weights are defined as:

∀i ∈ [1, N] , r̃ t =
0, i f r̂ t[i] = nr

1, i f r̂ t[i] = r

we can define Average Precision (AP) as :

AP = 1
RBt

N∑
k=1

r̃ t[k]
∑k

h=1 r̃ t[h]

k

10
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We can then define Mean Average Precision (MAP) as the mean of AP over the

topics:

MAP =
∑

t∈T AP(r t)
| T |

2.2.3.3 Normalized Discounted Cumulative Gain

Another family of measures is based on Cumulative Gain (CG): Let r t be a run

of size N ∈N+, where t ∈ T is a topic, and consider j ∈N+ | 1≤ j ≤ N. Let also r̃ t

be the relevance weights for the documents in the run, then the Cumulative

Gain at rank position j is defined as:

CG[ j] =
j∑

k=1
r̃ t[k]

A top heavy version of CG is called Discounted Cumulative Gain (DCG) and

uses a discounting function to progressively reduce document weight as the

ranking decrease. Given a run r t of size N ∈ N+ and b ∈ N+, we first define

discounted gain as:

dgb
r t

[k] =
r̃ t[k] i f k < b

r̃ t[k]
logb k otherwise

∀k ∈ [1, N]

Discounted cumulative gain can then be defined as:

DCG[ j] =
j∑

k=1
dgb

r t
[k]

DCG, as CG, is not a limited measure and the maximum value may be different

for every topic. To obtain a measure in range [0,1] , we introduce normalized

Discounted Cumulative Gain, a measures that compares DCG with the DCG

obtained on the ideal run.

The ideal run i(t) is the run where all relevant documents are retrieved with

the best possible ranking, and represents the perfect retrieval scenario for a

given topic. Normalized Discounted Cumulative Gain is defined as:

nDCG[ j] =
∑ j

k=1 dgb
r t

[k]∑ j
k=1 dgb

i t
[k]
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2.3 Collective intelligence, Human
computation and Crowdsourcing

"The idea behind digital computers may be explained by saying that these

machines are intended to carry out any operations which could be done by a

human computer."[14, 15]: this was the Alan Turing forecast about computers

in 1950. After a few decades, we can say that there are still tasks that can be

performed by a human and are impossible for digital computers, or in which

humans largely outperform computers.

Therefore, with the development of Information Technology, the more humans

depend on computers the more computers need human computation, defined

by von Ahn in 2005 as "a paradigm for utilizing human processing power to

solve problems that computers cannot yet solve"[15, 16]. Human computation

includes several different tasks in fields as artificial intelligence, cryptography,

genetic algorithms and in general human-computer interaction [15].

In this thesis, we focus on crowdsourcing, a concept related both to human

computation and collective intelligence, the intelligence generated by the inter-

action of multiple collaborating and cooperating agents, on the basic idea that

"no one knows everything, each one knows something".

The term crowdsourcing was first used by Jeff Howe in 2006 [17], as the union

of the two words "crowd" and "outsourcing": "Crowdsourcing is the act of taking

a job traditionally performed by a designated agent and outsourcing it to an

undefined, generally large group of people in the form of an open call".

The objective of crowdsourcing is leveraging the wisdom of the crowds to

compute tasks in a more convenient way, trying to achieve equal or better

performance with respect to the designated agent[18].

Crowdsourcing should not be confused with open-source production: in crowd-

sourcing, people are invited to respond to activities promoted by an organiza-

tion and they are motivated to respond for a variety of reasons, in open-source

projects, instead, there is no need for human computation by an organization

and the work is performed and utilized only by a community of users [19, 20].

An example of crowdsourcing is Threadless, an online clothing company based

on a community of artists that create, submit and evaluate designs for the

products to be realized and put on the market. Designers are economically
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rewarded for every accepted project, and the company benefits of distributed

and fast work, saving on hiring professional designers. The classical example

of what crowdsourcing is not is Wikipedia, a free online encyclopedia written

collaboratively by volunteers, where Wikipedia organization does not indicate

what articles need to be written.

Crowdsourcing applications in information technology are often related to

artificial intelligence: in this field, crowdsourcing has become a valid method

to obtain large amounts of labelled data to use for the training of algorithms

[21–23].

The two main questions about crowdsourcing are how to motivate people to

perform a task and how to control the crowd workers performance.

Main motivation factors can be:

• Monetary reward (e.g. in Crowdsourcing platforms: 2.3.1)

• Enjoyment (e.g in Games with a purpose: 2.3.2)

• Public reputation

• Integration in other processes (e.g. ReCAPTCHA: [24])

Some methods to control work quality can be:

• Redundancy: the task is assigned to more than one user, to detect poor

answers.

• Ground truth seeding: the first few assigned tasks are used as a quality

test of the worker, comparing the worker’s answers with a trusted source.

• Multilevel review: the work done by a set of workers is then reviewed

multiple times by other users.

• Expert review: some submissions are manually reviewed to check work-

ers’ reliability.

• Automatic check: some tasks are difficult to compute but can be automat-

ically checked with a minimal computational effort.

• Justification: in the case of subjective tasks, workers are required to give

a justification for their answers, to discourage spam answers.
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• Expertise check: some simple questions about the topic are asked to the

worker, to guarantee a minimum degree of knowledge

2.3.1 Crowdsourcing platforms

Most of the possible applications of crowdsourcing require the repetition of

simple operations: the smallest unit of work to be performed is called Human

Intelligence Task (HIT). Requesters, which can be individuals or organizations,

post HITs on crowdsourcing platforms, where crowd workers can find them

and perform tasks in exchange for a monetary reward.

The most popular crowdsourcing platforms are called Figure Eight 5 and

Amazon Mechanical Turk 6, which has more than 100 thousand active users

from 190 different countries [25].

Figure 2.3: Amazon Mturk

2.3.2 Games with a purpose

Another way to get useful information from the crowd is to collect data in

Games With a Purpose (GWAP). These online games are designed to drive

the user to complete intelligent tasks without him noticing. Luis von Ahn

first proposed the idea of these games [26]: his approach was based on the

competition between two users, so that every user is driven to give good

answers.

Some of the main tasks in which GWAPs can be exploited are:
5https://www.figure-eight.com/
6www.mturk.com
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• image annotation (e.g ESP game [27])

• object localization in images (e.g Peakaboom [28])

• document labelling (e.g GeAnn [29])

• text processing summarization (e.g Verbosity [30])

• web search improvement (e.g. PageHunt [31])

• medical tasks (e.g. Foldit [32])

Figure 2.4: Peakaboom Game interface
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2.4 Crowdsourcing in IR
In the last years, Crowdsourcing has begun to be applied to Information

retrieval tasks: most research has focused on finding strategies for reducing

the time, cost and effort of the work on tasks actually done by company workers.

Such tasks include the annotation of documents to be used, for example, in

learning to rank algorithms [33], relevance assessment of documents for ground

truth creation and other manual tasks necessary to IR systems testing and

usage.

Crowdsourcing has also been used to validate search results: in [34], Yan and

Kumar proposed an image search engine for mobile phones where questionable

data is validated on Mturk by crowd workers.

In the following, we describe how crowdsourcing is leveraged for relevance

evaluation and how can spam workers be detected.

2.4.1 Crowdsourcing for relevance evaluation

Before crowdsourcing development, the only available test collections were

those created in evaluation campaigns following the Cranfield paradigm al-

ready explained in section 2.2.1. New applications and studies, however,

present some new needs that have pushed towards a different way of cre-

ating such collections:

• Fast implementation: the classic development process might be too long

• Low-cost collections: the classic process might be too costly to be per-

formed by a single company

• Domain-specific collections: Standard collections might not be useful to

test some systems

• Collection extension: during the process, may be necessary to increase

the amount of data to be used in experiments

In order to compute collections in a crowdsourced way, every topic-document

pair is then given to a set of crowd workers (in the form of a HIT on crowd-

sourcing platforms), and each of them supplies his own relevance judgement

for the document on the given topic. In Figure 2.5 are represented an example
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of HIT on Mturk, and its XML representation.

Figure 2.5: Relevance evaluation task on MTurk

All the relevance judgements are then used, in place of the experts’ ground

truth, to evaluate IR systems’ performance.

A lot of studies [35–37] have been made to inspect the difference between

crowd judgements and expert judgements: the strong assumption on which

most of these studies rely on is that experts’ judgement is the gold standard,

meaning that experts’ judgement is the best judgement crowd workers can

reach. Even if this assumption is far to be proved [38], judgements provided

by crowd assessors often agree with experts’ judgements and, in particular,

crowd workers tend to agree a bit more with the experts when the document is
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relevant, and less when it is not relevant [35, 39], highlighting a limit of crowd

workers in detecting poor document performance.

Some studies analyse how different levels of expertise [40–42], nationality and

remuneration methods [43] of crowd assessors can lead to different accuracy in

results.

A more general study [44] tries to investigate what disagreement means,

saying that there’s no guarantee that all disagreement is due to workers’

ineffectiveness. In figure 2.6 we report the possible reasons for disagreement

described in [44].

Figure 2.6: Reasons for Crowd-expert disagreement

2.4.2 Noisy judgements

Connecting to what has just been said, we address now the main problem that

must be taken into consideration, reporting the main methods applied to solve

it: since most of the crowd assessors are motivated by monetary reward, a

non-negligible part of them [45] provide inaccurate judgements maximizing

earnings to the detriment of work quality.

Spam judgements can be classified [46] into:

• Sloppy workers, whose mistakes in judgement are honest ones, without

the intent to provide bad results. Possible causes of mistake can be

both the lack of clarity in the instructions of the HIT or a poor worker

competence.

• Random Spammers, that purposely randomize their judgements.

• Uniform Spammers, that use a fixed pattern in their judgements.
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Even if mechanisms described in section 2.3 can be used to reduce spam at the

source, to further improve crowd judgements accuracy two main strategies are

applied: spam filtering and assessor weighting.

Spam filtering is about removing spam assessors’ judgements. This approach

has been followed by Vuurens and De Vries in [46]: they provide two different

mechanisms to detect random spammers and uniform spammers. Random

spammers are detected computing the average squared distance in relevance

labels between each assessor’s judgements and the judgements of all other

assessors. Uniform spammers are detected counting the averaged squared

number of disagreements that each worker has with other workers while

repeating voting patterns. Other spam-detection algorithms are developed

using Machine Learning techniques, as reported in [47].

The risk to be taken while filtering assessors, is to falsely reject workers that

don’t agree with the majority vote [46].

Another way to take into account the different quality of assessors’ judgements

is assigning a weight to each assessor, used to aggregate judgements in a more

efficient way.

The work of this thesis follow this school of thought: in the next section will be

described some methods for aggregating crowd judgements, some of them will

be compared with the thesis work.

2.5 Crowdsourcing techniques
In this section, we present some of the state-of-the-art approaches for exploit-

ing crowd judgements in place of expert relevance judgements in retrieval

evaluation.

The classic approach to the problem is to create a merged ground truth

from assessors’ judgements, to be used in place of expert ground truth. The

most common techniques in this category are Majority vote (Section 2.5.1),

with its weighted variants [6, 48, 49], and Expectation maximization (Section

2.5.2), but several other approaches can be found in literature. In TurkRank

(Section 2.5.4) the ground truth is estimated through an algorithm working on

a graph representation of the assessors’ judgements, in GeAnn game (Section

2.5.3), ground truth is estimated merging crowd judgements on small portions

of the documents’ corpus, in Skierarchy (Section 2.5.5) machine learning, crowd
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assessors and experts are used together to compute quality judgements.

A different approach to the problem is to independently use the judgements

given by every single crowd assessor to evaluate IRS effectiveness, merging the

assessors’ data at measure level. In AWARE probabilistic framework [9] this

approach is followed weighting assessors according to accuracies computed in

an unsupervised way.

S-Aware, subject of this thesis, is proposed as a new component of the

AWARE framework, based on supervised methods for estimating assessors’

accuracies. Aware framework will be the subject of the next chapter.

2.5.1 Majority vote

The most intuitive way to achieve a ground truth based on crowd assessors’

judgement is to use the Majority Vote (MV) algorithm: for every topic-document

pair, the ground truth judgement is set to the judgement given by the majority

of crowd assessors.

Formally, let D and T be respectively a set of documents and a set of topics, let

(REL,¹) be a totally ordered set of relevance degrees, let Λ= {W1, ...,Wk, ...,Wl}

be a set of workers and let GTk(t,d) ∈ {0,1} be the relevance judgement given

by assessor k for topic t on document d. The ground truth value for (t,d) pair

can be computed as:

GT(t,d)= argmaxg∈REL

l∑
k=1

1{GTk(t,d)=g}

where 1{GTk(t,d)=g} is equal to 1 if assessor k judged document d as relevant for

topic t with relevance grade g, 0 otherwise.

Despite its simplicity, this algorithm works quite well, but does not take into

account the possible different levels of expertise among assessors.

To overcome this problem, several weighted versions of majority vote has been

developed [6, 48, 49].

The idea behind this weighted algorithms is that judgements from crowd

assessors must be weighted by a coefficient representing the assessor accuracy.

If wk is the accuracy coefficient assigned to assessor k, the ground truth value

for (t,d) pair can be expressed as:

GT(t,d)= argmaxg∈REL

l∑
k=1

wk1{GTk(t,d)=g}
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Algorithms [48, 49] differ in how this accuracy coefficients are computed.

In [49] the problem of compute weights is treated as a machine learning domain

adaptation problem, modelling each assessor’s knowledge with a labelling

function: weights wk are computed minimizing

∥ g−wk fk ∥2
2

where fk is the labelling function obtained training on relevance judgements

given by assessor k and g is an estimate of the gold labelling function obtained

training on all crowd assessors’ judgements.

In [49] a second, more advanced, version of the algorithm is then presented,

trying to use labelling functions that model assessor features.

In [48] weights are estimated in an iterative way, with an algorithm that

consists of four main steps, where steps 2, 3 and 4 are looped until results

converges:

1. Initialization: Set uniform weights for assessors

2. Loop: Estimate current gold relevance judgements with weighted MV

algorithm.

3. Loop: Compute assessor weight as

wk =
# agreements between current gold judgements and assessor k

# documents judged by assessor k

4. Loop: Emphasize weights computing

wk = 2wk −1

The operation on step 4 is done in order to give higher weight to good assessors,

rapidly downplaying spammers (spammers’ opinion is less considered).

For completeness, we present a probabilistic version of the MV algorithm,

presented in [50]. We consider each assessor’s judgement as a Binomial random

variable and we assume such variables to be i.i.d. Then, the ground truth value

for a given topic-document pair can also be modelled as a Binomial variable of

parameter:

pt,d = 1
M

M∑
k=1

ASk(t,d)
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where M is the number of assessors and ASk(t,d) is the generic random vari-

able modelling the relevance judgement of assessor k on topic t for document

d.

2.5.2 Expectation maximization

Expectation Maximization (EM) algorithm [2] concurrently estimates docu-

ments’ relevance and workers’ accuracy until convergence.

As described in [2, 9], we define pt[ g] =P[GT(t, ·)= g] as the probability that

a given document has relevance grade g and we define a latent confusion

matrix πt[ ·, ·] (k) for each assessor k, representing t topic assessor’s judgements

probability based on the true ones:

πt[ g,h] (k)=P[GTk(t, ·)= h |GT(t, ·)= g]

is the probability that the assessor k provides relevance grade h for document

d, given that document d has g as true relevance judgement.

An estimate of such value can be computed as:

πt[ g,h] (k)= #assessor judgements with grade h when true grade is g
#total assessor judgements when true grade is g

The EM algorithm consists of five steps:

1. Initialize pt[ g] and πt[ ·, ·] (·)

2. Compute Maximum likelihood estimates of pt[ g] and πt[ ·, ·] (·)

π̃t[ g,h] (k)=
∑|D|

d=1 1{GT(t,d)=g}1{GTk(t,d)=h}∑
h∈REL

∑|D|
d=1 1{GT(t,d)=g}1{GTk(t,d)=h}

p̃t[ g] =
∑|D|

d=1 1{GT(t,d)=g}

| D |
Where 1{GT(t,d)=g}1{GTk(t,d)=h} is equal to 1 if and only if assessor k judged

the document d as relevant with relevance grade h, given that the correct

relevance grade is g.

3. Compute the new estimate of the ground truth with:

P [GT(t,d)= g |GT·(t, ·),πt[ ·, ·] (·)]=

= p̃t[ g]
∏m

k=1
∏

h∈REL(π̃t[ g,h] (k))1{GTk(t,d)=h}∑
g∈REL p̃t[ g]

∏m
k=1

∏
h∈REL(π̃t[ g,h] (k))1{GTk(t,d)=h}
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4. Repeat steps 2 and 3 until the results convergence

5. Define relevance labels: for each document label g is assigned if g is the

label with maximum probability of relevance. In binary case, documents

are set to relevant if pt[1] ≥ 0.5.

Since EM algorithm finds a local optimum value for relevance probabilities and

latent matrices, a crucial point is defining the initial values for these variables.

Several different strategies can be found in literature:

• random initialization [2]

• MV seeding: MV algorithm is used to find the initial ground truth rele-

vance labels [3]

• Semi supervised approach: a small set of expert labels is used together

with MV estimated labels[5]

• Assessors’ honesty hypothesis: variables are initialized assuming that

assessors are honestly attempting to give correct answers, so elements

in the principal diagonal of latent confusion matrices are initialized to a

high value (πt[α,α] (k)= 0.9) [4]

2.5.3 GeAnn

GeAnn is a term association game proposed at the TREC 2011 crowdsourcing

Track [29]. The idea behind this game is to collect relevance judgements from

the crowd using a game with a purpose.

Instead of collecting judgements on documents as a whole, the judgement

process is broken down onto term level. In Figure 2.7 is represented the game

interface: each document sentences are taken separately, and user goal is

to match the main keyword of the sentence with the correct bucket. In a

postprocessing step, sentence-level judgements are aggregated in two different

ways, using a MV algorithm or a weighted MV using a reliability function

based on assessor agreement with some gold judgements.
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Figure 2.7: screen view of the geAnn game

2.5.4 TurkRank

TurkRank [7] is a network based approach for detecting assessors’ trustwor-

thiness. Trustworthiness is incrementally updated computing both crowd as-

sessors inter-agreement and gold standard agreement: the more an assessor

agrees with the others, the greater is his trustworthiness.

In Figure 2.8 is represented an example of network model, nodes represent

assessors (both crowd and gold) and edges represent agreement between asses-

sors.

TurkRank is implemented using a modified version of the PageRank with

Priors (PRwP) algorithm [51], where assessors take the place of web pages.

Trustworthiness is computed as:

π(v)i+1 = (1−β)

(
din(v)∑
u=1

p(v | u)π(i)(u)

)
+βpv

where 0≤β≤ 1 is a parameter, and u = 1, ...,din(v) are the assessors that agree

with v. To the gold standard vertex is assigned a pv = 1 prior probability, setting

pv = 0 for all other nodes, so if β=1 only gold standard assessor can accumulate
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trust, if 0 ≤ β≤ 1 assessors’ agreement and gold standard agreement will be

combined.

Figure 2.8: Example of network model, showing crowd assessors agreements between
crowd assessors and with gold standard

2.5.5 Skierarchy

Skierarchy [8] is a hierarchical approach developed by SetuServ inc. to test

how crowdsourcing can be used in domain specific data analytic tasks, that are

currently managed only by domain experts.

The base idea is that experts’ judgement cannot be eliminated, but can be

significantly reduced if used together to other types of assessments: a small

number of domain experts are used to train and supervise a large set of

crowd assessors. Experts break down the complex tasks into crowdsourceable

microtasks, train and supervise crowd assessors while performing microtasks

and solve difficult microtask that crowd assessors are not able to solve.

In order to improve crowd assessor performance, a machine learning algo-

rithm is exploited to predict scores for the microtasks and to create annotation

suggestion to help the assessor in the assessing process (Figure 2.9).

The steps of Skierarchy process are:

• Crowd training: crowd workers are asked to evaluate a set of documents.

Experts then examine the results and explain to crowd assessors their
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Figure 2.9: Hierarchy of assessors used in Skierarchy

errors in assessing documents.

• Machine learning Model: the judgements are then used as training set for

a ML algorithm that uses logistic regression to classify all the remaining

documents in different classes, computing a relevance score for each

document.

• Crowd annotation: the documents are divided in buckets based on the ML

algorithm scores, each bucket is assigned to a crowd assessor. Buckets

with higher scores are assigned to the assessors that better performed in

the training phase, because this documents are like to be relevant end

we aim to avoid misses.

• Automatic error correction: ML algorithm is retrained using the com-

plete annotated dataset, and is used to compute relevance scores on the

documents using 10 fold validation. Documents for which algorithm and

assessor disagree are then revised by the assessors to determine which

is the correct judgement.
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AWARE FRAMEWORK

The work of this thesis it based on the work presented in [9], that addresses

the problem of ground truth creation from a different point of view with respect

to classical approaches described in the previous chapter.

AWARE (Assessor-driven Weighted Averages for Retrieval Evaluation) [9] prob-

abilistic framework, differently from all other approaches, allows to combine

assessors’ knowledge at measure level, instead of combining judgements at

pool level: Figure 3.1 represents this methodology.

The main idea that motivates this decision is that aggregation intrinsically

implies loss of information, and then postponing the aggregation process can

lead to a more accurate measure computation.

Even small errors in merged ground truth are in fact propagated while comput-

ing evaluation measures, and the same error at pool level can have a different

impact on different measures or systems.

The AWARE framework describes different ways in which the evaluation

measures based on the ground truth generated by each assessor can be merged

in a single measure, called the AWARE version of the measure.

In order to formally define how this merged measures are computed, we

define the judged run for assessor k as the function which assigns a relevance

degree to each retrieved document in a run.
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CHAPTER 3. AWARE FRAMEWORK

Figure 3.1: Classic approaches methodology vs AWARE methodology

(t, r t,k)→ r̂k
t = (GTk(t,d1),GTk(t,d2), ...,GTk(t,dn))

The simplest way to aggregate crowd assessors’ measures is to assume that

all the assessors are equally responsible for relevance evaluation: in this case,

measures are aggregated giving the same importance to the measures from

each assessor.

This is the so called uniform AWARE version of the measure, defined as follows:

aware−m(t, r t)uni = 1
m

m∑
k=1

µ
(
r̂k

t

)
where m is the number of merged crowd assessors, and µ

(
r̂k

t
)

is the evaluation

measure computed on run r t according to k-th assessor judgements.

This methodology might already be sufficient to improve measure computa-

tion: we report a simple example [9] of the comparison between uni-AWARE

approach and the classic Majority vote approach.

Lets consider a pool containing 3 relevant documents and run of 5 documents

where first and third documents are relevant

r̂ t = (1,0,1,0,0)

Average precision for this run can be computed as described in section 2.2.3

AP (r̂ t)=
1
1 + 2

3

3
= 0.5556
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Let three assessors evaluate the documents in the run, giving different judge-

ments.

r̂1
t = (1,1,0,0,0) r̂2

t = (1,1,1,0,0) r̂3
t = (0,1,1,0,1)

With MV approach, we can compute a merged ground truth and then we

can compute AP with respect to the MV pool:

r̂MV
t = (1,1,1,0,0)→ AP

(
r̂MV

t

)
=

1
1 + 2

2 + 3
3

3
= 1.00

which represents a 80% error with respect to the gold version of the measure.

With AWARE approach we compute AP using the single assessors’ judgements

and merge them into the aware version of the measure:

AP
(
r̂1

t
)= 1

1 + 2
2

3
= 0.67 AP

(
r̂2

t
)= 1

1 + 2
2 + 3

3

3
= 1.00 AP

(
r̂3

t
)= 1

2 + 2
3 + 3

5

3
= 0.59

aware− AP(r̂ t)uni = 1
3

(
AP

(
r̂1

t
)+ AP

(
r̂2

t
)+ AP

(
r̂3

t
))= 0.75

which represents only a 35% error with respect to the gold version of the

measure.

Motivated from this results, and from the belief that real crowd assessors

are far to be uniformly experienced on the analysed topics, we move to a

weighted version of the AWARE measure, in which each assessor is weighted

by a score representing its judgement accuracy:

aware−m(t, r t)=
m∑

k=1
µ

(
r̂k

t

)
ak(t)

where accuracies ak(t) can be computed at an overall level or topic by topic.

AWARE framework provides a wide range of accuracy estimators for crowd

assessors accuracy, that can be divided into two main classes:

• u-AWARE approaches, presented in [9] and described in section 3.2, pro-

vide unsupervised estimators for accuracy scores based on comparisons

between crowd assessors and random assessors.

• s-AWARE approaches: original contribute of this thesis described in

section 3.3, provide supervised estimators for accuracy scores based on
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CHAPTER 3. AWARE FRAMEWORK

comparisons between crowd assessors and the gold standard on some

training topics.

Comparisons in both u-AWARE and s-AWARE methods use some dissimilarity

measures between assessors measures.

Since it’s not clear how the dissimilarity between two assessors can be correctly

computed, different types of measures are considered. In section 3.1 we describe

the different dissimilarity measures used in AWARE framework estimators.

3.1 Dissimilarity definitions
In order to explore a wide range of ways in which an evaluation measure can

be different from another, we analyze three categories of dissimilarities:

• Measure dissimilarity: the dissimilarity is computed using directly the

values of the measures

• Distribution dissimilarity: the dissimilarity is computed using the proba-

bility distributions of the measures, in particular we measure how much

different is each assessors’ distribution with respect to the gold standard

distribution

• Ranking dissimilarity: systems are sorted by measure value and dissimi-

larity is computed in term of ranking comparisons

3.1.1 Measure dissimilarity

Frobenius Norm Given an m×n matrix A , its Frobenius Norm is

∥ A ∥F=
√√√√ m∑

i=1

n∑
j=1

| ai j |2

Using Frobenius norm, the dissimilarity between two measure matrices can be

computed as ∥ M1 −M2 ∥F

Root Mean Squared Error Given an two vectors X and Y , their RMSE

RMSE =
√√√√ m∑

i=1

(X i −Yi)2

m
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3.1.2 Distribution dissimilarity

Kullback-Leibler Divergence Kullback-Leibler Divergence is a measure

of how a probability distribution Y is different from a reference distribution X .

In order to use KLD for our purposes, we must estimate the probability dis-

tribution (PDF) of the assessors’ performance measures. To do this, we use

Kernel density estimation (KDE): given a vector X of m elements, the KDE

estimation of its PDF is:

f̂X (x)= 1
mb

m∑
i=1

K
(

x− X i

b

)
where K is a function satisfying

∫ ∞
−∞ K(x)dx = 1 and b is a smoothing function

called bandwidth. Once computed PDFs, Kullback-Leibler Divergence is given

by:

DKL (X ∥Y )=
∑
x

ln

(
f̂X (x)
f̂Y (y)

)
f̂X (x)

3.1.3 Ranking dissimilarity

Kendall Tau Correlation Considering two vectors X and Y of m elements,

we can define their Kendall’s τ correlation as

τ (X ,Y )= C−D
m(m−1)/2

where C is the number of pairs ranked in the same order in X and Y, and D is

the number of discordant pairs.

AP correlation AP correlation is a top heavy measure inspired by Kendall’s

Tau that gives more importance to top ranked elements.

Considering two vectors X and Y of m elements, we can define their AP

correlation as

τAP (Y , X )= 2
(m−1)

m∑
i=2

C(i)
i−1

−1

where C(i) is the number of items above rank i in X which are ranked above

x[i] in Y.
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3.2 u-AWARE accuracy computation
u-AWARE part of the framework [9] describes several methods to merge to-

gether performance measures form multiple assessors based on unsupervised

estimators for crowd assessors’ accuracies.

To evaluate accuracy, we compute the dissimilarity between evaluation mea-

sures based on the crowd assessor’s judgements and measures based on judge-

ments coming from different types of random assessors’: the greater the dis-

similarity, the better the crowd assessor’s accuracy.

Figure 3.2: u-AWARE accuracy is computed with dissimilarity measures between
crowd assessors and different types of random assessors

A first classification between accuracy scores can be done looking at gran-

ularity: we can compute a score for each topic (then we have topic-by-topic

granularity - tpc) or a single score for all the topics (then we have single score

granularity - sgl).

In order to compute both sgl and tpc accuracy scores, two main steps are

followed:

• GAP computation: Evaluation measures are computed taking as ground

truth the judgements given by each crowd assessor. The same evaluation

measures are computed taking as ground truth the judgements given

by three classes of random assessors, which randomly assess documents
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3.2. U-AWARE ACCURACY COMPUTATION

with different probability of relevance (p = 0.05; p = 0.50; p = 0.95). GAP

is then computed between assessor measures and random measures

(Figure 3.2).

• Weight computation: the three GAP dissimilarities are aggregated to

compute accuracy

In the next paragraphs five different GAP approaches and three weight ap-

proaches will be described in detail. In Figure 3.3 are shown the 15 combina-

tions of GAP and weight approaches tested in [9]. AWARE algorithms for sgl

and tpc accuracy weights are shown in Algorithms 1 and 2.

Figure 3.3: AWARE GAP-Weight combinations

3.2.1 GAP

Let S be a set of IR systems and let T be a set of topics: we define a | T | × | S |
matrix containing the values of a performance measure computed on the runs

generated by each system for each topic. Figure 3.4 represent such matrix and

some notation: Mk(·, s) and Mk(t, ·) are respectively the marginal mean across

the rows and across the columns.

According to definition given in section 3.1, we describe how each measure is

exploited to compute unsupervised GAPs.
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Figure 3.4: | T | × | S | matrix for the assessor measures

While describing GAP computation, we describe also how each GAP is nor-

malized to obtain comparable scores: each GAP measure G′ is normalized in

the [0,1] range, where G′ = 0 means that assessor follows the behaviour of the

random assessor, G′ = 1 means that assessor k is far from being a random

assessor.

Frobenius Norm Frobenius norm GAP is computed as the norm of the

difference between assessor’s measures and random measures

Gp
k =∥ Mk −Mp

h ∥F Gp
k (t)=∥ Mk(t, ·)−Mp

h (t, ·) ∥F

where Mp
h represent measures from h-th random assessor assessing relevant

documents with probability p.

To obtain values in the range [0,1], the following normalization is applied:

G′ = G√
| T | · | S |

Root Mean Squared Error RMSE GAP is computed as the RMSE between

assessor’s measures and random measures. In the sgl case, measures are

averaged by topic before RMSE computation.

Gp
k = RMSE

(
Mk(·,S)−M

p
h(·,S)

)
Gp

k (t)= RMSE
(
Mk(t, ·)−Mp

h (t, ·))
Since evaluation measures take value in the [0,1] range, then also RMSE takes

values in that range. RMSE=0 means no difference from random assessor, so

no normalization is required.

G′ =G
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3.2. U-AWARE ACCURACY COMPUTATION

Kullback-Leibler Divergence KLD GAP is computed as the KLD between

the PDF of assessor measures and the PDF of random measures.

Gp
k = DKL

(
Mk(·, ·) ∥ Mp

h (·, ·)) Gp
k (t)= DKL

(
Mk(t, ·) ∥ Mp

h (t, ·))
KLD takes values in [0,+∞) :in order to obtain values in the range [0,1],

the following normalization is applied:

G′ = 1− e−βG

where β is a positive real number.

Kendall Tau Correlation Tau correlation GAP is computed as the correla-

tion between the system rankings induced respectively by crowd and random

assessors’ measures.

Gp
k = τ

(
Mk(·,S), M

p
h(·,S)

)
Gp

k (t)= τ(
Mk(t, ·), Mp

h (t, ·))
High correlation means small dissimilarity from random assessors, and then a

poor performance. To obtain values in the range [0,1], the following normaliza-

tion is applied:

G′ = 1− |G |
AP correlation AP correlation GAP is computed as the correlation between

the system rankings induced respectively by crowd and random assessors’

measures.

Gp
k = τAP

(
Mk(·,S), M

p
h(·,S)

)
Gp

k (t)= τAP
(
Mk(t, ·), Mp

h (t, ·))
To obtain values in the range [0,1], we apply the same normalization of Kendall

tau GAP:

G′ = 1− |G |

3.2.2 Weight

The three ways we use to aggregate GAPs from random assessors are:

• Minimal Dissimilarity: the accuracy weight is computed as the minimum

GAP from the tree random assessor classes. In this case we consider the

value for which is impossible to the crowd assessor to be closer to another

random assessor.

ak = min
((

G0.05
k

)′
,
(
G0.50

k
)′

,
(
G0.95

k
)′)
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• Minimal Squared Dissimilarity: the accuracy weight is computed as the

minimum squared GAP from the tree random assessor classes. In this

case we reason sa in the previous case, but we aim to emphasize small

GAPs.

ak = min
(((

G0.05
k

)′)2
,
((

G0.50
k

)′)2
,
((

G0.95
k

)′)2
)

• Minimal Equi-Dissimilarity: the accuracy weight is computed as the sum

of the three GAPs. Here we state that good assessors have to behave

different from all three random behaviour under consideration.

ak =
(
G0.05

k
)′+ (

G0.50
k

)′+ (
G0.95

k
)′
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Algorithm 1: How to compute sgl accuracy with u-AWARE
Data: T set of topics; p ∈ {0.05,0.50,0.95} probability of relevance for random assessor

judgements; H ∈N number of random assessors replicates ∀p; r̂k
t ∀t ∈ T ground truth

generated by assessor k; r̂p
t,h ∀t ∈ T ground truth generated by the h-th random

assessor of level p
Result: ak sgl accuracy score for k-th assessor

1 /* Compute the measures Mk for the k-th assessor and Mp
h for each random assessor */ ;

2 Mk ← compute m(·) on r̂k
t ;

3 Mp
h ← compute m(·) on r̂p

t,h∀h = {1, ...,H} and ∀p ∈ {0.05,0.50,0.95};

4 /* compute and normalize GAP Gp
k,h with respect to each random assessor ∀h = {1, ...,H} and

∀p ∈ {0.05,0.50,0.95} */
5 for h ∈ 1, ...,H do
6 if f robenius norm then
7 Gp

k,h =∥ Mk −Mp
h ∥F ∀p ∈ {0.05,0.50,0.95} /* GAP computation;

8
(
Gp

k,h

)′ = Gp
k,hp|T|·|S| ∀p ∈ {0.05,0.50,0.95} /* [0,1] normalization;

9 else if RMSE then
10 Gp

k,h = RMSE
(
Mk(·,S)−M

p
h(·,S)

)
/* GAP computation;

11
(
Gp

k,h

)′ =Gp
k,h ∀p ∈ {0.05,0.50,0.95} /* [0,1] normalization;

12 else if KL divergence then
13 Gp

k,h = DKL
(
Mk(·, ·) ∥ Mp

h (·, ·)
)

/* GAP computation;

14
(
Gp

k,h

)′ = 1− e−βGp
k,h ∀p ∈ {0.05,0.50,0.95} /* [0,1] normalization;

15 else if K endall Tau then
16 Gp

k,h = τ
(
Mk(·,S), M

p
h(·,S)

)
/* GAP computation;

17
(
Gp

k,h

)′ = 1− |Gp
k,h | ∀p ∈ {0.05,0.50,0.95} /* [0,1] normalization;

18 else if AP correlation then
19 Gp

k,h = τAP

(
Mk(·,S), M

p
h(·,S)

)
/* GAP computation;

20
(
Gp

k,h

)′ = 1− |Gp
k,h | ∀p ∈ {0.05,0.50,0.95} /* [0,1] normalization;

21 /* Aggregate the GAP with respect to the random assessors replicates */

22
(
Gp

k

)′ ← mean
((

Gp
k,h

)′)
23 /* compute assessor accuracy weight */
24 if minimal dissmilarity then

25 ak = min
((

G0.05
k

)′
,
(
G0.50

k

)′
,
(
G0.95

k

)′)
26 else if minimal squared dissmilarity then

27 ak = min
(((

G0.05
k

)′)2
,
((

G0.50
k

)′)2
,
((

G0.95
k

)′)2)
28 else if minimal equi−dissmilarity then

29 ak =
(
G0.05

k

)′+ (
G0.50

k

)′+ (
G0.95

k

)′

37



CHAPTER 3. AWARE FRAMEWORK

Algorithm 2: How to compute tpc accuracy with u-AWARE
Data: T set of topics; H ∈N number of random assessors replicates ∀p ∈ {0.05,0.50,0.95}; r̂k

t
∀t ∈ T ground truth generated by assessor k; r̂p

t,h ∀t ∈ T ground truth generated by the
h-th random assessor of level p

Result: ak vector of | T | elements containing tpc accuracy scores for k-th assessor
1 /* Compute the performance measures Mk for the k-th assessor and Mp

h for each random

assessor */ ;
2 Mk ← compute m(·) on r̂k

t ;
3 Mp

h ← compute m(·) on r̂p
t,h∀h = {1, ...,H} and ∀p ∈ {0.05,0.50,0.95};

4 /* compute and normalize GAP Gp
k,h(t) with respect to each random assessor ∀h = {1, ...,H}

and ∀p ∈ {0.05,0.50,0.95} */
5 for h ∈ 1, ...,H, t ∈ 1, ...,T do
6 if f robenius norm then
7 Gp

k,h(t)=∥ Mk(t, ·)−Mp
h (t, ·) ∥F ∀p ∈ {0.05,0.50,0.95};

8
(
Gp

k,h(t)
)′ = Gp

k,h(t)p|S| ∀p ∈ {0.05,0.50,0.95};

9 else if RMSE then
10 Gp

k,h(t)= RMSE
(
Mk(t, ·)−Mp

h (t, ·)
)
∀p ∈ {0.05,0.50,0.95};

11
(
Gp

k,h(t)
)′ =Gp

k,h(t) ∀p ∈ {0.05,0.50,0.95};

12 else if KL divergence then
13 Gp

k,h(t)= DKL
(
Mk(t, ·) ∥ Mp

h (t, ·)
)
∀p ∈ {0.05,0.50,0.95};

14
(
Gp

k,h(t)
)′ = 1− e−βGp

k,h(t) ∀p ∈ {0.05,0.50,0.95} ;

15 else if K endall Tau then
16 Gp

k,h(t)= τ
(
Mk(t, ·), Mp

h (t, ·)
)
∀p ∈ {0.05,0.50,0.95} ;

17
(
Gp

k,h(t)
)′ = 1− |Gp

k,h(t) | ∀p ∈ {0.05,0.50,0.95};

18 else if AP correlation then
19 Gp

k,h(t)= τAP

(
Mk(t, ·), Mp

h (t, ·)
)
∀p ∈ {0.05,0.50,0.95};

20
(
Gp

k,h(t)
)′ = 1− |Gp

k,h(t) | ∀p ∈ {0.05,0.50,0.95} ∀p ∈ {0.05,0.50,0.95};

21 /* Aggregate the GAP with respect to the random assessors replicates */

22
(
Gp

k (t)
)′ ← mean

((
Gp

k,h(t)
)′)∀p ∈ {0.05,0.50,0.95} and ∀t ∈ {1, ..., | T |}

23 /* compute assessor accuracy weight */
24 for t ∈ {1, ..., | T |} do
25 if minimal dissmilarity then

26 ak(t)= min
((

G0.05
k (t)

)′
,
(
G0.50

k (t)
)′

,
(
G0.95

k (t)
)′)

27 else if minimal squared dissmilarity then

28 ak(t)= min
(((

G0.05
k (t)

)′)2
,
((

G0.50
k (t)

)′)2
,
((

G0.95
k (t)

)′)2)
29 else if minimal equi−dissmilarity then

30 ak(t)=
(
G0.05

k (t)
)′+ (

G0.50
k (t)

)′+ (
G0.95

k (t)
)′
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3.3 s-AWARE accuracy computation
The evaluation of crowdsourcing methods is based on comparisons between

measures based on crowd ground truth and measures computed on a trusted

ground truth (e.g. NIST assessors), also called Gold standard. Based on this

known assumption, we can state that judgements given by an assessor will be

correct if they are equal to gold judgements given by experts.

As discussed in chapter 2, trustworthy data can be effectively exploited to

compute accuracy weights [5, 7].

In s-AWARE approaches we aim to combine the methodology of AWARE frame-

work and the benefits of supervised weighting techniques, providing some su-

pervised estimators for assessors’ accuracies: the main idea behind s-AWARE

approaches is that accuracy scores for assessors are computed with dissimilar-

ities between each assessor’s measures and gold measures (Figure 3.5). The

smaller the dissimilarity, the better accuracy is assigned to the assessor.

Figure 3.5: s-AWARE accuracy is computed with dissimilarity measures between
crowd assessors and the gold standard on a training topicset

In order to execute s-AWARE approaches, then, a trusted dataset is needed

to compute such scores. This prerequisite can be seen as a limit, because expert

judgements are needed, even if for a small dataset. Nevertheless, as seen in

2.3, some test assessments are often given to crowd assessors in order to detect

spammers, so data related to a small set of topics might be already computed,

or can be computed with low effort: this will be called training topicset from

now on.

Gold-crowd dissimilarities, called GAPs in analogy to dissimilarities computed
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for u-AWARE approaches, are then normalized and directly used as accuracy

scores. Algorithm 3 summarizes the shows the pseudo code to compute accuracy

scores with s-AWARE.

3.3.1 GAPs and normalization

According to definition given in section 3.1, we describe how each measure is

exploited to compute supervised GAPs.

GAPs are normalized in the [0,1] range, but normalized GAP in s-AWARE has

a different interpretation than normalized GAP in u-AWARE.

In u-AWARE, GAP is normalized to be a dissimilarity measure, that is an

higher GAP means an higher dissimilarity with the random assessor and then

an higher accuracy for the assessor.

In s-AWARE, on the contrary, an high GAP means high dissimilarity with the

gold standard behaviour, then the normalization must map this GAP to a low

accuracy value. Normalized GAP is used as accuracy score for the assessor, and

can be interpreted as a measure of the closeness between crowd assessor and

gold standard.

Let S be a set of IR systems and let T be the set of topics used in the training

phase (subsequently training topicset): we define a | T | × | S | matrix containing

the values of a performance measure computed on the runs generated by each

system for each topic according to the judgements given by assessor k.

Frobenius Norm Frobenius norm GAP is computed as the norm of the

difference between assessor’s measures and gold measures

Gk =∥ Mk −M∗ ∥F

where M∗ represent the gold measures.

High accuracy is obtained when norm assumes small values. To obtain values

in the range [0,1], the following normalization is applied:

G′ = 1− G√
| T | · | S |

Root Mean Squared Error RMSE GAP is computed as the RMSE between

assessor’s measures and gold measures averaged by topic.

Gk = RMSE
(
Mk(·,S)−M

∗
(·,S)

)
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High accuracy is achieved when RMSE is low. To obtain values in the range

[0,1], the following normalization is applied:

G′ = 1−G

Kullback-Leibler Divergence KLD GAP is computed as the KLD between

the PDF of assessor measures and the PDF of gold measures.

Gk = DKL
(
Mk(·, ·) ∥ M∗(·, ·))

KLD takes values in [0,+∞) :in order to obtain values in the range [0,1],

the following normalization is applied:

G′ = e−βG

where β is a positive real number.

Kendall Tau Correlation Tau GAP is computed as the correlation between

the system rankings induced respectively by crowd and gold assessors’ mea-

sures.

Gk = τ
(
Mk(·,S), M

∗
(·,S)

)
To obtain values in the range [0,1], the following normalization is applied:

G′ =|G |

AP correlation AP correlation GAP is computed as the correlation between

the system rankings induced respectively by crowd and gold assessors’ mea-

sures.

Gk = τAP

(
Mk(·,S), M

∗
(·,S)

)
To obtain values in the range [0,1], the following normalization is applied:

G′ =|G |
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Algorithm 3: How to compute Assessor scores with s-AWARE
Data: T training topicset; r̂k

t ∀t ∈ T ground truth generated by assessor k; r̂ t ∀t ∈ T experts
ground truth

Result: ak accuracy score for assessor k
1 /* Compute the performance measures Mk for the k-th assessor and the gold standard

measures M* */ ;
2 Mk ← compute m(·) on r̂k

t ;
3 M∗ ← compute m(·) on r̂ t;
4 /* compute and normalize GAP Gk with respect to the gold standard*/
5 if f robenius norm then
6 Gk =∥ Mk −M∗ ∥F /* GAP computation;

7 ak = 1− Gp|T|·|S| /* [0,1] normalization;

8 if RMSE then
9 Gk = RMSE

(
Mk(·,S)−M

∗
(·,S)

)
/* GAP computation;

10 ak = 1−G /* [0,1] normalization;
11 if KL divergence then
12 Gk = DKL

(
Mk(·, ·) ∥ M∗(·, ·)) /* GAP computation;

13 ak = e−βG /* [0,1] normalization;
14 if K endall Tau then
15 Gk = τ

(
Mk(·,S), M

∗
(·,S)

)
/* GAP computation;

16 ak =|G | /* [0,1] normalization;
17 if AP correlation then
18 Gk = τAP

(
Mk(·,S), M

∗
(·,S)

)
/* GAP computation;

19 ak =|G | /* [0,1] normalization;
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EXPERIMENTAL SETUP

In order to test the effectiveness of s-AWARE approaches, several experi-

ments are performed. To get more accurate results, different experiments are

performed considering each time a different set of topics as training set for

s-AWARE, performing comparisons among approaches on the remaining part

of the dataset, called test topicset or simply topicset from now on. Data from

different topicsets is then averaged to compute the final analysis.

All the experiments are developed and run in MATLAB 2015a environment,

exploiting MATTERS library 1 for the common utilities useful for information

retrieval tasks. In order to guarantee the reproducibility of the experiments,

the source code of the experiments is available on BitBucket 2.

This chapter is organized as follows: in section 4.1 we describe dataset, mea-

sures, approaches an parameters used for the experiments, in section 4.2 we

present the experiments workflow followed to implement s-AWARE approach

and to compare its effectiveness with a set of different other approaches.

1http://matters.dei.unipd.it/
2https://Lucapiaz@bitbucket.org/unipd-ferro-theses/piazzon.git
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4.1 Experimental parameters
The main purpose of our experiments is to evaluate the effectiveness of s-

AWARE approach with respect to the following approaches:

• Majority vote (2.5.1)

• Expectation Maximization with MV seeding (2.5.2)

• AWARE with uniform accuracy weights

• sgl and tpc u-AWARE approaches with minimum squared dissimilarity

weight(3.2)

First two approaches are the two different classic approaches usually taken as

baseline, AWARE-uni is used to figured out if accuracy computation is effective,

msd u-AWARE approaches are selected among all the u-AWARE approaches

because, in most cases, msd weight performed better than other weighting

techniques in the original paper [9].

The experiments are repeated several times, considering different combination

of the following parameters:

• Kuple: is a set of assessors, whose data will be merged by each approach.

The cardinality of a kuple is called kuple size.

• Evaluation Measure

• System/Run set: used interchangeably to indicate a set of ranked lists of

documents, each of them generated by an IRS while searching relevant

documents about a topic.

• Topicset: is the portion of the dataset (subset of the topics) used in every

single experiment.

4.1.1 Dataset

4.1.1.1 Crowd assessors collection

As data for crowd assessors, we considered the data submitted to the TREC 21,

2012 Crowdsourcing track [52]. Research groups were asked to simulate the
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relevance judgements given by the NIST assessors for 10 topics, selected from

those of TREC 08. Topics IDs and descriptions are described in Table 4.1. A

binary relevance judgement is given for each document in the judging pool of

each topic.

Topic ID Description

1 411
Find information on shipwreck salvaging: the
recovery or attempted recovery of treasure from
sunken ships

2 416 What is the status of The Three Gorges Project?
3 417 Find ways of measuring creativity

4 420
How widespread is carbon monoxide poisoning on
a global scale?

5 427
Find documents that discuss the damage ultraviolet (UV)
light from the sun can do to eyes.

6 432 Do police departments use "profiling" to stop motorists?

7 438
What countries are experiencing an increase in
tourism?

8 445
What other countries besides the United States are considering
or have approved women as clergy persons?

9 446
Where are tourists likely to be subjected to
acts of violence causing bodily harm or death?

10 447
What new developments and applications are there
for the Stirling engine?

Table 4.1: Description for topics used in TREC 21 Crowdsourcing Track

The set of documents used in the experiments contains about 528K news

documents from Financial Times (FT), Federal Register (FR), Foreign Broad-

cast Information Service (FBIS) and Los Angeles Times (LA) [52]. This dataset

corresponds to disk 4 and 5 of the TIPSTER collection minus the Congressional

Record.

In total 33 pools were submitted to TREC 21: we used 31 of them, excluding

INFLB2012 and Orc2Stage because, for some topics, they did not assess any

document as relevant. Pools information is reported in Table 4.3. Each pool,

from now on is considered as a crowd assessor.

The gold standard of our experiments is the set of adjudicated relevance
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Topic
ID

#
Docs

NIST
Rel

%
REL

#
Disag

%
Disag

Rel
to

Non

Non
to

Rel

Total
Rel

1 411 2056 27 1 15 1 1 1 27
2 416 1235 42 4 17 1 0 3 45
3 417 2992 75 3 60 2 3 3 75
4 420 1136 33 3 23 2 1 5 37
5 427 1528 50 3 42 3 14 1 37
6 432 2503 28 1 34 1 7 1 22
7 438 1798 173 11 118 7 16 5 162
8 445 1404 62 5 29 2 3 1 60
9 446 2020 162 9 119 6 15 9 156
10 447 1588 16 1 2 0 0 0 16

Table 4.2: Gold standard relevance judgements. From left to right: topic id, the total
number of assessed documents by TREC partecipants, the number of NIST relevance
judgements in the pool and its fraction, the number of NIST/assessors disagreements
and its fraction, the number of NIST relevant documents finally labelled as non
relevant, the number of NIST non relevant documents finally labelled as relevant, the
total relevant documents per topic after the process

judgements of TREC 21, that are NIST judgements combined with the majority

vote judgements from the submitted pools. In case of disagreement, documents

have been manually assessed by TREC organizers. In table 4.2 is reported, for

each topic, the fraction of relevant documents according to NIST and TREC

organizers.

4.1.1.2 Retrieval Systems

Runsets utilized in our experiments came from the two TREC tracks which

used the selected topics: the TREC 08 Ad-hoc track [53], which contains 129

runs and the TREC 13 Robust track [54], which contains 110 runs and whose

goal was to test retrieval systems against hard topics.

4.1.2 Evaluation measures

Evaluation measures taken into consideration are a subset of the measures

used in the original paper [9]:

• Average Precision (AP) (See Section 2.2.3.2) represents the most informa-

tive and stable measure in IR, since combines information from Precision

and Recall in a top heavy way.
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# ID Research Group
1 BUPTPRISZHS Beijing University of Posts and Telecommunications
2 NEUEM1 Northeastern University
3 NEUElo2 Northeastern University
4 NEUElo3 Northeastern University
5 NEUElo4 Northeastern University
6 NEUElo5 Northeastern University
7 NEUNugget12 Northeastern University
8 Orc2G University of Oxford and University of Southampton
9 Orc2GUL University of Oxford and University of Southampton
10 Orc2GULConf University of Oxford and University of Southampton
11 OrcVB1 University of Oxford and University of Southampton
12 OrcVB1Conf University of Oxford and University of Southampton
13 OrcVBW16Conf University of Oxford and University of Southampton
14 OrcVBW80 University of Oxford and University of Southampton
15 OrcVBW80Conf University of Oxford and University of Southampton
16 OrcVBW9Conf University of Oxford and University of Southampton
17 SSEC3excl University of Oxford and University of Southampton
18 SSEC3incl SetuServ
19 SSEC3inclML SetuServ
20 SSECML2to99 SetuServ
21 SSECML50pct SetuServ
22 SSECML75pct SetuServ
23 SSML2pct SetuServ
24 SSNoEC SetuServ
25 UIowaS01r University of Iowa
26 UIowaS02r University of Iowa
27 UIowaS03r University of Iowa
28 yorku12cs01 York University
29 yorku12cs02 York University
30 yorku12cs03 York University
31 yorku12cs04 York University

Table 4.3: List of the crowd Pools used un the experiments

• Normalized Discounted Cumulative Gain @ 20 (nDCG@20) (see section

2.2.3.3), meaning nDCG computed up to rank 20.

We used a log base b=2 and gains 0 and 5 respectively for non relevant

and relevant documents.

4.1.3 Analysis measures

To compare the effectiveness of the different approaches we compared the

evaluation measures computed with each approach against the measures

computed on the gold standard. To do this we used two different methods:

• rank comparison: AP correlation (See section 3.1) is computed between
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the ranking of the systems induced by the assessor, and the ranking

of the system induced by gold standard. With AP correlation, we are

interested in understanding to what extent each assessor can lead to the

correct system ranking, for each evaluation measure.

• score comparison: RMSE (See section 3.1) is computed between the aver-

age assessor’s measures and the average gold measures. With RMSE we

want to figure out how accurate are each assessor’s measures.

4.1.4 Parameters

4.1.4.1 Topicsets

In order to study how the dimension of the training set affects s-aware perfor-

mance, we computed three group of test, with different topicset sizes:

• 7 training topics: we selected 35 different topicsets of 3 topics among the(10
3

)
=120 possible. For each topicset, the remaining 7 topics are used as

training set for s-AWARE.

• 5 training topics: we selected 20 different topicsets of 5 topics among

the
(10

5

)
=252 possible. In this case, s-Aware and u-AWARE accuracy

computation is performed on the same amount of data.

• 3 training topics: we selected 15 different topicsets of 7 topics among the(10
7

)
=120 possible.

The list of the topicsets is reported in Tables 4.4, 4.5 and 4.6.
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Topicset Topic IDs

1 411 416 417

2 411 416 438

3 411 416 446

4 411 416 447

5 411 417 420

6 411 417 438

7 411 420 447

8 411 427 445

9 411 427 446

10 411 420 445

11 416 417 438

12 416 420 438

13 416 427 445

14 416 432 446

15 416 438 445

16 416 445 446

17 417 420 427

18 417 420 438

19 417 420 445

20 417 427 446

21 417 432 445

22 417 438 447

23 417 446 447

24 420 427 432

25 420 432 446

26 420 432 447

27 420 438 447

28 427 432 438

29 427 432 446

30 427 432 447

31 427 445 446

32 427 445 447

33 427 446 447

34 432 438 445

35 432 445 447

Table 4.4: topicsets used

in experiments with 7

training topics and 3 test

topics

Topicset Topic IDs

1 411 416 417 427 446

2 411 416 420 438 447

3 411 416 427 438 445

4 411 416 445 446 447

5 411 417 427 432 445

6 411 417 432 438 446

7 411 420 427 432 446

8 411 420 427 438 447

9 411 420 432 446 447

10 416 417 427 438 446

11 416 417 432 438 445

12 416 420 438 445 447

13 416 420 438 446 447

14 416 420 427 432 445

15 416 427 438 445 447

16 417 420 432 445 447

17 417 420 432 446 447

18 417 420 438 446 447

19 417 427 445 446 447

20 427 432 438 445 446

Table 4.5: topicsets used in experiments

with 5 training topics and 5 test topics
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Topicset Topic IDs
1 411 416 417 420 427 432 438
2 411 416 417 420 432 438 447
3 411 416 417 420 445 446 447
4 411 416 417 427 445 446 447
5 411 416 420 427 432 445 446
6 411 416 420 432 445 446 447
7 411 417 420 427 432 438 445
8 411 417 420 432 438 445 446
9 411 420 427 432 438 446 447

10 411 420 427 432 438 446 447
11 416 417 420 427 438 445 446
12 416 417 420 427 438 445 447
13 416 417 427 432 438 446 447
14 416 417 432 438 445 446 447
15 417 427 432 438 445 446 447

Table 4.6: topicsets used in experiments with 3 training topics and 7 test topics

4.1.4.2 Kuples

For both AP and nDCG, for each topicset we merged measures from different

sets of assessors, of cardinality k=2,3,...,30. For each value of k, 100 kuples are

randomly selected between the
(31

k
)
= 31!

k!(31−k)! possible kuples.

4.1.4.3 Other parameters

In u-AWARE approaches, we considered 100 replicates for each of the three

classes of random assessors (probability of relevance p ∈ 0.05,0.50,0.95).

For the computation of AP correlation in the case of ties, we sample and average

over 100 randomly generated orderings.

For the estimation of probability density of measures with KDE (see Section

3.1), we use 100 equally spaced bins in the range[0,1], a Gaussian kernel, and

a bandwidth b=0.015.

For the EMMV algorithm we set a limit of 1000 iterations and a tolerance of

10−3.
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4.2 Experimental workflow
In this section we describe the main steps of the experiments performed in

order to compare the different methods.

Figure 4.1: Experimental workflow

In Figure 4.1 is represented the workflow of the experiments that will be

explained in the next sections:

• Data import: dataset is parsed and organized into data structures

• Base measures computation: Evaluation measures are computed with

respect to crowd pools and gold pool. Crowd measures are compared

against the gold measures to analyse the quality of the crowd assessors.

• Classic Approaches: in MV and EMMV approaches, a merged pool is

performed. All the measures are first computed with respect to the ground
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truth generated by the merged pool and then compared against the gold

measures.

• u-AWARE approaches: in u-AWARE, measures are computed with re-

spect to the ground truth generated by every single crowd assessor. Mea-

sures are then merged weighting with accuracy scores computed with

Algorithms 1 and 2.

• s-AWARE approaches: in s-AWARE, measures are computed with respect

to the ground truth generated by every single crowd assessor. Measures

are then merged weighting with accuracy scores computed on training

topicset with Algorithm 3.

• ANOVA analysis: a second layer of analysis, based on ANalysis Of VAri-

ance framework, is computed to summarize the results and to highlight

strength and weaknesses of each approach.
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4.2.1 Data import

The first step is the data import: Pool files and Run files are parsed and orga-

nized into data structures, Figure 4.2 and Algorithm 4 represent the import

process.

For each topic, every assessor’s pool is represented by a table containing docu-

ment identifiers and relevance judgements given by the assessor.

For each set of systems, data of the runs is organized in a Topic-System table

in which each cell contains the ranked list of document IDs performed by that

system on that topic.

Figure 4.2: Data import: pools and runs are organized into data structures
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Algorithm 4: Import collection pseudocode
1 /* Import Gold Pool*/ ;
2 goldpool ← structured version of GT
3 /* Import Crowd Pools*/ ;
4 P ← number of crowd pool files;
5 RS ← number of run sets;
6 for k ∈ {1, ...,P} do
7 poolk ← structured version of GTk
8 /* Import Runs*/ ;
9 for i ∈ {1, ...,RS} do

10 S ← number of run files in runset i;
11 for j ∈ {1, ...,S} do
12 runseti( j)← structured version of run file

4.2.2 Base measures

Algorithm 5 describes the computation steps which involve the assessors’ judge-

ments: we first compute the evaluation measures on the runs to obtain the

performance of the systems according to the gold standard ground truth and

each crowd assessor’s ground truth. This process is represented in figure 4.3.

Figure 4.3: Base measure computation: for each assessor k, measures on runs are
computed taking the assessor’s judgements as gold standard

Base measure analysis Within each topicset, each assessor’s measures

are then averaged by topic and compared with the average gold measures:

looking at figure 4.4, each column of the orange matrix is compared to the

54



4.2. EXPERIMENTAL WORKFLOW

gold measures column. Comparison is done with AP Correlation and RMSE, as

discussed in the previous section.

Figure 4.4: Base measure analysis: measures are averaged by topic and analysed with
AP Correlation and RMSE

Average analysis over topicsets In order to summarize the analysis, an

average over the topicsets is computed. In figure 4.5 is represented this process:

each cell in the table on the right is computed as the arithmetic mean of the

corresponding cells of topicset tables on the left.

In the next chapter, we will use this analysis on the input data to better

understand the behaviour of each merging approach.

Figure 4.5: APC and RMSE average over the topicsets
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Algorithm 5: Compute base measures pseudocode
1 P ← number of crowd pools;
2 RS ← number of run sets;
3 for i ∈ 1, ...,RS do
4 foreach Measure do
5 /* Compute measures with respect to gold pool */ ;
6 M∗ ← Measure(goldpool, runseti)
7 /* Compute measures with respect to crowd pool*/ ;
8 for k ∈ 1, ...,P do
9 Mk ← Measure(poolk, runseti) ;

10 /* Analyse base measures */;
11 for ts ∈ 1, ...,TS do // for each topicset
12 M

∗
ts ← mean(M∗, topicsetts) // average gold measures on current topicset;

13 for i ∈ 1, ...,RS do // for each runset
14 foreach Measure do
15 for k ∈ 1, ...,P do // for each assessor
16 /*average base measures over topics in the current topicset */;
17 Mk,ts ← mean(Mk, topicsetts);
18 /*compute AP correlation and RMSE between base average measures and

gold average measures*/;

19 APCts(k)← AP-correlation(Mk,ts, M
∗
ts);

20 RMSE ts(k)← RMSE(Mk,ts, M
∗
ts);

21 /* Average analysis over topicsets */;
22 for i ∈ 1, ...,RS do // for each runset
23 foreach Measure do
24 for k ∈ 1, ...,P do // for each assessor
25 APC(k)← mean(APCts(k));
26 RMSE(k)← mean(RMSE ts(k));
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4.2.3 Classic Approaches

Both Majority vote and Expectation Maximization algorithms aim to create

a merged ground truth at pool level. In order to compare s-AWARE with this

methods, we compute measures based on MV and EMMV pools to be compared

with measures obtained by s-AWARE approaches.

In the following paragraphs we explain the main computation steps, Algorithm

6 describes the entire process.

Pool merging For each kuple x, we consider the crowd pools relative to the

assessors in the kuple. A merged pool is computed for each kuple, according to

Majority Vote an Expectation Maximization methods, explained in Sections

2.5.1 and 2.5.2.

Figure 4.6: Pool merging: a single merged pool is computed using the relevance
judgements coming from all the assessors

Pool measures computation For each kuple x, all the runs are evaluated

based on the ground truth generated by the assessors in the kuple (Figure 4.7).
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Figure 4.7: Pool measure computation: for each kuple, measures are computed taking
the merged pool of the kuple as ground truth

Pool measures analysis Within each topicset, measures are averaged by

topic and compared with the average gold measures (Figure 4.8). Comparison

is done with AP correlation and RMSE to understand to what extent the

crowdsourcing approach can lead to the same ranking of systems (APC) and

similar scores (RMSE), for each evaluation measure.

Figure 4.8: Pool measure analysis: measures are averaged by topic and analysed with
AP Correlation and RMSE
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Average analysis over topicsets In order to summarize the the measures

analysis and run ANOVA analysis, an average over the topicsets is computed.

In figure 4.9 is represented this process.

Figure 4.9: APC and RMSE average over topicsets

Algorithm 6: Classic approaches pipeline pseudocode
1 P ← number of crowd pools;
2 RS ← number of run sets;
3 X ← number of kuples ∀ kuple size ;
4 TS ← number of topic sets;
5 /* Merge Pools */
6 foreach kuple size do
7 for x ∈ 1, ..., X do // for each kuple
8 GTx ← MergePools({pools in kuple x})
9 /* Compute measures with respect to merged pools */

10 foreach kuple size do
11 for x ∈ 1, ..., X do // for each kuple
12 for i ∈ 1, ...,RS do // for each runset
13 foreach Measure do
14 Mx ← Measure(GTx, runseti) ;
15 /* Analyse merged pools measures */;
16 for ts ∈ 1, ...,TS do // for each topicset
17 M

∗
ts ← mean(M∗, topicsetts) // average gold measures on current topicset;

18 for i ∈ 1, ...,RS do // for each runset
19 foreach Measure do
20 foreach kuple size do
21 for x ∈ 1, ..., X do // for each kuple
22 /*average pool measures over topics in the current topicset */;
23 Mx,ts ← mean(Mx, topicsetts);
24 /*compute AP correlation and RMSE between pool average measures

and gold average measures*/;

25 APCts(x)← AP-correlation(Mx,ts, M
∗
ts);

26 RMSE ts(x)← RMSE(Mx,ts, M
∗
ts);

27 /* Average analysis over topicsets */;
28 for i ∈ 1, ...,RS do // for each runset
29 foreach Measure do
30 foreach kuple size do
31 for x ∈ 1, ..., X do // for each kuple
32 APC(x)← mean(APCts(x));
33 RMSE(x)← mean(RMSE ts(x));
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4.2.4 u-AWARE and s-AWARE approaches

u-AWARE and s-AWARE have very similar pipelines, since both of them aim to

merge assessors judgements at measure level, and differ only in the accuracy

computation step. In the following paragraphs we explain the main steps of

AWARE pipeline, highlighting some crucial differences: Algorithms 7 and 8

describe, u-AWARE and s-AWARE pipelines.

Accuracy computation Accuracy computation is the most important phase

of AWARE pipelines. In our experiments, dataset is split into two parts, called

training topicset and test topicset (or simply topicset).

In u-AWARE, three sets of random assessors are generated, and GAP is com-

puted between each assessor’s measures and the measures computed on each

random assessor replicate. To compute this GAPs, only test topics are used, in

order to be compared with s-AWARE results.

Figure 4.10: AWARE accuracy scores computation: GAPs are computed with respect to
each random replicate. The mean GAPs are then combined with Weight computation
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GAPs are then normalized and averaged by random replicate: this is done to

guarantee a good estimate of random assessors. Accuracy computation is done

combining the three random GAPs following algorithms 1 and 2: in sgl case we

have an accuracy score for each assessor, in tpc case we have an accuracy score

for each topic in the topicset.

In s-AWARE, GAP is computed between each assessor’s measures and

gold standard measures on training topics, following algorithm 3 described in

Section 3.3.

Figure 4.11: s-AWARE accuracy scores computation: normalized GAPs are directly
used as accuracy scores

Measure merging For each kuple of assessors, measures are weighted with

the so calculated accuracies and merged into a single matrix of measures.

Measure merging is done on the test topicset.

Figure 4.12: AWARE measure computation: merged measures are computed
weighting assessors’ by the accuracy scores
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Pool measures analysis Kuple measures, similarly as previously described,

are then averaged within the topicset and compared with gold measures. To do

this, AP correlation and RMSE between the average measures is computed.

It’s important to highlight that even if this computation is similar to GAP

computation, here the usage of RMSE and APC has a different meaning: in

GAP computation, the goal is to get a dissimilarity measure to obtain each

assessor accuracy, in analysis the goal is to understand how far the approach

achieves similar results with respect to gold standard.

Figure 4.13: AWARE measures analysis: measures are averaged by topic and analysed
with AP Correlation and RMSE

Average analysis over topicsets Analysis are then summarized averaging

data over the topicsets. We obtain APC and RMSE mean values for each

AWARE approach and s-AWARE approach, that will be analyzed with ANOVA.

Figure 4.14: APC and RMSE average over topicsets
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Algorithm 7: u-AWARE approaches pipeline pseudocode
1 P ← number of crowd pools;
2 RS ← number of run sets;
3 X ← number of kuples ∀ kuple size ;
4 TS ← number of topic sets;
5 RP ← number of random pool replicates for each class;
6 /* generate random Pools */
7 for (p ∈ {0.05,0.50,0.95}) do
8 for (h ∈ {1, ...,RP}) do
9 poolp

h ← random judgements with probability of relevance=p;

10 for ts ∈ 1, ...,TS do
11 for i ∈ {1, ...,RS} do // for each runset
12 foreach Measure do
13 M

∗
ts ← mean(M∗, topicsetts) // average gold measures in topicset;

14 weight = minimal squared dissimilarity;
15 for granularity ∈ {sgl, tpc} do
16 for GAP ∈ { f ro, rmse,kld, tau,apc} do
17 /* Compute accuracy scores with algoritms 1 and 2*/
18 ak ← computeScores(granularity,GAP,weight,ts)
19 /* Compute u-AWARE measures */
20 foreach kuple size do
21 for x ∈ 1, ..., X do // for each kuple
22 /* rescale accuracy scores */
23 sumak =∑

k∈x ak;
24 for k ∈ x do
25 a′k = ak

sumak

26 /* compute u-aware measures */

27 Mx ←∑
k∈x

(
Mk ∗a′k

)
;

28 /*average u-AWARE measures in the current topicset */;
29 Mx,ts ← mean(Mx, topicsetts);
30 /*compute AP correlation and RMSE between aware average

measures and gold average measures*/;

31 APCts(x)← AP-correlation(Mx,ts, M
∗
ts);

32 RMSE ts(x)← RMSE(Mx,ts, M
∗
ts);

33 /* Average analysis over topicsets */;
34 for i ∈ {1, ...,RS} do // for each runset
35 foreach Measure do
36 for granularity ∈ {sgl, tpc} do
37 for GAP ∈ { f ro, rmse,kld, tau,apc} do
38 foreach kuple size do
39 for x ∈ 1, ..., X do // for each kuple
40 APC(x)← mean(APCts(x));
41 RMSE(x)← mean(RMSE ts(x));
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Algorithm 8: s-AWARE approaches pipeline pseudocode
1 T ← all topics;
2 P ← number of crowd pools;
3 RS ← number of run sets;
4 X ← number of kuples ∀ kuple size ;
5 TS ← number of topic sets;
6 RP ← number of random pool replicates for each class;
7 for ts ∈ 1, ...,TS do
8 for i ∈ {1, ...,RS} do // for each runset
9 foreach Measure do

10 M
∗
ts ← mean(M∗, topicsetts) // average gold measures in topicset;

11 for GAP ∈ { f ro, rmse,kld, tau,apc} do
12 /* Compute accuracy scores with algoritm 3*/
13 traints ← T − topicsetts;
14 ak ← computeScores(GAP, traints);
15 /* Compute s-AWARE measures */
16 foreach kuple size do
17 for x ∈ 1, ..., X do // for each kuple
18 /* rescale accuracy scores */
19 sumak =∑

k∈x ak;
20 for k ∈ x do
21 a′k = ak

sumak

22 /* compute s-aware measures */

23 Mx ←∑
k∈x

(
Mk ∗a′k

)
;

24 /*average s-AWARE measures in the current topicset */;
25 Mx,ts ← mean(Mx, topicsetts);
26 /*compute AP correlation and RMSE between aware average

measures and gold average measures*/;

27 APCts(x)← AP-correlation(Mx,ts, M
∗
ts);

28 RMSE ts(x)← RMSE(Mx,ts, M
∗
ts);

29 /* Average analysis over topicsets */;
30 for i ∈ {1, ...,RS} do // for each runset
31 foreach Measure do
32 for GAP ∈ { f ro, rmse,kld, tau,apc} do
33 foreach kuple size do
34 for x ∈ 1, ..., X do // for each kuple
35 APC(x)← mean(APCts(x));
36 RMSE(x)← mean(RMSE ts(x));
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4.2.5 ANOVA analysis

In order to obtain more summary results and to evaluate how approaches per-

formance is affected by the different combinations of kuple size, measure and

systems, a second layer of analysis is computed, using ANalisys Of VAriance

(ANOVA) methodology. With ANOVA we aim to investigate which are the main

sources of variance within the analysis scores performed so far.

ANalysis Of VAriance ANOVA was introduced by Ronald Fisher in early

1900s [55] as a parametric statistical technique to be used to compare different

distributions of data. This technique is based on the hypothesis testing done to

understand whether or not the means of the different distributions are equal:

the hypothesis testing model used in ANOVA analysis is so:H0 :µ1 =µ2 = ...=µn

H1 : otherwise

where H0 is called null hypothesis and H1 is the alternative hypothesis. We re-

ject null hypothesis if the different distributions are unlikely to be a realization

for the null hypothesis (in this case, if means are "not equal") with respect to a

chosen threshold α, called significance level, which represent the probability of

wrongly label as statistically significant some means that are not. In order to

compare distributions, F distribution is used [55].

In order to run ANOVA analysis, we have to compute the variable under ex-

amination for all the possible combinations of a set of parameters, also called

factors. This data is then modelled with a GLMM (General Linear Mixed

Model), where each value is seen as sum of two components, one is due to the

Model and the other is an error.

Data = Model+Error

To explain how ANOVA works, we report a simple example of ANOVA [56] in

which data depends only by a factor. Figure 4.15 represent the different values

of the variable Y : each column of the table is dependent on a specific value of

Factor A. There are n subjects for each distribution and p possible values for

factor A.
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Figure 4.15: Different values of Y , relative to different combinations of topics and
factor A values

The GLMM model, in this example is:

Yi j =µ··+τi +α j +εi, j

where

• Yi j is the single data point

• µ·· is the grand mean of the data µ̂·· = 1
pn

∑n
i=1

∑p
j=1 Yi j

• τi is the effect on Yi j given by i-th subject, estimated as τ̂i = µ̂i·− µ̂··

• α j is the effect of the j-th value of factor A, estimated as α̂ j = µ̂· j − µ̂··

• εi j is the error committed by the model in representing Yi j, estimated as

ε̂i j =Yi j − (µ̂i·+ µ̂· j − µ̂··)

If we had multiple samples for each point Yi j, we could have separated from the

error the interaction effects ταi j between i-th subject and j-th factor, computed

as
ˆ(τα)i j = µ̂i j·− (µ̂··+ τ̂i + α̂ j)

where µ̂i j· = 1
|replicates|

∑|replicates|
r=1 Yi j

Starting from our model, we can rewrite it highlighting the different compo-
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nents of the deviation from the grand mean:

Yi j − µ̂··︸ ︷︷ ︸
TotalE f f ects

= µ̂i·− µ̂··︸ ︷︷ ︸
Sub jectE f f ects

+ µ̂· j − µ̂··︸ ︷︷ ︸
FactorE f f ects

+Yi j − (µ̂i·+ µ̂· j − µ̂··)︸ ︷︷ ︸
ErrorE f f ects

From this equation we can compute the Sum of Squares (SS) and the mean

squares (MS) of different components as:

SStotal = SSsub jects+SS f actor+SSerror =
n∑

i=1

p∑
j=1

(Yi j−µ̂··)2 MStotal =
SStotal

DFtotal

SSsub jects = p
n∑

i=1
(µ̂i·− µ̂··)2 MSsub jects =

SSsub jects

DFsub jects

SS f actor = n
p∑

j=1
(µ̂· j − µ̂··)2 MS f actor =

SS f actor

DF f actor

SSerror =
n∑

i=1

p∑
j=1

(Yi j − (µ̂i·+ µ̂· j − µ̂··))2 MSerror = SSerror

DFerror

where DF indicates the degrees of freedom of the data, which are respectively

DFtotal = pn−1, DFsub jects = n−1, DF f actor = p−1 and DFerror = (p−1)(n−1).

To find out whether the factor effect is statistically significant or not, we

compute the F statistics defined as:

F f actor =
MS f actor

MSerror

and we compare it with the F distribution with (DF f actor,DFerror) degrees of

freedom. We search for the p value for which F f actor can be observed by chance

under the null hypothesis, if this is lower than significance level α, means that

null hypothesis is less probable than our minimum threshold and then we

reject null hypothesis, saying that factor statistically influences the data.

If we had multiple factors under examination, for each factor we can com-

pute a sum of squares and determine whether the factor is significant or not.

For each combination of factors, we can then compute the interaction effects

between factors, determining if the combination of two or more factors can lead

to significant variance. This analysis is called k-way-ANOVA, where k is the

number of considered factors.

Up to here, we just found out if a factor is statistically significant, that is if

the different values for that factor cause a significant variation in means. We
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can now compute a further step, investigating how much each factor affects

the variance of the data. To do this we use Strength Of Association (SOA)

coefficients.

We compute SOA as:

ω̂2
f actor =

DF f actor(F f actor −1)
DF f actor(F f actor −1)+N

where N is the number of points in our Grid of Points. This is an unbiased esti-

mator of the influence of each factor: a common rule [55] states that SOA ≤ 0.06

is considered a small effect, 0.06≤ SOA ≤ 0.14 is considered a medium effect

and SOA ≥ 0.14 is considered a large effect.

Experiments’ analysis In our experiments, we use AWARE analysis to

determine how the different approaches behave with different combination of

kuple sizes, evaluation measures and runsets. To summarize such analyses,

we compute ANOVA analysis on APC and RMSE values.

For both APC and RMSE, we use then the following GLMM to compute three-

way ANOVA with repeated measures analysis:

Yi jkl =µ····+κi +α j +βk +γl︸ ︷︷ ︸
MainE f f ects

+αβ jk +αγ jl +βγkl︸ ︷︷ ︸
InteractionE f f ects

+ εi jkl︸︷︷︸
Error

where:

• Yi jkl is the single APC or RMSE value, given a combination of parameters

• µ···· is the grand mean

• κi is the kuple size (x=2,...,30)

• α j is the effect of the j-th approach

• βk is the effect of the k-th evaluation measure (AP, nDCG@20)

• γl is the effect of the l-th Runset (Trec 08, Trec 13)

• αβ jk in the interaction effect between approaches and measures

• αγ jl in the interaction effect between approaches and runsets
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• βγkl in the interaction effect between measures and runsets

• εi jkl is the error committed by the model in predicting Yi jkl

Figure 4.16 represents the ANOVA computation in our experiments, the aver-

age analysis for each approach, kuple size, measure and runset are analysed

obtaining ANOVA analysis for APC and RMSE.

Figure 4.16: ANOVA analysis
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5
EXPERIMENTAL RESULTS

In this chapter we describe the results coming from the experiments we de-

scribed so far. We will highlight in which case s-AWARE methods outperform

unsupervised methods and classic methods.

In section 5.1, we first look at the analyses on assessors’ pools, which will

be compared to our results. In section 5.2 we look at the analyses relative to

the tests performed using an equal size for training and test set. In section

5.3, we analyse if different sizes of the training set affect the performance of

supervised approaches.

5.1 Base measures analysis

5.1.1 AP Correlation

Figure 5.1 represents the mean AP correlation between each assessor’s mea-

sures and gold measures, averaged across measures and runsets. This plot

highlights that assessors have very different behaviours (we remind that what

we call assessor, is it’s actually a pool submitted to TREC21 Crowdsourcig

track). Skierarchy pools, in green, perform better than all the others as ex-

pected, since they are obtained from a complex interaction process between

crowd assessors, machine learning and experts (section 2.5.5). The worst pool

in terms of system ranking is NEUEM1, obtained with Expectation Maximiza-
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tion algorithm as described in section 2.5.2.

Looking at figures 5.2 and 5.3 we observe that the most part of assessors ranks

better the systems based on AP measures than nDCG measures, and that

systems from TREC08 are ranked more efficiently by most of the assessors.

Figure 5.1: APC for base measures

Figure 5.2: APC Assessor*Measure

interaction for base measures

Figure 5.3: APC Assessor*Runset

interaction for base measures
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5.1.2 RMSE

When we look at the RMSE computed between assessor’s measures and gold

measures (Figure 5.4), we see that Skierarchy pools achieve the best perfor-

mances and that Nothern Eastern University pools generally achieve bad

results in terms of RMSE, with the exception of NEUNugget12 pool. NEU

pools result to be bad in terms of RMSE but perform quite well in terms of

APC: this probably means that NEU pools have the ability to correctly rank

the top systems (AP correlation is top heavy), but are not good in estimating

the real values of the gold measures.

Figure 5.5 shows that measure is affecting the assessor measure accuracy.

For example, taking OrcVBW16Conf and NEUElo pools we can observe that

OrcVBW16Conf leads to better results on AP measures than NEUElo pools,

while this ones outperform OrcVBW16Conf in nDCG measures.

This behaviour strengthen the motivations behind AWARE: errors in pool

computation affect in a different way the different evaluation measures. Merg-

ing assessors at measure level, we can take into account this phenomenon,

otherwise neglected.

Figure 5.6 shows that the assessors measures computed on TREC08 runs are

slightly more accurate than measures on TREC13.

Figure 5.4: RMSE for base measures
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Figure 5.5: RMSE Assessor*Measure

interaction for base measures

Figure 5.6: RMSE Assessor*Runset

interaction for base measures

5.2 Results with equal Train-Test size

5.2.1 AP Correlation

Table 5.1 is the ANOVA table for AP Correlation: looking at SOA coefficients

we see that all the considered factors are large size effects. The largest effect is

the Approach effect, highlighting that different approaches can lead to very

different performance. Measure and Systems effects are smaller than Approach

effect, but their values support the intuition behind the AWARE framework of

computing the merging of multiple assessors at measure level, when different

measures and systems are taken into account.

This can be even better observed analysing the interaction effects: Approach*Measure

effect is a large interaction effect, stating that different measures have a great

and potentially different impact on each approach performance.
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SS DF MS F p- value SOA
K-uple Size 1,37679 28 0,04917 232,49984 <0.0001

Approach 1,33129 17 0,07831 370,28459 <0.0001 0,75041

Measure 0,41956 1 0,41956 1983,84163 <0.0001 0,48708

Systems 0,37419 1 0,37419 1769,29570 <0.0001 0,45855

Approach*Measure 0,34205 17 0,02012 95,13682 <0.0001 0,43389

Approach*Systems 0,13625 17 0,00801 37,89693 <0.0001 0,23101

Measure*Systems 0,59299 1 0,59299 2803,86943 <0.0001 0,57308

Error 0,42404 2005 0,00021

Total 4,99716 2087

Table 5.1: ANOVA table for AP Correlation (5 test topics)

Figure 5.7: APC Approach main effect (5 test topics)
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In Figures 5.7-5.10 are represented the marginal means of AP correla-

tion values: each plot represents how the performance is affected by different

approaches, different number of merged assessors, different measures and

runsets.

Figure 5.7 show the average performance of each approach in terms of system

ranking. Yellow and blue bars represent u-Aware approaches, green bars are

s-Aware approaches and red bars are the baselines. We can see that all the

s-AWARE methods outperform AWARE-uni and most of them perform better

than u-AWARE approaches, meaning that the s-AWARE accuracy computation

is effective. s-AWARE methods based on ranking and distribution GAPs per-

form better, in average, than all the other approaches.

In Figure 5.8 we can see that increasing the number of merged assessor im-

proves the average performance. Figures 5.9 and 5.10 show that measures

computed by the approaches follow the behaviour of the assessors measures.

Figure 5.8: APC Kuple main effect (5 test topics)
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Figure 5.9: APC Measure main effect

(5 test topics)

Figure 5.10: APC Runset main effect

(5 test topics)

Figures 5.11-5.13 show how Kuple size, measures and runsets affect each

approach performance in terms of AP Correlation: dashed lines are for single-

score u-AWARE, dotted lines are for topic-by-topic u-AWARE, solid lines are

for s-AWARE and thicker lines are for the baselines.

All the approaches benefit of the increasing number of merged assessors, as

shown in figure 5.11. All s-AWARE approaches perform better than the uni-

form case even merging a small number of assessors. Sup_kld and sup_apc are

the best approaches in terms of AP correlation, and all s-AWARE approaches

generally outperform the corresponding u-AWARE approaches.

Majority vote reaches AWARE-uni results with kuples of 7 assessors, and

perform better than all the other approaches when merging more than 24 as-

sessors. This behaviour can be partially due to the nature of the gold standard:

as described in section 4.1.1, the gold pool is created from NIST assessments

and MV assessments, manually adjudicating the documents for which the ma-

jority vote of the pools and the NIST assessments disagreed. The performance

of MV, in our experiments can then overestimate the real performances of MV.

Expectation Maximization algorithm achieves the worst results, improving its

performances only with a large number of merged assessors.

Both supervised and unsupervised approaches follow the same ascending trend,
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achieving good behaviour even with small kuple sizes and ensuring a more

stable behaviour.

Figure 5.12 shows the Approach*Measure interaction effect. Systems are

ranked better if we look at AP measures than nDCG measures. In particular

we note that sup_kld, sup_tau and and sup_apc perform better than MV or at

least as MV for both measures; sup_kld, however, is the approach for which

we have the largest difference between AP and nDCG performances. In Figure

5.13 we see that most approaches perform better on T08 runs than T13 runs.

Figure 5.11: APC Approach*Kuple interaction effect (5 test topics)
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Figure 5.12: APC Approach*Measure

interaction effect (5 test topics)

Figure 5.13: APC Approach*Runset

interaction effect (5 test topics)

5.2.2 RMSE

Table 5.2 shows the ANOVA table for RMSE. Measure and Approach are the

two largest main effects and Approach*Measure is the largest interaction effect.

These three values confirm that approaches behave differently with different

measures and then that AWARE methodology is hopeful.

Looking at the Approach main effects plot (Figure 5.14), we see that sup_apc

and sup_tau confirm their good performance with respect to all the other ap-

proaches. All s-AWARE approaches perform better than the uniform case and

most of them outperform Majority vote. In particular we can notice that sup_fro

and sup_rmse behaves slightly better than MV, while perform worse in terms

of AP correlation. A more evident behaviour is about sup_kld: when we look at

RMSE, it performs as AWARE-uni and MV even if it was the best approach in

terms of APC. This an be explained saying that sup_kld accuracy scores lead to

a good system ranking for the top positions, but in general are not so effective

in computing the real values for the measures.

In Figure 5.15 we can see that RMSE improves with the increasing number of

merged assessors. Figures 5.16 and 5.17 show that measures computed by the

approaches follow the behaviour of the assessors measures.
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SS DF MS F p- value SOA
K-uple Size 0,07822 28 0,00279 41,24387 <0.0001

Approach 0,47972 17 0,02822 416,63970 <0.0001 0,77190

Measure 0,65403 1 0,65403 9656,47963 <0.0001 0,82220

Systems 0,03584 1 0,03584 529,10047 <0.0001 0,20187

Approach*Measure 0,55030 17 0,03237 477,94009 <0.0001 0,79521

Approach*Systems 0,01574 17 0,00093 13,67330 <0.0001 0,09353

Measure*Systems 0,00443 1 0,00443 65,47980 <0.0001 0,02996

Error 0,13580 2005 0,00007

Total 1,95407 2087

Table 5.2: ANOVA table for RMSE (5 test topics)

Figure 5.14: RMSE Approach main effect (5 test topics)
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Figure 5.15: RMSE Kuple main effect (5 test topics)

Figure 5.16: RMSE Measure main

effect (5 test topics)

Figure 5.17: RMSE Runset main effect

(5 test topics)
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Looking at interaction effects (Figures 5.18-5.20) we can see that the major-

ity of the approaches improve their performance increasing the kuple size, with

the exception of Expectation maximization and u-AWARE approaches based

on fro and rmse GAP. s-AWARE approaches, with the exception of sup_kld, per-

form better than AWARE-uni, MV and its unsupervised version. This confirms

the intuition behind s-AWARE approaches: AWARE can outperform baseline

approaches merging assessors at measure level, and in order to improve per-

formance is useful to use information from a small set of trusted judgements

instead of basing only to the non-random behaviour of assessors.

Sup_tau and sup_apc perform better than all the other approaches even with

small kuples.

Figure 5.19 shows the Approach*Measure interaction effect. All the approaches

achieve very similar performance with AP measures, but some of them (EM,

sup_kld, sgl_fro, sgl_rmse and tpc_rmse) worsen their performance with nDCG

measures. In particular sup_kld seems to be the best approach with AP mea-

sures, but underperform all the other s-AWARE approaches and most of the

other approaches with nDCG measures.

In Figure 5.20 we see that most of the approaches achieve smaller values

of RMSE for T13 runs, but this is probably due to the smaller value of the

evaluation measures for T13 systems. Reasoning by comparison, we can say

that most of the Approaches perform worse than Majority vote with T08 runs,

and better than MV with T13 runs. Sup_tau and sup_apc perform better than

all the other approaches with both T08 and T13 runs.

Summarizing the results explained so far, we can say that:

• s-AWARE approaches behave better than the uniform case, proving the

effectiveness of supervised accuracy computation

• s-AWARE approaches usually perform better than the corresponding

u-AWARE approaches using the same GAP measure

• s-AWARE approaches outperform Majority vote while estimating the real

value of the measures, while MV achieves a better performance in terms

of the system ranking when we merge a large number of assessors
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• the best s-AWARE approaches are sup_kld, sup_tau and sup_apc: sup_kld

achieves different performance with different combination of the factors

and is better in determining the top systems than in estimating the real

value for the measures. Sup_apc seems to be the most stable measure,

achieving always the best results when looking at RMSE and very good

results if we consider AP correlation analysis. Sup_tau follows sup_apc

behaviour, achieving slightly worse performance.

This good results in terms of APC can partially be due to the similarity

between GAP and analysis computation: sup_apc trusts assessors which

correctly rank the top systems in the raining topicset, and is then desir-

able that this property is inherited by the merged measure. Good RMSE

results, however, prove that sup_apc and sup_tau measures are accurate

not only for the top systems, but for the full set of runs.

Figure 5.18: RMSE Approach*Kuple interaction effect (5 test topics)
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Figure 5.19: RMSE

Approach*Measure interaction effect

(5 test topics)

Figure 5.20: RMSE Approach*Runset

interaction effect (5 test topics)

5.3 Results with different topicset sizes

In order to understand how the size of training and test topicsets affects

s-AWARE performances, we analyse now the results of the experiments per-

formed using 7 and 3 training topics.

Figure 5.21: AP Correlation of approaches for different topicset sizes
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Figure 5.22: RMSE of approaches for different topicset sizes
Figures 5.21 and 5.22 represent respectively the trends of AP Correlation and

RMSE between gold measures and approach measures with different topicset

size.

Increasing the number of topics used for the test, all the approaches improve

their performance in terms of both AP Correlation and RMSE, exploiting the

greater quantity of available data for measure merging. While this behaviour

is in some way desired and plausible for classic approaches and u-AWARE, we

expected s-AWARE performance being negative affected by the smallest dimen-

sion of the training set used for the accuracy computation, getting closer to the

AWARE-uni performance. Motivated by this results, we further investigated

the possible causes for which this doesn’t happen, that will be discussed below.

ANOVA tables and plots relative to the 3-topicset and 7-topicset experiments

follow the same trend of those presented in the previous section: sup_apc and

sup_tau still perform better than all the other approaches, expectation maxi-

mization improves its performance more than the other approaches, reaching

AWARE-uni in terms of AP correlation for big kuples but remaining far from

s-AWARE performance. The full set of plots and ANOVA tables from the exper-

iments is reported in Appendix A.

We briefly discuss about the good performances of s-AWARE approaches even

with a small training set: to better understand this behaviour we investigated

the quality of the assessors’ pools. We extracted a small pool taking the first 20
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TOPIC
ASSESSOR 411 416 417 420 427 432 438 445 446 447

BUPTPRISZHS 0.9577 0.8601 0.9257 0.9026 0.8792 0.9752 0.8193 0.8916 0.8364 0.9487
NEUEM1 0.9423 0.8497 0.4053 0.3377 0.9101 0.3665 0.8368 0.8940 0.7262 0.4103
NEUElo2 0.9442 0.8357 0.9221 0.8896 0.9045 0.9752 0.8336 0.8819 0.8381 0.9615
NEUElo3 0.9481 0.8357 0.9209 0.8896 0.9045 0.9789 0.7702 0.8916 0.8214 0.9637
NEUElo4 0.9442 0.8357 0.9209 0.8896 0.9045 0.9752 0.7718 0.8916 0.8214 0.9615
NEUElo5 0.9442 0.8357 0.9221 0.8896 0.9045 0.9752 0.7971 0.8819 0.8381 0.9615
NEUNugget12 0.9442 0.8252 0.9209 0.8896 0.8961 0.9516 0.8082 0.8313 0.7997 0.9637
Orc2G 0.8654 0.4895 0.7998 0.5552 0.6854 0.6994 0.6197 0.6530 0.8314 0.6197
Orc2GUL 0.8538 0.5070 0.7962 0.5519 0.6882 0.6795 0.6149 0.6313 0.7012 0.6175
Orc2GULConf 0.8500 0.5140 0.7938 0.5292 0.6938 0.6820 0.6181 0.6241 0.7012 0.6197
OrcVB1 0.7481 0.5070 0.7614 0.5747 0.7022 0.7404 0.5578 0.5976 0.7295 0.6987
OrcVB1Conf 0.7442 0.5070 0.7614 0.5747 0.7022 0.7391 0.5578 0.6000 0.7295 0.6987
OrcVBW16Conf 0.7385 0.4790 0.7602 0.5974 0.7472 0.6820 0.5959 0.5494 0.6845 0.6560
OrcVBW80 0.7115 0.5979 0.8165 0.6948 0.6517 0.7714 0.6292 0.6265 0.7279 0.7201
OrcVBW80Conf 0.7115 0.5979 0.8165 0.6948 0.6517 0.7714 0.6292 0.6265 0.7279 0.7201
OrcVBW9Conf 0.8115 0.4720 0.7626 0.5000 0.8034 0.7056 0.5737 0.5639 0.6845 0.7009
SSEC3excl 0.9500 0.9790 0.9580 0.9286 0.9719 0.9466 0.9303 0.9614 0.9199 0.9808
SSEC3incl 0.9385 0.9580 0.9412 0.9058 0.9663 0.9354 0.8875 0.9590 0.9149 0.9936
SSEC3inclML 0.9423 0.9685 0.9532 0.9188 0.9719 0.9404 0.8954 0.9614 0.9182 0.9957
SSECML2to99 0.9327 0.9580 0.9412 0.9058 0.9691 0.9354 0.8843 0.9590 0.9098 0.9957
SSECML50pct 0.9365 0.9580 0.9400 0.9026 0.9691 0.9404 0.8859 0.9614 0.9065 0.9957
SSECML75pct 0.9365 0.9615 0.9400 0.9026 0.9691 0.9404 0.8859 0.9614 0.9032 0.9957
SSML2pct 0.9327 0.9615 0.9388 0.9091 0.9579 0.9478 0.8827 0.9590 0.9165 0.9936
SSNoEC 0.9327 0.9615 0.9365 0.9091 0.9635 0.9441 0.8811 0.9639 0.9065 0.9936
UIowaS01r 0.9462 0.7902 0.9089 0.8831 0.8989 0.9776 0.8019 0.8602 0.8013 0.9637
UIowaS02r 0.9462 0.7867 0.9029 0.8701 0.8989 0.9702 0.7892 0.8554 0.7947 0.9637
UIowaS03r 0.9462 0.7902 0.9053 0.8831 0.9017 0.9764 0.8035 0.8651 0.8047 0.9637
yorku12cs01 0.7923 0.6818 0.8765 0.6364 0.7219 0.9255 0.7132 0.6554 0.7596 0.8483
yorku12cs02 0.8038 0.6573 0.8321 0.5974 0.7416 0.8981 0.7496 0.6771 0.7813 0.9338
yorku12cs03 0.7654 0.6329 0.8921 0.5487 0.7022 0.7888 0.6910 0.6892 0.8598 0.8312
yorku12cs04 0.7654 0.6503 0.8909 0.5974 0.7022 0.8050 0.6878 0.6916 0.8581 0.8526

Table 5.3: assessors average agreement with gold standard considering the top 20
documents for each run

retrieved documents from each run of TREC08 and TREC13, and we examined

the fraction of agreement between each assessor judgements and the gold stan-

dard judgements on each topic. The results of this analysis are shown in table

5.3. We notice that a the most part of the assessors achieve similar agreement

scores across most of the topics. This pool agreement drives to similar mean

measures when averaging among 3, 5 or 7 topics, even if (from the APC and

RMSE results) we can notice that performances slightly improve increasing the

number of topics. Similar mean measures lead to similar accuracy scores and

then to similar behaviour. This indicates that, almost for this dataset, different

sets of topics are not a discriminative factor for assessor accuracy. If we are

able to determine a small set of topics on which assessors presumably behave

as in the majority of topics, we can then achieve good results with s-AWARE

approaches at very low cost.
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CONCLUSIONS AND FUTURE WORK

In this thesis we proposed a new supervised approach to exploit crowd asses-

sors relevance judgements for information retrieval evaluation. We proposed

this approaches as a new part of the AWARE probabilistic framework, that

follow a different methodology with respect to the classic approaches.

AWARE aim to combine multiple assessors merging the evaluation mea-

sures computed considering each assessor’s judgements as ground truth. This

methodology, unlike the classic approaches that aim to create a single ground

truth combining assessors’ pools, allows to consider the not negligible different

impact that mislabelled documents at pool level can lead on different evalua-

tion measures or systems.

S-AWARE approach, combines assessors’ measures based to accuracy scores

computed with a set of different dissimilarity measures between the gold stan-

dard and each assessor: evaluation measures are computed for each retrieval

system on a training set of topics, an accuracy score for each assessor is com-

puted to be proportional to the closeness between assessor measures and gold

standard measures. In order to consider different ways in which an assessor

can be "close" to the gold standard, we developed two approaches based on

the real value distance between the measures (named sup_fro and sup_rmse),

one approach based on the comparison between probability distribution of the

measures (sup_kld) and two approaches based on the comparison between the
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system ranking induced by the measures (sup_tau and sup_apc).

To test our approaches we considered as crowd assessors 31 pools submitted

to TREC 2012 Crowdsourcing track and we used this pools to evaluate the

performance of the runs coming from TREC 08 AdHoc and TREC 13 Robust

evaluation campaigns.

The evaluation measures used in our experiments were Average Precision

and normalized Discounted Cumulative Gain computed up to rank 20. After

the measure computation, we analysed the results using AP correlation to

understand how different approaches perform on ranking the systems and

RMSE to determine which approach is better in estimating the gold measure

values.

We tested our five approaches against:

• Majority Vote and Expectation Maximization, that are two classic and

common approaches

• AWARE-uni approach, that uses AWARE methodology with uniform

accuracy weights for all the assessors

• u-AWARE approaches, the unsupervised part of the AWARE framework

that exploit the same dissimilarity functions to compute accuracy scores

proportional to the remoteness of assessors measures from random as-

sessors measures.

We merged together different kuples of 2 to 30 assessors, to investigate how

the number of merged assessors affect the approaches performance. Different

approaches, measures, systems and kuples constitute a set of factors for which

all the combinations are tested. ANOVA analysis is then computed to determine

how these factors and combinations of factors influence the behaviour of the

approaches.

Experimental results show that measures, approaches and its interaction

largely impact on performance, strengthening the motivations behind AWARE

methodology.

S-AWARE approaches always perform better than the uniform case and most

of s-AWARE approaches behave better than Majority vote, in particular with a

small set of merged assessors.

S-AWARE often outperform the corresponding u-AWARE approaches, and
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approaches based on ranking dissimilarity usually work better than the others

approaches.

We repeated then all the experiments varying the size of test set and training

set of topics for s-AWARE approaches.

Results from this further experiments state that some s-AWARE approaches

still perform better than the other approaches.

6.1 Future Work
Results presented in this thesis are based on a small set of measures and a

small set of topics. Further research should use a larger dataset to validate the

results obtained so far, also considering a greater set of evaluation measures.

A bigger dataset would allow us also to move to more complex algorithms for

accuracy computation.

In our experiments we noticed that some GAPs perform better with a cer-

tain evaluation measure than another: a first idea should then be to combine

multiple GAPs for different evaluation measures using for each measure the

GAP, or the combination of GAPs, which better perform in terms of similarity

between assessor and gold measures on the training topics. The aggregation

of different GAPs could be done in a similar way to weight computation in

u-AWARE approaches.

Another result from the experiments is that s-AWARE accuracy scores are

sometimes flattened by the similar values of the measures. In order to better

highlight good and poor assessor performance, several techniques can be tested.

The first, simple idea is to compute the squared GAP, as done in u-AWARE

approaches.

A more complex approach could involve some machine learning techniques:

after the s-AWARE training phase, we could perform a validation phase to

tune accuracy scores in order to achieve better results. The goal of this process

should be finding a local optimum configuration of accuracy scores for which

the maximum AP correlation is achieved on a validation set of topics.
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PLOTS AND ANOVA TABLES

In this appendix we report plots and tables for the tests performed on topicsets

of 3 topics (A.1) and 7 topics (A.2)

A.1 Results with topicset of 3 topics

A.1.1 AP Correlation

SS DF MS F p- value SOA
K-uple Size 1,53301 28 0,05475 289,05128 <0.0001

Approach 1,29790 17 0,07635 403,06873 <0.0001 0,76600

Measure 0,37522 1 0,37522 1980,96093 <0.0001 0,48672

Systems 0,29149 1 0,29149 1538,90365 <0.0001 0,42414

Approach*Measure 0,41113 17 0,02418 127,67679 <0.0001 0,50772

Approach*Systems 0,081336 17 0,00478 25,25937 <0.0001 0,16493

Measure*Systems 0,41538 1 0,41538 2192,97619 <0.0001 0,51215

Error 0,37978 2005 0,00019

Total 4,78525 2087

Table A.1: ANOVA table for AP Correlation (3 test topics)
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Figure A.1: APC Approach main effect (3 test topics)

Figure A.2: APC Measure

main effect (3 test topics)

Figure A.3: APC Kuple main effect (3 test topics)

Figure A.4: APC Runset

main effect (3 test topics)
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Figure A.5: APC Approach*Kuple interaction effect (3 test topics)

Figure A.6: APC Approach*Measure

interaction effect (3 test topics)

Figure A.7: APC Approach*Runset

interaction effect (3 test topics)
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A.1.2 RMSE

SS DF MS F p- value SOA
K-uple Size 0,09226 28 0,00330 53,67149 <0.0001

Approach 0,47308 17 0,02783 453,28833 <0.0001 0,78644

Measure 0,76346 1 0,76346 12435,79244 <0.0001 0,85623

Systems 0,02778 1 0,02778 452,50846 <0.0001 0,17779

Approach*Measure 0,49570 17 0,02916 474,96009 <0.0001 0,79419

Approach*Systems 0,01206 17 0,00071 11,55128 <0.0001 0,07911

Measure*Systems 0,00173 1 0,00173 28,12493 <0.0001 0,01282

Error 0,12309 2005 0,00006

Total 1,98916 2087

Table A.2: ANOVA table for RMSE (3 test topics)

Figure A.8: RMSE Approach main effect (3 test topics)

Figure A.9: RMSE

Measure main effect (3

test topics)
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Figure A.10: RMSE Kuple main effect (3 test topics)

Figure A.11: RMSE

Runset main effect (3 test

topics)

Figure A.12: RMSE Approach*Kuple interaction effect (3 test topics)
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Figure A.13: RMSE Approach*Measure

interaction effect (3 test topics)

Figure A.14: RMSE Approach*Runset

interaction effect (3 test topics)

A.2 Results with topicset of 7 topics

A.2.1 AP Correlation

SS DF MS F p- value SOA
K-uple Size 1,05321 28 0,03761 151,00729 <0.0001

Approach 1,45821 17 0,08578 344,35860 <0.0001 0,73653

Measure 0,66655 1 0,66655 2675,94252 <0.0001 0,56162

Systems 0,07361 1 0,07361 295,50691 <0.0001 0,12361

Approach*Measure 0,26757 17 0,01574 63,18643 <0.0001 0,33612

Approach*Systems 0,20151 17 0,01185 47,58593 <0.0001 0,27499

Measure*Systems 0,94652 1 0,94652 3799,90612 <0.0001 0,64531

Error 0,49943 2005 0,00025

Total 5,16660 2087

Table A.3: ANOVA table for AP Correlation (7 test topics)
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Figure A.15: APC Approach main effect (7 test topics)

Figure A.16: APC

Measure main effect (7

test topics)

Figure A.17: APC Kuple main effect (7 test topics)

Figure A.18: APC Runset

main effect (7 test topics)
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Figure A.19: APC Approach*Kuple interaction effect (7 test topics)

Figure A.20: APC Approach*Measure

interaction effect (7 test topics)

Figure A.21: APC Approach*Runset

interaction effect (7 test topics)
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A.2.2 RMSE

SS DF MS F p- value SOA
K-uple Size 0,06799 28 0,00243 32,06742 <0.0001

Approach 0,51858 17 0,03050 402,82432 <0.0001 0,76589

Measure 0,68148 1 0,68148 8999,23970 <0.0001 0,81166

Systems 0,03675 1 0,03675 485,29366 <0.0001 0,18827

Approach*Measure 0,58751 17 0,03456 456,37173 <0.0001 0,78757

Approach*Systems 0,01922 17 0,00113 14,92999 <0.0001 0,10186

Measure*Systems 0,00566 1 0,00566 74,75456 <0.0001 0,03412

Error 0,15183 2005 0,00008

Total 2,06903 2087

Table A.4: ANOVA table for RMSE (7 test topics)

Figure A.22: RMSE Approach main effect (7 test topics)

Figure A.23: RMSE

Measure main effect (7

test topics)

99



APPENDIX A. PLOTS AND ANOVA TABLES

Figure A.24: RMSE Kuple main effect (7 test topics)

Figure A.25: RMSE

Runset main effect (7 test

topics)

Figure A.26: RMSE Approach*Kuple interaction effect (7 test topics)
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Figure A.27: RMSE Approach*Measure

interaction effect (7 test topics)

Figure A.28: RMSE Approach*Runset

interaction effect (7 test topics)
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gaard, J. Mariani, A. Moreno, J. Odijk, and S. Piperidis, eds.), pp. 1456–

1461, European Language Resources Association (ELRA), may 2012.

107



BIBLIOGRAPHY

[44] M. Kutlu, T. McDonnell, Y. Barkallah, T. Elsayed, and M. Lease, “Crowd

vs. expert: What can relevance judgment rationales teach us about

assessor disagreement?,” in The 41st International ACM SIGIR Con-
ference on Research & Development in Information Retrieval - SIGIR
'18, pp. 805–814, ACM Press, jun 2018.

[45] J. Vuurens, A. de Vries, and C. Eickhoff, “How much spam can you take?

an analysis of crowdsourcing results to increase accuracy,” in Proceed-
ings of the ACM SIGIR Workshop on Crowdsourcing for Information
Retrieval, 2011, pp. 48–55, jul 2011.

[46] J. B. Vuurens and A. P. de Vries, “Obtaining high-quality relevance judg-

ments using crowdsourcing,” IEEE Internet Computing, vol. 16, pp. 20–

27, sep 2012.

[47] M. Lease, “On quality control and machine learning in crowdsourcing,”

in Proceedings of the 11th AAAI Conference on Human Computation,

AAAIWS’11-11, pp. 97–102, AAAI Press, 2011.

[48] D. Tao, J. Cheng, Z. Yu, K. Yue, and L. Wang, “Domain-weighted majority

voting for crowdsourcing,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 30, pp. 163–174, jan 2019.

[49] H. Li and B. Yu, “Error rate bounds and iterative weighted majority voting

for crowdsourcing,” ArXiv, nov 2014.

[50] M. Ferrante, N. Ferro, and E. Losiouk, “Stochastic relevance for crowd-

sourcing,” in Proceedings of the 41st European Conference on IR Re-
search, pp. 755–762, jan 2019.

[51] S. White and P. Smyth, “Algorithms for estimating relative importance

in networks,” in Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining - KDD '03, pp. 266–

275, ACM Press, 2003.

[52] M. D. Smucker, G. Kazai, and M. Lease, “Overview of the trec 2012 crowd-

sourcing track,” in Proceedings of the 21st Text REtrieval Conference,

National Institute of Standards and Technology (NIST), 2012.

108



BIBLIOGRAPHY

[53] D. Hawking, E. Voorhees, N. Cranswell, and P. Bailey, “Overview of the

trec-8 web track,” in Proceedings of the 8th Text REtrieval Conference,

National Institute of Standards and Technology (NIST), 2000.

[54] E. Voorhees, “Overview of the trec 2004 robust retrieval track,” in Pro-
ceedings of the 13th Text REtrieval Conference, National Institute of

Standards and Technology (NIST), 2005.

[55] A. Rutherford, ANOVA and ANCOVA: A GLM Approach.

John Wiley & Sons, 2nd ed., 2011.

[56] N. Ferro and G. Silvello, “A general linear mixed models approach to study

system component effects,” in Proceedings of the 39th International
ACM SIGIR conference on Research and Development in Information
Retrieval - SIGIR '16, pp. 25–34, ACM Press, 2016.

109





RINGRAZIAMENTI

Al termine di questo percorso voglio ringraziare il mio relatore, Prof. Nicola

Ferro, per la disponibilità e la pazienza con cui mi ha seguito durante lo

sviluppo della mia tesi.

Ringrazio i tanti compagni di viaggio con i quali ho condiviso i miei studi:

camminare assieme ha reso questa esperienza più bella. Ringrazio in modo

particolare i professori e i dottorandi del gruppo di ricerca IMS, per avermi

accolto in laboratorio come uno di loro, consigliandomi e accompagnandomi in

un ambiente a me nuovo.

Ringrazio tutta la mia famiglia per avermi dato la possibilità di percorrere

questa strada, sostenendomi dall’inizio alla fine.

Ringrazio gli amici tutti, per esserci stati sempre e aver condiviso con me

le esperienze più diverse tra divertimento, formazione, lavoro e volontariato:

riuscire a conciliare lo studio con altre esperienze è stato per me importante e

mi ha reso una persona migliore.

Grazie davvero, perchè anche se questa laurea può sembrare solo un mio

risultato, io sono certo che senza di voi non ce l’avrei fatta.

111




	List of Figures
	List of Algorithms
	List of Tables
	Introduction
	Background and Related Work
	Information retrieval
	IR evaluation
	Cranfield paradigm and evaluation campaigns
	Test collection definition
	Evaluation measures
	Precision and Recall
	Average Precision
	Normalized Discounted Cumulative Gain


	Collective intelligence, Human computation and Crowdsourcing
	Crowdsourcing platforms
	Games with a purpose

	Crowdsourcing in IR
	Crowdsourcing for relevance evaluation
	Noisy judgements

	Crowdsourcing techniques
	Majority vote
	Expectation maximization
	GeAnn
	TurkRank
	Skierarchy


	AWARE framework
	Dissimilarity definitions
	Measure dissimilarity
	Distribution dissimilarity
	Ranking dissimilarity

	u-AWARE accuracy computation
	GAP
	Weight

	s-AWARE accuracy computation
	GAPs and normalization


	Experimental Setup
	Experimental parameters
	Dataset
	Crowd assessors collection
	Retrieval Systems

	Evaluation measures
	Analysis measures
	Parameters
	Topicsets
	Kuples
	Other parameters


	Experimental workflow
	Data import
	Base measures
	Classic Approaches
	u-AWARE and s-AWARE approaches
	ANOVA analysis


	Experimental Results
	Base measures analysis
	AP Correlation
	RMSE

	Results with equal Train-Test size
	AP Correlation
	RMSE

	Results with different topicset sizes

	Conclusions and Future work
	Future Work

	Plots and ANOVA tables
	Results with topicset of 3 topics
	AP Correlation
	RMSE

	Results with topicset of 7 topics
	AP Correlation
	RMSE


	Bibliography

