
University of Padova
Department of Information Engineering

Master Degree in
ICT for Internet and Multimedia

A framework and tools for mobile network
automation in a cloud-based environment

featuring NFV and MEC

Supervisor:

Prof. Michele Rossi

Assistant Supervisor:

Dr. Fabio Giust

Candidate:

Francesco Asquini

Academic Year 2019-2020

Dissertation Date 20 July 2020

Abstract

The present work investigates the potential offered by Network Function
Virtualization (NFV) in the automation of deployment and configuration
operations for mobile networks. This thesis provides the description of an
experimental framework realized with open-source tools conceived for in-
tegration of a 4G network into a virtual infrastructure, making use of the
standardized architecture and interfaces provided by the NFV model. There-
after, the management mechanisms made available by the framework and the
implemented solutions for network automation are outlined.

Subsequently, integration of Multi-access Edge Computing (MEC) ser-
vices into the aforementioned framework has been considered, carrying out
a study on efficient content delivery through an application located at the
edge of the network. Procedures have been conceived for automatic activa-
tion and configuration of the edge services, responding to a user performance
improvement demand, and a proof of concept of the system is provided,
demonstrating the NFV and MEC integration feasibility and the advantages
of leveraging the edge computing model for data communications.

i

Acknowledgements

First of all, I am deeply grateful to the all the people who with their ideas
and researches forged and nurtured the telecommunications world. Through
their contributions this field has sprung to life, and in a great enthusiasm
that continues nowadays is changing people’s lives. I strongly believe inter-
connections and information mobility can make a better world where people
could connect, know and evolve. I hope I would be able to add a tile myself
to this ever-growing mosaic.

Gratitude goes to my supervisor at university of Padova, professor Michele
Rossi, for being inspirational and donating a portion of its time to support
my thesis work.

Deepest thanks to Athonet, for accepting me as an intern and giving me
the possibility to develop my master thesis. I was daily immersed in a stim-
ulating and vivacious environment which taught me a lot, in many different
ways. Especially, I desire to thank my company tutor, dr. Fabio Giust, his
guidance and precious advices led me to the conclusion of the work without
getting lost; it has been a pleasure to work with him and I could learn much,
both in terms of technical knowledge and creative expression. Special thanks
to Dario, Marcello, and Alberto, for their Long Term Support. And to the
coffee machine, invaluable friend.

Non-trivial thanks to my family, that has always believed in me and
even endorsed my departure from the Friulian lands... To Lorenzo, who was
waiting to end up in the acknowledgements, and to the beloved uncle Paolo,
ceaseless echo.

Flowery thanks to Marta, for the warmth of her presence and the affec-
tionate support, not only in the tense months. Many hugs!

Optimized thanks to my engineering friends, Alberto and Emilio, for
their vivacity, Alessandro and Beniamino, for their tranquillity.

Vibrating thanks to an angelic teacher, whose steps I follow, and can
bring enlightenment.

iii

Contents

Abstract i

Acknowledgements iii

List of Figures vii

Acronyms ix

1 Introduction 1

2 Background 3
2.1 4G Mobile Networks . 3

2.1.1 Architecture . 4
2.1.2 Bearers and connectivity setup 5

2.2 Network Function Virtualization (NFV) 6
2.2.1 Architectural framework 8
2.2.2 Deployment Operations 12

2.3 Multi-access Edge Computing (MEC) 14
2.3.1 Architectural framework 14

2.4 Related Work . 17

3 Design of a solution for NFV and MEC integration in a 4G
mobile network 19
3.1 4G core network in NFV framework 19
3.2 MEC services for 4G mobile network 22

3.2.1 MEC system architecture in NFV framework 23
3.2.2 Network Functions description 24
3.2.3 Use cases and MEC service activation 27

4 Description of the tools 31
4.1 OpenStack . 31
4.2 Open Source MANO . 34

4.2.1 Architecture . 34
4.2.2 Instantiation procedures 35

v

vi CONTENTS

4.2.3 Descriptors . 36
4.2.4 Configuration options 38

5 Implementation of the system 41
5.1 Environment setup . 41
5.2 Automation of deployment and configuration procedures . . . 42

5.2.1 SOL002 configuration API 42
5.2.2 Element Manager . 45
5.2.3 Instantiation and lifecycle configuration 48

5.3 Activation and fruition of MEC services 51
5.3.1 Mp1 configuration API 51
5.3.2 MEC system setup . 52
5.3.3 Traffic switch . 54
5.3.4 Video streaming service 56

6 Evaluation tests and results 59

7 Conclusions 63

A Example of OSM descriptors 65
A.1 VNF descriptor . 65
A.2 NS descriptor . 68

Bibliography 71

List of Figures

2.1 4G network architecture. 3
2.2 EPS bearer composition. 6
2.3 High-level NFV framework. 9
2.4 NFV reference architectural framework. 10
2.5 Example of the structure of a Network Service. 11
2.6 Multi-access edge system reference architecture. 15
2.7 MEC system reference architecture variant for NFV. 17

3.1 Architecture of LTE deployment in NFV environment. 20
3.2 Core VNF internal strucure. 21
3.3 Core VNF internal strucure including the virtual router. . . . 21
3.4 Distributed SGW in local breakout scenario. 23
3.5 MEC system architecture in NFV multi-site framework. . . . 24
3.6 Network functions composing the MEC system. 25
3.7 Core VNF internal structure and connection points. 25
3.8 Edge VNF internal structure and connection points. 26
3.9 Application VNFs. 27
3.10 User plane traffic flows in non-breakout and breakout mode. . 28

4.1 Service architecture for the considered OpenStack installation. 32
4.2 OSM core architecture and external management connections. 34

5.1 OpenStack gateway. 42
5.2 Configuration options offered by the Element Manager. 46
5.3 Multi-site deployment network architecture. 53
5.4 Reconfiguration of EPC traffic flows. 55
5.5 Video frames encoded at different qualities. 57

6.1 Encoding bitrate of the DASH segments requested to the re-
mote and local server. 60

6.2 Expected behaviour of the streaming service in a scenario in-
cluding automatic traffic switch. 61

6.3 Comparison of two frames taken from different DASH streams. 62

vii

viii LIST OF FIGURES

A.1 VNF implemented by the proposed descriptor. 67
A.2 NS implemented by the proposed descriptor. 70

Figures 2.3, 2.4, 2.6, 2.7, 3.4, are courtesy of ETSI.

Acronyms

3GPP Third Generation Partnership Project

API Application Programming Interface

DASH Dynamic Adaptive Streaming over HTTP

E-UTRAN Evolved UMTS Terrestrial Radio Access Network

EM Element Manager

EPC Evolved Packet Core

ETSI European Telecommunications Standards Institute

HSS Home Subscriber Server

LBO Local Breakout

LTE Long Term Evolution

MANO Management and Orchestration

MEC Multi-access Edge Computing

MME Mobility Management Entity

NFV Network Function Virtualization

NFVI NFV Infrastructure

NFVO NFV Orchestrator

NS Network Service

ix

x

OSM Open Source MANO

PGW Packet Data Network Gateway

SGW Serving Gateway

UE User Equipment

URL Uniform Resource Locator

VIM Virtualized Infrastructure Manager

VM Virtual Machine

VNF Virtual Network Function

VNFC VNF Component

VNFM VNF Manager

Chapter 1

Introduction

The worldwide increasing demand for mobile connectivity, along with the
massive amount of data exchanged daily over the Internet and the arise of
new, challenging, communication scenarios, is putting great pressure on the
existing telecommunication technologies. Long Term Evolution (LTE) mo-
bile networks have proven themselves a valuable standard in the last decade,
able to meet the demands of an increasingly data-oriented world, where the
exchange of information has become an essential driver for progress and one
of the main sources of revenue. 4G is today regarded as a mature technology,
and even if the transition to 5G networks is in full swing, involving a great
engagement of industry and academia, 4G networks are still undergoing an
evolution and optimization process. One of the most promising research
direction is that of network virtualization, aiming at removing the strict de-
pendency of network services on the underlying hardware infrastructure. In
fact, the increasing Capital and Operating Expenditures (Capex + Opex) for
deployment, maintenance, and activity of the network assets, are tending to
become unsustainable for the operators, the revenues not covering the costs;
moreover, the scaling procedures to accomodate for increasing connectivity
demand and greater volumes of traffic are made complex by the hardware
dependency. Network virtualization, taking advantage of the evolution of IT
field and the advent of cloud computing, emerged as a promising paradigm to
enhance network deployment flexibility and scaling easiness, while reducing
hardware costs and need for human assistance. Another emerging connec-
tivity model is the edge computing paradigm, aiming at providing mobile
services at the edge of the network, closer to the users: this allows to reduce
the network access time and to provide custom contents based on specific
geographical areas; it has a strict relation with network virtualization, being
based on cloud computing infrastructures. Both the network function virtu-
alization (NFV) and the multi-access edge computing (MEC) paradigms are
considered an essential component of 5G technologies; nonetheless, opening
to their sperimentation in 4G networks can provide valuable insights about

1

2

their integration in 5G technologies, apart from providing an intrinsic im-
provement to LTE installations.

The present work has been developed during an internship carried out at
Athonet Srl. Its objective is the integration of the NFV and MEC paradigms
in a 4G mobile network complying with the related standards and making
use of open-source tools, to ensure interoperability between implementations
of different operators. The commercial software realizing the 4G network has
been provided by Athonet. Especially, the potential of a unified NFV and
MEC system for network automation has been explored, using software solu-
tions to deploy, configure, and maintain network components and respective
functionalities requiring the least possible human intervention, for a more
efficient and cost-effective network management.

The thesis is organized as follows:

• Chapter 2 presents an overview of the LTE mobile networks structure
and functionalities, along with a description of NFV and MEC func-
tional architecture and applications. A review on recent works in the
field is also proposed;

• Chapter 3 proposes an high level architectural solution for the sys-
tem implementation, a detailed description of its composing network
functions, and the considered use cases;

• Chapter 4 provides an overview of the open-source tools employed for
the system realization and the way they have been used;

• Chapter 5 describes in full detail the implementation of the system,
focusing on the solutions devised for integration of the components
and provision of the expected functionalities;

• Chapter 6 illustrates the experimental simulations carried out to eval-
uate the system capabilities and provides observations on the obtained
results;

• Chapter 7 finalizes the thesis commenting the work and the results,
and outlining some possible extensions of interest.

NOTE: Due to the Covid-19 outbreak in the early months of 2020, the
internship at the base of the present work was subject to strong limitations
and the programmed work plan could not be carried to completion. A part
of the evaluation tests is missing; a general proof of concept of the system
was however produced.

Chapter 2

Background

2.1 4G Mobile Networks

Fourth generation mobile networks mark a difference respect to the pre-
vious cellular systems being the first technology to support only packet-
switched services, aiming to provide seamless IP connectivity between a user
equipment (UE, a device demanding data services) and a packet data net-
work (PDN, an external network providing the data services). The first 4G
standardization traces back to 2008, with the 3GPP Release 8 defining its
premises, new radio interfaces and core network. Since then LTE has become
a mature and flexible technology used worldwide and continuously evolving,
with the current latest release mainly concerning 4G being number 14 [1].
Release 15 outlines instead the first full set of standards for the forthcoming
5G networks, together with some enhancements to LTE.

Figure 2.1: 4G network architecture.

3

4 2.1. 4G MOBILE NETWORKS

2.1.1 Architecture

As depicted in figure 2.1, the network consists of two separate elements:
the E-UTRAN (Evolved UMTS Terrestrial Radio Access Network) and the
EPC (Evolved Packet Core). Together with the PDNs they form the EPS
(Evolved Packet System).

The E-UTRAN consists of a network of base stations (eNB) whose task
is to enable and handle communications between the UEs and the EPC. It
is responsible for all the radio-related functions, such as the radio resources
management (e.g. transmission scheduling and dynamic allocation of re-
sources to UEs in both uplink and downlink), and for handovers, namely
the transfer of ongoing data sessions whenever the UE attaches to a diverse
eNB, without dropping the connection.

The EPC is the core of the network and manages all data flows to pro-
vide connectivity to users. Two main distinct flows can be identified: control
plane communications and data plane communications, identified respec-
tively by dashed and solid lines in figure 2.1. The former regards all the
signalling performed in order to set up, manage and maintain connections,
while the latter carries the user traffic.

The core network consists of four interoperating components:

• Mobility Management Entity (MME): it is the main control node,
processes the signalling between the UE and the network. It authen-
ticates users as soon as they request an attach to the network and
selects the appropriate data gateway for their traffic; it retains infor-
mation about the active users and their connections. MME exchanges
information with the HSS through the S6a interface, with the SGW
through the S11 interface, with the E-UTRAN through the S1-AP in-
terface (also found as S1-MME or S1-C);

• Home Subscriber Server (HSS): a database containing information
about the subscribers. It is consulted by the MME to authenticate
users trying to connect to the network: only if its identity is present
in the database a user is authorized to consume network services. HSS
communicates with the MME through the S6a interface;

• Serving Gateway (SGW): its main function is the routing and for-
warding of user data packets. It is the termination point of the packet
data interface towards E-UTRAN and is responsible for inter-eNB han-
dovers, serving as a mobility anchor as the user moves across eNBs. It
also provides interconnection with other 3GPP technologies (such as
2G/3G) and performs lawful interception. SGW exchanges informa-
tion with the MME through the S11 interface, with the PGW through
the S5/S8 interface, with the E-UTRAN through the S1-U interface;

CHAPTER 2. BACKGROUND 5

• Packet Data Network Gateway (PGW): it is the connecting node
between UEs and external networks, and responsible for IP address
allocation for the UEs. In order to access multiple PDNs, UEs can
connect to several PGWs at the same time. PGW communicates with
the SGW through the S5/S8 interface and with the PDN through the
SGi interface.

An actual 4G network can comprise different instances of the previous com-
ponents (MME/SGW pools), to support mobility of users and to better
handle high traffic loads.

2.1.2 Bearers and connectivity setup

A bearer is a virtual tunnel between a PDN gateway and the UE providing
an IP packet flow with a defined quality of service (QoS); the E-UTRAN
and EPC together set up and release bearers as required by applications.
Multiple bearers can be established for a single user, in order to provide
different QoS streams or connectivity to different PDNs: as an example, a
VoIP call performed while also browsing the web. The MME is the entity
that keeps all the information about the established bearers for every user
and handles their creation, teardown, or updates.

The UE attachment procedure to the network includes the establishment
of a default EPS bearer which will be maintained until the termination of
the connection, to guarantee an always-on best-effort service. The setup of
any bearer requires a number of similar subsequent steps [2]:

• as the UE requests services to the network, the EPC selects an appro-
priate PGW to provide connectivity to the user

• the setup procedure is initiated by selected PGW, which assigns an IP
address to the UE and sends the SGW a request to create a bearer
with the required QoS

• all the information about the request is forwarded by the SGW to the
MME

• MME creates a Bearer Setup Request including session management
and configuration information along with the bearer identity and sends
it to the eNB serving the UE. The Setup Request also provides the
connection requirements of the bearer to the eNodeB; this information
is used to ensure the necessary QoS by appropriate scheduling of the
user’s IP packets

• the eNB, which has already a radio bearer active toward the UE, es-
tablishes a bearer toward the SGW

• the bearer is now operative and a positive response is sent back to
notify the correct establishment, completing the process.

6 2.2. NETWORK FUNCTION VIRTUALIZATION (NFV)

Figure 2.2: Bearers established to enable connectivity and EPS bearer composi-
tion.

As summarized in figure 2.2 , an EPS bearer is then composed by three
minor bearers, each of which established on a single interface: a radio bearer
between the UE and the eNB, a S1 bearer on interface S1-U, and a S5/S8
bearer, on the homonymous interface. The existence, linkage, and mutual
identification of all these is necessary for the connection to work. An ulterior
external bearer is created between the PGW and the PDN, to enable data
flow toward where services are located.

To support UE mobility between eNBs, the bearer changes along with
the user position: if the UE attaches to the network via a different eNB the
radio and S1 bearers are recreated respect to the new radio link; the S5/S8
bearer remains fixed. If instead an event triggers the selection of another
SGW to serve the user, all bearers are updated, since the data flow needs
to follow a diverse path from/to the PGW. The full EPS bearer needs to
always remain active, even if its composing bearers may be reconfigured to
meet the mobility needs.

2.2 Network Function Virtualization (NFV)

Several functions chained together are necessary for a network to work prop-
erly and provide the required services to the users. Nowadays, network func-
tions are largely realized through a wide variety of proprietary and highly-
specific combinations of software and hardware, known as network elements.
Despite being the most adopted solution, it presents some important draw-
backs due to the low flexibility a specific hardware introduces into the system:
first of all, hardware lifecycles are becoming shorter as technology and ser-
vices evolution accelerates, forcing the frequent design and deployment of
new equipment, limiting therefore the innovation rate of network technolo-
gies and lowering the overall revenues. Moreover, every hardware instance
can provide only a specific set of functionalities, defined in the design phase
of the product, forbidding the opportunity to easily respond with flexibil-

CHAPTER 2. BACKGROUND 7

ity to different requirements. Trained personnel would also be necessary to
repair or substitute these deployments. As a consequence, in the following
years a network architecture excessively relying on specific hardware will
constitute the bottleneck of the whole system, both in terms of innovation
rate and offered performances.

To overcome this matter, the European Telecommunications Standards
Institute (ETSI) has been developing the Network Function Virtualization
(NFV) paradigm, since 2012 when the first Industry Specification Group was
created in order to lay the groundwork for the new standard. Its premises
can be found in [3] along with relevant use cases which make it appealing for
the application in modern networks. The idea behind NFV is to break the
strict binding between software and hardware present in current proprietary
systems, by making network functions software-only applications (named
Virtual Network Functions, VNF) running on top of generic hardware by the
use of an appropriate virtualization infrastructure. Most of the complexity
and functionalities are then transferred to the software side of the system,
leaving the hardware as a mere support.

Virtualization is defined as the process of creating a simulated computing
environment on top of a physical host computer, in a layer abstracted from
the actual hardware; virtual machines (VM) created this way act as an in-
dependent physical computer respect to the host machine, able to run their
own operative system and software. The software that creates and moni-
tors virtual machines on the host hardware is called a hypervisor: it is in
charge of retrieving required hardware resources and making them available
for guest system applications.

NFV paradigm aims at including virtualization in the network context,
with the opportunity to install network functions on generic commercial off-
the-shelf hardware, e.g. multi-purpose servers, whose role is only to provide
computational, storage, and (physical) networking resources. The advantage
in doing this is the reduction of the number of different hardware devices in
a network and the complexity of deploying, configuring, and maintaining
them. Among the benefits such approach offers:

• rapid service innovation through software-based deployment, given that
a software update alone would be sufficient to perform the update of
the function, leaving underlying hardware unaffected;

• standardized and open interfaces between virtual network functions,
infrastructure and associated management entities, so that hardware
and software separate elements can be provided by different vendors;

• great flexibility in deploying VNFs on the hardware. This both aids
scalability and decouples network functionalities from location, by al-
lowing software to be located at the most appropriate places, anywhere
an infrastructure is available. Moreover, the infrastructure resources
can be reassigned to the VNFs according to the requirements;

8 2.2. NETWORK FUNCTION VIRTUALIZATION (NFV)

• improved capital efficiencies compared to dedicated hardware imple-
mentations.

Among the network functions which are suitable for virtualization, the
LTE core network components offer great opportunities in this perspective.
In addition to the advantages of removing dependency on proprietary hard-
ware, we mention the higher service availability and resiliency provided by
dynamic network reconfiguration, along with the ease of network topology
changes to optimize performances and support agile introduction of new ser-
vices, both potentials inherent to virtualization technology with a distributed
infrastructure. In this cloud native environment, the user can request ser-
vices to the network as if they were offered by a traditional deployment: the
end-to-end services should be independent of whether the network functions
are virtualized or not.

Another crucial application regards the 5G Network Slicing architecture.
It consists in running multiple independent logical networks on a common
physical infrastructure, each of them supporting different use cases and QoS
requirements (e.g. massive IoT connections, or low latency communications).
Devices can choose the appropriate network slice conforming to their needs,
they connect to the same service provider infrastructure but use a different
set of virtual or physical functions, accordingly.

2.2.1 Architectural framework

ETSI standard [4] defines the high-level functional architecture to support
VNF operations across different hypervisors and computing resources. To
enable interoperability it is important to elaborate a standardized architec-
tural model that specifies how the elements necessary to realize NFV can
be implemented and connected, allowing different VNFs to be deployed over
the virtualized infrastructure with minimal integration effort and maximum
reuse.

Three main working domains (shown in figure 2.3) are identified in NFV
context :

• NFV Infrastructure (NFVI), consisting of the underlying physical re-
sources and the hypervisor to virtualize them. NFVI supports the
deployment and execution of the VNFs;

• Virtual Network Function(s), as the software implementation of a net-
work function which is capable of running over the NFVI;

• Management and Orchestration (MANO), which covers the orchestra-
tion of physical and software resources that support the infrastructure
virtualization, and the lifecycle management of VNFs. MANO focuses
on all virtualization-specific management tasks necessary in the NFV
framework.

CHAPTER 2. BACKGROUND 9

Figure 2.3: High-level NFV framework. From [4].

At a greater level of detail, referring to figure 2.4, the working domains
can be decomposed in functional blocks and management interfaces, to be
briefly presented in the following.

OSS/BSS

OSS/BSS is the combination of the operator’s other operation and business
support functions that are not otherwise captured in the considered architec-
tural framework, but require information exchanges with entities belonging
to the NFV system. It communicates with the MANO via the Os-Ma inter-
face.

NFVI

NFV infrastructure, it represents the totality of all hardware and software
components which build up the environment in which VNFs are deployed,
managed and executed. It is composed by the hardware layer, consisting of
physical hardware resources that provide the processing, storage and connec-
tivity capabilities, and the virtualization layer, which abstracts the hardware
resources and makes them usable by the software implementing the VNFs.
It is controlled by the MANO via the Nf-Vi interface, and communicates
with deployed VNFs via a set of Vn-Nf interfaces.

10 2.2. NETWORK FUNCTION VIRTUALIZATION (NFV)

Figure 2.4: NFV reference architectural framework. From [4].

Virtual Network Functions and Network Services

A VNF is a virtualized instance of a network function in a legacy non-
virtualised network (the OSS), expected to have the same behaviour of its
non-virtualized counterpart. Each VNF can be composed by one or more
modules, called VNF components (VNFC), each of which is an independent
entity able to communicate with its peers and implementing specific func-
tionalities of the VNF. A VNFC is generally a software component running
on a single VM, this allowing an easier scalability to meet performance and
distribution requirements: a VNFC can be scaled vertically by increasing
the amount of its allocated resources, improving performance, or scaled hor-
izontally by triggering the activation of multiple instances of such VNFC
over multiple platforms, improving spatial distribution. Scaling operations
do not affect the overall VNF logical behaviour.

To each VNF instance is associated an Element Manager (EM), that can
be part of the VNF itself or a different VNF with management capabilities.
It is responsible for the configuration (at deployment or run-time), fault
detection, security management, and data collection for the involved VNF.
MANO contacts the element managers via the Ve-Vnfm interface.

A Network Service (NS) is the composition of a set of VNFs, whose
end-to-end functionality is a combination of the behaviour of its constituent

CHAPTER 2. BACKGROUND 11

functions. To define the NS behaviour starting from its components, a VNF
Forwarding Graph (VNF-FG) can be used: it is a graph whose nodes are
the network functions and the edges are the links between them, useful to
describe relations and data flows between the constituents; an example is
given in figure 2.5. The graph only defines logical links and entities, which is
separated from the physical implementation of the system: this emphasizes
the fact that the exact physical deployment of a VNF instance on the infras-
tructure is not visible from the end-to-end service perspective, and neither
is an interest of the NS.

Figure 2.5: Example of the structure of a Network Service. It is composed of
two distinct and interconnected VNFs; the first VNF presents three internal com-
ponents, the second one is a function with a single internal component. The NS
will be deployed on the virtualized resources of the NFV infrastructure.

Management and Orchestration (MANO)

The NFV Management and Orchestration entity is the core control node
of the NFV environment. Its role is to manage the NFVI, orchestrate the
allocation/release of resources required by the VNFs, and deal with all the
operations regarding lifecycle management of VNF/NS instances, such as
istantiation, configuration, scaling, termination.
MANO is made up of three functional blocks and of internal data repositories
containing necessary information to manage instances. These components
and their interactions are outlined in detail in a dedicated ETSI standard[5].

- NFV Orchestrator (NFVO)

The NFVO is the highest-level control entity; it is responsible for the or-
chestration of NFVI resources among multiple infrastructure managers, and
for the life-cycle management of Network Services. It coordinates the other
MANO components.

12 2.2. NETWORK FUNCTION VIRTUALIZATION (NFV)

- VNF Manager (VNFM)

The VNFM is responsible for the life-cycle management of VNF instances.
A single VNFM may manage many VNFs or a VNFM may be deployed
for every existing VNF; on the contrary, a single VNF responds to only one
VNFM. It controls the network functions under its authority via the Ve-Vnfm
interface, and communicates with the other MANO components.

- Virtualised Infrastructure Manager (VIM)

The VIM is directly responsible for controlling and managing the NFVI com-
pute, storage and network resources. It orchestrates the allocation, scaling
and release of physical resources and their interaction with the VNFs, ac-
tuating the necessary operations on the infrastructure. The VIM can be
controlled eiher by the NFVO or the VNFM, and exchanges control infor-
mation with the NFVI through the Nf-Vi interface.

- Service, VNF and Infrastructure Description

This dataset, stored and accessible inside the MANO, provides all the re-
quired information to deploy, configure and monitor network functions and
services. In particular, it stores the information models (i.e. a specification
of data semantics in a certain context) which define the consented structure
and parameters of NSs, VNFs, and virtual links between them.

- VNF and NS Catalogs

Catalogs contain information about all the VNFs and NSs on-boarded in the
system, in the form of descriptors. The VNF catalog can be accessed by
both the NFVO and the VNFM, while the NS catalog can be accessed by
the NFVO only.

- NFV Instances Repository

As a result of an instantiation operation (NFV, NS, or virtual links), records
are created to represent the newly created entities: they are based on de-
scriptors representing the instances and additional runtime information.

2.2.2 Deployment Operations

Two distinct and subsequent operations are to be performed by MANO in
order to deploy a VNF or NS on the virtualization infrastructure [5]:

• On-boarding. It refers to the process of submitting a VNF or NS
package to the NFVO to be included in the catalog.
A VNF package consists of a software image to be deployed, a VNF

CHAPTER 2. BACKGROUND 13

descriptor (VNFD), and possibly ulterior specific functionality for life-
cycle management. The VNFD is a deployment template specifying
resource requirements (CPU, RAM, disk space) and network connec-
tion points for the VMs to be instantiated; the connection points can
be both internal (connecting components inside the VNF) or external
(connecting the VNF with other VNFs or physical networks). VNFD
must be validated against the appropriate information model.
A NS package consists of a NS descriptor (NSD), containing informa-
tion about connections between its composing VNFs and end-to-end
functionalities; it may reference to a VNFFG. NSD must be validated
against the appropriate information model.
Inside the VNFD and NSD it is necessary to provide a description
of every virtual link to be created (being it among VNF components
or different VNFs) to enable connectivity. A Virtual Link Descriptor
(VLD) specifies the topology and connection points of the network to
be created in the virtualized environment.
When a NFV package is submitted, the NFVO processes the VNFD to
check the presence of mandatory elements and validate integrity and
authenticity, then notifies and updates the VNF catalog and makes
software images available to each applicable VIM. When a NS package
is submitted the NFVO primarily checks the presence of mandatory
elements, and validates integrity and authenticity. Then it checks the
presence of VNF packages for the VNFs that are part of the Network
Service and in those packages the presence of the external connection
points defined in the NS package. At this stage NS catalog is updated.

• Instantiation. In this phase the required resources are identified and
reserved at the NFVI, and the VMs constituting the VNFs are started.
After the instantiation request is done and validated by the VNFM,
either the VNFM or the NFVO contact the VIM and request for re-
sources allocation. VIM allocates the internal connectivity network
and instantiates the VMs on the infrastructure, according to the pa-
rameters specified in the descriptors. VNF Manager configures the
newly created VNF with any specific lifecycle parameters over the Ve-
Vnfm configuration interface, eventually notifying the EM (if present)
of the procedure completion.
In the case of a NS instantiation request, at first the NFVO checks if
any of the required NFVs are already deployed in the system; if some
are missing they are instantiated according to the previous procedure.
To complete the procedure virtual links between VNFs are created ac-
cording to the NS descriptor, and where required a connection between
the VNFs external interfaces and the physical network is created.
After deployment the VNFs start providing their services and become
available for run-time reconfiguration or scaling if required.

14 2.3. MULTI-ACCESS EDGE COMPUTING (MEC)

2.3 Multi-access Edge Computing (MEC)

Multi-access edge computing provides IT and cloud-computing capabilities
within the Radio Access Network (RAN) in close proximity to mobile sub-
scribers, making feasible to provide services, store and process content, at
the network’s edge. The RAN edge offers a service environment with ultra
low latency and high bandwidth as well as direct access to real-time ra-
dio network information, increasing the responsiveness of the system. This
paradigm, first proposed in 2014 by ETSI [6], is made possible by a highly
distributed deployment of cloud servers running at the edge of the mobile
network and performing specific tasks that could not be achieved with tra-
ditional network infrastructure. This framework allows the network to move
a lot of the computational burden and data exchanges at the edge, which
can reduce congestion while also improving users’ quality of experience and
being able to provide customized services based on location. Aside from the
closeness to user devices, which considerably reduces communication latency,
other important characteristics of MEC servers are the location awareness
and the possibility to take advantage of context information about users con-
nectivity, making possible to react upon radio link quality variations.

MEC is considered to be a key enabler for 5G technologies, aiming at
increasing the pervasiveness and responsiveness of the network; two major
use cases are the URLLC and mMTC network slices, the first requiring ultra-
reliable and low-latency communications and the second aiming to provide
connectivity to a great number of IoT devices in a defined area. Nonetheless,
it is of interest the realization of the MEC paradigm in 4G networks too,
also in a perspective of reusing the acquired technical knowledge during the
transition to 5G networks. Use cases of interest include high bandwidth or
computationally heavy services which could take advantage of the closeness
between consumer and provider, such as augmented reality content delivery
or video analytics for public safety.

2.3.1 Architectural framework

ETSI provides an high-level functional architecture for MEC framework [7]
with the same premises of open standards and interoperability between
multi-vendor services to which also NFV adhered, in order to encourage
the development and integration of new cutting-edge applications to exploit
MEC potential at its best.

The involved general entities can be grouped into system level, host level
and network level components. Figure 2.6 shows the MEC framework, con-
sisting of the MEC hosts and the management infrastructure necessary to
run edge applications within an operator network; its components will be
presented in the following.

CHAPTER 2. BACKGROUND 15

Figure 2.6: Multi-access edge system reference architecture. The MEC host, main
executive environment, is highlighted. From [7].

MEC host

The MEC host contains a MEC platform and a virtualization infrastructure
which provides compute, storage and network resources, for the purpose of
running MEC applications. The virtualization infrastructure includes a data
plane that executes the traffic rules received by the MEC platform, routing
the traffic among applications, services and external networks. The host is
the main application server to store, process, and provide content in MEC
framework.

MEC platform

The MEC platform is the collection of essential functionalities required to
run applications on a particular virtualization infrastructure and enable them
to provide, discover and consume MEC services. It is also responsible for
receiving traffic rules from the MEC platform manager, applications or ser-
vices, and instructing the data plane accordingly to differentiate the traffic
remaining at the edge from that directed toward the core network. It com-
municates with the MEC applications, the virtualization infrastructure, and
other MEC platforms, via interfaces belonging to the "Mp" group.

16 2.3. MULTI-ACCESS EDGE COMPUTING (MEC)

MEC applications

They run as virtual machines on top of the virtualization infrastructure
provided by the MEC host, and can interact with the MEC platform to
consume and provide MEC services. They are connected to the platform via
the Mp1 interface, which enables service registration and service discovery,
along with traffic rules and DNS rules activation, access to persistent storage
and time of day information.

MEC system level management

It contains the multi-access edge orchestrator, the core control node which
has an overview of the complete MEC system: it possesses a knowledge of
deployed MEC hosts, system topology, available resources and MEC services;
it supervises the on-boarding of application packages, and triggers applica-
tion instantiation, relocation, termination. The other actors involved are the
OSS of the operator and the user application lifecycle management proxy,
allowing the instantiation of user-required applications in the system (when
permitted). This entity exposes interfaces of the "Mx" group to communi-
cate with external entities and interfaces of the "Mm" group that provide
management connections with other MEC elements.

MEC host level management

It handles the management of a particular MEC host and the applications
running on it. It comprises the MEC platform manager which deals with the
lifecycle of applications, their rules and requirements (e.g. service authoriza-
tion and traffic rules configuration), and the virtualization infrastructure
manger (VIM), which allocates, manages, releases virtualized resources en-
abling the deployment of software images, as for NFV systems. This entity
exposes interfaces of the "Mm" group for management flows.

MEC and NFV can be considered complementary concepts, having as
a common ground the deployment of services and applications on a vir-
tualized infrastructure and the presence in the system of a central entity
carrying out management and orchestration tasks. A variant on the MEC
architectural design considers therefore the opportunity to deploy the MEC
system in a NFV environment, allowing to instantiate MEC applications and
NFV functions on the same virtualization infrastructure, and to reuse NFV
MANO components to fulfill a part of the MEC management and orchestra-
tion tasks. Figure 2.7 represents the variant architecture integrating NFV
and MEC components. In this framework the MEC platform and the MEC
applications are deployed as VNFs controlled by the MANO, the virtualiza-
tion infrastructure is deployed as a NFVI, and the MEC control entities are

CHAPTER 2. BACKGROUND 17

designed to interoperate with NFV ones. The interfaces are a mingling of
the ones present in MEC and NFV frameworks, together with some new con-
nections ("Mv" group) to grant operational compatibility between the two
systems. A simplified version of this particular configuration will be adopted
in the present work.

Figure 2.7: Multi-access edge system reference architecture variant for MEC in
NFV. From [7].

2.4 Related Work

The present work pushes forward the study carried out in [8], which analyzed
the deployment of a multi-site NFV system including MEC services. Proce-
dures for creation and configuration of a MEC system were investigated and
the suggested workflow partly served as reference for the implementation to
be outlined in the next sections, though our work further explores automa-
tion processes and integration with external services.

Another experimentation about a multi-site NFV deployment can be

18 2.4. RELATED WORK

found in [9]. In this work the authors studied the feasibility of deploy-
ing multiple network services at different points in the network under the
control of a centralized management entity. The claim is that the presented
implementation for the MANO entity is effective in instantiating and orches-
trating spatially distant functions, while also giving the chance to separate
control and data traffic flows between VNFs.

A recent work [10] analyzes the current state-of-the-art on MEC and
NFV integration, presenting the strong points of this approach, which grants
a very suitable environment for dynamic deployment and scaling of appli-
cations, and highlighting the gaps that still exist for a complete integration
between the two paradigms. A full description of the workflow to implement
an edge robotics scenario is also provided, describing the different role the
management entities for MEC and NFV have and how they interact.

Application of the MEC environment to latency reduction for a high-
quality video streaming is explored in [11], with a dynamic adaptive stream-
ing service provided at the edge. The computational capacity and the
context-awareness available at the edge are leveraged to support a seamless
streaming service robust to bandwidth fluctuations, trying to avoid stalls
during reproduction. The network function management framework was
however not fully specified and it is not clear to which extent the interoper-
ability requirements are fulfilled.

Chapter 3

Design of a solution for NFV
and MEC integration in a 4G
mobile network

The objective of this chapter is to present a possible architectural design for
the deployment of a 4G core network in a NFV environment, and successively
integrate MEC services in the aforesaid framework. The first experimental
study is carried out on the NFV system to explore the potential this virtual
environment offers for network automation; the second study is carried out
on the MEC system to examine the procedures for automated activation
of a local service with traffic steering at the edge. For both of the studied
scenarios, at first an high-level system architecture is outlined, followed by
a detailed description of deployed network functions, their structure, role
and connections with other functions; eventually the devised mechanisms to
start providing the expected system functionalities are illustrated.

3.1 4G core network in NFV framework

In the considered environment, the core network (EPC) has been modeled
as a single network function containing all the processes and functionalities
of its non-virtualized counterpart, exposing SGi and S1 interfaces for ex-
ternal connectivity. To simplify the configuration of connection points, the
EPC presents a unique S1 interface toward the E-UTRAN, performing both
control plane and user plane tasks. To integrate the virtual EPC into the
NFV framework, the architecture must include a NFV infrastructure provid-
ing hardware on which to deploy the virtual core network, and the MANO
entity. For implementation purposes, in this work the VIM has been con-
ceived as a separate entity respect to the other management components:
from now on, we refer to MANO as the combination of NFVO and VNFM,
not including VIM; however, the overall management functionality is assured

19

20 3.1. 4G CORE NETWORK IN NFV FRAMEWORK

due to data exchanges between the two entities. More details to be given
in chapter 4. NFV MANO is responsible for initial deployment and lifecycle
management of the core VNF; configuration of the instance is performed via
the Ve-Vnfm interface. Figure 3.1 depicts the conceived scenario.

Figure 3.1: Functional architecture of a mobile network deployed in a NFV envi-
ronment.

The Core VNF implements an EPC and is internally made up of the
corresponding four components: MME, HSS, SGW, PGW; in addition, an
element manager (EM) is embedded into the function, for control purposes.
The internal components are deployed starting from proprietary software
images developed and provided by Athonet. The internal connection points
refer to the S6a, S11, S5/S8 interfaces that the EPC does not expose, and
to the management interface between the EM and the other components.
The external connection points refer to the S1 and SGi interface for EPC
connectivity and to the Ve-Vnfm interface, coupled with an additional control
interface, to exchange management information with the EM from outside
the VNF. The internal structure along with the connection points is shown
in figure 3.2.

The element manager plays the main configuration role for the VNF,
allowing to instantiate the function with the desired parameters and func-
tionalities or providing a run-time reconfiguration facility on demand. The
EM receives configuration specifications from the MANO entity via the Ve-
Vnfm interface and takes care of their application to the VNF; also it is
possible to communicate directly with the EM via the control interface it

CHAPTER 3. DESIGN OF A SOLUTION FOR NFV AND MEC
INTEGRATION IN A 4G MOBILE NETWORK 21

Figure 3.2: Core VNF internal strucure.

exposes on the external network, to facilitate the user interaction with this
entity and ease the function reconfiguration processes. The communication
modes differ according to the used interface, and will be further detailed in
chapter 5. Both modalities are designed to allow the correct configuration of
the LTE network exploiting the functionalities provided by the NFV frame-
work.

As suggested in [8], it has been chosen to integrate in the VNF structure
a virtual router (as a VNF component) to collect the external connection
points and avoid them to be exposed on the physical network, as depicted in
Figure 3.3. This approach is intended for isolation improvement: exposing
all interfaces on a public network may cause security issues, and the intro-
duction of a router (which may implement a firewall) can enhance security
policies with packet based filtering. By doing so, the only exposed interface
on the network is the router external interface, and all traffic is exchanged
and filtered over it.

Figure 3.3: Core VNF internal strucure including the virtual router. For drawing
clearness the components are condensed in a single EPC entity.

22 3.2. MEC SERVICES FOR 4G MOBILE NETWORK

3.2 MEC services for 4G mobile network

A key functionality of the MEC platform is to route IP packets to MEC
applications that are meant to provide a service, which are either hosted
locally on the platform or on a distinct server. The traffic steering to/from
MEC applications is achieved by configuring appropriately the MEC host’s
data plane. The way to implement the traffic redirection is however highly
dependent upon the location of the MEC host respect to the 4G architecture;
referring to [12], four different deployment scenarios for a MEC system can
be considered:

• bump in the wire scenario: the MEC host can be located in any
position between the base station and the core network. This deploy-
ment is convenient for its flexibility but presents some issues related to
the processing of data packets, which are encapsulated using tunnelling
protocols on the S1 interface.

• distributed EPC scenario: in this deployment the MEC host logically
includes all or part of the EPC components. It is less impacting on
the operator’s network, and a local copy of the EPC provides more
responsiveness for applications that demand high performances.

• distributed SGW/PGW scenario: similar to the previous scenario,
except that only SGW and PGW entities are deployed at the edge
site, whereas the control plane functions remain at the core. This
architecture allows selective offloading of the traffic at the edge based
on the PGW choice, and permits the operator to retain full control
over the MME.

• distributed SGW with Local Breakout (SGW-LBO) scenario:
in this deployment the MEC host at the edge is co-located with a
SGW providing traffic steering capabilities. The SGW is provided
with an additional local-breakout SGi interface which supports traffic
separation, allowing the users to reach both the MEC applications (via
the breakout SGi interface) and the operator’s core site applications
(via the conventional S5/S8 interface) in a selective manner through
a unique gateway. The decision about whether to route the traffic to
local applications or forward it to the core PGW can be performed on
the basis of any operator-based combination of policies, such as user
identifier or IP parameters. The distributed SGW scenario is depicted
in figure 3.4.

CHAPTER 3. DESIGN OF A SOLUTION FOR NFV AND MEC
INTEGRATION IN A 4G MOBILE NETWORK 23

Figure 3.4: Distributed SGW in local breakout scenario. From [12].

3.2.1 MEC system architecture in NFV framework

A multi-site NFV framework has been designed to deploy a MEC system
in accordance with the SGW-LBO scenario. The experimental framework
(outlined in figure 3.5) is composed by three different sites: the management
site, the core site, the edge site; each of them is installed in a different phys-
ical location but logically connected to the others. This flexible positioning
option is made possible by the multi-site capacity of MANO, which enables
the deployment and control of network services across multiple NFVIs, as
long as they are under the control of compliant VIMs.

The management site consists of the MANO component, which has the
overview of the entire NFV system and exchanges control information with
all the other entities. In particular, it communicates with the VIMs located
at the edge and core sites to manage virtual resources and deploy network
services, and directly with the deployed functions for lifecycle management
(through the Ve-Vnfm interface). To secure inter-site control communica-
tions the use of a VPN on top of the underlying network is suggested.

The core site contain a NFVI to instantiate VNFs and a VIM to orches-
trate its resources. It hosts a Core VNF and an App VNF, to be described
in the next section.

The edge site is located at the E-UTRAN and an eNodeB is part of the
connectivity environment. As the core site, it comprises a NFVI and a VIM,
together with an Edge VNF and an App VNF, to be described in the next
section.

This multi-site deployment realizes a distributed EPC, with the core site
accomodating MME, HSS, PGW components, and the edge site providing an
SGW that may work in local-breakout mode. For experimental study, two
application servers have been included into the system, providing access to
an arbitrary kind of content; they are deployed as App VNFs and integrated
in the aforementioned environment. In this study, the App VNF residing at

24 3.2. MEC SERVICES FOR 4G MOBILE NETWORK

Figure 3.5: MEC system architecture in NFV multi-site framework.

the core site implements a remote server hosting a video streaming service
and accessible via the core network, whereas the App VNF residing at the
edge site is a local cache for the remote server, providing a copy of its content
as a MEC service. A user can request content either to the remote server, to
be retrieved via the SGi interface of the core PGW, or to the local copy of
the server, to be retrieved via the SGi interface of the SGW-LBO exploiting
its traffic steering capabilities.

To provide integration between MEC and NFV technologies at the edge
site, the SGW-LBO is conceived as a MEC platform through which the App
VNF (MEC application) can provide its services. Both are equipped with the
Mp1 control interface, to enable service registration and traffic rules activa-
tion. This work does not consider a totally integrated NFV-MEC platform,
but relies on a simpler virtualization framework, which could be extended
to become a full NFV-MEC platform. In fact, all the main management
tasks are performed by the MANO, lacking the presence of a MEC platform
manager and a MEC application orchestrator.

3.2.2 Network Functions description

The multi-site network service consists of four components simulating a real-
world connectivity scenario. The VNFs deployed at core and edge site to-
gether make up a full EPC with spatial separation of the internal constituent

CHAPTER 3. DESIGN OF A SOLUTION FOR NFV AND MEC
INTEGRATION IN A 4G MOBILE NETWORK 25

Figure 3.6: Network functions composing the MEC system and associated exter-
nal connection points.

elements; the S5/S8 and S11 interfaces are no longer included in the VNF
context as it was for the previous study, due to the different position of the
SGW respect to the rest of the EPC: it is then mandatory the exposure of
two connection points connecting the sites and implementing the said inter-
faces. Two similar Application VNFs are instantiated at both sites, used as
external hosts providing services. Figure 3.6 shows the four network func-
tions along with the exposed connection points and their mapping to logical
interfaces. Follows a detailed description of the deployed functions focusing
on their role, internal components, connection points.

Core VNF

Figure 3.7: Core VNF internal structure and connection points.

26 3.2. MEC SERVICES FOR 4G MOBILE NETWORK

It implements the core network providing the MME, HSS, PGW com-
ponents, together with an element manager for configuration purposes. It
exposes the SGi interface to enable data plane connectivity toward external
applications, and the S5/S8 interface to exchange user data with the SGW
located at the edge site. It also provides connection points for control plane
traffic: the S11 interface for MME-SGW communications, and the S1-C in-
terface for communications toward the E-UTRAN. The Ve-Vnfm interface is
exposed from the EM towards the VNFM, allowing for initial and run-time
configuration of the VNF. Its internal connection points correspond to the
S6a interface for MME-HSS communications, and management interfaces
between the EM and the various components.

For isolation improvement, the approach already described of integrat-
ing a router collecting the external connection points and exposing its own
interface on the public network has been adopted.

Edge VNF

Figure 3.8: Edge VNF internal structure and connection points.

It implements the edge network providing the SGW-LBO and an element
manager; it presents a unique internal interface, between these two compo-
nents. Regarding the user plane traffic, it exposes three interfaces: the S1-U
interface, to communicate with the E-UTRAN and provide content to the
users, the SGi interface, to access content from the edge application if the
traffic switch is enabled, the S5/S8 interface, to communicate with the core
PGW and access other remote networks not offering edge services. With re-
spect to the control plane, the S11 interface is exposed toward the MME, and
the Mp1 interface is exposed toward the local MEC application to manage
offering modalities for the services. The SGW-LBO component is deployed

CHAPTER 3. DESIGN OF A SOLUTION FOR NFV AND MEC
INTEGRATION IN A 4G MOBILE NETWORK 27

starting from an Athonet proprietary software image.
For isolation improvement, the approach already described of integrat-

ing a router collecting the external connection points and exposing its own
interface on the public network has been adopted.

Application VNFs

Figure 3.9: Application VNFs, deployed at edge site (on the left) and at the core
site (on the right).

The App VNF deployed at the core site (shown on the right in figure
3.9) implements a simple server hosting an arbitrary content; it exposes the
SGi interface toward the core VNF to make its content accessible to mobile
users, and the Ve-Vnfm toward the VNFM for configuration purpose and
monitoring of performance indicators for the VNF.

The App VNF residing at the edge site (shown on the left in figure 3.9)
is a clone of the core application, providing the same service though in a
more advantageous location. It exposes the Mp1 and SGi interfaces toward
the edge VNF for control and user plane connections with the SGW-LBO,
and the Ve-Vnfm interface toward the VNFM.

3.2.3 Use cases and MEC service activation

The proposed framework is designed to enquire the performance improve-
ments offered by traffic redirection from a remote server to a server placed in
a location closer to the final user. This scenario could account for any appli-
cation running in a cloud environment respecting the architecture outlined
in the previous sections; without loss of generality, a video streaming service
has been used in the present work. The choice fell on this application for the
simplicity also for a human user to appreciate the differences in experienced
quality when enjoying a multimedia content, giving a clear proof of concept
of the devised system.

The decision to deploy a MEC system arises from the performance degra-
dation inherent in content retrieval from a remote server residing in a generic
network location: above all, the link between the E-UTRAN and the core
network (which may need to cover great distances) introduces a non-negligible

28 3.2. MEC SERVICES FOR 4G MOBILE NETWORK

delay and presents an available bandwidth which is typically lower respect
to the bandwidth offered by the link between the user and the edge network.
Moreover, traffic redirection can mitigate network congestion problems.

As depicted in figure 3.10, in a conventional (non-breakout) communi-
cation scenario the user plane traffic flow coming from the S1-U interface
is forwarded to the PGW in the core site by the SGW-LBO working as a
conventional SGW, via the S5/S8 interface. The PGW then reaches the ap-
plication server via the standard SGi interface. When instead a local copy
of the server is present at the edge, the breakout mode can be activated and
the traffic redirected toward the edge application: in this case the traffic
flow remains within the access network, leveraging the SGi interface exposed
by the SGW-LBO to reach the server. Control plane communications keep
occurring between edge and core sites: they do not affect performances of
the user plane flows.

Figure 3.10: User plane traffic flows in non-breakout (blue route) and breakout
(red route) mode.

To simulate a real-case scenario of MEC services activation and access,
the application at the core is provided with a performance monitor able to
signal whether the offered service is experiencing a quality lower than re-
quired (according to either bandwidth or latency metric); if that happens,
the application triggers the cloning of itself and the deployment of a SGW-
LBO at the edge site to start providing the same service closer to the user.

The initial deployment procedure includes the instantiation of the core
VNF (comprising a conventional SGW component) and the core application;
the edge VNF and the edge application will be instantiated at a later time,
on demand. After the core network service is deployed, MANO subscribes to

CHAPTER 3. DESIGN OF A SOLUTION FOR NFV AND MEC
INTEGRATION IN A 4G MOBILE NETWORK 29

a monitoring service provided by the core app, by which the app cloning is
requested: as soon as the experienced service quality drops and remains be-
low a given threshold for a certain amount of time, MANO is notified by the
application. MANO is in charge of the executive operations for the cloning
procedure: the request to spawn a new edge NS is validated and the avail-
ability of necessary resources at NFVI is verified; the SGW-LBO and the
application are deployed at edge site and properly configured. In addition,
the core EPC is notified about the deployment of the external SGW and
a network reconfiguration is performed to establish the connectivity toward
the edge site. Thereafter, through the management interface MANO will
add a traffic rule to the MEC platform (the SGW-LBO) in order to enable
the traffic switch toward the edge application. In the meantime the cloned
application starts the registration procedure at the MEC platform, to enable
the new traffic rule and begin delivering its service. All the devised proce-
dures are meant to be entirely automatic, not requiring the intervention of
a human operator but being the result of the network reacting to its current
conditions, in an effort to provide a better user experience.

As the MEC functionality is fully set up, any authorized user requesting
content to the application will be served by the local copy of the server,
making it easier to comply with the requested quality of service. The traffic
rules registered in the MEC platform database specify which kind of traffic
must be redirected to the edge and can take advantage of the local break-
out capabilities; traffic matching any of the steering rules will enjoy local
breakout, while all the other connections will exchange data in the conven-
tional way, traversing the usual path toward the core. In the present study
the traffic rules perform a selection based only on IP parameters, but also a
selection on the allowed users or other parameters could be chosen, with the
MEC platform carrying out customizable authentication and authorization
procedures.

Chapter 4

Description of the tools

To deploy the systems outlined in the previous sections, it has been necessary
to identify suitable implementations for the NFV management and orches-
tration entities. The main features that have been discriminant in making
the choice are the alignment with ETSI specifications, the maturity and sta-
bility of the solution, and the type of license. Also taking as reference the
work in [8] [9], the choice fell on two software implementations which com-
bined together provide a full NFV MANO functionality.

Open Source MANO has been chosen as the baseline technology to build
the NFV system, implementing a full MANO stack comprising the VNFM
and NFVO entities. It supports the integration with many compliant VIMs,
among which we chose the OpenStack solution. Both of them are open source
software distributions, offering a favourable framework for experimentation
and research, and taking advantage from the constant community contribu-
tions. The following sections describe these tools, focusing on the relevant
functionalities for the creation of an experimental NFV scenario.

4.1 OpenStack

OpenStack1 is a cloud computing platform, providing an Infrastructure-as-
a-Service (IaaS) solution for both public and private clouds. Its aim is to
manage hardware pools and provide them as a virtual infrastructure on which
users can deploy their own services or networks. It can operate as a VIM
in the NFV MANO framework, orchestrating NFVI resources and on top of
them instantiating VMs and virtual networks; instructions about the actions
to perform on the resources are conveyed by the other high-level manage-
ment entities. OpenStack version Stein was used for this work.

OpenStack project features a collection of microservices, each delivering a
specific functionality, which can be combined together to provide the needed

1https://openstack.org/

31

32 4.1. OPENSTACK

capabilities. A custom OpenStack installation may be composed by an ar-
bitrary number of microservices chosen from the more than thirty available,
which exploiting the APIs they provide can be easily integrated. The Open-
Stack installation used for the present work features five modules (shown in
figure 4.1), to be described in the following.

Figure 4.1: Service architecture for the considered OpenStack installation.

Keystone (Identity service)
Keystone service implements the OpenStack’s Identity API and provides
client authentication and authorization. Upon validation of inserted creden-
tials the user is given access to the other available services.

Glance (Image service)
Glance service allows discovering, registering and retrieving virtual machine
images. A VM image is a virtual hard disk file that is used as a baseline
template for creating virtual machine instances, providing all the system
functionalities included in the image available for the VM after the deploy-
ment procedure. Glance has a RESTful API that allows querying of VM
image metadata as well as retrieval of the actual stored image. VM images
made available through Glance can be stored in a variety of locations, from
simple filesystems to object-storage systems.

Nova (Compute service)
Nova is the service which enables the provisioning of compute instances. It
permits the creation on demand of virtual machines on top of the virtual

CHAPTER 4. DESCRIPTION OF THE TOOLS 33

infrastructure; each instance is launched starting from a software image re-
trieved through the glance service. This service supports integration with
the most common virtualization technologies and hypervisors to manage the
resources in the hardware pool.

To deploy a new virtual machine from a software image it is required to
provide a ’flavor’, namely parameters defining the compute, memory, and
storage capacity for the instance to be launched, together with a network to
locate the VM and information about its connection points.

Neutron (Networking service)
Neutron service provides network connectivity between devices managed by
other OpenStack services, such as Nova. It handles all facets about the
creation and management of a virtual networking infrastructure, realizing
arbitrarily complex network topologies and implementing services such as
firewalls and DHCP. Neutron provides networks, subnets, and routers as vir-
tual abstractions, each of them having functionalities that mimic the physical
counterpart: networks contain subnets, and routers route traffic between dif-
ferent subnets and networks.

Any Neutron setup presents one or more internal networks, to which the
deployed VMs are attached through connection points called ports; to ac-
cess a VM connected to an internal network it is necessary to lie on the same
network or rely on a virtual router providing a port on the given network.
Besides, it is mandatory in the setup the presence of at least one external
network, which unlike the other ones is not virtually defined but a physical
network accessible outside the OpenStack installation. Internal and exter-
nal networks are mutually isolated. For the outside network to access VMs
located in an internal network, and vice versa, a router between the external
and internal networks is required, exposing interfaces on both of them: this
gateway can allocate floating IP addresses on external networks and asso-
ciate them to ports on the internal network. This way, entities on the outside
network can access deployed VMs.

Neutron also supports security groups, which enable administrators to
define applicable firewall rules. A VM can belong to one or more security
groups, whose rules serve to block or unblock ports, or traffic types, for that
VM.

Horizon (Dashboard)
Horizon is Openstack’s dashboard, providing a web based user interface to
interact with available services. It allows the user to manage the active
projects, performing operations such as launching or destroying instances,
creating and configuring virtual networks and connectivity for the instances.

34 4.2. OPEN SOURCE MANO

4.2 Open Source MANO

Open Source MANO (OSM)2 is an ETSI-hosted project which delivers a
functional implementation of a MANO software stack aligned with ETSI
NFV specifications. It realizes the NFVO and VNFM functionalities and can
relate with compliant VIMs (e.g. OpenStack, OpenVIM, VMware, Amazon
Web Services) to deploy the requested network services on the underlying
virtualization infrastructure. It also supports multi-site deployments, as long
as every infrastructure is controlled by a VIM. The latest stable version, OSM
Release SEVEN, was used.

4.2.1 Architecture

OSM features a modular design [13], each component providing specific func-
tionalities and connections toward other components, while keeping its op-
erational independence. The three core modules that realize the MANO
capabilites are described in the following; their connections and relations
with external entities such as the VIMs and the VNFs are shown in figure
4.2.

Figure 4.2: OSM core architecture and external management connections.

2https://osm.etsi.org/

CHAPTER 4. DESCRIPTION OF THE TOOLS 35

Service Orchestrator (SO)
The service orchestrator (in the latest releases replaced by a lighter ver-
sion, the Lifecycle Management component, LCM) is the highest-level control
node, realizing the NFVO functions. It supports the lifecycle management
of network services, coordinating the creation, configuration and deletion of
services composed of multiple VNFs, interacting with the RO and the VCA
modules. Additionally, it provides other enabling functionalities, such as the
management of NS/VNF descriptors and packages.

VNF Configuration and Abstraction (VCA)
The VCA module implements the VNF Manager defined by ETSI, support-
ing the configuration of VNFs after deployment and enabling the notifications
from VNFs or Element Managers to the OSM platform. To support the con-
figuration services VCA makes use of an external application modeling tool,
Juju3. This tool allows the configuration and scaling of cloud applications
through the execution of software scripts, called proxy charms, which can be
included in the on-boarded VNF packages.

Resource Orchestrator (RO)
The RO module requests and supervises the allocation and configuration of
computing, storage and network resources under the control of one or mul-
tiple VIMs, in order to support the execution and interconnection of VNFs.
It can orchestrate resources across different supported VIMs utilizing a set
of plug-ins to interact with the specific interfaces they expose.

OSM, in addition to a command line client, also provides a handy graph-
ical web user interface, through which it is possible to interact with the
MANO services. Among the available options, the user can deploy, scale, or
destroy VNFs or network services, perform VNF run-time configuration or
monitoring, manage the registered VIMs.

4.2.2 Instantiation procedures

In order to deploy network functions and network services as cloud appli-
cations in the VIM environment (from now on assumed to be OpenStack),
OSM follows the on-boarding and instantiation procedures outlined in chap-
ter 2.

The first step regards the on-boarding of the VNF and NS packages
describing the desired structure and functionalities. Every VNF package
consists of a software image (stored at VIM), which serves as foundation for
the virtual machines to deploy, and a descriptor adding all the information
for correct initial setup of the new instance; optionally, a configuration agent

3https://jaas.ai/

36 4.2. OPEN SOURCE MANO

such as a Juju charm may be included. The NS packages are instead made
up of a descriptor only, referencing to already on-boarded VNF packages
and specifying NS composition and end-to-end functionality. The packages,
compressed in .tar.gz archives, can be on-boarded through the web user in-
terface. Once validated, they are inserted in OSM catalog and become ready
for deployment.

Open Source MANO supports the instantiation of network services only,
thus it is necessary to embed all the required VNFs in a NS - by referencing
the corresponding packages in the NS descriptor. The instantiation can be
requested via the web interface; however, for advanced functionalities the
OSM client is preferred. Following the instantiation request, via the RO
module OSM notifies the VIM, which puts into effect the request by han-
dling the resources of the underlying NFVI. Instantiating the network service
launches all the VNFs it references, creates the necessary virtual networks
and attaches connections points. Successively, the initial configuration op-
erations specified in the VNF packages are performed. At this stage the
network functions are ready to deliver their services and open to successive
reconfigurations via the Juju charms.

4.2.3 Descriptors

Descriptors are used to model and automate the full lifecycle of network
functions and network services; as such, they are a necessary component to
enable their deployment in OSM environment. The descriptors are expressed
in YAML format (a human-readable data-serialization language in key/value
pairs) and must be written and validated according to an ETSI-defined in-
formation model4, which specifies all acceptable configuration parameters
together with their role and value type.

VNF descriptors
Virtual network function descriptors (VNFD) are deployment templates used
to describe the attributes of a single VNF. The information contained is used
by the RO and the VCA modules for resources allocation and initial config-
uration. An overview of the main fields of the descriptor is now presented;
an example of VNFD can be found in Appendix A for greater clarity.

• Identifiers: the parameters used to univocally define the VNF. They
include id, name, vendor, and an optional description.

• Connection points: a list of connection points (virtual interfaces) ex-
posed by the VNF on the networks. It is also used to enable or disable
their port security in the VIM.

4Accessible at: https://osm.etsi.org/wikipub/index.php/OSM_Information_Model
in tree representation.

CHAPTER 4. DESCRIPTION OF THE TOOLS 37

• Management interface: it defines the connection point through which
the VNF is managed by OSM (Ve-Vnfm interface). It can be specified
referring to an already defined connection point or by indicating a
reachable IP address.

• Internal virtual links descriptors (VLD): used to describe the connec-
tivity between internal VNF components. A list of virtual links con-
necting the components, describing the respective topology and the
attached connection points together with their IP addresses.

• IP profiles: describe the IP characteristics for the internal virtual links
(IP version, subnet associated to the link, default gateway, DNS server,
DHCP parameters, security groups).

• Virtual deployment units (VDUs): a list of virtual machines imple-
menting the VNF; they correspond to the internal VNF components.
For each VDU it is mandatory to specify the respective identifiers, the
software image from which to launch the VM (to be found in the VIM),
the deployment flavor (the amount of CPUs, RAM and disk space to
be allocated for the VM), and the exposed interfaces, corresponding to
internal or external connection points.

• VNF configuration: this section is used to specify configuration options
for the VNF. It includes the name and parameters of the executable
configuration primitives (namely, actions to be performed) and must
reference a juju charm or a script which define their implementation.

NS descriptors
Network service descriptors (NSD) are deployment templates describing the
high-level functionality of the system, the connectivity between its composing
entities (the VNFs), and information concerning the connection of virtual
functions to the external networks. The user may instantiate a NS starting
from the corresponding descriptor; the SO module is in charge of verifying the
existence of the VNF packages referenced in the descriptor and requesting the
creation of instances, virtual links and connections on the external network,
engaging the RO module. An overview of the main fields of the descriptor is
now presented; an example of NSD can be found in Appendix A for greater
clarity.

• Identifiers: the parameters used to univocally define the NS. They
include id, name, vendor, and an optional description.

• Constituent VNFDs: reference to the descriptors of VNFs constituting
the NS.

38 4.2. OPEN SOURCE MANO

• Connection points: characterization of the external connection points
exposed by the constituent VNFs, outlined in the respective descrip-
tors. For each point it can be requested the assignment of a floating
IP (chosen among those allocated to the VIM) to provide attachment
of the NS to a physical external network.

• External virtual link descriptors (VLD): used to define the virtual links
exposed by the NS on the external networks or created for VNF con-
nections inside the NS. It is possible to specify an existing network or
to create a new one in the VIM where to attach the VNFs interfaces.
For every VNF external connection point it is allowed to choose an IP
address on an existing network.

• IP profiles: describe the IP parameters for the external virtual links
(IP version, subnet, default gateway, DNS and DHCP specifications,
security groups).

Ulterior advanced functionalities not employed in the present work, such as
VNF forwarding graphs and monitoring of performance indicators, may be
referenced in the NS descriptor.

4.2.4 Configuration options

OSM provides three different solutions for configuration of the deployed
VNFs, classified according to the time of execution and the available op-
erations. The different sets of operations are known as day-0, day-1, day-2
procedures [14].

Day-0 configuration

Day-0 configuration procedures regard the basic instantiation stages, and
their aim is to make the VNFs operational and manageable. These proce-
dures are executed during bootstrap of the instances. The deployed VNFs
are configured according to the parameters specified in the YAML descrip-
tor, in particular the management interface is set up to enable successive
communications toward the MANO entity.
OSM permits an ulterior level of initial configuration, by injection of scripts
inside the VDUs at bootstrap through an external software, cloud-init5. This
procedure applies in case a VDU is deployed starting from a generic disk im-
age (as example, cloud images - disk images of an operating system providing
only basic functionality and ready for deployment in a cloud infrastructure):
in this eventuality, the image contains only the minimal configuration to
guarantee operability and no hardcoded parameters that are relevant to the

5https://cloudinit.readthedocs.io/

CHAPTER 4. DESCRIPTION OF THE TOOLS 39

service (e.g. username and password for access to the machine) are present.
Cloud-init scripts are defined at VDU level and may be included in the cor-
responding section in the descriptor; the scripts are executed at bootstrap
and inject the specified configuration. Some options made available by this
procedure are the addition of users in the system, injection of keys to enable
SSH access, configuration of network devices, execution of arbitrary com-
mands.
In case the used disk image is already customized (e.g. being a snapshot of
an already existing instance), this procedure needs not be applied.

Day-1 configuration

Day-1 procedures regard service initialization for VNFs; they are automati-
cally executed right after instantiation, provided that the user specified the
operations to be performed referencing them in the descriptor.
To perform day-1 operations, OSM makes use of the Juju plugin, which
enables the execution of lifecycle configuration routines through the use of
proxy charms. A proxy charm is a collection of YAML descriptors, support
files and executable code, written either in Python or Bash language; its
main components and structure are shown in the following schema.

example_charm/
actions/

action_A
action_B
...

reactive/
example_charm.py

actions.yaml
layer.yaml
metadata.yaml

The metadata.yaml file contains descriptive information about the iden-
tity of the charm, the maintainer, and the provided functionality.
The layer.yaml file can be used to leverage other existing charms including
them as base layers to build upon, and may specify other dependencies to
use in the executable code.
The actions.yaml file contains an high-level list of the actions implemented
by the charm and executable on the VNFs, with an optional description. For
every defined action it is possible to enumerate a set of arguments accepted
in input, together with their types (string, integer, boolean, object) and de-
fault assumed values.

40 4.2. OPEN SOURCE MANO

The actions folder contains a file for each defined action, with its same
name. Every file includes boilerplate code whose only aim is to make the
actions executable.
The reactive folder contains a Python script which is the actual implemen-
tation of all the declared actions. The script is built according to the reactive
programming paradigm, that makes it possible to monitor data streams and
perform actions reacting upon particular events or calls; this paradigm pro-
vides great potential for automation processes.

After the charm is composed, it is included in a specific VNF package to
be on-boarded, and referenced in the related descriptor. The charm, however,
is not part of the VNF itself, but resides in a container inside the OSM
installation managed by a Juju controller, and enabled to communicate with
the associated VNF. In day-1 configuration its execution is automatically
launched after the VNF bootstrap is completed; the parameters to be used
for the actions are specified directly in the descriptor. At the end of day-1
configuration, the VNF starts providing the expected service.

Day-2 configuration

Day-2 procedures allow reconfiguration of the VNFs so their behaviour can
be modified during runtime, as well as the possibility to monitor the key per-
formance indicators (KPI) and run scaling operations. All these procedures
are executed on-demand, being it a request from the user or a triggering
state.
To enable day-2 operations it is mandatory to create a proxy charm imple-
menting the actions considered of interest for the VNF to be deployed, and to
include it into the package as for the day-1 configuration procedures. After
the VNF is instantiated and fully configured, the user may request at any
time the execution of a day-2 operation stated in the charm, via the OSM
user interface, specifying all the necessary input parameters. This kind of
reconfiguration procedures offer large potential in interaction with the de-
ployed VNF, although the impossibility to change the available actions once
the VNF is created (since the charm cannot be modified runtime, then all the
operations to be enabled must be designed before instantiation) is a current
limitation for this approach.

Chapter 5

Implementation of the system

The present chapter outlines the software solutions devised to integrate
Athonet commercial products with the other tools, with the purpose of im-
plementing the NFV and MEC joint environment. The first part describes
the setup of the physical and virtualization infrastructure. The second part
is dedicated to the realization of the system outlined in section 3.1, examin-
ing the network automation procedures in the NFV scenario. The third part
is dedicated to the realization of the system outlined in section 3.2, including
MEC services in the NFV environment and considering the traffic steering
activation.

5.1 Environment setup

To support the deployment of the NFV systems, the experimental envi-
ronment should be composed by two separate virtualization infrastructures,
one management entity, and a base station. To provide the virtualization
infrastructures we made use of two physical hosts, each of them provisioning
an OpenStack installation to manage the available hardware resources as a
VIM and instantiate the VNFs on top. The characteristics of the hosts are
reported in the following table.

OpenStack Host 1 OpenStack Host 2
(Core site) (Edge site)

CPU Intel Core i7-2600, 3.40 GHz Intel Core i5-7200U, 2.50 GHz
RAM 16 GB DDR3 16 GB DDR4
Storage SSD, 480 GB SSD, 250 GB
OS Ubuntu 18.04 LTS Ubuntu 18.04 LTS

Each OpenStack installation provides connectivity on the physical net-
work to the deployed VMs through its internal gateway. All instances requir-
ing external connectivity attach a port on the private internal OpenStack

41

42
5.2. AUTOMATION OF DEPLOYMENT AND CONFIGURATION

PROCEDURES

network, created beforehand; the gateway performs the association of inter-
nal ports with floating IP addresses on the public network, a subnet of the
physical network, as shown in figure 5.1. This allows the VNFs to commu-
nicate with other machines or the Internet.

For the first implemented system only the cloud infrastructure located at
the core site has been employed; for the second system both infrastructures
have been employed.

Figure 5.1: OpenStack gateway performing connection of virtual machines to
external networks.

Open Source MANO is deployed on a laptop featuring a Ubuntu 18.04
LTS operative system. The management communications between the OSM
host and the two cloud infrastructure hosts are performed within a secured
private network.

To provide LTE access to the user equipments, a portable base station
has been included in the experimental environment. Connectivity between
the base station and the edge site is ensured through a private network and
required for data exchanges with the EPC components deployed in both
cloud infrastructures. It is required to configure the MME and SGW com-
ponents to establish a link toward the eNB, providing information on its
network location.

5.2 Automation of deployment and configuration
procedures

5.2.1 SOL002 configuration API

Configuration requests for VNF instances are performed over the standard-
ized Ve-Vnfm interface, exposed by MANO toward the Element Managers.
ETSI group specification SOL002 [15] outlines the set of RESTful APIs and
data models supported over the Ve-Vnfm logical interface, which by exten-
sion is referred also as SOL002 interface.

Application Programming Interfaces (API) are protocols used for inter-

CHAPTER 5. IMPLEMENTATION OF THE SYSTEM 43

action between different entities, providing a shared set of procedures and a
common language for the access to resources and services. The use of APIs
is meant to facilitate the information exchange between heterogeneous ser-
vices and applications, allowing them to support the same access modality,
adherent to agreed specifications. RESTful APIs are the most used type
of web APIs, based on REpresentational State Transfer (REST), an archi-
tectural style and approach to communications often used in web services
development, typically over HTTP. A RESTful service satisfies a number of
structural conditions, among which:

• Use of a uniform interface. Resources should be uniquely identified
with a single URL (Uniform Resource Locator, stating the address
where the web resource is placed), and only by using methods respond-
ing to the CRUD functions (Create, Retrieve, Update, Delete) should
it be possible to manipulate a resource. For HTTP protocol, the meth-
ods GET, POST, PUT, PATCH, DELETE are used.

• Client-Server relations. There should be a clear distinction between
the client and the server, the first performing requests on the resources
and the latter providing access to the hosted resources. This separation
of roles between the client and server enables each to be developed and
enhanced independent of the other.

• Stateless operations. No information about sessions and client context
is retained on the server between subsequent requests, and every re-
quest is independent respect to the previous occurred. Each request
from any client contains then all the information necessary to provide
the desired service, and the session state is held at the client side only.

The SOL002 interface supports different administration procedures on the
VNFs, such as performance management, fault management, and network
configuration, each accessible via HTTP protocol through a corresponding
URL. All the URL prefixes of the API are of the form:

{apiRoot}/{apiName}/{apiVersion}/

where apiRoot indicates the protocol ("http" or "https"), the hostname (IP
address) of the machine where the resource is located, and an optional port,
apiName indicates the interface name for the requested service, apiVersion
indicates the current version of the API. For the configuration section of
the SOL002 interface apiName is set to "vnfconfig", apiVersion is currently
version 1, and the only resource made available by the VNF to the external
management entities is the configuration resource.

44
5.2. AUTOMATION OF DEPLOYMENT AND CONFIGURATION

PROCEDURES

Thus, it is possible to access the configuration of the VNF via the URL:

{apiRoot}/vnfconfig/v1/configuration

with apiRoot containing the IP address of the Element Manager which is in
charge of applying the settings to the VNF. The allowed HTTP methods on
the considered resource are the GET method, to read the configuration data
of a VNF instance and its VNFC instances, and the PATCH method, to
set (add or modify) the configuration data. The data model included in the
specification states the data structures accepted by the interface, and con-
sequently the configuration fields it is possible to edit via a SOL002 HTTP
request. Our interest is in the network configuration of the various VNF
components (namely, the EPC components), to associate each VNFC con-
nection point to a physical interface of the VM and to a LTE interface
identifier, along with inclusion of network routes, IP addresses, and other
parameters specific to the EPC deployment; however, part of these configu-
ration data is not supported by the NFV standard, which has no knowledge
of physical interfaces and specific LTE settings. To solve the limitation, we
exploited the optional field vnfcSpecificData made available by the API,
whose scope is to allow vendors to perform specific configuration that cannot
be done through the other SOL002 parameters: it is a generic field which
supports data in key/value pairs, such as provided by YAML or JSON files,
for additional settings.

The content of the SOL002 request is a JSON file with the following
structure:

{ "vnfcConfigurationData": [
{ "vnfcInstanceId": "<vnfc_id>",

"CpConfig": [
{ "cpId": "<interface_name>",

"cpdId": "<phy_interface_type>",
"addresses": [
{ "address": {"ipAddress": "<address>/<netmask>"},

"useDynamicAddress": "<boolean>"
}]

}],
"vnfcSpecificData": "<additional_conf>"

}]
}

A single request may contain configuration parameters for an arbitrary
number of VNF components, each identified by the vnfcInstanceId field.
The CpConfig section regards the configuration of the connection points ex-
posed by the selected component; in our implementation the meaning of
some fields has been modified respect to the NFV specifications to meet the

CHAPTER 5. IMPLEMENTATION OF THE SYSTEM 45

demands of physical interfaces setup, which NFV architecture does not na-
tively support. The field cpId is used to associate the interfaces of the VNF
component with the correspondent connection point defined in the OSM
descriptor, the field cpdId is used to declare the physical interface to be
configured on the component, associating it to the logical connection point.
The addresses section is used to define a set of IP addresses for the selected
connection points, and choose whether they are to be statically or dynami-
cally allocated. The optional field vnfcSpecificData serves to define all the
ulterior parameters for component management and EPC connectivity not
otherwise specifiable.

To load a new configuration, or modifying an existing one, it is possible to
build a charm performing requests at the configuration URL of the SOL002
interface, as part of day-1 or day-2 procedures. The data, sent by OSM via
the Ve-Vnfm connection, is received and handled by the Element Manager,
which applies the submitted configuration to the chosen VNF components.

5.2.2 Element Manager

The communications between the Element Manager and the network ele-
ments are performed over proprietary interfaces providing their own APIs.
The Element Manager receives from OSM configuration requests compliant
with the SOL002 API, and is in charge of translating them into requests con-
sistent with the proprietary API, by which the configuration can effectively
be applied to the network elements.

To access the configuration interface of any of the VNF components, the
EM must have knowledge of the endpoint to which the component binds:
this correspond to the IP address of the management interface exposed by
the machine and a specific port. This information must be included in the
body of the SOL002 request together with the other parameters.

A single configuration request to the EM is validated according to SOL002
specifications and then split in a sequence of instructions sent to the various
network elements. The first configuration segment to be processed is related
to connection points: the EM parses the CpConfig field and for each element
associates the physical interface of the component with the logical identifier
specified in the OSM descriptor and an IP address, if not already set in
the instantiation phase. Lastly, it parses the information contained in the
vnfcSpecificData section; here, it is possible to retrieve the endpoints at
which the different components can be reached and configured, together with
information about routing, binding of physical interfaces to LTE interfaces,
and network location of other EPC components.

The EM retrieves the current network configuration of the machines and
updates it according to the received data, through HTTP requests adhering
to the proprietary API.

46
5.2. AUTOMATION OF DEPLOYMENT AND CONFIGURATION

PROCEDURES

An additional configuration modality has been implemented for the net-
work elements, directly accessible to the user over a control interface exposed
by the EM on the external network. The Element Manager provides a com-
mand line user interface (CLI) for direct interaction with the EPC compo-
nents network settings, without the necessity to perform requests through
OSM and the SOL002 interface. This alternate mode can be efficiently used
for day-2 procedures. Figure 5.2 graphically represents the diverse configu-
ration mechanisms provided to the user via the Element Manager.

Figure 5.2:
Configuration options offered by the Element Manager. The user may demand
OSM to perform requests over the Ve-Vnfm interface, or directly access the EM
configuration environment.

The EM CLI supports a basic authentication scheme (user/password):
the user may access the configuration of VNF components upon insertion
of valid credentials. EM makes available three configuration sections for
each network element, supporting all necessary network settings for proper
connectivity setup and covering all options provided by SOL002 requests,
though in a simpler and interactive way. The diagram representing all ac-
cessible configuration fields is reported hereinafter:

CHAPTER 5. IMPLEMENTATION OF THE SYSTEM 47

{component}

interfaces

{interface_id}

physical_interface

epc_interface_type

ip_address

network_routes

{route_id}

epc_interface_type

destination

via

epc_connections

{other_component_id}

ip_address

other_component_type

The EM records the endpoints and stores all configuration data about the
existing components as part of day-1 procedures, after application of SOL002
setup information, in order to be able to access the elements at a later time.
The user, as part of the day-2 operations, can select the component of in-
terest and enter in its context, where all the settings can be retrieved or
modified navigating a tree structure.

• The interfaces section is related to all settings about the physical
interfaces of the network element. It is possible to select an interface
descriptor specifying its interface_id if already present. Through
this section it is possible to associate a VM physical interface with the
logical LTE interface it implements and an IP address. Each logical
interface can be associated to only one physical interface.

• The network_routes section is related to routing information for the
component. It is possible to create or modify routes specifying a
route_id value. Each LTE interface may have its own routing ta-
ble, used to specify the path to reach the other endpoint(s) of the LTE
connection; editing the destination and via fields allows to set the
gateway to be used to reach the destination host.

48
5.2. AUTOMATION OF DEPLOYMENT AND CONFIGURATION

PROCEDURES

• The epc_connections section is used to specify connectivity informa-
tion for LTE interfaces. It is possible to access an existing item or
create a new one by specifying an other_component_id value. Each
item informs on how to reach a peer component over a LTE interfaces
the network element exposes. Values for other_component_type are
to be chosen among the set {mme, sgw, pgw, hss, enb} and the EM
accepts only a subset of these, according to which LTE interfaces are
provided by the considered component (e.g. a MME component must
expose the S11 interface to accept a SGW peer). The field ip_address
specifies the IP address at which the selected peer component can be
found; routes to reach the various IP addresses can be indicated in
the network_routes section. The peer entities may be other internal
components of the same VNF or reside in an external network location.

The sections can be edited navigating the configuration tree and mod-
ifying the fields with fine granularity, or by loading a compliant JSON file
specifying the entire new configuration. After each modification the EM
validates the inserted data, and in case of incorrect insertion it returns an
error message. After the new configuration is validated, the EM pushes the
modifications into the components performing requests over the proprietary
interface.

5.2.3 Instantiation and lifecycle configuration

It is feasible to automate the deployment and full configuration of a LTE core
network integrated in the NFV environment, by leveraging the interplay of
OSM descriptors, Juju charms, and the Element Manager. The procedures
to be outlined in the following are devised for instantiation of a full EPC in a
single site, but can be used to implement any other LTE over NFV scenario,
with appropriate modifications.

OSM packages
The VNF package includes the software images of the network elements
(MME, HSS, SGW, PGW), each running on a proprietary Linux distribu-
tion, and of the Element Manager, running on a standard CentOS 7 dis-
tribution equipped with the software implementing EM functionalities. In
addition, a juju charm to perform SOL002 requests is included, and the VNF
descriptor outlining the structure of the VNF, its internal components and
connections.

The NS package includes the NS descriptor, referencing the contained
VNFs and characterizing attachment of VNF connection points to the exter-
nal network.

CHAPTER 5. IMPLEMENTATION OF THE SYSTEM 49

Juju charm
The Juju charm is designed to send the configuration file to the Element
Manager as part of day-1 procedures; the EM handles all the successive EPC
configuration operations. It is possible to extend the charm to provide day-2
functionalities; however, for runtime reconfiguration the CLI is preferred for
its ease of use.

The charm implements the primitive initial-patch-configuration,
which accepts in input the IP address to reach the Element Manager and a
VNF configuration file compliant with SOL002 specification. After the NS
instantiation the charm performs a request over the Ve-Vnfm interface to
submit the specified configuration. It is necessary to include the charm and
declare its primitives and input parameters in the correspondent section of
the VNF descriptor, structured as the given example:

vnf-configuration:
initial-config-primitive:
- name: initial-patch-configuration

parameter:
- name: em-hostname

value: <EM_IP>
- name: vnfc-configuration-data

value: <json_conf_file>
juju:

charm: athonet-sol002-client

The values enclosed by angle brackets, stating the EM address and the
SOL002 configuration, are placeholders and their value is defined by the user
inside the NS instantiation request.

NS deployment
When performing a NS instantiation request, it is necessary to provide OSM
with information about the NS descriptor to employ, the NS name, and the
VIM to be used for deployment. Additional information can be supplied
by including a YAML configuration file in the request. In particular, it is
possible to define the set of parameters which will be passed to Juju during
instantiation and are left unspecified in the VNF descriptor, referring them
in the additionalParamsForVnf section of the file:

additionalParamsForVnf:
- member-vnf-index: 1

additionalParams:
EM_IP: '<element_manager_ip>'
json_conf_file: '<sol002_configuration>'

50
5.2. AUTOMATION OF DEPLOYMENT AND CONFIGURATION

PROCEDURES

The instantiation procedure can be launched from OSM client executing
a single command including all the necessary information:

osm ns-create –-ns_name athonet_full_epc –-nsd_name full_epc_nsd \
–-vim_account openstack-01 –-config_file epc_configuration.yaml

Following the request, OSM retrieves the instantiation parameters from
the additional configuration file and provides them for the Juju script exe-
cution. The required VNFs are deployed at OpenStack site and the internal
and external connectivity is set up, following the information contained in
the descriptors. The charm performs a configuration request over the Ve-
Vnfm interface toward the Element Manager, which subsequently validates
and applies the network settings to the VNF components.

The virtual EPC, deployed and correctly configured, is at this stage ready
to provide the expected LTE connectivity service. We verified the system
functionality performing an attachment procedure to the network using a
cellular phone provided with an authorized SIM card: through the Wire-
shark network analyzer we monitored the activity over the LTE interfaces
and registered the signalling relative to the bearer setup procedure, which
was successful. The device was enabled to exchange traffic data through
the deployed mobile network, the actual EPC implementation (physical or
virtual) being transparent respect to the offered services.

With the design of the OSM descriptors and network configuration as
the only elements requiring user expertise and intervention, once they are
defined the NS instantiation qualifies itself as a one-click procedure, therefore
easily scriptable. After deployment and day-1 configuration the NS is ready
to provide 4G connectivity to the user devices. Network reconfiguration is
made availble as a day-2 operation, taking advantage of the Element Manager
CLI interface.

From inspection of the event logs of the OSM LCM module, we are
able to detect the notification relative to deployment procedure start and
the notification relative to deployment and configuration completion, with
respective timestamps. Exploiting the integration work carried out so far, it
is possible to implement a sequence of automatic deployment and deletion
cycles for the NS, to verify the robustness of the realized system and quantify
the average amount of time the NS takes to be instantiated and become fully
operative. We designed a script which analyzes the OSM logs and cyclically
performs the following operations:

• when the previous NS is fully destroyed (or there is none, at the be-
ginning), a new NS is launched, saving relative timestamp;

• when the NS is fully deployed and configured, it is destroyed, saving
relative timestamp.

CHAPTER 5. IMPLEMENTATION OF THE SYSTEM 51

Running the process for 100 cycles we noticed that the automation proce-
dure is robust: the process did not get stuck and at every cycle the EPC
installation was complete and functional. The average time required for
deployment/configuration procedures was 258.95 seconds; this, however, is
highly dependent on the infrastructure hardware, and on more performing
cloud infrastructures it is expected to be significantly lower.

5.3 Activation and fruition of MEC services

5.3.1 Mp1 configuration API

The Mp1 API specification [16] scope is to describe the reference point be-
tween mobile edge applications and mobile edge platform, specifying proto-
cols and data models for management communications over the considered
interface. The Mp1 interface supports configuration operations for MEC ap-
plications registered at MEC platform, such as information exchange about
service availability, traffic rules and DNS rules setting, subscription to noti-
fications, and MEC applications lifecycle management.

The URL prefixes of the API are of the form
{apiRoot}/{apiName}/{apiVersion}/, with the parameters assuming the
same meaning of the corresponding SOL002 prefix. The value apiName is
set to mp1 for the considered interface. Below is a tree representation of the
main relevant resources made available by the considered API:

{apiRoot}/mp1/v1

/applications

/{appInstanceId}

/traffic_rules

{trafficRuleId}

/dns_rules

{dnsRuleId}

/subscriptions

{subscriptionType}

{subscriptionId}

52 5.3. ACTIVATION AND FRUITION OF MEC SERVICES

Through the provided resources it is possible to access the configuration
of an application by specifying the respective appInstanceId. In the con-
text of an application the accessible resources regard the associated traffic
and DNS rules and the active subscriptions for notifications from the MEC
platform.

A limitation of the standard Mp1 API is the impossibility to register
new applications or load new traffic rules at the MEC platform: the al-
lowed methods enable only the modification of resources pre-provisioned in
the machine. To overcome the restriction, we performed an integration of
the API, including additional resources supporting the POST method that
enable the registration of applications and traffic rules. Using the extended
API, OSM may be exploited to perform Mp1 requests toward the MEC plat-
form, provisioning information about applications and traffic rules, playing
a management role also for the MEC system.

The VNF containing the SGW-LBO, implementing the MEC platform, is
complemented by an Element Manager whose scope is to accept and validate
the Mp1 requests and forward the content according to the proprietary API
provided by Athonet SGW-LBO for its MEC configuration. In addition, it
provides the same functionality regarding the Ve-Vnfm reference point, as
outlined in the previous sections.

5.3.2 MEC system setup

The multi-site scenario considers the deployment of a distributed EPC, with
the SGW component residing at the edge node and the remaining compo-
nents residing at the core node. The base station is able to reach exclusively
the edge host through a separate network, to provide LTE connectivity: to
simulate a MEC scenario all EPC communications are to be conveyed by the
edge site toward the eNB. The overall system is shown in figure 5.3.

The two sets of EPC components are separately instantiated and con-
figured by OSM, following the procedure described in the previous sections.
Each set is embedded in a network service including the EPC components
to be deployed in each OpenStack environment, together with the relative
application VM. Network configuration for both EPC instances is performed
over the SOL002 interface: of particular importance is the correct setting of
LTE interfaces and IP routes, allowing the components located at one site
to reach the components at the other site.

To simulate a physical separation between the core site and edge site, de-
spite being them located in a restricted simulation environment, we made use
of the tc (traffic control) Linux utility. tc is used to configure the Linux ker-
nel packet scheduler, a node that manages the sequence of network packets
in the transmit and receive queues of the network interface controller (NIC).

CHAPTER 5. IMPLEMENTATION OF THE SYSTEM 53

Figure 5.3: Multi-site deployment network architecture.

The scheduler logic decides which packet to forward next, among those tem-
porarily stored in the associated queuing system waiting to be transmitted.
Many scheduling algorithms (also called queuing disciplines, or qdisc) exist
to implement the scheduler logic, each providing specific reordering, forward-
ing, or dropping policies for network packets stored in the buffer, leading to
different performances. As the default queuing discipline, Linux kernel uses
a FIFO (first in, first out) policy, which however can be substituted with
another logic using the tc tool.

To limit the bandwidth of the link between core and edge site, it is pos-
sible to rely on the token bucket filter (tbf) logic: it consists in generating
tokens at a desired rate, and only dequeue packets from the buffer if a cor-
respondent number of tokens is available; tokens can be generated up to a
number defined by the capacity of a bucket: if ulterior tokens are generated
and not used, they are discarded. The tbf qdisc is an example of traffic shap-
ing and rate limiting algorithm, used to reduce the speed at which packets
are dequeued from a particular interface, by setting a proper token gener-
ation rate. To set a bandwidth limitation on the output flow of a specific
interface, it is necessary to change the queuing policy issuing a command
with the following structure:

tc qdisc add dev <interface_name> tbf rate <desired_rate>

An additional control over the interfaces behaviour is provided by netem
facility: it is used to emulate the properties of wide area networks, such as

54 5.3. ACTIVATION AND FRUITION OF MEC SERVICES

delay, packet loss, packet duplication and re-ordering. Appending a netem
rule to a specific interface allows in particular the addition of a variable delay
to output packets, determined according to a chosen statistical distribution.
It is also allowed to introduce correlation between the delay experienced by
two consecutive packet dispatches, better simulating a realistic network be-
haviour. To set an output delay following a normal distribution, given its
mean, jitter and delay correlation, a command with the following structure
is issued:

tc qdisc add dev <interface_name> netem delay <mean> <jitter> \
distribution normal <correlation_percentage>

Since the queuing discipline is applied to the packets in output only, to keep
the link symmetric it is necessary to apply the same rules at both sites on
the relevant interfaces, setting the same limiting rate and half of the overall
desired latency.

The link degradation simulated with the tc utility is the triggering con-
dition for the traffic switch activation. It is meant to set the content retrieval
from the remote server as the main performance limiter for the system, as
perceived by the user.

5.3.3 Traffic switch

The initial state for the deployment consists in the core (full) EPC activated
and providing users with connectivity toward Internet and the Application
VNF, deployed as a virtual machine in an OpenStack internal network reach-
able by the PGW. The EPC is able to communicate with the eNB located at
the edge site, representing the access network. When OSM is notified by the
Application about a service relocation requirement, because of insufficient
QoS, it responds starting the instantiation procedures for the NS comprising
SGW-LBO and Application at the edge. When the VNFs are instantiated,
the network configuration is initiated: via the SOL002 interface the Core
EPC is notified about SGW relocation (selecting the edge SGW instead of
the internal one in the S5/S8 and S11 settings), and the Edge SGW is noti-
fied about the presence of S5/S8 and S11 peers at the core site. The EPC
data and control plane communications in the two subsequent stages are
portrayed in figure 5.4.

Successively, OSM registers the new application and associated traffic
rules at the SGW-LBO via the extended Mp1 interface. To load a new traf-
fic rule at the MEC platform, a HTTP POST request is performed, including
the rule to be applied as its body.

CHAPTER 5. IMPLEMENTATION OF THE SYSTEM 55

Figure 5.4: Reconfiguration of EPC traffic flows following the SGW relocation
and traffic steering procedure. Red dashed lines represent the control plane, blue
solid lines represent the user plane.

The traffic rule is a JSON object with the following structure:

{ "trafficRuleId": "<id>",
"filterType": "<type>",
"priority": "<int>",
"trafficFilter": "<filter>",
"action": "<action>",
"state": "<state>"

}

Each rule identifies the specific packets that are to be handled differently
by the MEC host through the field trafficFilter. It may contain various
selection criteria, and for our implementation we performed a selection based
exclusively on the destination IP address of the packets: if packets match
the destination address of the traffic filter, they experience local breakout. It
is permitted to specify a single IP address or an IP range (a network). The
action field is used to specify the data plane action to be performed when a
packet matches the trafficFilter parameters: as examples, packet drop-
ping, forwarding, or redirection. The state field, assuming value ACTIVE
or INACTIVE, can enable or disable the application of the traffic rule. This
attribute may be updated using HTTP PUT method: it is then possible to
pre-provision a disabled traffic rule in the platform and successively enable
it on demand. The attribute filterType states whether the filtering is to
be performed on a packet basis or flow basis.

The Element Manager receives the traffic rules on the Mp1 interface
and forwards the content to the SGW-LBO, according to the proprietary
configuration API. The traffic steering rule is successively activated by the

56 5.3. ACTIVATION AND FRUITION OF MEC SERVICES

edge Application at the end of its instantiation procedures. Consequently
to the MEC system setup, the traffic flow for the considered service is not
forwarded toward the PGW along the S5/S8 interface but redirected on the
SGi interface toward the local server (edge App).

5.3.4 Video streaming service

To provide the streaming service we chose the MPEG-DASH solution, valu-
able for its interoperabililty and effective response to the link quality varia-
tions. MPEG-DASH (Dynamic Adaptive Streaming over HTTP) is an adap-
tive bitrate streaming technique that enables provision of multimedia content
over the Internet, delivered from conventional HTTP web servers [17]. The
aim of DASH is to provide a seamless streaming service with the video adapt-
ing its quality according to the network conditions and compensating for the
bandwidth fluctuations of the link.

A DASH stream is split in a sequence of HTTP-based data segments,
each containing a portion of fixed time duration of the media, progressively
downloaded by the user device. The media segments are made available at
a variety of different bitrates (defining the video quality) for every time in-
terval, to allow the DASH client to choose among the segments encoded at
different rates the one best matching with the current link condition. The
client uses a bitrate adaptation algorithm (ABR) to estimate the available
bandwidth and selects the next segment to download as the one with the
highest bitrate supported by the link, to avoid reproduction stalls and main-
tain a continuous playback.

The multimedia content is stored on a web server and delivered over
HTTP, benefiting from the vast diffusion and support of this protocol. The
content exists on the server in two parts: the Media Presentation Descrip-
tion (MPD), a XML manifest providing information on the available content,
its alternative encoding bitrates, the URL addresses of the segments - and
the data segments, which contain the actual multimedia bitstreams in the
form of chunks. The DASH client at first obtains and parses the MPD file,
acquiring information about the segments; subsequently it starts retrieving
the content by fetching the segments as specified in the MPD using HTTP
GET requests. After an appropriate initial buffering to allow for network
throughput variations, the client starts playing the stream and continues
retrieving the subsequent segments; at any time, based on the bandwidth
measurements, the client may decide to adapt the streaming by fetching seg-
ments of different alternatives (with lower or higher bitrates) to maintain an
adequate buffer.

A video input can be prepared for DASH streaming by transcoding it at
different qualities and successively splitting it up over several time points,
creating the segments. Tools such as ffmpeg and mp4box can be used for the
purpose. The test stream used for this work has been retrieved from a web

CHAPTER 5. IMPLEMENTATION OF THE SYSTEM 57

Figure 5.5: Video frames pertaining to segments encoded at 45 Kbps, 566 Kbps,
3.85 Mbps, respectively.

repository providing various DASH datasets ready for use1.The considered
stream features segment lengths of 6 seconds each, and segment bitrates
ranging from 45 Kbps (may correspond to 144p resolution) to 3.85 Mbps
(may correspond to 1080p resolution), covering various intermediate steps.
Figure 5.5 presents two frames of the video encoded at different bitrate (low,
medium, high resolution), showing the DASH capability to deliver segments
of varying quality.

To host the video streaming service a web server has been deployed on
the application VNFs; the server process is started after the VNF is instan-
tiated and operative, and has access to the directories where the DASH files
are stored. For the purpose we employed a nginx web server, lightweight,
open-source, and providing an easy configuration procedure. Editing the
nginx.conf file is required to set the service functionalities; a basic configu-
ration necessary to activate the HTTP web server has the following structure:

1https://dash.itec.aau.at/dash-dataset/

58 5.3. ACTIVATION AND FRUITION OF MEC SERVICES

http
{
server

{
server_name dash_server;
listen 8080;
location /dash

{
root <PATH_TO_FOLDER>
}

}
}

The server listens for incoming connections on port 8080 at the IP ad-
dress related to the SGi interface. Performing GET requests at the URL
http://<IP>:8080/dash/ gives web access to the folder located at
<PATH_TO_FOLDER> in the machine, where the MPD file and DASH segments
are stored. To enable video playback on a web browser, it is possible to em-
bed the DASH stream into a web page. This has been obtained through an
html script located in the same folder: accessing the html file via the browser
retrieves automatically the MPD and starts the video reproduction.

After the setup procedures, the user is able to access the stream through
the LTE network, retrieving content from the currently active application
VNF. The experienced video quality allows the user a qualitative estima-
tion of the bandwith available between the client and the server. For a
quantitative evaluation, it is possible to resort to network analyzers such as
Wireshark: by inspection of the exchanged packets, it has been possible to
notice that the bitrate of the downloaded segments is contained in the GET
request itself, due to the way DASH mechanism is configured. In fact, the
requests present the syntax:

GET /dash/<XXX>bps/BigBuckBunny_6snonSeg.mp4 HTTP/1.1

with the chunk <XXX>bps specifying the bitrate of the segments, providing
an easy to obtain yet fairly accurate estimate on the link bandwidth (up to
the maximum available bitrate of the stream). This information can be used
by the system to register the connection degradation and user experience
decline, and request the traffic switch at the edge.

Chapter 6

Evaluation tests and results

The planned simulation campaign was originally devised to test the capabili-
ties of the complete MEC deployment, evaluating the automatic procedure of
SGW relocation and traffic steering activation in response to the worsening
of service quality. However, due to the circumstances1 the part concern-
ing the switch automation could not be fully implemented and tested. A
proof of concept of the system considering the two stages (before and after
the traffic redirection from core to edge) as separate experiments is provided.

The first stage of the experiment consists of the mobile user request-
ing the video stream from the remote server; the data plane communications
are carried out exclusively through the core EPC, as depicted in figure 5.4 a).
The link between the edge site where the access eNB is located and the core
network suffers an additional latency of 100 ms and a reduced bandwidth
of 1 Mbps, artificially set to simulate the link limitations between edge and
core network, impacting on the service. The strong bandwidth limitation
has been chosen to provide a visually noticeable service deterioration that
the user could easily perceive. In real case scenarios this condition is hardly
met, it has been set to be representational of the remote content retrieval
as the bottleneck of the communication system for simulation purposes. It
may be the consequence of a network congestion or server overload, in which
cases a traffic redirection at the edge can prove beneficial.

In the second stage the data traffic has been redirected through the SGW-
LBO located at the edge to retrieve content from the local server, by manu-
ally triggering the application cloning and inserting the traffic steering rules
in the MEC platform. The data plane traffic follows the path shown in fig-
ure 5.4 b). The communications are not limited and can reach a maximum
nominal bandwidth of 150 Mbps.

In both stages the device attempts to access content contacting the same
IP address, of the remote server: it is the duty of the MEC system to apply

1See NOTE in the Introduction.

59

60

Figure 6.1: Encoding bitrate of the DASH segments requested to the remote
server (left panel) and the local server (right panel), versus time. Every request is
represented by a yellow marker.

or not the traffic rules and redirect the data flow toward the different servers.
This allows the user not to perceive the server change or being compelled to
perform an additional web search to continue the video playback.

The metric used to measure the performances of the system has been the
encoding bitrate of the DASH segments retrieved by the user device when
reproducing the stream; it is representative of the available bandwidth of
the connection between the client and the server, up to a certain value, and
at the same time it provides a clear insight about the quality of the content
delivered to the user by the system. Figure 6.1 reports two graphs showing
the bitrate of the segments fetched respectively from the remote server and
the local server, over a time span of 280 seconds. The DASH segments are
requested approximately every 6 seconds, with the interval variations likely
caused by the variable connection delay and the filling level of the playback
buffer at client side.

It can be noticed a transition period at the beginning, with the DASH
stream behaving conservatively and providing segments of lower quality in
the starting phase. The DASH algorithm attempts to counteract to band-
width fluctuations increasing progressively the video quality when the link
proves itself stable and able to support retrieval of segments encoded at
the current bitrate over a certain time span. After the transitory, the ser-
vice reaches the highest quality supported by the employed connection. It
is shown how the bitrate in the non-breakout scenario caps at around 0.9
Mbps due to the link restrictions, while in the breakout scenario the link

CHAPTER 6. EVALUATION TESTS AND RESULTS 61

capacity is greater and the bitrate caps at 3.85 Mbps, the highest available
DASH bitrate for the considered stream.

The full system implementation, including the automatic traffic redirec-
tion, would provide an expected behaviour close to that outlined in figure 6.2.
In the first stage, the user device retrieves content from the remote server:
after a transition period the stream will likely reach the best quality allowed
by the worsened link. After the Application demands the traffic switch and
the MEC service is available at the edge, a new bearer setup procedure must
be performed, to account for SGW relocation and allow the user device to
connect to the new SGW-LBO. This requires a narrow amount of time, dur-
ing which the user is detached from the network and the throughput drops to
zero. After reattachment the user device is connected to the local server, and
as the transition period is over the stream will likely reach its best quality,
which the new scenario permits.

Figure 6.2: Expected behaviour of the streaming service in a scenario including
automatic traffic switch.

For each stage screenshots of the stream reproduction have been cap-
tured on the device, to appreciate the difference in the quality of the content
collected through the different routes. Comparison of two frames taken from
the diverse streams is reported in figure 6.3. On the left, images of the remote
streaming service, on the right, images of the local streaming service; though
at 0.9 Mbps the video quality is fairly good, a greater amount of details can
be appreciated in the content served at 3.85 Mbps, uppermost capacity. It
is proven that the user may benefit from the traffic redirection at the edge
if the connectivity toward the core site and remote server undergoes a drop
in quality.

62

Figure 6.3: Comparison of two frames taken from the DASH stream at different
qualities. The frames on the left belong to the stream from the remote server, the
frames on the right to the stream from the local server. The remote stream reaches
a top bitrate of 0.88 Mbps, whereas the local stream a top bitrate of 3.85 Mbps.

Chapter 7

Conclusions

This thesis presents the implementation of a system providing integration of
ETSI NFV and MEC technologies into a 4G mobile network, inquiring the
procedures for correct deployment and configuration of a virtualized network
and subsequently the inclusion and delivery of edge services.

The unified NFV and MEC system is realized through the integration
of both proprietary and open-source software, elaborating on the Ve-Vnfm
and Mp1 standardized interfaces to harmonize the various components and
enable the configuration of the LTE network embedded in the system. In
particular, an Element Manager has been developed to interact with the net-
work components and apply the settings communicated through the NFV
and MEC standard interfaces.

The first target has been the automation of the deployment and config-
uration procedures for the mobile network in the NFV framework. Upon
provision of previously prepared descriptors and configuration files, the pro-
cedures can be made fully automatic, requiring only the user to issue the
instantiation command and wait for the network to be deployed. We demon-
strated the feasibility of the process and verified the correct functionality of
the LTE network in enabling user devices to connect to the Internet. We can
conclude that the NFV paradigm provides a great flexibility in mobile net-
work management, allowing to instantiate and scale LTE networks removing
many of the limitations caused by a strong dependency on the hardware.
Moreover, it can be stated that from the point of view of the user it is
irrelevant whether the LTE installation is on a physical or virtualized infras-
tructure, not affecting the service delivery.

The second objective has been the inclusion in the system of a platform
for provision of MEC services and the redirection of the user plane traffic
from a remote server, to be reached through the LTE core network, to a
local server, providing the same content, to be reached through the MEC
platform. To test the functionality of the MEC implementation and evalu-
ate the advantages of accessing the content at the edge, we set up a video

63

64

streaming service with quality adaptation according to the connection band-
width. We also devised a procedure to automate the traffic switch procedure.
A proof of concept of the system is produced, considering as performance
metric the quality of the stream retrieved by the user, in which we set the
connection toward the remote server as the bottleneck of the connectivity
scenario. From the experiment we observed the service improvement when
exploiting the MEC capabilities and performing a local breakout toward the
local server. The conclusion is that edge computing can prove beneficial
in increasing the user experience or solving possible congestion issues, and
by automatizing the traffic switch procedure it would be possible to realize
a network architecture adapting itself in an attempt to improve its perfor-
mances. This network reconfiguration potential is assisted by NFV systems,
when used in interplay with LTE and MEC technologies.

Future work

In the presented work, the main interest has been put upon metrics relative
to the bandwidth of the system; the other metric of interest, the communica-
tion delay, has been just mentioned. As a complementary study it can be of
interest the analysis of the impact on the communications of an high-latency
link between the edge site and the remote server, together with the traffic
redirection as a solution to mitigate the problem. Moreover, more complex
connectivity scenarios (e.g., introducing network congestion or server over-
loads) could be implemented, to provide a better simulation of real network
conditions.

Another limitation of the approach followed in the system implementa-
tion regards the absence of a central MEC management site, with all the
orchestration tasks performed by the NFV MANO entity. For a deeper un-
derstanding of the potential offered by the integration of NFV and MEC
paradigms, it should be considered a full development of both the mod-
els, featuring a close cooperation between the MEC and NFV orchestration
entities.

Appendix A

Example of OSM descriptors

This section presents examples of VNF and NS descriptors used by OSM to
deploy and configure network functions and services. The considered descrip-
tors are compliant with the ETSI information model and provide a sample
configuration sufficient to adequately define the structure, connections, func-
tionality, of a simple NS and its composing VNFs.

A.1 VNF descriptor

The given VNFD defines the VNF structure shown in figure A.1. This VNF
is made up of two internal components, outlined in the vdu section, con-
nected by an internal virtual link, simple_internal_link, a LAN subnet
with IP address range 10.0.0.0/24. The first internal component exposes
the connection point main_cp which serves as management interface for
the whole VNF, and provides a port internal_endpoint_A on the inter-
nal link for connection with the other component, with IP address 10.0.0.1.
The second internal component exposes the connection point secondary_cp,
and provides a port internal_endpoint_B on the internal link for con-
nection with the other component, with IP address 10.0.0.2. The first
component is deployed starting from the image disk_image_1 and is allo-
cated 4096 MB of RAM, 30 GB of storage, and 4 VCPUs. The second
component is deployed starting from the image disk_image_2 and is allo-
cated 2048 MB of RAM, 5 GB of storage, and 2 VCPUs. The Juju charm
example_configuration_charm is used for day-1 and day-2 configuration.
In day-1 configuration the primitive apply-initial-configuration is ex-
ecuted and applies a pre-defined configuration file to the VNF. In day-2
configuration the primitive runtime-reconfiguration can be executed on
demand and applies to the VNF a new configuration which must be provided
by the user.

65

66 A.1. VNF DESCRIPTOR

vnfd:
- id: example_vnf

name: example_vnf
description: mock VNF to illustrate descriptor options
connection-point:
- name: main_cp

port-security-enabled: true
type: VPORT

- name: secondary_cp
port-security-enabled: false
type: VPORT

mgmt-interface:
cp: main_cp

internal-vld:
- id: simple_internal_link

type: ELAN
internal-connection-point:
- id-ref: internal_endpoint_A

ip-address: 10.0.0.1
- id-ref: internal_endpoint_B

ip-address: 10.0.0.2
ip-profile-ref: simple_internal_link

ip-profiles:
- name: simple_internal_link

ip-profile-params:
ip-version: ipv4
subnet-address: 10.0.0.0/24

vdu:
- id: internal_component_1

name: internal_component_1
description: example internal VNF component
count: 1
image: disk_image_1
vm-flavor:

memory-mb: 4096
storage-gb: 30
vcpu-count: 4

interface:
- external-connection-point-ref: main_cp

type: EXTERNAL
- internal-connection-point-ref: internal_endpoint_A

type: INTERNAL
internal-connection-point:
- id: internal_endpoint_A

port-security-enabled: false
type: VPORT

- id: internal_component_2
name: internal_component_2

APPENDIX A. EXAMPLE OF OSM DESCRIPTORS 67

description: example internal VNF component
count: 1
image: disk_image_2
vm-flavor:

memory-mb: 2048
storage-gb: 5
vcpu-count: 2

interface:
- external-connection-point-ref: secondary_cp

type: EXTERNAL
- internal-connection-point-ref: internal_endpoint_B

type: INTERNAL
internal-connection-point:
- id: internal_endpoint_B

port-security-enabled: false
type: VPORT

vnf-configuration:
initial-config-primitive:
- name: apply-initial-configuration
config-primitive:
- name: runtime-reconfiguration

parameter:
- name: new_configuration

data-type: STRING
juju:

charm: example_configuration_charm

Figure A.1: VNF implemented by the proposed descriptor.

68 A.2. NS DESCRIPTOR

A.2 NS descriptor

The given NSD defines the NS structure shown in figure A.2. This NS is
made up of two identical VNFs, both deployed starting from the previous
descriptor: only the connection points names are different, to avoid miscon-
ceptions. The two VNFs are connected inside the NS through a internal
network internal_vim_net of IP address range 10.10.10.0/24, involving
their secondary connection points for the attachment. The internal network
is assumed to be a preexisting network in the VIM and needs not be further
specified, only referenced in the vld section. Each VNF exposes its manage-
ment interface toward an external network external_vim_net of IP address
range 192.168.1.0/24, likewise a preexisting VIM network. These connec-
tion points exposed by the NS are used to attach it to the physical network
supporting the virtual deployment, giving connectivity toward the external
networks and systems. The descriptor can define the VNFs composition and
NS structure with a high degree of freedom, by specifying the role of the
VNF connection points (for internal or external links), the networks to be
created, and the static IP addresses the attachment points assume on the
considered networks. The ports on the external network are given IP ad-
dresses 192.168.1.1 and 192.168.1.2, respectively for the first and second
VNF management interfaces. The ports on the internal network are given IP
addresses 10.10.10.1 and 10.10.10.2, respectively for the first and second
VNF internal interfaces.

nsd:
- id: example_ns

name: example_ns
description: mock NS to illustrate descriptor options
constituent-vnfd:
- member-vnf-index: 1

vnfd-id-ref: example_vnf
- member-vnf-index: 2

vnfd-id-ref: second_example_vnf
connection-point:
- name: main_cp

floating-ip-required: true
member-vnf-index-ref: 1
vld-id-ref: external_vim_net
vnfd-connection-point-ref: main_cp
type: VPORT

- name: secondary_cp
floating-ip-required: false
member-vnf-index-ref: 1
vld-id-ref: internal_vim_net
vnfd-connection-point-ref: secondary_cp
type: VPORT

APPENDIX A. EXAMPLE OF OSM DESCRIPTORS 69

- name: main_cp_vnf2
floating-ip-required: true
member-vnf-index-ref: 2
vld-id-ref: external_vim_net
vnfd-connection-point-ref: main_cp_vnf2
type: VPORT

- name: secondary_cp_vnf2
floating-ip-required: false
member-vnf-index-ref: 2
vld-id-ref: internal_vim_net
vnfd-connection-point-ref: secondary_cp_vnf2
type: VPORT

vld:
- id: external_vim_net

vim-network-name: external
type: ELAN
vnfd-connection-point-ref:
- ip-address: 192.168.1.1

member-vnf-index-ref: 1
vnfd-connection-point-ref: main_cp
vnfd-id-ref: example_vnf

- ip-address: 192.168.1.2
member-vnf-index-ref: 2
vnfd-connection-point-ref: main_cp_vnf2
vnfd-id-ref: second_example_vnf

- id: internal_vim_net
vim-network-name: internal
type: ELAN
vnfd-connection-point-ref:
- ip-address: 10.10.10.1

member-vnf-index-ref: 1
vnfd-connection-point-ref: secondary_cp
vnfd-id-ref: example_vnf

- ip-address: 10.10.10.2
member-vnf-index-ref: 2
vnfd-connection-point-ref: secondary_cp_vnf2
vnfd-id-ref: second_example_vnf

70 A.2. NS DESCRIPTOR

Figure A.2: NS implemented by the proposed descriptor.

Bibliography

[1] 3GPP. Technical Specification 23.401. "General Packet Radio Service
(GPRS) enhancements for Evolved Universal Terrestrial Radio Access
Network (E-UTRAN) access", May 2017.

[2] S. Palat, P. Godin, Network Architecture, in S. Sesia, I. Toufik, M. Baker,
"LTE - The UMTS Long Term Evolution: From Theory to Practice",
pp. 25-55, Wiley, 2011.

[3] ETSI. Group Report NFV001. "Network Functions Virtualisation
(NFV); Use Cases", October 2013.

[4] ETSI. Group Specification NFV002. "Network Functions Virtualisation
(NFV); Architectural Framework ", December 2014.

[5] ETSI. Group Specification NFV-MAN 001. "Network Functions
Virtualisation (NFV); Management and Orchestration", December 2014.

[6] ETSI. Introductory Technical White Paper. "Mobile-Edge Computing",
September 2014.

[7] ETSI. Group Specification MEC003. "Multi-access Edge Computing
(MEC); Framework and Reference Architecture", March 2016.

[8] D. Faccin, "A 5G-ready Management and Automation Platform for the
Telco and Edge Clouds: Design and Experimentation of a Unified NFV
and MEC System" [Unpublished master thesis], University of Padova,
2019.

[9] B. Nogales, I. Vidal, J. Garcia-Reinoso, D. R. Lopez, J. Rodriguez and
A. Azcorra, "Design and Deployment of an Open Management and Or-
chestration Platform for Multi-site NFV Experimentation", in IEEE
Communications Magazine, vol. 571, pp. 20-27, January 2019.

[10] K. Antevski, C. J. Bernardos, L. Cominardi, A. de la Oliva, and A.
Mourad, "On the integration of NFV and MEC technologies: architecture
analysis and benefits for edge robotics", in Computer Networks 175,
April 2020.

71

72 BIBLIOGRAPHY

[11] L. Van Ma, V. Q. Nguyen, J. Park, and J. Kim, "NFV-Based Mobile
Edge Computing for Lowering Latency of 4K Video Streaming", in Tenth
International Conference on Ubiquitous and Future Networks, pp. 670-
673, 2018.

[12] ETSI. White Paper n.24. "MEC Deployments in 4G and Evolution
Towards 5G", February 2018.

[13] ETSI OSM Community White Paper. “OSM Release THREE, A Tech-
nical Overview”, October 2017.

[14] ETSI OSM Community White Paper. "OSM VNF onboarding guide-
lines", June 2019.

[15] ETSI. Group Specification NFV-SOL 002. "RESTful protocols specifi-
cation for the Ve-Vnfm Reference Point", August 2017.

[16] ETSI. Group Specification MEC 011. "Mobile Edge Computing (MEC);
Mobile Edge Platform Application Enablement", July 2017.

[17] I. Sodagar, "The MPEG-DASH Standard for Multimedia Streaming
Over the Internet," in IEEE MultiMedia, vol. 18, pp. 62-67, April 2011.

