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Abstract

In this thesis we prove a non-renormalization theorem for the 3-points functions of chiral,
scalar superconformal primaries in the four-dimensional N = 4 SYM at finite temperature.
The theorem relies on a known, analogous proof done at zero temperature. In this work we
adapt the proof to a finite temperature scenario; in particular, we discuss how to recover
the conformal invariance and how to get rid of a soft, thermal breaking term appearing in
the superconformal Ward identity, the principal tool exploited in the theorem.
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Chapter 1

Introduction

The premises

During the last decades, the framework of the Quantum Field Theories (QFT) has revealed
itself to be the most promising laboratory for the theoretical study of the fundamental in-
teractions. The astoundingly high precision of its physical predictions consecrated it as a
starting point for any attempt to the expansion of our knowledge about the extremely mi-
croscopical physical laws. In particular, Quantum Field Theories have proved to be very
successful at imposing specific symmetries to our models. The best example is represented
by the description of three of the four known fundamental forces of our Universe: elec-
tromagnetic, weak, strong force. The QFT formalism describes these forces with the gauge
theories. A gauge theory is a gauge invariant QFT, a model which enjoys a local, internal
symmetry under the action of a semisimple continuous group. To be more precise, the
fundamental forces are described by the so called Yang-Mills (YM) theories, gauge theories
symmetric under the action of a special unitary group su(n). For instance, the electroweak
theory is a YM theory invariant under the action of su(2), while the strong theory is a YM
theory invariant under the action of su(3).

A QFT not only describes the dynamics of the fields in our models, but also the in-
teractions among them. Two interacting fields are said to be coupled: the strength of the
interaction is controlled by a parameter called coupling. A generic coupling can be very
small (the interaction is said to be weak) or very big (in this case, the interaction is strong).
Usually, at this level we are only able to perform perturbative computations with QFTs
describing weakly coupled fields, exploiting the coupling as a perturbative expansion pa-
rameter. However, in some cases it is possible to extract non-perturbative results from our
theories. An important example is represented by the Conformal Field Theories (CFT), a
class of QFTs enjoying the conformal invariance, an enhancement of the usual Poincaré in-
variance which also accounts for dilatations of the spacetime. CFTs do not contain any
mass coefficient or dimensional coupling: this makes their predictions true at any energy
scale. The conformal invariance highly constrains the theory and completely fixes some of
its aspects. For instance, we might consider a scalar 3-points correlation function

〈φ1(x1)φ2(x2)φ3(x3)〉 :

in a CFT, its structure is completely fixed up to an overall factor

〈φ1(x1)φ2(x2)φ3(x3)〉 =
C123

|x12|∆1+∆2−∆3 |x13|∆1+∆3−∆2 |x23|∆2+∆3−∆1
,

where xij ≡ xi − xj. The expression above is an example of a non-perturbative result in
QFT.

Another highly-constraining symmetry is supersymmetry. A QFT enjoying supersym-
metry is called Supersymmetric QFT (SQFT); a YM theory which is also supersymmetric
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Chapter 1. Introduction

is called Supersymmetric YM theory (SYM). Roughly speaking, supersymmetry acts on the
fields and transforms the bosonic into fermionic ones (and viceversa). At the formal level,
it is introduced as an enhancement of the Poincaré symmetry, called SuperPoincaré symme-
try (cfr. [1], [2], [3]). A SQFT is not only invariant under the action of the Poincaré group,
but also under the action of a pair of fermionic operators Q and Q̄, called supercharges.
If our theory does not describe the gravitational interaction, we can introduce up to four
pairs of supercharges. Q and Q̄, when applied to a state of the SQFT, respectively raise
and lower the helicity/spin of the state by a factor of 1/2. Despite being conceptually very
simple, supersymmetry might be a possible breakthrough in the study of the fundamental
interactions. From a phenomenological point of view, a supersymmetric Standard Model
would elegantly solve the Hierarchy problem, while a supersymmetric Grand Unified The-
ory would witness a perfect unification of all its gauge coupling constants at the energy
scale Λ ∼ 1015GeV (cfr. [3]). Unfortunately, supersymmetry has not been experimentally
verified, yet. However, despite the lack of evidence of its existence, it is still very attractive
from a formal point of view because it highly constrains the structure of the classical ac-
tion. In particular, the introduction of four supersymmetries (N = 4) completely fixes all
the operators allowed in the action.

Having understood the peculiarities of conformal invariance and supersymmetry, it is
natural to study a class of QFTs enjoying both of them: the Superconformal QFTs (SCQFT).
These models are highly constrained by their symmetries and they represent the ideal lab-
oratory for the derivation of non-perturbative results. For this reason, SCQFTs have played
an important role in theoretical physics for the last two decades, taking the exploration of
the QFTs framework to a higher level. Moreover, SCQFTs also have an important physical
role, working as holographic duals in the AdS/CFT conjecture (cfr. [4]). A very special
toolbox for proving non-perturbative QFT results is provided by the N = 4 SYM theory:
not only it is a YM theory,i.e. it is able to describe fundamental forces, but it also enjoys the
conformal invariance and the maximum amount of supersymmetries allowed for a non-
gravitational theory.

The goal of the thesis

In the article [5] the authors prove a non-perturbative result in the framework of the N = 4
theory: a non-renormalization theorem. The interactions in the N = 4 theory are controlled
by one marginal, complex parameter τ. In principle, τ can assume a continuous set of
values: we will call this set conformal manifold. A renormalization of the theory transforms
τ into a running parameter: the running can be described as a trajectory over the conformal
manifold. The authors consider a special 3-points function made of superconformal, chiral,
scalar primary operators

〈φ1 φ2 φ3〉 = C123
G(group theory labels)

|x12|∆1+∆2−∆3 |x23|∆2+∆3−∆1 |x13|∆1+∆3−∆2
.

The structure of the correlation functions is almost entirely fixed by group theory (the factor
G) and by conformal invariance (the denominator, which contains all the dependence on the
coordinates). Then, the dependence on the coupling τ is hidden for sure inside the overall
factor C123. When τ runs on a trajectory over the conformal manifold, the behavior of the
overall factor C123, and so of the entire correlation function, is described by a connection ∇τ

∇τ 〈φ1 φ2 φ3〉 = · · · × ∇τC123.

In the article, the authors succeeded at proving that ∇τC123 = 0, hence ∇τ 〈φ1 φ2 φ3〉 = 0.
The conclusion is: if the coupling τ undergoes a renormalization process and travels on a
trajectory over the conformal manifold, the explicit expression of the 3-points correlation
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function does not change. This is a stunning result: not only the structure of the correlator
has been fixed, but such structure does not depend on the strength of the interactions. How-
ever, the proof is conducted at zero temperature, which is the standard regime in which QFTs
are studied. The zero temperature scenario is perfect for studying the interactions between
a small amount of particles. Although this condition is clearly important, being verified
inside the particle colliders, our most advanced experimental laboratories of fundamental
Physics, it is not realized outside of them. Systems which are not man-made do not account
for a few particles, but for a very large amount of them, living in a ensemble. The notion of
particles ensemble allow us to define a temperature: we enter in a finite temperature scenario.
The goal of this thesis is to show that the result of the article [5] holds at finite temperature,
too. Obviously, there are non trivial problems to solve. For instance, the introduction of
a finite temperature moves our theory from the usual spacetime manifold R4 to the non-
topologically trivial manifold R × S1. Moreover, the massless fields gain thermal masses,
dependent on the temperature T. The main consequence is that supersymmetry, conformal
invariance and superconformal symmetry are broken. However, in this thesis we will show
that even at finite temperature it is possible to recover all the necessary hypothesis of the
theorem, making its proof possible also in the new scenario. The result is important espe-
cially from a formal point of view: not only the finite temperature is a very peculiar way to
break supersymmetry, but we also provide examples on how to recover the broken Ward
identities. Moreover, studying the behavior of finite temperature SCQFTs is fundamental
in the context of AdS/CFT, as we anticipated: in particular, the introduction of a finite tem-
perature in the CFT is represented in the gravity dual by placing a Schwarzschild black hole
in the origin of the AdS spacetime (cfr. the article [6]).

Organization of the work

In the chapter 2 we introduce the supersymmetry and we construct the supersymmetric
multiplets needed in the thesis. Moreover, we also introduce the R-symmetry. We discuss
the construction of a general supersymmetric model with the superspace formalism and we
write down the N = 1 SYM theory. At the end of the chapter, we introduce the N = 4 SYM
theory and we provide the reader with a definition of soft supersymmetry breaking.
In the chapter 3 we introduce the conformal symmetry, along with the conformal algebra.
We learn how to construct the conformal multiplets and we discuss how the conformal
invariance completely fixes the kinematic structure of the scalar 2-points and 3-points func-
tions. We discuss the state-operator correspondence, the Operator Product Expansion and
the unitarity bounds.
In the chapter 4 we introduce the superconformal symmetry along with the superconfor-
mal algebra. The radial quantization introduces a new definition of hermitian conjugation,
so we define the new superconformal charges S , S̄ . We discuss the construction of the su-
perconformal multiplets and we introduce the idea of shortening condition, commenting
on a particular superconformal multiplet which will be employed in the thesis.
In the chapter 5 we introduce the general structure of a Ward identity. We discuss the struc-
ture of a Ward identity associated to a classical symmetry and the structure of softly broken
one, computing the scale invariance Ward identities for a free massless and massive scalar
theory.
In the chapter 6 we review the non-renormalization theorem at zero temperature exposed
in the article [5]. The framework is the N = 4 theory: we show that the 3-points functions
of three superconformal chiral scalar primaries are not renormalized.
In the chapter 7 we describe the procedure to follow in order to turn on a finite tempera-
ture. We argue that imposing periodic boundary conditions on the fermionic fields makes
a fermionic mass term appear in the action. Although the fermionic term would be suffi-
cient for going through the following discussion, we can be more general introducing not
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Chapter 1. Introduction

only the fermionic, but also the scalar and the vector mass operator. We interpret the mass
operators as relevant deformations of our original, conformal and supersymmetric theory.
We compute the supersymmetry and the superconformal symmetry Ward identities at fi-
nite temperature and we highlight their soft breaking terms. We compute the R-symmetry
Ward identity at finite temperature and we verify that it is not broken. We make use of the
R-symmetry Ward identity to get rid of the soft breaking terms.
In the chapter 8 we derive the scale invariance Ward identity at finite temperature for the
N = 4 theory. In order to remove the breaking terms, we introduce a conformal compen-
sator. We expose the reasoning with the help of a simple toy model, then we repeat it using
the N = 4 theory. We repeat the proof of the non-renormalization theorem, but at finite
temperature.
In the appendix A we expose the basic conventions employed in the thesis.
In the appendix B we review the most important aspects of the Cartan subalgebras and we
discuss the construction of the su(4) R-symmetry representations.
In the appendix C we prove two useful lemmas used in the non-renormalization theorem.
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Chapter 2

Supersymmetric Field Theories

In this chapter we introduce the supersymmetry and the supersymmetric field theories. The
supersymmetry is a symmetry which transforms bosonic degrees of freedom in fermionic
degrees of freedom, and viceversa. This fundamental feature discloses a plethora of proper-
ties : for instance, a good UV behavior and the prediction of many undiscovered particles,
the superpartners. However, experimental measures neglected their existence at the cur-
rently explored energy levels, thus supersymmetry, if it exists, must be broken. From the
point of view of the field theory, supersymmetry is a great enhancement of the symmetry
amount present in the theory. The Lagrangians of the supersymmetric field theories are
strongly constrained, thus it is easier to work with them. In this chapter we are particularly
interested in the Yang-Mills supersymmetric field theories. We will discuss all the tools
required in order to construct the minimally supersymmetric YM theory, then we will in-
troduce the maximum amount of supersymmetry in absence of gravity, writing down the
N = 4 SYM theory. In this chapter we will follow the references [2], [1] and [3].

2.1 Supersymmetric multiplets

Supersymmetry is a global, continuous symmetry and it is associated to a conserved charge
Q which turns bosons into fermions and viceversa. In order to do so, the operator Q must
sit in a spinorial representation of the Lorentz group: in 4 dimensions we have two different
spinorial representation [1, 0] and [0, 1]: the former hosts the supercharge Qα and the latter
its hermitian conjugate Q̄α̇, equipped respectively with an undotted and a dotted Weyl spinor
index.

Let’s consider a generic field theory: due to the Coleman-Mandula theorem, we know
that, if its hypothesis are satisfied, the maximal symmetry algebra of the theory must be
given by the Poincaré algebra in direct product with a finite-dimensional symmetry group (a
gauge group or a flavor group, for instance). We focus on the Poincaré algebra: in order to in-
clude the supercharges, we promote it to the superPoincaré (super)algebra. The superPoincaré
(super)algebra is a set of commutation and anticommutation rules between the generators

Pµ, Mµν,Qα, Q̄α̇, (2.1)

which are[
Pµ, Pν

]
= 0,

[
Mµν, Pρ

]
= iηρ[νPµ],

[
Mµν, Mρσ

]
= iηνρ Mµσ + (cyclic permutations),[

Pµ,Qα

]
= 0,

[
Mµν,Qα

]
= iσ β

µνα Qβ,
{
Qα, Q̄β̇

}
= 2σ

µ
αγ̇εγ̇β̇Pµ.

Notice that the last relation is an anticommutation relation, as required by the spin-statistic
theorem. It is possible to include in the superPoincaré (super)algebra more than one pair of
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Chapter 2. Supersymmetric Field Theories

supercharges. Theories with more than one pair of supercharges are called extended super-
symmetric theories. The number of supercharges N is encoded in an index I = 1, . . . ,N .
The enhanced commutation and anticommutation relations for the extended supersymmet-
ric theories are[

Pµ,QI
α

]
= 0,

[
Mµν,QI

α

]
= iσ β

µνα QI
β,

{
QI

α, Q̄β̇
J

}
= 2σ

µ
αγ̇εγ̇β̇PµδI

J . (2.2)

If we have more than one pair of supercharges, we need to take another anticommutation
relation into account {

QI
α,QJ

β

}
= εαβZI J . (2.3)

The operator ZI J commutes with all the generators of the full superPoincaré (super)algebra,
thus it is called central charge.

From the algebraic point of view, there is no limit to the number of supercharges we
can introduce in the theory. However, physical theories impose two constraints. Each appli-
cation of a supercharge QI

α on a generic field φ generates a new field with different statistic
and a helicity raised by a factor of 1

2 (or lowered, if we apply Q̄α̇
J ), thus

• in a theory without gravity, the highest modulus allowed for a particle helicity is 1,
hence the maximum amount of supersymmetry is N = 4;

• in a theory with gravity, the highest modulus allowed for a particle helicity is 2, hence
the maximum amount of supersymmetry is N = 8.

In this thesis we won’t consider theories in which gravity is involved, thus the maximal
supersymmetric theory will be the N = 4 theory. The amount of symmetry in the N = 4
theory is so high that the Lagrangian structure is totally constrained.

The introduction of the superPoincaré (super)algebra requires the fields to be repre-
sented not only under the action of the finite gauge symmetry group and of the Lorentz
group, but also under supersymmetry. Superpartners, i.e. fields which are connected by
supersymmetry transformations, must belong to the same supersymmetric multiplet. Super-
symmetric multiplets, also called supermultiplets, enjoy two fundamental properties:

• all the fields belonging to the same supermultiplet are associated to particles with the
same mass. Let’s consider the Fock space of a supersymmetric theory: we build a
generic state in the Fock space applying a field operator ϕ to the vacuum

ϕ |vac〉 = |ϕ〉 . (2.4)

Applying a supersymmetry charge, we generate a state belonging to the same super-
symmetry multiplet

Qα ϕ |vac〉 = |Qα ϕ〉 . (2.5)

The mass (squared) of the field ϕ is defined as the eigenvalue of the operator P2 =
PµPµ of the eigenstate |ϕ〉

P2ϕ |vac〉 = P2 |ϕ〉 = m2 |ϕ〉 . (2.6)

Now, exploiting the commutation rule between Qα and P2 we obtain

P2Qα ϕ |vac〉 = QαP2ϕ |vac〉 = Qαm2 |ϕ〉 = m2 |Qα ϕ〉 . (2.7)

As a direct consequence, supersymmetry is necessarily broken if two fields in the
same supersymmetric multiplet acquire different masses;
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2.1. Supersymmetric multiplets

• every supermultiplet must contain an equal number of bosonic and fermionic degrees
of freedom. We define the fermionic number operator N f : its eigenvalue is +1 when it
acts on a fermionic state, 0 when it acts on a bosonic state. We construct the operator
(−)N f : its eigenvalue is -1 when it acts on a fermionic state and +1 when it acts on
a bosonic state. The definition of the operator (−)N f requires that it anticommutes
with the supercharges. Let’s consider a generic finite-dimensional supersymmetric
multiplet: if we consider a trace tr over the states of a supermultiplet, the object

tr(−)N f (2.8)

counts the difference between the number of fermionic states and bosonic states in the
supermultiplet. We have (cfr. [2])

0 = tr
[
−(−)N f QαQ̄β̇ + (−)N f QαQ̄β̇

]
= tr

[
−Q̄β̇(−)N f Qα + (−)N f QαQ̄β̇

]
= tr

[
(−)N f Q̄β̇Qα + (−)N f QαQ̄β̇

]
= tr

[
(−)N f

{
Q̄β̇,Qα

}]
= 2σ

µ
αγ̇εγ̇β̇tr

[
(−)N f Pµ

]
.

The only possibility for the identity to be true is

tr(−)N f = 0. (2.9)

We want to explicitly write down the N = 1 massless supermultiplets and the (unique)
N = 4 massless vector supermultiplet. In order to do so, we follow sistematic procedure.
Central charges are equal to zero in a theory with massless supermultiplets, thus super-
charges of the same chirality anticommute. In order to study the fields representations, we
place ourselves in a reference frame where Pµ = E (1, 0, 0, 1). In this reference frame

{
QI

α, Q̄β̇
J

}
= 2σ

µ
αγ̇εγ̇β̇PµδI

J =

(
0 0
0 4E

) β̇

α

δI
J . (2.10)

In particular, we have that
{
QI

1, Q̄1̇J
}

= 0. Let’s consider a generic state |φ〉 belonging to
the Hilbert space: if we impose the positivity of the norm we obtain

0 =
〈

φ
∣∣∣ {QI

1, Q̄1̇
I

} ∣∣∣ φ
〉
=
∣∣∣QI

1 |φ〉
∣∣∣2 + ∣∣∣Q̄1̇

I |φ〉
∣∣∣2 (2.11)

so the only possibility is to impose QI
1 = Q̄1̇

I = 0 at the operatorial level. We got rid of half
of the supersymmetric generators and we are left with the supercharges Qi

2 and Q̄2̇
i . We

set up the following normalization, which defines a set of creation and a set of destruction
operators

aI ≡ 1√
4E

QI
2, a†

I ≡
1√
4E

Q̄2̇
I . (2.12)

Thanks to the normalization, the operators aI and a†
I behaves exactly like ladder operators{

aI , a†
J

}
= δI

J ,
{

aI , aJ
}
= 0,

{
a†

I , a†
J

}
= 0. (2.13)

We start by choosing a state which is annihilated by all the destruction operators aI , then
we employ the creation operators a†

I in order to generate all the states belonging to the same
supermultiplet. Notice that the same creation operator cannot be applied twice: this is due
to the fermionic nature of the supercharges. The initial state sits on a Poincaré represen-
tation, hence it carries not only a mass eigenvalue (which is zero, in our case), but also an
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Chapter 2. Supersymmetric Field Theories

helicity λ. The application of a creation operator raises the helicity by a factor 1
2 , while the

application of a destruction operator annihilates the state

|λ〉 → a†
I |λ〉 ∼

∣∣∣∣λ +
1
2

〉
I
, aI |λ〉 = 0. (2.14)

We can determine the dimension of the supermultiplet: for each helicity value λ+ k
2 , we can

obtain a state with such helicity applying k different creation operators in whichever order
we desire (different creation operators anticommute, hence changing their order simply
generates the same state up to an overall sign). Thus, we have a total of (Nk ) states for each
helicity value λ+ k

2 . The total number of states is ∑N
k=0 (

N
k ) = 2N , equally splitted into 2N−1

bosonic states and 2N−1 fermionic states. Now we are ready to discuss the N = 1 and the
N = 4 supermultiplets:

• N = 1: the generic supermultiplet counts 2 states(
λ, λ +

1
2

)
. (2.15)

In order to keep into account the CPT symmetry, we need to add the CPT conjugates
of the states to the supermultiplet(

λ, λ +
1
2

)
⊕
(
−λ − 1

2
,−λ

)
. (2.16)

In a theory with no gravity, the fundamental N = 1 supermultiplets are the chiral
multiplet and the vector multiplet(

0,
1
2

)
⊕
(
−1

2
, 0
)

,
(

1
2

, 1
)
⊕
(
−1,−1

2

)
. (2.17)

The chiral multiplet describes two scalar degrees of freedom and two spinorial de-
grees of freedom, thus it is associated to a complex scalar and a (on-shell) Weyl spinor;
the vector multiplet describes two spinorial degrees of freedom and two vectorial
degress of freedom, thus it is associated to a (on-shell) Weyl spinor and to a (on-shell)
vector boson;

• N = 4: the vector supermultiplet counts 24 = 16 states. In a theory without gravity
(hence, all the helicities must be less or equal than 1), there is only one supermultiplet(

−1,−1
2

,−1
2

,−1
2

,−1
2

, 0, 0, 0, 0, 0, 0,
1
2

,
1
2

,
1
2

,
1
2

, 1
)

, (2.18)

which is also self-conjugated under CPT. The N = 4 vector supermultiplet describes
six scalar degrees of freedom, eight spinorial degrees of freedom and two vectorial
degrees of freedom. The associated field content is given by three complex scalar
fields (or: six real scalar fields), four (on-shell) Weyl fermions and one (on-shell) vector
boson.

2.1.1 The R-symmetry

Under the hypothesis that the central charges ZI J , introduced in the equation (2.3), are equal
to zero, the set of commutators and anticommutators in which the supercharges play a role
is [

Pµ,QI
α

]
= 0,

[
Mµν,QI

α

]
= iσ β

µνα QI
β,

{
QI

α, Q̄β̇
J

}
= 2σ

µ
αγ̇εγ̇β̇PµδI

J ,
{
QI

α,QJ
β

}
= 0.
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2.2. Construction of supersymmetric Lagrangian models

There is room for a new global symmetry, called R-symmetry. The R-symmetry acts on the
indices I, J of the supercharges and it leaves the (super)algebra intact. The action of the
R-symmetry group on the supercharges is

Q′ I
α = U I

JQ
J
α, Q̄′ α̇

I = Q̄α̇
J U†J

I . (2.19)

Imposing the anticommutation rule{
QI

α, Q̄β̇
J

}
= 2σ

µ
αγ̇εγ̇β̇PµδI

J (2.20)

to be invariant under the R-symmetry requires the matrices U to satisfy the constraint

U I
K U†L

J δK
L = δI

J , (2.21)

so the R-symmetry group has to be the unitary group u(N ), with dimension equal to the
number of supersymmetries N present in the theory. In particular:

• if we have only one set of supercharges, N = 1 and the R-symmetry group reduces
to u(1): the supercharges are defined up to a phase;

• in the N = 4 theory we have four sets of supercharges, so the R-symmetry group
should be u(4). Actually, the group can be reduced to su(4) (cfr. the section 4.1).
The supercharges QI

α sit in the fundamental representation of su(4), while the super-
charges Q̄α̇

I sit in the anti-fundamental representation of su(4).

2.2 Construction of supersymmetric Lagrangian models

In the previous section we reviewed how to describe the field contents of supersymmetric
and extended supersymmetric theories through the use of the supermultiplets. The next
step is to learn how to write down the Lagrangian of a supersymmetric theory. The most
direct way to implement supersymmetry in a field theory is through the superspace formal-
ism. Geometrically, a supersymmetry transformation can be seen as a translation in the
superspace, an extended version of the spacetime: in addition to the usual xµ coordinates,
in the superspace we have four spinorial coordinates θα and θ̄α̇. The aim is to develop all the
relevant computations in the manifestly supersymmetric superspace formalism and then to
integrate out the fermionic coordinates, obtaining an action living in the spacetime.

In the superspace, the action of the supercharges can be explicitly realized as the action
of differential operators describing a superspace translation. The supercharge Qα describes a
translation in the spacetime and in the θα coordinate, while the supercharge Q̄α̇ describes a
translation in the spacetime and in the θ̄α̇ coordinate. Their generic structures are

Qα = i
∂

∂θα
+ icσ

µ

αβ̇
θ̄ β̇∂µ, Q̄α̇ = −i

∂

∂θ̄α̇
+ ic∗σ̄µα̇βθβ∂µ. (2.22)

The constant c can be found imposing the anticommutation relation{
Qα, Q̄α̇

}
= 2i=(c)σµ

αγ̇εγ̇α̇∂µ = 2=(c)σµ
αγ̇εγ̇α̇Pµ. (2.23)

If we impose =(c) = 1, we obtain the correct result: we can choose c = i. Thus, the explicit
realization of the supercharges as differential operators in the superspace is

Qα = i
∂

∂θα
− σ

µ

αβ̇
θ̄ β̇∂µ, Q̄α̇ = −i

∂

∂θ̄α̇
+ σ̄µα̇βθβ∂µ. (2.24)
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Chapter 2. Supersymmetric Field Theories

In the superspace we can define superfields, i.e. fields which depends not only on the space-
time coordinates, but also con the fermionic coordinates of the superspace. Thanks to the
properties of the Grassmann variables, the most general superfield can be at most quadratic
in θ or θ̄

F
(
x, θ, θ̄

)
= a(x) + θξ(x) + θ̄χ̄(x) + θθb(x) + θ̄θ̄c(x) + θσµ θ̄vµ(x)+

+ θ̄θ̄θη(x) + θθθ̄ζ̄(x) + θθθ̄θ̄d(x), (2.25)

where a, b, c, d are scalar spacetime fields, vµ is a vector spacetime field, ξ, η are left-chirality
Weyl spinor spacetime fields and χ̄, ζ̄ are right-chirality Weyl spinor spacetime fields. We
can completely integrate out the fermionic variables of the superfield F

(
x, θ, θ̄

)
in two ways:

• we can integrate out all the fermionic coordinates at once∫
d2θd2θ̄ F

(
x, θ, θ̄

)
= d(x); (2.26)

• we can integrate out only two fermionic coordinates with the same chirality∫
d2θ F

(
x, θ, θ̄

)
= b(x) + θ̄ζ̄(x) + θ̄θ̄d(x), (2.27)∫

d2θ̄ F
(
x, θ, θ̄

)
= c(x) + θη(x) + θθd(x). (2.28)

Although for a general superfield this method does not provide the desired result, if
we choose superfields which depend only on θ (or only on θ̄), the fermionic coordi-
nates are totally integrated out ∫

d2θF (x, θ) = b(x), (2.29)∫
d2θ̄F

(
x, θ̄
)
= c(x). (2.30)

The action of the supercharges (2.24) on the superfield (2.25) gives us the supersymmetry
transformation of each spacetime component of F(x, θ, θ̄). We introduce an infinitesimal
spinorial parameter εα which parametrizes the translation in the superspace. The super-
symmetry variation of the superfield is

δF
(
x, θ, θ̄

)
=
(
iεQ− iε̄Q̄

)
F
(
x, θ, θ̄

)
=

(
−εα ∂

∂θα
+ iεασ

µ

αβ̇
θ̄ β̇∂µ − ε̄α̇

∂

∂θ̄α̇
+ iε̄α̇σ̄µα̇βθβ∂µ

)
F
(
x, θ, θ̄

)
=

(
−εα ∂

∂θα
− ε̄α̇

∂

∂θ̄α̇
+ i
[
ε̄α̇σ̄µα̇βθβ + εασ

µ

αβ̇
θ̄ β̇
]

∂µ

)
F
(
x, θ, θ̄

)
= F

(
xµ + iε̄σ̄µθ + iεσµ θ̄, θ − ε, θ̄ − ε̄

)
− F

(
x, θ, θ̄

)
,

so the supersymmetry transformations are associated to the infinitesimal superspace trans-
lation

xµ → xµ + iε̄σ̄µθ + iεσµ θ̄,
θα → θα − εα,

θ̄α̇ → θ̄α̇ − ε̄α̇.
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2.2. Construction of supersymmetric Lagrangian models

We report the explicit transformations of the spacetime components of the superfield (2.25).
Although supersymmetry is very simply realized in the superspace, it stops being manifest
once it is transposed in the spacetime

δa = −εξ − ε̄χ̄ (2.31)
δξ = −2εb − σµε̄

(
vµ + i∂µa

)
, (2.32)

δχ̄ = −2ε̄c + σ̄µε
(
vµ − i∂µa

)
, (2.33)

δb = −ε̄ζ̄ +
i
2

ε̄σ̄µ∂µξ, (2.34)

δc = −εη +
i
2

εσµ∂µχ̄, (2.35)

δvµ = εσµ ζ̄ − ε̄σ̄µη − i
2

ε̄σ̄νσµ∂νχ̄ +
i
2

εσνσ̄µ∂νξ, (2.36)

δη = −2εd +
i
2

εσ̄µσν∂µvν − iσµε̄∂µc, (2.37)

δζ̄ = −2ε̄d − i
2

ε̄σµσ̄ν∂µvν − iσ̄µε∂µb, (2.38)

δd =
i
2

ε̄σ̄µ∂µη +
i
2

εσµ∂µ ζ̄. (2.39)

In order to correctly treat superfields in the superspace formalism, we need to introduce a
derivative operator Dα which anticommutes with the supersymmetry generators

δ (DαF) = Dα (δF) . (2.40)

We can set the ansatz

Dα = m
∂

∂θα
+ nσ

µ

αβ̇
θ̄ β̇∂µ, D̄α̇ = m∗ ∂

∂θ̄α̇
+ n∗σ̄µα̇βθβ∂µ (2.41)

and impose {
Dα,Qβ

}
=
{

Dα, Q̄β̇
}
=
{

D̄α̇,Qβ

}
=
{

D̄α̇, Q̄β̇
}
= 0. (2.42)

The constraints above are satisfied by

Dα =
∂

∂θα
+ iσµ

αβ̇
θ̄ β̇∂µ, D̄α̇ =

∂

∂θ̄α̇
− iσ̄µα̇βθβ∂µ. (2.43)

2.2.1 Chiral superfield

A chiral superfield Φ is defined imposing the following constraints

D̄α̇Φ = 0, DαΦ̄ = 0. (2.44)

The solution of these constraints is difficult to find if we place ourselves in a superspace
with coordinates xµ, θα, θ̄α̇: in fact, Dαxµ 6= 0. This is an hint to the fact that the most natural
coordinate choice in the superspace is given by the coordinates θα, θ̄α̇ and by the coordinate
yµ ≡ xµ + iθσµ θ̄. In fact

D̄α̇yµ = iσµ θ̄ − iσµ θ̄ = 0. (2.45)

If we consider the superfield Φ = Φ(yµ, θ, θ̄), the constraint (2.44) is easily solved by

Φ(yµ, θ, θ̄) = φ(y) + θψ(y) + θθ f (y). (2.46)
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We can go back to the xµ coordinates expanding around them: for a generic spacetime field
g we have

g(y) = g(x) + iθσµ θ̄∂µg(x)− 1
2

θσµ θ̄θσν θ̄∂µ∂νg(x)

= g(x) + iθσµ θ̄∂µg(x) +
1
4

θθθ̄θ̄∂µ∂µg(x),

thus the correct expression for the chiral superfield is

Φ(x, θ, θ̄) = φ(x) + θψ(x) + iθσµ θ̄∂µφ(x) + θθ f (x) +
i
2

θθθ̄σ̄µ∂µψ(x) +
1
4

θθθ̄θ̄∂µ∂µφ(x).

(2.47)

The superfield Φ contains the following spacetime fields: a complex scalar φ, a left-chirality
Weyl spinor ψ and a complex scalar f . It is the correct embedding in a superfield of the
N = 1 chiral supermultiplet; the scalar f is an auxiliary field that is necessary in order
to match the off-shell degrees of freedom (4 spinorial off-shell d.o.f. and 4 scalar off-shell
d.o.f.). If we compare the chiral superfield (2.47) with the most general superfield (2.25), we
immediately derive the supersymmetry transformations of the spacetime components of Φ

δφ = −εψ,
δψ = −2iσµε̄∂µφ − 2ε f ,
δ f = iε̄σ̄µ∂µψ.

2.2.2 Vector superfield

A vector superfield V is defined by the following constraint

V = V∗. (2.48)

If we consider the superfield (2.25), the constraint imposes the following structure

V
(

x, θ, θ̄
)
= a + θξ + θ̄ξ̄ + θθb + θ̄θ̄b̄ + θσµ θ̄vµ + θ̄θ̄θη + θθθ̄η̄ + θθθ̄θ̄d, (2.49)

with a, d, vµ real fields. We redefine three of the spacetime-dependent components in the
following way

vµ ≡ Aµ, η ≡ λ − i
2

σµ∂µ ξ̄, d ≡ 1
2

D +
1
4

∂µ∂µa. (2.50)

After a substitution, the vector superfield turns out to be

V
(

x, θ, θ̄
)
= a + θξ + θ̄ξ̄ + θθb + θ̄θ̄b̄ + θσµ θ̄Aµ + θ̄θ̄θ

(
λ − i

2
σµ∂µ ξ̄

)
+

+ θθθ̄

(
λ̄ − i

2
σ̄µ∂µξ

)
+ θθθ̄θ̄

(
1
2

D +
1
4

∂µ∂µa
)

. (2.51)

We want to employ the vector superfield to embed the field content of the N = 1 vector
supermultiplet in the superspace: a vector boson Aµ, a left-chirality Weyl spinor λα and
an auxiliary field D which makes the degrees of freedom match off-shell (4 spinorial off-
shell d.o.f. and 3+1 scalar off-shell d.o.f.: one vectorial d.o.f. is cancelled by the gauge
invariance). We have a redundance of spacetime components in the vector superfield (2.51).
We can remove it in the following way: let’s consider the chiral superfield Ω, then we can
build the superfield

Λ ≡ i (Ω − Ω̄) , (2.52)
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which satisfies the constraint (2.48), hence it is a vector superfield. Then we can redefine the
superfield (2.51) adding the newly introduced superfield (2.52), obtaining another vector
superfield. Recalling the explicit expression (2.47) of a generic chiral superfield, we get

Λ = −2=(φ) + iθψ − iθ̄ψ̄ − 2θσµ θ̄∂µ<(φ) + iθθ f − iθ̄θ̄ f̄ +
1
2

θθθ̄σ̄µ∂µψ − 1
2

θ̄θ̄θσµ∂µψ̄−

− 1
2

θθθ̄θ̄∂µ∂µ= (φ) . (2.53)

The modified vector multiplet is

V + Λ = (a − 2=(φ)) + θ (ξ + iψ) + θ̄
(
ξ̄ − iψ̄

)
+ θθ (b + i f ) +

+ θ̄θ̄
(
b̄ − i f̄

)
+ θσµ θ̄

(
Aµ − 2∂µ< (φ)

)
+ θ̄θ̄θ

(
λ − i

2
σµ∂µ ξ̄ − 1

2
σµ∂µψ̄

)
+

+ θθθ̄

(
λ̄ − i

2
σ̄µ∂µξ +

1
2

σ̄µ∂µψ

)
+ θθθ̄θ̄

(
1
2

D +
1
4

∂µ∂µa − 1
2

∂µ∂µ= (φ)

)
. (2.54)

It is now possible to set

a − 2=(φ) = 0, (2.55)
ξ + iψ = 0, (2.56)
b + i f = 0, (2.57)

which returns the following vector multiplet, said to be in the Wess-Zumino gauge

V ′ = θσµ θ̄
(

Aµ − 2∂µ< (φ)
)
+ θ̄θ̄θλ + θθθ̄λ̄ +

1
2

θθθ̄θ̄D. (2.58)

The vector superfield (2.58) correctly embeds the field content of the vector supermultiplet,
matching the fermionic and bosonic degrees of freedom off-shell. Notice that we still have
the freedom to perform an (abelian) gauge transformation on the vector boson. Once we
have fixed the vector field with our favourite gauge, the final expression is

V ′′ = θσµ θ̄Aµ + θ̄θ̄θλ + θθθ̄λ̄ +
1
2

θθθ̄θ̄D. (2.59)

In conclusion, if we compare the vector superfield (2.59) with the most general superfield
(2.25), we immedately derive the supersymmetry transformations for the components of
V ′′

δAµ = εσµλ̄ − ε̄σ̄µλ,

δλ = −εD +
i
2

εσ̄µσν∂µ Aν,

δD = iε̄σ̄µ∂µλ + iεσµ∂µλ̄.

2.2.3 Writing down a supersymmetric Lagrangian

Vector superfields, chiral superfields and their superspace derivatives can be composed in
order to construct other vector and chiral superfields. A generic supersymmetric action can
be written as follows

S =
∫

d4x
∫

d2θd2θ̄ S(x, θ, θ̄). (2.60)

This action is manifestly supersymmetric. In the superspace, the supercharges are realized as
the differential operators (2.24), hence when we apply them to the integrand of the integral
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(2.60) we obtain the same action up to superspace total derivatives. We ask the action S
to be real, thus the superfield S(x, θ, θ̄) must be a vector superfield. In the most general
case, S(x, θ, θ̄) is made up of a vector superfield and the sum of a chiral superfield and its
conjugate

S =
∫

d4x
∫

d2θd2θ̄ V(x, θ, θ̄) +
∫

d4x
∫

d2θd2θ̄
[
δ(2)

(
θ̄
)

Φ(x, θ) + δ(2) (θ) Φ̄(x, θ̄)
]

=
∫

d4x
∫

d2θd2θ̄ V(x, θ, θ̄) +
∫

d4x
∫

d2θ Φ(x, θ) +
∫

d4x
∫

d2θ̄ Φ̄(x, θ̄).

If we have

V(x, θ, θ̄) = · · ·+ θθθ̄θ̄Lv(x), Φ(x, θ) = · · ·+ θθLc(x), Φ̄(x, θ̄) = · · ·+ θ̄θ̄L̄c(x), (2.61)

then, recalling the integrals (2.26), (2.29) and (2.30), we can derive the spacetime action of
the theory, paying the price of losing the manifest supersymmetry

S =
∫

d4x
[
Lv(x) + Lc(x) + L̄c(x)

]
=
∫

d4xL(x). (2.62)

2.3 The N = 1 SYM theory

The N = 4 theory is a SYM theory, so we need to learn how to write SYM supersymmetric
theories. The non-supersymmetric SYM action is

S =
∫

d4x
[
−1

4
FaµνFa

µν

]
. (2.63)

In this section we will add one supersymmetry to this action, writing down the N = 1 SYM
theory. The N = 4 theory can be seen as a special case of the N = 1 SYM theory.

We start considering a vector superfield V, defined as in (2.51), and a chiral superfield
Ω, defined as in (2.47). We define the superfields eV and eiΩ. We introduce a generic gauge
group G of dimension N, generated by the generators t1, . . . , tN . All the superfields will
sit in the adjoint representation of the gauge group: for the generic superfield F, it will be
implicit that F = Fata. We already witnessed the fact that the addition of the vector field
(2.52) to V can reproduce the abelian gauge transformation of the vector boson. In order to
mimic the non-abelian gauge transformations, we consider the following transformation in
superspace

eV′
= e−iΩ̄eVeiΩ. (2.64)

Expanding the exponential we can convince ourselves that the transformation (2.64) is a
generalization of the transformation (2.52)

1 + V ′ + · · · = (1 − iΩ̄ + . . . ) (1 + V + . . . ) (1 + iΩ̄ + . . . ) = 1 + V + i (Ω − Ω̄) + . . .
(2.65)

The transformation (2.64) is called supergauge transformation: it represents the correct en-
coding of the non-abelian transformation of the gauge vector in the superspace formalism.
From now on we set ourselves in the Wess-Zumino gauge, choosing the correct Ω. With the
superfield V and the superspace derivatives (2.43) we define the chiral superfield

Wα ≡ −1
4

D̄D̄
(

eV Dαe−V
)

. (2.66)

It can be shown that the transformation (2.64) acts on the chiral superfield (2.66) as follows

W ′
α = e−iΩ̄WαeiΩ.
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2.3. The N = 1 SYM theory

It follows that the chiral superfield
tr [WαWα] (2.67)

is invariant under the supergauge transformation (2.64); the trace is taken over the indices
of the gauge group G. We are now able to obtain the N = 1 SYM theory, exploiting the
procedure described in the section 2.2.3: the spacetime action can be obtained writing down
the superspace action

SSYM =
∫

d4x
∫

d2θ tr [WαWα] + h.c. (2.68)

which leads to the supersymmetric SYM action, with explicit color indices, once the θ coor-
dinates are integrated out

SSYM =
∫

d4x
[
− 1

4
Fa

µνFaµν + iλ̄aσ̄µDµλa +
1
2

D2 +
i
8

εµνρσFa
µνFa

ρσ

]
, (2.69)

where the covariant derivative is given by

DµYa = ∂µYa + f abc Ab
µYc (2.70)

and the field strength is
Fa

µν = ∂µ Aa
ν − ∂ν Aa

µ + f abc Ab
µ Ac

ν. (2.71)

We immediately notice that we recovered the action (2.63): in addition, we have the kinetic
sector of the supersymmetric partner of the gauge vector boson, the gaugino λ, and the
auxiliary field term 1

2 D2. Moreover, the action (2.69) was easily derived in the Wess-Zumino
gauge, but the the superspace action (2.67) is supergauge invariant, hence the expression
(2.69) is always valid. At this point, we are able to introduce a coupling in the theory

τ ≡ 1
g2 − i

Θ
8π2 . (2.72)

The τ coupling encodes the strength of the gauge boson self-interactions and, thanks to su-
persymmetry, of the gaugino-gauge boson interactions; moreover, it also takes into account
the possibility of topological contributions coming from the operator

Θ
64π2 εµνρσFa

µνFa
ρσ. (2.73)

The coupling is inserted in the theory as a multiplicative overall factor

SSYM = <
{

τ
∫

d4x
∫

d2θ tr [WαWα] + h.c.
}

. (2.74)

Usually, the Θ angle is set to zero in order to neglect the topological effects and the coupling
constant g is absorbed inside the fields content of the theory

Aa
µ → gAa

µ, λa → gλa, Da → gDa. (2.75)

So that we recover the expression

SSYM =
∫

d4x
[
− 1

4
Fa

µνFaµν + iλ̄aσ̄µDµλa +
1
2

D2
]

. (2.76)
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Chapter 2. Supersymmetric Field Theories

2.4 The N = 4 theory

In this section we discuss two different ways to obtain the N = 4 SYM theory, the model
studied in this thesis. The starting point is the N = 1 SYM action (2.76). However, recalling
the specific form of the N = 4 unique supermultiplet (2.18), we immediately realize that
the number of degrees of freedom must be raised:

• the first approach is to couple the SYM theory to a matter sector in order to describe
the full N = 4 field content.The R-symmetry is imposed with the introduction of a
superpotential;

• the second approach is to define the N = 1 SYM action not in 4 dimensions, but in
10 dimensions, instead. The theory is then compactified over a 6-dimensional torus.
After having performed the compactification, the additional degrees of freedom nat-
urally appear.

2.4.1 N = 4 theory: non manifest R-symmetry

Introducing a matter sector

In this section we couple a chiral superfield (or a set of chiral superfields) to the action (2.76).
In the end, all the newly introduced field content will have to be contained in the N = 4
supermultiplet, hence all the fields introduced must be represented in the adjoint repre-
sentation of the gauge group. We introduce a chiral superfield Φ with the structure (2.47)
sitting in the adjoint representation of the gauge group. The supergauge transformations of
the chiral superfield are

Φ′ = eiΩΦeiΩ̄, Φ̄′ = e−iΩΦ̄e−iΩ̄ (2.77)

We want to couple this superfield to the vector superfield constructing a superspace opera-
tor invariant under supergauge transformations. The candidate is

Smatter =
∫

d4x
∫

d2θd2θ̄ tr
[
eVΦ̄e−VΦ

]
. (2.78)

Expanding the integrand and integrating out the fermionic coordinates we obtain

Smatter =
∫

d4x
[
−Dµφ̄aDµφa + iψ̄aσ̄µDµψa − f̄ f + (interactions)

]
, (2.79)

The procedure can be easily exploited in order to introduce more than one chiral multiplet.
In particular, we introduce three sets of chiral multiplets ΦI , Φ̄I , where I = 1, 2, 3. Inserting
also the coupling τ in the model, we get

Smatter = <
{

τ
∫

d4x
∫

d2θd2θ̄ tr
[
eVΦ̄Ie−VΦI

]}
, (2.80)

which returns

Smatter =
∫

d4x
[
−Dµφ̄I DµφI + iψ̄a

I σ̄µDµψaI − f̄ I f I + (interactions)
]

, (2.81)

where we absorbed the coupling constant with a field redefinition

φaI → gφaI , ψa → gψaI , f aI → g f aI . (2.82)
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2.4. The N = 4 theory

Introducing a superpotential

In the previous section we introduced three chiral supermultiplets in the theory and we
took into account their interactions with the fields embedded in the vector supermultiplets.
We are still allowed to introduce interactions among the chiral multiplets: this can be done
promoting a function of the chiral superfields to a superpotential. The superpotential must
be an holomorphic function of the chiral superfields and it must not depend on the anti-chiral
superfields

W = W (ΦI) . (2.83)

The new sector of the action is

Ssuperpotential =
∫

d4x
∫

d2θ W (ΦI) + h.c. (2.84)

The N = 4 theory

We impose the following constraints on the superpotential W (ΦI): we require the invari-
ance under a global su(3) which acts on the index I, rotating the three chiral superfields
ΦI but leaving the vector superfield V invariant, we require the renormalizability and the
holomorphicity:

• renormalizability and holomorphicity constrain the structure of the superpotential

W (ΦI) = tr
[

aIΦI + bI JΦIΦJ + cI JKΦIΦJΦK + dI JKLΦIΦJΦKΦL
]

. (2.85)

The kinetic factor of the chiral multiplets, which appears in the equation (2.81), fixes
the mass dimension of the scalar fields φI to [φI ] = 1. Given that Φ = φ + . . . , a renor-
malizable superpotential can be a polynomial of order four or less in the superfields
ΦI ;

• the su(3) invariance totally constrains the superpotential (cfr. [8]): only one tensor in
the equation (2.85) can be realized as a su(3) invariant tensor

aI → 3, (2.86)
bI J → 3̄ + 6, (2.87)

cI JK → 1 + 8 × 2 + 10, (2.88)
dI JKL → 3 × 3 + 6̄ × 2 + 15 × 4. (2.89)

The only singlet is associated to cI JK = c ε I JK, where c is an overall numerical multi-
plicative factor.

In conclusion, we must pick the superpotential

W (ΦI) = cε I JKtr
[
ΦIΦJΦK

]
. (2.90)

Plugging the superpotential (2.90) in the action, we obtain the N = 4 action.
This procedure is useful in order to show the origin of the N = 4 SYM theory as

a special case of the N = 1 SYM theory; the uniqueness of the chosen superpotential is
a symptom of the uniqueness of the N = 4 theory. However, through this method we
are not able to recover the full su(4) R-symmetry: the action is manifestly invariant under
su(3)× u(1), i.e. the global symmetry which rotates the chiral superfields and the N = 1
R-symmetry.
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Chapter 2. Supersymmetric Field Theories

2.4.2 N = 4 theory: manifest R-symmetry

In this section we give the outlines of the procedure we should follow in order to recover
the manifestly su(4) invariant N = 4 SYM theory (cfr. [26],[33])

The N = 4 theory in 4 dimensions can be seen as the result of a Kaluza-Klein compact-
ification of the N = 1 SYM theory in 10 dimensions

S10d =
∫

d10x tr

[
1
2

FmnFmn − iλ̄ΓmDmλ −
7

∑
r=1

D2
r

]
, (2.91)

where the fields are defined in 10 dimensions and Γm are the gamma matrices in 10 dimen-
sions. The seven auxiliary fields D1, . . . , D7 are necessary in order to be able to match the
off-shell degrees of freedom of the fields inserted in the action: the vector boson has 9 d.o.f.
(after the gauge fixing), which added to the 7 scalar d.o.f. are exactly equal to 16, the real
dimension of the 10-dimensional Weyl spinor (cfr. [40]). The 10-dimensional theory is then
compactified over a torus T6: the fields sit in representations of so(6) ∼ su(4). After the
compactification, we obtain a manifestly su(4) invariant N = 4 action

SN=4 =
∫

d4x
[
− 1

4
Fa

µνFaµν + iλ̄a
i σ̄µDµλai − 1

4
DµX̄a

ijD
µXaij+

+

√
2

2
g f abcλaiλbjX̄c

ij +

√
2

2
g f abcλ̄a

i λ̄b
j Xcij − 1

16
g2 f abc f aegXbijXcklX̄e

ijX̄
g
kl

]
. (2.92)

The action (2.92) is written in the conventions of the article [21], which we adopted.

2.5 Soft Supersymmetry breaking

Supersymmetry has never been observed in the experiments, so there are for sure regimes
in which it behaves like a broken symmetry. Supersymmetry can be broken in different
ways. For instance, it might be spontaneously broken, like the electroweak su(2)× u(1) gauge
symmetry in the Standard Model: the classical action S is invariant under the action of su-
persymmetry, but the vacuum of theory is not. In this case, perturbative computations
around the physical vacuum necessarily break the supersymmetry, even if at the formal
level the symmetry has never been destroyed. In this thesis we will not consider a sponta-
neous breaking: the supersymmetry will be explicitly broken by finite temperature effects.
The breaking will not be spontaneous, but manifest at the Lagrangian level through the
introduction of a new sector, in particular mass operators. A mass operator, or, in general, a
relevant operator, which explicitly breaks the supersymmetry is called soft operator and the
breaking caused by it is addressed as soft breaking (cfr. [2], [1], [36],[29]).
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Chapter 3

Conformal Field Theories

In this chapter we introduce the conformal invariance, a symmetry of the spacetime coor-
dinates which also transforms the field content of the theory. The most peculiar property
of the CFTs is the scale invariance: this theories depend only on adimensional couplings, so
their physical predictions are valid at every scale of energy. From a phenomenological point
of view, it is crucial to understand the behavior of the CFTs because they are good approx-
imations of the models when they reach their critical point. From a field-theoretical point
of view, the conformal invariance is extremely precious because it highly constrains some
aspects of the theory: for instance, 2-points and 3-points functions are completely solved
up to numerical multiplicative constants. Another interesting aspect is the implementation
of the unitarity: in order to correctly define the Hilbert space of a quantum conformal field
theory, the fields and the operators must satisfy some constraints on their mass dimensions,
called unitarity bounds. In this chapter we will follow the references [7], [4], [8] and [9].

3.1 Conformal multiplets

The first step towards a basic comprehension of the conformal invariance is to understand
how to construct the irreducible representations of the conformal symmetry group. We
will enhance the Poincaré algebra, introducing new generators, and we will discuss the
procedure to follow in order to build the conformal multiplets.

3.1.1 Conformal algebra

The conformal symmetry is a spacetime, continuous symmetry which can be seen as an
enhancement of the usual Poincaré algebra. In particular, it requires the addition of the
dilatations generator D. In general, an infinitesimal transformation of the spacetime coordi-
nates is described by an infinitesimal translation

x′µ = xµ + ξµ(x). (3.1)

The transformation (3.1) describes a conformal transformation if it satisfies

ηµν∂ρx′µ∂σx′ν = Ω(x)2ηρσ, (3.2)

where Ω(x) is a function of the coordinates and is called scale factor. In 4 dimensions it can
be shown that the entire class of the conformal transformations can be generated by the
action of four kinds of generators:

• if Ω(x) = 1, we immediately recover the definition of the Poincaré symmetry, i.e. of
the symmetry encoding the isometries of the spacetime. The symmetry is described
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Chapter 3. Conformal Field Theories

by the Lorentz generators Mµ
ν and the translations generators Pµ: their actions on the

coordinates are
x′µ = xµ + ω

µ
ν xν, x′µ = xµ + cµ, (3.3)

where ωµν is an antisimmetric tensor describing an infinitesimal rotation and cµ an
infinitesimal constant vector;

• if Ω(x) = λ 6= 1, the conformal transformation is generated by the dilatation genera-
tor D, whose action on the coordinates is

x′µ = xµ + axµ, (3.4)

where a is a numerical infinitesimal constant;

• there is another class of conformal transformations called special conformal transforma-
tions: their infinitesimal action on the coordinates is given by

x′µ = xµ + 2bρxρxµ + bµx2, (3.5)

where bµ is an infinitesimal constant vector. The finite action of a special conformal
transformation on the coordinates is

x′µ =
xµ + bµx2

1 + 2bρxρ + b2x2 . (3.6)

It is interesting to notice that the transformation (3.6) can also be obtained from the
composition

I ◦ Translation ◦ I, (3.7)

where I stands for the inversion of the coordinates

I(xµ) =
xµ

x2 . (3.8)

If we consider a translation parametrized by the constant vector bµ, then

xµ I−→ xµ

x2
Tr−→
(

xµ

x2 + bµ

)
I−→

xµ

x2 + bµ( xρ

x2 + bρ
) ( xρ

x2 + bρ

) =
xµ + bµx2

1 + 2bρxρ + b2x2 . (3.9)

In conclusion, we might look at the special conformal transformation as a way to in-
troduce the inversion of the coordinates in the conformal group. The inversion, being
a discrete generator, cannot be a generator of the continuous conformal symmetry
group, while the special conformal transformations can be infinitesimal, being con-
nected to the identity of the symmetry group.

We can completely describe the conformal algebra with the following generators

Pµ, Mµν,D, Kµ, (3.10)

where D is the dilatations generator and Kµ the special conformal transformations genera-
tor. Notice that dilatations and special conformal transformations are respectively parametrized
by a scalar and a vector, so their generators have respectively no indices and one vector in-
dex. The complete set of the significative commutation relations is (cfr. [4])[

Mµν, Pρ

]
= ηρ[νPµ],

[
Mµν, Kρ

]
= ηρ[νKµ],

[
Mµν, Mρσ

]
= ηνρ Mµσ + (cyclic permutations),[

D, Pµ

]
= Pµ,

[
D, Kµ

]
= −Kµ,

[
Kµ, Pν

]
= 2

(
ηµνD + Mµν

)
.

Now we study the explicit action of the generators of the conformal algebra on a generic
operator Ol(0), where l stands for a set of Lorentz indices. The operator is computed in the
origin, so, following [9]:
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3.1. Conformal multiplets

• the Lorentz generators Mµν act as follows[
Mµν,Ol

]
(0) =

(
Sµν

) l

m
Om(0), (3.11)

where
(

Sµν

) l

m
is the Mµν generator realized in the same representation as Ol(0);

• the dilatations generator D acts as follows[
D,Ol

]
(0) = ∆Ol(0), (3.12)

where ∆ is the mass dimension of the operator Ol(0);

• the translations generator acts as follows[
Pµ,Ol

]
(0) = −

(
∂µOl

)
(0); (3.13)

• the special conformal transformations generator has a fundamental property: it acts
as a ladder operator for the conformal dimension ∆ of the operator Ol(0). Making
use of the Jacobi identity[

D,
[
Kµ,Ol

]]
(0) =

[
Kµ,

[
D,Ol

]]
(0) +

[[
D, Kµ

]
,Ol

]
(0)

= ∆
[
Kµ,Ol

]
(0)−

[
Kµ,Ol

]
(0)

= (∆ − 1)
[
Kµ,Ol

]
(0),

so the operator
[
Kµ,Ol] has a conformal dimension equal to (∆ − 1): the action of the

generator Kµ lowers the conformal dimension by a factor of 1. We want to consider
only physical operators, so their conformal dimensions must be positive, hence there
must be a finite number n such that, applying n times the generator Kµ to the operator
Ol(0) [

Kµ1 , . . . ,
[
Kµn ,Ol

]
. . .
]
(0) = 0. (3.14)

3.1.2 Constructing a conformal multiplet

We call conformal primary operator an operator Ol
Pr(0) such that[

Kµ,Ol
Pr

]
(0) = 0. (3.15)

The conformal primary operator is the lowest weight state of a conformal multiplet, an infinite
tower of operators generated by the action of the momentum operator Pµ. The operator Pµ

acts as a derivative, i.e. as a raising operator for the conformal dimension ∆

Ol
Pr(0)

Pµ

−→ ∂µOl
Pr(0)

Pν

−→ ∂ν∂µOl
Pr(0) . . . (3.16)

∆ Pµ

−→ ∆ + 1 Pν

−→ ∆ + 2 . . . (3.17)

The operators ∂µOl
Pr(0) and ∂ν∂µOl

Pr(0), along with the other ones inside the conformal
multiplet, are called conformal descendants. We can reintroduce the coordinate dependence
in the operator Ol

Pr(x) expressing it as a linear combination of the conformal primary and
its descendants

Ol
Pr(x) = Ol

Pr(0) + xµ∂µOl
Pr(0) +

1
2

xµxν∂µ∂νOl
Pr(0) + . . . (3.18)
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Chapter 3. Conformal Field Theories

In conclusion, we introduced the conformal algebra and a class of operators, the conformal
primaries, annihilated by the generator Kµ: they are the lowest weights of the conformal
multiplets generated by Pµ. A generic conformal multiplet can be infinite, but the chain of
descendants stops if unitarity is violated.

3.2 Unitarity

In this section we discuss the unitarity constraints on the conformal multiplets. The con-
straints arise from the requirement that the Hilbert space of the theory has a positive norm.
We will introduce a Hilbert space describing how to construct a state in a conformal field
theory, then we will derive some of the unitarity conditions which can be imposed on the
conformal multiplets.

3.2.1 Radial quantization and the state-operator correspondence

In order to define an Hilbert space for our CFT, we need to introduce the radial quantization.
Usually, we consider a spacetime R1,3 and we foliate it in hypersurfaces at constant time: in
this picture, each state lives on a hypersurface; the evolution of the states is controlled by
a time evolution operator. The generator of the infinitesimal time evolution is the Hamil-
tonian H. However, the spacetime might be foliated in a different way. In the Euclidean
signature, we choose a specific point to be the origin of the spacetime and we foliate it in
concentric hyperspheres, each one with a fixed radius. The states now live on the hyper-
spheres and their evolution is not controlled anymore by the time-evolution generator, but
by the dilatations generator D. The choice of the origin is arbitrary and does not affect any
physical property, but it changes the ordering of the operators inside the correlators . In the
usual quantization, the operators involved in the correlation functions are time-ordered,
while in the radial quantization the operators are radius-ordered: the distance between the
origin and the point in which each operator is computed changes along with the chosen
origin. Operators living on the same hypersphere commute among each other.

In general, (local) operators and states are very different objects: the operators are com-
puted in a specific point of the spacetime, while the states live on hypersurfaces orthogonal
to a chosen direction (the radial direction, for instance). Let’s consider an hypersurface Σ,
a point x = (r,~θ) ∈ Σ, a state |ψ〉 living on Σ and a local operator O(r,~θ), computed in
x = (r,~θ): the operator can act on the state and the notation is

O(x) |ψ〉 . (3.19)

We would like to define a vacuum state |vac〉 and act on it with the local operators. The
vacuum is a state, so it lives on an hypersurface. In the usual quantization, we can define
the vacuum as a state living on an hypersurface at constant time, such that no local operator
appears at a smaller time. The same procedure can be applied to the radial quantization:
we define the vacuum as a state living on an empty hypersphere; then, we can dilatate the
sphere until it reaches a local operator, which will act on the vacuum state.

From operators to states

Let’s introduce the operator O(r) in the radially quantized spacetime (we neglect the de-
pendence on the angular coordinates ~θ). Following [9], we assume that the operator can be
applied to the vacuum state

O(r) |vac〉 . (3.20)

We would like to understand which state lives on the hypersphere Σ with radius r + ε,
where ε is an infinitesimal distance between Σ and the hypersphere where the operator
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3.2. Unitarity

is computed. Thanks to the dilatation invariance, the hypersphere with radius r can be
shrinked to the origin. As a consequence, the operator now is applied to the origin

O(r) |vac〉 → O(0) |vac〉 . (3.21)

However, the operator computed in the origin can be seen as a state living on the origin,
seen as a degenerate hypersurface

O(0) |vac〉 = |O(0)〉 . (3.22)

Making use of the dilatation invariance, we expand hypersphere from the origin to Σ

|O(0)〉 → |O(r + ε)〉 . (3.23)

In conclusion, thanks to the dilatation invariance we have

O(r) |vac〉 → |O(r + ε)〉 . (3.24)

From states to operators

First of all, we need to understand how a state is realized over an hypersphere with radius
r. We will follow the reference [10]. In one-dimensional quantum mechanics, a system
described by the classical action S evolves according to the propagator

G(xi, x f ) =
∫ x f (t f )

xi(ti)
[Dx] eiS, (3.25)

so the wavefunction at x f is given by

ψ(x f , t f ) =
∫

dxi G(xi, x f )ψ(xi, ti), (3.26)

where the initial position xi is free. Analogously, in QFT a state can be written as follows

|ψ〉 f =
∫

[Dφi]
∫ φ f (t f )=φ f

φi(ti)=φi

[Dφ] eiS[φ] |φ〉i , (3.27)

where the initial field configuration is free. In the radial quantization, the equation (3.27)
becomes

|ψ〉 f =
∫

[Dφi]
∫ φ f (r f )=φ f

φi(ri)=φi

[Dφ] e−S[φ] |φ〉i . (3.28)

Now we consider a state defined on a hypersphere Σ

|ψ〉Σ =
∫

[Dφi]
∫ φ f (rΣ)=φ f

φi(ri)=φi

[Dφ] e−S[φ] |φ〉i . (3.29)

Thanks to the dilatation invariance, we can bring ri → 0, so that the initial state is defined
in the origin, interpreted as a degenerate hypersurface

|ψ〉Σ =
∫

[Dφi]
∫ φ f (rΣ)=φ f

φi(0)=φi

[Dφ] e−S[φ] |φ〉i . (3.30)

Now the state |φ〉i can be seen as a local operator O computed in the origin and applied to
the vacuum state

|ψ〉Σ =
∫ φ f (rΣ)=φ f

φi(0)=vacuum
[Dφ] e−S[φ]O(0) |vac〉 . (3.31)
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Applying the dilatation symmetry, we can compute the operator on a generic hypersphere
of radius r < rΣ

|ψ〉Σ =
∫ φ f (rΣ)=φ f

φi(r)=vacuum
[Dφ] e−S[φ]O(r) |vac〉 . (3.32)

The state |ψ〉Σ can be interpreted as an operator inside the hypersphere Σ
In conclusion, in a radially-quantized conformal field theory states and operators, which

in principle are completely different objects, are in a correspondence: every operator gener-
ates a state on a hypersphere containing it, while each state living on a surface can be seen
as generated by an operator living inside it. We would have not been able to achieve this
result in the usual quantization: translating in time, the operators would have been brought
not to a degenerate hypersurface (the origin), but to a proper hypersurface (the hyperplane
at t = 0). In this case there is no correspondence between operators and states: the former
are computed on specific points, while the latter are defined over the whole hyperplane at
t = 0.

3.2.2 The hermitian conjugation

The states of a quantum theory live in a Hilbert space, equipped with a norm. In a QFT the
unitarity condition requires all the physical states to have a positive norm. In order to be
able to compute the norms of the states in the radial quantization, we have to define a new
hermitian conjugation. It can be shown that in the radial quantization, given the operator
O(x), its hermitian conjugate operator is given by

O†(x) = I ◦ O(x) ◦ I. (3.33)

This result can be used to compute the hermitian conjugates of the conformal algebra gen-
erators

M†
µν = −Mµν, P†

µ = Kµ, K†
µ = Pµ, D† = D. (3.34)

3.2.3 Unitarity bounds

The procedure to adopt in order to derive the unitarity bounds is explained in [4]. First
of all, we introduce a primary operator O(0), sitting in a representation of the conformal
group [

j, j̄
]

∆ , (3.35)

where j, j̄ are the Lorentz quantum numbers and ∆ is the conformal dimension. Making use
of the states-operators correspondence, we define the state

O(0) |vac〉 → |O〉 =
∣∣j, j̄
〉

∆ . (3.36)

The action of a conformal generator G on the operator O can be translated in the states
picture as follows

[G,O] (0) |vac〉 → |[G,O]〉 = G
∣∣j, j̄
〉

∆ . (3.37)

We stated that the state
∣∣j, j̄
〉

∆ is the highest weight of a conformal multiplet, so the first
descendant is given by

aµPµ

∣∣j, j̄
〉

∆ , (3.38)

where aµ is a constant vector, useful to contract the vector index of the momentum operator.
We normalize the norm of the primary state to

〈
j, j̄
∣∣ j, j̄

〉
∆ = 1 and we compute the norm of

the first descendant

āµaν
〈

j, j̄
∣∣KµPν

∣∣ j, j̄
〉

∆ = āµaν
〈

j, j̄
∣∣ PνKµ

∣∣ j, j̄
〉

∆ + 2aµaν
〈

j, j̄
∣∣ δµνD + Mµν

∣∣ j, j̄
〉

∆

= 2āµaν
(
δµν∆

〈
j, j̄
∣∣ j, j̄

〉
∆ +

〈
j, j̄
∣∣Mµν

∣∣ j, j̄
〉

∆

)
= 2āµaν

(
δµν∆ +

〈
j, j̄
∣∣Mµν

∣∣ j, j̄
〉

∆

)
.

24



3.2. Unitarity

We need to compute the term 〈
j, j̄
∣∣Mµν

∣∣ j, j̄
〉

∆ . (3.39)

In order to do so, we rewrite the Lorentz generators as follows

Mµν =
1
2
(
δµρδνσ − δµσδνρ

)
Mρσ =

(
Mµν

)
ρσ

⊗ Mρσ, (3.40)

where the operator
(
Mµν

)
ρσ

is the Lorentz generator acting on operators sitting in the vec-
torial representation and ⊗ is the product between different representations. The product
(3.40) can be rewritten as follows(

Mµν

)
ρσ

⊗ Mρσ =
1
2

(((
Mµν

)
ρσ

⊗ 1 + 1 ⊗ Mρσ

)2
−
((

Mµν

)
ρσ

⊗ 1
)2

−
(
1 ⊗ Mρσ

)2
)

(3.41)
Plugging the result inside the term (3.39), we obtain

āµaν
〈

j, j̄
∣∣Mµν

∣∣ j, j̄
〉

∆ = |a|2 1
2
(
C(j′, j̄′)− C(1, 1)− C(j, j̄)

)
, (3.42)

where C(1, 1) is the eigenvalue of the Lorentz Casimir operator in the vectorial representa-
tion, C(j, j̄) in the representation of the primary and C(j′, j̄′) in a representation contained in
the product [1, 1]⊗

[
j, j̄
]
. Eventually, the norm of the first descendant of a generic conformal

primary state is

āµaν
〈

j, j̄
∣∣KµPν

∣∣ j, j̄
〉

∆ = 2|a|2
(

∆ +
1
2
(
C(j′, j̄′)− C(1, 1)− C(j, j̄)

))
. (3.43)

The first descendant state belongs to the Hilbert space if and only if the following unitarity
bound holds

∆ ≥ 1
2
(
C(1, 1) + C(j, j̄)− C(j′, j̄′)

)
. (3.44)

Now we are interested in computing three unitarity bounds, making use of the formula
(3.44):

• we consider a scalar primary operator: then
[
j, j̄
]
= [0, 0]. There is only one possible

product representation:
[
j′, j̄′

]
= [1, 1]. The scalar Casimir eigenvalue is C(0, 0) = 0,

while the vector one is C(1, 1) = 3. Thus, the unitarity bound is

∆ ≥ 0. (3.45)

We might want to go on and derive another unitarity bound, obtained computing the
norm of the second descendant of a scalar conformal primary. It can be shown that
the result is

∆ ≥ 1. (3.46)

One can show that this is the strongest unitarity bound for scalar primaries;

• we consider a vector primary operator: then
[
j, j̄
]
= [1, 1]. In order to derive the

unitarity bound, we need to choose the lowest product representation:
[
j′, j̄′

]
= [0, 0].

The unitarity bound is
∆ ≥ 3. (3.47)

it can be shown that this is the strongest unitarity bound for vector primaries. If
we consider a current Jµ with conformal dimension equal to [Jµ] = 3, then its first
descendant has zero norm, hence it is the null vector[

Pµ, Jµ
]
|vac〉 = ∂µ Jµ |vac〉 =

∣∣∂µ Jµ
〉
= Null vector; (3.48)
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Chapter 3. Conformal Field Theories

• we consider a spin 3
2 primary operator: then

[
j, j̄
]
= [2, 1] (or:

[
j, j̄
]
= [1, 2]). Among

all the possibilities, we choose the lowest product representation:
[
j′, j̄′

]
= [1, 0]. The

spinorial Casimir eigenvalue is C(1, 0) = 3
2 , while the spin 3

2 one is C(2, 1) = 11
2 . Thus,

the unitarity bound is

∆ ≥ 7
2

. (3.49)

It can be shown that this is the strongest unitarity bound for spin 3
2 primaries. If we

consider a supercurrent Gµ
α with conformal dimension equal to [Jµ] = 7

2 , then its first
descendant has zero norm, hence it is the null vector[

Pµ, Gµ
α

]
|vac〉 = ∂µGµ

α |vac〉 =
∣∣∂µGµ

α

〉
= Null vector. (3.50)

We conclude this section highlighting a fundamental consequence of the unitarity bounds.
Primary operators which saturate the unitarity bounds generate conformal multiplets con-
taining null vectors. Null vectors does not appear in the Hilbert space, so they are not
considered in the quantum theory. Suppose that the primary operator acquires an anoma-
lous dimension, so that it does not saturate the unitarity bound anymore. This is forbidden:
the null state would become a physical state, but it would not be elements of the Hilbert
space. In conclusions, the conformal dimensions of primary operators which saturate the
unitarity bounds is protected, i.e. it is unaffected by any anomalous dimension effect.

3.3 Scalar correlation functions

One of the most interesting aspects of working with CFTs is the fact that 2-points and 3-
points functions have a completely fixed kinematic (i.e. dependent on the coordinates)
structure, up to multiplicative constants. In this section we briefly show how to derive the
explicit structure of the 2-points and 3-points scalar correlation functions, following [43].

3.3.1 The embedding formalism

The most efficient way to compute the correlation functions in a CFT is to exploit the em-
bedding formalism: the Euclidean spacetime R4 is embedded in a bigger spacetime R1,5,
where the computations are done; in order to go back to the original spacetime, the results
are projected on a section of the embedding space, called Poincaré section. This procedure
is motivated by the fact that the conformal algebra in R1,3 can be rewritten as the Lorentz
algebra in R1,5 in terms of the antisymmetric generators Jmn

[Jmn, Jrs] = iηmr Jns + Cyclic permutations, (3.51)

where m, n, r, s run over 0, 1, . . . , 5, ηmr = diag(+,+,+,+,+,−) and

Jµν = Mµν, J56 = D, J5µ =
1
2
(Pµ − Kµ) , J6µ =

1
2
(Pµ + Kµ) . (3.52)

In the embedding space R1,5 we work with light-cone coordinates

X m =
(
X+,X−,X µ

)
, (3.53)

where X± = X 5 ±X 6. The scalar product is

VmWm = VµWµ −
1
2
(
V−W+ + V+W−) , (3.54)
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3.3. Scalar correlation functions

so X 2 = X µXµ −X−X+. The embedded spacetime is identified by the coordinates X m
P =(

1, x2, xµ
)
, which lead to X m

P XP,m = 0. The set of the X m
P points is called Poincaré section.

An important relationship on the Poincaré section is

(X m
P −Ym

P )2 = X 2
P + Y2

P − 2X m
P YP,m = −2X m

P YP,m

=
[(

0, x2 − y2, xµ − yµ
)]2

= (xµ − yµ)2 ,

so we obtain
X m

P YP,m = −1
2
(xµ − yµ)2 . (3.55)

In the embedding space we will work with scalar operators Φ(X ) such that Φ(XP) = φ(x),
where φ(x) is a scalar operator defined in the spacetime.

3.3.2 Scalar correlation functions

We start considering the following correlator, defined in the embedding space

〈Φ1(X1)Φ2(X2)〉 . (3.56)

The conformal symmetry requires the imposition of the following constraints:

• the correlator must be invariant under the action of the conformal algebra. Given that
the conformal algebra in the embedding space is the Lorentz algebra, the correlator
must be a function of the Lorentz invariants X 2

1 , X 2
2 and X m

1 X2,m. Once the result
is projected on the Poincaré section, X 2

1 = X 2
2 = 0, so their contributions can be

neglected;

• the correlator must be invariant under the scale transformation Φ(λX ) = λ−∆Φ(λX ),
where ∆ is the conformal dimension of the field Φ and of its projection on the Poincaré
section φ.

There is only one possibility which satisfies both requirements: if g12 is a numerical coeffi-
cient and xµ

1 − xµ
2 ≡ xµ

12, we can make use of the formula (3.55), obtaining

〈Φ1(X1)Φ2(X2)〉 = δ∆1,∆2

g12

X m
1 X2,m

Poincaré section−−−−−−−−→ 〈φ1(x1)φ2(x2)〉 = δ∆1,∆2

g12

x2
12

. (3.57)

Now we consider the correlator

〈Φ1(X1)Φ2(X2)Φ3(X3)〉 . (3.58)

the procedure is the same as the one adopted for the 2-points function. In the embedding
space the correlator has the structure

〈Φ1(X1)Φ2(X2)Φ3(X3)〉 =
C123(

X m
1 X2,m

) 1
2 (∆1+∆2−∆3) (X m

1 X3,m
) 1

2 (∆1+∆3−∆2) (X m
2 X3,m)

1
2 (∆2+∆3−∆1)

(3.59)
where C123 is a numerical coefficient; in the spacetime

〈φ1(x1)φ2(x2)φ3(x3)〉 =
C123

x∆1+∆2−∆3
12 x∆1+∆3−∆2

13 x∆2+∆3−∆1
23

. (3.60)

In the chapter 6 we will study a specific 3-points scalar correlation function: the result (3.60)
completely fixes the dependence on the coordinates, so we know for sure that the numerical
factor C123 is not kinematic.
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Chapter 3. Conformal Field Theories

3.4 The Operator Product Expansion

We conclude this chapter with a discussion on the Operator Product Expansion (OPE), fol-
lowing [9]. We consider a radially quantized spacetime and an hypersphere Σ. The hyper-
shpere contains two local operators O1(x1) and O2(x2). The state |ψ〉 living on Σ is

|ψ〉 =
∫ φ f (rΣ)=φ f

φi(0)=vacuum
[Dφ] e−S[φ]O2(x2)O1(x1) |vac〉 , 0 < x1 < x2 (3.61)

We know that the state |ψ〉 can be written as a linear combination of some conformal pri-
mary states |Ok〉 and their descendants. The coefficients ck(x1, x2, Pµ) of the sum inherits
the dependence on the coordinates x1, x2 and also depend on the momentum operator Pµ,
which generates the descendants

|ψ〉 = ∑
k

ck(x1, x2, Pµ) |Ok〉 . (3.62)

Applying the states-operators correspondence to the primary states, we end up with

|ψ〉 = ∑
k

∫ φ f (rΣ)=φ f

φi(0)=vacuum
[Dφ] e−S[φ]ck(x1, x2, Pµ)Ok(0) |vac〉 . (3.63)

Comparing the equations (3.61) and (3.63) we obtain the OPE

O2(x2)O1(x1) = ∑
k

ck(x1, x2, Pµ)Ok(0). (3.64)

If two operators are near enough to be contained in the same hypersphere, leaving the
other operators outside, the OPE exchanges them for a linear combination of terms, each
one containing only one operator (primary or descendant). A specific situation in which
this technique can be useful is in the simplification of long correlators like

〈O1(x1) . . .On(xn)〉 . (3.65)

If two operators in the list are close to each other, then in the radial quantization they can
be contained inside the same hypersphere, while all the other operators are left outside.
In this conditions, we can apply the OPE. The correlator is simplified: although the OPE
introduces a sum, it reduces the length by a unity. In general, it is difficult to determine the
terms contained in the infinite sum (3.64) generated by the OPE: in the following chapters
we will derive a few of them exploiting the conformal dimensions and the indices of the
parents operators O2(x2) and O1(x1).
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Chapter 4

Superconformal Field Theories

In the chapter 2 we discussed the supersymmetric QFTs, in particular the strong constraints
that supersymmetry imposes to their Lagrangians. In the chapter 3 we introduced some of
the most interesting properties of the CFTs: in particular, we realized that it is possible to
have a very good handle on the kinematic structure of the correlators thanks to the scale
invariance. A theory which enjoys both supersymmetry and conformal invariance is called
superconformal. The combination of the two symmetries allows to completely solve some as-
pects of the models: for this reason, the SCFTs are the perfect workbench for developing or
proving important non-perturbative properties of the QFTs. In a SCFT the conformal alge-
bra is enhanced by the addition of the supercharges and the generators of the R-symmetry,
which becomes a fundamental tool for the algebraic structure of the representations.

4.1 Superconformal (super)algebra

In this section we will follow [4] and we will include the supercharges and the R-symmetry
generators in the conformal algebra. The result will be the superconformal (super)algebra,
valid for any number of supercharges N .

Conformal algebra

First of all, we modify the generators of the conformal algebra, exchanging their vectorial
Lorentz indices for spinorial Lorentz indices. This is possible thanks to the Sigma matrices
σ

µ

αβ̇
and σ̄µβ̇α, equipped with both types of indices:

Pαβ̇ ≡ σ
µ

αβ̇
Pµ, Kβ̇α ≡ σ̄µβ̇αKµ,

M β
α ≡ −1

4
σ̄µα̇βσν

αα̇ Mµν, M̄α̇
β̇
≡ −1

4
σ̄µα̇ασν

αβ̇
Mµν.

Switching to the spinorial representation, the generators Mµν split up in two different gen-
erators M β

α and Mα̇
β̇
: the former acts on the left-chirality Weyl spinors, the latter on the
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Chapter 4. Superconformal Field Theories

right-chirality Weyl spinors. We write again the conformal algebra in the new notation[
M β

α , M δ
γ

]
= δ

β
γ M δ

α − δδ
α M β

γ ,
[

M̄α̇
β̇
, M̄γ̇

δ̇

]
= −δα̇

γ̇ M̄γ̇

β̇
+ δ

γ̇

β̇
M̄α̇

δ̇
,[

M β
α , Pγγ̇

]
= δ

β
γPαγ̇ − 1

2
δ

β
α Pγγ̇,

[
M̄α̇

β̇
, Pγγ̇

]
= δα̇

γ̇Pγβ̇ −
1
2

δα̇
β̇
Pγγ̇,[

M β
α , Kγ̇γ

]
= −δ

γ
α Kγ̇β +

1
2

δ
β
α Kγ̇γ,

[
M̄α̇

β̇
, Kγ̇γ

]
= −δ

γ̇

β̇
Kα̇γ +

1
2

δα̇
β̇
Kγ̇γ,

[D, Pαα̇] = Pαα̇,
[
D, Kα̇α

]
= −Kα̇α,[

Kα̇α, Pββ̇

]
= 4δα

βδα̇
β̇
D + 4δα

β M̄α̇
β̇
+ 4δα̇

β̇
M α

β .

Supercharges

Now we introduce the commutation relations between the supercharges and the conformal
generators. Part of the them have already been covered in the chapter 2, where we intro-
duced the Poincaré (super)algebra. This section adds new relations, not only because we
have the generators D and Kβ̇α at our disposal, but also because in the Euclidean spacetime

the supercharges QI
α and Q̄β̇

J are independent, so we need to introduce their new hermitian
conjugates. In the radial quantization we can follow the definition (3.33), already used to
define Kα̇β

S̄ J
β̇
≡ I ◦ Q̄β̇

J ◦ I, Sα
I ≡ I ◦ QI

α ◦ I. (4.1)

The relations of the superconformal (super)algebra involving the supercharges and the con-
formal generators are

[
M β

α ,QI
γ

]
= δ

β
γQI

α −
1
2

δ
β
αQI

γ,
[

M̄α̇
β̇
, Q̄γ̇J

]
= δα̇

γ̇Q̄β̇J −
1
2

δα̇
β̇
Q̄γ̇I ,[

M β
α ,Sγ

J

]
= −δ

γ
αS

β
J +

1
2

δ
β
αSγ

J ,
[

M̄α̇
β̇
, S̄ γ̇I

]
= −δ

γ̇

β̇
S̄ α̇I +

1
2

δα̇
β̇
S̄ γ̇I ,[

D,QI
α

]
=

1
2
QI

α,
[
D, Q̄α̇

J
]
=

1
2
Q̄α̇

J ,[
D,Sβ

J

]
= −1

2
Sβ

J ,
[
D, S̄ I

α̇

]
= −1

2
S̄ I

α̇,[
Pαα̇,Sβ

J

]
= −2δ

β
α Q̄α̇J ,

[
Pαα̇, S̄ β̇I

]
= −2δ

β̇
α̇QI

α,[
Kα̇α,QI

β

]
= 2δα

βS̄ Iα̇,
[
Kα̇α, Q̄β̇J

]
= 2δα̇

β̇
Sα

J ,{
QI

α, Q̄β̇J

}
=

1
2

δI
J Pαβ̇,

{
S̄βI ,Sα

J

}
=

1
2

δI
J Kβ̇α.

R-symmetry

In a generic supersymmetric theory the R-symmetry is not a mandatory feature; however, in
a SCFT the generators of the R-symmetry group appear in the anticommutators between the
Q and the S supercharges, so the superconformal (super)algebra requires them in order to
close. The R-symmetry group for a theory with N supersymmetries is u(N ). The abstract
generators of the R-symmetry group are the objects tI

J , labelled by the indices I, J, both
running from 1 to N . The R-symmetry algebra is defined by the commutator[

tI
J , tK

L

]
= δK

J tI
L − δI

LtK
J . (4.2)
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The R-symmetry generators are involved in the following relations[
tI

J ,QK
α

]
= δK

J QI
α −

1
4

δI
JQK

α ,
[
tI

J , Q̄α̇
K

]
= −δI

KQ̄α̇
J +

1
4

δI
JQ̄α̇

K,[
tI

J ,Sα
K

]
= −δI

KSα
J +

1
4

δI
JSα

K,
[
tI

J , S̄K
α̇

]
= δK

J S̄ I
α̇ −

1
4

δI
J S̄K

α̇ ,{
QI

α,Sβ
J

}
= δI

J M β
α +

1
2

δI
J δ

β
αD − δ

β
α tI

J ,
{
S̄ α̇I , Q̄β̇J

}
= δI

J M̄α̇
β̇
+

1
2

δI
J δα̇

β̇
D + δα̇

β̇
tI

J .

Finally, we highlight the fact that in the N = 4 theory the generator tI
I is central, so it can

be removed from the superconformal (super)algebra. This implies that the N = 4 theory
R-symmetry group is simply su(4) and that the operators defined in the model, although
sitting in a su(4) representation, do not carry any R-charge (differently from the N = 1,
N = 2 and N = 3 theories).

4.2 Constructing a superconformal multiplet

Looking at the commutation and anticommutation relations introduced in the previous sec-
tion, we immediately notice that the generator Kα̇β has a conformal dimension equal to −1
and the supercharges Sβ

J and S̄ I
α have conformal dimensions equal to − 1

2 . As we did in
the section 3.1.2, we require our physical operators to have a positive conformal dimension.
The action of the generators Kα̇β,Sβ

J and S̄ I
α lowers it at every step, so we necessarily reach

a state
∣∣j, j̄
〉R

∆ such that

Kα̇β
∣∣j, j̄
〉R

∆ = 0, Sβ
J

∣∣j, j̄
〉R

∆ = 0, S̄ Iα̇
∣∣j, j̄
〉R

∆ = 0, (4.3)

where R stands for all the R-symmetry quantum numbers (Dynkin labels, R-charge). The
state is called superconformal primary state and it is the lowest weight of a superconformal
multiplet. If we act on it with the momentum operator Pµ, we construct a tower of confor-
mal descendants; if we act with the supercharges Q or Q̄, we construct a set of superconfor-
mal descendants. Unlike the conformal descendant, the superconformal descendants cannot
be infinite in number: each supercharge can be applied only once, due to its fermionic na-
ture. The maximum number of superconformal descendants in a superconformal multiplet
is 24N states; however, it is common for this number to be reduced by the requirement
of unitarity. In the language of superconformal multiplets, unitarity is provided by the so
called shortening conditions, which we will discuss in the next section. Whenever we act with
another supercharge Q or Q̄ on a superconformal descendant, we can act in a symmetrized
way, which creates the operator Pµ, or in an antisymmetrized way, which keeps us in the
plane of the superconformal descendants. For instance, if we apply a supercharge Q to a
first superconformal descendant

QI
βQ̄α̇J |h.w.〉 = 1

2

{
QI

β, Q̄α̇J

}
|h.w.〉+ 1

2

[
QI

β, Q̄α̇J

]
|h.w.〉 =

=
1
4

δI
J Pβα̇ |h.w.〉+ 1

2

[
QI

β, Q̄α̇J

]
|h.w.〉 , (4.4)

so the application of a second “lowering” Q operator returns the linear combination of a
conformal descendant and a superconformal descendant.

Eventually, the superconformal multiplet is completed attaching to each state the R-
symmetry multiplet to which it belongs. In the appendix B the construction of the R-
symmetry multiples is explained in detail and a few examples of R-symmetry multiplets
are provided.
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4.3 Shortening conditions

If a certain combination of Q and Q̄ supercharges annihilates the superconformal primary
state, the superconformal multiplet is said to be short; if this does not happens, the super-
conformal multiplet contains all the possible 24N superconformal descendants and it is said
to be long. In the chapter 6 we will make use of some operators belonging to a N = 4 super-

conformal multiplet named B
1
2 , 1

2
(0 2 0). However, it is possible to show that the superconformal

representations of the N = 4 theory can be decomposed into N = 2 superconformal repre-
sentations (cfr. [8], [11]). For this reason, we will discuss the N = 2 shortening conditions
in order to better understand the structure of the superconformal multiplet in which we are
interested.

N = 2 shortening conditions

In the following, the N = 2 superconformal multiplets will be denoted as XR,r,
(

j, j̄
), where

R, r, j, j̄ stand respectively for the su(2) Dynkin label, the R-charge and the Lorentz quantum
numbers. There are three basic types of shortening (cfr. [8], [11]):

• A type: this is the class of the long superconformal multiplets, denoted with AR,r,
(

j, j̄
);

• B I type: the highest weight state is annihilated by QI
1 and QI

2

QI
1 |h.w.〉 = QI

2 |h.w.〉 = 0. (4.5)

this shortening condition is only possible when j = 0. An analogous shortening con-
dition is the B̄I type, where the highest weight state is annihilated by Q̄1̇

I and Q̄2̇
I and it

is possible only if j̄ = 0. Both these shortening conditions can be split into the weaker
shortening conditions B1, B2 and B̄1, B̄2;

• C I type: the highest weight state is annihilated by

εαβQI
β |h.w.〉 = 0. (4.6)

If j = 0, the condition is replaced by(
QI

β

)2
|h.w.〉 = 0. (4.7)

This condition can be split into two weaker conditions: C1 and C2. Similarly to the
B type conditions, it is possible to construct two conjugated shortening conditions C̄1
and C̄2 which make use of the supercharges Q̄.

A superconformal multiplet can be subjected to more than one shortening condition.

The N = 2 decomposition of the B
1
2 , 1

2
(0 2 0) multiplet

The B
1
2 , 1

2
(0 2 0) superconformal multiplet can be decomposed in a sum of N = 2 superconfor-

mal multiplets as follows (cfr. [8], [11])

B
1
2 , 1

2
(0 2 0) ' 3B̂2 ⊕ E2(0,0) ⊕ Ē−2(0,0) ⊕ Ĉ0(0,0) ⊕ 2

(
D1(0,0) ⊕ D̄1(0,0)

)
, (4.8)

where:
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• B̂2: the superconformal primary state is a Lorentz scalar (j = j̄ = 0) sitting in the
triplet representation of su(2), with no R-charge and conformal dimension equal to 2.
It is subject to the shortening condition B1 ∩ B̄2;

• E2(0,0): the superconformal primary state is a Lorentz scalar (j = j̄ = 0) sitting in the
singlet representation of su(2), with R-charge and conformal dimension equal to 2. It
is subject to the shortening condition B1 ∩B2; the superconformal multiplet Ē−2(0,0) is
the multiplet generated by the hermitian conjugate of the superconformal primary of
E2(0,0);

• Ĉ0(0,0): the superconformal primary state is a Lorentz scalar (j = j̄ = 0) sitting in the
singlet representation of su(2), with no R-charge and conformal dimension equal to
2. It is subject to the shortening condition C1 ∩ C2 ∩ C̄1 ∩ C̄2;

• D1(0,0): the superconformal primary state is a Lorentz scalar (j = j̄ = 0) sitting in the
fundamental representation of su(2), with R-charge equal to 1 and conformal dimen-
sion equal to 2. It is subject to the shortening condition B1 ∩ C̄2;

• D̄1(0,0): the superconformal primary state is a Lorentz scalar (j = j̄ = 0) sitting in
the fundamental representation of su(2), with R-charge equal to -1 and conformal
dimension equal to 2. It is subject to the shortening condition B̄2 ∩ C1.

The importance of this superconformal multiplet is given by the fact that it contains the op-
erators employed in the proof of the non-renormalization theorem: for instance, it contains
the stress-energy tensor, the supercurrents and the Lagrangian of the theory itself.
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Chapter 5

Ward Identities

QFTs are usually equipped with symmetries and the physics they describe must be invari-
ant under the action of the associated symmetry groups. At the classical level, if we consider
a continuous symmetry group, the symmetry manifests itself as a continuity equation involv-
ing a conserved current Jµ, as prescribed by the Noether theorem. However, the theorem
crucially relies on the on-shellness conditions, thus it cannot be employed at the quantum
level, where the classical equations of motion are not valid. At the quantum level, the sym-
metries of the theory are properly described not by the continuity equations, but by the
Ward identities. In this chapter we will study how to derive a generic Ward identity with the
Path Integral formalism. If a symmetry is broken at the classical or at the quantum level,
the Ward identity develops some breaking terms which change its structure. The analysis of
the breaking terms will be crucial in the following.

5.1 General structure of a Ward identity

In this section we derive the general structure of a Ward identity, following the procedure
exposed in [7]. In the Path Integral formalism, we consider a continuous symmetry group.
The generic infinitesimal action of the group on the coordinates and on a classical field ϕ(x)
is given by

x′µ = xµ + ωaδaxµ, ϕ′(x′) = ϕ(x) + ωaδa ϕ(x), (5.1)

where ωa represents a set of infinitesimal parameters. The index a runs from 1 to N, where
N is the dimension of the symmetry group. Making use of the transformations (5.1), we can
write down

ϕ′(x′)− ϕ(x) = ωaδa ϕ(x)

= ϕ′(x′)− ϕ(x′) + ∂µ ϕ(x′)ωaδaxµ + O(ω2
a)

= δϕ(x′) + ∂µ ϕ(x′)ωaδaxµ + O(ω2
a),

and we obtain
δϕ(x′) = ωaδa ϕ(x)− ∂µ ϕ(x′)ωaδaxµ + O(ω2

a), (5.2)

which, up to the second order in ωa, becomes

δϕ(x) = ωa
(
δa ϕ(x)− ∂µ ϕ(x)δaxµ

)
. (5.3)

We can now consider a generic correlation function

〈O1(x1) . . .On(xn)〉 =
1
Z

∫
[Dφ]O1(x1) . . .On(xn)e−S[φ], (5.4)
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where Z represents the partition function of the theory, S[ϕ] the classical action and Oi(xi)
the i-th operator which appears inside the correlator. In the following, we won’t keep track
of the specific representations in which the operators O sit: their indices will be considered
implicit. Inside the Path Integral we make a change of the functional integration variables

ϕ(x) → ϕ′(x), (5.5)

so that

〈O1(x1) . . .On(xn)〉 =
1
Z

∫ [
Dϕ′]O′

1(x1) . . .O′
n(xn)e−S′[ϕ′], (5.6)

where the operators O1, . . . ,On and the action S[ϕ] are signed, too. Now, we assume that
the functional measure of the Path Integral is invariant under the action of the symmetry
group: without this hypothesis, the Ward identity develops an anomalous term (cfr. the
articles [12] and the lectures [13]) [

Dϕ′] = [Dϕ] . (5.7)

The relation between the operators written in the old variables and the operators written in
the new ones is given by the transformation (5.3)

O′
i(xi)−Oi(xi) = δOi(xi) = ωa

(
δaOi(xi)− ∂µOi(x)δaxµ

i

)
. (5.8)

The action can also be interpreted as an object transformed by the continuous symmetry
group

S′[ϕ′] = S[ϕ] + δS[ϕ] + O(ω2
a), (5.9)

where the term δS is linear in the infinitesimal parameter ωa. In the thesis, special care will
be put in the computation of the correct δS[ϕ]. In order to keep a compact notation, we
temporarily define

O = O(x1, . . . , xn) ≡ O1(x1) . . .On(xn). (5.10)

The change of variables act on O as follows

O′ = O + δO + O(ω2
a), (5.11)

where the compact notation δO stands for

δO ≡
n

∑
i=1

O1(x1) . . . δOi(xi) . . .On(xn), (5.12)

where the variation δOi(xi) has been specified in the equation (5.8). Expanding the inte-
grand of the r.h.s. in the equation (5.6) in powers of ωa we obtain

〈O〉 = 1
Z

∫
[Dϕ]

(
O + δO + O(ω2

a)
) (

1 − δS[ϕ] + O(ω2
a)
)

e−S[φ]

= 〈O〉+ 〈δO〉 − 〈OδS[ϕ]〉+ O(ω2
a),

so, at first order in ωa, we get

〈δS[ϕ]O1(x1) . . .On(xn)〉 =
n

∑
i=1

〈O1(x1) . . . δOi(xi) . . .On(xn)〉 ., (5.13)

which is a completely general result.
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5.2. Ward identity of a classical symmetry

5.2 Ward identity of a classical symmetry

In this section we specialize the general result (5.13) to the case of a classical symmetry of
the theory. When we apply the transformation rules (5.3) to the classical action S[ϕ], we
obtain (cfr. [7])

δS = −
∫

d4x Jµ
a ∂µωa =

∫
d4x ∂µ Jµ

a ωa, (5.14)

where in the last equality we integrated by parts, assuming trivial boundary conditions.
Jµ
a is a classically conserved current. In fact, at the classical level, we can impose the on-

shellness condition δS = 0: if the field configurations obey the classical equations of mo-
tions, the action is stationary against any variation of the fields. This immediately leads to
the continuity equation of the current Jµ

δS = 0 → ∂µ Jµ
a = 0. (5.15)

At the quantum level, this is not allowed and the continuity equation holds at the operatorial
level, encoded in a Ward identity. Plugging the infinitesimal variation of the action (5.14) in
the general result (5.13), we obtain

∫
d4x ∂µ

〈
Jµ
a (x)ωa(x)O1(x1) . . .On(xn)

〉
=

n

∑
i=1

〈O1(x1) . . . δOi(xi) . . .On(xn)〉 . (5.16)

We define Xa ≡
∫

d3x J0
a , the classically conserved charge, and we rewrite

δOi(xi) = iωa(xi) [Xa,Oi} (xi), (5.17)

where we adopted notation [A,B}, which can stand for both [A,B] and {A,B}, depending
on the fermionic or bosonic nature of the operators A,B. The Ward identity becomes

∫
d4x ∂µ

〈
Jµ
a (x)ωa(x)O1(x1) . . .On(xn)

〉
= i

n

∑
i=1

〈O1(x1) . . . ωa(xi) [Xa,Oi} (xi) . . .On(xn)〉 .

(5.18)
We introduce a set of δ distributions which localize the parameter ωa(x) on the points
x1, . . . , xn, so we can get rid of it

∫
d4x ∂µ

〈
Jµ
a (x)O1(x1) . . .On(xn)

〉
= i

n

∑
i=1

∫
d4x δ(x− xi) 〈O1(x1) . . . [Xa,Oi} (x) . . .On(xn)〉 .

(5.19)
Thanks to the property of the δ, we obtain the unintegrated Ward identity

∫
d4x ∂µ

〈
Jµ
a (x)O1(x1) . . .On(xn)

〉
= i

n

∑
i=1

〈O1(x1) . . . [Xa,Oi} (xi) . . .On(xn)〉 . (5.20)

It is interesting to notice that the integral in the l.h.s. of the equation (5.20) might in principle
diverge when x → xi, i = 1, . . . , n, but the divergence is cured by the contact terms in the
right hand side. This can be explicitly verified considering the integral over a 4-dimensional
volume V containing all the points x1, . . . , xn∫

V
d4x ∂µ

〈
Jµ
a (x)O1(x1) . . .On(xn)

〉
. (5.21)

The integrand diverges whenever x → xi, i = 1, . . . , n, thus we must regularize the integral
cutting out from the integration domain n spheres S1, . . . , Sn with an infinitesimal radius of
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modulus equal to ε. Each sphere Si is centered on the point xi in which the operator Oi is
computed. Now we turn the volume integral (5.21) into a surface integral

∫
∂V

dΣµ∂µ

〈
Jµ
a (x)O1(x1) . . .On(xn)

〉
=

=
∫

S∞

dΣµ

〈
Jµ
a (x)O1(x1) . . .On(xn)

〉
−

n

∑
i=1

∫
Si

dΣµ

〈
Jµ
a (x)O1(x1) . . .On(xn)

〉
(5.22)

We consider the integral over S∞. If the current Jµ
a (x) has a conformal dimension ∆, then

the integrand falls at least as fast as 1
|x|2∆ for x → ∞. Then, if ∆ > 3

2 , on the 3-sphere S∞ the
integral goes to zero. We are left with

∫
∂V

dΣµ

〈
Jµ
a (x)O1(x1) . . .On(xn)

〉
= −

n

∑
i=1

∫
Si

dΣµ

〈
Jµ
a (x)O1(x1) . . .On(xn)

〉
. (5.23)

Now we can consider the OPE between the current Jµ
a (x) and the operator Oi

Jµ
a (x)Oi(xi) = · · · − i

2π2
(x − xi)

µ

|x − xi|4
[Xa,Oi} (xi) + . . . , (5.24)

where the kinematic factor fixes the conformal dimension and the indices of the right hand
side. We plug this result in the r.h.s. of the equation (5.22)

−
n

∑
i=1

∫
Si

dΣµ

〈
O1(x1) · · · −

i
2π2

(x − xi)
µ

|x − xi|4
[Xa,Oi} (xi) . . .On(xn)

〉
. (5.25)

It is important to notice that, although the OPE gives birth to an infinite sum, the only term
which contributes to the integral is

− i
2π2

(x − xi)
µ

|x − xi|4
[Xa,Oi} (xi). (5.26)

In fact, a different term in the sum (5.24):

• might make the integral fall to zero in the limit ε → 0;

• might make the integral diverge: in this case, we adopt a renormalization scheme (cfr.
[14], [15]) in which we simply subtract the divergences adding specific counterterms.

Applying the renormalization scheme, the right hand side of the equation (5.23) is properly
defined. We define rµ

i ≡
(
xµ − xµ

i

)
,

i
n

∑
i=1

lim
ri→ε

[
r2

i
rµ

i ri,µ

r4
i

〈O1(x1) . . . [Xa,Oi} (xi) . . .On(xn)〉
]

. (5.27)

The final result does not depend on the regulator ε

i
n

∑
i=1

〈O1(x1) . . . [Xa,Oi} (xi) . . .On(xn)〉 . (5.28)

We obtained exactly the integral of the contact terms in the r.h.s. of the hard Ward identity
(5.20).
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5.2. Ward identity of a classical symmetry

5.2.1 Integrated Ward identities

If we are working with a CFT, the current Jµ
a is an operator which saturates the unitarity

bound (3.47). Its first conformal descendant is an operator Da defined as follows

Da =
[
Pµ, Jµ

a
}
∼ ∂µ Jµ

a . (5.29)

If the unitarity bound is saturated, the operator Da generates a null vector when it is applied
to the vacuum state

Da |vac〉 = |Da〉 , 〈Da | Da〉 = 0. (5.30)

The positivity condition of the Hilbert space imposes

|Da〉 =
∣∣∂µ Jµ

a
〉
= Null vector ⇒

〈
∂µ Jµ

a
∣∣ = Null vector. (5.31)

If we work with a CFT, the l.h.s. of the unintegrated Ward identity (5.20) is equal to zero

∂µ

〈
Jµ
a (x)O1(x1) . . .On(xn)

〉
=
〈
∂µ Jµ

a (x)
∣∣O1(x1) . . .On(xn)

〉
= 0 (5.32)

and we are left with the integrated Ward identity

n

∑
i=1

〈O1(x1) . . . [Xa,Oi} (xi) . . .On(xn)〉 = 0. (5.33)

Integrated Ward identity for a global u(1) symmetry group

We specialize the previous discussion for an abelian, continuous symmetry group u(1). The
action of the symmetry group on the fields is the following

ϕ′(x) = ϕ(x)− iqωϕ(x), (5.34)

where q represents the numerical charge of the field ϕ and ω is an infinitesimal parameter.
The coordinates are not transformed because the symmetry is global. There is only one
generator: the identity. q and ω have conformal dimensions equal to zero. The infinitesimal
variation of the action is

δS =
∫

d4x ∂µ Jµω. (5.35)

We notice that the conformal dimension of the current is [Jµ] = 3: if we work with a CFT,
the unitarity bound is satisfied (cfr. the section 3.44). Then, the integrated Ward identity is,
according to the equation (5.33)

n

∑
i=1

〈O1(x1) . . . qiOi(xi) . . .On(xn)〉 = 0, (5.36)

where qi is the charge of the operator Oi. The charge is a constant number, thus it can be
extracted from the correlator

n

∑
i=1

qi 〈O1(x1) . . .Oi(xi) . . .On(xn)〉 = 〈O1(x1) . . .Oi(xi) . . .On(xn)〉
(

n

∑
i=1

qi

)
= 0. (5.37)

In conclusion, if the correlator is not equal to zero and it does not violate any other symme-
try of the theory, we must have

n

∑
i=1

qi = 0. (5.38)

The constraint (5.38) encodes every global u(1) classical symmetry transposed to the quan-
tum theory: it forbids the correlators to be globally charged.
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5.3 Broken Ward identities

In the previous section we derived the structure (5.20) of a general unintegrated Ward iden-
tity which encodes a classical symmetry at the quantum level. It is possible that, at the
classical level, the action of a group is not an actual symmetry of the theory: however, the
action of the group can still be encoded in a Ward identity, even if it won’t represent a sym-
metry of the model. In this thesis we will have to deal with a specific kind of Ward identity:
the softly broken Ward identities. A softly broken Ward identity is very similar to a Ward
identity associated to a classical symmetry of the theory, but it presents additional (break-
ing) terms controlled by mass parameters (cfr. the section 2.5). In this section we analyze
an example of soft breaking studying the scale invariance Ward identity.

5.3.1 The scale invariance Ward identity

We want to derive the scale invariance Ward identity. We consider a conformal invariant
field theory in 4 dimensions, described by the classical action

S =
∫

d4x L [ϕ, ∂ϕ] (5.39)

where the whole field content of the theory is represented by ϕ(x). The action of the dilata-
tion symmetry on the fields and on the coordinates is

x′µ = λxµ, (5.40)

ϕ′(x′) = λ−∆ϕ ϕ(x). (5.41)

We can consider λ = 1 + α, where α is an infinitesimal parameter. Then, expanding up to
the linear order in α and following the convention exposed in the equation (5.3), we obtain

δxµ = αxµ, (5.42)
δϕ(x) = −α∆ϕ ϕ(x)− αxµ∂µ ϕ(x). (5.43)

It is useful to define also the infinitesimal transformations without the infinitesimal param-
eter

δαxµ = xµ, (5.44)
δα ϕ(x) = −∆ϕ ϕ(x)− xµ∂µ ϕ(x), (5.45)

and the infinitesimal variation

δ′αφ =
∂

∂α

[
ϕ′(x′)− ϕ(x)

]
lin = −∆ϕ ϕ(x). (5.46)

In order to write down the Ward identity, we need to compute the infinitesimal variation of
the classical action δS under the action of the scale invariance. The formula which returns
our desired result is

δS = −
∫

d4x Wµ∂µα =
∫

d4x ∂µWµα, (5.47)

where the dilatation current Wµ is given by (cfr. [7])

Wµ =

[
∂L

∂∂µ ϕ
∂ν ϕ − δ

µ
νL
]

δαxν − ∂L
∂∂µ ϕ

δ′α ϕ =

[
∂L

∂∂µ ϕ
∂ν ϕ − ηµνL

]
xν + ∆ϕ

∂L
∂∂µ ϕ

ϕ. (5.48)

In the r.h.s. we can substitute the definition of the canonical stress-energy tensor

Tµν
c =

∂L
∂∂µ ϕ

∂ν ϕ − ηµνL, (5.49)
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so the generic dilatation current is given by

Wµ = xνTµν
c + ∆ϕ

∂L
∂∂µ ϕ

ϕ. (5.50)

Thanks to the general result (5.20), we can immediately write down the unintegrated Ward
identity encoding the classical symmetry at the quantum level∫

d4x α∂µ 〈WµO1 . . .On〉 = iα
n

∑
l=1

〈O1 . . . [D,Ol} . . .On〉 , (5.51)

where D is dilatations generator. Its action on the generic operator Ol is depicted by the
equations (5.17) and (5.43). If we compute the derivative in the l.h.s. of the Ward identity
and we define

Tµ
µ ≡ Tµ

µ,c + ∆ϕ∂µ

(
∂L

∂∂µ ϕ
ϕ

)
, (5.52)

we obtain∫
d4x

〈
Tµ

µO1 . . .On
〉
+
∫

d4x
〈

xν∂µTµν
c O1 . . .On

〉
=

= −
n

∑
l=1

(
∆Ol + xµ

l
∂

∂xµ
l

)
〈O1 . . .Ol(xl) . . .On〉 . (5.53)

The structure of the Ward identity can be simplified employing the unintegrated transla-
tions Ward identity. The action of a translation on the coordinates and on the fields is

x′µ = xµ + κµ, (5.54)
ϕ′(x′) = ϕ(x). (5.55)

where κµ is an infinitesimal, constant vector. The infinitesimal versions are

δxµ = κµ, (5.56)
δϕ(x) = −κµ∂µ ϕ(x). (5.57)

The current associated to the translations is the canonical stress-energy tensor Tµν
c and the

unintegrated Ward identity is∫
d4x

〈
∂µTµ

ν cO1 . . .On
〉
= −

n

∑
l=1

∂

∂xν
l
〈O1 . . .Ol(xl) . . .On〉 . (5.58)

Now we consider the expression

∫
d4x

{〈
xν∂µTµν

c O1 . . .On
〉
+

n

∑
l=1

(
xµ

l
∂

∂xµ
l

)
〈O1 . . .Ol(xl) . . .On〉

}
, (5.59)

which can be easily modified as follows

∫
d4x

{〈
xν∂µTµ

ν,cO1 . . .On
〉
+

n

∑
l=1

δ(x − xl)

(
xν ∂

∂xν

)
〈O1 . . .Ol(x) . . .On〉

}
; (5.60)

collecting an overall factor xν we get

∫
d4x xν

{〈
∂µTµ

ν,cO1 . . .On
〉
+

n

∑
l=1

δ(x − xl)

(
∂

∂xν

)
〈O1 . . .Ol(x) . . .On〉

}
= 0, (5.61)
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where the equality in the last step is possible thanks to the translations Ward identity (5.58).
Plugging the result (5.61) in the unintegrated Ward identity (5.53), the final expression be-
comes ∫

d4x
〈

Tµ
µO1 . . .On

〉
= −

n

∑
l=1

∆Ol 〈O1 . . .Ol(xl) . . .On〉 . (5.62)

In conclusion, not only we studied an explicit encoding of a symmetry into an unintegrated
Ward identity, but we also witnessed how a Ward identity can modify the structure of an-
other Ward identity, if the symmetries that they describe hold at the same time.

5.3.2 Broken scale invariance Ward identity at zero temperature

In this section we study a soft breaking of the unintegrated Ward identity (5.62). We will
consider a free scalar theory, to which we will add a mass operator. We will obtain an
unintegrated Ward identity with a structure similar to (5.62), but with an additional, soft
breaking term. We start with the classical action

S = −
∫

d4x
[
∂µφ̄∂µφ

]
. (5.63)

We derive the canonical symmetric stress-energy tensor Tµν
c

Tµν
c = ηµν∂µφ̄∂µφ − ∂µφ̄∂νφ − ∂νφ̄∂µφ. (5.64)

The trace is
Tµ

µ,c = ηµνTµν = 2∂µφ̄∂µφ, (5.65)

so, recalling the definition (5.52), we obtain

Tµ
µ = 2∂µφ̄∂µφ + ∂µ (∂

µφ̄φ + φ̄∂µφ) . (5.66)

Looking at the equation (5.62), the scale invariance Ward identity is

∫
d4x

〈
Tµ

µO1 . . .On
〉
= −

n

∑
l=1

∆Ol 〈O1 . . .Ol(xl) . . .On〉 (5.67)

The equation (5.67) encodes the scale invariance of the action (5.63) at the quantum level.
Now we introduce a mass operator and the action becomes

Sfull = S + Smass = −
∫

d4x
[
∂µφ̄∂µφ + m2φ̄φ

]
. (5.68)

Following the general result (5.13), we get

〈δS(x)O1(x1) . . .On(xn)〉+ 〈δSmass(x)O1(x1) . . .On(xn)〉 =

= −α
n

∑
l=1

(
∆Ol + xµ

l
∂

∂xµ
l

)
〈O1 . . .Ol(xl) . . .On〉 (5.69)

and we already know that the first term can be rewritten as follows

〈δS(x)O1(x1) . . .On(xn)〉 = α
∫

d4x
〈

Tµ
µO1 . . .On

〉
+ α

∫
d4x

〈
xν∂µTµν

c O1 . . .On
〉

, (5.70)
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where Tµν
c and Tµ

µ are given by the expressions (5.64) and (5.66). We explicitly compute the
term δSmass acting on the fields with the transformation (5.45)

δSmass =
(
S′

mass[φ
′]− Smass[φ]

)
|lin = −m2

∫
d4x

[
φ̄′(x)φ′(x)− φ̄(x)φ(x)

]
|lin

= −m2
∫

d4x
[
(φ̄(x) + δφ̄(x)) (φ(x) + δφ(x))−

− φ̄(x)φ(x)
]
|lin

= −m2
∫

d4x [φ̄(x)δφ(x) + δφ̄(x)φ(x)]

= αm2
∫

d4x
[
2φ̄(x)φ(x) + xµ∂µ (φ̄(x)φ(x))

]
,

so the complete unintegrated Ward identity becomes∫
d4x

〈
Tµ

µO1 . . .On
〉
+
∫

d4x
〈

xν∂µTµνO1 . . .On
〉
+

+ 2m2
∫

d4x 〈φ̄(x)φ(x)O1 . . .On〉+ m2
∫

d4x
〈

xµ∂µ (φ̄(x)φ(x))O1 . . .On
〉
=

= −
n

∑
l=1

(
∆Ol + xµ

l
∂

∂xµ
l

)
〈O1 . . .Ol(xl) . . .On〉 . (5.71)

The final expression can be significantly simplified making use of the unintegrated trans-
lations Ward identity. The canonical stress-energy tensor Tµν

full associated to the action Sfull
is

Tµν
full = Tµν

c + m2ηµνφ̄φ, (5.72)

and the translations Ward identity leads to the identity∫
d4x xν

〈
∂µTµ

ν,cO1 . . .On
〉
+ m2

∫
d4x xν 〈∂ν (φ̄(x)φ(x))O1 . . .On〉 =

= −
n

∑
l=1

xν
l

∂

∂xν
l
〈O1 . . .Ol(xl) . . .On〉 . (5.73)

Keeping into account the identity (5.73), the final result of this section is∫
d4x

〈
Tµ

µO1 . . .On
〉
+ 2m2

∫
d4x 〈φ̄(x)φ(x)O1 . . .On〉 =

= −
n

∑
l=1

∆Ol 〈O1 . . .Ol(xl) . . .On〉 . (5.74)

The new Ward identity is similar to (5.67), but it is softly broken by the term

2m2
∫

d4x 〈φ̄(x)φ(x)O1 . . .On〉 . (5.75)
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Chapter 6

A Non-Renormalization Theorem at
T = 0

In this chapter we review the proof proposed in the article [5] of a non-renormalization
theorem in 4 dimensions. The theorem is set in the framework of the N = 4 maximally
supersymmetric theory and it shows a property of a specific kind of 3-points functions, con-
structed with the field content of the N = 4 theory. We already know that, in a generic
CFT, the 3-points functions are completely fixed up to a multiplicative factor (cfr. section
3.3.2). In principle, the multiplicative factor might depend on the couplings of the CFT, so
it should be the subject of a change if the coupling is modified (for instance, as a conse-
quence of a renormalization process): it is said to be dynamical. However, if we consider
the correlation functions between three superconformal scalar primaries belonging to chi-
ral superconformal multiplets of the N = 4 theory, the non-renormalization theorem states
that the multiplicative factor does not depend on the coupling of the theory.

6.1 Marginal operators in the N = 4 theory

For every superconformal theory it is possible to define a conformal manifold, which is the
continuous set of all the possible values that the couplings of the theory can assume. A
trajectory over the conformal manifold is described by a deformation of the theory, induced
by a marginal operator. If we are studying the N = 4 theory in 4 dimensions, the marginal
operators sit on a specific superconformal representation: any marginal operator must have,
in fact, all the properties of a Lagrangian density. Hence, a marginal operator must sit in the
scalar representation of the Lorentz group, in the singlet representation of the R-symmetry
group, it must be chargeless under the action of any u(1) global symmetry group (included
the u(1) generated by the R-symmetry charge operator) and its conformal dimension must
be equal to 4. In 4 dimensions, the full set of the representations in which a generic operator
in the N = 4 theory sits is represented by the notation

[
j, j̄
](a b c)

∆ (6.1)

where we recognize the structure already studied in the section 3.2.3. Given that the no-
tation (6.1) denotes a superconformal representation, we added the Dynkin labels of the
su(4) R-symmetry representation (cfr. the appendix B for a basic introduction to the su(N)
representations and the meaning of the Dynkin labels). The representation of a marginal
operator in the N = 4 theory is condensed in the notation

[0, 0](0 0 0)
4 . (6.2)
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[0, 0](0 2 0)
2

[1, 0](011)
5
2

[2, 0](0 1 0)
3

[0, 0](0 0 2)
3

[1, 0](0 0 1)
7
2

[0, 0](0 0 0)
4

[2, 1](1 0 0)
7
2

[1, 1](1 0 1)
3

[0, 1](1 1 0)
5
2

[2, 2](0 0 0)
4

−[0, 0](1 0 1)
4

[1, 2](0 0 1)
7
2

−[1, 0](1 0 0)
9
2

−[1, 1](0 0 0)
5

−[0, 1](0 0 1)
9
2

[0, 2](0 1 0)
3

[0, 0](2 0 0)
3

[0, 1](1 0 0)
7
2

[0, 0](0 0 0)
4

Figure 6.1: The complete superconformal short multiplet B
1
2 , 1

2
(0 2 0) (cfr. the article [11]).

In a superconformal theory, we know that the marginal operators must be superconformal
descendants of superconformal primaries. In particular, marginal operators belonging to
the N = 4 theory appear as superconformal descendants in the superconformal short mul-

tiplet B
1
2 , 1

2
(0 2 0), already examined in the section 4.3. The B

1
2 , 1

2
(0 2 0) superconformal multiplet is

characterized by the following properties:

• let’s consider the following basis for the set of the N = 4 supercharges (cfr. the section
B.3.3),

Q1
α,Q2

α,Q3
α,Q4

α; Q̄1,α̇, Q̄2,α̇, Q̄3,α̇, Q̄4,α̇ : (6.3)

then, the shortening conditions for the B
1
2 , 1

2
(0 2 0) superconformal multiplet are

Q1
α |h.w.〉 = 0, Q2

α |h.w.〉 = 0, Q̄3,α̇ |h.w.〉 = 0, Q̄4,α̇ |h.w.〉 = 0, (6.4)

where the notation |h.w.〉 stands for the highest weight state of the superconformal
multiplet;

• the superconformal primary sits in the representation

[0, 0](0 2 0)
2 . (6.5)

The su(4) representation is codified via the three Dynkin labels (0 2 0). The supercon-
formal primary is associated to the highest weight state of the representation |h.w.〉
via the state-operator correspondence.

The complete superconformal multiplet B
1
2 , 1

2
(0 2 0) is pictured in the figure 6.1. The represen-

tation [0, 0]0 2 0
2 hosts the superconformal primary. It is important to notice that the two

marginal operators, associated to the two [0, 0](0 0 0)
4 representations,are generated by the

same superconformal primary.
Now we construct the operator which sits the [0, 0](0 2 0)

2 representation. The conformal
dimension of the operator forbids us to use fermionic fields, which have conformal dimen-
sions equal to 3/2; the Lorentz representation forbids us to mix vector and scalar fields, so
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the non-trivial R-symmetry representation forces us to construct the operator with only the
scalar fields. The superconformal primary is realized as the product of two N = 4 scalar
fields X I J and XKL. The symmetry properties of the indices possessed by the operator we
are constructing can be visualized with the Young tableaux formalism

I
J
× K

L
= 1 + I K

J L
+

I L
J
K

+
I K
J
L

. (6.6)

The Dynkin labels (0 2 0) are associated to the tableau I K
K L

. Thus, the superconformal
primary operator is

tr
[

X I JXKL
]

, (6.7)

where I, J and K, L are antisymmetric pairs of indices, I, K and J, L are symmetric pairs of
indices and the trace is taken over the gauge indices, in order to make the operator gauge
invariant.

6.2 Chiral primaries 3-points functions

As we mentioned at the beginning of this chapter, the central objects of the proof are the
3-points functions 〈

φ
(R1,~m1)
1 (x1) φ

(R2,~m2)
2 (x2) φ

(R3,~m3)
3 (x3)

〉
. (6.8)

The operator φ(R,~m)(x) is the chiral primary operator of a short superconformal multiplet
and it is annihilated by the supercharges Sα

I and S̄ J
α̇. The shortening conditions are the ones

listed in (6.4). The property of being the superconformal primary of a short multiplet is
fundamental for the proof of the non-renormalization theorem: the conformal dimension of
the operator is protected by a unitarity condition and does not evolve along any trajectory
over the conformal manifold (cfr. the articles [5], [4]). The operators appearing in the 3-
points function (6.8) sit in a representation with the structure

[0, 0](0 k 0)
k , (6.9)

where (0 k 0) are the Dynkin labels of the highest weight state. The three primaries in-
side the correlation function (6.8) are associated to three different (or even equal) integers
k1, k2, k3. Each primary is then labeled by a vector ~m, which represents its weight in the
su(4) representation where it sits.

The conformal symmetry of the N = 4 theory fixes the explicit expression of the corre-
lation function (6.8)

〈φ1 φ2 φ3〉 = C123
G(k1, k2, k3, ~m1, ~m2, ~m3)

|x12|k1+k2−k3 |x23|k2+k3−k1 |x13|k1+k3−k2
, (6.10)

where the denominator encodes the coordinate dependence of the correlation function, G is
a group-theoretical factor which depends only on the R-symmetry representations and C123
is the multiplicative factor of the 3-points function. Only C123 can carry a coupling depen-
dence. The group-theoretical factor G can be fixed via a specific choice of the representations
(fixing k1, k2, k3) and of the weights (fixing ~m1, ~m2, ~m3). We will choose

~m1 = ~m, ~m2 = highest weight ≡ +, ~m3 = lowest weight ≡ −. (6.11)

In conclusion, we notice that in this notation the superconformal primary (6.7) is written

φ(2,+). (6.12)
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Chapter 6. A Non-Renormalization Theorem at T = 0

6.3 Marginal Operators Deformations

In general, a QFT depends on some coupling constants. If these coupling constants are
adimensional, they are associated to marginal operators. Changing the value of a given
coupling constant does not modify the structure of the theory, but it can deeply modify
its physics. A weak coupling allows us to compute the correlation functions via perturba-
tive approaches, while a strong coupling often requires non-perturbative techniques. We
already mentioned that each point on the conformal manifold is associated to a different
coupling and that a marginal operator can be the generator of a flow over the conformal
manifold. We provide the reader with a heuristical motivation of this fact: let’s assume that
the marginal operator Og appears in the classical action

S =
∫

d4x
[
· · ·+ gOg

]
. (6.13)

Then we consider a generic correlation function

〈O1(x1) . . .On(xn)〉 =
1
Z

∫
[Dφ]O1(x1) . . .On(xn)e−

∫
d4x
[
···+gOg

]
(6.14)

and we can apply a derivative to both sides of the equation

∂

∂g
〈O1(x1) . . .On(xn)〉 ∼

1
Z

∫
[Dφ]

(∫
d4x Og(x)

)
O1(x1) . . .On(xn)e−

∫
d4x
[
···+gOg

]

∼
∫

d4x
〈
Og(x)O1(x1) . . .On(xn)

〉
.

Heuristically, the dependence of a correlation function on one marginal coupling can be
studied computing a volume integral of another correlation function, equal to the original
apart from the presence of the marginal operator Og associated to the coupling g. How-
ever, in general the operators O1, . . . ,On are sections of bundles defined over the conformal
manifold. Hence, the correct way to describe the dependence on the marginal coupling g is
to define a connection ∇g over the conformal manifold (cfr. the articles [16], [14]). The flow
then is described by the equation

∇g 〈O1(x1) . . .On(xn)〉 =
∫

d4x
〈
Og(x)O1(x1) . . .On(xn)

〉
. (6.15)

We can consider the equation (6.15) as the definition of the differential operator ∇g. In the
N = 4 theory we have only one coupling, introduced in the section 2.3

τ =
1
g2 − i

Θ
8π2 , (6.16)

so there is only one flow equation which needs to be considered

∇τ 〈O1(x1) . . .On(xn)〉 =
∫

d4x 〈Oτ(x)O1(x1) . . .On(xn)〉 . (6.17)

Notice that, looking at the equations (2.74) and (2.80), the marginal operators Oτ can be
identified as the Lagrangian density of the N = 4 theory.

6.4 The Superconformal Ward Identity

The most important computational tool we will need in this chapter is the superconformal
Ward identity. In particular, if we are studying a SCFT, the superconformal Ward identity
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encodes the superconformal symmetry at the quantum level. In this section we will de-
rive the identity following the article [14]. The superconformal symmetry is associated to

the conservation of the fermionic supercharges QI
α, Q̄β̇

J ,Sα
I and S̄ J

β̇
, which can be derived

from the supercurrents GI
µα, Ḡβ̇

µJ . The supercurrents appear in the superconformal multiplet

B
1
2 , 1

2
(0 2 0): their representations are [2, 1](1 0 0)

7
2

and [1, 2](0 0 1)
7
2

in the picture 6.1. The supercur-

rent (and its hermitian conjugate) enjoys two important properties:

• it fulfills the unitarity bound for the operators sitting in the representation [2, 1] of the
Lorentz group, hence it is annihilated by the momentum operator[

Pµ, GIµ
α

]
∼ ∂µGI,µ

α = 0; (6.18)

• in the superconformal multiplet B
1
2 , 1

2
(0 2 0) one place is occupied by the stress-energy ten-

sor Tµν: in the picture 6.1 it is associated to the representation [2, 2](0 0 0)
4 . In fact, the

stress-energy tensor sits in the singlet representation of su(4) (it does not have any
R-symmetry index) and in the [2, 2] representation of the Lorentz group. We imme-
diately notice that it is a superconformal descendant of the supercurrent: up to some
multiplicative factors we have{

Q̄β̇
J , GµI

α

}
∼ Tµνσ̄

β̇β
ν εβαδI

J . (6.19)

We apply a σµ matrix to both sides of the equation{
Q̄β̇

J , GµI
α

}
εαγσµγγ̇ ∼ δI

J Tµνσ̄
β̇β
ν εβαεαγσµγγ̇ = δI

J Tµνσ̄
β̇β
ν σµβγ̇. (6.20)

We take the trace over the free spinorial indices β̇ and γ̇{
Q̄γ̇

J , GµγI
}

σµγγ̇ ∼ δI
J Tµνσ̄

γ̇β
ν σµβγ̇ = δI

J Tµνgµν = δI
J Tµ

µ = 0, (6.21)

where the last equality holds at the operatorial level in a CFT. We have

Q̄γ̇
J GµγIσµγγ̇ + GµγIσµγγ̇Q̄γ̇

J = 0, (6.22)

which is satisfied if
GµγIσµγγ̇ = 0. (6.23)

We have introduced the supercurrents and their properties. Now we are interested in build-
ing a vector current out of them. The result can be easily obtained by contracting the spino-
rial index of the supercurrent with the index of a spinor ψα, which might depend on the
coordinates

JµI(x) ≡ ψα(x)GµI
α (x). (6.24)

We impose the operatorial identity
∂µ JµI = 0, (6.25)

which is satisfied if (
∂µψα

)
GµI

α + ψα∂µGµI
α = 0. (6.26)

Applying the first property of the supercurrents, we realize that we just need to search for
a class of spinors satisfying the constraint(

∂µψα
)

GµI
α = 0. (6.27)

We have two possibilities:
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• ∂µψα(x) = 0: hence
ψα(x) = λα, (6.28)

where λα is a constant spinor;

• ∂µψα(x) = µ̄β̇σ̄
β̇α
µ : hence

ψα(x) = µ̄β̇ x̄β̇α, (6.29)

where µ̄β̇ is a constant spinor and x̄β̇α ≡ xµσ̄
β̇α
µ .

It is important to notice that the spinors λα and µ̄β̇ are not dynamical degrees of freedom of
the theory, so they are not required to have a specific conformal dimension (which would
be fixed by their kinetic sectors). The most general choice is given by the sum of the two
contributions listed above

ψα(x) = λα + µ̄β̇ x̄β̇α. (6.30)

The spinor (6.30) is called conformal Killing spinor. The two distinct contributions to the
conformal Killing spinor are associated to the conserved supercharges that the current JµI

is able to generate

QI
α =

∫
d3x G0I

α , S̄ β̇I =
∫

d3x x̄β̇αG0I
α . (6.31)

We have all the tools required to explicitly compute the integrated Ward identity associated
to the superconformal symmetry. Following the article [14], we ca start with the general
structure of the unintegrated Ward identity∫

d4x
{

∂µ

〈
JµI(x)O1(x1) . . .On(xn)

〉
+ [Contact terms]

}
ρI = 0, (6.32)

where ρI is an infinitesimal parameter carrying an su(4) index, needed to contract the su(4)
index of the current JµI . The integral of the 4-divergence diverges whenever x gets near
to one of the points x1, . . . , xn: the [Contact terms] are responsible for the regularization of
these divergences. We know that the identity (6.25) holds: plugging it in the equation (6.32)
we obtain the integrated Ward identity

[Contact terms] = 0. (6.33)

Comparing the equation (6.33) with the equation (5.37), we realize that

[Contact terms] =
n

∑
i=1

〈O1(x1) . . . [Xa,Oi} (xi) . . .On(xn)〉 , (6.34)

so this procedure for deriving the Ward identity is equivalent to the one adopted in the
chapter 5. We want to explicitly compute the [Contact terms]. In order to do so, we need
to understand the behavior of the integrand when it is computed near the points x1, . . . , xn.
We already know how to decompose the volume integral in two surface integrals: the first
one must be computed on the boundary surface of the integration domain; the second one
is a sum of surface integrals, each one over a small sphere around each point x1, . . . , xn. The
first contribution is equal to zero: in fact, the boundary of the integration domain is the 3-
dimensional sphere at infinity. At infinity, the current JµI goes like JµI ∼ rGµI ∼ rµ

r7/2 ∼ 1
r5/2 ,

because the conformal dimension of the supercurrent is
[

GµI
α

]
= 7

2 . Thus, the integrand

goes to zero at least as fast as 1
r5 and∫

S∞

dΣµ

〈
JµI(x)O1(x1) . . .On(xn)

〉
ρI ∼ lim

r→∞
2π2r3 1

r5 = 0. (6.35)
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This allows us to write∫
d4x ∂µ

〈
JµI(x)O1(x1) . . .On(xn)

〉
ρI =

= −
n

∑
l=1

∫
SI

dΣµ

〈
JµI(x)O1(x1) . . .Ol(xl) . . .On(xn)

〉
ρI . (6.36)

We can make use of the supercharges (6.31) to write the OPE between the supercurrent GµI
α

and a generic operator Ol

GµI
α (x)Ol(xl) = · · · − i

2π2
(x − xl)

µ

|x − xl |4
[
QI

α,Ol

}
(xl)+

− i
2π2

(x − xl)
µ

|x − xl |6
(x − xl)αβ̇

[
S̄ β̇I ,Ol

}
(xl) + . . . , (6.37)

where the coefficients dependent on the coordinates adjust of the conformal dimensions
and of the free indices of the objects involved. We use the expression above to find the OPE
between a generic operator Ol and the current JµI

JµI(x)Ol(xl) = ψα(x)GµI
α (x)Ol(xl). (6.38)

Near the puncture xl the conformal Killing spinor can be written as

ψα(x) = ψα(xl) +
(
∂µψα

)
(xl) (x − xl)

µ + O
(
(x − xl)

2
)

(6.39)

If we redefine (x − xl) ≡ rl , the conformal Killing spinor can be written as

ψα(x) = ψα(xl) + rµ
l

(
∂µψα

)
(xl) + O

(
r2

l
)

. (6.40)

We can put together the equations (6.37) and (6.40) to obtain

JµI(x)Ol(xl) = · · · − ψα(xl)
i

2π2

rµ
l

r4
l

[
QI

α,Ol

}
(xl)+

− (∂νψα) (xl)
i

2π2

rν
l rµ

l

r6
l

rlαβ̇

[
S̄ β̇I ,Ol

}
(xl) + O

(
1
r2

l

)
+ . . . (6.41)

In order to compute each term of the sum in (6.36), we consider∫
Sl

dΣµ

〈
O1(x1) . . . JµI(x)Ol(xl) . . .On(xn)

〉
ρI (6.42)

and we plug the infinitesimal surface element and the OPE (6.41)

lim
rl→0

2π2r2
l rlµ

〈
O1(x1) · · · − ψα(xl)

i
2π2

rµ
l

r4
l

[
QI

α,Ol

}
(xl)+

− (∂νψα) (xl)
i

2π2

rν
l rµ

l

r6
l

rlαβ̇

[
S̄ β̇I ,Ol

}
(xl) + O

(
1
r2

l

)
. . .On(xn)

〉
. (6.43)

We apply the renormalization scheme mentioned in the section 5.1 and we get rid of all the
divergences, so the final result is

− iψα(xl)
〈
O1(x1) . . .

[
QI

α,Ol

}
(xl) . . .On(xn)

〉
+

− i (∂µψα) (xl)

〈
O1(x1) . . . lim

rl→0

[
rlµrlν

r2
l

]
σν

αβ̇

[
S̄ β̇I ,Ol

}
(xl) . . .On(xn)

〉
. (6.44)
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We introduce a vector with unitary norm nµ suche that rµ = rnµ and we obtain an explicit
expression for every term in the sum (6.36)

− iψα(xl)
〈
O1(x1) . . .

[
QI

α,Ol

}
(xl) . . .On(xn)

〉
+

− i (∂µψα) (xl)nµnνσν
αβ̇

〈
O1(x1) . . .

[
S̄ β̇I ,Ol

}
(xl) . . .On(xn)

〉
. (6.45)

The integrated superconformal Ward identity is

n

∑
l=1

ψα(xl)
〈
O1(x1) . . .

[
QI

α,Ol

}
(xl) . . .On(xn)

〉
+

+ (∂µψα) (xl)nµnνσν
αβ̇

〈
O1(x1) . . .

[
S̄ β̇I ,Ol

}
(xl) . . .On(xn)

〉
= 0. (6.46)

This fundamental tool depends on two sets of degrees of freedom: the spinor λα and the
spinor µ̄β:

• if we set µ̄β̇ = 0, we simply end up with the integrated Ward identity associated to
supersymmetry

n

∑
l=1

〈
O1(x1) . . .

[
QI

α,Ol

}
(xl) . . .On(xn)

〉
= 0; (6.47)

• if the operators O1, . . . ,On are superconformal primaries, then they are annihilated
by the supercharges S̄ β̇I and we obtain a richer version of the identity (6.47)

n

∑
l=1

ψα(xl)
〈
O1(x1) . . .

[
QI

α,Ol

}
(xl) . . .On(xn)

〉
= 0. (6.48)

The spinor ψα(xl) can be chosen to be equal to zero for a given xl . This makes the
contribution to the Ward identity of one of the operators O1, . . . ,On equal to zero.

6.5 The theorem

We have all the tools required to write the statement of the non-renormalization theorem.
Applying the equation (6.17) to the equation (6.10), we obtain[

kinetic and group-
theoretical factors

]
×∇τC123 =

∫
d4x

〈
Oτ(x)φ(R1,~m1)

1 (x1) φ
(R2,~m2)
2 (x2) φ

(R3,~m3)
3 (x3)

〉
.

(6.49)
The statement of the theorem is

Theorem. The coefficient C123 associated to the correlators (6.8) does not depend on the position
over the conformal manifold, i.e. it does not depend on τ, the N = 4 theory coupling constant.

∇τ C123 = 0. (6.50)

Looking at the flow equation (6.49), we immediately realize that the theorem can be
immediately proven if the show the following lemma

Lemma. The correlator

I(x, x1, x2, x3) =
〈
Oτ(x)φ(R1,~m1)

1 (x1) φ
(R2,~m2)
2 (x2) φ

(R3,~m3)
3 (x3)

〉
(6.51)

is identically equal to zero.
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6.5. The theorem

In order to prove the lemma, we explicitly construct the marginal operator Oτ, along
with its hermitian conjugate, as a superconformal descendant. Looking at the superconfor-
mal multiplet in figure 6.1, it is easy to see that

Oτ =
{
Q4

1,
[
Q4

2,
{
Q3

1,
[
Q3

2, φ(2,+)
]}]}

, Ōτ =
{
Q̄1,1̇,

[
Q̄1,2̇,

{
Q̄2,1̇,

[
Q̄2,2̇, φ(2,+)

]}]}
.

(6.52)
we recall that in a CFT the central charges ZI J are equal to zero, so the supercharges with the
same chirality anticommute with each other: the order of the supercharges in the marginal
operators (6.52) is not influent. In the following, we consider only the operator Oτ, but
the lemma could be shown with the operato Ōτ, too. The crucial property of the marginal
operator is that it can be written as

Oτ = {Q∗, Γ} , (6.53)

where Q∗ is one of the left chirality supercharges appearing in the definition (6.52). The
integrand (6.51) can be rewritten as follows

I(x, x1, x2, x3) =
〈
{Q∗, Γ} (x) φ

(k1,~m)
1 (x1) φ

(k2,+)
2 (x2) φ

(k3,−)
3 (x3)

〉
. (6.54)

We want to exploit the superconformal Ward identity to move the supercharge Q∗ from the
operator Γ to the primaries inside the braket. We make some preliminary considerations:

• φ1, φ2 and φ3 are superconformal primary operators, so they are annihilated by the
supercharges Sα

I and S̄ J
β̇
;

• if Q∗ is a left-chirality supercharge, then in the superconformal Ward identity the
right-chirality S̄∗ supercharge appears. We consider{

S̄∗, Γ
}
=
{
S̄∗,

[
Q′,
{
Q′′,

[
Q′′′, φ(2,+)

]}]}
, (6.55)

where we renamed as Q′,Q′′,Q′′′ the three left-chirality supercharges left, different
from Q∗. Thanks to the state-operator correspondence, we can write{

S̄∗,
[
Q′,
{
Q′′,

[
Q′′′, φ(2,+)

]}]}
→ S̄∗ Q′ Q′′ Q′′′ |h.w.〉 . (6.56)

The right-chirality supercharge anticommutes with all the left-chirality supercharges{
S̄ α̇

I ,QJ
α

}
= 0, (6.57)

so we have
S̄∗ Q′ Q′′ Q′′′ |h.w.〉 = −Q′ Q′′ Q′′′ S̄∗ |h.w.〉 . (6.58)

Applying the state-operator correspondence a second time, we obtain

−Q′ Q′′ Q′′′ S̄∗ |h.w.〉 →
{
Q′,
[
Q′′,

{
,Q′′′

[
S̄∗, φ(2,+)

]}]}
= 0 (6.59)

because the superconformal primary state is annihilated by the S̄∗ supercharge;

• the operator φ
(k3,−)
3 , sitting in the lowest weight of its R-symmetry representation, is

annihilated by the supercharges Q4
α and Q3

α[
Q3

α, φ
(k3,−)
3

]
= 0,

[
Q4

α, φ
(k3,−)
3

]
= 0. (6.60)

The proof of this statement is reported in the appendix C.
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Chapter 6. A Non-Renormalization Theorem at T = 0

Following the considerations listed above, the superconformal Ward identity applied to the
correlator 〈

Γ(x) φ
(k1,~m)
1 (x1) φ

(k2,+)
2 (x2) φ

(k3,−)
3 (x3)

〉
(6.61)

returns the following identity

ψ(x) 〈{Q∗, Γ} (x) φ1 φ2 φ3〉+ ψ(x1) 〈Γ [Q∗, φ1] (x1) φ2 φ3〉+
+ ψ(x2) 〈Γ φ1 [Q∗, φ2] (x2) φ3〉 = 0. (6.62)

We impose ψ(x) to be equal to zero when it is computed in x2. We are left with

ψ(x) 〈{Q∗, Γ} (x) φ1 φ2 φ3〉 = −ψ(x1) 〈Γ [Q∗, φ1] (x1) φ2 φ3〉 (6.63)

and recalling the definition of the integrand (6.51) we can write

ψ(x) I(x, x1, x2, x3) = −ψ(x1) 〈Γ [Q∗, φ1] (x1) φ2 φ3〉 (6.64)

We succedeed at moving the supercharge Q∗ from the operator Γ to the operator φ1. In
order to conclude the proof, we make use of the following lemma

Lemma. For a chiral primary with a generic weight ~m, the following relation holds[
Q∗, φ(k,~m)

]
= ∑

? 6=∗

[
Q?, φ(k,~m?)

]
. (6.65)

We call this relation null condition.

The lemma is proven in the appendix C. Plugging the null condition in the identity
(6.64) we obtain

ψ(x) I(x, x1, x2, x3) = −ψ(x1) ∑
? 6=∗

〈
Γ
[
Q?, φ

(k1,~m?)
1

]
(x1) φ2 φ3

〉
. (6.66)

Now we can focus on the single term of the sum〈
Γ(x)

[
Q?, φ

(k1,~m?)
1

]
(x1) φ

(k2,+)
2 (x2) φ

(k3,−)
3 (x3)

〉
. (6.67)

We apply again the superconformal Ward identity in order to move the supercharge Q?

from the operator φ
(k1,~m?)
1 to the other operators. We already know that we can neglect the

contribution given by the S̄? supercharge. We have two possibilities:

• Q? annihilates the highest weight of a generic (0 k 0) representation of su(4). Thus,
the operator φ

(k2,+)
2 is annihilated by Q?. We introduce a new conformal Killing spinor

χ(x) and we impose χ(x3) = 0 in order to get rid of the contribution given by the
operator φ

(k3,−)
3 . We are left with the following identity

χ(x1)
〈

Γ(x)
[
Q?, φ

(k1,~m?)
1

]
(x1) φ2 φ3

〉
= −χ(x)

〈
{Q?, Γ} (x) φ

(k1,~m?)
1 (x1) φ2 φ3

〉
.

(6.68)
The operator {Q?, Γ} can be rewritten as{

Q?,
[
Q′,
{
Q′′,

[
Q′′′, φ(2,+)

]}]}
. (6.69)

We know by hypothesis that Q? 6= Q′,Q′′,Q′′′ and, by construction, that Q? 6= Q∗.
Thanks to the state-operator correspondence we can write{

Q?,
[
Q′,
{
Q′′,

[
Q′′′, φ(2,+)

]}]}
→ Q?Q′Q′′Q′′′ |h.w.〉 . (6.70)
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6.5. The theorem

We recall that in a CFT the supercharges with the same chirality anticommute

Q? Q′ Q′′ Q′′′ |h.w.〉 = −Q′ Q′′ Q′′′ Q? |h.w.〉 = 0, (6.71)

where in the last step we used the fact that Q? annihilates the highest weight state by
hypothesis;

• Q? annihilates the lowest weight of a generic (0 k 0) representation of su(4).Thus, the
operator φ

(k3,−)
3 does not contribute. In this case, we can impose χ(x2) = 0 in order to

get rid of the contribution given by the operator φ
(k2,+)
2 . We are left with the identity

χ(x1)
〈

Γ(x)
[
Q?, φ

(k1,~m?)
1

]
(x1) φ2 φ3

〉
= −χ(x)

〈
{Q?, Γ} (x) φ

(k1,~m?)
1 (x1) φ2 φ3

〉
.

(6.72)
In the r.h.s. of the previous equation the following operator appears{

Q?,
[
Q′,
{
Q′′,

[
Q′′′, φ(2,+)

]}]}
. (6.73)

By definition Q? 6= Q∗. However, Q? annihilates the lowest weight state. Recalling
the equations (6.60), Q? is necessarily equal to one among Q′,Q′′ and Q′′′. Switching
from the operator to the state picture we have

Q? Q′ Q′′ Q′′′ |h.w.〉 =
(
Q′)2 Q′′ Q′′′ |h.w.〉 = 0, (6.74)

where we assumed Q? = Q′ without any loss of generality.

We proved that the 4-points function (6.67) is always equal to zero, thus, recalling (6.66),
every term in the sum is equal to zero. This means that

ψ(x) I(x, x1, x2, x3) = −ψ(x1) ∑
? 6=∗

〈
Γ
[
Q?, φ

(k1,~m?)
1

]
φJ φK

〉
= 0 ⇒ I(x, x1, x2, x3) = 0.

(6.75)
We succedeed at proving the lemma. The proof of the theorem then is trivial, looking at the
equation (6.49).
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Chapter 7

The N = 4 theory at Finite
Temperature

In this chapter we consider the N = 4 SYM theory at finite temperature and we derive the
superconformal Ward identity at finite temperature. We will start from the known results
at zero temperature: the introduction of a finite temperature modifies the original theory in
two different ways:

• it moves the theory from the spacetime manifold R4 to the non-topologically trivial
manifold R3 × S1;

• it introduces new operators in the Lagrangian. In particular, we will show that it
is possible to introduce a tree level fermionic mass in the Lagrangian. Recalling the
section 2.5, this can lead to a soft breaking of the supersymmetry.

The superconformal Ward identity is a fundamental tool employed in the proof of the non-
renormalization theorem at zero temperature. We want to make use of it at finite tempera-
ture, too. However, supersymmetry and superconformal symmetry are broken due to the
introduction of a finite temperature, so we will carefully highlight the breaking terms of the
superconformal Ward identity . We will show that the R-symmetry is preserved at the quan-
tum level: we will make use of it to reshape the superconformal Ward identity according to
our desire.

In this chapter we will understand how to introduce a finite temperature and we will
discuss the consequences on our theory. Then, our goal will be the derivation of the su-
perconformal Ward identity at finite temperature. We will proceed gradually: as a simpler
but instructive example, in the first place we will study the supersymmetry Ward iden-
tity at finite temperature; then, in a second moment, we will move to the superconformal
Ward identity. In both cases, we will make use of the R-symmetry Ward identity at finite
temperature in order to get rid of the softly breaking terms.

7.1 Introduction of a finite temperature

In this section we discuss the effects of turning on a finite temperature T 6= 0 in the sys-
tem, following [17], [18] and [19]. In particular, we want to study the changes in the global
properties of the spacetime and in the behavior of the bosonic and the fermionic local op-
erators. From a phenomenological point of view, the usual quantum field theory has to
be interpreted as a theory living at zero temperature: for instance, it is useful for deriving
predictions verified in the particle colliders, where two free particles interact in a singular
point of the spacetime. The correct way to describe an ensemble of particles continuously

57



Chapter 7. The N = 4 theory at Finite Temperature

interacting with each other is to use the framework of the finite temperature quantum field
theories.

7.1.1 Quantum mechanics at finite temperature

In this section we briefly discuss the introduction of a finite temperature in a quantum
mechanical system . The model is an ensemble of particles at the temperature T 6= 0, with
β ≡ 1/T. The dynamics of the system is described by the Hamiltonian operator Ĥ. It is
possible to introduce a partition function

Z(T) = tr
[
e−βĤ

]
, (7.1)

where the trace is taken over all the states belonging to the Hilbert space of the theory. In
the x basis

Z(T) =
∫

dx
〈

x
∣∣∣ e−βĤ

∣∣∣ x
〉
=
∫

dx
〈

x
∣∣∣ e−εĤ . . . e−εĤ

∣∣∣ x
〉

, (7.2)

where the operator e−βĤ has been splitted in N � 1 copies of the operator e−εĤ, where
ε = β/N. The splitting is possible thanks to the Trotter formula (cfr. [17]): if Â and B̂ are
two bounded operators, then

eÂ+B̂ = lim
N→∞

(
e

Â
N e

B̂
N

)N
; (7.3)

considering that

Ĥ(x̂, p̂) =
p̂2

2m
+ V(x̂), (7.4)

we can apply the Trotter formula and obtain the expression (7.2). Now we consider the
completeness relations ∫

dxi |xi〉 〈xi| = 1,
∫ dpi

2π
|pi〉 〈pi| = 1, (7.5)

where the index i runs from 1 to N. The former relation is inserted at the left of each operator
e−εĤ, the latter at the right: the result is

Z(T) =
∫

dx

(
N

∏
i=1

∫ dxidpi

2π

)
〈x | pN〉 〈pN | e−εĤ |xN〉 . . . 〈xi+1 | pi〉 〈pi| e−εĤ |xi〉 . . .

. . . 〈x2 | p1〉 〈p1| e−εĤ |x1〉 〈x1 | x〉 . (7.6)

The partition function (7.6) can be simplified with the following relations

〈xm | xn〉 = δ(xm − xn), 〈xi+1 | pi〉 = eipixi+1 , 〈pi| e−εĤ |xi〉 = e−εH(xi ,pi)e−ipixi , (7.7)

where the last one was obtained thanks to the fact that, as prescribed by the Trotter formula
(7.3), the Hamiltonian is splitted in its p̂ dependent part, with eigenstates 〈pi|, and its x̂
dependent part, with eigenstates |xi〉. The new intermediate result is

Z(T) =
∫

dx

(
N

∏
i=1

∫ dxidpi

2π

){
e−[εH(xN ,pN)+ipN(xN−x)] . . . e−[εH(xi ,pi)+ipi(xi−xi+1)] . . .

. . . e−[εH(x1,p1)+ip1(x1−x2)]
}

δ (x1 − x) . (7.8)
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The integral in x can be immediately computed

Z(T) =

(
N

∏
i=1

∫ dxidpi

2π

) [
e−∑N

j=1
[
εH(xj,pj)+ipj

(
xj−xj+1

)]]
xN+1=x1,ε=β/N

. (7.9)

The Hamiltonian operator has been entirely replaced by the Hamiltonian function

H(pj, xj) =
p2

j

2m
+ V(xj), (7.10)

which is quadratic in the momenta. The integrals in the momenta turn out to be Gaussian
integrals, so they can be explicitly computed

Z(T) =

(
N

∏
i=1

∫
dxi

){( m
2πε

) N
2

e−ε ∑N
j=1

[
1
2ε m(xj+1−xj)

2+V(xj)
]}

xN+1=x1,ε=β/N
. (7.11)

Introducing a continuous coordinate τ such that x = x(τ) and x(0) = x(β), then we can
take the continuous limit of the partition function (7.11)

Z(T) = C
∫

[Dx] e
−
∫ β

0 dτ

[
1
2 m
(

dx
dτ

)2
+V(x(τ))

]
, (7.12)

where the overall factor C is given by

C = lim
N→∞

(
mN
2πβ

) N
2

. (7.13)

The C factor is divergent, but it depends neither on the potential nor on the coordinate x(τ),
so it can simply be absorbed in the functional measure. Eventually, the partition function
of an ensemble of quantum particles in equilibrium at the finite temperature T 6= 0 is

Z(T) =
∫

[Dx] e
−
∫ β

0 dτ

[
1
2 m
(

dx
dτ

)2
+V(x(τ))

]
. (7.14)

This partition function must be compared with the Path Integral in the usual Minkowski
spacetime

Z =
∫

[Dx] e
i
∫

dt
[

1
2 m
(

dx
dt

)2
−V(x(t))

]
. (7.15)

We can easily identify the partition function of the ensemble with the Path Integral of the
theory: it is sufficient to perform the Wick rotation t = −iτ of the time coordinate, switching
from the Minkowskian signature to the Euclidean signature, and to integrate τ not from
+i∞ to −i∞, but over the interval [0, iβ]; given that the dynamical variable x is periodic in
the τ variable, the interval is a circle of length β.

In general, the procedure to adopt to turn on a finite temperature T 6= 0 is the follow-
ing:

1. switch from the Minkowski signature to the Euclidean signature and introduce the
imaginary time variable τ;

2. compactify the time dimension, parametrized by τ, on a circle of length β = 1/T;

3. identify the periodicity conditions over the time circle of all the variables in the model
.
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Chapter 7. The N = 4 theory at Finite Temperature

This procedure goes under the name of imaginary time formalism. The global structure of the
spacetime is deeply modified: we move from the Euclidean spacetime R4 to the manifold
R3 × S1, which is not topologically trivial. The principal consequence is the modification of
the boundary conditions of the variables: in a finite temperature field theory, the fields do
not fall to zero on the time dimension, the circle S1. However, even if the global structure
of the spacetime is modified, the local structure is not. In fact, the flat metric is not compro-
mised by the compactification, so the curvature of the finite temperature spacetime is still
trivial.

7.1.2 Scalar fields at finite temperature

In this section we show that the imaginary time formalism holds even for a scalar field
theory. Even if we adopt a scalar field, the same conclusions hold for a generic bosonic
field. If we are dealing with a bosonic quantum field theory, the partition function can be
written as follows

Z(T) =
∫

dφ
〈

φ
∣∣∣ e−β

∫
d3xH(φ̂,π̂)

∣∣∣ φ
〉

, (7.16)

where π̂ is the conjugate momenta of the field φ̂. The integrand can be splitted similarly
to the equation (7.2), making use of the Trotter formula and introducing the parameter
ε = β/N. Then, thanks to the completeness relations∫

dφi |φi〉 〈φi| = 1,
∫ dπi

2π
|πi〉 〈πi| = 1, (7.17)

we obtain the intermediate result

Z(T) =
∫

dφ

(
N

∏
i=1

∫ dφidπi

2π

)
〈φ |πN〉 〈πN | e−ε

∫
d3xH(φ̂,π̂) |φN〉 . . .

. . . 〈φi+1 |πi〉 〈πi| e−ε
∫

d3xH(φ̂,π̂) |φi〉 . . . 〈φ2 |π1〉 〈π1| e−ε
∫

d3xH(φ̂,π̂) |φ1〉 〈φ1 | φ〉 . (7.18)

The following identities hold

〈φm | φn〉 = δ(φm − φn), 〈φi+1 |πi〉 = eiπiφi+1 , 〈πi| e−ε
∫

d3xH(φ̂,π̂) |φi〉 = e−ε
∫

d3xH(φi ,πi)e−iπiφi ,
(7.19)

so we end up with

Z(T) =

(
N

∏
i=1

∫ dφidπi

2π

) [
e−∑N

j=1
[
ε
∫

d3xH(φj,πj)+iπj
(
φj−φj+1

)]]
φN+1=φ1,ε=β/N

. (7.20)

Similarly to the previous section, if the Hamiltonian density function is quadratic in the con-
jugated momenta, we can compute the integrals in dπi. Eventually, taking the continuum
limit, we obtain

Z(T) =
∫

[Dφ] e−
∫ β

0 dτ
∫

d3x
[

1
2 ∂µφ∂µφ+V(φ)

]
, (7.21)

which is exactly the result we would have obtained if we had applied the imaginary time
formalism to the Path Integral of a generic scalar field theory. Finally, notice that all the
steps were completely analogous to those encountered in the quantum mechanical case, so
the periodicity conditions of the scalar field over the time circle is

φ(~x, 0) = φ(~x, β). (7.22)

It could be shown that the same applies to every bosonic field.
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7.1.3 Fermionic fields at finite temperature

In this section we verify the validity of the imaginary time formalism for a fermionic quan-
tum field theory. The interesting difference with the previous cases lies in the fact that the
fermionic fields are Grassmann variables, hence they anticommute. The starting point is
still the partition function of the canonical ensemble

Z(T) = tr
[
e−βĤ

]
. (7.23)

The fermionic fields involved are ψ and ψ̄, which constitute two independent variables; the
functional measure will be always written with the following convention∫

dψ̄dψ. (7.24)

In order to do the trace over all the states in the Hilbert space, it is useful to understand
how the Hilbert space is composed. Let’s suppose we have at our disposal the creation and
destruction operators â, â†, tied together by the relations{

â, â†
}
= 1,

{
â†, â†

}
= 0, {â, â} = 0. (7.25)

Then, we have a vacuum state |0〉: the only other state that we are able to construct is
|1〉 ≡ a† |0〉. All the other trials end up with a zero or with the |0〉 state, due to the anticom-
mutation relations (7.25). Then, the completeness relation is simply

|0〉 〈0|+ |1〉 〈1| = 1, (7.26)

while the trace of a generic operator O is given by

tr [O] = 〈0 | O | 0〉+ 〈1 | O | 1〉 . (7.27)

We want to rewrite the completeness relation and the trace over the Hilbert space in a more
convenient way. In order to do so, we need to give the following definitions

|ψ〉 ≡ e−ψâ† |0〉 =
(

1 − ψâ†
)
|0〉 , 〈ψ| ≡ 〈0| e−âψ̄ = 〈0|

(
1 − âψ̄

)
, (7.28)

so that
〈ψm |ψn〉 =

〈
0
∣∣∣ e−âψ̄m e−ψn â†

∣∣∣ 0
〉
= eψ̄mψn . (7.29)

The completeness relation can be rewritten as follows

1 = |0〉 〈0|+ |1〉 〈1| = |0〉 〈0|+
∫

dψ̄dψ ψâ† |0〉 〈0| âψ̄ =

=
∫

dψ̄dψ (1 − ψ̄ψ)
(

1 − ψâ†
)
|0〉 〈0|

(
1 − âψ̄

)
=
∫

dψ̄dψ e−ψ̄ψ |ψ〉 〈ψ| ,

while the trace of a bosonic operator (the exponential of the Hamiltonian, for instance) be-
comes

tr [O] = 〈0 | O | 0〉+ 〈1 | O | 1〉 = 〈0 | O | 0〉 −
〈

1
∣∣∣∣ ∫ dψ̄dψ ψ̄ψO

∣∣∣∣ 1
〉

= 〈0 | O | 0〉 −
∫

dψ̄dψ
〈

0
∣∣∣ âψ̄Oψâ†

∣∣∣ 0
〉

=
∫

dψ̄dψ (1 − ψ̄ψ)
〈

0
∣∣∣ (1 + âψ̄

)
O
(

1 − ψâ†
) ∣∣∣ 0

〉
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if we define 〈−ψ| ≡ 〈0| eâψ̄, we get

tr [O] =
∫

dψ̄dψ e−ψ̄ψ 〈−ψ | O |ψ〉 . (7.30)

We are finally able to compute the partition function

Z(T) = tr
[
e−βĤ

]
=
∫

dψ̄dψe−ψ̄ψ
〈
−ψ

∣∣∣ e−βĤ
∣∣∣ψ
〉

. (7.31)

Making use of the Trotter formula we split the operator into N terms and we insert N − 1
completeness relations in the following way

Z(T) =
∫

dψ̄dψ

(
N

∏
i=2

∫
dψ̄idψi

)
e−ψ̄ψ 〈−ψ| e−ε

∫
d3xH( ˆ̄ψ,ψ̂)e−ψ̄NψN |ψN〉 . . .

. . . e−ψ̄iψi |ψi〉 〈ψi| e−ε
∫

d3xH( ˆ̄ψ,ψ̂)e−ψ̄i−1ψi−1 |ψi−1〉 . . .

. . . e−ψ̄2ψ2 |ψ2〉 〈ψ2| e−ε
∫

d3xH( ˆ̄ψ,ψ̂) |ψ〉 . (7.32)

Using the identity (7.29) and defining ψ ≡ ψ1 , we simplify the expression above

Z(T) =

(
N

∏
i=1

∫
dψ̄idψi

)
e−ψ̄1ψ1 〈−ψ1| e−ε

∫
d3xH( ˆ̄ψ,ψ̂) |ψN〉 . . .

. . . e−ε
∫

d3xH(ψ̄i ,ψi−1)e−ψ̄i+1(ψi+1−ψi) . . . e−ε
∫

d3xH(ψ̄2,ψ1)e−ψ̄2(ψ2−ψ1) (7.33)

We focus on the first term of the integrand∫
dψ̄1dψ1

∫
dψ̄NdψN e−ψ̄1ψ1 〈−ψ1| e−ε

∫
d3xH( ˆ̄ψ,ψ̂) |ψN〉 , (7.34)

which turns out to be∫
dψ̄1dψ1

∫
dψ̄NdψN e−ε

∫
d3xH(−ψ̄1,ψN)eψ̄1(−ψ1−ψN). (7.35)

The final expression of the discretized partition function is

Z(T) =

(
N

∏
i=1

∫
dψ̄idψi

)[
e−ε ∑N

j=1
∫

d3xH(ψ̄j+1,ψj)+ψ̄j+1
ψj+1−ψj

ε

]
ψN+1=−ψ1,ψ̄N+1=−ψ̄1,ε=β/N

. (7.36)

Taking the continuum limit, we obtain the Path Integral in the imaginary time formalism

Z(T) =
∫

[Dψ̄] [Dψ]
[
e−
∫ iβ

0 dτ
(∫

d3xH(ψ̄(τ),ψ(τ))
)
+ψ̄

dψ(τ)
dτ

]
=
∫

[Dψ̄] [Dψ]
[
e−
∫ β

0 dτ
∫

d3xLEucl

]
(7.37)

where we had to impose the following antiperiodicity conditions on the fermionic fields

ψ(~x, 0) = −ψ(~x, β), ψ̄(~x, 0) = −ψ̄(~x, β). (7.38)

In conclusion, whenever we want to describe a canonical ensemble of relativistic quan-
tum particles at a finite temperature T 6= 0 , we must adopt a quantum field theory at finite
temperature. The imaginary time formalism provides us with a simple procedure for turn-
ing on the temperature: the partition function of our theory is the usual Path Integration
computed in a Euclidean spacetime where the time dimension has been compactified over
a circle of length β = 1/T; the bosonic fields are periodic over the newly introduced time
circle, while the fermionic fields are antiperiodic.
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7.2 Ward identities at zero temperature

In this section we will make use of the results of the chapter 5 in order to derive the
unintegrated and integrated Ward identities associated to the supersymmetry and the R-
symmetry in the N = 4 theory. These results will constitute a starting point for the compu-
tations at finite temperature. We start by recalling the full N = 4 action, discussed in the
section 2.4.2

S =
∫

d4x
[
− 1

4
Fa

µνFaµν + iλaIσµDµλ̄a
I −

1
4

DµX̄a
I J D

µXaI J+

+

√
2

2
g f abcλaIλbJX̄C

I J +

√
2

2
g f abcλ̄a

I λ̄b
J XcI J − 1

16
g2 f abc f aegXbI JXcKLX̄e

I JX̄
g
KL

]
. (7.39)

7.2.1 R-symmetry Ward Identity at T = 0

In this section we consider the action of the global su(4) R-symmetry on the classical action
(7.39). In the following, the generators of su(4) are called tξ I

J , where the indices I, J are the
the indices of the fundamental representation of su(4) and the index ξ labels the specific
generator; the indices I, J run from 1 to 4, while the index ξ runs from 1 to 15. The field
transformations are

δAa
µ = 0, (7.40)

δλaI = ωξ tξ I
Jλ

aJ , (7.41)

δXaI J = 2ωξ tξ[I
KXaKJ], (7.42)

where we introduced the set of infinitesimal, bosonic parameters ωξ . We want to obtain
the infinitesimal variation of the classical action (7.39): under the action of a continuous
symmetry, we know that the the final result has the structure

δS = −
∫

d4x
[

Rξµ∂µωξ

]
, (7.43)

where Rξµ is the R-symmetry current, conserved at the classical level. The current Rξµ can
be explicitly expressed in terms of the Lagrangian and of the field transformations (7.40),
(7.41) and (7.42). If ϕ represents a generic field which appears in the theory, then

Rξµ = − ∂L
∂
(
∂µ ϕ

)δ
ξ
ω ϕ, (7.44)

where
δ

ξ
ω ϕ =

∂

∂ωξ
δϕ. (7.45)

We apply the formula (7.44) to the action (7.39) and we obtain the current Rξµ

Rξµ =
1
4

DµX̄a
I Jδ

ξ
ωXaI J +

1
4

δ
ξ
ωX̄a

I J D
µXaI J − iλaIσµδ

ξ
ωλ̄a

I ; (7.46)

after some simplifications, the final expression turns out to be

Rξµ = −1
2

DµX̄a
J It

ξ I
KXaKJ +

1
2

X̄a
JKtξK

I DµXaI J − iλ̄a
I σ̄µtξ I

Jλ
aJ . (7.47)

We perform an integration by parts in the equation (7.43) and we obtain

δS =
∫

d4x
[
ωξ∂µRξµ

]
. (7.48)
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Recalling the general result (5.20), the unintegrated R-symmetry Ward identity is∫
d4x

〈
∂µRξµO1 . . .On

〉
ωξ = δR-symm 〈O1 . . .On〉 , (7.49)

where δR-symm 〈O1 . . .On〉 represents the action of the R-symmetry over the operators in-
sider the correlator 〈O1 . . .On〉

δR-symm 〈O1 . . .On〉 =
n

∑
i=1

〈O1 . . . δOi . . .On〉 , (7.50)

where δOi is the infinitesimal variation of the operator Oi under the action of the R-symmetry
(cfr. the trasnformation (5.3)).

From the general Ward identity (7.49), we want to derive a more specific one. The
su(4) R-symmetry group possesses the abelian subgroup u(1)× u(1)× u(1), generated by
the Cartan generators of su(4). We want to specialize the Ward identity (7.49) to one of the
abelian subgroups of su(4). We adopt the following convention for the Cartan generators
(cfr. [20])

t3 =


1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

 , t8 =
1√
3


1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0

 , t15 =
1√
6


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

 . (7.51)

We call q1, q2, q3 the charges associated respectively to the symmetries generated by t3, t8, t15.
Each field appearing in the N = 4 theory comes with a set of charges q1, q2, q3, listed in the
table 7.1. The vector boson Aµ is not charged under the action of the R-symmetry, so it does
not carry any charge associated to its abelian subgroup. The λ spinors sit in the fundamental
representation, thus their charges lie on the diagonals of the generators t3, t8 and t15. The
charges of the X scalars can be derived from the equation (7.42), once it is adapted to a
specific Cartan generator ti

δXaI J = ωi

(
tiI

I + ti J
J

)
XaI J = ωiq(I, J)XaI J , (7.52)

where i = 1, 2, 3 and the indices I, J are not contracted in this case, but they are referred
to specific values among I, J = 1, 2, 3, 4. Each scalar X I J has a different set of charges,
depending on its indices I and J. Recalling the equation (7.50) and the general result (5.38),
if the current Rξµ is conserved at the operatorial level, we have

n

∑
i=1

qi = 0, (7.53)

where qi is a charge under the action of the Cartan ti. This shows that, in a R-symmetry
invariant theory, the physical correlators must be globally discharged under the action of a
u(1) symmetry group generated by one of the three Cartan generators (7.51).

7.2.2 Supersymmetry Ward Identity at T = 0

In this subsection we consider the action of the supersymmetry on the classical action (7.39).
The field transformations are (cfr. [21])

δAa
µ = −iε̄I σ̄µλaI + iλ̄a

I σ̄µεI , (7.54)

δλaI = −1
2

σµνFa
µνεI + i

√
2ε̄J σ̄

µDµXaJ I + g f abcXbI JX̄c
JKεK, (7.55)

δXaI J =
√

2
(

εIλaJ − εJλaI + εI JKLε̄Kλ̄a
L

)
(7.56)
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q1 q2 q3

Aµ 0 0 0
λ1 1 1/

√
3 1/

√
6

λ2 -1 1/
√

3 1/
√

6
λ3 0 −2/

√
3 1/

√
6

λ4 0 0 −3/
√

6
X01 0 2/

√
3 2/

√
6

X02 1 −1/
√

3 2/
√

6
X03 1 1/

√
3 −2/

√
6

X12 -1 −1/
√

3 2/
√

6
X13 -1 1/

√
3 −2/

√
6

X23 0 −2/
√

3 −2/
√

6

Table 7.1: Flavor charges of the field content of the N = 4 theory under the action of t1, t2

and t3, the Cartan generators of su(4).

where we introduced a set of infinitesimal spinors εI
α, provided with a su(4) fundamental

index I. The currents associated to supersymmetry are the supercurrent GµI
α (x), which sits

in the [2, 1] representation of the 4-dimensional Lorentz group, and Ḡµα̇
J (x) which sits in the

[1, 2] representation. We want to obtain the infinitesimal variation of the classical action S:
under the action of a continuous symmetry

δS = −
∫

d4x
[

Gµ
I ∂µεI + h.c.

]
. (7.57)

The supercurrent is given by

Gµ
I = − ∂L

∂
(
∂µ ϕ

)δε,I ϕ, (7.58)

where

δε,I ϕ =
∂

∂εI δϕ. (7.59)

Applying the formula (7.58) to the action (7.39), we obtain the explicit expression of the
supercurrent

Gµ
I =

1
4

DµX̄a
HJδε,I XaHJ +

1
4

δε,I X̄a
HJ D

µXaHJ − iλaHσµδε,I λ̄
a
H + Faµνδε,I Aa

ν. (7.60)

After some computations, the final result is given by the expression

Gµ
I =

√
2DµX̄a

I Jλ
aJ +

√
2DνX̄a

I Jσ
µσ̄νλaJ + iλ̄a

I σ̄νFaµν, (7.61)

where we employed the duality relation X̄a
I J = 1

2 ε I JKLXaKL (cfr. [8], [21]). We perform an
integration by parts in the infinitesimal variation (7.57) and we obtain

δS =
∫

d4x
[
∂µGµ

I εI + h.c.
]

. (7.62)

The unintegrated supersymmetry Ward identity is given by∫
d4x

〈
∂µGµ

I O1 . . .On
〉

εI + h.c. = δsusy 〈O1 . . .On〉 , (7.63)
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where δsusy is a compact notation representing the action of the supersymmetry on the op-
erators inside the correlator 〈O1 . . .On〉

δsusy 〈O1 . . .On〉 =
n

∑
i=1

〈O1 . . . δOi . . .On〉 , (7.64)

where δOi is the infinitesimal variation of the operator Oi under the action of the super-
symmetry (cfr. the trasnformation (5.3)).

7.3 Ward identities at finite temperature

In this section we will derive the R-symmetry, the supersymmetry and the superconfor-
mal Ward identities at finite temperature, starting from the results at zero temperature. It
is important to remark that at finite temperature the supersymmetry and the superconfor-
mal symmetry are not symmetries of the theory, hence the supercharges Q and S are not
defined. However, we will show that the effect of the finite temperature is to generate a
tree-level fermionic mass operator in the Lagrangian

LN=4 T 6=0−−→ LN=4 +OFermionic mass (7.65)

The supercharges Q and S are properly defined for the original Lagrangian LN=4, along
with all the structures and the objects we are able to build with them: supermultiplets, con-
formal multiplets, superconformal multiplets. The sector LN=4

Masses can be seen as a relevant
deformation of the original theory around its conformal point.

7.3.1 A mass breaking N = 4 softly

In this section we start from the N = 4 theory and we learn how to deform it introducing
a tree-level fermionic mass operator, motivated by the finite temperature. Although such
operator would be sufficient for carrying out the discussion in the following, we will intro-
duce mass operators for the scalars and the vector boson, too. Doing so, we will keep the
discussion as general as possible. The newly-introduced mass operators will be multiplied
by thermal masses, i.e. numerical coefficients dependent on T. The numerical values of the
thermal masses depend on the loop order we are considering. We will provide the explicit
value of the tree-level fermionic thermal mass and the 1-loop corrections, computed in [22].

Tree level thermal mass

First of all, we motivate the addition of a tree-level mass operator for the fermionic fields
carrying out a brief computation. We start studying the N = 1 free theory as a simpler toy
model. The starting point is the sector Sferm of the action, which describes the free fermionic
field

Sferm =
∫

d4x
[
iψσµ∂µψ̄

]
. (7.66)

We want to compute the 2-points function in presence of a finite temperature T. We separate
the temporal index from the spatial indices

Sferm =
∫

dt
∫

d3x [−iψσ0∂0ψ̄ + iψσi∂iψ̄] . (7.67)

We switch from the Minkowski action to the Euclidean action performing a Wick rotation
of the time coordinate

t = −iτ, k0 = ikτ, ∂0 = i∂τ, (7.68)
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so the action becomes

Sferm =
∫ β

0
dτ
∫

d3x [−iψσ0∂τψ̄ + ψσi∂iψ̄] . (7.69)

We introduce the Euclidean sigma matrix σ4 = −iσ0, so

Sferm =
∫ β

0
dτ
∫

d3x [ψσ4∂τψ̄ + ψσi∂iψ̄] . (7.70)

We substitute the spinors with their Fourier transforms

ψ(τ, xi) = T ∑
kτ

∫ d3k
(2π)3 ψ̃(kτ, ki)eikττ+ikixi , ψ̄(τ, xi) = T ∑

kτ

∫ d3k
(2π)3

˜̄ψ(kτ, ki)e−ikττ−ikixi ,

(7.71)
where the component kτ of the Euclidean 4-momentum can acquire the discrete values (cfr.
[18], [17], [19])

kτ = (2n + 1)πiT, n ∈ Z. (7.72)

kτ depends on odd integers because the fermionics fields are antiperiodic over the time
circle; a periodicity condition would have lead to

kτ = 2nπiT, n ∈ Z, (7.73)

which is the case for the bosonic fields. The Euclidean action becomes

Sferm = T2 ∑
kτ ,pτ

∫ β

0
dτ
∫

d3x
∫ d3k

(2π)3

∫ d3 p
(2π)3 ei(kτ−pτ)τ+i(ki−pi)xi

[
ψ̃σ4 (−ipτ) ˜̄ψ + ψ̃σi (−ipi) ˜̄ψ

]
= −iT ∑

kτ

∫
d3k
[
kτψ̃σ4

˜̄ψ + kiψ̃σi
˜̄ψ
]
= T ∑

kτ

∫
d3k ψ̃ [−ikτσ4 − ikiσi] ˜̄ψ.

The Euclidean 2-points function at the tree level is

〈ψψ̄〉 = i
δ2

δψ̃δ ˜̄ψ
Sferm = [kτσ4 + kiσi] . (7.74)

The fermionic propagator is given by the inverse of the 2-points function

α α̇
=

1
kiσi,αα̇ + kτσ4,αα̇

. (7.75)

We notice that a term dependent on the temperature appeared

kτσ4,αα̇ = (2n + 1)πTiσ4,αα̇. (7.76)

The first important conclusion is that the Euclidean propagator of the free fermion, in 4
dimensions and at finite temperature, is equivalent to the Euclidean propagator of the free
fermion in 3 dimensions, at zero temperature and with a T dependent correction. A possi-
ble way to deal with a 4-dimensional theory at finite temperature would be to compactify
the fields over the time circle, exchanging each 4-dimensional field with an infinite tower
of Matsubara modes (i.e. the coefficients of a discrete Fourier decomposition). As a conse-
quence, the reduction of the theory on the 3-dimensional Euclidean space R3 would replace
the Lagrangian with an infinite tower of Lagrangians, each one carrying the kinetic sector
of a specific Matsubara mode and a (thermal) mass operator. However, in this thesis we
will follow a different path.
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We want to give an interpretation to the result (7.75). Let’s assume that the fermionic
fields have periodic boundary conditions over the time circle, instead of the (physically cor-
rect) antiperiodic ones. By doing this, we would obtain a slightly different result for the
fermionic propagator

α α̇
=

1
kiσi,αα̇ + 2nπiTσ4,αα̇

. (7.77)

We recover the propagator of a fermionic field with antiperiodic boundary conditions and
we rewrite its denominator as the denominator appearing in the propagator (7.77) plus a T
dependent correction

α α̇
=

1
kiσi,αα̇ + (2n + 1)πiTσ4,αα̇

=
1

(kiσi,αα̇ + 2nπiTσ4,αα̇) + πiTσ4,αα̇
. (7.78)

We notice that the propagator of a fermionic field with antiperiodic boundary conditions
can be interpreted as the propagator (7.77), associated to periodic boundary conditions,
provided with a thermal mass correction

πTσ4,αα̇ = mσ4,αα̇ = mαα̇. (7.79)

Notice that whichever choice we make for the fermionic boundary conditions over the time
circle, supersymmetry is always explicitly broken:

• if the fermions have antiperiodic boundary conditions, kτ assumes the values (2n +
1)πiT, with n ∈ Z. The bosonic fields, instead, have periodic boundary conditions
and kτ assumes the values 2nπiT. The different behavior of the fermionic and the
bosonic fields over the time circle breaks the supersymmetry;

• if the fermions have periodic boundary conditions, their momentum component kτ

assumes the values 2nπiT, with n ∈ Z. The boundary conditions of the fermionic
fields and of the bosonic fields over the time circle are the same. However, in this
scenario, a fermionic mass operator naturally emerges in the tree-level Lagrangian
and spoils the supersymmetry, breaking it softly.

We will adopt the second interpretation. Fermionic fields, from now on, will have periodic
boundary conditions over the time circle and the original theory will be invariant under the
action of the supersymmetry at finite temperature. However, the supersymmetry breaking
will be inevitable because the theory will acquire an additional mass sector which will softly
break the supersymmetry. The original free action becomes

Sferm =
∫ β

0
dτ
∫

d3x [ψσ4∂τψ̄ + ψσi∂iψ̄ + ψmψ̄] , (7.80)

where the mass operator is
ψmψ̄ = mψασ4,αα̇ψ̄α̇. (7.81)

Now we can go back to the N = 4 theory and derive an analogous result. The computation
is the same, but with the free fermionic sector of the N = 4 theory

Sferm =
∫

d4x
[
iλaIσµ∂µλ̄a

I

]
. (7.82)

The structure of the fermionic kinetic sector is identical to the one in the action (7.66), up
to the R-simmetry indices. We can easily extract the fermionic propagator modifying the
result (7.75)

i
δ

δλ̃aIδ ˜̄λb
J

Sferm = [ikτσ4 + ikiσi] δabδJ
I . (7.83)
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The tree level fermionic propagator at finite temperature is

α a I α̇ b J
=

δabδJ
I

kiσi,αα̇ + (2n + 1)πTσ4,αα̇
=

δabδJ
I

(kiσi,αα̇ + 2nπTσ4,αα̇) + πTσ4,αα̇
. (7.84)

We adopt the periodic boundary conditions interpretation, so we add to the original action
a fermionic mass operator

Sferm =
∫ β

0
dτ
∫

d3x
[
λaIσ4∂τλ̄a

I + λaIσi∂iλ̄
a
I + iλaImλ̄a

I

]
(7.85)

where the mass operator is
λaImλ̄a

I = mλαaIσ4,αα̇λ̄α̇a
I . (7.86)

One loop thermal masses

In the previous section we explicitly showed how a fermionic tree-level mass operator can
emerge in the Lagrangian of the 4-dimensional N = 4 theory. As we anticipated, this result
would be sufficient in order to derive all the relevant conclusions in this thesis. However,
we can do an exercise, introducing generic mass operators for the scalars and for the vector
boson. The algebraic structures of these operators will be suggested by the one-loop results
in the computations of the thermal masses, which we will take from [22].

• The scalar 2-points function acquires the following one loop correction〈
X̄a

I J X
bKL
〉
= · · ·+ g2

12
T2δ

[K
[I δ

L]
J] δab. (7.87)

From this one loop result we learn that the scalar thermal mass, up to one loop order,
is equal to

MX =
g√
12

T (7.88)

and that the correct algebraic structure of a generic scalar mass operator is

X̄a
I JX

aI J ; (7.89)

• The 2-points fermionic function acquires the following one loop correction〈
λaI λ̄b

J

〉
= · · ·+ g2T

log 2
4π2 δI

J δab; (7.90)

We already knew from the tree level computation that the correct algebraic structure
is

λaI λ̄a
I . (7.91)

The fermionic thermal mass at one loop, completed with the tree level mass, is equal
to

m = πT + g2T
log 2
4π2 ; (7.92)

• The 2-points vectorial function acquires the following one loop correction〈
Aa

µ Ab
ν

〉
= · · ·+ g2

12
T2ζµνδab, (7.93)

where ζµν is a generic symmetric tensor; hence, the correct algebraic structure is

Aa
µ Aa

ν; (7.94)

and the one-loop thermal mass is equal to

MA =
g√
12

T. (7.95)
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Structure of the mass operators

In this section we introduce three mass operators constructed with the field content of the
N = 4 theory. Later, we will make use of these operators to deform the N = 4 theory,
once the finite temperature is turned on. Once again, we stress the fact that the fermionic
tree-level mass operator would be sufficient for our goals, while the general discussion is
performed as a useful exercise.

It is important to notice that the explicit computations at one-loop level (7.89), (7.91)
and (7.94) show that the correct algebraic structures, which are meant to represent the
mass operators at any quantum order, are invariant under the action of the R-symmetry.
In the following, we will compute the R-symmetry Ward identity at finite temperature and
it won’t be broken. This will be considered a proof a posteriori of the R-symmetry invariance
at any loop order.

• In the N = 4 theory the scalar degrees of freedom are framed in the su(4) tensor X I J ,
which sits in the antisymmetric 6 representation of su(4), in the singlet representation
of the Lorentz group and in the adjoint representation of the gauge group. A candi-
date for the mass operator must be quadratic in the scalar fields and it is provided by
the one loop result (7.89)

tr
[
2M2

XX̄I J X I J
]
= −M2

XX̄a
I JX

aI J ; (7.96)

• In the N = 4 theory the fermionic degrees of freedom are framed in the su(4) vectors
λI

α and λ̄α̇
I , which sit in the fundamental representation of su(4), in the [1, 0] and [0, 1]

representations of the Lorentz group and in the adjoint representation of the gauge
group. Gauge symmetry is trivially preserved taking the trace over the gauge indices.
The mass operator must be quadratic, so we must combine two fermionic fields as it
is suggested by the one loop result (7.91). We can write down a Majorana mass term

tr [Ψ̄MΨΨ] = −1
2

Ψ̄a MΨΨa, (7.97)

where the Weyl spinors are embedded as follows

Ψa =

(
λaI

α

λ̄α̇a
I

)
(7.98)

and Ψ̄ = ΨTC, where C is the charge conjugation matrix. The mass term can be
expressed in terms of the Weyl spinors expanding the expression

− 1
2

Ψ̄a MΨΨa = −1
2
(
λαaI λ̄a

α̇I
) ( 0 −mαα̇

m̄α̇α 0

)(
λaI

α

λ̄α̇a
I ,

)
(7.99)

where the mass matrix is off-diagonal, in order to let left-chirality Weyl spinors couple
to right-chirality ones, and viceversa. The mass term turns out to be

1
2

λαaImαα̇λ̄α̇a
I − 1

2
λ̄a

α̇Im̄
α̇αλaI

α . (7.100)

The mass coefficients inherits the spinor indices from a Sigma matrix (the identity σ0,
for example)

mαα̇ ≡ mσ0,αα̇, m̄α̇α ≡ mσ̄α̇α
0 . (7.101)

Exploiting the properties of the Sigma matrices, we can write the fermionic mass op-
erator as follows

λαaImαα̇λ̄α̇a
I = λaImλ̄a

I . (7.102)

We succeeded in recovering the algebraic structure suggested by the tree-level and
one loop results for the fermionic mass operator;
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7.3. Ward identities at finite temperature

• In the N = 4 theory the vectorial degrees of freedom are grouped in the su(4) singlet
Aa

µ, which sits in the singlet representation of su(4), in the [1, 1] representation of the
Lorentz group and in the adjoint representation of the gauge group. The candidate
for the mass operator is the following, as suggested by the one loop result (7.94)

tr
[
Mµν

A Aµ Aν

]
= −1

2
Mµν

A Aa
µ Aa

ν. (7.103)

The most general mass operator requires a mass tensor Mµν
A with the following struc-

ture
Mµν

A = M2
A,TP

µν
T + M2

A,LP
µν
L . (7.104)

The tensorial structure of the mass Mµν
A keeps the longitudinal contribution to the

mass separated from the transversal one: the tensor P
µν
T projects on the transversal

direction while the tensor P
µν
L projects on the longitudinal direction.

The introduction of the vector mass operator requires a careful discussion of the BRST
symmetry at finite temperature. The new operator, in fact, breaks the symmetry. In
this thesis this issue will not be discussed.

7.3.2 Corrections to the Ward identities

The introduction of a finite temperature has important consequences on the theory. The
finite temperature can modify the structure of a Ward identity, introducing breaking terms
of different natures. In this section we will compute the Ward identities associated to the
R-symmetry and to the supersymmetry at finite temperature, taking care of two different
sources of breaking terms:

• the non trivial boundary conditions: switching on a finite temperature, we changed
the spacetime manifold from R4 to R3 × S1;

• a new (thermal) mass sector must be considered. As anticipated in the section 7.3.1,
we will use the operators

Smass = −i
∫ β

0
dτ
∫

d3x
[
−M2

XX̄a
I J X

aI J − λaImλ̄a
I −

1
2

Mµν
A Aµ Aν

]
. (7.105)

In the following, the full theory at finite temperature will be

Sfull = S + Smass. (7.106)

R-symmetry Ward identity at finite temperature

In order to derive the corrections to the R-symmetry Ward identity, we want to consider all
the possible corrections to the infinitesimal variation of the classical action Sfull. First of all,
we detach the original theory from the mass sector and we recover the zero temperature
computation

δS = −
∫

d4x
[

Rξµ∂µωξ

]
. (7.107)

The integration by parts must be handled carefully at finite temperature: we have to take
into account the integral of the 4-divergence, too

δS =
∫

d4x
[
ωξ∂µRξµ

]
−
∫

d4x∂µ

[
Rξµωξ

]
. (7.108)

The first term in the r.h.s. of the equation (7.108) is the one already present in the Ward
identity at zero temperature. The second term cannot be trivially set to zero making use of
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Chapter 7. The N = 4 theory at Finite Temperature

the Gauss theorem: we turn the second term into a Euclidean integral and we evaluate it
explicitly at finite temperature∫

R3×S1
d4x∂µ

[
Rξµωξ

]
=
∫

R3×S1
−idτ d3x

[
i∂0

(
Rξ

0ωξ

)
+ ~∇ ·

(
~Rξωξ

)]
=
∫

R3
d3x

∫
S1

dτ ∂0

(
Rξ

0ωξ

)
− i

∫
S1

dτ
∫

R3
d3x~∇ ·

(
~Rξωξ

)
=
∫

R3
d3x

[
Rξ

0ωξ

]β

0
− i

∫
S1

dτ
∫

∂R3
d~Σ ·

(
~Rξωξ

)
The second integral in the r.h.s. can be computed: the boundary ∂R3 is the 2-sphere at
infinity. We set the radius~r, with modulus r, representing the 3-dimensional distance from
the origin to a generic point in R3. The conformal dimension of the current is

[
~Rξ
]
= 3, so

the current goes as ~Rξ ∼ ~r
r4 at the infinite

∫
∂R3

d~Σ ·
(
~Rξωξ

)
= lim

r→∞
4πr~r · ~r

r4 = 0. (7.109)

In the end, we just need to consider the integral

∫
R3

d3x
[

Rξ
τωξ

]β

0
(7.110)

which is the only possible additional contribution to δS due to the new spacetime manifold
R3 × S1. However, the integrand is null because it is globally periodic over the time circle:

• the infinitesimal parameter ωξ is constant, hence it is trivially periodic over the time
circle;

• the current (7.47) is periodic because each one of its terms contains a couple of fields
with the same periodicity conditions over the time circle.

Hence, the non-trivial boundary conditions did not generate breaking terms in the R-symmetry
Ward identity.

Now we consider the contribution given by the mass sector (7.105). In order to derive
its contribution to δSfull, we apply the R-symmetry transformations to the fields

δSmass = −i
∫ β

0
dτ
∫

d3x
[
− M2

XδX̄a
I JX

aI J − M2
XX̄a

I JδXaI J − δλaImλ̄a
I − λaImδλ̄a

I − Mµν
A AµδAν

]
= −i

∫ β

0
dτ
∫

d3x
[
2ωξ M2

XX̄a
IKtξK

JX
aI J − 2ωξ M2

XX̄a
I Jt

ξ I
KXaKJ − ωξλaJmtξ I

J λ̄
a
I+

+ ωξλaImtξ J
I λ̄

a
J

]
= 0.

The infinitesimal variation of the mass sector under the action of the R-symmetry is equal
to zero. Hence, the contribution of the mass sector to the infinitesimal variation of the
classical action δSfull is equal to zero. The structure of the Ward identity is not modified and
the R-symmetry holds at any loop level even at finite temperature

∫ β

0
dτ
∫

d3x
〈

∂µRξµO1 . . .On

〉
ωC = iδR-symm 〈O1 . . .On〉 . (7.111)
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Supersymmetry Ward identity at finite temperature

In order to derive the corrections to the supersymmetry Ward identity, we consider again
all the steps faced in the previous section for the R-symmetry Ward identity. First of all,
we detach the original theory from the mass sector and we start from the zero temperature
result

δS = −
∫

d4x
[

Gµ
I ∂µεI + h.c.

]
. (7.112)

We perform the integration by parts and we carefully handle the total derivative

δS =
∫

d4x
[
∂µGµ

I εI + h.c.
]
−
∫

d4x∂µ

[
Gµ

I εI + h.c.
]

. (7.113)

The second term can be explicitly evaluated

∫
R3×S1

d4x∂µ

[
Gµ

I εI + h.c.
]
=
∫

R3×S1
−idτ d3x

[
i∂0

(
G0Iε

I
)
+ ~∇ ·

(
~GIε

I
)
+ h.c.

]
=
∫

R3
d3x

∫
S1

dτ ∂0

(
G0Iε

I + h.c.
)
− i

∫
S1

dτ
∫

R3
d3x~∇ ·

(
~GIε

I + h.c.
)

=
∫

R3
d3x

[
G0Iε

I + h.c.
]β

τ
− i

∫
S1

dτ
∫

∂R3
d~Σ ·

(
~GIε

I + h.c.
)

We show that the second term in the r.h.s. is equal to zero. The conformal dimension of the
supercurrent is

[
~Gi

]
= 7

2 , thus the supercurrent goes as ~Gi ∼ ~r
r9/2 at the infinity

∫
∂R3

d~Σ ·
(
~GIε

I + h.c.
)
= lim

r→∞
4πr~r · ~r

r9/2 = 0. (7.114)

We are left with the term ∫
R3

d3x
[

G0Iε
I + h.c.

]β

0
. (7.115)

The integrand is equal to zero:

• the infinitesimal parameter εI is constant, hence it must be periodic over the time
circle;

• the behavior of the supercurrent component G0I over the time circle has to be dis-
cussed. The explicit expression is (7.61): each term present in the expression is a
composition of a bosonic field and a fermionic field. Hence, the boundary conditions
of the supercurrent are the same of the fermionic fields. We recall the discussion at
the end of the section 7.3.1: the fermionic fields are set to be periodic over the time
circle in order to make the mass operator explicitly appear in the Lagrangian. Thus,
the supercurrent is periodic over the time circle.

In the end, the non-trivial boundary conditions have no effect on the supersymmetry Ward
identity.

Now we consider the contribution given by the mass sector (7.105). In order to obtain
the contribution to the infinitesimal variation δSfull, we apply the supersymmetry transfor-
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Chapter 7. The N = 4 theory at Finite Temperature

mations to the fields

δSmass = −i
∫ β

0
dτ
∫

d3x
[
− M2

XδX̄a
I JX

aI J − M2
XX̄a

I JδXaI J − δλaImλ̄a
I − λaImδλ̄a

I − Mµν
A AµδAν

]
= −i

∫ β

0
dτ
∫

d3x
[
− 4

√
2M2

XX̄a
I Jε

IλaJ −
(
−1

2
σµνFa

µνεI + g f abcXbI JX̄c
JKεK

)
mλ̄a

I−

− i
√

2DµX̄a
I Jλ

aImσ̄µεJ − iMµν
A Aµλ̄a

I σ̄νεI
]
+ h.c.

= −i
∫ β

0
dτ
∫

d3x
[
− 4

√
2M2

XX̄a
I Jλ

aJ − 1
2

σµνFa
µνλ̄a

I m̄ + g f abcXbI JX̄c
JKλ̄a

I m̄+

+ i
√

2DµX̄a
I Jλ

aJmσ̄µ − iMµν
A Aµλ̄a

I σ̄ν

]
εI + h.c.

= −i
∫ β

0
dτ
∫

d3x
[
AIε

I + h.c.
]

,

where we defined the operator

AI = −4
√

2M2
XX̄a

I Jλ
aJ − 1

2
σµνFa

µνλ̄a
I m̄ + g f abcXbI JX̄c

JKλ̄a
I m̄+

+ i
√

2DµX̄a
I Jλ

aJmσ̄µ − iMµν
A Aµλ̄a

I σ̄ν. (7.116)

In the end, the complete variation of the full action is

δSfull = −i
∫ β

0
dτ
∫

d3x
[(

∂µGµ
I +AI

)
εI + h.c.

]
(7.117)

and the unintegrated supersymmetry Ward identity at finite temperature turns out to be∫ β

0
dτ
∫

d3x
〈
∂µGµ

I O1 . . .On
〉

εI +
∫ β

0
dτ
∫

d3x 〈AIO1 . . .On〉 εI + h.c. = iδsusy 〈O1 . . .On〉 .

(7.118)

7.3.3 The supersymmetry breaking term does not contribute

The supersymmetry Ward identity (7.118) at finite temperature includes the term

− i
∫ β

0
dτ
∫

d3x 〈AIO1 . . .On〉 εI + h.c.. (7.119)

In this section we want to show that the R-symmetry is sufficient to get rid of the integrand

〈AIO1 . . .On〉 . (7.120)

The idea is to show that the correlator is globally charged under the action of the R-symmetry:
if the R-symmetry holds, this implies that the correlator is equal to zero. Actually, it is suf-
ficient to show that the correlator (7.120) is charged under a particular subgroup of su(4),
i.e. the u(1) subgroup generated by the Cartan generator t15. In order to do so, we special-
ize the su(4) unintegrated Ward identity to the u(1)15 case. Recalling the section 5.2.1, we
already know that the u(1)15 Ward identity is equivalent to the following constraint, meant
to hold at any loop order

n

∑
l=1

ql
3 = 0, (7.121)

where ql
3 is the u(1)15 charge of the operator Ol inside the correlator. As an hypothesis, we

assume that the correlator
〈O1 . . .On〉 (7.122)

74



7.4. The Superconformal Ward identity at Finite Temperature

satisfies the constraint (7.121). This hypothesis is very specific and it is the easiest one to
satisfy. However, it could be possible to choose a stronger hypothesis, too. For instance, the
argument would still work if we imposed to the operators inside the correlator (7.122) to sit
in a R-symmetry representation such that, once the operator AI is introduced, the product
cannot sit in a singlet representation.

The key step is to notice that the operator AI must be charged under u(1)15. Looking
at the definition of the AI operator, we can notice that it is composed of many terms: each
term contains some bosonic operators plus a single fermionic operator. Recalling the table
7.1, we can see that (up to an overall factor 1/

√
6) the bosonic fields have even q3 charges,

while the fermionic fields have odd q3 charges. This proves that each term of the operator
(7.116) is charged: hence, the entire operator AI is charged. The correlator (7.120) does
not respect the constraint (7.121), due to the addition of the charged operator AI inside the
braket: this proves that the integrand (7.120) is equal to zero.

In conclusion, if we impose the R-symmetry, the supersymmetry soft breaking term
can be eliminated and the unintegrated supersymmetry Ward identity at finite temperature
can be written as follows

∫ β

0
dτ
∫

d3x
〈
∂µGµ

I O1 . . .On
〉

εI + h.c. = iδ 〈O1 . . .On〉 . (7.123)

We conclude that the unintegrated supersymmetry Ward identity, if the theory is R-symmetry
invariant, is not broken.

7.4 The Superconformal Ward identity at Finite Temperature

In the previous section we showed that it is possible to derive the supersymmetry Ward
identity at finite temperature and that, even if the symmetry itself is broken, it is possible
to write down the unintegrated Ward identity exactly with the same structure as at zero
temperature. In order to set up all the tools for the proof of the non-renormalization the-
orem at finite temperature, we must be able to write down the correct Ward identity for
the superconformal symmetry. The superconformal symmetry, like the supersymmetry, is
broken at finite temperature, so the structure of its Ward identity includes some breaking
terms, generated either by the newly introduced mass sector or by the non trivial bound-
ary conditions. We want to show that the R-symmetry is able to cancel the breaking terms,
showing us that the unintegrated superconformal Ward identity is not broken and that the
integrated superconformal Ward identity has the same structure as (6.46).

First of all, we clarify that the superconformal symmetry is an internal symmetry with
a spinorial parameter dependent on the coordinates: in fact, we recall that the superconfor-
mal charges S are defined as

S ≡ I ◦ Q ◦ I, (7.124)

where I is the inversion operator acting on the coordinates. The operator S acts on the
coordinates as follows

xµ I−→ xµ

x2
Q−→ xµ

x2
I−→ xµ = x′µ. (7.125)

The superconformal charges S act on the coordinates as the identity, hence the supercon-
formal symmetry is an internal symmetry.

We can obtain the superconformal Ward identity considering the supersymmetry trans-
formations and replacing the constant infinitesimal spinor εI with a conformal Killing spinor
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ψI(x), dependent on the coordinates. The superconformal transformations of the fields are

δAa
µ = −iψ̄I(x)σ̄µλaI + iλ̄a

I σ̄µψI(x), (7.126)

δλaI = −1
2

σµνFa
µνψI(x) + i

√
2ψ̄J(x)σ̄µDµXaJ I + g f abcXbI JX̄c

JKψK(x), (7.127)

δXaI J =
√

2
(

ψI(x)λaJ − ψJ(x)λaI + εI JKLψ̄K(x)λ̄a
L

)
. (7.128)

We apply the superconformal transformations to the action (7.39) in order to obtain the
infinitesimal variation, which can be formally written as follows

δS = i
∫ β

0
dτ
∫

d3x
[

Gµ
I ∂µψI(x) + h.c.

]
. (7.129)

We proceed integrating by parts, obtaining

δS = i
∫ β

0
dτ
∫

d3x
[
∂µGµ

I ψI(x) + h.c.
]
− i

∫ β

0
dτ
∫

d3x∂µ

[
Gµ

I ψI(x) + h.c.
]

. (7.130)

The second term must be evaluated with caution at finite temperature. Similarly to what
we did for the supersymmetry, we have∫

R3×S1
d4x∂µ

[
Gµ

I ψI(x) + h.c.
]
=
∫

R3×S1
−idτ d3x

[
i∂0

(
G0Iψ

I(x)
)
+ ~∇ ·

(
~GIψ

I(x)
)
+ h.c.

]
=
∫

R3
d3x

∫
S1

dτ ∂0

(
G0Iψ

I(x) + h.c.
)
−

− i
∫

S1
dτ
∫

R3
d3x~∇ ·

(
~GIψ

I(x) + h.c.
)

=
∫

R3
d3x

[
G0Iψ

I(x) + h.c.
]β

0
−

− i
∫

S1
dτ
∫

∂R3
d~Σ ·

(
~GIψ

I(x) + h.c.
)

We evaluate explicitly the second term in the r.h.s.∫
∂R3

d~Σ ·
(
~GIψ

I(x) + h.c.
)

(7.131)

We already know that the supercurrent at the infinite goes as ~Gi ∼ ~r
r9/2 ; the explicit expres-

sion of the conformal Killing spinor is (6.30), thus ψI ∼ r at the infinite. The result is∫
∂R3

d~Σ ·
(
~GIψ

I(x)
)
= lim

r→∞
4πr2~r · ~r

r9/2 = 0. (7.132)

The contribution of the non trivial boundary conditions then is given by the integral∫
R3

d3x
[

G0Iψ
I(x) + h.c.

]β

0
. (7.133)

The integrand can be computed, substituting to ψI(x) its explicit expression (6.30)[
G0Iψ

I(x) + h.c.
]β

0
=
[

G0αI µ̄
I
β̇
x̄β̇α + h.c.

]β

0
=
[
iG0αI µ̄

I
β̇
σ̄

β̇α
4 τ + h.c.

]β

0
= 0, (7.134)

where the last equality holds because

• the infinitesimal parameter µ̄I is constant, so it must be periodic over the time circle;
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• the supercurrent component G0I is periodic for the reasons discussed above for the
supersymmetry Ward identity at finite temperature.

For these reasons, the contribution of the non trivial boundary conditions is equal to zero
even for the superconformal Ward identity at finite temperature.

Now we consider the contribution coming from the mass sector (7.105). In order to
derive the infinitesimal variation δSmass, we apply the infinitesimal superconformal trans-
formations (7.126), (7.127) and (7.128) to the mass sector. Recalling the definition of the AI
operator (7.116), we obtain

δSmass = −i
∫ β

0
dτ
∫

d3x
[
AIψ

I(x) + h.c.
]

, (7.135)

which is the contribution of the mass sector. The full infinitesimal variation of the classical
action Sfull is

δSfull = −i
∫ β

0
dτ
∫

d3x
[
∂µGµ

I ψI(x) +AIψ
I(x) + h.c.

]
(7.136)

From this result, we can immediately derive the unintegrated superconformal Ward iden-
tity

∫ β

0
dτ
∫

d3x
〈

∂µGµ
I ψI(x)O1 . . .On

〉
+

+
∫ β

0
dτ
∫

d3x
〈
AIψ

I(x)O1 . . .On

〉
+ h.c. = iδsc 〈O1 . . .On〉 , (7.137)

where the r.h.s. stands for

δsc 〈O1 . . .On〉 =
n

∑
i=1

〈O1 . . . δOi . . .On〉 , (7.138)

where δOi is the variation of the operator Oi under the action of the superconformal trans-
formations. We focus on the first term of the identity∫ β

0
dτ
∫

d3x
〈

∂µGµ
I ψI(x)O1 . . .On

〉
+ h.c. (7.139)

First of all, we extract the partial derivative from of the correlator: this can be done if and
only if ∫ β

0
dτ
∫

d3x
〈

Gµ
I ∂µψI(x)O1 . . .On

〉
+ h.c. = 0. (7.140)

We show that this is the case: if we insert the explicit expression of the conformal Killing
spinor (6.30), we get∫ β

0
dτ
∫

d3x
〈

µ̄I
α̇σ̄

α̇β
µ Gµ

βIO1 . . .On

〉
+ h.c. = −

∫ β

0
dτ
∫

d3x
〈

Gµβ
I σµ,βα̇µ̄α̇IO1 . . .On

〉
+ h.c.

(7.141)
The integrand in the r.h.s. is equal to zero: it is sufficient to apply the constraint (6.23)

Gµβ
I σµβα̇ = 0. (7.142)

In the end, the first term in the l.h.s. of the equation (7.137) can be rewritten as∫ β

0
dτ
∫

d3x ∂µ

〈
ψI(x)Gµ

I O1 . . .On

〉
+ h.c. (7.143)
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We can recognize the conserved current (6.24) inside the correlator∫ β

0
dτ
∫

d3x ∂µ 〈Jµ(x)O1 . . .On〉+ h.c. (7.144)

We already know how to deal with this integral: we integrate over a volume V which
contains all the points x1, . . . , xn, where the operators O1, . . . ,On are evaluated. The volume
integral can be transformed into an integral over the surface ∂V , which is composed of the
2-sphere at infinity times the two extrema of the time circle

∂V = S2
∞ × {0, β} . (7.145)

Then we turn the volume integral (7.144) into the sum of two surface integrals∫
∂V

dΣµ 〈Jµ(x)O1(x1) . . .On(xn)〉 −
n

∑
l=1

∫
Sl

dΣµ 〈Jµ(x)O1(x1) . . .Ol(xl) . . .On(xn)〉+ h.c.

(7.146)
The second term is identical to the integral (6.36). Each integral in the sum can be explic-
itly evaluated applying an OPE between the current Jµ and each operator Ol : the OPE is
localized around each puncture xl , thus it is not influenced by the finite temperature effect,
which determines a modification of the global structure of the spacetime, not of the local
structure. Thus, we already know the replacement for the second term

−
n

∑
l=1

∫
Sl

dΣµ 〈Jµ(x)O1(x1) . . .Ol(xl) . . .On(xn)〉+ h.c. =

= −
n

∑
l=1

ψα
I (xl)

〈
O1(x1) . . .

[
QI

α,Ol

}
(xl) . . .On(xn)

〉
+

+ (∂µψα
I ) (xl)nµnνσν

αβ̇

〈
O1(x1) . . .

[
S̄ β̇I ,Ol

}
(xl) . . .On(xn)

〉
+ h.c. (7.147)

The only contribution left is given by the first integral in the expression (7.146). It is a
surface integral evaluated over the boundary (7.145). Even at finite temperature, it can be
proven that this contribution is equal to zero. We introduce the 4-vector nµ, with a unitary
module, such that dΣµ = dΣnµ∫

∂V
dΣµ 〈Jµ(x)O1(x1) . . .On(xn)〉 =

∫
∂V

dΣnµ 〈Jµ(x)O1(x1) . . .On(xn)〉 (7.148)

The infinitesimal surface element can be splitted in two orthogonal contributions∫
∂V

dΣnµ 〈Jµ(x)O1(x1) . . .On(xn)〉 =
∫

∂R3×{0,β}
dΣnµ 〈Jµ(x)O1(x1) . . .On(xn)〉 . (7.149)

We can always choose to integrate first over the surface ∂R3. The τ component of the 4-
vector nµ, when it is evaluated on the 2-sphere at infinity, is null, so we will consider only
its spatial components ni. The current Jµ at infinity goes like J ∼ 1

r5/2 , so the integrand goes
to zero at least as fast as 1

r5 . Then, we have∫
∂R3

dΣni 〈Ji(x)O1(x1) . . .On(xn)〉 ' lim
r→∞

r2 1
r5 = 0 (7.150)

In conclusion, the first term in the equation (7.137) can be rewritten as a sum of local contri-
butions, where each term of the sum is evaluated in a specific point of the volume V∫ β

0
dτ
∫

d3x ∂µ 〈Jµ(x)O1 . . .On〉+ h.c. =

= −
n

∑
l=1

ψα
I (xl)

〈
O1(x1) . . .

[
QI

α,Ol

}
(xl) . . .On(xn)

〉
+

+ (∂µψα
I ) (xl)nµnνσν

αβ̇

〈
O1(x1) . . .

[
S̄ β̇I ,Ol

}
(xl) . . .On(xn)

〉
+ h.c. (7.151)
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7.4. The Superconformal Ward identity at Finite Temperature

The r.h.s. of the equation (7.151) are the [Contact terms] of the superconformal Ward iden-
tity. Recalling the equation (6.34), we can identify the r.h.s. of the equation (7.151) with the
r.h.s. of the equation (7.137)

δsc 〈O1 . . .On〉 . (7.152)

We are finally ready to write down the full superconformal Ward identity at finite temper-
ature, provided with the contribution coming from the thermal mass sector

∫ β

0
dτ
∫

d3x
〈

∂µGµ
I ψI(x)O1 . . .On

〉
+

+
∫ β

0
dτ
∫

d3x
〈
AIψ

I(x)O1 . . .On

〉
+ h.c. =

= −
n

∑
l=1

ψα
I (xl)

〈
O1(x1) . . .

[
QI

α,Ol

}
(xl) . . .On(xn)

〉
+

+
(
∂µψα

I
)
(xl)nµnνσν

αβ̇

〈
O1(x1) . . .

[
S̄ β̇I ,Ol

}
(xl) . . .On(xn)

〉
+ h.c. (7.153)

We consider the correlator 〈
∂µGµ

I ψI(x)O1 . . .On

〉
. (7.154)

This correlator contains the operator ∂µGµ
I . Recalling the constraint (6.18), we know that in

a theory with conformal symmetry the supercurrent Gµ
I fulfills a unitarity bound such that

the state
∂µGµ

I |vac〉 =
∣∣∂µGµ

I
〉

(7.155)

is the null vector. Recalling the considerations made at the beginning of the section 7.3,
this property is preserved at finite temperature: the state

∣∣∂µGµ
I
〉

belongs to a Hilbert space
constructed using the action S, not the full action Sfull, comprehensive of the mass sector.
Finally, we consider the correlator 〈

AIψ
I(x)O1 . . .On

〉
. (7.156)

We substitute to ψI(x) its explicit expression (6.30), obtaining〈
AIψ

I(x)O1 . . .On

〉
= −λI

α 〈Aα
IO1 . . .On〉 − µ̄β̇ x̄β̇α 〈AαIO1 . . .On〉 . (7.157)

The first term in the r.h.s. has already been set to zero in the section 7.3.3 and the second
term can be set to zero for the same reasons: the operator AI is charged under the action
of the group u(1)15, so, under the correct hypothesis on the operators O1, . . .On, the R-
symmetry invariance sets the first and the second term to zero.

The final expression of the superconformal Ward identity at finite temperature, cleared
from the finite temperature soft breaking term, is

n

∑
l=1

ψα
I (xl)

〈
O1(x1) . . .

[
QI

α,Ol

}
(xl) . . .On(xn)

〉
+

+
(
∂µψα

I
)
(xl)nµnνσν

αβ̇

〈
O1(x1) . . .

[
S̄ β̇I ,Ol

}
(xl) . . .On(xn)

〉
= 0. (7.158)
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Chapter 8

A Non-Renormalization Theorem at
T 6= 0

In this chapter we prove the non-renormalization theorem studied in the chapter 6 in a finite
temperature scenario. We will not propose a different proof, but we will follow the same
procedure employed at zero temperature. The adaptation is possible because, exploiting
the results in the chapter 7, we will show that all the tools required to show the final result
can be obtained at finite temperature, too. In particular, in this chapter we will focus on the
conformal invariance. The issue will be tackled with the introduction of a conformal com-
pensator, an auxiliary field coupled to the original theory. This new feature of the theory
will be studied following the article [23].

8.1 Recovering the Conformal symmetry

In this section we will show the procedure to recover the conformal invariance, present
in the original N = 4 theory. The invariance is spoiled after the introduction of a finite
temperature. In particular, the conformal invariance gets encoded in a Ward identity which
is softly broken by the mass operators, turnt on by the finite temperature. The breaking
terms are not charged under the R-symmetry, so we cannot use it to get rid of them, like
we did in the chapter 7. In this case, it will be necessary to couple the N = 4 theory to a
conformal compensator. The coupling between the original theory and the new sector can be
set arbitrarily weak: the only purpose of the newly introduced degree of freedom will be
to explicitly recover the conformal invariance, removing the breaking terms from the scale
invariance unintegrated Ward identity.

8.1.1 The scale invariance Ward identity at finite temperature

In the section 5.3.1 we derived the explicit expression of the unintegrated scale invariance
Ward identity at zero temperature. We can take those results as a starting point before
turning on the temperature: we need to study the effects of the new non trivial boundary
conditions and of the (thermal) mass operators. In particular, we are interested in the pos-
sible breaking terms generated by those effects. We consider the N = 4 theory and we
explicitly compute the canonical stress-energy tensor with the formula

Tµν
c =

∂LN=4

∂∂µXaI J ∂νXaI J +
∂LN=4

∂∂µX̄a
I J

∂νX̄a
I J +

∂LN=4

∂∂µλaI ∂νλaI +
∂LN=4

∂∂µλ̄a
I

∂νλ̄a
I+

+
∂LN=4

∂∂µ Aa
ρ

∂ν Aa
ρ − ηµνLN=4. (8.1)
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The explicit expression of the canonical stress-energy tensor is

Tµν
c = −ηµν

[
− 1

4
Fa

µνFaµν + iλaiσµDµλ̄a
i −

1
4

DµX̄a
I J D

µXaI J +

√
2

2
g f abcλaIλbJ X̄C

I J+

+

√
2

2
g f abcλ̄a

I λ̄b
J XcI J − 1

16
g2 f abc f aegXbI JXcKLX̄e

I JX̄
g
KL

]
− 1

4
DµX̄a

I J∂
νXaI J − 1

4
∂νX̄a

I J D
µXaI J+

+ iλaIσµ∂νλ̄a
I − Faµρ∂ν Aa

ρ, (8.2)

while the trace of the canonical stress-energy tensor is given by

Tµ
µ,c = −4LN=4 −

1
4

DµX̄a
I J∂µXaI J − 1

4
∂µX̄a

I J DνXaI J + + iλaIσµ∂µλ̄a
I − Faµρ∂µ Aa

ρ. (8.3)

Recalling the definition (5.52), we can write

Tµ
µ = −4LN=4 −

1
4

DµX̄a
I J∂µXaI J − 1

4
∂µX̄a

I J DνXaI J + iλaIσµ∂µλ̄a
I − Faµρ∂µ Aa

ρ−

− 1
4

∂µ

(
DµX̄a

I JX
aI J
)
− 1

4
∂µ

(
X̄a

I J DνXaI J
)
+

3
2

∂µ

(
iλaIσµλ̄a

I

)
− ∂µ

(
Faµρ Aa

ρ

)
. (8.4)

In the following, we will call the action of the N = 4 theory at zero temperature SCFT (it will
also be addressed as the original theory), the stress energy tensor (8.2) will be called Tµν

CFT

and the trace (8.4) will be called Tµ
µ,CFT . Turning on the finite temperature, the full theory

becomes
Sfull = SCFT + Srelevant, (8.5)

where the sector Srelevant is

Srelevant = −i
∫ β

0
dτ
∫

d3x
[
−M2

XX̄a
I J X

aI J − λaImλ̄a
I −

1
2

Mµν
A Aµ Aν

]
. (8.6)

Recalling the general result (5.13), we need to compute the infinitesimal variation δSfull in
order to derive the scale invariance Ward identity at finite temperature. We have that

δSfull = δSCFT + δSrelevant. (8.7)

The variation δSCFT has already been computed in the section 5.3.1

δSCFT = −
∫

d4x Wµ∂µα = −
∫

d4x ∂µ [Wµα] +
∫

d4x ∂µWµα. (8.8)

We carefully compute the integral of the total divergence∫
R3×S1

d4x ∂µ [Wµα] =
∫

R3×S1
−idτ d3x

[
i∂0 (W0α) + ~∇ ·

(
~Wα
)]

=
∫

R3
d3x

∫
S1

dτ ∂0 (W0α)− i
∫

S1
dτ
∫

R3
d3x ~∇ ·

(
~Wα
)

=
∫

R3
d3x [W0α]

β
0 − i

∫
S1

dτ
∫

∂R3
d~Σ ·

(
~Wα
)

.

The second term in the r.h.s. can be set equal to zero: the conformal dimension of the current
is
[
~W
]
= 3, so at infinity the current goes like ~W ∼ ~r

r4

∫
∂R3

d~Σ ·
(
~Wα
)
= lim

r→∞
4πr~r · ~r

r4 = 0; (8.9)
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the first term is equal to zero, too. In fact, knowing that the entire field content of the SCFT

theory is periodic over the time cirle and that the explicit expression for the scale invariance
current is (5.50), we have

[W0α]
β
0 =

[
xνT0

ν,CFT α
]β

0 + ∆ϕ

[
∂LCFT

∂∂0ϕ
ϕα

]β

0
=
[(

τT 0
CFT 0 + xiT 0

CFT i
)

α
]β

0 = 0. (8.10)

where the variable ϕ stands for all the fields in the SCFT theory. In conclusion, the non trivial
boundary conditions has no effect on the infinitesimal variation of the classical action δSCFT,
so

δSCFT = −iα
∫ β

0
dτ
∫

d3x ∂µWµ = −iα
∫ β

0
dτ
∫

d3x
(
xν∂µTµν

CFT

)
− iα

∫ β

0
dτ
∫

d3x Tµ
µ,CFT .

(8.11)
The variation δSrelevant can be explicitly computed acting on the fields with the transforma-
tion (5.43)

δSrelevant = −iα
∫ β

0
dτ
∫

d3x

{
2M2

XX̄a
I JX

aI J + 3λaImλ̄a
I + Mρσ

A Aρ Aσ+

+ xν∂µ

[
−ηµν

(
−M2

XX̄a
I JX

aI J − λaImλ̄a
I −

1
2

Mρσ
A Aρ Aσ

)]}
, (8.12)

so the complete infinitesimal variation of the full action is

δSfull = −iα
∫ β

0
dτ
∫

d3x
[
xν∂µTµν

full

]
− iα

∫ β

0
dτ
∫

d3x Tµ
µ,CFT−

− iα
∫ β

0
dτ
∫

d3x
[
2M2

XX̄a
I JX

aI J + 3λaImλ̄a
I + Mρσ

A Aρ Aσ

]
. (8.13)

It is useful to split the breaking term in four different breaking terms, each one multiplied
by a mass coefficient

− iα
∫ β

0
dτ
∫

d3x
[
2M2

XX̄a
I JX

aI J + 3λaImλ̄a
I + Mρσ

A Aρ Aσ

]
=

= −2iαM2
X

∫ β

0
dτ
∫

d3x MX − 3iαm
∫ β

0
dτ
∫

d3x Mλ−

− iαM2
A,T

∫ β

0
dτ
∫

d3x MA,T − iαM2
A,L

∫ β

0
dτ
∫

d3x MA,L, (8.14)

where we defined

MX = X̄a
I JX

aI J , Mλ = λaIσ0λ̄a
I , MA,T = −1

2
P

µν
T Aa

µ Aa
ν, MA,L = −1

2
P

µν
L Aa

µ Aa
ν.
(8.15)

The final expression for the softly broken unintegrated scale invariance Ward identity can
be recovered making use of the unintegrated translations Ward identity, as we did in the
section 5.3.1. The result is∫ β

0
dτ
∫

d3x
〈

Tµ
µ,CFTO1 . . .On

〉
+ 2M2

X

∫ β

0
dτ
∫

d3x 〈MXO1 . . .On〉+

+ 3m
∫ β

0
dτ
∫

d3x 〈MλO1 . . .On〉+ M2
A,T

∫ β

0
dτ
∫

d3x 〈MA,TO1 . . .On〉+

+ M2
A,L

∫ β

0
dτ
∫

d3x 〈MA,LO1 . . .On〉 = −
n

∑
l=1

∆Ol 〈O1 . . .Ol(xl) . . .On〉 . (8.16)
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8.1.2 Introducing a conformal compensator

In this section we couple the theory at finite temperature Sfull with a conformal compen-
sator, following the procedure described in the article [23]. Our choice for the compensator
will be a real, scalar field ω. The field is adimensional and transforms neither under the
action of the supersymmetry charges Q and S , nor under the action of the R-symmetry
generators. After having coupled the compensator, we will have to deal with a theory de-
scribed by the classical action

Sfull+c.c. = SCFT + Sω + S′
relevant, (8.17)

where the action Sω is simply the kinetic sector

Sω = − f 2
∫

d4x
[
∂µω∂µω

]
, (8.18)

and the sector S′
relevant is exactly the mass sector where every mass coefficient has been

coupled to a copy of the compensator ω

S′
relevant = −i

∫ β

0
dτ
∫

d3x
[
−M2

Xω2X̄a
I JX

aI J − λaImωλ̄a
I −

1
2

Mµν
A ω2Aµ Aν

]
. (8.19)

Notice that we have the freedom to tune arbitrarily the coefficient f : this feature will be
crucial in the discussion. We can interpret the whole theory Sfull+c.c as an effective field
theory of the conformal compensator, valid at an energy scale much smaller than a given
cutoff Λ.

Toy model: scalar field theory

As an example, in this section we study the case of a simple scalar field theory. The starting
point is the free scalar action

SCFT = −
∫

d4x
[
∂µφ̄∂µφ

]
. (8.20)

This theory will be addressed as the conformal fixed point. The scale invariance uninte-
grated Ward identity is (cfr. the section 5.3.2)∫

d4x
〈

Tµ
µ,CFTO1 . . .On

〉
= −

n

∑
l=1

∆Ol 〈O1 . . .Ol(xl) . . .On〉 , (8.21)

where
Tµ

µ,CFT = 2∂µφ̄∂µφ + ∂µ (∂
µφ̄φ + φ̄∂µφ) . (8.22)

The theory SCFT then is deformed by the addition of a mass operator, which triggers a rele-
vant deformation of the theory

Sfull = SCFT + Srelevant = −
∫

d4x
[
∂µφ̄∂µφ + m2φ̄φ

]
. (8.23)

The unintegrated softly broken Ward identity then is given by (cfr. the section 5.3.2)∫
d4x

〈
Tµ

µ,CFTO1 . . .On
〉
+ 2m2

∫
d4x 〈φ̄(x)φ(x)O1 . . .On〉 =

= −
n

∑
l=1

∆Ol 〈O1 . . .Ol(xl) . . .On〉 . (8.24)
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We want to recover the structure of the unintegrated Ward identity (5.62), so we introduce
a conformal compensator

Sfull+c.c. = −
∫

d4x
[
∂µφ̄∂µφ + m2ω2φ̄φ + f 2∂µω∂µω

]
. (8.25)

The action (8.25) is meant to describe an effective field theory of the conformal compensator
ω, thus it requires the existence of a cutoff Λ. If p represents the momenta circulating in the
system, the theory is correct in the regime

p2 � Λ2. (8.26)

The softly broken scale invariance Ward identity of the Sfull+c.c. theory is

∫
d4x

〈
Tµ

µ,CFTO1 . . .On
〉
+ f 2

∫
d4x

〈
Tµ

µ,ω O1 . . .On
〉
+

+ 2m2
∫

d4x
〈
φ̄(x)φ(x)ω2(x)O1 . . .On

〉
= −

n

∑
l=1

∆Ol 〈O1 . . .Ol(xl) . . .On〉 , (8.27)

where
Tµ

µ,ω = 2∂µω∂µω + 2∂µ (ω∂µω) . (8.28)

Next, we collect the f 2 parameter, which has the dimension of a mass squared

1
f 2

∫
d4x

〈
Tµ

µ,CFTO1 . . .On
〉
+
∫

d4x
〈

Tµ
µ,ω O1 . . .On

〉
+

+ 2
m2

f 2

∫
d4x

〈
φ̄(x)φ(x)ω2(x)O1 . . .On

〉
= − 1

f 2

n

∑
l=1

∆Ol 〈O1 . . .Ol(xl) . . .On〉 . (8.29)

Recalling that the conformal dimension of the stress-energy tensor is equal to 4, then each
term in the equation above has a conformal dimension equal to (∑n

l=1 ∆Ol )− 2. We are now
free to make the following considerations (cfr. the article [23]):

• the theory (8.20) is our fixed conformal point. The mass operator is relevant, so it acts
as the generator of a relevant flow. The introduction of the m2 coefficient sets a fixed
energy scale in the theory: we can define a UV cutoff ΛUV such that

m2 � ΛUV . (8.30)

In our scenario, at the beginning the theory (8.20) lives near the scale ΛUV , then the
relevant flow lowers the energy scale towards m2. In this thesis we do not follow the
flow, but we stay in proximity of the conformal point, so we are still in the UV regime,
codified by

m2 � p2 . Λ2
UV ; (8.31)

• we are always allowed to make the coupling between the φ and the ω fields arbitrarily
weak by properly tuning the f coefficient

m2 � f 2; (8.32)

• as we have already stated, the full theory Sfull+c.c. is an effective theory of the confor-
mal compensator ω and it makes sense only in the regime

p2 � Λ2. (8.33)
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In conclusion, in the energy regime

m2 � p2 . Λ2
UV � Λ2, f 2 (8.34)

we can neglect the term multiplied by the factor m2

f 2 . Eventually, we obtain the Ward identity

∫
d4x

〈
Tµ

µ,CFTO1 . . .On
〉
+ f 2

∫
d4x

〈
Tµ

µ,ω O1 . . .On
〉
= −

n

∑
l=1

∆Ol 〈O1 . . .Ol(xl) . . .On〉 ,

(8.35)
and we recognize the Ward identity of a scale invariant theory containing the scalar field φ
and the compensator ω∫

d4x
〈

Tµ
µ,CFT+c.c.O1 . . .On

〉
= −

n

∑
l=1

∆Ol 〈O1 . . .Ol(xl) . . .On〉 , (8.36)

Resuming, the complete procedure starts from an original theory SCFT enjoying the scale
invariance, codified by an unintegrated Ward identity with the structure (5.62). Then, the
theory is deformed by adding a mass sector to the Lagrangian: the former Ward identity is
substituted by a new softly broken one. The new Ward identity contains a breaking term
controlled by a mass parameter m2: we introduce a conformal compensator and we study
the deformed theory in a specific energy regime (cfr.(8.34) ), in which we are allowed to
get rid of the soft breaking term. By doing this, we end up with an unintegrated Ward
identity with the structure (5.62). In conclusion, the mass-deformed theory, coupled to the
compensator, can be studied as a scale invariant theory in the specified energy regime.

Introducing the conformal compensator in the N = 4 theory

We are ready to apply the same reasoning adopted in the previous section to the N = 4
theory. The original theory SCFT is deformed by the addition of the thermal mass opera-
tors, grouped in the sector Srelevant. We recover the definitions (8.15) and we introduce the
conformal compensator

Sfull+c.c = SCFT + iM2
X

∫ β

0
dτ
∫

d3x
[
MXω2]+ im

∫ β

0
dτ
∫

d3x [Mλω] +

+ iM2
A,T

∫ β

0
dτ
∫

d3x
[
MA,Tω2]+ iM2

A,L

∫ β

0
dτ
∫

d3x
[
MA,Lω2]−

− i f 2
∫ β

0
dτ
∫

d3x
[
∂µω∂µω

]
. (8.37)

We can derive the new Ward identity (to be compared with the Ward identity (8.16))

∫ β

0
dτ
∫

d3x
〈

Tµ
µ,CFTO1 . . .On

〉
+ f 2

∫ β

0
dτ
∫

d3x
〈

Tµ
µ,ω O1 . . .On

〉
+

+ M2
A,T

∫ β

0
dτ
∫

d3x
〈
MA,Tω2O1 . . .On

〉
+ M2

A,L

∫ β

0
dτ
∫

d3x
〈
MA,Lω2O1 . . .On

〉
+

+ 2M2
X

∫ β

0
dτ
∫

d3x
〈
MXω2O1 . . .On

〉
+ 3m

∫ β

0
dτ
∫

d3x 〈MλωO1 . . .On〉 =

= −
n

∑
l=1

∆Ol 〈O1 . . .Ol(xl) . . .On〉 . (8.38)

After having collected a factor f 2, we study the Ward identity in the regime

m2, M2
X, M2

A � p2 . Λ2
UV � Λ2, f 2. (8.39)
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We are allowed to neglect the soft breaking terms, multiplied by the factors M2
X

f 2 , m
f ,

M2
A,T
f 2 and

M2
A,L

f 2 . The unintegrated scale invariance Ward identity turns out to be∫
d4x

〈
Tµ

µ,CFT+c.c.O1 . . .On
〉
= −

n

∑
l=1

∆Ol 〈O1 . . .Ol(xl) . . .On〉 . (8.40)

In conclusion, in the energy regime (8.39) the N = 4 theory, coupled to the conformal
compensator, recovers the conformal invariance. Moreover, although the N = 4 theory
and the conformal compensator sector are coupled, we are able to set the strength of their
coupling arbitrarily weak, tuning the f coefficient according to the energy regime (8.39).

8.1.3 Towards the non-renormalization theorem at finite temperature

In this section we set up all the tools required by the non-renormalization theorem.

Conformal invariance We recovered the conformal invariance introducing a conformal
compensator coupled to the theory at finite temperature. The recovered conformal invari-
ance allows us to completely fix the dependence on the coordinates of the scalar 3-points
functions

〈φ1(x1)φ2(x2)φ3(x3)〉 =
C123

x∆1+∆2−∆3
12 x∆1+∆3−∆2

13 x∆2+∆3−∆1
23

. (8.41)

We are sure that the overall coefficient C123 does not depend on the coordinates.

Connection over the conformal manifold Introducing a finite temperature, the global
structure of the spacetime has been modified, so the definition of the connection over the
conformal manifold obviously changes accordingly

∇τ 〈O1(x1) . . .On(xn)〉 =
∫ β

0
dτ
∫

d3x 〈OτO1(x1) . . .On(xn)〉 . (8.42)

Superconformal Ward identity Thanks to the R-symmetry, we recovered the supercon-
formal Ward identity exactly with the needed structure. Although the full theory at finite
temperature does not enjoy the superconformal symmetry, we showed that the following
identity holds

n

∑
l=1

ψα
I (xl)

〈
O1(x1) . . .

[
QI

α,Ol

}
(xl) . . .On(xn)

〉
+

+
(
∂µψα

I
)
(xl)nµnνσν

αβ̇

〈
O1(x1) . . .

[
S̄ β̇I ,Ol

}
(xl) . . .On(xn)

〉
= 0. (8.43)

In the proof the operators Ol(xl) will be superconformal primaries, thus the identity can be
simplified

n

∑
l=1

ψα
I (xl)

〈
O1(x1) . . .

[
QI

α,Ol

}
(xl) . . .On(xn)

〉
= 0. (8.44)

Superconformal representations Although the full theory Sfull at finite temperature does
not enjoy the superconformal symmetry, one of its components, SCFT, is superconformal
invariant at zero temperature, i.e. in absence of the relevant deformations. Hence, we
can construct all the superconformal representations with the superconformal theory SCFT;
moreover, we can also define the supercharges Q and S . Thus, in the first place we can
attribute all the superconformal properties to the operators appearing in the theorem and,
only in a second moment, deform the theory, switching on the finite temperature.
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8.2 The non-renormalization theorem at finite temperature

We are finally able to adapt the proof reviewed in the chapter 6 to a finite temperature
scenario. The procedure is absolutely analogous to the one followed at zero temperature.

The object of our study is the dependence of the 3-points function〈
φ
(R1,~m1)
1 (x1) φ

(R2,~m2)
2 (x2) φ

(R3,~m3)
3 (x3)

〉
(8.45)

on the marginal coupling τ of the original N = 4 theory. Thanks to the conformal invari-
ance, the expression of the correlator can be exactly computed up to an overall coefficient
C123, as shown in the equation (6.10). Having defined the connection over the conformal
manifold at finite temperature (cfr. the equation (8.42)), we can write[

kinetic and group-
theoretical factors

]
×∇τC123 =

∫ β

0
dτ
∫

d3x
〈
Oτ(x)φ(R1,~m1)

1 (x1) φ
(R2,~m2)
2 (x2) φ

(R3,~m3)
3 (x3)

〉
.

(8.46)
The statement of the theorem is identical to the one adopted in the chapter 6:

Theorem. The OPE coefficient associated to the correlators (8.45) does not depend on the position
over the conformal manifold, i.e. it does not depend on τ, the N = 4 theory coupling constant.

∇τ C123 = 0. (8.47)

As we have already highlighted, the proof of the theorem is trivial if we are able to
show that

I(x, x1, x2, x3) =
〈
Oτ(x)φ(R1,~m1)

1 (x1) φ
(R2,~m2)
2 (x2) φ

(R3,~m3)
3 (x3)

〉
?
= 0, (8.48)

where ?
= is the equality to prove. The marginal operator Oτ can still be constructed as a

superconformal descendant of the superconformal primary operator φ(2,+) (as anticipated
in the section 8.1.3)

Oτ =
{
Q4

1,
[
Q4

2,
{
Q3

1,
[
Q3

2, φ(2,+)
]}]}

(8.49)

and can be written as
Oτ = {Q∗, Γ} , (8.50)

where Q∗ is one of the left chirality supercharges appearing in the definition (8.49). Now
we can rewrite the integrand (8.48) as follows

I(x, x1, x2, x3) =
〈
{Q∗, Γ} (x) φ

(k1,~m)
1 (x1) φ

(k2,+)
2 (x2) φ

(k3,−)
3 (x3)

〉
(8.51)

and we can make use of the superconformal Ward identity (8.44) in order to move the
supercharge Q∗ from the operator Γ to the superconformal primaries inside the braket.
All the considerations made at zero temperature hold in this case, too. The result is

ψ(x) 〈{Q∗, Γ} (x) φ1 φ2 φ3〉+ ψ(x1) 〈Γ [Q∗, φ1] (x1) φ2 φ3〉+
+ ψ(x2) 〈Γ φ1 [Q∗, φ2] (x2) φ3〉 = 0. (8.52)

We have the freedom to impose ψ(x) to be equal to zero when it is computed in the point
x2, so

ψ(x) 〈{Q∗, Γ} (x) φ1 φ2 φ3〉 = −ψ(x1) 〈Γ [Q∗, φ1] (x1) φ2 φ3〉 . (8.53)

The integrand (8.51) can be written as follows

ψ(x) I(x, x1, x2, x3) = −ψ(x1) 〈Γ [Q∗, φI ] (x1) φ2 φ3〉 . (8.54)
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8.2. The non-renormalization theorem at finite temperature

In order to conclude the proof, we make use of the null condition (6.65), proved in the
appendix C

ψ(x) I(x, x1, x2, x3) = −ψ(x1) ∑
? 6=∗

〈
Γ
[
Q?, φ

(k1,~m?)
1

]
(x1) φ2 φ3

〉
. (8.55)

For each term in the sum we use again the superconformal Ward identity in order to move
the supercharges from the operator φ1 to the others. As for the zero temperature case, we
have two possibilities:

• Q? annihilates the highest weight of a generic (0 k 0) representation of su(4);

• Q? annihilates the lowest weight of a generic (0 k 0) representation of su(4).

Following the considerations already made in the section 6.5, we can prove that every term
in the sum (8.55) is equal to zero. This means that

ψ(x) I(x, x1, x2, x3) = −ψ(x1) ∑
? 6=∗

〈
Γ
[
Q?, φ

(k1,~m?)
1

]
φ2 φ3

〉
= 0 ⇒ I(x, x1, x2, x3) = 0.

(8.56)
Having proved the lemma, the theorem is trivially proved, too. In conclusion, the non-
renormalization theorem (8.47) not only holds at zero temperature, but also at finite tem-
perature.
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Chapter 9

Conclusions and Outlooks

In this thesis we started from the review of a non-perturbative result (derived in the arti-
cle [5]), obtained at zero temperature, then we proved that the same result holds at finite
temperature, too. Our conclusion was not trivial: when the temperature became finite,
we witnessed the loss of important symmetries, like the conformal symmetry and the su-
persymmetry. The reason of such loss was the appearance of three thermal mass operators,
which were interpreted as relevant deformations of the original theory enjoying all the sym-
metries listed above. The structure of the proof exposed in the original article [5] was easily
adaptable to our scenario, but we needed to recover two fundamental tools employed in
the theorem: the conformal invariance and the superconformal Ward identity. First of all,
we learnt how to handle the broken and the unbroken symmetries with their Ward iden-
tities: in the thesis the Ward identities were softly broken, i.e. the broken nature of the
symmetry manifested itself in the Ward identities through the appearance of some break-
ing terms multiplied by mass coefficients. We encountered two main (sets of) breaking
terms to remove: the breaking term in the superconformal Ward identity and the breaking
term in the scale invariance Ward identity. In order to get rid of them, we employed two
different strategies. The superconformal Ward identity was recovered making use of the R-
symmetry Ward identity, which was specialized to a very easy constraint: globally charged
correlators, under the action of a specific Cartan generator of su(4), has to be equal to zero.
The breaking term of the superconformal Ward identity was globally charged, hence it was
possible to remove it. In order to recover the scale invariance Ward identity, it was not
possible to exploit the R-symmetry: the breaking terms were not globally charged under
the R-symmetry group. We reached our goal introducing an auxiliary degree of freedom,
the conformal compensator. Setting the theory in a specific energy regime, we were able to
neglect the breaking terms and to recover the scale invariance Ward identity. Once the main
tools had been restored, the proof of the theorem proceeded effortless.

The importance of our conclusion lies in the transposition of a powerful result at zero
temperature into the same result, but in a finite temperature scenario. The original the-
orem showed that the explicit expression of a specific 3-points function in the context of
the N = 4 theory does not depend on the coupling of the theory: if the coupling change
(we switch from a weak coupling to a strong coupling, or we renormalize the theory), the
non-perturbative result does not change. However, this was true only at zero temperature:
showing that the theorem can hold also at finite temperature made the statement valid not
only for systems of few interacting particles, but for ensembles of particles, too.

The main outlook of this work is to lower the amount of supersymmetry enjoyed by
the original theory. In particular, it would be interesting to consider a generic N = 2 the-
ory and try to obtain the same non-perturbative results derived in [14], turning on a finite
temperature.
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Appendix A

Conventions

In this appendix we go through all the principal conventions used in the thesis. We always
make use of the natural units, imposing

c = h̄ = kb = 1. (A.1)

Th metric of the Minkowski spacetime is

ηµν = diag (−,+,+,+) , (A.2)

while the metric of the Euclidean spacetime is

δµν = diag (+,+,+,+) . (A.3)

A.1 Indices

If it is not specified differently, we always adopt the Einstein convention over the repeated
indices. We list all the different kinds of indices used in the thesis:

• Spacetime indices in 4 dimensions: µ, ν, ρ, σ, . . . ;

• Spacetime indices in >4 dimensions: m, n, r, s, . . . ;

• Undotted spinorial indices in 4 dimensions: α, β, γ, δ, . . . . Our convention is to always
set these indices low: Γα, Γβ, Γγ, Γδ, . . . ;

• Dotted spinorial indices in 4 dimensions: α̇, β̇, γ̇, δ̇, . . . . Our convention is to always
set these indices high: Γα̇, Γβ̇, Γγ̇, Γδ̇, . . . ;

• Gauge symmetry indices: a, b, c, d, . . . . Our convention is to always set these indices
high: Γa, Γb, Γc, Γd, . . . ;

• Spatial indices in 3 dimensions: i, j, k, l, . . . . Our convention is to always set these
indices low: Γi, Γj, Γk, Γl , . . . ;

• R-symmetry su(4) indices: I, J, K, L, . . . . Our convention is to always set high the in-
dices of an object sitting in the fundamental representation of su(4) (ΓI , ΓJ , . . . ) and to
always set low the indices of an object sitting in the anti-fundamental representation
of su(4) (ΓI , ΓJ , . . . ).
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A.2 Yang-Mills theory

Whenever we deal with a YM field theory, in our conventions the algebra of the gauge
symmetry group is defined by the relation[

ta, tb
]
= f abctc (A.4)

where f abc is a real number and the generators ta are anti-hermitian (ta)† = −ta. The trace
over the gauge indices of two generators of the gauge group is given by

tr
[
tatb
]
= −1

2
δab. (A.5)

Our definition of the covariant derivative is

DµYa = ∂µYa + f abc Ab
µYc, (A.6)

while our definition of the field strength is

Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ + f abc Ab

µ Ac
ν. (A.7)

A.3 Weyl spinors and superspace coordinates

In the thesis the fermionic fields are represented by 2-components Weyl spinors. Weyl
spinors in 4 dimensions can carry two different kinds of spinorial indices: an undotted
index α and a dotted index α̇. This is due to the fact that the Lorentz group so(1, 3) can
be split in two copies of su(2): each copy provides its own spinorial representation. The
left-chirality Weyl spinor and the right-chirality Weyl spinor are respectively

ψα, χ̄α̇. (A.8)

Hermitian conjugation in Minkowski spacetime turns left-chirality spinors into right-chirality
spinors

(ψα)
† = ψ̄α̇. (A.9)

In the 4-dimensional Minkowski spacetime, we can define a Majorana spinor as follows

Ψ =

(
ψα

ψ̄α̇

)
. (A.10)

The convention on the positions of the spinorial indices is exposed in the section A.1. How-
ever, the position can be altered using the antisymmetric objects

εαβ, εα̇β̇, εαβ, ε α̇β̇, (A.11)

where the only non-zero components are

ε12 = ε1̇2̇ = ε21 = ε 2̇1̇ = 1, ε21 = ε2̇1̇ = ε12 = ε 1̇2̇ = −1. (A.12)

The spinorial indices are lowered and raised as follows

ψα = εαβψβ, ψα = εαβψβ, ψ̄α̇ = εα̇β̇ψ̄β̇, ψ̄α̇ = ε α̇β̇ψ̄β̇. (A.13)

Our convention on the Sigma matrices in the Minkowski spacetime is the following

σµ = (1,~σ) , σ̄µ = (−1,~σ) , (A.14)
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where~σ represents the three Pauli matrices; in the Euclidean spacetime we have σ4 = −iσ0,
so

σµ = (~σ, i1) . (A.15)

The Sigma matrices are naturally equipped with a couple of spinorial indices

σ
µ

αβ̇
, σ̄µα̇β. (A.16)

The two Sigma matrices are in the following relation

σ̄µα̇α = εαβεα̇β̇σ
µ

ββ̇
, σ

µ
αα̇ = εαβε α̇β̇σ̄µβ̇β. (A.17)

Moreover, we can construct

σ
µν β

α =
1
4

(
σ

µ
αγ̇σ̄νγ̇β − (µ ↔ ν)

)
, σ̄

µνα̇

β̇
=

1
4

(
σ̄µα̇γσν

γβ̇
− (µ ↔ ν)

)
. (A.18)

The principal spinorial identities used in the thesis are

εαβψαχβ = ψχ = χψ, χσµψ̄ = −ψ̄σ̄µχ, χσµσ̄νψ = ψσνσ̄µχ,

ε α̇β̇ψ̄α̇χ̄β̇ = ψ̄χ̄ = χ̄ψ̄, (χσµψ̄)† = ψσµχ̄, (χσµσ̄νψ)† = ψ̄σ̄νσµχ̄.

When we study a theory in the superspace, we have to deal with four fermionic coordinates
θα, θ̄α̇. They are Grassmann variables, hence a generic function can be at most quadratic in
θ or θ̄. The spinorial relations are

θαθβ = −1
2

εαβθθ, θαθβ =
1
2

εαβθθ,

θ̄α̇ θ̄ β̇ =
1
2

εα̇β̇ θ̄θ̄, θ̄ᾱ θ̄β̄ = −1
2

ε ᾱβ̄ θ̄θ̄,

θσµ θ̄θσν θ̄ = −1
2

θθθ̄θ̄ηµν, θψθχ = −1
2

θθψχ.

Doing calculus in the superspace requires the knowledge of the following relations

∂

∂θα
θβ = δα

β,
∂

∂θ̄α̇
θ̄ β̇ = δ

β̇
α̇ ,

(
∂

∂θα

)†

=
∂

∂θ̄α̇
,∫

d2θ θθ = 1,
∫

d2θ̄ θ̄θ̄ = 1,
∫

d2θd2θ̄ θθθ̄θ̄ = 1.
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Appendix B

su(N) representations

In this appendix we provide the reader with all the algebraic tools required for the proof
exposed in the chapters 6 and 8. First of all, we will introduce the definition of Cartan
subalgebra and the classification of all the possible semi-simple Lie algebras. In particular,
we will emphasize the fact that a generic semi-simple Lie algebra can be seen as a collection
of su(2) subalgebras non-trivially connected among each other. In this appendix we will
follow the references [24] and [25]

B.1 The Cartan subalgebra

Let’s consider a general N dimensional Lie algebra, identified by its abstract generators
t1, . . . , tN and the following relations[

ta, tb
]
= f ab

c tc,
[[

ta, tb
]

, tc
]
+ (cyclic permutations) = 0. (B.1)

In the following we will work with the adjoint representation of the algebra generators. We
identify the Cartan subalgebra: it is composed of the generators H1, . . . , Hr satisfying the
following relation [

Hi, H j
]
= 0, ∀i, j. (B.2)

The relation (B.2) allows us to simultaneously diagonalize all the Cartan generators. In the
new basis, the commutator between a Cartan generator and a generic generator of the full
algebra ta is [

Hi, ta
]
= f ia

b tb = tia
btb = Hia

b tb = βi(a)δa
btb = βi(a)ta. (B.3)

The vector ~β(a) =
(

β1(a) . . . βr(a)
)

is called root. The Cartan generators are generators with
a root equal to zero. We rewrite the generator ta as follows

ta ≡ E~β(a) = E~β, (B.4)

where we left the index a implicit in order to simplify the notation. If E~β is a generator
of the algebra, it can be shown that E−~β is a generator of the algebra, too. In conclusion,
the original set of abstract generators has been realized in the adjoint representation and
divided in two distinct sets:

• the Cartan generators H1, . . . , Hr: they have roots equal to zero. r is called rank of the
Lie algebra;

• the ladder generators E~β(1), E−~β(1) . . . E~β( n−r
2 ), E−~β( n−r

2 ): this set always has an even num-
ber of elements.
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n n′ θαβ length ratio
0 0 π/2 not fixed
1 1 π/3 1
1 2 π/4

√
2

1 3 π/6
√

3
-1 -1 2π/3 1
-1 -2 3π/4

√
2

-1 -3 5π/6
√

3

Table B.1: All the possible angles θαβ and length ratios between two generic roots.

Given two different ladder generators E~α and E~β, it can be shown that the following rela-
tions hold

2
~α · ~β
~β · ~β

= p − q = n ∈ Z, 2
~α · ~β
~α ·~α = p′ − q′ = n′ ∈ Z. (B.5)

Multiplying the two relations we obtain

(
~α · ~β

)2

(
~β · ~β

) (
~α ·~α

) =
nn′

4
⇒
(
cos θαβ

)2
=

nn′

4
≤ 1. (B.6)

The relations (B.5) and (B.6) strongly constrain the root system: only a finite number of
angles θαβ and length ratios are allowed. In the table B.1 all the possible relations between
two generic roots are listed.

B.1.1 A basis for the root system

The root system is composed of N − r vectors; however, the roots are vectors with r com-
ponents, thus only r roots can be linearly independent. We want to find a basis for the root
system, so we need to identify r linearly independent roots. First of all, we can split the root
system in two sets with equal cardinality. For every root ~β =

(
β1 . . . βr), starting from the

component β1, we consider the first non-zero component: if it is positive, the root is called
positive. We focus on the positive roots and we define r (positive) simple roots with the fol-
lowing property: a (positive) root is simple if it cannot be expressed as a linear combination
of other simple roots with positive coefficients . It can be shown that the scalar product
between two simple roots is always negative or null. Thus, two simple roots can only be
separated by a subset of the possible angles listed in the table B.1:

(
π
2 , 2π

3 , 3π
4 , 5π

6

)
. In the

following,~α1, . . . ,~αr will denote the simple roots.
We impose a new normalization for the Cartan, the ladder and the simple root genera-

tors

hi ≡
2

~αi ·~αi
~αi · ~H, e~β ≡

√
2

~β · ~β
E~β, ei ≡

√
2

~αi ·~αi
E~αi , (B.7)

In the following we will consider simple root systems with simple roots of different lengths.
We normalize the length of the longer roots

~αi ·~αi = 1. (B.8)

Then, the shorter roots norms are normalized according to the table B.1.
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B.2 su(2) subalgebras

The original Lie algebra has been decomposed into a set of Cartan generators plus a set of
ladder generators. The ladder generators, in turn, host a subset of simple roots generators.
Now it is possible to identify in the Lie algebra a collection of r copies of the su(2) algebra,
each one associated to one of the Cartan generators. Each su(2) subalgebra is composed
of a Cartan generator hi, a simple root generator ei and e−i, where e−i is associated to the
opposite root with respect to~αi. The defining relations for each su(2) algebra are

[hi, ei] = 2ei, [hi, e−i] = −2e−i, [ei, e−i] = hi. (B.9)

The information about the nature of a specific Lie algebra is encoded in the non trivial
connections between the copies of su(2). The following commutation relations codifies the
connections[

hi, hj
]
= 0,

[
hi, ej

]
= Aijej,

[
hi, e−j

]
= −Aije−j,

[
ei, ej

]
= ±e~αi+~αj , (B.10)

where Aij is the Cartan matrix and can be written as a function of the simple roots~αi and~αj

Aij = 2
~αi ·~αj

~αi ·~αi
. (B.11)

Notice that, by definition of simple root, the root~αi +~αj is not a simple root.
The decomposition in copies of su(2) and the connections between them can be graph-

ically visualized with the help of Dynkin diagrams. They can be constructed following a few
rules:

• each su(2) copy is associated to a simple root~αi and is represented by a dot

;

• two dots are associated to two different simple roots~αi and~αj. From the table 7.1 we
can see that the square of the ratio of their lengths can be equal to 1,2 or 3. In a Dynkin
diagram, the dots are connected by a number of lines determined by the squared ratio
of the lengths of the two simple roots. The longer root is represented by a filled dot.

, , .

The following drawing rules can be derived from the properties of the simple roots:

• the Dynkin diagram of a Lie algebra of rank r can contain up to r − 1 single lines;

• a Dynkin diagram cannot contain a closed cycle;

• each dot cannot host more than three lines;

• removing a dot must generate a new, valid Dynkin diagram;

• replacing a linear chain of dots with a single dot must generate a new, valid Dynkin
diagram.

There are only nine classes of connected Dynkin diagrams which satisfy all the rules listed
above: this means that only nine classes of semi-simple Lie algebras exist. The complete
classification is reported in the table B.2.
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Ordinary algebras
Ar su(r + 1)
Br so(2r + 1)
Cr sp(2r)

Dr so(2r + 4)

Exceptional algebras
G2
F4

E6

E7

E8

Table B.2: The complete classification of the Lie algebras, completed with their Dynkin
diagrams. The r label, used in the section “Ordinary Algebras”, stands for the number of
Cartan generators, i.e. for the number of dots in the Dynkin diagrams.

B.3 su(N)

The general theory presented above can be applied to the specific case of the su(N) algebra.
It is crucial to understand its representations in order to study the superconformal field
theories, where the su(N ) generators are included in the full SCFT superalgebra. This
implies that the operators defined in a SCFT sit in specific representations of the su(N )
algebra. In the su(r + 1) case all the roots have the same length, as we can see from the
table B.2. The Dynkin diagram of the su(N) = su(r + 1) algebra is

, (B.12)

where the number of dots is equal to r. All the simple roots have the same length, hence
we can employ the normalization~αi ·~αi = 1 for every i = 1, . . . , r. The Cartan matrix (B.11)
becomes symmetric and its explicit expression is Aij = 2~αi ·~αj. Each dot in the diagram
(B.12) is associated to one of the r copies of su(2) in the su(r + 1) algebra

(e1, e−1, h1) , . . . , (er, e−r, hr) . (B.13)

A generic root can be written as a linear combination of the r simple roots

~λ = λ1~α1 + · · ·+ λr~αr. (B.14)

Recalling the constraint (B.5), we can assign to the root ~λ a list of integer numbers called
Dynkin labels

2
~λ ·~αi

~αi ·~αi
= di. (B.15)

We now apply a change of basis such that

~λ = λi~αi = dj~uj = 2
~λ ·~αj

~αj ·~αj
~uj = 2λk~αk ·~αj~uj = λk Akj~uj, (B.16)
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so we set
~αi = Aij~uj (B.17)

and the components of the generic root~λ simply become its Dynkin labels.

B.3.1 Building the su(N) representations

A generic state in a su(N) representation is identified by

• the representation R we are considering;

• a root~λ, called weight.

Different states belonging to the same representation can have different weights: for in-
stance, in the N = 4 theory, even though the whole spinor λI lies in the fundamental repre-
sentation of su(4), the different components λ1, . . . , λ4 are associated to different weights.
The notation for a generic state is ∣∣∣~λ,R

〉
=
∣∣e~λ,R

〉
. (B.18)

Dropping the label R, we study how the operators hi, ei and e−i act on (B.18). Considering
that all the operators are realized in the adjoint representation of the symmetry group

hi
∣∣e~λ〉 = ∣∣[hi, e~λ

]〉
= di

∣∣e~λ〉 , (B.19)

ei
∣∣e~λ〉 = ∣∣[ei, e~λ

]〉
'
∣∣∣e~λ+~αi

〉
, (B.20)

e−i
∣∣e~λ〉 = ∣∣[e−i, e~λ

]〉
'
∣∣∣e~λ−~αi

〉
. (B.21)

Now, let’s consider a vector containing all the Dynkin labels of a state with root~λ

(d1, . . . , dr) . (B.22)

The action of the ladder operator e−i on the Dynkin labels can be extracted from the follow-
ing computation

~λ −~αk = di~ui − Aki~ui = (di − Aki)~ui. (B.23)

The new set of Dynkin labels is obtained subtracting the k-th row of the Cartan matrix from
the vector (B.22). From now on, the representation label R will be implicit and a generic
state will be identified by its Dynkin labels. In order to build a su(N) representation we can
act on a vector of Dynkin labels with every lowering operator e−i. The starting point of this
process is the highest weight state, while the final point is the lowest weight state. The highest
weight state is defined as the state annihilated by every raising operator; the lowest weight
state is the state annihilated by every lowering operator. If we set a highest weight state
associated to the root~λ∗, then

ei
∣∣e~λ∗

〉
= 0 ∀i = 1, . . . , r. (B.24)

The highest weight state is associated to the Dynkin labels (a1, . . . , ar). However, if the
constraint (B.24) holds, then it must be true also if we take the hermitian conjugate of both
sides of the equation, which leads to

e−i

∣∣∣e−~λ∗

〉
= 0 ∀i = 1, . . . , r. (B.25)

We are ready to construct representations of su(N) using the following algorithm:
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Appendix B. su(N) representations

• we start from a highest weight state with positive or null Dynkin labels

(a1, . . . , ar) ; (B.26)

• we act with the lowering operators in all the possible ways, subtracting from the
Dynkin labels vector the rows of the Cartan matrix. We discard all the states with
a negative norm, or equal to zero. A good practical rule is to consider the Dynkin
labels of the highest weight state and select highest one: a state with a Dynkin label
higher in modulus has to be discarded;

• when we reach the lowest weight state, all the lowering operators annihilate it, so the
procedure is concluded and we derived a complete representation of su(N).

B.3.2 su(2)

In this section we construct some su(2) representations. The su(2) Lie algebra admits a
trivial decomposition in copies of su(2)

(e1, e−1, h1) , (B.27)

so each state will be identified by only one Dynkin label; moreover, we have only one
lowering operator, e−1. The Cartan matrix is trivial

Asu(2) = 2, (B.28)

so the action of e−1 on a generic state (a1) is

(a1)
e−1−→ (a1 − 2) . (B.29)

Singlet representation This representation is trivial

(0) . (B.30)

The highest and the lowest weights coincide.

Doublet representation This is the fundamental representation

(1)
e−1−→ (1̄) , (B.31)

where we adopted the notation −k = k̄, which will be used in the following.

Triplet representation The structure becomes richer and the trend becomes clear

(2)
e−1−→ (0)

e−1−→ (2̄) . (B.32)

B.3.3 su(4)

We are finally able to discuss the su(4) representations. The decomposition in copies of
su(2) is

(e1, e−1, h1) , (e2, e−2, h2) , (e3, e−3, h3) , (B.33)
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so each state will be identified by three Dynkin labels. We have three lowering operators
e−1, e−2 and e−3: if the Cartan matrix is

Asu(4) =

 2 −1 0
−1 2 −1
0 −1 2

 , (B.34)

then their actions on a generic Dynkin labels vector (a1 a2 a3) are

(a1 a2 a3)
e−1−→ ((a1 − 2) (a2 + 1) a3) , (B.35)

(a1 a2 a3)
e−2−→ ((a1 + 1) (a2 − 2) (a3 + 1)) , (B.36)

(a1 a2 a3)
e−3−→ (a1 (a2 + 1) (a3 − 2)) . (B.37)

Singlet representation This representation is trivial, but it is very important, since it hosts
the gauge vector boson Aa

µ of the N = 4 SYM theory

(0 0 0) . (B.38)

Fundamental representation This representation hosts all the operators defined in N = 4
theory with one, high su(4) index (the supercharges QI

α, for instance)

(1 0 0)

(1̄ 1 0)

(0 1̄ 1)

(0 0 1̄)

Anti-Fundamental representation Similarly to the previous one, this representation hosts
all the operators with only one su(4) index, but low (the conjugated spinor λ̄α̇a

I , for instance)

(0 0 1)

(0 1 1̄)

(1 1̄ 0)

(1̄ 0 0)
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Appendix B. su(N) representations

Sextuplet representation This representation hosts the scalar fields X I J of the N = 4
theory

(0 1 0)

(1 1̄ 1)

(1̄ 0 1)

(1̄ 1 1̄)

(1 0 1̄)

(0 1̄ 0)

(0 2 0) representation This representation hosts the superconformal primary φ(2,+) (cfr.
the section 6.2), which is crucially important in the proof of the non-renormalization the-
orem. In particular, the primary sits in the highest weight of this representation, as it is
shown by the label +

(0 2 0) ≡ +

(1 0 1)

(1̄ 1 1)

(0 1̄ 2)

(2̄ 0 2)

(2̄ 1 0)

(0 0 0)

(1̄ 1̄ 1) (2̄ 2 2̄)

(1 2̄ 1)

(1̄ 0 1̄)

(1 1̄ 1̄)

(0 1 2̄)

(0 2̄ 0) ≡ −

(1̄ 2 1̄)

(2 2̄ 2)

(2 1̄ 0)

(2 0 2̄)

(1 1 1̄)

The procedure can be repeated for every representation (0 k 0): the weight diagram then
contains all the possible weights ~m of the operator φ(k,~m).

104



Appendix C

Two Lemmas for the
Non-Renormalization Theorem

C.1 Proof of the relation (6.60)

Our goal is to prove the following identities, valid for a given basis of the supercharges[
Q1

α, φ(k,+)
]
=
[
Q2

α, φ(k,+)
]
=
[
Q3

α, φ(k,−)
]
=
[
Q4

α, φ(k,−)
]
= 0. (C.1)

First of all, we consider a primary operator φ(k,~m) sitting in the highest weight state of the
(0 k 0) representation of su(4), associated to the Young tableau

. . .︸ ︷︷ ︸
k

. (C.2)

The left-chirality supercharges QI sit in the fundamental representation of su(4), which is
associated to the Young tableau

. (C.3)

Now we introduce a basis for the left-chirality supercharges. We consider the fundamen-
tal representation of su(4) and we assign a weight to each left-chirality supercharge. The
lowering operators of the su(4) algebra are {e−1, e−2, e−3}, so we can realize the su(4) su-
percharges quadruplet in the following way∣∣∣Q1

〉
= |h.w.〉 ,

∣∣Q2〉 = e−1 |h.w.〉 , (C.4)∣∣Q3〉 = e−2e−1 |h.w.〉 ,
∣∣∣Q4

〉
= e−3e−2e−1 |h.w.〉 = |l.w.〉 , (C.5)

The operators
[
QI , φ(k,~m)

]
sits in a su(4) representation which can be visualized via the

following Young tableau product

× . . .︸ ︷︷ ︸
k

= · · ·+ . . .︸ ︷︷ ︸
k+1

. (C.6)

The representation which hosts the operator is (1 k 0) (cfr. the article [5]); the highest weight
is
[
Q1, φ(k,+)

]
, while the lowest is

[
Q4, φ(k,−)

]
. They are both associated to superconformal

states with zero norm:
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• let’s consider the state
∣∣∣[Q1

α, φ(k,+)
]〉

= Q1
α

∣∣∣φ(k,+)
〉
= Q1

α |h.w.〉. Its norm is

∣∣∣Q1 |h.w.〉
∣∣∣2 =

〈
h.w.

∣∣∣ Sα
1Q1

α

∣∣∣ h.w.
〉
=
〈

h.w.
∣∣∣ Sα

1Q1
α +Q1

αSα
1

∣∣∣ h.w.
〉

. (C.7)

Recalling the structure of the anticommutator (cfr. the section 4.1){
QI

α,Sβ
J

}
= δI

J M β
α +

1
2

δI
J δ

β
αD − δ

β
α tI

J , (C.8)

we have ∣∣∣Q1 |h.w.〉
∣∣∣2 =

〈
h.w.

∣∣∣M α
α +D − 2t1

1

∣∣∣ h.w.
〉

(C.9)

We consider each operator inside the braket: the primary operator does not transform
under the action of the Lorentz group, so 〈h.w. | M α

α | h.w.〉 = 0; the conformal dimen-
sion of the primary is ∆ = k, thus 〈h.w. | D | h.w.〉 = k. Putting everything together
we are left with ∣∣∣Q1 |h.w.〉

∣∣∣2 = k − 2
〈

h.w.
∣∣∣ t1

1

∣∣∣ h.w.
〉

; (C.10)

• let’s consider the state
∣∣∣[Q4

α, φ(k,−)
]〉

= Q4
α

∣∣∣φ(k,−)
〉
= Q4

α |l.w.〉. Similarly to the pre-
vious point, we obtain ∣∣∣Q4 |l.w.〉

∣∣∣2 = k − 2
〈

l.w.
∣∣∣ t4

4

∣∣∣ l.w.
〉

. (C.11)

We want |h.w.〉 and |l.w.〉 to be eigenstates of the operators t1
1 and t4

4. This is possible if
and only if the operators t1

1 and t4
4 are linear combinations of the Cartan generators h1, h2

and h3. Our ansatz is

t1
1 = A1h1 + A2h2 + A3h3, t4

4 = B1h1 + B2h2 + B3h3. (C.12)

In order to fix the coefficients of the linear combinations above, we recall the commutators
written in the section 4.1[

t1
1,QK

α

]
= δK

1 Q1
α −

1
4
QK

α ,
[
t4

4,QK
α

]
= δK

4 Q4
α −

1
4
QK

α . (C.13)

Recalling the equation (B.19), the weight diagram of the fundamental representation of
su(4) drawn in the previous section and the fact that the supercharges sit in such repre-
sentation, we can completely fix the two sets of coefficients. The explicit expressions of the
two operators are

t1
1 =

3
4

h1 +
1
2

h2 +
1
4

h3, t4
4 = −1

4
h1 −

1
2

h2 −
3
4

h3. (C.14)

Finally, recalling that the Dynkin labels of the highest weight state and of the lowest weight
state are (0 k 0) and (0 k̄ 0), the two norms are∣∣∣Q1 |h.w.〉

∣∣∣2 = k − 2
〈

h.w.
∣∣∣∣ 1

2
h2

∣∣∣∣ h.w.
〉

= k − k = 0, (C.15)∣∣∣Q4 |l.w.〉
∣∣∣2 = k + 2

〈
l.w.

∣∣∣∣ 1
2

h2

∣∣∣∣ l.w.
〉

= k + (−k) = 0. (C.16)

The proof can be concluded making use of the Jacobi identity[
e−1,

[
Q1, φ(k,+)

]]
−
[
Q1,

[
e−1, φ(k,+)

]]
+
[
φ(k,+),

[
e−1,Q1

]]
= 0, (C.17)
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but
[
Q1, φ(k,+)

]
= 0 and

[
e−1,Q1] = Q2; moreover∣∣∣[e−1, φ(k,+)

]〉
= e−1 |h.w.〉 , (C.18)

so we can compute the norm

〈h.w. | e1e−1 | h.w.〉 = 〈h.w. | [e1, e−1] | h.w.〉 = 〈h.w. | h1 | h.w.〉 = 0, (C.19)

because the first Dynkin label of the highest weight is equal to 0. In conclusion, we have[
Q2, φ(k,+)

]
= 0. (C.20)

In a completely analougous way we can prove that[
Q3, φ(k,−)

]
= 0. (C.21)

C.2 Proof of the Null Condition lemma

In this section we prove the lemma (6.65). The lemma is fundamental in the proof of the
non-renormalization theorem because it transforms the action of a given supercharge Q∗

on a superconformal chiral primary in the sum of the actions of many supercharges, all
different from Q∗. The proof of this lemma can be obtained by induction:

• First step: We consider the operator φ(k,−), associated to the lowest weight state of the
(0 k 0) representation of su(4). In the previous section of this appendix we showed
that φ(k,−) is annihilated by the left-chirality supercharges Q3

α and Q4
α. Thus, given

that Q∗ is either one of the Q3
αs supercharges or one of the Q4

αs, we have[
Q∗, φ(k,−)

]
= 0; (C.22)

• Second step: We apply one of the three raising operators ei contained in the su(4) alge-
bra to the lowest weight operator [

ei, φ(k,−)
]

, (C.23)

The following Jacobi identity holds[
Q∗,

[
ei, φ(k,−)

]]
−
[
ei,
[
Q∗, φ(k,−)

]]
−
[
φ(k,−), [ei,Q∗]

]
= 0. (C.24)

Plugging the equation (C.22) in the identity, we obtain[
Q∗,

[
ei, φ(k,−)

]]
= −

[
[ei,Q∗] , φ(k,−)

]
. (C.25)

The operator [ei,Q∗], in the chosen basis for the supercharges, is equal either to Q2, if
Q∗ = Q3, or to Q3, if Q∗ = Q4. Then, [ei,Q∗] = Q? 6= Q∗[

Q∗,
[
ei, φ(k,−)

]]
= −

[
Q?, φ(k,−)

]
. (C.26)

• Third step: First of all, an operator with the generic weight ~m can be constructed as
follows

φ(k,~m) =
[
ei1 , . . .

[
ein , φ(k,−)

]
. . .
]

(C.27)
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We consider the lemma (6.65) to be true for the operator (C.27)[
Q∗, φ(k,~m)

]
=
[
Q∗,

[
ei1 , . . .

[
ein , φ(k,−)

]
. . .
]]

= ∑
? 6=∗

[
Q?, φ(k,~m?)

]
. (C.28)

Now we make the inductive step and we consider the operator

φ(k,~m′) =
[
ei,
[
ei1 , . . .

[
ein , φ(k,−)

]
. . .
]]

=
[
ei, φ(k,~m)

]
. (C.29)

We apply the supercharge Q∗ to the new operator (C.29), then we employ the Jacobi
identity[

Q∗, φ(k,~m′)
]
=
[
Q∗,

[
ei, φ(k,~m)

]]
=
[
ei,
[
Q∗, φ(k,~m)

]]
−
[
[ei,Q∗] , φ(k,~m)

]
, (C.30)

We define Q� ≡ [mei,Q∗] and we recall the equation (C.28), so we can rewrite the
previous equation as follows[

Q∗, φ(k,~m′)
]
= ∑

? 6=∗

[
ei,
[
Q?, φ(k,~m?)

]]
−
[
Q�, φ(k,~m)

]
= ∑

? 6=∗

{[
Q?,

[
ei, φ(k,~m?)

]]
+
[
[ei,Q?] , φ(k,~m?)

]}
−
[
Q�, φ(k,~m)

]
.

The operator φ(k,~m×) =
[
ei, φ(k,~m?)

]
has a higher weight and Q× ≡ [ei,Q?] is another

element of the supercharges quadruplet different from both Q? and Q∗, so[
Q∗, φ(k,~m′)

]
= ∑

? 6=∗

{[
Q?, φ(k,~m×)

]
+
[
Q×, φ(k,~m?)

]}
−
[
Q�, φ(k,~m)

]
. (C.31)

The r.h.s. of the equation (C.31) can be condensed as follows[
Q∗, φ(k,~m′)

]
= ∑

◦6=∗

[
Q◦, φ(k,~m◦)

]
, (C.32)

which is exactly the structure required by the lemma (6.65).
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