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ABSTRACT 
 

Understanding the hydraulic properties of the vadose zone, crucial for understanding water 

movement dynamics in agricultural areas with diverse soil characteristics. Catchment 

hydrology (CATHY) is considered as an effective tool for the estimation of soil-water dynamic 

behaviours comparing to field observations such as volumetric water content (VWC), soil-

water pressure head (ψ) and groundwater table (h). The laboratory-derived results underwent 

rigorous validation through the Rosetta model and the Multipoint Triangle method. The primary 

aim of this study is to incorporate both hydraulic and Van Genuchten (VGM) parameters in the 

simulation and to optimize each parameter to achieve the best model performance by calibrating 

the model through SCE-UA method in the research site area of a 21-ha agricultural field situated 

along the southern edge of the Venice Lagoon affected by salinization. The calibration was 

aimed at optimizing three variables of pressure head, water content, and water table at the same 

time, which is very challenging. As the results, the model produces calibrated hydraulic and 

VGM parameters with hydraulic conductivity (Ks) of silt loam of 22.4 cm/day,porosity (θs) of 

0.367, n of 1.28, residual porosity (θr) of 0.0912, and inverse α of 0.229. Furthermore, the 

CATHY simulation provides insight into soil-water dynamics. The simulations of water content 

dynamics reveal discrepancies across borehole, with notable underestimations observed, 

particularly at certain depths. Challenges also arise in replicating pressure head fluctuations due 

to data gaps. In water table comparisons, it initially shows underestimations but gradually 

increase over time. Statical analysis of Kling-Gupta Efficiency (KGE) index highlights varied 

model performance, emphasizing the importance of continuous data collection and 

comprehensive modeling approaches for understanding and managing hydrological processes 

of soil-water dynamics in heterogeneous geological environments. Overall, ongoing efforts are 

essential to enhance  the model’s accuracy in capturing soil-water dynamics in the vadose zone.  

 

Keywords: CATHY, soil-water dynamic, KGE index, hydraulic parameter, VGM parameters, 

SCE-UA method, Rosetta model 
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CHAPTER 1 
 

1. INTRODUCTION 
 

1.1 GROUNDWATER HYDROLOGY OVERVIEW 

The circulation of water in the atmosphere, land and ocean is called the hydrologic 

cycle. Figure 1 illustrates the flow-system concept of the hydrologic cycle. The hydrologic 

cycle includes evaporation, precipitation, condensation, runoff and groundwater flow. 

Evapotranspiration is the consequence of a complicated interaction between the atmosphere, 

soil, and plants. The hydrologic cycle and the energy balance are both affected by changes 

in land use and climate. Despite the numerous complicated processes and interactions 

involved in evapotranspiration, it is more a consideration that  available energy and water 

are the fundamental determinants of evapotranspiration rate [4]. 

 
Figure 1. Hydrologic cycle (Source: U.S.G.S) 

When the average annual volumes of worldwide terrestrial evapotranspiration and 

runoff are compared, it shows that annual terrestrial evapotranspiration is currently around 

54 percent bigger than annual runoff out of the continents [36].  
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The streamflow reflects changes in the terrestrial hydrologic cycle, influenced by 

both spatial and temporal variations. It mirrors short-term weather patterns and precipitation 

fluctuations over days to weeks. Additionally, it signifies the water passing through aquifers 

and dams, known as the “water yield” which is the portion of precipitations not lost to 

evapotranspiration. Over longer periods, typically spanning years, streamflow captures 

changes in catchment storage, albeit relatively smaller compared to overall water flow. The 

average water flux that can be used for human benefit in a sustainable manner is represented 

by the water yield.  

In drylands, vegetation influences the water cycle by factors like soil surface 

protection and habitat creation for soil organisms, rather than directly altering infiltration 

capacity. These vegetation-infiltration dynamics are increasingly incorporated into 

hydrological models to predict rainfall-runoff, soil moisture, vegetation changes, and 

dryland geomorphology. 

Despite the fact that there is a clear link between average evapotranspiration and 

streamflow, a lot of researches have looked at both fluxes at the same time. Estimation of 

the water balance is a complicated task since some of its constituents, especially changes in 

groundwater storage, are difficult to measure directly and are often estimated indirectly 

through various hydrological models or using empirical methods. Empirical methods have 

been developed for the computation of various water budget components, such as 

evapotranspiration (ET), groundwater recharge (GR) and surface runoff.  

Groundwater, ranking as the world’s second largest freshwater reservoir after 

surface water, plays a crucial role in supplying the drinking water, supporting agriculture 

and sustaining industrial purposes. Its global significance extends to ensuring water supply, 

ecosystem stability and human welfare. Furthermore, the overall importance is expected to 

grow as its resilience against seasonal and multi-year climate variability than surface water. 

Increasing groundwater demand to supply drinking water, agriculture and industry in 

combination with climate change has highlighted the importance of groundwater protection 

[14]. Timely detection of negative groundwater level trends is crucial to make appropriate 

decisions and ensure sustainable groundwater management [1], while reliable information 

on groundwater levels is a prerequisite prior any groundwater resources assessment [34]. 

Groundwater flow represents a crucial aspect of complex dynamic hydrologic cycle. 

Beneath the Earth’s surface, saturated layers below the surface act as conduits for the 

transmission of groundwater, and as reservoirs for water storage. Water infiltrates to these 

formations from the surface and is transmitted slowly for varying distances until it returns 
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to the surface by action of natural flow, vegetation, or man [37]. Groundwater exists in the 

in two main zones underground: the unsaturated zone, also called as the vadose zone, 

comprising soil pores containing varying mixtures of air and water, and the saturated zone, 

where water-filled pores are under hydrostatic pressure. In unconfined aquifers, the 

saturated zone is overlain by an unsaturated zone extending from the water table to the 

ground surface. 

Understanding the hydraulic properties of the vadose zone is essential for 

comprehending the dynamics of water movement, especially in agricultural areas with 

diverse soil characteristics. Soil hydraulic properties such as soil water retention and 

hydraulic conductivity can be directly estimated by laboratory techniques applied on 

relatively small soil samples. However, these methods are time-consuming and results are 

strongly affected by the sample dimensions [27].  

Seawater intrusion in coastal areas is threatening groundwater quality and farmland 

productivity worldwide [23]. This phenomenon naturally occurs in coastal areas [34] but is 

actually intensified by anthropogenic activities such as groundwater pumping or land-use 

change [9]. A significant land subsidence affected the farmland at the southern margin of 

the Venice Lagoon due to a larger natural geological subsidence mainly exacerbated by peat 

oxidation [16] and, secondarily, groundwater withdrawal and clay sediment salinization 

induced by salt-water intrusion [41]. The area is kept suitable for farming by a drainage 

system that collects the surface water and pumps the excess water into the lagoon [11]. 

Several sandy paleochannels crossing the farmland provide a hydraulic connection between 

freshwater aquifers and the lagoon and thus facilitate seawater intrusion and freshwater 

dispersion [24]. 

Integrated surface-subsurface hydrological models (ISSHMs) are useful for 

simulating the terrestrial water cycle and the spatiotemporal variability of its components 

in catchments with a detailed resolution of topography [8]. ISSHMs commonly feature a 

Richards equation-based description of variably saturated subsurface flow coupled with a 

de Saint Venant equation-based description of routing for overland and channel flow [7]. 

The CATHY model combines the three-dimensional (3-D) Richard’s equation for 

subsurface flow in variably saturated porous media with a one-dimensional diffusion wave 

approximation of the de Saint Venant equations for surface water dynamics [5]. Catchment 

hydrology (CATHY) is considered as an effective tool for the estimation of soil dynamic 

behaviours comparing to field observations such as volumetric water content (VWC), soil 

water pressure head (ψ) and groundwater table (h). 
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1.2 PROBLEM STATEMENT 

Characterizing the soil hydraulic properties of  an agricultural plot in South of 

Venice Lagoon presents significant challenges due to the presence of heterogeneous soil 

properties, including paleochannels as well as the water table that remains constant due 

to an artificial drainage system connected to the Brenta and Po rivers. The simulation of 

soil-water dynamics are applied through CATHY model. In this simulation, it does not 

consider specific storage as its value remains constant over time and for each layer. 

Initially, the CATHY model utilizes the value of parameters estimated by the laboratory 

for the simulation. The ultimate goal is to understand the salinization affecting the study 

area and this analysis is a first and necessary step towards the subsequent modeling of 

salt transport, which needs a well calibrated model that takes into account the interactions 

between surface and subsurface. 

However, manual calibration of the most individual model parameters often comes 

with limitations. Due to the relatively broad range of parameters value estimated by the 

lab, then it is advisable to narrow down its range. To achieve this, the soil type is 

determined using multipoint triangle method from U.S Department of Agriculture 

(USDA), incorporating lab data on soil percentages. Subsequently, hydraulic properties 

are estimated through Rosetta calculator purposed to have smaller value ranges. Then, 

reference for Van Genuchten parameters are sourced from Carsel and Parrish paper [10], 

facilitating the simulation is able to be finished in shorter time. As the final step, SCEUA 

optimization procedure is performed on paleochannel and sand horizontal conductivities, 

vertical anisotropy and porosity.  

 

 

 

 

 

 

 

 

 

 

 



5 
 

1.3  OBJECTIVES 

The research aims to achieve the following objectives: 

1. Develop an integrated approach that combines field data, laboratory data, 

Rosetta and USDA estimation, and numerical modeling. 

2. Conduct preliminary manual model calibration. 

3. Perform automatic parameter optimization calibration. 

4. Conduct a prior analysis of water table dynamics of the case study area. 

5. Conduct a prior analysis of water content dynamics of the case study area. 

6. Conduct a prior analysis of water pressure head dynamics of the case study area.  

Although an attempt has been made by Botto (2023) to numerically simulate the 

behaviour of water-soil dynamics, this attempt only involved simplifications focusing 

on hydraulic parameters, without taking into account Van Genuchten parameters. 

Additionally, their study suggested that surface dynamics had limited influence and did 

not significantly improve the overall model performance. Therefore, the primary aim of 

this study is to incorporate both hydraulic and Van Genuchten parameters in the 

simulation and to optimize each parameter to achieve the best model performance.  
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CHAPTER 2 
 
2. CASE STUDY and METHODOLOGY 
 

2.1 CASE STUDY 

2.1.1 Site description 

The research site area is a 21-ha agricultural field situated at Ca’ Bianca, Chioggia, 

North-East of Italy positioned at coordinates (45°10’57” N and 12°13’55” E), along the 

southern edge of the Venice Lagoon (Figure 2). It is adjacent to the Morto channel, 

Bacchiglione, and Brenta rivers, which discharge into the Adriatic sea approximately 7 

kilometres to the west. This area lies below the average sea level, ranging from -1.5 to -3.3 

meters above mean sea level (msl) and the underwent reclamation for agricultural use 

between 1892 and 1967.  

The region faces challenges from saltwater intrusion, extending around 20 meters 

below the surface. The first confined fresh-water aquifer lays at 45–50 m below msl [39]. 

Precisely, the region is marked by an intricate blend of natural and man-made hydrological 

features, highlighted by an elaborate network of ditches within the inland area of the domain 

(Figure 2). An integrated approach has been developed where laboratory activity, field 

activity and numerical modelling are merged. Hence, it is crucial to accurately estimate the 

dynamics of the water table, water content as well as the pressure head at the pilot site. 

These estimation are essential for replicating saltwater intrusion patterns effectively and 

evaluating the efficacy of mitigation measures aimed at managing freshwater resources, 

such as drainage systems.  

 
Figure 2. Map of the study area in Northern Italy depicting the site situation. 
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Historically, this area was characterized by swamps until it was reclaimed for 

agricultural activities during the aforementioned period. Due to its geographical position, 

the site experiences seawater encroachment and is situated below msl, with elevations 

varying between approximately -1 meter to -3.3 meters msl. To facilitate the farming 

practice the water table is maintained at a shallow depth through an extensive network of 

open ditches and a pumping station, which discharged excess water into the lagoon. The 

depth of the water table fluctuates between 0.5 to 1.8 meters below the soil surface (bss), 

with the minimal vertical variation, typically around 0.5 meters, throughout the year. 

Typically, the water table is intentionally kept shallow during the summer months to support 

sub-irrigation practices.  

The soil is mainly silt-clay (Molli-Gleyic Cambisol) [32] with the presence of acidic 

peat [33] deposits formed from the reedbeds and swamps in place before the reclamation and 

sandy paleochannels crossing the field derived from past fluvial ridges and coastal strips. And 

the dataset used in the present test was collected during the year 2019.  

 
Figure 3. The dtm plot of the domain along with the boreholes position. 

 Figure 3 depicts the domain’s digital terrain model (DTM), showcasing the sandy 

paleochannel’s location along with the five borehole positions where measurements were 

taken prior to the installation of the piping drain. The first three boreholes were placed along 

the paleochannels, and the other two boreholes were located outside of the paleochannels. 

The study area, represented in blue, has been accurately modelled using CATHY software, 

with particular attention given to replicating the irrigation system’s network of ditches. 

Boundary conditions are established based on data from Trezze and Casetta levels, 
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characterized by varying time resolutions (daily or hourly), which undergo preprocessing. 

The geological composition comprises three distinct units: backfill, sand, and highly 

permeable paleo-channels. The flow integrates data from five boreholes, with variable 

measurements taken daily across different depths. And the utilized software for modeling 

is CATHY.  
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2.1.2 DATA 

The undisturbed soil samples were collected from four depth intervals (8-13 cm, 28-33 

cm, 48-53 cm, and 68-73 cm) and analysed for bulk density and porosity. Table 1 presents the 

results for bulk density and porosity for each layer. Given that the modeling is centred on the 

conditions in 2019, bulk density values range from 0.20 to 1.56. Saturated porosity data range 

from  0.23 to 0.81. 

Table 1. Laboratory result (2019, 2021) for bulk density and porosity.  

 

Another laboratory activity involved estimating the Van Genuchten-Mualem (VGM) 

parameters including porosity, residual porosity, alpha (α), n, and the saturated hydraulic 

conductivity. Table 2 provides the result for these VGM parameters. Samples were also 

collected at four depths (0-20 cm, 20-40 cm, 40-60 cm, and 60-80 cm). Overall, the residual 

porosity θr value ranges from 0.0010 to 0.1629, the porosity θs ranges from 0.2376 to 0.7692, α 

ranges from 0.0019 to 0.0323, n ranges from 1.1001 to 2.1005 and saturated hydraulic 

conductivity ranges from 14 to 2605 cm/day.  

 

Station
Soil depth

 cm

bulk density 

2021 g/cm3

bulk density 

2019 g/cm3

1 8-13 1.09 1.01

1 28-33 1.13 1.03

1 48-53 0.96 0.74

1 68-73 1.35

2 8-13 1.30 1.17

2 28-33 1.23 1.19

2 48-53 1.53 1.54

2 68-73 1.50

3 8-13 1.12 1.03

3 28-33 1.08 1.11

3 48-53 1.50 1.56

3 68-73 1.35

4 8-13 1.17 0.90

4 28-33 1.18 1.12

4 48-53 0.36 0.25

4 68-73 1.05

5 8-13 1.03 0.98

5 28-33 0.94 0.94

5 48-53 0.23 0.20

5 68-73 0.21



10 
 

Table 2. The laboratory result for Van Genuchten Mualem (VGM) parameters 2019. 

 

Table 3. Laboratory result for soil texture 2019. 

 

 

 

point_ID
Reference 

Depth cm
θr θs α n

Ks

cm/day

S1 0-20 0.0010 0.4080 0.0206 1.1020 14

S1 20-40 0.0010 0.3949 0.0034 1.1517 15

S1 40-60 0.0010 0.4413 0.0023 1.3260 1684

S1 60-80

S2 0-20 0.0010 0.3306 0.0115 1.1300 410

S2 20-40 0.0010 0.3307 0.0151 1.1268 22

S2 40-60 0.0010 0.2658 0.0088 1.1892 38

S2 60-80

S3 0-20 0.0010 0.3491 0.0083 1.1318 601

S3 20-40 0.1629 0.3535 0.0022 1.5031 409

S3 40-60 0.0364 0.2376 0.0160 2.1005 55

S3 60-80

S4 0-20 0.0010 0.3554 0.0072 1.1373 2605

S4 20-40 0.0010 0.3565 0.0081 1.1096 831

S4 40-60 0.0010 0.7295 0.0016 1.2242 142

S4 60-80

S5 0-20 0.0010 0.4341 0.0323 1.1001 984

S5 20-40 0.0010 0.3864 0.0047 1.1233 97

S5 40-60 0.0010 0.7692 0.0019 1.1240 2591

S5 60-80

point_ID
Reference 

Depth cm

Sand > 

50.000 µm
Silt 2-50 µm

Clay < 2.000 

µm

S1 0-20 26.69 59.18 14.12

S1 20-40 30.83 53.05 16.12

S1 40-60 55.90 35.65 8.45

S1 60-80 52.52 35.64 11.84

S2 0-20 27.39 55.60 17.01

S2 20-40 34.81 49.93 15.26

S2 40-60 60.35 28.80 10.85

S2 60-80 79.51 13.51 6.98

S3 0-20 31.12 52.45 16.43

S3 20-40 35.20 49.43 15.37

S3 40-60 67.46 23.47 9.07

S3 60-80 86.92 7.99 5.09

S4 0-20 21.35 58.99 19.66

S4 20-40 21.16 59.99 18.84

S4 40-60 53.64 37.23 9.13

S4 60-80 49.71 37.63 12.66

S5 0-20 28.45 53.94 17.62

S5 20-40 31.09 52.56 16.35

S5 40-60 71.39 22.62 5.99

S5 60-80 72.79 20.97 6.25
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2.2 METHODOLOGY 

The subsection provides the methodology related to hydrological modeling of an 

agricultural plot South of Venice Lagoon affected by salinization.  

2.2.1 Data validation 

The data from laboratory results are undergo validation using two other methods: 

Rosetta model and the multipoint triangle method. These methods aid in defining the soil type 

and the estimation of parameter value for each layer. The Rosetta model and the multipoint 

triangle method are freely available tools provided by the U.S. Department of Agriculture. They 

utilize laboratory data of soil percentages (as shown in Table 3) as input to generate estimations 

of hydraulic parameters and the VGM parameters.  

Rosetta provides five Pedotransfer functions for predicting hydraulic properties either 

limited or more comprehensive input datasets. This hierarchical approach is highly practical as 

it allows for the optimal utilization of available data. The models rely on various input 

parameters, including: 

• Soil textural classes 

• Sand, silt and clay percentages 

• Sand, silt and clay percentages and bulk density 

• Sand, silt and clay percentages, bulk density and a water retention point at 330 

cm (33 kPa) 

• Sand, silt and clay percentages, bulk density and water retention point at 330 and 

15000 cm (33 and 1500 kPa) 

The first model utilizes a lookup table containing class average hydraulic parameters 

corresponding to each USDA soil texture class (Table 4). The remaining four models employ 

neural network analysis, offering more accurate predictions when a broader range on input data 

variable is available. In addition, Rosetta model is also enabling the estimation of unsaturated 

hydraulic conductivity parameters from fitted Van Genuchten [21] retention parameters. 

Hydraulic functions used by Rosetta are elaborated in the Eq. 3 and Eq. 4.  
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Table 4. USDA soil texture class 

 

The table provides class-average of seven hydraulic parameters for the twelve USDA texture 

classes, representing the first model in the hierarchical sequence. For parameters, θr, θs, a, n, 

and Ks, the values are computed by averaging across each texture class. Regarding Ko, and L, 

the values are derived by incorporating the class average values of θr, θs, a, and n into Model 

C2. It is important to note that Ko and L are based on predicted parameters and may exhibit 

some degree of uncertainty. The values in parentheses indicate the one standard deviation 

uncertainties associated with the class average values. 

Through validation with Rosetta model, the predicted parameters value can be 

determined for the lower and upper bounds used in the CATHY model. On the other hand, the 

Multipoint Triangle method provides soil type classification for each layer based on the 

laboratory data of soil percentages. It is an application to determine soil texture based on the 

proportion of  sand, silt, and clay in soil sample. In this method the percentages of sand, silt, 

and clay are plotted on a triangular graph known as a texture triangle. Each corner of the triangle 

represents 100% of one of the three soil components, and the lines connecting the corners  

represent the proportions of the components.  

To use the Multipoint Triangle method, the soil percentages are plotted on the texture 

triangle. The point where the three lines intersect corresponds to the soil texture classification. 

For example, if the point falls within the region representing a combination of sand and silt, the 

soil texture will be classified as sandy loam.  
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Figure 4. Multipoint triangle methods by U.S Department of Agriculture.  

The preliminary simulation is started with the data input below (table 5). Given the 

heterogeneous nature of the site, each layer comprises two distinct types of materials. To 

facilitate the simulation process, a “zone.txt” file is employed, containing the setup of the 

material type assigned to each  cell within the model domain. This approach ensures that the 

simulation accurately captures the spatial variability of soil composition and facilitates the 

representation of complex geological features present within the study area. By incorporating 

detailed information on material types for individual cells, the simulation accounts for the 

diverse soil characteristics encountered across different layers, enabling a comprehensive 

analysis of hydrological processes and groundwater dynamics. 
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Table 5. Data input for preliminary simulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LAYER MAT.TYPE X-PERM Y-PERM Z-PERM STORAGE POROSITY VGN VGRMC VGPSAT

1 1 4.71E-01 4.71E-01 1.57E-01 1.00E-03 3.80E-01 1.11E+00 1.00E-03 1.27E+00

1 2 1.02E-01 1.02E-01 3.40E-02 1.00E-03 3.60E-01 1.19E+00 2.79E-02 1.78E+00

2 1 4.71E-01 4.71E-01 1.57E-01 1.00E-03 3.80E-01 1.11E+00 1.00E-03 1.27E+00

2 2 1.02E-01 1.02E-01 3.40E-02 1.00E-03 3.60E-01 1.19E+00 2.79E-02 1.78E+00

3 1 4.71E-01 4.71E-01 1.57E-01 1.00E-03 3.80E-01 1.11E+00 1.00E-03 1.27E+00

3 2 1.02E-01 1.02E-01 3.40E-02 1.00E-03 3.60E-01 1.19E+00 2.79E-02 1.78E+00

4 1 5.69E-01 5.69E-01 1.90E-01 1.00E-03 7.40E-01 1.17E+00 1.00E-03 5.90E+00

4 2 2.47E-01 2.47E-01 8.22E-02 1.00E-03 3.10E-01 1.54E+00 1.28E-02 2.01E+00

5 1 5.69E-01 5.69E-01 1.90E-01 1.00E-03 7.40E-01 1.17E+00 1.00E-03 5.90E+00

5 2 1.74E+01 1.74E+01 2.64E+00 1.00E-03 4.04E-01 1.89E+00 6.70E-02 5.00E-01

6 1 4.43E-01 4.43E-01 1.93E-01 1.00E-03 5.31E-01 1.89E+00 6.70E-02 5.00E-01

6 2 1.74E+01 1.74E+01 2.64E+00 1.00E-03 4.04E-01 1.89E+00 6.70E-02 5.00E-01

7 1 4.43E-01 4.43E-01 1.93E-01 1.00E-03 5.31E-01 1.89E+00 6.70E-02 5.00E-01

7 2 1.74E+01 1.74E+01 2.64E+00 1.00E-03 4.04E-01 1.89E+00 6.70E-02 5.00E-01

8 1 4.43E-01 4.43E-01 1.93E-01 1.00E-03 5.31E-01 1.89E+00 6.70E-02 5.00E-01

8 2 1.74E+01 1.74E+01 2.64E+00 1.00E-03 4.04E-01 1.89E+00 6.70E-02 5.00E-01

9 1 4.43E-01 4.43E-01 1.93E-01 1.00E-03 5.31E-01 1.89E+00 6.70E-02 5.00E-01

9 2 4.43E-01 4.43E-01 1.93E-01 1.00E-03 5.31E-01 1.89E+00 6.70E-02 5.00E-01

10 1 4.43E-01 4.43E-01 1.93E-01 1.00E-03 5.31E-01 1.89E+00 6.70E-02 5.00E-01

10 2 4.43E-01 4.43E-01 1.93E-01 1.00E-03 5.31E-01 1.89E+00 6.70E-02 5.00E-01
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2.2.2 Main equations 

CATHY is an integrated process-based spatially-distributed model for surface-

subsurface flow simulations [5]. This model couples a finite element solver for the Richards 

equation describing flow in variably saturated porous media [29], [17] and a finite difference 

solver for the diffusion wave equation describing surface flow propagation throughout a 

hillslope and stream channel network identified using terrain topography and the hydraulic 

geometry concept [18,19]. The model solves the three-dimensional Richards equation for flow 

in variably saturated porous media coupled to a one-dimensional diffusion wave approximation 

of the de Saint-Venant equation simulating the overland and channel routing [6]. The 

mathematical model is expressed by a system of two partial differential equations as 

𝑆𝑤𝑆𝑠
𝜕𝜓

𝜕𝑡
+ 𝜃𝑠

𝜕𝑆𝑤

𝜕𝑡
= 𝛻 ∙ [𝐾𝑠𝐾𝑟𝑤(𝑆𝑤)(𝛻𝜓 + 𝜂𝑧)] + 𝑞𝑠𝑠(ℎ, 𝜓),  (1) 

𝜕𝑄

𝜕𝑡
+ 𝑐𝑘

𝜕𝑄

𝜕𝑠2 =  𝐷ℎ
𝜕2𝑄

𝜕𝑠2 + 𝑐𝑘𝑞𝑠(ℎ, 𝜓).      (2) 

Where the variables in Eq. (1) have the following meaning: 𝑆𝑤 = 𝜃/𝜃𝑠  is water saturation, 𝜃 and 

𝜃𝑠  being volumetric water content and porosity (or saturated moisture content) [m3 m-3], 

respectively, 𝑆𝑠 means the aquifer specific storage coefficient [m-1], 𝜓 is pressure head [m], t is 

time [s], ∇ is the gradient operator [m-1], 𝐾𝑠 is the saturated hydraulic conductivity tensor [m-1], 

𝐾𝑟𝑤(𝑆𝑤) is the function of relative hydraulic conductivity, 𝜂𝑧 is the unit vector (0,0,1)T, 𝑧 being 

the vertical coordinate directed upward, and 𝑞𝑠𝑠 as the source or sink term represents the water 

flux contribution from the surface to the subsurface, depending on the pressure head and the 

surface ponding head ℎ [m].  

In the surface flow equation (1b) a 1-D coordinate system s [L] is used to describe each element 

of the channel network. In this equation, 𝑄 is the discharge along the rivulet or stream channel 

[L3/T], 𝑐𝑘 is the kinematic celerity [L/T], 𝐷ℎ being the hydraulic diffusivity [L2/T], and 𝑞𝑠 is the 

inflow (positive) or outflow (negative) rate from the subsurface to the surface L3/T].  

 The unsaturated hydraulic properties are taken into account by means of the van 

Genuchten functions 𝑆𝑤(𝜓) and 𝐾𝑟(𝜓) [38]: 

𝑆𝑤 =  𝑆𝑤𝑟 +  
1−𝑆𝑤𝑟

[1+(𝛼|𝜓|)𝑛]𝑚 ; ℎ < 0, ℎ ≥ 0   (3) 

𝐾𝑟 = (
𝑆𝑤−𝑆𝑤𝑟

1−𝑆𝑤𝑟
)0.5 {1 − [1 − (

𝑆𝑤−𝑆𝑤𝑟

1−𝑆𝑤𝑟
)

1

𝑚
]𝑚}

2

  (4) 
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Where 𝑆𝑤𝑟 =  𝜃𝑟/𝜙 is the residual water saturation, with 𝜃𝑟 the residual water content, 𝛼 is an 

empirical constant [L-1] related to the inverse of the entry suction, while the dimensionless 

shape parameters 𝑛 and 𝑚 are linked by the expression 𝑚 = 1 − 1/𝑛. These parameters are often 

referred to as the van Genuchten Mualem (VGM) parameters.  

The sink term (𝑞𝑠𝑠) within the Richard’s equation accounts for root water uptake, which 

varies with depth. Potential evapotranspiration (𝐸𝑇0) is ditributed across the root depth based 

on a root distribution function. Actual evapotranspiration relies on soil water content and, 

consequently, the soil matric potential within the root zone. When soil is dry, vegetation may 

undergo water stress, leading to reduced transpiration to mitigate water loss. Conversely, in 

nearly saturated conditions, low oxygen availability to roots can also decrease transpiration 

rates. We modeled the effect of low and high soil moisture on root water uptake by multiplying 

the potential root water uptake by a reduction function, 𝛼𝑟𝑤 [15]. The reduction function, often 

referred as the Feddes function, becomes zero at pressure heads higher or equal to 𝜓1, indicative 

of saturation when oxygen stress inhibits root water uptake. As 𝜓 decreases, the parameter 𝛼𝑟𝑤 

is assumed to linearly increase up to 1 at the anaerobiosis point 𝜓2. Below 𝜓3, associated with 

incipient water stress, transpiration is assumed to linearly decrease, reaching zero at the wilting 

point 𝜓4. Between 𝜓2 and 𝜓3, the soil experiences well-watered conditions, allowing roots to 

uptake water at their potential rate (i.e., 𝛼𝑟𝑤 = 1).  
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2.2.3 SCE-UA Optimization 

The SCE-UA (Shuffled Complex Evolution-University of Arizona) method is a 

derivative-free, stochastic optimization algorithm that is widely used for solving complex 

optimization problems. This method is specifically designed to deal with the peculiarities 

encountered in conceptual watershed model calibration. 

It was developed by Duan [12] at the University of Arizona. This method embodies 

desirable following properties: (1) global convergence in the presence of multiple regions of 

attraction; (2) ability to avoid being trapped by small pits and bumps on the objective function 

surface; (3) robustness in the presence of differing parameter sensitiveness and parameter 

interdependence; (4) non-reliance on the availability of an explicit expression for the objective 

function or the derivatives; (5) capability of handling high-parameter dimensionality.  

The method is based on the synthesis of four concepts:  

(1) combination of the deterministic and probabilistic approaches;  

(2) systematic evolution of a ‘complex’ of points spanning the parameter space, in the  

direction of global improvement;  

(3) competitive evolution;  

(4) complex shuffling.  

The first three concepts are drawn from existing approaches that have been proven successful 

in the past [26], [30], [32], [22], [40], and the last concept was recently introduced [12],[13], 

[35]. The elements synthesis makes the SCE-UA method effective and robust, and also flexible 

and efficient. Below the general description of the steps of the SCE-UA method (a more detailed 

presentation of the theory underlying the SCE-UA algorithm has been given by Duan et. al. 

[12], [13]: 

1. Generate sample: sample s points randomly in the feasible parameter space and 

compute the criterion value at each point. In the absence of prior information on the 

approximate location of the global optimum, use a uniform probability distribution to 

generate a sample.  

2.  Rank points: sort the s points in order of increasing criterion value so that the first 

point represents the smallest criterion value and the last point represents the largest 

criterion value (assuming that the goal is to minimize the criterion value). 
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3.  Partition into complexes: partition the s points into p complexes, each containing m 

points. The complexes are partitioned such that the first compiles contains every p(k - 

1) + 1 ranked point, the second complex contains every p(k - 1) + 2 ranked point, and 

so on, where k = 1,2,….., m. 

4. Evolve each complex: evolve each complex according to the competitive complex 

evolution (CEE) algorithm. 

5. Shuffle complexes: combine the points in the evolved complexes into a single sample 

population; sort the sample population in order of increasing criterion value; shuffle (i.e. 

re-partition) the sample population into p complexes according to the procedure 

specified in step 3. 

6. Check convergence: if any of the pre-specified convergence criteria are satisfied, stop; 

otherwise, continue. 

7. Check the reduction in the number of complexes: if the minimum number of 

complexes required in the population, pmin, is less than p, remove the complex with the 

lowest ranked points; set p = p – 1 and s = pm; return to step 4. If pmin = p, return to step 

4. 

The initial random sampling of the parameter space provides the potential for locating 

the global optimum without being biased by pre-specified starting points. The partition of the 

population into several communities facilitates a freer and more extensive exploration of the 

feasible space in different directions, thereby allowing for the possibility that the problem has 

more than one region of attraction. The shuffling of communities enhances the survivability by 

a sharing of the information (about the search space) gained independently by each community.  

As already mentioned in the step 4, the CCE algorithm is one key component of the 

SCE-UA. Based on the Nelder and Mead [25] Simplex downhill search scheme,  this algorithm 

is presented simply as follow: 

1. Construct a subcomplex by randomly selecting q points from the complex 

(community) according to a trapezoidal probability distribution. The probability 

distribution is specified such that the best point (i.e. the point with the best function 

value) has the highest chance of being chosen to form the subcomplex, and the worst 

point has the least chance.  
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2. Identity the worst point of the subcomplex and compute the centroid of the 

subcomplex without including the worst point. 

3. Attempt a reflection step by reflecting the worst point through the centroid. If the 

newly generated point is within the feasible space, go to step 4, otherwise, randomly 

generate a point within the feasible space and go to step 6. 

4. If the newly generated point is better than the worst point, replace the worst point by 

the new point. Go to step 7. Otherwise, go to step 5. 

5. Attempt a contraction step by computing a point halfway between the centroid and 

the worst point. If the contraction point is better than the worst point, replace the worst 

point by the contraction point and go to step 7. Otherwise, go to step 6. 

6. Randomly generate a point within the feasible space. Replace the worst point by the 

randomly generated point.  

7. Repeat step 2- 6 α times, where α ≥ 1 is the number of consecutive offspring generated 

by the same subcomplex. 

8. Repeat step 1- 7 β times, where β ≥ 1 is the number of evolution steps taken by each 

complex before complexes are shuffled.  

The CCE algorithm adopts a framework reminiscent of genetic optimization methods, where 

each point within a complex is akin to a potential ‘parent’ capable of contributing to the 

production of offspring. Unlike typical genetic algorithms, CCE allows subcomplexes with 

more than two members, enabling a broader exploration of the parameter space. It prioritizes 

stronger points to create healthier offspring, speeding up the search for promising regions. The 

algorithm predominantly relies on the Nelder-Mead Simplex downhill search scheme for 

generating offspring, known for its resilience to non-smooth response surfaces. Occasionally, 

random offspring are introduced to maintain robustness, akin to mutations in biological 

evolution. Every member of the population is given an opportunity to contribute before 

potentially being replaced. This approach ensures that no valuable information contained within 

the sample population is overlooked, ensuring comprehensive exploration and exploitation of 

the search space.  
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2.2.4 Model performance evaluation 

The calibration of hydrological models should be approached as a multi-objective 

problem [28]. Within a multiple-criteria framework, the MSE and NSE criteria continue to be 

commonly used, because they can be computed separately for (1) different types of observations 

(e.g. runoff and snow observations; [2]), (2) different locations (e.g. runoff at multiple gauges; 

[21]), or (3) different subsets of the same observation (e.g. rising and falling limb of the 

hydrograph; [3]). 

The Kling-Gupta Efficiency (KGE) serves as a robust statistical tool for evaluating 

effectiveness of hydrological models, particularly in replicating streamflow or other 

hydrological variables. Gupta [20] said that a peculiar feature of the Nash Sutcliffe Efficiency 

criterion is the problematic interplay between α (the quantity) and r (linear correlation 

coefficient), which is likely to result in an underestimation of the variability in the flows. KGE 

provides a comprehensive assessment by considering three key aspects: correlation, bias, and 

variability. By using the ration of the means of the simulated and observed flows (β), it makes 

sense to enable a better hydrological interpretation of the bias component for the further analysis 

– as opposed to using βn, hence all three of the components now have their ideal values at unity. 

The KGE is computed with the formula as follow: 

𝐾𝐺𝐸 = 1 −  √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2   (5) 

Where: 

• 𝑟 is the Pearson correlation coefficient between observed and simulated values, 

• 𝛼 is a term representing the predictions errors variability; the ratio of the standard 

deviation of simulated observed values,  

• 𝛽 is a bias term; the ration of the mean simulated to mean observed values. 
 

The terms 𝛼 and 𝛽 are explained as follows: 

𝛽 = 
𝜇𝑠

𝜇𝑜
       (6) 

where: 

• 𝜇𝑠 is the mean of the simulated time series, 

• 𝜇𝑜 is the mean of the observed time series. 
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and 

𝛼 = 
𝜎𝑠

𝜎𝑜
        (7) 

where: 

• 𝜎𝑠 is the standard deviation of simulated data,  

• 𝜎𝑜 is the standard deviation of observed time series.  

The KGE combines three components into a single index, providing a comprehensive measure 

of model performance. It ranges from negative infinity to 1, with a perfect agreement yielding 

score of 1. Values closer to 0 or below indicate less accurate model performance.  
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2.2.5 Model setup 

The modeling process begins by defining the Digital Elevation model (DEM) 

parameters with a resolution of 2 meters by 2 meters. Along the x-direction, the model consists 

of 81 cells, while along the y-direction, it comprises 82 cells, resulting in a total of 6724 cells 

within the catchment area. Based on bore logs collected in the field, the soil depth is uniformly 

assigned a values of 10 meters, leading to a total of 10 vertical discretization layers. These 

layers start from the surface with the thinnest mesh stratum of 0.005 meters, crucial for 

accurately resolving the strong non linearities, especially during the transitions from rainfall to 

evaporation. As the layers progress deeper, they gradually increase in thickness, reaching a 

maximum of 2.25 meters. Consequently, the model encompasses 73964 nodes in total and 

393660 of Tetrahedra in 3-D mesh.  

The model simulation spans from 21 July 2019 to 20 January 2020. Meteorological data 

were recorded from a weather station located 3 km from the study area by the Regional Agency 

for Environmental Protection, Veneto Region. The data comprises information on potential 

evapotranspiration, actual evapotranspiration, and precipitation. To maintain consistency, no-

flow conditions are applied to both the bottom of the grid and all the lateral boundaries. Initially, 

the model is run using only as the subsurface model. Calibration of the model is conducted 

based on three field measurements: water table, pressure head and water content.  
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CHAPTER 3 
 
3. RESULTS  

3.1 Data Validation 
The laboratory-derived results underwent rigorous validation through two 

complementary methodologies: the Rosetta model and the Multipoint Triangle method. These 

approaches were instrumental in characterizing soil types and estimating predicted parameter 

values for individual layers with a high degree of precision. Leveraging the Rosetta model, 

Pedotransfer functions were employed to predict hydraulic properties across diverse input of 

datasets. Through a hierarchical analysis, this model optimized the utilization of available data, 

considering such as soil texture classes, percentages of sand, silt, and clay, as well as bulk 

density and water retention points. In this simulation, the model is run by utilizing the laboratory 

results providing the soil percentages and the bulk density. The outcomes, meticulously 

presented in Table 5 as shown below: 

Table 6. The comparison data validation from Rosetta model and Laboratory result 2019 

 

point_ID
Reference 

Depth cm
Soil type Ks (cm/day) Ks (m/h)

Ks cm/day 

(lab)

S1 0-0.2 0-20 Silt loam 115.97 0.04832 14

S1 0.2-0.4 20-40 Silt loam 97.36 0.04057 15

S1 0.4-0.6 40-60 Sandy loam 38.00 0.01583 1684

S1 0.6-0.8 60-80 Sandy clay 26.49 0.01104

S2 0-0.2 0-20 Silt loam 36.20 0.01508 410

S2 0.2-0.4 20-40 Loam 32.80 0.01367 22

S2 0.4-0.6 40-60 Sandy loam 26.99 0.01125 38

S2 0.6-0.8 60-80 Loamy sand 85.73 0.03572

S3 0-0.2 0-20 Silt loam 96.17 0.04007 601

S3 0.2-0.4 20-40 Loam 70.29 0.02929 409

S3 0.4-0.6 40-60 Sandy loam 36.84 0.01535 55

S3 0.6-0.8 60-80 Loamy sand 208.46 0.08686

S4 0-0.2 0-20 Silt loam 15.84 0.00660 2605

S4 0.2-0.4 20-40 Silt loam 16.53 0.00689 831

S4 0.4-0.6 40-60 Sandy loam 34.20 0.01425 142

S4 0.6-0.8 60-80 Loam 23.13 0.00964

S5 0-0.2 0-20 Silt loam 17.77 0.00740 984

S5 0.2-0.4 20-40 Silt loam 19.42 0.00809 97

S5 0.4-0.6 40-60 Sandy loam 62.14 0.02589 2591

S5 0.6-0.8 60-80 Sandy loam 64.21 0.02675
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The Rosetta model was simulated by having the input from Table 1 for bulk density and Table 

3 for the soil percentages. Table 5 emphasizes the value from the Rosetta model most likely 

having much smaller ranges than the value from laboratory result. The value saturated hydraulic 

conductivity value is 15.84 cm/day with the soil type of silt loam, while the highest value is 

only at 208.46 cm/day for loamy sand soil type. On the other hand, the laboratory data presents 

the lowest hydraulic conductivity value is 14 cm/day and the highest value is 2605 cm/day. 

Across the first three borehole, silt loam consistently exhibited higher value than sandy loam. 

Inversely, the fourth and the fifth borehole indicated that sandy loam has higher permeability 

than silt loam. For enhanced clarity, the comparison between the Rosetta analysis and 

laboratory analysis is presented in Figure 5. 

 
Figure 5. The plotted comparison data validation from Rosetta model and Laboratory result 2019 

Table 7. Van Genuchten parameters comparison between Rosetta results and Laboratory 2019 

 

θr θs n α θr θs α n

S1 0-0.2 0-20 0.082 0.489 1.558 0.003 0.0010 0.4080 0.0206 1.1020

S1 0.2-0.4 20-40 0.085 0.485 1.523 0.004 0.0010 0.3949 0.0034 1.1517

S1 0.4-0.6 40-60 0.061 0.391 1.455 0.011 0.0010 0.4413 0.0023 1.3260

S1 0.6-0.8 60-80 0.068 0.392 1.435 0.010

S2 0-0.2 0-20 0.105 0.482 1.393 0.007 0.0010 0.3306 0.0115 1.1300

S2 0.2-0.4 20-40 0.105 0.477 1.391 0.007 0.0010 0.3307 0.0151 1.1268

S2 0.4-0.6 40-60 0.065 0.364 1.444 0.014 0.0010 0.2658 0.0088 1.1892

S2 0.6-0.8 60-80 0.058 0.375 1.620 0.024

S3 0-0.2 0-20 0.086 0.486 1.519 0.004 0.0010 0.3491 0.0083 1.1318

S3 0.2-0.4 20-40 0.082 0.462 1.508 0.005 0.1629 0.3535 0.0022 1.5031

S3 0.4-0.6 40-60 0.062 0.360 1.488 0.017 0.0364 0.2376 0.0160 2.1005

S3 0.6-0.8 60-80 0.055 0.370 2.007 0.028

S4 0-0.2 0-20 0.089 0.428 1.499 0.004 0.0010 0.3554 0.0072 1.1373

S4 0.2-0.4 20-40 0.088 0.429 1.509 0.004 0.0010 0.3565 0.0081 1.1096

S4 0.4-0.6 40-60 0.062 0.392 1.456 0.010 0.0010 0.7295 0.0016 1.2242

S4 0.6-0.8 60-80 0.071 0.394 1.438 0.009

S5 0-0.2 0-20 0.084 0.419 1.500 0.004 0.0010 0.4341 0.0323 1.1001

S5 0.2-0.4 20-40 0.081 0.416 1.503 0.004 0.0010 0.3864 0.0047 1.1233

S5 0.4-0.6 40-60 0.056 0.381 1.507 0.020 0.0010 0.7692 0.0019 1.1240

S5 0.6-0.8 60-80 0.056 0.380 1.518 0.021

Rosetta model Laboratory 2019
point_ID

Reference 

Depth cm
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The result comparison for Van Genuchten parameters are presented on Table 6. According to 

the Rosetta analysis, the highest predicted porosity is 0.489, while the lowest stands at 0.36. 

Based on the laboratory result, it conversely presents a broader range, with the highest porosity 

at 0.7295 and the lowest saturated porosity at 0.2376. Figure 6 illustrates the consistency of 

Rosetta analysis, showcasing relatively minimal variability in saturated porosity values. In 

contrast, the laboratory result presents a significant gap between the lowest and the highest 

analysed value.  

 
Figure 6. Saturated porosity comparison between Rosetta model and Laboratory result. 

The Multipoint triangle method analysed the soil type based on input data of bulk 

density and the soil percentages input. As depicted in Table 5, the majority of the first two 

layers indicated silt loam type for across all boreholes. These results confirmed as the site is 

purposely for agricultural production. However, the lower two layers exhibited a diverse range 

of soil types, including sandy loam, loamy sand, sandy clay, and loam soil. This variability 

suggests the influence of underlying geological formations and hydrological processes on soil 

development and composition. The presence of distinct soil types in the deeper layers highlights 

the complex interplay factors shaping the soil profile, including variations in drainage 

conditions and historical land use practices as the first three boreholes are located in the 

previous paleochannels.  
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3.2 Preliminary simulation 
The result of preliminary simulation is presented in the following section focusing on 

three key variables: water content, pressure head, and water table dynamics. Each of these 

parameters provides valuable insights into the hydrological behavior and groundwater 

dynamics within the study area. By examining variations in water content, pressure head 

distribution, and fluctuations in water table level, a comprehensive understanding of the 

hydrological processes can be attained. The results below is started with the water content in 

the first borehole. 

3.2.1 Water content 

S1 (The first boreholes) 

The initial water content in the first borehole is computed by multiplying the water 

saturation value from the CATHY result by the porosity, taking into account the analysis for 

four distinct layers. Within each layer, two porosity values are considered. For the first layer, 

located at the depth of 0.1 m, the porosity is assigned a value of 0.36. However, it is noted that 

the simulation does not precisely match the observed shape of the graph depicted in Figure 7. 
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Figure 7. Water content dynamics of the first borehole 

However, at the depth of 0.3 m, the simulation result indicates an underestimated value, 

suggesting that the actual porosity may be higher than the assigned 0.38. Conversely, the layers 

at depths of 0.5 m and 0.7 m demonstrate improved simulation results compared to the first 

layer, with porosity values of 0.36 and 0.31, respectively. Notably, the is a significant disparity 
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between observed data and simulated results, it is only well-matched especially at depth of 0.3 

m (see Figure 7).  

S2 (The second borehole) 

 The analysis of water content in the second borehole revealed values that closely align 

with the porosity for each layer. Consequently, the outcomes for all layers mirror those observed 

in the first borehole.  

At depths of 0.1 m and 0.3 m, the graphs exhibit a similar pattern, albeit with a narrower 

gap observed at 0.3 m compared to 0.1 m. This suggests a higher precision in the results for the 

0.3 m depth. The same trend is noted at 0.7 m with a slight difference. However, the observed 

data deviate in pattern at the depth of 0.5 m (see Figure 8). Consequently, the porosity values 

need adjustment, indicating they should be higher as the results are underestimate. 
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Figure 8. Water content behaviour of the second borehole 

 

S3 (The third borehole) 

 The water content analysis for the third borehole falls short of accurately representing 

the observed data. Specifically, at depths of 0.1 m and 0.3 m, only a few segments of the graph 

align with the observed data. Conversely, there is a complete lack of correspondence between 

the simulated results and observed data at depths of 0.5 m and 0.7 m (Figure 9). Additionally, 

a notable observation is that all the results are overestimated, except for the depth of 0.7 m. In 

terms of porosity values, a distinction is noted in the second layer. Optimal accuracy is achieved 

with a porosity of 0.36, which is lower than that of the first and second boreholes. 
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Figure 9. Water content dynamics of the third borehole 
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S4 (The fourth borehole) 

The porosity values for each layer in the fourth borehole mirror those of the third 

borehole, with values of 0.36, 0.36, 0.36, and 0.31 for depths of 0.1 m, 0.3 m, 0.5 m, and 0.7 

m, respectively. In Figure 10, it is evident that the results at all depths of 0.1 m; 0.3; and 0.5 m 

fail to accurately align with the observed data, particularly evident during the initial stages of 

the simulation. Although both sets of results exhibit a similar pattern at a depth of 0.5 m, there 

is a noticeable gap between the observed and simulated data. In contrast, the graphs for the 0.7 

m depth display a better behaviour, with only minor discrepancies. Hence, the simulation could 

not replicate the similar water content dynamic observed the field measurements. 
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Figure 10. Water content dynamics in the fourth borehole 

 

S5 (the fifth borehole) 
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Figure 11. Water content behaviour comparison in the fifth borehole 

The analysis for the fifth borehole fails to replicate similar results to the observed values, 

particularly at depths of 0.1 m and 0.3 m. The simulation falls short in capturing the fluctuation 

of water content evident in the observed data (refer to Figure 11). Conversely, the results for 

depths of 0.5 m and 0.7 m manage to portray a relatively similar pattern to the observed data. 

Despite this, there is an underestimation in the simulation for the depth of 0.5 m and 0.7 m. 
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3.2.2 Pressure Head 

S1 (First Borehole) 

The simulation for the first borehole yielded results that deviate from the observed data, 

specifically at depths of 0.3 m and 0.5 m (see Figure 12). A notable observation is the presence 

of a data absence spanning from November 27th to December 29th, 2019. During this period, 

the simulated results fail to match with the observed, indicating a lack of accuracy in 

representing the actual pressure head dynamics. It is evident that only certain sections of the 

graphs exhibit a close resemblance around November 21st, 2019. Additionally, the absence of 

data for the depth of 0.7 m, rendering a meaningful comparison between the simulated results 

and observed data impossible.  

 

 
Figure 12. Pressure head dynamics in the first borehole 
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S2 (Second Borehole) 

 

 

 
Figure 13. Pressure head dynamics comparison in the second borehole 

 The comparison between observed and simulated data at a depth of 0.3 m in the second 

borehole revealed challenges due to substantial data gaps spanning from July 26th to October 

5th, 2019 (see Figure 13). These gaps in datasets significantly hindered the assessment of the 

simulation’s performance during this period. Hence, the simulated result at a depth of 0.3 m 

fails representing the pressure head dynamic. Conversely, a more favourable outcome was 
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observed at the depths of 0.5 and 0.7 m, where the simulated results exhibited almost well-

matched alignment with the observed data.  

S3 (Third Borehole) 

 

 
Figure 14. Water pressure head dynamic in the third borehole 

 The comparison between observed and simulated data at a depth of 0.3 m in the third 

borehole still occur challenges due to substantial data gaps persist from July 26th to October 5th, 

2019 (see Figure 14). These prolonged gaps in the datasets create obstacles in assessing the 

accuracy of simulation during this period, as they obscure vital information regarding the 

dynamics of pressure head. Consequently, the graphs depicting the simulated results fail to 

capture the nuanced variations in pressure head. At the depth of 0.5 m, the comparison reveals 

narrower gap between the simulated and the observed data, indicating a relatively better 

alignment between the two datasets. Although some discrepancies persist, particularly during 

certain periods, it shows more favourable comparison than at 0.3 m depth. However, despite 

the reduced data gaps, the simulation still faces difficulties in fully replicating the observed 

trends in pressure head. 
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S4 (Fourth Borehole) 

 

 

 
Figure 15. The pressure head dynamics in the fourth borehole 

 The comparison between observed and simulated data at the depths of 0.3 m and 0.5 m 

in the fourth borehole continues to pose challenges, primarily due to significant data gaps persist 

from July 26th  to October 2th, 2019 (see Figure 15). These extended gaps in the datasets hinder 

the assessment of simulation accuracy during this period, as they obscure crucial information 

regarding the dynamics of pressure head. Consequently, the graphs representing the simulated 

results fail to capture the nuanced variations in pressure head. At the depth of 0.7 m, the 

comparison indicates narrower gap between the simulated and the observed data, suggesting a 
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relatively better alignment between the two datasets. Although some discrepancies persist, 

particularly during certain periods, it shows more favourable comparison than at 0.3 m and 0.5 

depth.  

 

S5 (Fifth Borehole) 

 The assessment of observed versus simulated data at a depth of 0.3 m in the fifth 

borehole encountered difficulties attributed to significant data gaps spanning from July 27th to 

October 4th, 2019. In contrast, a more positive portrayal emerged at the depth of 0.5 m, where 

the simulation closely mirrored the observed data as depicted in Figure 16. The simulation 

demonstrated commendable accuracy in capturing the fluctuations in pressure head. 

Nevertheless, it is essential to acknowledge that certain discrepancies still exist between the 

simulated and the observed data. However, the comparison of pressure head at the depth of 0.7 

m cannot be presented due to the unavailability of observed data. 

 

 
Figure 16. The pressure head dynamics in the fifth borehole 
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3.2.3 Water table 

 

S1 (First Borehole) 

 
Figure 17. Water table comparison in the first borehole 

S2 (Second Borehole) 

 
Figure 18. Water table comparison in the second borehole 



40 
 

 

S3 (Third Borehole) 

 
Figure 19. Water table comparison in the third borehole 

 

S4 (Fourth Borehole) 

 
Figure 20. Water table comparison in the fourth borehole 
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S5 (Fifth Borehole) 

 
Figure 21. Water table comparison in the fifth borehole 

 Figure 16 to 20 present a detailed the comparison of water table levels between the 

simulated result and the observed data. In Figure 16, a consistent underestimation trend of water 

table is observed, with all simulated values falling below the corresponding observed data 

points. However, in the subsequent figures, the disparity between the simulated and observed 

values appears to decrease, indicating a closer alignment between two datasets. The exception 

is presented in the second borehole. It presents a bit better water table dynamic with the 

observed data. Hence, the most optimum graph is displayed from the second borehole, with 

simulated values closely matching the observed data. 
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3.3 Calibrated simulation 
The result of calibrated simulation is presented in the following section focusing on three 

key variables: water content, pressure head, and water table dynamics. On the aforementioned 

section regarding SCE-UA method, the model is calibrated taking into account those three key 

variables. Calibration utilized statistical approach of Kling-Gupta Efficiency (KGE). As a 

result, the model produces calibrated hydraulic and VGM parameters. The values are hydraulic 

conductivity (Ks) of silt loam of 22.4 cm/day, porosity (θs) of 0.367, n of 1.28, residual porosity 

(θr) of 0.0912, and inverse α of 0.229. The results below is started with the water content in the 

first borehole. 

3.3.1 Water content 

S1 (The first boreholes) 

The initial water content in the first borehole is computed by multiplying the water 

saturation value from the CATHY result by the calibrated porosity, taking into account the 

analysis for four distinct layers. For the first layer, located at the depth of 0.1 m, the calibrated 

simulation mirrors a closely trend that of the observed data (Figure 22).  
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Figure 22. Water content dynamics of the first borehole after calibration 

However, at the depth of 0.3 m and 0.5 m, the simulation result indicates an underestimation, 

leading to a significant disparity between observed data and simulated values. Conversely, the 

layer at depth 0.7 m demonstrates a trend with a narrow gap between the simulated and observed 

values (see Figure 22).  

 

S2 (The second borehole) 

 The calibrated analysis of water content in the second borehole revealed values closely 

align with the porosity at depths of 0.1 m and 0.5 m. The graphs exhibit a similar pattern with 

the observed data, albeit with a narrower gap observed at 0.1 and 0.5 m compared to 0.3 and 

0.7 m. This suggests a higher precision in the results for the 0.1 m depth after calibration. 

However, a noticeable underestimation is noted at 0.3 m and 0.7 m presented in the plots. 

Hence, the observed data deviate in pattern at the both depths (see Figure 23). 
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Figure 23. Water content behaviour of the second borehole after calibration 

 

S3 (The third borehole) 

 The calibrated water content analysis for the third borehole presents shortcomings in 

accurately representing the observed data. Notably, at depths of 0.1 m, 0.3 m and 0.5 m, most 

segments of the graph align with the observed data. Conversely, there is a complete lack of 

correspondence between the simulated result and observed data at depth of 0.7 m (Figure 24). 

Intriguingly, a notable observation is that all the result is only underestimated for the depth of 

0.7 m, indicating a significant disparity between the simulated results and actual measurements. 

This discrepancy underscores the need for further refinement and calibration to achieve a more 

accurate representation of water content dynamics at greater depths within the borehole.  
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Figure 24. Water content dynamics of the third borehole after calibration 

 

S4 (The fourth borehole) 

The assessment of calibrated water content dynamic in the fourth borehole reveals a 

consistent discrepancy, characterized by an underestimation across all depth. As illustrated in 

Figure 25, it is evident that the results at all depths fail to accurately align with the observed 

data, particularly evident during the initial stages of the simulation. The smallest gap shows at 
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the depth of 0.1 m where despite exhibiting a minorly similar trend to the observed pattern, the 

simulated data still fails to align closely. Conversely, at the depth of 0.3 m, the gaps widens 

between the data. This divergence is further exacerbated at the 0.5 m depth, where the simulated 

results deviate significantly from the trend of field measurement. Hence, the calibrated 

simulation fails to capture the nuanced variations observed in the field measurements, 

highlighting limitations in the model’s ability to accurately regenerate the observed water 

content dynamics. 
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Figure 25. Water content dynamics in the fourth borehole 

 

S5 (the fifth borehole) 
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Figure 26. Water content behaviour comparison in the fifth borehole after calibration 

The analysis for the fifth borehole fails to replicate similar results to the observed values, 

particularly at depths of 0.5 m and 0.7 m. The simulation falls short in capturing the fluctuation 

of water content evident in the observed data (refer to Figure 26). On the other hand, the results 

for depths of 0.1 m and 0.3 m manage to portray a relatively similar pattern to the observed 

data. Despite this, there is an underestimation in the simulation across all the depth. 
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3.3.2 Pressure Head 

 

S1 (First Borehole) 

The calibrated simulation for the first borehole presents deviations from the observed 

data, at both depths of 0.3 m and 0.5 m (see Figure 27). A notable observation is the presence 

of a data absence spanning from November 27th to December 29th, 2019 of  the observed data, 

poses a challenge for accurate comparison. During this period, the simulated results fail to align 

with the observed data, indicating a lack of accuracy in representing the actual pressure head 

dynamics as well as highlighting a potential limitation in the model's ability to capture nuanced 

temporal variations. Hence, an improved measurement is needed to gain an accurate analysis 

of the model since the model is calibrated based on the field measurement data availability for 

rigorous model calibration and validation. Moreover, the absence of data for the depth of 0.7 m 

further complicates the comparison between simulated and observed results.  
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Figure 27. Pressure head dynamics in the first borehole after calibration 

 

S2 (Second Borehole) 
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Figure 28. Pressure head dynamics comparison in the second borehole after calibration 

 The comparison between observed and calibrated simulation data in the second borehole 

revealed challenges almost for the all depths. At some point, the calibrated simulation was able 

to perform similar trend with the observed trend. But this result influences to the subsequent 

layer. Consequently, the patterns at the depth of 0.5 and 0.7 m failed to accurately generate the 

similar trend like the observed pattern. And both results have the similar pattern only from 

October 5th, 2019. Hence, the calibrated simulation only achieves a closer match at the depth of 

0.3 m.  
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S3 (Third Borehole) 
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Figure 29. Water pressure head dynamic in the third borehole after calibration 

 The comparison between observed and simulated data at a depth of 0.3 m in the third 

borehole still poses challenges, primarily due to substantial data gaps persisting from July 26th 

to October 5th, 2019 (see Figure 29). These prolonged gaps in the datasets create obstacles in 

assessing the accuracy of simulation during this period, as they obscure vital information 

regarding the dynamics of pressure head. Consequently, the graphs depicting the simulated 

results fail to capture the nuanced variations in pressure head. At the depth of 0.5 m, the 

comparison is affected by the upper layer gaps, indicating a data gap occurred at depth of 0.3 

m. Hence, it generates similar behaviour of pressure head dynamic. However, the simulation 

still faces difficulties in fully replicate observed trends. These challenges emphasize the need 

for comprehensive data to enhance simulation accuracy. 

 

S4 (Fourth Borehole) 

 



55 
 

 

 

 

 
Figure 30. The pressure head dynamics in the fourth borehole after calibration 
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 The comparison between observed and simulated data at the depths of 0.3 m and 0.5 m 

in the fourth borehole presents ongoing challenges, primarily due to significant data gaps persist 

from July 26th to September 5th, 2019  (see Figure 30). These gaps obstruct accurate assessment 

of simulation accuracy during this period, as they obscure crucial information regarding the 

dynamics of pressure head. Consequently, the graphs representing the calibrated simulation 

results fail to capture the nuanced variations in pressure head. It only shows a closer alignment 

starting from October 2nd, 2024. At the depth of 0.7 m, the comparison indicates wider gap 

between the simulated and the observed data, affected by the upper layer pressure head 

dynamics. 

 

S5 (Fifth Borehole) 

 The assessment of observed versus simulated data at a depth of 0.3 m in the fifth 

borehole encountered difficulties due to significant data absence spanning from August 31st, to 

September 9th, 2019. Consequently, the evident influenced to the subsequent layer at the depth 

of 0.5 m, where the simulation fails to mirror the observed data as depicted in Figure 31. Despite 

the simulation demonstrating commendable accuracy in capturing the pressure head 

fluctuations in pressure head, certain discrepancies still exist between the simulated and the 

observed data. However, it is worth noting that the comparison of pressure head at the depth of 

0.7 m is not feasible due to the unavailability of observed data. 
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Figure 31. The pressure head dynamics in the fifth borehole after calibration 
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3.3.3 Groundwater table 

 

S1 (First Borehole) 

 
Figure 32. Water table comparison in the first borehole 

S2 (Second Borehole) 

 
Figure 33. Water table comparison in the second borehole 
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S3 (Third Borehole) 

 
Figure 34. Water table comparison in the third borehole 

 

S4 (Fourth Borehole) 

 
Figure 35. Water table comparison in the fourth borehole 
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S5 (Fifth Borehole) 

 
Figure 36. Water table comparison in the fifth borehole 

 Figure 32 to 36 provided a detailed the comparison of water table levels between the 

calibrated simulation and the observed data. Notably, in Figure 32,  a consistent trend of  

underestimation in water table levels is observed, with all simulated values falling below the 

corresponding observed data points in the first borehole. However, in the subsequent figures, 

there is a discernible decrease in disparity between the simulated and observed values. This 

shift suggests a transition from underestimation to overestimation occurred in the simulated 

data, occurring approximately after 3000 hours (exist in the second until the fifth borehole). 
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CHAPTER 4 
 

4. DISCUSSION and CONCLUSIONS 
The comparison between the Rosetta model and laboratory analysis reveals variations 

in soil properties and their impacts on hydrological processes. Differences in hydraulic 

conductivity values indicate varying permeability levels influenced by soil texture and 

composition. Silt loam consistently shows higher conductivity in upper layers, while sandy 

loam prevails in deeper layers.  

Examining Van Genuchten parameters, Rosetta analysis predicts relatively consistent 

porosity values compared to the wider range observed in laboratory result. The Multipoint 

triangle method identifies predominant soil types, with silt loam dominating upper layers due 

to agricultural practices, while deeper layers exhibit diverse compositions influenced by 

geological factors. Finally, through SCE-UA method, the model generates calibrated hydraulic 

and VGM parameters, including a hydraulic conductivity (Ks) of 22.4 cm/day for silt loam, 

saturated porosity (θs) of 0.367, n of 1.28, residual porosity (θr) of 0.0912, and inverse α of 

0.229. 

The preliminary simulation starts with the water content. The first borehole’s water 

content computation multiplies CATHY’s water saturation values by the assigned porosity for 

its four layers. However, simulations do not perfectly matched the observed data, especially at 

0.3 m depth where they underestimate. Improvement is seen at 0.5 m and 0.7 m depths, but 

some disparity remains. For the second borehole, water content closely aligns with assigned 

porosity, mirroring the trends observed in the first borehole. However, some deviations occur, 

notably at 0.5 m depth, indicating adjustments needed in porosity values to address 

underestimation.  

In the third borehole, simulations presents notable challenges, with significant 

overestimations across most depths, except at 0.7 m depth. This discrepancy highlights 

inconsistencies in the assigned porosity values. Similar water content patterns are observed in 

the fourth borehole, with the water content dynamic patterns mirroring those of the third 

borehole. Despite this, simulations struggle to accurately replicate observed trends and the 

discrepancies also persist in the fifth borehole, notably at shallower depths of 0.1 m and 0.3 m, 
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where simulations consistently underestimate water content. While relatively closer matches 

are observed at depths of 0.5 m and 0.7 m, simulations still exhibit an underestimation trend.  

According to the result of calibrated simulation, the assessment of water content 

dynamics reveals notable discrepancies. While the simulation closely matches observed trends 

at certain depths in some boreholes, it underestimates water content at others. For instance, in 

the first boreholes, good alignment is seen at 0.1 m depth, but there is significant 

underestimations at 0.3 m and 0.5 m. Similarly, the second borehole shows close alignment at 

some depths but underestimates at others. In the third borehole, there are consistent 

underestimations, especially at 0.7 m depth. Then, the fourth borehole also exhibits 

underestimations across all depths, indicating modeling limitations. Likewise, the fifth borehole 

simulations struggles to replicate observed trends, particularly at deeper depths. 

The comparison of pressure head dynamics between observed and simulated data from 

multiple boreholes reveals challenges in hydrological modeling. Discrepancies, especially 

during specific time periods, emphasize the need for continuous and comprehensive data 

collection for accurate model calibration and validation in the first borehole. Additionally, the 

absence of data for certain depths complicates comparisons, indicating limitations in capturing 

temporal variations. Similarly, the second borehole exhibits challenges in replicating observed 

trends. In the third and fourth boreholes, substantial data gaps hinder accurate assessment of 

simulation accuracy, particularly during specific time intervals. Lastly, in the fifth borehole, 

significant data absence occurred leading to challenges in replicating trends of observed data, 

particularly at depths of 0.3 m and 0.5 m. Despite commendable accuracy in capturing pressure 

head fluctuations, discrepancies persist between simulated and observed data.  

 From the calibrated simulation, the first borehole has a notable trend deviations between 

the simulated and the observed data, especially at depths of 0.3 m and 0.5 m. The absence of 

observed data at certain period also complicates accurate comparison. Similar challenges are 

seen in the second borehole, where the simulated results are not able to generate the observed 

trends, particularly at deeper depths. Data gaps in the third and fourth boreholes hinder accurate 

assessment of simulation accuracy. Despite efforts, challenges persist in the fifth borehole due 

to data absence. Overall, continued refinement of model is still needed and necessary to improve 

accuracy in replicating the pressure head dynamics of field measurements.  

The comparison of water table levels between simulated and observed data reveals some 

interesting patterns from the preliminary result (figure 16 to Figure 20). Initially, the simulated 
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values consistently underestimate the observed water levels, especially noticeable in the first 

borehole. However, as we move to later figures, this gap between simulated and observed 

values narrows, showing better alignment.  

 Similarly, Figures 32 to 36 illustrate the comparison between calibrated simulation and 

observed data. Notably, in Figure 32, there's a persistent underestimation trend in the first 

borehole, gradually improving in later figures. Interestingly, a transition from underestimation 

to overestimation occurs in the calibrated data. Overall, the preliminary results present a batter 

water table dynamic behaviour than the calibrated results. These findings highlight the need for 

further model refinement to accurately capture water content dynamics across borehole depths. 

 A statistical analysis is also conducted to evaluate the hydrological model performance. 

Table 8 presents the KGE index of water content, revealing varying performance improvements 

at some layer for certain borehole. The highest value observed on the third borehole at the 0.1 

m depth with the value of 0.785. However, some decrease are also observed with the lowest 

index recorded at -5.218. In Table 9, the KGE index is pointed for pressure head. Notably, the 

performance indexes decreased after calibration for the whole layers, except at the 0.5 depth in 

the first borehole with the index of 0.133. The lowest index is -25.709 at 0.1 m depth in the first 

borehole. Regarding water table analysis, the model performance shows a consistent decrease 

of KGE index in every boreholes, except in the first borehole increasing from -2.25 to -0.224.  

Table 8. Kling-Gupta Efficiency Index for water content 

 

Table 9. Kling-Gupta Efficiency Index for pressure head 

 

 

 

Preliminary Calibrated Preliminary Calibrated Preliminary Calibrated Preliminary Calibrated

S1 -0.172 0.733 0.068 -4.257 0.013 -2.348 -0.078 -0.133

S2 -0.099 0.479 -0.001 -1.932 -0.095 0.363 -0.135 0.315

S3 -0.078 0.785 -0.082 0.451 -0.104 0.462 -0.082 -0.253

S4 -0.193 -0.863 -0.036 0.085 0.015 -5.218 -0.026 -0.873

S5 -0.096 0.749 -0.139 0.451 -0.120 -0.388 -0.330 -9.757

0.1 M 0.3 M 0.5 M 0.7 M
Water Content

Preliminary Calibrated Preliminary Calibrated Preliminary Calibrated

S1 -0.009 -25.709 -0.251 0.133

S2 -0.307 -0.866 0.338 -14.162 0.436 -4.121

S3 -0.371 -1.076 0.316 -20.399

S4 -0.231 -0.903 -0.053 -3.803 -0.287 -6.378

S5 -0.251 -0.251 0.017 -2.544

0.3 M 0.5 M 0.7 M
Pressure Head
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Table 10. Kling-Gupta Efficiency Index for water table 

 

 Hence, analysis of water content dynamics shows discrepancies between simulated and 

observed data across boreholes. Some alignment is seen, but underestimations persist, 

highlighting modeling limitations. Challenges also arise in replicating pressure head dynamics 

due to data gaps. Water table comparisons initially show underestimations, improving over time 

but still showing discrepancies. Statistical analysis confirms varies model performance, 

emphasizing the need for continuous data collection and model refinement for accurate 

predictions. Ongoing efforts are essential to improve the model’s accuracy in capturing water 

dynamics.  

In summary, the calibrated model did not perform as well as it was expected. This can 

be due to several reasons. First, the fact that the preliminary simulation was calibrated against 

water table measurements only. That is why the preliminary model performs better than the 

calibrated model for water table. As a consequence, also pressure head is captured relatively 

well by the preliminary model, as it is strongly correlated with the water table dynamics. 

However, despite the KGE for pressure head in the calibrated model being worse than the 

preliminary model, the dynamics is sometimes better captured by the former, which is able to 

simulate larger pressure head fluctuations that appear also in the measurements. This indicates 

that KGE might not be the best objective function in this kind of calibration exercise. In future 

developments, maybe other metrics (e.g., RMSE) can be tried. Finally the water content, which 

was not considered in the preliminary model calibration, improves significantly in the newly 

calibrated model that takes it into account. All these aspects highlight challenges that multi 

objective calibration (trying to match water table, pressure head, and water content 

simultaneously) poses in integrated surface-subsurface hydrological modelling. Also, different 

SCE-UA parametrizations and a better characterization of initial conditions could have helped 

improve the model performance, but due to lack of time this has been left for future 

developments. 

  

Preliminary Calibrated

S1 -2.250 -0.224

S2 0.424 -0.435

S3 0.394 -0.599

S4 0.494 -0.508

S5 0.446 -0.509

Water Table
0.3 M
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