
Università degli Studi di Padova
Dipartimento di Matematica

“Tullio Levi-Civita”
Laurea Magistrale in Informatica

Extending Gated Linear Networks for
Continual Learning

Tesi di Laurea Magistrale

Relatore Laureando
Prof. Nicolò Navarin Matteo Munari

Anno Accademico 2021-2022

Matteo Munari: Extending Gated Linear Networks for Continual Learning, Tesi
di Laurea Magistrale, © Aprile 2022.

“If a machine is expected to be infallible, it cannot also be intelligent.”

— Alan Turing

A Giulia

Abstract

To incrementally learn multiple tasks from an indefinitely long stream of data
is a real challenge for traditional machine learning models. If not carefully
controlled, the learning of new knowledge strongly impacts on a model’s learned
abilities, making it to forget how to solve past tasks.

Continual learning faces this problem, called catastrophic forgetting, devel-
oping models able to continually learn new tasks and adapt to changes in the
data distribution.

In this dissertation, we consider the recently proposed family of continual
learning models, called Gated Linear Networks (GLNs), and study two crucial
aspects impacting on the amount of catastrophic forgetting affecting gated linear
networks, namely, data standardization and gating mechanism.

Data standardization is particularly challenging in the online/continual learn-
ing setting because data from future tasks is not available beforehand. The
results obtained using an online standardization method show a considerably
higher amount of forgetting compared to an offline –static– standardization.
Interestingly, with the latter standardization, we observe that GLNs show al-
most no forgetting on the considered benchmark datasets.

Secondly, for an effective GLNs, it is essential to tailor the hyperparameters
of the gating mechanism to the data distribution. In this dissertation, we pro-
pose a gating strategy based on a set of prototypes and the resulting Voronoi
tessellation. The experimental assessment shows that, in an ideal setting where
the data distribution is known, the proposed approach is more robust to differ-
ent data standardizations compared to the original one, based on a halfspace
gating mechanism, and shows improved predictive performance.

Finally, we propose an adaptive mechanism for the choice of prototypes,
which expands and shrinks the set of prototypes in an online fashion, making the
model suitable for practical continual learning applications. The experimental
results show that the adaptive model performances are close to the ideal scenario
where prototypes are directly sampled from the data distribution.

v

Acknowledgements

I would like to express my gratitude to my supervisor, Professor Nicolò Navarin,
who guided me throughout the development of this work, and to Luca Pasa and
Daniele Zambon, whose help has been essential in these last months.

A special thank to Giulia who supports me in every challenge of life and is
always by my side.

I would also like to thank my friends Alberto, Matteo, Giulia and Melissa,
for the wonderful moments we spent, and continue to spend, together.

Finally, a big thank to my colleague and friend Giulio for the many discus-
sions and coffee breaks, which I really needed.

Padova, Aprile 2022 Matteo Munari

vii

Contents

1 Introduction 1

2 Background 5
2.1 Machine Learning . 5

2.1.1 Definition . 5
2.1.2 Settings . 6
2.1.3 Training a machine learning model 6
2.1.4 Neural Networks . 7

2.2 Continual Learning . 9
2.2.1 Definition . 10
2.2.2 Similarities with other machine learning paradigms 10
2.2.3 Task-aware vs Task-agnostic scenario 11
2.2.4 Task-aware Continual Learning Strategies 11
2.2.5 Task-agnostic Continual Learning Strategies 15

3 Gated Linear Networks 17
3.1 GLN description . 17

3.1.1 Geometric mixing . 18
3.1.2 Gated geometric Mixing 19
3.1.3 GLN formulation . 20
3.1.4 Training procedure of GLNs 20

3.2 GLN analysis . 21

4 Prototypes Gated Linear Networks 25
4.1 Prototype-based gating mechanism 25
4.2 Prototypes initialization . 26
4.3 Growing ProtoGLN . 27

4.3.1 Growth mechanism . 28
4.3.2 GrowPGLN Formulation 32
4.3.3 Removal mechanism . 33

5 Experiments 35
5.1 Experimental setting . 35

5.1.1 Models . 35

ix

CONTENTS

5.1.2 Hyperparameters . 35
5.1.3 Benchmarks . 36
5.1.4 Evaluation . 38

5.2 Context standardization on GLNs 41
5.3 Prototypes GLN . 44

5.3.1 Data-driven prototypes initialization 45
5.3.2 Random prototypes initialization 49

5.4 GrowPGLN . 49
5.4.1 Results with growth mechanism only 50
5.4.2 Results with both growth and removal mechanisms 54

5.5 Models comparison . 56

6 Conclusions 61

Abbreviations 63

Bibliography 65

x

List of Figures

3.1 Training procedure of GLN. The target is directly propagated to
all the neurons, which compute a local gradient to update the
weights. 21

3.2 Example of different region split. The same 2D dataset (black
dots) are split into seven different regions by the red hyperplanes
(left), while the blue hyperplanes are not able to separate the
data, generating only a single non-empty region (right). 22

4.1 Region split in 2D produced by of halfspace gating (left) and
gating with prototypes (right). The split produced by prototypes
corresponds to a Voronoi Tessellation. 26

4.2 Example of the importance of the distance threshold d. When
the value of d is too low (left), almost any new sample becomes a
prototype, while with a high value of d (right) no new prototype
is added. Only with the right value of d (center), a fair number
of prototypes can be added. 28

4.3 Example of a neuron’s prototype before (left) and after (right)
the removal of the prototype in the middle. When a prototype
is removed, the corresponding region is split and incorporated
in the neighbors regions. After the removal, samples falling into
the red shaded area are assigned to the closest of the remaining
prototypes. 33

5.1 Example of a single task samples of Permuted MNIST. Each
MNIST digit (upper images) is transformed using a random pixel
permutation, obtaining a different image (lower images). The
permuted images are meaningless for humans, but a neural net-
work should be able to find the characteristic pattern of a digit,
independently of the pixels relative position. 37

5.2 Task division in Split MNIST. Each task consist in a binary clas-
sification problem between two digits. The goal is to assign even
digits to class 0 and odd digits to class 1. 38

xi

LIST OF FIGURES

5.3 Permuted MNIST dataset 2D representation using UMAP. The
samples are colored by task. Samples of the same task are similar
to each other and there is a sharp distinction between different
tasks. 39

5.4 Split MNIST dataset 2D representation using UMAP. The sam-
ples are colored by task. There is no sharp distinction between
samples of different tasks. 40

5.5 Comparison between different methods for data standardization
on Permuted MNIST using GLNs. Shaded areas correspond to
+/- one standard deviation. 41

5.6 Comparison between different methods for data standardization
on Split MNIST using GLNs. Shaded areas correspond to +/-
one standard deviation. 44

5.7 Comparison between different methods for data standardization
on Permuted MNIST using ProtoGLN (data-driven initializa-
tion). Shaded areas correspond to +/- one standard deviation. . 46

5.8 Comparison between different methods for data standardization
on Permuted MNIST using ProtoGLN (data-driven initializa-
tion). Shaded areas correspond to +/- one standard deviation.
(magnification) . 46

5.9 Comparison between different methods for data standardization
on Split MNIST using ProtoGLN (data-driven initialization). Shaded
areas correspond to +/- one standard deviation. 47

5.10 Comparison between different methods for data standardization
on Split MNIST using ProtoGLN (data-driven initialization). Shaded
areas correspond to +/- one standard deviation. (magnification) 47

5.11 Comparison between different methods for data standardization
on Permuted MNIST using ProtoGLN (random initialization).
Shaded areas correspond to +/- one standard deviation. 49

5.12 Comparison between different methods for data standardization
on Split MNIST using ProtoGLN (random initialization). Shaded
areas correspond to +/- one standard deviation. 50

5.13 Comparison between ProtoGLN and GrowPGLN with different
dropout values on Permuted MNIST. All the results obtained
with GrowPGLN are between the upper bound (green) of data-
driven ProtoGLN and the lower bounds (red full and dotted lines)
of random ProtoGLN. Shaded areas correspond to +/- one stan-
dard deviation. 51

5.14 Comparison between ProtoGLN and GrowPGLN with different
dropout values on Split MNIST. The results obtained by Grow-
PGLN with dropout values set to 0.5 and 0.7 are between the
upper bound (green) of data-driven ProtoGLN and the lower
bounds (red full and dotted lines) of random ProtoGLN. Instead,
GrowPGLN with dropout set to 0.3 presents a drop on the first
task. Shaded areas correspond to +/- one standard deviation. . . 52

xii

LIST OF FIGURES

5.15 Comparison between ProtoGLN and GrowPGLN with removal
mechanism on Permuted MNIST. The dropout rate of Grow-
PGLN is fixed to 0.5. The results obtained with GrowPGLN
are between the upper bound (green) of data-driven ProtoGLN
and the lower bounds (red full and dotted lines) of random Pro-
toGLN. Shaded areas correspond to +/- one standard deviation. 55

5.16 Comparison between ProtoGLN and GrowPGLN with removal
mechanism on Split MNIST. The dropout rate of GrowPGLN is
fixed to 0.7. The results obtained with GrowPGLN are between
the upper bound (green) of data-driven ProtoGLN and the lower
bounds (red full and dotted lines) of random ProtoGLN. Shaded
areas correspond to +/- one standard deviation. 56

5.17 Comparison between GrowPGLN with (orange) and without (blue)
removal mechanism on Permuted MNIST. The dropout rate of
the GrowPGLN models is fixed to 0.5. The results obtained are
almost identical. Shaded areas correspond to +/- one standard
deviation. 57

5.18 Comparison between GrowPGLN with (orange) and without (blue)
removal mechanism on Split MNIST. The dropout rate of the
GrowPGLN models is fixed to 0.7. The results obtained are al-
most identical, with a slight difference in the accuracy on the last
task. Shaded areas correspond to +/- one standard deviation. . . 58

xiii

List of Tables

5.1 Continual Learning Benchmarks 36

5.2 Example of accuracy matrix . 40

5.3 Accuracy matrix (%) on Permuted MNIST with GLNs (feature-
wise online standardization). 43

5.4 Accuracy matrix (%) on Split MNIST with GLNs (feature-wise
offline standardization). 45

5.5 Accuracy matrix (%) on Permuted MNIST with data-driven Pro-
toGLN (feature-wise online standardization). 48

5.6 Accuracy matrix (%) on Permuted MNIST with GrowPGLN (dropout
rate = 0.5). 53

5.7 Accuracy matrix (%) on Split MNIST with GrowPGLN (dropout
rate = 0.7). 54

5.8 Accuracy matrix (%) on Split MNIST with GrowPGLN (dropout
rate = 0.3). 54

5.9 Accuracy matrix (%) on Split MNIST with GrowPGLN (dropout
rate = 0.5). 55

5.10 Average percentage accuracy (A) of all tested models. The up-
per part of the table reports the results relative to the methods
that can be directly applied to a continual learning scenario. The
lower part reports the models that are not suited for real contin-
ual learning scenarios, but that are useful for the comparison.
The results show that GrowPGLN achieve the best average ac-
curacy on both datasets between the practical solutions. The
model performances are also not so far from the upper bound of
ProtoGLN. 58

xv

LIST OF TABLES

5.11 Combination of accuracy matrix on Permuted MNIST of the
three best models directly applicable to continual learning scenar-
ios: GLN with online standardization, ProtoGLN (Proto) with
online standardization, GrowPGLN (Grow) with no standardiza-
tion (dropout = 0.5). Each cell reports the accuracy obtained
by GLN (top), ProtoGLN (middle) and GrowPGLN (bottom),
while each column shows the variation of the models’ accuracies
throughout the training process. GrowPGLN achieves a better
accuracy in every task at every step of training . The best results
of each cell are highlighted in bold. 59

5.12 Combination of accuracy matrix on Split MNIST of the three
best models directly applicable to continual learning scenarios:
GLN with online standardization, ProtoGLN (Proto) with on-
line standardization, GrowPGLN (Grow) with no standardiza-
tion (dropout = 0.7). Each cell reports the accuracy obtained
by GLN (top), ProtoGLN (middle) and GrowPGLN (bottom),
while each column shows the variation of the models’ accuracies
throughout the training process. GrowPGLN achieves a better
accuracy in every task at every step of training . The best results
of each cell are highlighted in bold. 60

xvi

Chapter 1

Introduction

The idea of building artificial human-like creatures has always fascinated human-
ity, just think about the ancient Greek myth of Talos, a giant bronze automaton
built to defend Crete from invasions by sea, or Leonardo da Vinci’s studies on
automata during the Renaissance.

From the 16th century, the development of Science, in particular Physics,
Mechanics and Electronics, led to machines able to ease, substitute and improve
human labor in almost any practical activity. Yet, those first machines were far
from being defined human-like, because even the simplest ability of a child was
out of their capabilities.

The breakthrough came in the 20th century, with the born of electronic
computers and Computer Science. Computers can calculate any computable
function, as proved by Turing [45], thus if we reduce each human action to just
a reaction to some stimuli, it is straightforward to see that with the right pro-
gramming, a computer can reproduce any human behavior. However, manually
defining programs capable of reproducing complex behaviors like talking and
reasoning is really hard, because we do not have a deep understanding of how
language and thoughts are produced by brain.

Nowadays, Machine Learning and Deep Learning seem to be the best way
to tackle such complex problems. These methods are designed to fill the gaps in
our knowledge exploiting data and extracting knowledge from them, i.e. they
use data to learn. One of the most popular machine learning models are Neural
Networks, because, since their revival in the 2010s, they proved themselves to
be astonishingly good and capable of outperforming humans in a variety of task,
e.g object recognition, translation or playing games.

However, there is still a huge gap between neural networks and humans.
This is due mainly to the lack of adaptation capabilities of the current models
and to the differences in the learning process.

A human being learns in an incremental way for its entire lifetime, contin-
ually adapting to new conditions and learning new abilities when required. In-
stead, traditional machine learning models are often trained for a finite amount
of time to solve a single or few tasks.

1

CHAPTER 1. INTRODUCTION

A recent machine learning paradigm, called Continual Learning, focuses on
the development of machine learning models that are trained in a more human-
like fashion. In fact, continual learning assumes that the data distribution and
task to solve can change with time and that the learning process is potentially
infinite.

Typically, learning in time-varying environments is carried out by training
a model on available data and, as new data is observed, the learned model
is updated according to an adaptation mechanism. Several hard challenges
about learning from streaming data have been recently discussed [4]. Among
all, the inability of retaining relevant knowledge from past tasks –also known as
forgetting– stands out as a major issue [33].

In this work we propose a new continual learning method based on a recently
proposed neural model called Gated Linear Network (GLN) [6, 46]. We first
study the problem of forgetting associated with GLNs. GLNs are deep neural
networks that exhibit an important advantage for addressing continual learning
applications. Differently from the majority of modern neural models, GLNs can
be efficiently trained without backpropagation, making them, in a broad sense,
more biologically plausible than other approaches [8]. Instead, GLNs employ a
gating mechanism at the neuron level that results in local learning rules based
on easy-to-solve quadratic optimization problems. In turn, this enables the
independent training of each GLN neuron. Compared to backpropagation, this
approach results more parallelizable since, after the forward pass, each neuron
can be updated separately.

We collect empirical evidence to understand what factors cause model for-
getting, and how it is possible to mitigate this problem. Firstly, we study the
problem of data standardization in GLNs and what is its impact on forget-
ting. We discovered a strong relation between the performance of GLN and
the adopted data standardization approach. In particular, the initialization of
hyperplanes used by the gating mechanism should be gauged with the data
distribution and preprocessing.

Finding a suitable combination between data standardization and neuron
gating is not straightforward, since that data distribution is allowed to change
over time. We collect empirical evidence that the choice of standardization
applied to the data highly influences the forgetting of GLNs.

Secondly, we note that knowing in advance the data distribution to prop-
erly calibrate the data standardization and the gating mechanism is often an
unrealistic assumption to make. Even estimating the data distribution through
acquired data is unreasonable in a continual learning setup.

To mitigate this problem, we propose an alternative gating definition based
on prototypes instead of hyperplanes. This variation brings several benefits,
including an easier way to incorporate the knowledge about the support of the
data distribution. We show that, when the prototypes provide a reasonably
good coverage of the data, then we obtain higher performance compared to the
original formulation. We also show that this approach is independent of the
adopted data standardization.

Thirdly, we introduce an effective mechanism for the selection of prototypes.

2

CHAPTER 1. INTRODUCTION

This mechanism do not require to know in advance the data distribution, in
agreement with continual learning assumptions.

Finally, we empirically demonstrate that the proposed methods displays less
forgetting.

This dissertation is structured as follows. Chapter 2 introduces the background
and related works. In particular, it gives an overview of the Machine Learning
field and compares it with the Continual Learning framework. It also covers all
the most important aspects of continual learning, going from a general defini-
tion to the state-of-the-art techniques. Chapter 3 describes the Gated Linear
Networks model, which this work is based on. It also analyzes the problems of
GLNs, specially the relation between gating mechanism and data standardiza-
tion. Chapter 4 presents Prototypes Gated Linear Networks, our first variation
of GLNs. It introduces also a growing version of Prototypes GLN, directly
applicable to continual learning scenarios. Chapter 5 reports and discusses
the experimental results, comparing our models to the original GLN. Finally,
Chapter 6 summarize the contribution of this work and discuss possible future
improvements.

3

Chapter 2

Background

This chapter presents the knowledge background necessary to understand our
contribution.

Starting from a general description of the Machine Learning field (Sec. 2.1),
we introduce the Continual Learning framework (Sec. 2.2), with its goals and
challenges.

We also present some models developed for continual learning in Section
2.2.4.

2.1 Machine Learning
Machine learning is a wide branch of the Artificial Intelligence field, whose
general goal is the development of artificial intelligent agents. There is not a
formal definition of intelligence, and the possibility of reproducing it artificially
is still discussed today. However, the general idea is that an intelligent machine
or program should be able to behave like a human, solving the same tasks a
human being is able to do, e.g. talking, listening, reading, walking etc.

The difference between machine learning and other artificial intelligence ap-
proach resides in the way this goal is pursued.

At the basis of machine learning there is a learning process, meaning that a
program should use some external knowledge to learn a particular ability.

The next sections give an overview of the machine learning field, with a
particular focus on neural networks.

2.1.1 Definition
We report the classical definition by Thomas Mitchel [34], stating:

“A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E”.

5

CHAPTER 2. BACKGROUND

In other words, such a program have to use a set of samples, called dataset,
to build a mapping from the input it receives to the correct output, according to
the task to solve. A machine learning dataset is usually made up of two parts:
a training set Tr, used in the training phase, and a test set Te, used to evaluate
the performance of the program in solving the task T.

The mapping from input to output is just a mathematical function, which
associate the correct output to each input received by the program. Usually,
this function, also called target function, is unknown and really hard to define
manually due to its complexity, that is why it is learned from the data.

The aim of machine learning, thus, is to develop models that approximate
the target function that can be trained using data.

2.1.2 Settings
There is a high number of tasks that can be solved with machine learning, like
regression, machine translation, denoising etc.

Depending on the type of tasks to solve and the data available, we have four
main machine learning settings:

• Supervised learning: the dataset is made by a set of (x, y) pairs, where
x is a sample and y is the correct output, called target. The knowledge
of target can be exploited to correct the model when it outputs a wrong
result. This setting is called supervised because it is as the correct target
is given by an external expert or supervisor.

• Unsupervised learning: the dataset is composed by just the examples
x, with no additional information. This type of dataset are usually used
to find patterns, groups or estimate the example distribution.

• Semi-supervised learning: only a small part of the dataset is labeled,
i.e. presents a target. This setting is a combination of the supervised and
unsupervised settings.

• Reinforcement learning: this setting is quite different from the pre-
vious ones. In reinforcement learning tasks, the target function maps a
environment state s to an action a that an agent can perform. After per-
forming the chosen action, the agent ends in a new state s′ and receives a
reward r, which can be a positive or negative real number, depending on
the state s′.

In this work, we focus on supervised classification tasks.

2.1.3 Training a machine learning model
In a supervised learning setting, we want to approximate a function f , such that
f(x) = y, where x is a sample and y the relative target. From a probabilistic
point of view, this is equivalent to use a finite set of (x, y) pairs to estimate

6

CHAPTER 2. BACKGROUND

the probability p(y|x). The goal is to use the estimated probability to perform
prediction over unseen data.

This is slightly different in a unsupervised setting, where the goal is to es-
timate the samples distribution p(x), which, for example, can be later used to
generate new samples or to detect outliers.

Estimating a probability from a set of samples to perform prediction on
unseen data works if we assume two conditions to be true. First, the data
distribution has to be stationary, meaning that do not change in time. In this
way, the estimated probabilities approximate the true distribution also when
the training is ended.

Second, the dataset has to be a representative sample of the data distribu-
tion. Since usually the dataset is entirely available from the beginning, we can
assume the data as independent and identically distributed (i.i.d.).

In general, these assumptions hold when we focus on a single task and the
dataset is big enough. However, in more complex scenarios, we need different
training approaches, as discussed in Section 2.2.

2.1.4 Neural Networks
Though many type of machine learning models and algorithms have been devel-
oped through the years (e.g. SVM [5], Decision Trees [38], Bayesian methods,
Clustering methods), Neural Networks are the models that in recent years have
gained more attention, because of their astonishing results in solving complex
task like object recognition or translation.

Neural Networks are machine learning models inspired by the human brain
structure. As human brain is made up of billions of interconnected neurons,
neural networks are defined by the composition of smaller units. These units
are called artificial neurons or just neurons.

The first artificial neuron, the Perceptron, was introduced in [39]. The Per-
ceptron is a mathematical abstraction of a human neuron, firing or not firing
depending on its input, and it is defined as

o = f(w⊤x)

where x ∈ Rn is the input vector representing a training sample, w ∈ Rn is a
vector of learnable weights and f(·) is a threshold function defined as

f(x) =
{︄

1 if x > 0,

0 otherwise
.

The original formulation adds also a bias term b, here omitted for simplicity,
because it can be incorporated into the weights defining w = [w1, ..., wn, b]⊤
and x = [x1, ..., xn, 1]⊤.

Multiple neurons can be combined into layers of the form

o = f(Wx)

7

CHAPTER 2. BACKGROUND

where W is a weights matrix, with each row corresponding to a single neuron’s
weights vector, and f(·) is applied element-wise. In a single layer neurons work
in parallel.

If we stack two layers of neurons, we obtain a Multi-layer Perceptron, where
the output of the first layer is fed into the second layer as

h = g(W(1)x)
o = f(W(2)h)

where W(1) and W(2) are the weights matrix of the first and second layer
respectively. We denote the first layer output as h, because internal output are
hidden, since they are not visible outside the network. The g(·) function, called
activation function, must be a non-linear function. Otherwise, the composition
of layers would be equivalent to a single layer where we have a weights matrix
W = W(1)W(2).

It has been proved [16, 9] that any Multi-Layer Perceptron with at least
a hidden layer and a sufficient number of hidden neurons is a universal func-
tion approximator, meaning that for any continuous function, it exists a set of
weights such that the network exactly represent that function. However, the
number of required neurons could be huge and there is no guarantee that a
learning algorithm would be able to compute those weights.

In [12], the authors argue that a deeper network architecture, i.e. with more
than two layers, can exponentially reduce the number of required neurons, for
some families of problems.

Thus, the basic neural network structure consist in stacking multiple lay-
ers. An L-layer neural network can be expressed by the following recursive
formulation {︄

h(0) = x
h(l) = g

(︁
W(l)h(l−1))︁ , l = 1, . . . , L.

(2.1)

where h(L) = o
The type of neural networks defined by equation (2.1) are called Feedforward

Neural Networks for their hierarchical architecture that makes the computation
flow going forward from the first to the last layer. There are many other net-
works types, like Convolutional Neural Networks or Recurrent Neural Networks,
which have other characteristics, but they are not object of this work. Thus,
when we use the term neural networks we refer to feedforward neural networks.

Training Neural Networks

Neural networks, as any machine learning model, depends on some parameters
that can be updated during the training process. In neural networks, these
parameters are the network’s weights, which are used to compute the output.

The goal of the training is to find the best value of the weights, minimizing
a loss function J , which measures the error done by the network.

8

CHAPTER 2. BACKGROUND

This is done via gradient descent, an first-order optimization technique that
iteratively update the network’s weights searching for a minimum of the loss
function. In fact, the loss function is unknown, thus, its minima can not be
determined analytically.

The gradient descent update formula is defined as

w← w− η · ∇wJ

where η is a scaling factor called learning rate and ∇wJ is the gradient of
the loss function J w.r.t. the vector of weights w. On each update step, the
gradient ∇ is calculated from the entire dataset, i.e. summing the gradients of
each sample.

As its name suggest, gradient descent exploits the gradient of the loss func-
tion to determine the best weights update. With a single layer it is easy to
compute the gradient w.r.t. the vector of weights w, but with a deeper net-
work the gradient computation is not straightforward. The computation of a
deep network gradient is done using backpropagation [40], which is based on
the chain rule of calculus and consist in splitting the gradient computation into
steps, starting from the final layer and going backward down to the first layer.
This mechanism, though very effective, can be very slow, because its complexity
is linear in the network depth. Moreover, the gradient descent algorithm usu-
ally needs multiple steps to converge to a solution, also re-using the same data
multiple times.

Usually, to reduce the computational time, the Stochastic Gradient Descent
(SGD) method is used. In SGD, the gradient is computed on a subset of data
and not on the entire dataset.

2.2 Continual Learning
Continual learning extends the classical machine learning framework presented
in Section 2.1. The focus of machine learning is usually on solving a single task.
In continual learning, instead, the learning process continues for an indefinite
period of time, in an environment where the data distribution and the task to
be solved might change over time [35]. Thus, there are three main differences:

• The learning process is potentially infinite. This means that a contin-
ual learning model should be designed to ideally work forever. Moreover,
this revolutionizes the way a model’s performances are evaluated, because
there is not a final moment where we can assume the model to be com-
pletely trained.

• The data distribution cannot be assumed stationary, meaning that the
target function that the model has to approximate is not always the same
and depends on time. For example, there could be a shift in the input
distribution, when completely new samples are observed, or even in the
target distribution, meaning that old sample are associated to a different
output in different moments.

9

CHAPTER 2. BACKGROUND

• The task to be solved might change over time. In this case the model has
to deal with multiple tasks, thus, it should be able to reuse old knowledge
and adapt to different environments.

In the next sections, we see how these relaxations of the usual machine learn-
ing process assumptions deeply affects the ability of machine learning models,
in particular of neural networks.

2.2.1 Definition
In [25], Mitchell’s machine learning definition is adapted to the continual learn-
ing framework as:

“A computer program is said to learn continually from experience if, given
a sequence of ephemeral partial experience Ei, a target function h∗ and per-
formance measure P, its performance in approximating h∗ as measured by P
improves with the number of processed partial experience Ei.”

The definition exposes a crucial aspect of continual learning: the data are
ephemeral and they are not all available from the beginning. This means that
the data distribution and/or the target distribution might change over time.

One of the most relevant issues of learning in a non-stationary environment
is that the neural networks tends to adapt to the current data distribution,
without retaining past knowledge.

This phenomenon is known as catastrophic forgetting, or simply forgetting,
because it is like the network forgets how to solve old tasks. Forgetting on neural
networks has been widely studied in literature [35, 36, 19, 25].

To better define catastrophic forgetting, consider a model already trained to
solve a task Ti. Catastrophic forgetting occurs whenever there is a significant
drop of the model performances in solving task Ti, after learning a new task Tj .

In neural networks, forgetting occurs when new data samples are signifi-
cantly different from past data, thus when there is a change in the data/target
distribution or in the task to be solved. The network keeps updating its weights
according to the new data, possibly compromising past knowledge. This leads
to a drop in performance on past tasks or over data coming from the initial
distribution. This näıve approach, consisting in just fine-tuning the network
with new data, does not apply any particular strategy to prevent forgetting.
Thus, it usually assumed as a lower bound on the model performances.

In Section 2.2.4, we present a variety of strategies designed to tackle catas-
trophic forgetting.

2.2.2 Similarities with other machine learning paradigms
Continual learning presents many common aspects with other machine learning
paradigms, the most similar being online learning [23, 36].

In the online learning setting, we assume that the data is available sequen-
tially. Also, the data distribution might change over time, as it happens in
continual learning. However, the focus of online learning is on the promptness

10

CHAPTER 2. BACKGROUND

of training, because models have to be updated frequently to keep pace with
the changing data distribution. Moreover, usually, in online learning we assume
that data from the past distribution will not be seen again. Thus, the problem
of catastrophic forgetting is not relevant in this setting, because the model is
evaluated according to the current data distribution and we are not interested
on the performance over past data.

Another paradigm related to continual learning is multi-task learning [23].
In this case the goal is to train a model able to solve multiple task at the same
time, feature required also in continual learning. In multi-task learning, though,
the data of different task is available from the beginning.

Also the transfer learning setting [23] is similar to continual learning: they
both update a pre-trained model to solve a new different task. Still, in transfer
learning there is no interest in preserving the original performances of the pre-
trained model and catastrophic forgetting is not considered a problem.

2.2.3 Task-aware vs Task-agnostic scenario
An important feature that strongly influences the performance of a model in
continual learning is the knowledge of the task to be solved.

The majority of the first developed continual learning methods, presented
in Section 2.2.4, assumes to know the task label at training time and some of
them even at test time. This scenario is commonly called task-aware, meaning
that the model knows the task it is going to solve. Basically, in this setting the
model receives a task label Ti in addition to the samples. Thus, it can exploit
that information to avoid forgetting, for example implementing a knowledge
consolidation mechanism when a task switch occurs.

The opposite scenario is called task-agnostic, meaning that the model does
not get the task label information neither at test time, nor at training time.
The task-agnostic scenario is more general, but also more challenging, because
developed models have to be robust to task changes without knowing when they
will happen.

This type of methods is presented in Section 2.2.5.

2.2.4 Task-aware Continual Learning Strategies
As explained in Sec. 2.2.1, continually updating a model with a näıve approach
leads to catastrophic forgetting.

The Cumulative approach is the simplest solution to try to solve this prob-
lem. It consists in retraining the model from scratch when the task changes,
accumulating all past data and reusing them for the training. It is evident that
this method have two strong limitations: memory consumption and computa-
tional complexity. The amount of data to be stored could be huge and the
training time grows linearly with the number of samples. For some applications
this could be sustainable, but in continual learning the training process is ideally
infinite, thus, at some point, the high memory requirements and computational
time would become a real issue.

11

CHAPTER 2. BACKGROUND

Thus, many methods have been proposed to face catastrophic forgetting.
They are usually divided into categories, depending on the adopted strategy.
In literature [28, 25], four main categories have been identified: architectural,
regularization, rehearsal and generative replay. There is also a fifth category
of hybrid methods, which comprehends those methods that combine different
approaches, since the different strategies are not mutually exclusive.

Each strategy is explained in detail in the following subsections, providing
some example of proposed methods.

Architectural methods

The main feature of architectural methods is the definition of functional areas
inside the network. The idea comes from the human neocortex-hippocampus
duality, as theorized by the Complementary Learning Systems theory [32]. Ac-
cording to this theory, the hippocampus is able to learn fast, storing and rec-
ognizing short-term episodic memories, while the neocortex is slowly trained to
recognize general patterns.

For instance, this is the approach Copy-Weights with Re-init [26] is based
on. This method, designed to solve image classification tasks, consist in defin-
ing two sets of weights as last layer of a convolutional neural network: a set of
consolidated weights cw and a set of temporary weights tw. The lower layers
of the networks are pre-trained and fixed. In CWR, the training is done only
on the temporary weights, which are re-initialized whenever a shift in the data
distribution occurs. Before the re-initialization, the temporary weights tw are
used to update the consolidated weights.

Of course, the number of distinct areas can be much larger than two. For
instance, Progressive Neural Networks [41] instantiates task-related neurons ev-
ery time a new task is encountered, thus the network architecture is expanded
dynamically. This leads to task-related areas of the network, that are trained
and selected only using samples of the related task, by freezing the other pa-
rameters. In this way, the weights related to old task can be preserved from
changing.

Another architectural approach is the one adopted by Context dependent
Gating (XdG) [30]. This method uses the task label as contextual information,
defining a task-related random mask that is used to deactivate a subset of the
neurons, obtaining a sparse network. In this way, each neuron is trained only
on a few tasks, the ones where it is not masked, reducing the probability of
forgetting.

Regularization-based methods

A regularization-based method consists in applying a regularization term to the
loss, such that the learning of new tasks do not interfere with the previously
learned ones.

12

CHAPTER 2. BACKGROUND

The loss function can be modified in many ways. For example, Learning
without Forgetting [24] exploits an extra loss term, called Knowledge Distillation
loss [15], which has the effect of penalizing strong variation of the network
predictions. To do so, for each new sample x the old model is used to predict
the output yold, as

yold ← predict(x)
These outputs are then used to compute the knowledge distillation loss

LKD(yold, ynew)

where ynew is the output of the updated model.

Another approach consists in penalizing the change of important parameters.
Lots of different methods are based on this idea, each one proposing different
ways to compute the parameter’s importance. For example, Elastic Weights
Consolidation [19] uses the diagonal of the Fisher information matrix F com-
puted on the old tasks parameters. In EWC, the loss is defined as

L = Lnew +
∑︂

i

λ

2 Fi(wi − wi old)

where Lnew is the loss term on the new task, λ set how important the old tasks
are w.r.t. the new one, the wi are the updated weights and the wi old are the
old weights.

Synaptic Intelligence (SI) [49] and Memory Aware Synapses (MAS) [1] have
a similar formulation for the loss

L = Lnew + λ
∑︂

i

Ωi(wi − wi old)

but the parameters importance Ω is computed using the loss curvature w.r.t.
the parameters in SI, and using the learned function curvature w.r.t. the param-
eters in MAS. The parameters Ω are recomputed whenever a task-switch occurs.

Another regularization method is Uncertainty-guided Continual learning with
Bayesian Neural Networks (UCB) [10]. In UCB each weight w is drawn from a
normal distribution w ∼ N (µ, σ2). Hence, during training, we do not learn the
exact value of w, but we estimate the parameters of the normal distribution it
is sampled from. In this case the parameters importance is given by the param-
eter’s uncertainty σ2. Intuitively, weights with low uncertainty (low variance)
are specialized in solving a particular task, while weights with high variance do
not influence the network’s output. The parameter importance in this case is
not used to penalize the loss computation, but to scale the learning rate η asso-
ciated to the parameter, reducing changes to certain weights while not limiting
uncertain weights. At each training step, the learning rate is updated as

ηi ← ηi · σi

hence low values of σ shrinks the learning rate, reducing the update delta, while
bigger values might increase it, with the opposite effect.

13

CHAPTER 2. BACKGROUND

Rehearsal methods

Rehearsal methods are based on the idea of retraining the network using past
data. The cumulative approach presented in Section 2.2.4 is an example of
full-rehearsal, i.e. all past data are kept and used to retrain the model, and its
limitation have already been discussed.

Hence, rehearsal methods are usually defined to select and store only the
most relevant samples, avoiding the issues of the cumulative approach. An
example of rehearsal method is ExStream [14].

In ExStream, a buffer is used to store class-related samples, which can be
considered as a set of prototypes. Each new sample is stored into the buffer,
until this one is full. When it is not possible to insert new data, the two most
similar prototypes pi and pj are merged, freeing up space. The merge is done
based on the number of times those prototypes have been merged before, as

p← nipi + njpj

ni + nj

n← ni + nj

where ni and nj is the number of sample a prototype represents.

Generative replay methods

The Generative Replay category is related to the previous one, because the ap-
proach used to mitigate the catastrophic forgetting is the same. As for rehearsal
methods, the model is retrained on both new and old tasks. The difference re-
sides in the samples used to retrain the network. While rehearsal methods just
store old samples, generative replay methods are able to generate data coming
from the learned distribution. In this way there is no need to store past data.

Moreover, Generative methods are versatile, because usually they can deal
with both supervised and unsupervised tasks.

An example of generative method is Generative Replay [43]. In GR, the
network is made of two distinct components: a generator and a solver. The
generator is trained to approximate the data distribution, while the solver learns
how to solve the task.

The fundamental aspect of GR is that each component is trained using
both the training data and the data generated by the generator. In this way,
the model is trained from data coming from both the current and past data
distributions.

Hybrid methods

The four strategies described in the previous sections do not exclude each other.
In fact, it is possible to combine different strategies.

For instance, AR1 [28] extends CWR, an architectural method, with SI, a
regularization method. In particular, instead of freezing most of the network
parameters as CWR does, they are trained with the same approach of Synaptic
Intelligence, hence penalizing variations of the most important parameters.

14

CHAPTER 2. BACKGROUND

2.2.5 Task-agnostic Continual Learning Strategies
As discussed in Section 2.2.3, the task-agnostic scenario is the most challenging,
because the model do not know when a task switch occurs.

There are two main approaches in dealing with a task-agnostic scenarios.
The first type of approach consist in actively estimating the current task or,
alternatively, the time when a task switch happens.

The other type of approaches does not explicitly predict the current task.
In fact, they usually assume to learn a single complex task and that the only
changes occur in the data and/or target distribution.

We list below some example of task-agnostic methods, grouping them in the
same categories introduced in Section 2.2.4.

Architectural

Two architectural task-agnostic methods are Gated Linear Network [46] and
Dendritic Gated Network [42].

The GLNs network architecture is similar to a feedforward network, with a
hierarchical structure of neurons. However, differently from standard neurons,
a GLN neuron presents multiple weights vectors. For each new sample, the
weights to be used are selected based on some external information, or context.
Hence, the network architecture changes depending on the environment condi-
tions. The idea is that the context brings information about the task to solve,
thus it can be used to configure the network via a gating mechanism, that for
each neuron selects context-related weights. Being the starting point of this
work, GLNs are presented in detail in Chapter 3

DGN, instead, is an extension of GLNs, which tries to make the gating
mechanism of GLNs more similar to the inhibitory mechanism of the neuron
synapses. In DGN, each neuron presents a set of branches, that, like the den-
drites of biological neurons, are linked to different subset of neurons of the lower
layer. In this case, the context is used to activate or deactivate each of the neu-
ron’s branches. Hence, the gating mechanism is not applied to the weights, but
to the neuron’s input.

Regularization

Task-Free Continual Learning [2] extends Memory Aware Synapses to the task-
agnostic case introducing a task-switch detection mechanism. The method mon-
itors the loss function and detects a task change when there is a quick growth of
the loss. The assumption is that when the model performs badly on new data,
it means that the task has changed.

This information is then used to decide when to update the weights impor-
tance Ω defined in MAS.

If the loss is stable w.r.t. the last few training steps, then the model is
learning the same task and the value of Ω can be safely updated. Instead, if the
loss presents a sudden peak, the task has probably changed and the parameters
Ω are fixed.

15

CHAPTER 2. BACKGROUND

Hybrid

Most of task-agnostic methods are hybrid, which means that they combine dif-
ferent strategies. For example, Hybrid generative-discriminative approach to
Continual Learning (HCL) [18] presents a dynamic architecture, because it can
expand the model when there is a drift in the data distribution. The model is
based on normalizing flows, thus it can be used to predict the task probability
and to detect a task-switch. Then, to train the normalizing flows, it can either
use a generative replay approach or regularization techniques.

Continual Neural Dirichlet Process Mixture (CN-DPM) [22] is based on a
similar idea. The model is composed by many components, which estimate
the data distribution to detect outliers, that are temporarily stored in a buffer.
Outliers are considered to come from a new task, thus, when the buffer is full,
the samples are used to expand the network and train the new added component.
Instead, for non-outlier data, each sample is used to update the network using
a generative replay approach.

The same idea and training mechanism of CN-DPM is present in Contin-
ual Unsupervised Representation Learning, with the only difference that the
component is implemented by a Variational Autoencoder [17].

Finally, Dark Experience Replay [7] combines a regularization and a re-
hearsal mechanism, applying a knowledge distillation loss, like Learning without
Forgetting, computed on a buffer of past samples. The stored samples are se-
lected via reservoir sampling, a technique that guaranties that the buffer content
is equivalent to a set of samples drawn uniformly from the past data.

16

Chapter 3

Gated Linear Networks

In this chapter we discuss in more detail the Gated Linear Network model.
Section 3.1 exhaustively describes the functioning of GLNs, while in Section
3.2 we analyze the limitations of the halfspace gating mechanism in a continual
learning setting.

3.1 GLN description
Gated Linear Networks (GLN) [46] are similar to neural networks, but their
functioning is pretty different.

In neural networks, each layer basically learns to recognize specific patterns
in the data. The pattern complexity grows with the level of the layer, until we
reach the final layer which uses the last representation it receives in input to
perform a prediction.

In GLNs, instead, each neuron is considered as an expert that directly pre-
dicts the probability of the target, combining and weighting the outputs of the
experts (neurons) of the previous layer. In this way, the network corresponds
to a hierarchical mixture of experts, where the top-level expert prediction is
considered as the output of the network. Moreover, each neuron chooses the set
of weights to use (and train) depending on the region of space the input data
falls into, with each neuron partitioning the input space differently. Hence, the
obtained regions changes from neuron to neuron.

From a high level perspective, the input-based weight selection can be in-
terpreted as if an expert changes its way of weighting the prediction of other
experts, based on same external information or context.

GLNs present multiple advantages, especially for continual learning. For exam-
ple, each neuron of a GLN can be trained locally and independently –instead of
exploiting backpropagation,— and its weights optimized according to a convex
loss, as discussed in Section 3.1.4. The absence of backpropagation makes GLNs
particularly adapt to a continual learning setting. In fact, the computational

17

CHAPTER 3. GATED LINEAR NETWORKS

complexity of an update step is reduced to constant time w.r.t. the network
depth, while with backpropagation the time required for the computation of the
gradient is linear.

Moreover, it has been shown that GLNs can approximate to arbitrary preci-
sion any function that represents a probability [47]. GLNs output values in [0,
1], which can be interpreted as probability measures.

These properties make GLNs suited for data-efficient batch learning, but
also for online and continual learning tasks.

As usual with neural networks, GLNs neurons are organized by layers, in
which the output of a layer becomes the input for the following one. However,
differently from other kinds of neural networks, each neuron is trained locally. In
fact, each neuron tries to approximate the target optimizing a local loss function.
Thus, the global error signal is directly sent to every neuron of the network.
Each neuron in a GLN can be described as a Geometric Mixer, presented in
Sec. 3.1.1, on which it is applied a gating mechanism, like the one described in
Section 3.1.2.

Although GLNs can be defined for both classification and regression prob-
lems, in this work we focus on the classification case.

3.1.1 Geometric mixing
A GLN’s neuron, called Geometric Mixing Neuron, is a computational unit of
the form

h ↦→ σ
(︁
w⊤σ−1(h)

)︁
, (3.1)

where h is the input vector to the neuron, w a parameter vector, σ(x) := 1/(1+
e−x) is the sigmoid function, and σ−1(x) its inverse –the logit function, applied
element-wise to vectors. We omit the bias terms for the sake of simplicity.

A neuron defined like in Eq. (3.1) assumes the components of the input vector
h to be in [0, 1], and returns a value in [0, 1] as well, such that the output of a
layer of neurons can be passed as input to the next layer neurons. Accordingly,
an L-layer network of geometric mixing neurons can be defined, for a generic
input data point x, as{︄

h(0) = σ(x)
h(l) = σ

(︁
W(l)σ−1(h(l−1))

)︁
, l = 1, . . . , L.

(3.2)

It is easy to show that a deep network of geometric mixing neurons like in
Eq. (3.2) is equivalent to a linear network with a final sigmoid activation, i.e.,

h(L) = σ
(︂

W(L)σ−1
(︂

σ · · ·
(︂

W(1)σ−1 (σ (x))
)︂)︂)︂

(3.3)

= σ
(︂

W(L) · · ·W(1)x
)︂

(3.4)

= σ

(︄
L∏︂

l=1
W(l)x

)︄
, (3.5)

18

CHAPTER 3. GATED LINEAR NETWORKS

because the intermediate sigmoid function at layer l simplifies with the logit
function at layer l + 1. To render nonlinear functions, each neuron implements
a gating mechanism.

3.1.2 Gated geometric Mixing

GLN neurons perform gating on side information, or contextual information,
associated with the input data. We denote with x ∈ Rd(x) the input data, and
with z ∈ Rd(z) context vectors representing the side information.

The gating of each GLN neuron consists in partitioning the context space
Rd(z) into non-overlapping regions. Each region is associated to a different
parameter vector w of Eq. (3.1), resulting in the so-called Gated Geometric
Mixing [31].

The association from contexts to regions is carried by a region assignment
function c. The effect of gating is that data instances with contexts falling in
the same region are processed by the same geometric mixer. The c function
is defined depending on side-information z associated to each input, but, as
mentioned before, usually z = x.

Halfspace gating

The original paper [46] proposes to implement the gating in the c functions with
a half-space gating mechanism. Given a vector z ∈ Rd(z) , and a hyperplane with
parameters ai ∈ Rd(z) and bi ∈ R, let us define a context function c̃i : Rd(z) →
{0, 1} as:

c̃i(z) =
{︄

1 if a⊤
i z > bi

0 otherwise

where hyperplane a⊤
i z = bi divides Rd(z) into two half-spaces. Assuming the

number k of regions to be a power of 2, we can stack log2(k) context func-
tions of the same kind, obtaining a higher-order context function c̃ : Rd(z) →
{0, 1}log2(k), i.e. c̃ = [c̃1, . . . , c̃k]⊤.

We can then easily define a function f mapping from {0, 1}log2(k) to {0, . . . , k−
1} ⊂ N, obtaining the function ĉ : Rd(z) → {0, . . . , k − 1}, ĉ = f ◦ c̃ = f(c̃(z)).
We can exploit the one-hot encoding of the output of such function and re-define
it as c : Rd(z) → {0, 1}k, c = one hot(ĉ).

Given a layer i, each neuron j computes a different function c
(i)
j : Rd(z) →

{0, . . . , k − 1}. For the j-th neuron at the i-th layer, the output of the context
function applied to z is thus the (one-hot) vector c(i)

j,(z).

19

CHAPTER 3. GATED LINEAR NETWORKS

Weight vector selection

Given the pair (x, z) as input, we can select the weights of a single neuron j at
the i-th layer (i.e. the j-th row of W(i)

(z)) as:

w(i)
j,(z) = Θ(i)

j c(i)
j,(z) (3.6)

where Θ(i)
j ∈ Rdi−1×k, di−1 is the number of neurons of layer i − 1, k is the

number of regions, and c(i)
j,(z) ∈ Rk. In the formulation, we assume for the sake

of simplicity that each neuron in the network considers the same number of
regions. However, having a variable number of regions per neuron is possible as
discussed for the model proposed in Section 4.3.

Notice that the main characteristic of a Gated Linear Neuron is that, in-
stead of having a single weight vector, each GL neuron depends on a matrix of
parameters Θ(i)

j .

3.1.3 GLN formulation
Given a neuron j at the i-th layer, its output is obtained from Eq. (3.1):

h
(i)
j,(x,z) = σ

(︃(︂
w(i)

j,(z)

)︂⊤
σ−1

(︂
h(i−1)

(x,z)

)︂)︃
, i ≥ 1 (3.7)

with h(0)
(x,z) = σ(x) and w(i)

j,(z) ∈ Rdi−1 the weight vector associated with the
region activated by the context z for the corresponding neuron according to
Eq. (3.6).

Finally, rewriting Eq. (3.7) in matrix form akin to Eq. (3.2), the output for
the i-th layer (with di neurons) for the input-context pair (x, z) is

h(i)
(x,z) = σ

(︂
W(i)

(z)σ
−1
(︂

h(i−1)
(x,z)

)︂)︂
, i ≥ 1 (3.8)

with h(0)
(x,z) = σ(x). W(i)

(z) ∈ Rdi×di−1 is a matrix where each row is the weight
vector associated to the region activated by the context z for the corresponding
neuron.

3.1.4 Training procedure of GLNs
GLNs have been introduced to operate in online and continual learning settings,
mainly because of the local training nature and sample efficiency.

Training the intermediate neurons of a GLN does not rely on backpropagat-
ing the errors through the layers. Instead, each neuron is trained as a standalone
classifier to predict the (binary) target [8].

We result in each neuron being trained independently optimizing a convex
problem. As you can see from the example reported in Figure 3.1, the binary
target is simultaneously propagated to all the neurons of the network. Since

20

CHAPTER 3. GATED LINEAR NETWORKS

each neuron predicts the output, we can directly compute the gradient based on
the neuron prediction, without propagating the error downwards. This allows
to update all neurons’ weights vector in a single step.

Figure 3.1: Training procedure of GLN. The target is directly propagated to all the neurons,
which compute a local gradient to update the weights.

Moreover, the gating mechanism in each neuron selects a subset of the input
data for each region, that are used (in an online setting) to train the weights of
the geometric mixer associated to that region. Finding the weights of a geomet-
ric mixer is a convex problem that is much easier to solve (i.e. requires fewer
data samples and fewer iterations) with respect to the non-linear optimization
usually associated to neural networks. In particular, the original paper shows
GLNs performance to be competitive with MLPs or SVMs with just a single
pass over the training data. GLNs achieve non-linearity via a gating mechanism
(random halfspace gating) that is not trained and different for each node. This
mechanism allows to decouple the errors of each neuron from the ones of the
others, thus obtaining an effective layer-wise representation.

3.2 GLN analysis
In GLNs, an effective gating mechanism should partition the context space to
optimize the neuron utilization and make the downstream task easier to solve.
In practice, this may translate into finding a partition of the space such that
the data in each region is well-fitted by a model of the form of (3.1). By this
argument, it follows that the choice of the hyperplanes for the gating should be
principled and reflect –at least in part– the data distribution. Otherwise, the
context space split would produce empty-regions, which are useless, because the
associated weights would never be selected and trained.

21

CHAPTER 3. GATED LINEAR NETWORKS

For instance, consider the regions produced by a single neuron in the example
reported in Figure 3.2. The black data points are divided into seven separate
groups by the red hyperplanes, because each hyperplane cuts the populated part
of the space in two. Hence, the dataset is used to train seven different sets of
weights. Instead, the blue hyperplanes are badly initialized and creates only one
non-empty region, thus only the weights associated to the region full of example
are trained, and the neuron is equivalent to a linear neuron.

Figure 3.2: Example of different region split. The same 2D dataset (black dots) are split into
seven different regions by the red hyperplanes (left), while the blue hyperplanes are not able
to separate the data, generating only a single non-empty region (right).

In GLNs, the hyperplanes used to performed halfspace gating are randomly
sampled from a normal distribution fixed beforehand. In particular, given a
hyperplane (a, b), a ∈ Rd(z) , b ∈ R, we have

a ∼ N (0, I)

b ∼ N (0, σ2)

where 0 ∈ Rd(z) is the zero vector, I is the identity matrix in Rd(z)×d(z) and σ2

a small fixed value.
This choice of hyperplanes generation it is easy to implement and it has

the nice property of producing orthogonal hyperplanes with high probability.
However, it also introduces a strong bias on the data distribution, because fixing
σ2 to a small value implies small values for b, hence the hyperplanes pass very
close to the origin. This implies that data should be approximately centered in
the origin for a hyperplane to split them into two groups.

For this reason, before feeding data into GLNs, they are initially standard-
ized. The standardization is performed feature-wise, i.e. each component of the
context vector z is transformed according to

zi ←
zi − µi

σi

A variation used by [46] in their code is by dividing by σi + 1. However, be-
cause the true expected value µi and standard deviation σi are not available, the
authors used the Welford’s online algorithm [48] to incrementally estimate them

22

CHAPTER 3. GATED LINEAR NETWORKS

in an online fashion, by recursively updating the current estimates according to
the following formula

µi(t + 1) = µi(t) + zi(t + 1)− µi(t)
t + 1

σ2
i (t + 1) = mi(t + 1)

t + 1
where

mi(t + 1) = mi(t) + (xi(t + 1)− µi(t))(xi(t + 1)− µi(t + 1)),

µi(1) = zi and mi(1) = 0.
The above iterations provide more and more accurate estimates of µ :=

[. . . , µi, . . .]⊤, σ := [. . . , σi, . . .]⊤ as time progresses, however it is associated
with two potential setbacks. The estimates improvement is guaranteed only
when the sequence of context vectors z is stationary and i.i.d., not always a
realistic assumption in continual learning tasks. Secondly, when performing
predictions on one of the initially learned tasks, it is possible that the GLN
parameters learned during the early stages have been trained with respect to a
data standardization that is substantially different from the current one. If so,
it is unlikely that the performance will remain comparably good when encoun-
tering the same task in the future.

To show that random halfspace gating introduces a strong bias on the data
distribution and that Welford’s algorithm is not well suited for continual learn-
ing, we perform experiments considering different approaches to standardize the
context features and calibrate the space partitioning with the data distribution.

As a first baseline method, we consider an offline standardization, where
the standardization parameter vectors µ, σ are computed from all the task
together, as if we knew also the future tasks. Of course, this approach is not
applicable in practice, nevertheless, it serves as a gold standard to discern the
different factors impacting on the training. We refer to this method as feature-
wise offline standardization, as opposed to the Welford’s data standardization,
which is feature-wise but online, and the following baseline method that is not
feature-wise.

Another possible approach consists in using a simpler standardization scheme,
in which we consider a single mean and standard deviation µ, σ ∈ R over all con-
text feature components. The context vectors are then standardized (centered
and scaled) as explained above. Also in this case, the statistics are computed
offline to avoid any effect caused by online estimation, and call the method
global (offline) standardization. When the distribution of context features is
overall the same across tasks, an accurate online estimation of the standard-
ization parameters should be obtained quicker by this method, because of the
fewer number of unknown parameters (only 2, µ and σ, instead of d(z)). In turn,
this makes the online version comparable to the offline one.

23

CHAPTER 3. GATED LINEAR NETWORKS

Finally, as last baseline, we consider applying no data standardization. This
last method serves as a lower bound on the performance.

The experimental results are reported and analyzed in Section 5.2.

24

Chapter 4

Prototypes Gated Linear
Networks

As discussed in Chapter 3, the initialization of the hyperplanes of GLNs can be
an issue in a continual learning setting. A solution would be to initialize the
hyperplanes in a data-driven fashion, however, this is not straightforward. We
would need to first estimate the region of space occupied by the data and then
choose a set of hyperplanes that pass through that region.

In this chapter, we propose an alternative GLN gating mechanism that is
based on prototypes instead of random hyperplanes. Relying on prototypes
makes it easier to exploit the knowledge about where regions should be dis-
tributed in the gating mechanism. In fact, since prototypes live in the context
space, for example, we could simply select some relevant data samples as pro-
totypes and they will induce a region split that follows the data distribution.

Moreover, using prototypes instead of hyperplanes to define the region has
an advantage in terms of the possible splittings that can be generated.

We refer to the GLN with such prototype-based gating mechanism as Pro-
totype Gated Linear Network (ProtoGLN).

In Section 4.3, we present a prototype initialization method that solves Pro-
toGLN’s initialization issues and make it applicable to practical continual learn-
ing scenarios.

The model, called Growing Prototype Gated Linear Network (GrowPGLN),
is able to adapt to changes in the data distribution expanding the number of
prototypes when needed. The expansion of prototypes is controlled by a removal
mechanism, which removes useless prototypes according to a simple heuristic.

4.1 Prototype-based gating mechanism
ProtoGLNs extend GLNs defining a new context function used by the gating
mechanism. Thus, the formulation of ProtoGLN is the same of Eq. 3.8

25

CHAPTER 4. PROTOTYPES GATED LINEAR NETWORKS

The context function c presented in Section 3.1.2 and exploited in (3.6) is
based on random halfspace gating.

We propose an alternative approach, which consist in defining a partition of
the space based on a set of prototypes. Each point in the space is then assigned
to the closest prototype, obtaining a Voronoi tessellation. Figure 4.1 compares
the region split obtain with both prototypes and random hyperplanes.

Figure 4.1: Region split in 2D produced by of halfspace gating (left) and gating with prototypes
(right). The split produced by prototypes corresponds to a Voronoi Tessellation.

To define this new gating mechanism, let us consider a matrix P(i)
j ∈ Rk×d(z)

of prototypes associated to the j-th neuron of layer i. The gating vector c(i)
j,(z) ∈

{0, 1}k can be formulated as:

c(i)
j,(z) = one hot

(︃
arg min

l
(∥p(i)

j,l − z∥)
)︃

(4.1)

where p(i)
j,l is the l-th row of P(i)

j and ∥·∥ is the 2-norm assessing the distance
between each row p(i)

j,l and context vector z.

4.2 Prototypes initialization
Depending on the prototypes initialization, ProtoGLNs can suffer from the same
issues of GLNs. In fact, a näıve random initialization strategy, presents the same
problems of randomly initialized hyperplanes. For instance, we could initialize
each prototype p ∈ Rd(z) sampling it from a multivariate normal distribution,
like

p ∼ N (0, Σ)

where 0 is the zero vector in Rd(z) and Σ is a diagonal covariance matrix with
small-value variances.

With this assumption, we introduce the same bias on the data distribution
of GLNs, thus the data have to be standardized, as discussed in Section 3.2.

However, this issue could be avoided applying a data-driven initialization
strategy. Though it is quite complex to compute the hyperplanes starting from
the data, it is trivial with prototypes, because they live in the context space.

In a traditional machine learning scenario, an easy way to initialize pro-
totypes could be to just sample them uniformly from the whole training set
Tr =

⋃︁T
i=1 Tr(i), i.e. p(i)

j,l ∼ U(Tr), where p(i)
j,l is the l-th row of P(i)

j and U(S)

26

CHAPTER 4. PROTOTYPES GATED LINEAR NETWORKS

denotes the uniform distribution over the elements of a finite set S. Of course
this is not directly applicable to a continual learning setting and Section 4.3
explores a more realistic data-driven initialization approach. However, it can
be used as a first upper-bound on the models performance, where we assume to
have knowledge of the entire dataset in advance.

The potential of ProtoGLN, compared to GLNs, is shown by the experimen-
tal results in Chapter 5.

4.3 Growing ProtoGLN
In Section 4.2, we discussed how the prototype initialization method is crucial
for the model to learn continually.

A good initialization strategy should consider two fundamental aspects:
1. prototypes should be close enough to the data manifold, such that each

region is non-empty

2. the data distribution may change over time, thus prototypes should be
continually updated

For these reasons, we define a mechanism that incrementally add new proto-
types to the model, selecting them from new data according to a distance-based
policy. Doing so, the prototypes exactly falls on the data manifold and they
adapt according to the changing data distribution. We call this growing ver-
sion of the model GrowPGLN. The complete growth mechanism is presented in
Sec. 4.3.1.

The idea of adapting a set of prototypes to the data distribution is not new
in literature and it is at the base of models like Neural Gas (NG) [29] and Self-
Organizing Maps (SOM) [20]. They basically consist in estimating the data
distribution by iteratively updating the prototypes, moving them towards seen
examples. However, both SOM and NG presents a fix number of adaptable
prototypes.

The first method that introduced a growth mechanism is Growing Neural
Gas (GNG) [11], which extends the Neural Gas model, letting new prototypes to
be allocated when needed, depending on the complexity of the data distribution.

This mechanism has been improved by Incremental Growing Neural Gas
(IGNG) [37], which increase the convergence speed of Growing Neural Gas by
allocating new prototypes when a sample falls far from the current set of pro-
totypes.

Our growth mechanism is inspired by the Neural Gas family of models and
exploits a distance-based policy, similar to IGNG, but with a significant dif-
ference: we stick to the idea of allocating new prototypes when a sample is
very far from current prototypes, however, we do not move the prototypes once
allocated.

In fact, moving the prototypes would change a neuron’s region split, causing
the learned weights vectors to be used on different part of the space. Hence, the
weights are no more related to the region of space they were trained on.

27

CHAPTER 4. PROTOTYPES GATED LINEAR NETWORKS

Note that it is not necessary to move prototypes to approximate the data
distribution, because they are chosen from the set of samples.

4.3.1 Growth mechanism
Let us consider a single neuron for simplicity, because the same mechanism is
applied in parallel to all neurons before each training step.

The Grow function, defined by the pseudocode of Algorithm 1, add a pro-
totype only if the set of prototypes is empty or if the distance of the current
context vector from the closest prototype is greater than a threshold d. In this
way new prototypes (and new regions) are added only where the context space
has not been explored yet.

The value of d is strictly related to the average distance between the samples
of dataset and has to be set carefully. A small value of d would lead to a huge
number of prototypes, while, on the other hand, with a high value of d only
few prototypes are added. Figure 4.2 intuitively shows the importance of the
hyperparameter d. Starting from an initial prototype (red point), if the value
of d is too small (left), any sample outside the red circle can be added to the
set of prototypes. When d is properly set (center), only the distant points can
be added. Finally, when d is too high (right), none of the samples can become
a prototype.

If we assume that the average distance between the samples of different tasks
is the same, then we could compute the value on a subset S of examples coming
from the first task as

d =
∑︁

1≤i<j≤|S| ||xi − xj ||
|S|·(|S|−1)

2

(4.2)

where xi, xj ∈ S.
Otherwise, the hyperparameter has to be chosen with standard hyperparam-

eter search techniques, e.g. performing a grid search over a range of values.

Figure 4.2: Example of the importance of the distance threshold d. When the value of d is too
low (left), almost any new sample becomes a prototype, while with a high value of d (right) no
new prototype is added. Only with the right value of d (center), a fair number of prototypes
can be added.

28

CHAPTER 4. PROTOTYPES GATED LINEAR NETWORKS

Algorithm 1: Grow(z,P,t)
Input: context vector z
Input: set of prototypes P
Input: threshold d
Output: updated set of prototypes P
if P = ∅ then
P := {z};

else
dist :=∞;
foreach p ∈ P do

dist← min(dist, ||p− z||)
end
if dist ≥ d then

add z to P
end

end
return P

To make the effect of the growing mechanism more clear, consider the case
of a new sample fed to the model. If its position in the context space is close to
one of the prototypes (which are past data), it means that the sample follows
the same distribution of previous data and the local space has already been
partitioned.

On the other hand, when the sample is far from all the prototypes, we can
have two possibilities: either the data distribution is shifting to a new location,
or the sample is an outlier.

Finding a change in the data distribution is the goal of the growing proce-
dure, thus adding a new prototype and a new region in the former case is the
right behavior. Instead, when the sample is an outlier caused by noise, it means
that in its surroundings there are no other samples and adding a new region
would be pretty useless. However, even though it is useless, adding outliers
as prototypes cause no harm to the model, because when a new prototype is
added, the Voronoi tessellation is changed locally, without affecting far regions.
Moreover, outliers can be safely removed by the removal mechanism discussed
in Section 4.3.3.

Dropout for neuron diversification

For each neuron, the growth mechanism is deterministic, thus the same data
stream will produce the same context space partition. This is a problem for
GrowPGLNs, because their strength is based on the different selection of the
neurons weights depending on the context vector.

If all neurons present the same set prototypes, the final region split would
be identical. A direct effect of an identical region split is that different examples
falling in the same regions would select the same set of weights. This means

29

CHAPTER 4. PROTOTYPES GATED LINEAR NETWORKS

that having a network where each neuron has k prototypes is equivalent to
have k linear models, one for each region of space, completely nullifying the
non-linearity introduced by the gating mechanism.

To differentiate the neurons, we decide to apply the well studied dropout
mechanism [44]. Since neurons are randomly deactivated, they see only a ran-
dom subset of the samples. Hence, they are trained on different data streams,
leading to different sets of prototypes and final region splits.

Dropout basically consist in deactivating a random subset of the neurons of
the network at each training step, and it was originally thought to improve the
generalization ability of neural networks and prevent them from overfitting the
training set. In fact, dropout is a form of bagging, an ensemble technique which
consist in training different models on subsets of the data. In this case, the
different models are the subnetworks obtained dropping part of the neurons.

Usually ensemble methods require aggregating the predictions of all the mod-
els of the ensemble, meaning that the storage and computational complexity at
prediction time is linear in the number of models. With neural networks this
can be avoided applying the weight scaling rule, as proved in [3], which consist
in multiplying the output of each neuron times 1 − pdrop, with pdrop dropout
probability of the neuron.

To prove that dropout can be applied to GrowPGLNs (and in general to GLNs),
we start from the proof of the weight scaling rule for Deep Linear Networks pre-
sented in [3]. The proof is based on a probabilistic approach and for ease of
comprehension it has been adapted using the matrix notation.

If we consider a single linear layer (without activation), the output can be
expressed in matrix form as

o = Wx

with x ∈ Rn input and W ∈ Rm×n weights matrix.
We can apply dropout to the layer simply defining a binary mask d ∼

Bernoulli(q), where q = [q1, ..., qn] is a vector of probabilities obtained from
the dropout probability vector pdrop as q = 1−pdrop. The mask d corresponds
to a multivariate Bernoulli random vector.
The mask is then multiplied element-wise to the input, obtaining

o = W(d⊙ x) (4.3)

The output vector o is a multivariate random variable, since d is generated by
a stochastic process. Thus, we can compute the expected value of o w.r.t. all
possible masks d ∼ Bernoulli(q).

For ease of notation we denote Ed∼Bernoulli(q) just with E.

30

CHAPTER 4. PROTOTYPES GATED LINEAR NETWORKS

The expected value of o can be computed as

E[o] = E[W(d⊙ x)]
= W(E[d⊙ x])
= W(E[d]⊙ x)
= W(q ⊙ x)

(4.4)

because W and x do not depend on the stochastic process, thus they are treated
like constants and can be taken out of the expectation. Note that E[d] =
q, because the expected value of a Bernoulli random variable is equal to the
probability of it being equal to one.

The same reasoning can easily be extended to a multi-layer network. Let us
consider a deep linear network with L layers. The output of each layer can be
computed with the following formula

h(i) = W(i)h(i−1), i ≥ 1

where h(0) = x.
Then, applying the binary dropout mask d(i) ∼ Bernoulli(q(i)) similarly to Eq.
(4.3) we obtain

h(i) = W(i)(d(i) ⊙ h(i−1)), i ≥ 1 (4.5)

Therefore, the expected value of the output of each layer w.r.t. all possible
dropout masks is

E[h(i)] = E[W(i)(d(i) ⊙ h(i−1))] (4.6)
= W(i)E[d(i) ⊙ h(i−1)] (4.7)
= W(i)(E[d(i)]⊙ E[h(i−1)]) (4.8)
= W(i)(q(i) ⊙ E[h(i−1)]) (4.9)

Differently from before, in this case h(i−1) depends on the stochastic process,
so the expected value of the output depends on the expected value of the input.

Unrolling the recursive formula we obtain that the expected value of the
output of the final layer is

o = h(L) = W(L)(q(L) ⊙ E[h(L−1)])
= W(L)(q(L) ⊙W(L−1)(q(L−1) ⊙ · · ·W(1)(q(1) ⊙ x)))

(4.10)

If we define Q(i) = diag(q(i)) ∀i ∈ [1, ..., L], Eq. (4.10) can be rewritten as

o = W(L)Q(L) · · ·W(1)Q(1)x (4.11)

We can see that, assuming the dropout probability to be the same for all the
neurons of a layer, we have

Q(i) = qiI

31

CHAPTER 4. PROTOTYPES GATED LINEAR NETWORKS

with I identity matrix of same shape of Q(i).
Finally, substituting this in Eq. (4.11), we obtain

o = W(L)qLI · · ·W(1)q1Ix
= W(L)qL · · ·W(1)q1x

(4.12)

which corresponds to multiply each weights matrix times 1 − pdrop of the cor-
responding layer or, equivalently, to multiply the output of each layer times
1− pdrop.

Therefore, the weight scaling rule is exact for deep linear networks.

It is possible to show that the rule is exact also if we assign a different dropout
probability to each neuron, but the proof would require additional considera-
tions and this assumption is sufficient for our purpose.

We proved that applying the weight scaling rule to a deep linear network for the
output computation is equivalent to compute the expected value of the output
w.r.t. all possible dropout masks, thus it is equivalent to bagging.

Showing that this results holds also for GrowPGLNs is straightforward mak-
ing some considerations.

First, GLN-based models are quite different from a simple linear network.
In fact, the weights selection using a context function introduces a non-linearity.

However, after we fix the input of the network that will be used as side
information, the weights are selected and fixed as well. So we can separate
the two phases (weight selection and output computation) and assume that the
selection of the weights is done before the output computation.

Another aspect is the application of the logit and sigmoid function to the
input and output of each layer respectively. However, this is not a problem
because their cumulative effect is null.

Therefore, after the weight selection step, we have a standard deep linear
network, as shown in Eq. 3.5 (the final sigmoid activation can be ignored).
Thus, the weight scaling rule is exact also for GLN-based models.

4.3.2 GrowPGLN Formulation
As for Prototypes GLNs, the final network formulation is the same of Eq. 3.8.
However, the growing nature of prototypes introduces a difference on the context
function.

In ProtoGLNs, as discussed in Section 4.1, the number of rows of the pro-
totypes matrix P(i)

j ∈ Rk×d(z) is fixed to k, the hyperparameter corresponding
to the number of regions, and the gating vector c(i)

j,(z) is defined in {0, 1}k.
Instead, in GrowPGLN, the number of regions is variable and can also be

different from neuron to neuron thanks to the differentiation introduced by
dropout. Thus, the number of regions k associated to a neuron becomes a
function of time, obtaining P(i)

j ∈ Rkij(t)×d(z) and c(i)
j,(z) ∈ {0, 1}kij(t). Instead,

the context function formulation is unchanged and it is the same of Eq. 4.1.

32

CHAPTER 4. PROTOTYPES GATED LINEAR NETWORKS

4.3.3 Removal mechanism
The growth mechanism described in Section 4.3.1 has an evident drawback:
there is not a limit to the number of prototypes added by each neuron. The
absence of a fixed limit makes sense in the continual learning framework, however
for practical application the memory requirement might become an issue. This
drawback is strongly related to the insertion policy, which is sensible to outliers
and cause an unnecessary additional partition of a neuron’s regions, as argued
in 4.3.1.

For this reason, we decide to add a simple removal mechanism, based on the
amount of training samples falling in each region. The idea is straightforward:
for each prototype we define a counter which stores the number of samples
assigned to it. Then, the removal policy just consist in periodically removing
the regions whose counter is less or equal than a given threshold, as defined by
the pseudocode of Algorithm2. The Removal function is defined over a single
neuron and is then applied to all neurons in parallel.

The mechanism is very simple but it is perfect to remove outlier prototypes.
To do so, we fix the threshold to 1, because empty regions are trained only
on a single sample, which is to the related prototype. Note that the time of
application of the removal mechanism is important, because also non-outlier
prototypes can result as trained on a single sample as soon as they are inserted.

The removal of a region, and the associated weights vector, can potentially
destroy the representation learned by the model, as shown in Figure 4.3. In
the example, a neuron initially have five prototypes, generating five regions.
Assume to remove the central prototypes: all the samples falling into the red
shaded area, would now be assigned to the closest of the remaining prototypes.
However, the remaining prototypes are not trained on the reassigned sample,
thus, for those samples, the neuron could predict completely wrong results.

Figure 4.3: Example of a neuron’s prototype before (left) and after (right) the removal of the
prototype in the middle. When a prototype is removed, the corresponding region is split and
incorporated in the neighbors regions. After the removal, samples falling into the red shaded
area are assigned to the closest of the remaining prototypes.

However, if a region is empty, the related weights vector is not trained, thus
the corresponding prototype can be safely removed.

The results reported in Section 5.4.2 show that applying this policy we can

33

CHAPTER 4. PROTOTYPES GATED LINEAR NETWORKS

significantly improve the memory consumption of GrowPGLN, without reduc-
ing the performance of the model.

Algorithm 2: Removal(P,n)
Input: set of prototypes P
Input: threshold n
Output: updated set of prototypes P
foreach p ∈ P do

if samples(p) ≤ n then
remove p from P

end
end
return P

34

Chapter 5

Experiments

In this chapter, we show and analyze the results obtained by the discussed
models on two continual learning benchmarks: Permuted MNIST and Split
MNIST.

The analysis highlights the limitations of GLNs, in particular the standard-
ization issue. Moreover, we show that our method, based on an alternative
data-driven gating mechanism, is robust to data standardization and it shows
almost no forgetting on the chosen benchmarks.

5.1 Experimental setting
This section reports the experimental setting to ease the reproducibility of the
experiments.

5.1.1 Models
We implement and analyze three different models: GLN, ProtoGLN and Grow-
PGLN. The models are developed using Python and they are based on the
PyTorch1 library. We make the code for replicating the experiments available
online2. For all the models, the weights of each neuron are learned incrementally
using online gradient descent; see Section 3.1.4 for further details.

Before running the experiments concerning the original GLN model, we had
care to verify the reproducibility of the results from the original paper.

5.1.2 Hyperparameters
To ease the results analysis, we decide to fix the hyperparameters shared by
the models. In this way it is simpler to understand what is the cause of an
improvement or decay in the performance.

1https://pytorch.org/
2https://github.com/matteo-munari/GrowPGLN

35

https://pytorch.org/
https://github.com/matteo-munari/GrowPGLN

CHAPTER 5. EXPERIMENTS

Two hyperparameters are fixed for all the experiments and models, using
the values reported in the original paper [46]:

• Model architecture: we keep the same number of layers and neurons de-
fined in the original GLN paper. Thus, all the models are based on a
3-layer GLN with 100→ 25→ 1 Gated linear neurons;

• Learning rate: we fix the learning rate to 0.01.

Other hyperparameters (e.g. number of regions, model initialization, dropout
rate) might vary depending on the dataset or the model. Hence, they are re-
ported in each experiment section.

Finally, for what concerns the context vectors z, in practical applications
(and in the original GLN paper), the input and the context vector are the same.
In this paper, we consider this case as well.

5.1.3 Benchmarks
Usual Machine Learning datasets are not well suited for training Continual
Learning models, because they generally deal with a single task. Such features
are too restrictive for a Continual Learning setting, that is way completely new
dataset have been developed.

For historical reasons, Continual Learning datasets are mainly related to the
vision and reinforcement learning fields, where retraining a model from scratch
requires a lot of time.

Most of continual learning datasets derives from standard machine learning
dataset. A common method consists in applying some transformation to the
dataset examples, one for each task. Another approach consist in splitting a
dataset into parts and associating each sub-dataset to a different task.

Table 5.1 reports some examples of Continual Learning benchmarks.

Table 5.1: Continual Learning Benchmarks

Dataset Tasks Samples per task
Permuted MNIST [13] 8 60 000

Split MNIST [49] 5 ∼ 10 000
Split CIFAR-10 [49] 5 10 000
Split CIFAR-100 [49] 10 / 20 5000 / 2500
MNIST-SVHN [18] 2 ∼ 60 000

Omniglot [21] 10-50 ∼ 20

In this work, we focus on the Permuted MNIST and Split MNIST bench-
marks.

Permuted MNIST [13] is a variation of MNIST where a random permutation
is applied to the pixels of the images, without changing the image labels. The
task consists in classifying the ten MNIST digits, but with the pixels permuted

36

CHAPTER 5. EXPERIMENTS

using the task-associated permutation. Thus, Permuted MNIST is well suited
for continual learning, because we can define an arbitrarily long sequence of
tasks by random sampling different permutations. In our work, we create a
sequence of 8 tasks. An important feature of this dataset is that the different
tasks are rarely conflicting against each other, because the number of possible
permutations is huge compared to the number of considered tasks and input
data from different task result almost orthogonal.

Figure 5.1 shows an example of Permuted MNIST data. A random permuta-
tion is applied to the original MNIST digits (upper part) obtaining completely
different images. The permuted images are meaningless for humans, but the
pixels still follow a pattern, since similar digits lead to similar permuted digits.
The images are not processed as 28x28 matrix, but as a unique vector in R784.

Figure 5.1: Example of a single task samples of Permuted MNIST. Each MNIST digit (upper
images) is transformed using a random pixel permutation, obtaining a different image (lower
images). The permuted images are meaningless for humans, but a neural network should be
able to find the characteristic pattern of a digit, independently of the pixels relative position.

The second dataset is Split MNIST [49], another this variation of MNIST.
The original dataset is split into five tasks, with each task presenting a binary
classification problem over two subsequent digits. The most common split,
which we adhere to, consist in dividing the digits as follows: (0,1), (2,3), (4,5),
(6,7), (8,9); note that each digit appears in only one of the 5 tasks.

The digit split is shown in Figure 5.2.
Also in this case, the images are flattened and represented as vectors in R784.

Differently from Permuted MNIST, in this dataset relevant pixels are shared by
different tasks, thus they might interfere with each other.

We discussed how in the Permuted MNIST tasks do not interfere with each
other, while in the Split samples from different tasks are close to each other.

37

CHAPTER 5. EXPERIMENTS

Figure 5.2: Task division in Split MNIST. Each task consist in a binary classification problem
between two digits. The goal is to assign even digits to class 0 and odd digits to class 1.

To see this qualitatively, we could plot the data distribution, but since the data
space is highly dimensional (R784) this is not straightforward.

We can do this using UMAP3, an open-source tool that can be used to reduce
the data dimensions to two, making them visualizable in 2D. An important
feature of UMAP exploit data locality to perform the transformation, with the
effect that close samples in the high dimension space are likely to be close also
in their reduced representation. Note, however, that distances in the reduced
space are not representative of the original space.

Figure 5.3 show the bidimensional representation of the Permuted MNIST
training set distribution. We can easily identify 8 clusters divided by color,
representing the eight different task. This means that the samples of each task
falls in a different region of space.

Figure 5.4, instead, shows the Split MNIST data distribution. In this case,
there is not a sharp separation between samples of different task, with many
data points falling in the same region of samples of other tasks.

5.1.4 Evaluation
Defining a protocol to evaluate continual learning models is really challenging.
Firstly, because the learning process might continue forever, thus we can not
simply test the model performance at the end of training. Secondly, the envi-
ronment conditions (training set and task) change over time, meaning that also
the test samples should change over time.

The most popular evaluation protocol consist in defining for each task i a
3https://github.com/lmcinnes/umap

38

https://github.com/lmcinnes/umap

CHAPTER 5. EXPERIMENTS

Figure 5.3: Permuted MNIST dataset 2D representation using UMAP. The samples are colored
by task. Samples of the same task are similar to each other and there is a sharp distinction
between different tasks.

training set Tr(i) and a test set Te(i). In this way, we can separately measure
the performance of the model on each task.

During training, it is possible to compute the accuracy on all test sets.
Usually, this is done exactly after learning each task, to compare the model
performances before and after learning a given task. These accuracies are col-
lected and visualized in a matrix R ∈ RN×N , called accuracy matrix, with N
number of tasks, where each entry Ri,j represents the accuracy of the model in
solving task j, after learning task i. An example of accuracy matrix is reported
in Table 5.2. Accuracy matrix are useful to visualize the evolving of a model
performance in time, reading the columns downwards starting from the top one.

Using the accuracy matrix, it is possible to compute different metrics, which
highlight different aspect of the model performances. For example, they can give
a measure of the overall accuracy of the model or of the amount of forgetting.

There are three important metrics that we can compute using the accuracy
matrix: Average Accuracy, Backward Transfer and Forward Transfer [27].

The Average Accuracy (ACC), computed as

ACC = 1
N

N∑︂
i=1

R(N,i) (5.1)

39

CHAPTER 5. EXPERIMENTS

Figure 5.4: Split MNIST dataset 2D representation using UMAP. The samples are colored by
task. There is no sharp distinction between samples of different tasks.

Table 5.2: Example of accuracy matrix

Te(1) Te(2) Te(3)

Tr(1) R1,1 R1,2 R1,3

Tr(2) R2,1 R2,2 R2,3

Tr(3) R3,1 R3,2 R3,3

gives a measure of the ability of the model in solving all learned tasks at the
end of training. It is useful when we are interested in the final performances of
the model.

Backward Transfer (BWT), instead, shows how much the learning of later
tasks increases or decreases the initial performances. The metric assumes a
positive value if the model accuracy on old tasks increases as new tasks are
seen, while it is negative if there is forgetting. BWT is computed as

BWT = 1
N − 1

N−1∑︂
i=1

RN,i −Ri,i (5.2)

Forward Transfer (FWT) is useful when we are interested in the effect that
learning a task has on future tasks. A high value of FWT means that the model
is able to reuse already learn knowledge to solve other tasks, performing transfer
learning. FWT is computed as

BWT = 1
N − 1

N∑︂
i=2

Ri−1,i − b̄i (5.3)

where b̄i is the test accuracy on task i computed as soon as the model is randomly
initialized.

40

CHAPTER 5. EXPERIMENTS

To globally consider the performance of the model, and not only at the end
of training, in [25] the author introduces a variation of the ACC metric, defining
it as

A =
∑︁N

i≥j Ri,j

N(N+1)
2

(5.4)

5.2 Context standardization on GLNs
In this experiment we compare the performance –and in particular forgetting
phenomena– obtained by combining the halfspace gating of Section 3.1.2 with
the four standardization strategies previously discussed in Chapter 3, namely,

1. online feature-wise standardization (original implementation with Welford’s
method);

2. offline feature-wise standardization (gold standard);

3. offline global standardization (lower bound);

4. no standardization (second lower bound).

For the Permuted MNIST dataset, the number of hyperplanes of the model
is set to 6, generating 26 regions, while on the Split MNIST dataset this hyper-
parameter is increased to 12, obtaining 212 regions. All the following results are
computed as mean over five runs.

We report the results achieved on the Permuted MNIST dataset in Fig-
ure 5.5.

Figure 5.5: Comparison between different methods for data standardization on Permuted
MNIST using GLNs. Shaded areas correspond to +/- one standard deviation.

41

CHAPTER 5. EXPERIMENTS

The blue line shows the results using Welford’s online algorithm for stan-
dardization, that corresponds to the results reported in the original GLN paper.

It is possible to see that the model with this standardization performs poorly
on the first (and, to a lesser extent, on the second) task, w.r.t. the others. Table
5.3, reports the accuracy matrix relative to the model, as defined in Section 5.1.4.
The empty cells, representing the accuracies on future tasks, are not relevant
for the study of forgetting, hence they are not computed.

From the first column of the table, we can see that initially the model is
able to achieve high accuracy on the first task (first row), however, the more
new tasks are seen, the more the accuracy drops. This behavior is not present
in the other tasks.

Interestingly, we found that this anomalous forgetting is strictly related to
the data standardization. In fact, when considering the gold standard offline
feature-wise standardization (red line), we see that the model does not show
any sign of forgetting, i.e., its performance is stable on all previously learned
tasks. The good performance is due to both the offline nature of this stan-
dardization (i.e. the transformation is fixed throughout learning) and the good
feature centering effect, that places the input data in a good region for the
considered hyperplanes. The global offline standardization (orange line) shows
lower performance, probably because it is not able to properly center the fea-
tures (more on this aspect later). Finally, using no standardization at all results
in the lowest performance, since the features are not centered.

The behavior of global and no standardization methods can be explained
analyzing the behavior of the halfspace gating mechanism of GLNs. The gating
hyperplanes are randomly sampled in a way such that they are orthogonal to
each other with high probability. Since the bias is sampled from a normal
distribution with small mean, the points of intersection of multiple hyperplanes
are close to the origin; thus, the data distribution should be approximately
centered on the origin for the model to split the data at the maximal extent.

42

CHAPTER 5. EXPERIMENTS

Ta
bl

e
5.

3:
A

cc
ur

ac
y

m
at

ri
x

(%
)

on
P

er
m

ut
ed

M
N

IS
T

w
it

h
G

LN
s

(f
ea

tu
re

-w
is

e
on

lin
e

st
an

da
rd

iz
at

io
n)

.

T
ra

in
in

g
T

es
t

Se
t

Se
t

T
e(0

)
T

e(1
)

T
e(2

)
T

e(3
)

T
e(4

)
T

e(5
)

T
e(6

)
T

e(7
)

T
r(0

)
94

.5
±

0.
1

-
-

-
-

-
-

-
T

r(1
)

93
.6
±

0.
1

94
.2
±

0.
2

-
-

-
-

-
-

T
r(2

)
93

.1
±

0.
2

93
.9
±

0.
1

94
.2
±

0.
1

-
-

-
-

-
T

r(3
)

92
.4
±

0.
2

93
.7
±

0.
2

93
.8
±

0.
2

94
.1
±

0.
1

-
-

-
-

T
r(4

)
91

.9
±

0.
1

93
.5
±

0.
1

93
.8
±

0.
2

93
.8
±

0.
2

94
.1
±

0.
2

-
-

-
T

r(5
)

91
.1
±

0.
3

93
.1
±

0.
1

93
.6
±

0.
1

93
.7
±

0.
2

93
.8
±

0.
2

94
.0
±

0.
2

-
-

T
r(6

)
90

.3
±

0.
4

93
.1
±

0.
2

93
.5
±

0.
2

93
.6
±

0.
2

93
.7
±

0.
1

93
.4
±

0.
2

94
.0
±

0.
2

-
T

r(7
)

89
.5
±

0.
6

92
.7
±

0.
2

93
.4
±

0.
2

93
.5
±

0.
2

93
.5
±

0.
2

93
.4
±

0.
2

93
.6
±

0.
3

94
.0
±

0.
1

43

CHAPTER 5. EXPERIMENTS

In Figure 5.6, instead, we report the results of the different standardiza-
tions applied to GLN on the Split MNIST dataset. In this case, the task that
shows the higher forgetting is the third one, probably because the learning of
the fourth or fifth task interferes with the learned representation. The observa-
tions done previously hold also in this case. In fact, using offline feature-wise
standardization gives quite stable performance in all tasks, while with the on-
line standardization the accuracies are a bit lower. Moreover, with global or no
standardization, there is a significant drop in performance on the first tasks.

Figure 5.6: Comparison between different methods for data standardization on Split MNIST
using GLNs. Shaded areas correspond to +/- one standard deviation.

However, even the best model (GLN with feature-wise offline standardiza-
tion), presents a quite high amount of forgetting on the third task, as we can
see from Table 5.4. The performances on the third task (third column), drop
significantly after learning the last task. This is probably due to the closeness
of the samples of the third and last tasks, as discussed in Section 5.1.3, meaning
that the last task samples selects and update the same set of weights trained
for the third task.

In general, from the plots we can observe that two factors influence the model
performance:

1. the less centered the data is, the more forgetting the model exhibits;

2. fixing the statistics dimensionality, the online standardization policy tends
to show more forgetting than the offline one.

5.3 Prototypes GLN
With this experiment, we show that substituting halfspace gating with gating
based on prototypes, presented in Chapter 4, leads to better results. To make

44

CHAPTER 5. EXPERIMENTS

Table 5.4: Accuracy matrix (%) on Split MNIST with GLNs (feature-wise offline standard-
ization).

Training Test Set
Set Te(0) Te(1) Te(2) Te(3) Te(4)

Tr(0) 99.8± 0.1 - - - -
Tr(1) 99.6± 0.0 98.1± 0.1 - - -
Tr(2) 99.6± 0.0 98.0± 0.2 98.2± 0.2 - -
Tr(3) 99.5± 0.1 97.1± 0.1 96.6± 0.3 98.9± 0.1 -
Tr(4) 99.3± 0.0 96.5± 0.0 87.5± 0.5 99.1± 0.1 95.4± 0.4

these results comparable with the ones obtained by the experiment in Section
5.2, we set the number of prototypes to 26 = 64 on the Permuted MNIST
dataset and to 212 = 4096 on Split MNIST. In this way the number of regions
per neuron is the same between models on the same dataset.

The experiment is performed with two initialization policies: a data-driven
initialization, which consist in sampling the prototypes from the whole dataset,
and a random initialization, where prototypes are sampled from a normal dis-
tribution.

5.3.1 Data-driven prototypes initialization
Initializing prototypes in a data-driven way, we found that not only the model
is more robust to the choice of statistics used for data standardization, but also
it is capable of achieving better accuracy.

Figures 5.7 and 5.9 (magnified in Figures 5.8 and)show how a model with
prototypes sampled uniformly from the entire dataset reaches high performance
on the Permuted MNIST and Split MNIST datasets, respectively, independently
of the data standardization. Notice that the only data standardization method
that shows some noticeable forgetting in the first task of Permuted MNIST is
Welford’s online algorithm. As discussed for the halfspace gating case, the model
is initially able to achieve an high accuracy on the first task, but as training
continues this accuracy drops, as shown by the first column of Table 5.5. Even
in this case, this forgetting is most likely due to the artificial concept drift
introduced by the online estimation of the standardization parameters, because
it is not present in successive task and with other type of standardization.

45

CHAPTER 5. EXPERIMENTS

Figure 5.7: Comparison between different methods for data standardization on Permuted
MNIST using ProtoGLN (data-driven initialization). Shaded areas correspond to +/- one
standard deviation.

Figure 5.8: Comparison between different methods for data standardization on Permuted
MNIST using ProtoGLN (data-driven initialization). Shaded areas correspond to +/- one
standard deviation. (magnification)

46

CHAPTER 5. EXPERIMENTS

Figure 5.9: Comparison between different methods for data standardization on Split MNIST
using ProtoGLN (data-driven initialization). Shaded areas correspond to +/- one standard
deviation.

Figure 5.10: Comparison between different methods for data standardization on Split MNIST
using ProtoGLN (data-driven initialization). Shaded areas correspond to +/- one standard
deviation. (magnification)

47

CHAPTER 5. EXPERIMENTS

Ta
bl

e
5.

5:
A

cc
ur

ac
y

m
at

ri
x

(%
)

on
P

er
m

ut
ed

M
N

IS
T

w
it

h
da

ta
-d

ri
ve

n
P

ro
to

G
LN

(f
ea

tu
re

-w
is

e
on

lin
e

st
an

da
rd

iz
at

io
n)

.

T
ra

in
in

g
T

es
t

Se
t

Se
t

T
e(0

)
T

e(1
)

T
e(2

)
T

e(3
)

T
e(4

)
T

e(5
)

T
e(6

)
T

e(7
)

T
r(0

)
95

.2
±

0.
1

-
-

-
-

-
-

-
T

r(1
)

94
.5
±

0.
2

95
.1
±

0.
2

-
-

-
-

-
-

T
r(2

)
93

.7
±

0.
1

95
.0
±

0.
1

95
.0
±

0.
1

-
-

-
-

-
T

r(3
)

93
.0
±

0.
2

94
.9
±

0.
1

95
.2
±

0.
1

95
.0
±

0.
5

-
-

-
-

T
r(4

)
92

.7
±

0.
3

94
.9
±

0.
1

95
.1
±

0.
1

94
.9
±

0.
6

95
.2
±

0.
1

-
-

-
T

r(5
)

92
.2
±

0.
4

94
.8
±

0.
1

95
.2
±

0.
1

94
.9
±

0.
5

95
.2
±

0.
1

95
.2
±

0.
1

-
-

T
r(6

)
91

.8
±

0.
4

94
.7
±

0.
2

95
.1
±

0.
1

94
.9
±

0.
4

95
.2
±

0.
1

95
.2
±

0.
1

95
.3
±

0.
1

-
T

r(7
)

91
.7
±

0.
4

94
.6
±

0.
2

95
.0
±

0.
2

94
.9
±

0.
6

95
.2
±

0.
1

95
.1
±

0.
1

95
.2
±

0.
2

95
.2
±

0.
1

48

CHAPTER 5. EXPERIMENTS

5.3.2 Random prototypes initialization
In Figure 5.11 we report the results on Permuted MNIST of the random prototypes-
based strategy with different standardization methods. While the relative order
of the different standardizations is the same compared to the random halfspace
gating, comparing with Figure 5.5, we note that, fixing the data standardization
method, random prototypes always show less forgetting compared to random
halfspace gating. The same observations can be made on the results on Split
MNIST reported in Figure 5.12.

However, if we compare random prototypes and data-driven prototypes, we
can see that the latter’s performances are higher on both dataset, even in the
ideal case where feature-wise offline standardization is applied.

This shows that a data-driven prototypes initialization is more effective that
simply drawing them randomly.

Figure 5.11: Comparison between different methods for data standardization on Permuted
MNIST using ProtoGLN (random initialization). Shaded areas correspond to +/- one stan-
dard deviation.

5.4 GrowPGLN
In this section we report the results regarding the experiments on the growing
version of ProtoGLN and we show that GrowPGLN is a practical data-driven
approach for continual learning.

We perform two distinct experiments, which study the model with and with-
out the removal mechanism, respectively in Section 5.4.1 and Section 5.4.2.
GrowPGLN presents a different set of hyperparameters with respect to the
other models. In particular, the dropout rate pdrop and the distance threshold
d have to be set.

49

CHAPTER 5. EXPERIMENTS

Figure 5.12: Comparison between different methods for data standardization on Split MNIST
using ProtoGLN (random initialization). Shaded areas correspond to +/- one standard devi-
ation.

The dropout rate is selected applying a grid search over a set of possible
values. The distance threshold is set to d = 10.16 on Permuted MNIST and it is
computed as the average distance between samples of the first task, according
to Eq. (4.2), because this value is similar for all the tasks. On Split MNIST,
instead, this assumption does not hold, thus the value for d is selected using
grid search. The results on Split MNIST are relative to d = 6.0.

Finally, since GrowPGLN is robust to different data standardizations, we
choose to consider for both dataset the original data, without applying any
standardization.

5.4.1 Results with growth mechanism only
Figure 5.13 shows the final accuracy obtained by GrowPGLN on the Permuted
MNIST dataset. We can observe that lines representing the accuracy of Grow-
PGLN with the different dropout value, fall between the upper bound of data-
driven ProtoGLN (green line) and the lower bound of random ProtoGLN (full
red line). Note that the lower bound refers to the model with offline feature-
wise data standardization. With no data standardization, the performance of
ProtoGLN are the ones showed by the red dotted line. However, GrowPGLN
performances are better the random ProtoGLN even if we consider the optimal
case where we can apply the feature-wise standardization.

The same pattern can be observed also on Split MNIST as shown by Figure
5.14, except for the results of the model with dropout probability = 0.3 (purple
line), which presents a significant forgetting on task 0.

The plots suggest that, with an optimal dropout value, the growing approach

50

CHAPTER 5. EXPERIMENTS

Figure 5.13: Comparison between ProtoGLN and GrowPGLN with different dropout values
on Permuted MNIST. All the results obtained with GrowPGLN are between the upper bound
(green) of data-driven ProtoGLN and the lower bounds (red full and dotted lines) of random
ProtoGLN. Shaded areas correspond to +/- one standard deviation.

is able to compete with data-driven ProtoGLN, almost reaching the upper bound
without knowing the whole training set at the beginning of training. Moreover,
note that GrowPGLN presents almost no forgetting, on both Permuted and Split
MNIST, as Table 5.6 and 5.7 show. The results refer to a dropout probability
of 0.5 on Permuted MNIST and of 0.7 on Split MNIST. The only reduction in
performance occurs on the third task of Split MNIST, however note that the
amount of forgetting is smaller than that of random ProtoGLN reported in Tab.
5.4.

51

CHAPTER 5. EXPERIMENTS

Figure 5.14: Comparison between ProtoGLN and GrowPGLN with different dropout values
on Split MNIST. The results obtained by GrowPGLN with dropout values set to 0.5 and 0.7
are between the upper bound (green) of data-driven ProtoGLN and the lower bounds (red full
and dotted lines) of random ProtoGLN. Instead, GrowPGLN with dropout set to 0.3 presents
a drop on the first task. Shaded areas correspond to +/- one standard deviation.

52

CHAPTER 5. EXPERIMENTS

Ta
bl

e
5.

6:
A

cc
ur

ac
y

m
at

ri
x

(%
)

on
P

er
m

ut
ed

M
N

IS
T

w
it

h
G

ro
w

P
G

LN
(d

ro
po

ut
ra

te
=

0.
5)

.

T
ra

in
in

g
T

es
t

Se
t

Se
t

T
e(0

)
T

e(1
)

T
e(2

)
T

e(3
)

T
e(4

)
T

e(5
)

T
e(6

)
T

e(7
)

T
r(0

)
94

.9
±

0.
1

-
-

-
-

-
-

-
T

r(1
)

94
.8
±

0.
1

94
.8
±

0.
0

-
-

-
-

-
-

T
r(2

)
94

.8
±

0.
1

94
.8
±

0.
0

94
.9
±

0.
1

-
-

-
-

-
T

r(3
)

94
.8
±

0.
1

94
.8
±

0.
1

94
.9
±

0.
1

94
.8
±

0.
1

-
-

-
-

T
r(4

)
94

.8
±

0.
1

94
.8
±

0.
1

94
.9
±

0.
1

94
.8
±

0.
1

94
.9
±

0.
1

-
-

-
T

r(5
)

94
.7
±

0.
1

94
.8
±

0.
1

94
.9
±

0.
1

94
.8
±

0.
1

94
.9
±

0.
1

94
.9
±

0.
1

-
-

T
r(6

)
94

.7
±

0.
1

94
.7
±

0.
1

94
.9
±

0.
1

94
.8
±

0.
1

94
.9
±

0.
1

94
.9
±

0.
1

94
.9
±

0.
1

-
T

r(7
)

94
.7
±

0.
1

94
.7
±

0.
1

94
.9
±

0.
1

94
.7
±

0.
1

94
.9
±

0.
1

94
.9
±

0.
1

94
.9
±

0.
0

94
.9
±

0.
0

53

CHAPTER 5. EXPERIMENTS

Table 5.7: Accuracy matrix (%) on Split MNIST with GrowPGLN (dropout rate = 0.7).

Training Test Set
Set Te(0) Te(1) Te(2) Te(3) Te(4)

Tr(0) 100.0± 0.0 - - - -
Tr(1) 99.8± 0.0 99.1± 0.0 - - -
Tr(2) 99.5± 0.0 99.0± 0.0 99.5± 0.0 - -
Tr(3) 99.3± 0.1 98.1± 0.1 98.0± 0.1 98.7± 0.0 -
Tr(4) 99.3± 0.0 97.2± 0.1 92.9± 0.1 98.8± 0.0 95.8± 0.1

GrowPGLNs can be applied to practical continual learning scenarios, with-
out the additional assumptions of GLNs and ProtoGLNs.

However, the choice of the hyperparameters, in particular the dropout rate, is
crucial to avoid forgetting. For example, analyzing the accuracy matrix obtained
with GrowPGLN with a dropout probability of 0.3 (Table 5.8) and 0.5 (Table
5.9), we can see that after learning the third task (third row), the accuracy on
the first task presents a sharp drop. The model, however, is able to recover
learning the fourth task. This effect is probably due to the similarities between
samples of different tasks of Split MNIST, as discussed in Section 5.1.3. Note
that with a higher level of dropout, Table 5.7, this behavior does not present.
The results suggests that when the tasks interfere with each other, a higher
dropout rate is preferable.

Table 5.8: Accuracy matrix (%) on Split MNIST with GrowPGLN (dropout rate = 0.3).

Training Test Set
Set Te(0) Te(1) Te(2) Te(3) Te(4)

Tr(0) 100.0± 0.0 - - - -
Tr(1) 99.3± 0.5 99.2± 0.1 - - -
Tr(2) 74.4± 2.6 99.0± 0.0 99.8± 0.0 - -
Tr(3) 94.0± 3.5 98.4± 0.0 98.4± 0.0 98.9± 0.0 -
Tr(4) 87.7± 5.8 97.6± 0.0 91.2± 0.1 99.0± 0.1 97.2± 0.2

5.4.2 Results with both growth and removal mechanisms
To show the effectiveness of the removal mechanism we re-run the experiment
presented in the previous section, with the additional prototypes removal step.
We compare only the growing models which gave the best results in the previ-
ous experiment, thus we set the dropout probability to 0.5 on Permuted MNIST
and to 0.7 on Split MNIST. To better study the removal mechanism, we ap-
ply it at the end of each task, to avoid any deletion of newly inserted prototypes.

Figure 5.15 and Figure 5.16 show the results obtained by GrowPGLN with

54

CHAPTER 5. EXPERIMENTS

Table 5.9: Accuracy matrix (%) on Split MNIST with GrowPGLN (dropout rate = 0.5).

Training Test Set
Set Te(0) Te(1) Te(2) Te(3) Te(4)

Tr(0) 100.0± 0.0 - - - -
Tr(1) 99.8± 0.0 99.1± 0.1 - - -
Tr(2) 94.0± 5.3 99.0± 0.1 99.7± 0.0 - -
Tr(3) 99.3± 0.0 98.4± 0.1 98.5± 0.1 98.9± 0.1 -
Tr(4) 99.3± 0.1 97.5± 0.0 91.8± 0.2 99.0± 0.1 96.8± 0.1

prototypes removal, respectively on Permuted and Split MNIST. The plot fol-
low the same scheme of Figures 5.13 and 5.14. We immediately see that the
performance are similar: for both dataset, the model accuracies fall between the
upper and lower bound.

Figure 5.15: Comparison between ProtoGLN and GrowPGLN with removal mechanism on
Permuted MNIST. The dropout rate of GrowPGLN is fixed to 0.5. The results obtained with
GrowPGLN are between the upper bound (green) of data-driven ProtoGLN and the lower
bounds (red full and dotted lines) of random ProtoGLN. Shaded areas correspond to +/- one
standard deviation.

Figure 5.17 and Figure 5.18, instead, shows a direct comparison of the best
performance of GrowGLN with (orange) and without removal mechanism (blue).

From the plots, it is evident that the removal mechanism almost does not
affect the performance of the models. On Permuted MNIST, these results are
not surprising, because analyzing the number of samples assigned to each region
we found that only few regions (<1%) were empty and thus removed.

However, on the Split MNIST dataset the number of empty regions is very
high, and more than half (∼ 55%) of useless prototypes are removed.

This means that the simple removal policy, described in Sec. 4.3.3, can be
an effective way to free up memory.

55

CHAPTER 5. EXPERIMENTS

Figure 5.16: Comparison between ProtoGLN and GrowPGLN with removal mechanism on
Split MNIST. The dropout rate of GrowPGLN is fixed to 0.7. The results obtained with
GrowPGLN are between the upper bound (green) of data-driven ProtoGLN and the lower
bounds (red full and dotted lines) of random ProtoGLN. Shaded areas correspond to +/- one
standard deviation.

5.5 Models comparison
We can now use the results reported in the previous section to analyze and
compare the different methods discussed in this work.

To make a quantitative comparison, we compute the average accuracy (A),
defined by Eq. (5.4), for each model and dataset. We choose to use the metric A,
instead of ACC of Eq. (5.1), to have a global measure of the learning process,
not only a final snapshot. For the GrowPGLN models we consider only the
model with dropout probability equal to 0.5 for the Permuted MNIST dataset
and to 0.7 on Split MNIST. The measures are reported in Table 5.10.

The results are split into two groups: the upper part of the table reports
the results relative to the methods that can be applied to a continual learning
scenario, without assumptions on the data distribution. Instead, in the lower
part of the table, we report the models that are not suited for real continual
learning scenarios, because they assume to know some statistics on the whole
dataset at the beginning of training. Thus, they are not good for learning from
an infinite stream of data.

As we can see, GrowPGLN is the best model on both dataset, with an av-
erage accuracy at the end of training of about 94.8% on Permuted MNIST and
98.3% on Split MNIST. Note that these results are achieved with no standard-
ization applied to the training data. Moreover, the performance of GrowPGLN
are not so far from the upper bound of ProtoGLN (data-driven).

Table 5.11 ad 5.12, instead, compares the accuracies of the best three mod-
els that can be trained in a continual learning environment during the whole
training process on the two datasets. The considered models are:

• GLN with online data standardization;

56

CHAPTER 5. EXPERIMENTS

Figure 5.17: Comparison between GrowPGLN with (orange) and without (blue) removal
mechanism on Permuted MNIST. The dropout rate of the GrowPGLN models is fixed to
0.5. The results obtained are almost identical. Shaded areas correspond to +/- one standard
deviation.

• ProtoGLN with randomly initialized prototypes and online data standard-
ization;

• GrowPGLN with no data standardization;

Each cell reports the accuracy obtained by GLN (top), ProtoGLN (middle) and
GrowPGLN (bottom).

The results on Permuted MNIST show that GrowPGLN reaches the highest
performance in every moment of the training process.

Also on Split MNIST, GrowPGLN achieves better performances than the
other models, with the only exception on the accuracies on task 3 and on task
4 soon after learning them. However, the most important result is the accuracy
of GrowPGLN on task 2 at the end of training, which is over 7% higher w.r.t.
the other models.

Finally, in general, GrowPGLN presents almost no sign of forgetting, as
discussed in Section 5.4.1.

57

CHAPTER 5. EXPERIMENTS

Figure 5.18: Comparison between GrowPGLN with (orange) and without (blue) removal
mechanism on Split MNIST. The dropout rate of the GrowPGLN models is fixed to 0.7. The
results obtained are almost identical, with a slight difference in the accuracy on the last task.
Shaded areas correspond to +/- one standard deviation.

Table 5.10: Average percentage accuracy (A) of all tested models. The upper part of the
table reports the results relative to the methods that can be directly applied to a continual
learning scenario. The lower part reports the models that are not suited for real continual
learning scenarios, but that are useful for the comparison. The results show that GrowPGLN
achieve the best average accuracy on both datasets between the practical solutions. The model
performances are also not so far from the upper bound of ProtoGLN.

Method Standard. Permuted Split
MNIST (%) MNIST (%)

GLN online 93.3±1.1 96.3±3.7
GLN none 91.5±3.5 92.1±12.3

ProtoGLN (random) online 93.9±0.7 97.1±3.7
ProtoGLN (random) none 92.2±2.9 90.0±14.5

GrowPGLN none 94.8±0.1 98.3±1.9
GrowPGLN + removal none 94.8±0.1 98.2±1.9

GLN offline 93.7±0.3 96.7±3.3
GLN global 92.6±1.6 94.7±9.0

ProtoGLN (data-driven) online 94.6±1.0 98.3 ±1.3
ProtoGLN (data-driven) offline 95.2±0.1 98.6±1.0
ProtoGLN (data-driven) global 95.2±0.1 98.7±1.0

ProtoGLN (data-driven) none 95.4±0.1 98.7±1.0
ProtoGLN (random) offline 94.2±0.3 97.5±3.1
ProtoGLN (random) global 93.3±1.4 93.7±11.0

58

CHAPTER 5. EXPERIMENTS
Ta

bl
e

5.
11

:
C

om
bi

na
ti

on
of

ac
cu

ra
cy

m
at

ri
x

on
P

er
m

ut
ed

M
N

IS
T

of
th

e
th

re
e

be
st

m
od

el
s

di
re

ct
ly

ap
pl

ic
ab

le
to

co
nt

in
ua

ll
ea

rn
in

g
sc

en
ar

io
s:

G
LN

w
it

h
on

lin
e

st
an

da
rd

iz
at

io
n,

P
ro

to
G

LN
(P

ro
to

)
w

it
h

on
lin

e
st

an
da

rd
iz

at
io

n,
G

ro
w

P
G

LN
(G

ro
w

)
w

it
h

no
st

an
da

rd
iz

at
io

n
(d

ro
po

ut
=

0.
5)

.
E

ac
h

ce
ll

re
po

rt
s

th
e

ac
cu

ra
cy

ob
ta

in
ed

by
G

LN
(t

op
),

P
ro

to
G

LN
(m

id
dl

e)
an

d
G

ro
w

P
G

LN
(b

ot
to

m
),

w
hi

le
ea

ch
co

lu
m

n
sh

ow
s

th
e

va
ri

at
io

n
of

th
e

m
od

el
s’

ac
cu

ra
ci

es
th

ro
ug

ho
ut

th
e

tr
ai

ni
ng

pr
oc

es
s.

G
ro

w
P

G
LN

ac
hi

ev
es

a
be

tt
er

ac
cu

ra
cy

in
ev

er
y

ta
sk

at
ev

er
y

st
ep

of
tr

ai
ni

ng
.

T
he

be
st

re
su

lt
s

of
ea

ch
ce

ll
ar

e
hi

gh
lig

ht
ed

in
bo

ld
.

T
r.

M
od

el
T

es
t

Se
t

Se
t

T
e(0

)
T

e(1
)

T
e(2

)
T

e(3
)

T
e(4

)
T

e(5
)

T
e(6

)
T

e(7
)

G
LN

94
.5
±

0.
1

-
-

-
-

-
-

-
T

r(0
)

Pr
ot

o
94

.6
±

0.
1

-
-

-
-

-
-

-
G

ro
w

94
.9
±

0.
1

-
-

-
-

-
-

-
G

LN
93

.6
±

0.
1

94
.2
±

0.
2

-
-

-
-

-
-

T
r(1

)
Pr

ot
o

94
.0
±

0.
1

94
.5
±

0.
2

-
-

-
-

-
-

G
ro

w
94

.8
±

0.
1

94
.8
±

0.
1

-
-

-
-

-
-

G
LN

93
.1
±

0.
2

93
.9
±

0.
1

94
.2
±

0.
1

-
-

-
-

-
T

r(2
)

Pr
ot

o
93

.3
±

0.
1

94
.4
±

0.
2

94
.4
±

0.
2

-
-

-
-

-
G

ro
w

94
.8
±

0.
1

94
.8
±

0.
1

94
.9
±

0.
1

-
-

-
-

-
G

LN
92

.4
±

0.
2

93
.7
±

0.
2

93
.8
±

0.
2

94
.1
±

0.
1

-
-

-
-

T
r(3

)
Pr

ot
o

93
.1
±

0.
2

94
.1
±

0.
2

94
.3
±

0.
2

94
.3
±

0.
1

-
-

-
-

G
ro

w
94

.8
±

0.
1

94
.8
±

0.
1

94
.9
±

0.
1

94
.8
±

0.
1

-
-

-
-

G
LN

91
.9
±

0.
1

93
.5
±

0.
1

93
.8
±

0.
2

93
.8
±

0.
2

94
.1
±

0.
2

-
-

-
T

r(4
)

Pr
ot

o
92

.8
±

0.
3

94
.0
±

0.
2

94
.3
±

0.
1

94
.0
±

0.
3

94
.5
±

0.
1

-
-

-
G

ro
w

94
.8
±

0.
1

94
.8
±

0.
1

94
.9
±

0.
1

94
.8
±

0.
1

94
.9
±

0.
1

-
-

-
G

LN
91

.1
±

0.
3

93
.1
±

0.
1

93
.6
±

0.
1

93
.7
±

0.
2

93
.8
±

0.
2

94
.0
±

0.
2

-
-

T
r(5

)
Pr

ot
o

92
.5
±

0.
3

93
.7
±

0.
2

94
.2
±

0.
1

94
.1
±

0.
2

94
.1
±

0.
3

94
.4
±

0.
1

-
-

G
ro

w
94

.7
±

0.
1

94
.8
±

0.
1

94
.9
±

0.
1

94
.8
±

0.
1

94
.9
±

0.
1

94
.9
±

0.
1

-
-

G
LN

90
.3
±

0.
4

93
.1
±

0.
2

93
.5
±

0.
2

93
.6
±

0.
2

93
.7
±

0.
1

93
.4
±

0.
2

94
.0
±

0.
2

-
T

r(6
)

Pr
ot

o
92

.0
±

0.
2

93
.7
±

0.
1

94
.2
±

0.
1

94
.2
±

0.
1

94
.1
±

0.
1

94
.1
±

0.
1

94
.5
±

0.
1

-
G

ro
w

94
.7
±

0.
1

94
.7
±

0.
1

94
.9
±

0.
1

94
.8
±

0.
1

94
.9
±

0.
1

94
.9
±

0.
1

94
.9
±

0.
1

-
G

LN
89

.5
±

0.
6

92
.7
±

0.
2

93
.4
±

0.
2

93
.5
±

0.
2

93
.5
±

0.
2

93
.4
±

0.
2

93
.6
±

0.
3

94
.0
±

0.
1

T
r(7

)
Pr

ot
o

91
.7
±

0.
2

93
.5
±

0.
1

94
.0
±

0.
1

94
.0
±

0.
1

94
.1
±

0.
2

94
.0
±

0.
1

94
.2
±

0.
1

94
.4
±

0.
1

G
ro

w
94

.7
±

0.
1

94
.7
±

0.
1

94
.9
±

0.
1

94
.7
±

0.
1

94
.9
±

0.
1

94
.9
±

0.
1

94
.9
±

0.
1

94
.9
±

0.
1

59

CHAPTER 5. EXPERIMENTS

Ta
bl

e
5.

12
:

C
om

bi
na

ti
on

of
ac

cu
ra

cy
m

at
ri

x
on

Sp
lit

M
N

IS
T

of
th

e
th

re
e

be
st

m
od

el
s

di
re

ct
ly

ap
pl

ic
ab

le
to

co
nt

in
ua

l
le

ar
ni

ng
sc

en
ar

io
s:

G
LN

w
it

h
on

lin
e

st
an

da
rd

iz
at

io
n,

P
ro

to
G

LN
(P

ro
to

)
w

it
h

on
lin

e
st

an
da

rd
iz

at
io

n,
G

ro
w

P
G

LN
(G

ro
w

)
w

it
h

no
st

an
da

rd
iz

at
io

n
(d

ro
po

ut
=

0.
7)

.
E

ac
h

ce
ll

re
po

rt
s

th
e

ac
cu

ra
cy

ob
ta

in
ed

by
G

LN
(t

op
),

P
ro

to
G

LN
(m

id
dl

e)
an

d
G

ro
w

P
G

LN
(b

ot
to

m
),

w
hi

le
ea

ch
co

lu
m

n
sh

ow
s

th
e

va
ri

at
io

n
of

th
e

m
od

el
s’

ac
cu

ra
ci

es
th

ro
ug

ho
ut

th
e

tr
ai

ni
ng

pr
oc

es
s.

G
ro

w
P

G
LN

ac
hi

ev
es

a
be

tt
er

ac
cu

ra
cy

in
ev

er
y

ta
sk

at
ev

er
y

st
ep

of
tr

ai
ni

ng
.

T
he

be
st

re
su

lt
s

of
ea

ch
ce

ll
ar

e
hi

gh
lig

ht
ed

in
bo

ld
.

T
r.

M
od

el
T

es
t

Se
t

Se
t

T
e(0

)
T

e(1
)

T
e(2

)
T

e(3
)

T
e(4

)

G
LN

99
.6
±

0.
1

-
-

-
-

T
r(0

)
Pr

ot
o

99
.8
±

0.
1

-
-

-
-

G
ro

w
99

.9
±

0.
1

-
-

-
-

G
LN

99
.6
±

0.
1

95
.1
±

0.
3

-
-

-
T

r(1
)

Pr
ot

o
99

.6
±

0.
1

97
.4
±

0.
2

-
-

-
G

ro
w

99
.6
±

0.
1

98
.8
±

0.
1

-
-

-
G

LN
99

.6
±

0.
1

96
.2
±

0.
3

96
.3
±

0.
2

-
-

T
r(2

)
Pr

ot
o

99
.5
±

0.
1

97
.9
±

0.
1

97
.9
±

0.
1

-
-

G
ro

w
99

.6
±

0.
1

98
.8
±

0.
1

99
.3
±

0.
1

-
-

G
LN

99
.4
±

0.
1

95
.1
±

0.
3

94
.0
±

0.
3

98
.6
±

0.
1

-
T

r(3
)

Pr
ot

o
99

.4
±

0.
1

96
.4
±

0.
1

95
.7
±

0.
2

98
.9
±

0.
1

-
G

ro
w

99
.4
±

0.
1

98
.0
±

0.
1

97
.7
±

0.
1

98
.7
±

0.
1

-
G

LN
99

.3
±

0.
1

95
.3
±

0.
3

86
.1
±

0.
4

98
.8
±

0.
1

92
.3
±

0.
3

T
r(4

)
Pr

ot
o

99
.2
±

0.
1

96
.0
±

0.
2

85
.1
±

0.
2

99
.0
±

0.
1

95
.1
±

0.
1

G
ro

w
99

.5
±

0.
1

97
.4
±

0.
1

93
.1
±

0.
1

99
.0
±

0.
1

94
.7
±

0.
1

60

Chapter 6

Conclusions

In this work, we proposed a new continual learning model based on Gated Linear
Networks. Our model shows no sign of catastrophic forgetting, hence, it is able
to learn a sequence of tasks, without forgetting hoe to solve old tasks when a
new task is learned.

We first collected empirical evidence that allowed us to understand where
the catastrophic forgetting exhibited by Gated Linear networks comes from. We
considered two commonly adopted continual learning datasets for our bench-
marks: Permuted MNIST and Split MNIST. In particular, we uncovered the re-
lationship between hyperplane initialization in the halfspace gating mechanism
and the distribution of the data in input, showing that data standardization
is crucial for such a gating approach. Moreover, we show that the online esti-
mation of standardization parameters has a significant negative impact on the
amount of forgetting the model exhibits. For Permuted MNIST, we show that
almost all the forgetting shown by GLNs is due to such standardization.

We then proposed an alternative gating mechanism that can be defined in
a data-driven way, unleashing the potential of GLNs. With a proper gating,
GLNs show almost no forgetting both in Permuted MNIST and Split MNIST.
Moreover, we showed that the performance of GLNs with prototype-based gat-
ing improves over GLNs with halfspace gating, even when the prototypes are
initialized without exploiting any information about the data distribution.

We also introduced an adaptive data-driven method for the initialization
of prototypes, which incrementally adapt the gating mechanism to the data
distribution respecting the continual learning assumptions.

Finally, we showed that the GrowPGLN model performs better than the
other, showing almost no sign of forgetting on both Permuted MNIST and Split
MNIST.

This work provides many possibilities for future developments, especially about
the growth and removal mechanisms.

Regarding the growth mechanism, for example, it would be interesting to
explore different neuron diversification method other than dropout. Also defin-

61

CHAPTER 6. CONCLUSIONS

ing an adaptive distance threshold for prototypes insertion that changes based
on data distribution would be an intriguing extension.

Instead, the removal policy can be further developed and made more com-
plex, for instance, defining a different importance measure for prototypes other
than the number of assigned examples.

Finally, the current growth mechanism can potentially insert an infinite num-
ber of prototypes, even applying with the removal mechanism. Thus, limiting
the model’s memory would be a challenging future development.

62

Abbreviations

CN-DPM Continual Neural Dirichlet Process Mixture.

CWR Copy Weights with Re-init.

DGN Dendritic Gated Network.

EWC Elastic Weights Consolidation.

ExStream Exemplar Stream.

GLN Gated Linear Network.

GNG Growing Neural Gas.

GR Generative Replay.

GrowPGLN Grow Prototype Gated Linear Network.

HCL Hybrid generative-discriminative approach to Continual Learning.

IGNG Incremental Growing Neural Gas.

MAS Memory Aware Synapses.

NG Neural Gas.

PNN Progressive Neural Network.

ProtoGLN Prototype Gated Linear Network.

SGD Stochastic Gradient Descent.

SI Synaptic Intelligence.

SOM Self-Organizing Map.

SVM Support Vector Machine.

63

Abbreviations

UCB Uncertainty-guided Continual learning with Bayesian Neural Networks.

XdG Context dependent Gating.

64

Bibliography

[1] R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuyte-
laars. Memory aware synapses: Learning what (not) to forget. CoRR,
abs/1711.09601, 2017.

[2] R. Aljundi, K. Kelchtermans, and T. Tuytelaars. Task-free continual learn-
ing. CoRR, abs/1812.03596, 2018.

[3] P. Baldi and P. J. Sadowski. The dropout learning algorithm. Artif. Intell.,
210:78–122, 2014.

[4] A. Bifet, B. Hammer, and F.-M. Schleif. Recent trends in streaming data
analysis, concept drift and analysis of dynamic data sets. In ESANN, 2019.

[5] B. E. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal
margin classifiers. In D. Haussler, editor, Proceedings of the Fifth Annual
ACM Conference on Computational Learning Theory, COLT 1992, Pitts-
burgh, PA, USA, July 27-29, 1992, pages 144–152. ACM, 1992.

[6] D. Budden, A. H. Marblestone, E. Sezener, T. Lattimore, G. Wayne, and
J. Veness. Gaussian gated linear networks. In NeurIPS, 2020.

[7] P. Buzzega, M. Boschini, A. Porrello, D. Abati, and S. Calderara. Dark
experience for general continual learning: a strong, simple baseline, 2020.

[8] D. G. Clark, L. Abbott, and S. Chung. Credit assignment through broad-
casting a global error vector. In A. Beygelzimer, Y. Dauphin, P. Liang,
and J. W. Vaughan, editors, Advances in Neural Information Processing
Systems, 2021.

[9] G. V. Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems, 2:303–314, 1989.

[10] S. Ebrahimi, M. Elhoseiny, T. Darrell, and M. Rohrbach. Uncertainty-
guided continual learning with bayesian neural networks. CoRR,
abs/1906.02425, 2019.

[11] B. Fritzke. A growing neural gas network learns topologies. In G. Tesauro,
D. S. Touretzky, and T. K. Leen, editors, Advances in Neural Information

65

BIBLIOGRAPHY

Processing Systems 7, [NIPS Conference, Denver, Colorado, USA, 1994],
pages 625–632. MIT Press, 1994.

[12] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[13] I. J. Goodfellow, M. Mirza, X. Da, A. C. Courville, and Y. Bengio. An
empirical investigation of catastrophic forgeting in gradient-based neural
networks. In Y. Bengio and Y. LeCun, editors, 2nd International Confer-
ence on Learning Representations, ICLR 2014, Banff, AB, Canada, April
14-16, 2014, Conference Track Proceedings, 2014.

[14] T. L. Hayes, N. D. Cahill, and C. Kanan. Memory efficient experience
replay for streaming learning. CoRR, abs/1809.05922, 2018.

[15] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural
network, 2015.

[16] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward net-
works are universal approximators. Neural Networks, 2(5):359–366, 1989.

[17] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In Y. Ben-
gio and Y. LeCun, editors, 2nd International Conference on Learning Rep-
resentations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Confer-
ence Track Proceedings, 2014.

[18] P. Kirichenko, M. Farajtabar, D. Rao, B. Lakshminarayanan, N. Levine,
A. Li, H. Hu, A. G. Wilson, and R. Pascanu. Task-agnostic continual
learning with hybrid probabilistic models. CoRR, abs/2106.12772, 2021.

[19] J. Kirkpatrick, R. Pascanu, N. C. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell. Overcoming catas-
trophic forgetting in neural networks. CoRR, abs/1612.00796, 2016.

[20] T. Kohonen. The self-organizing map. Neurocomputing, 21(1-3):1–6, 1998.

[21] B. M. Lake, R. Salakhutdinov, J. Gross, and J. B. Tenenbaum. One shot
learning of simple visual concepts. In L. A. Carlson, C. Hölscher, and T. F.
Shipley, editors, Proceedings of the 33th Annual Meeting of the Cognitive
Science Society, CogSci 2011, Boston, Massachusetts, USA, July 20-23,
2011. cognitivesciencesociety.org, 2011.

[22] S. Lee, J. Ha, D. Zhang, and G. Kim. A neural dirichlet process mixture
model for task-free continual learning. CoRR, abs/2001.00689, 2020.

[23] T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, and N. D.
Rodŕıguez. Continual learning for robotics: Definition, framework, learning
strategies, opportunities and challenges. Inf. Fusion, 58:52–68, 2020.

66

http://www.deeplearningbook.org

BIBLIOGRAPHY

[24] Z. Li and D. Hoiem. Learning without forgetting. CoRR, abs/1606.09282,
2016.

[25] V. Lomonaco. Continual Learning with Deep Architectures. PhD thesis,
University of Bologna, Italy, 2019.

[26] V. Lomonaco and D. Maltoni. Core50: a new dataset and benchmark for
continuous object recognition. CoRR, abs/1705.03550, 2017.

[27] D. Lopez-Paz and M. Ranzato. Gradient episodic memory for continuum
learning. CoRR, abs/1706.08840, 2017.

[28] D. Maltoni and V. Lomonaco. Continuous learning in single-incremental-
task scenarios. CoRR, abs/1806.08568, 2018.

[29] T. Martinetz, S. G. Berkovich, and K. Schulten. ’neural-gas’ network for
vector quantization and its application to time-series prediction. IEEE
Trans. Neural Networks, 4(4):558–569, 1993.

[30] N. Y. Masse, G. D. Grant, and D. J. Freedman. Alleviating catastrophic
forgetting using context-dependent gating and synaptic stabilization. Proc.
Natl. Acad. Sci. USA, 115(44):E10467–E10475, 2018.

[31] C. Mattern. Linear and geometric mixtures - Analysis. Data Compression
Conference Proceedings, pages 301–310, 2013.

[32] J. L. McClelland, B. L. McNaughton, and R. C. O’Reilly. Why there
are complementary learning systems in the hippocampus and neocortex:
insights from the successes and failures of connectionist models of learning
and memory. Psychological review, 102 3:419–457, 1995.

[33] M. McCloskey and N. J. Cohen. Catastrophic interference in connectionist
networks: The sequential learning problem. volume 24 of Psychology of
Learning and Motivation, pages 109–165. Academic Press, 1989.

[34] T. M. Mitchell. Machine learning, International Edition. McGraw-Hill
Series in Computer Science. McGraw-Hill, 1997.

[35] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks, 113:54–
71, 5 2019.

[36] G. I. Parisi and V. Lomonaco. Online continual learning on sequences.
CoRR, abs/2003.09114, 2020.

[37] Y. Prudent and A. Ennaji. An incremental growing neural gas learns
topologies. In Proceedings. 2005 IEEE International Joint Conference on
Neural Networks, 2005., volume 2, pages 1211–1216 vol. 2, 2005.

[38] J. R. Quinlan. Induction of decision trees. Mach. Learn., 1(1):81–106, mar
1986.

67

BIBLIOGRAPHY

[39] F. Rosenblatt. The perceptron: A probabilistic model for information stor-
age and organization in the brain. Psychological Review, pages 65–386,
1958.

[40] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Representa-
tions by Back-propagating Errors. Nature, 323(6088):533–536, 1986.

[41] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell. Progressive neural networks,
2016.

[42] E. Sezener, A. Grabska-Barwińska, D. Kostadinov, M. Beau, S. Krish-
nagopal, D. Budden, M. Hutter, J. Veness, M. Botvinick, C. Clopath,
M. Häusser, and P. E. Latham. A rapid and efficient learning rule for
biological neural circuits. bioRxiv, 2021.

[43] H. Shin, J. K. Lee, J. Kim, and J. Kim. Continual learning with deep
generative replay. CoRR, abs/1705.08690, 2017.

[44] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(56):1929–1958, 2014.

[45] A. M. Turing. On computable numbers, with an application to the
entscheidungsproblem. Proceedings of the London Mathematical Society,
s2-42(1):230–265, 1937.

[46] J. Veness, T. Lattimore, A. Bhoopchand, D. Budden, C. Mattern,
A. Grabska-Barwinska, P. Toth, S. Schmitt, and M. Hutter. Gated lin-
ear networks. CoRR, abs/1910.01526, 2019.

[47] J. Veness, T. Lattimore, A. Bhoopchand, A. Grabska-Barwinska, C. Mat-
tern, and P. Toth. Online learning with gated linear networks. CoRR,
abs/1712.01897, 2017.

[48] B. P. Welford. Note on a method for calculating corrected sums of squares
and products. Technometrics, 4(3):419–420, 1962.

[49] F. Zenke, B. Poole, and S. Ganguli. Continual learning through synap-
tic intelligence. In D. Precup and Y. W. Teh, editors, Proceedings of the
34th International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine
Learning Research, pages 3987–3995. PMLR, 2017.

68

	Dedica
	Introduction
	Background
	Machine Learning
	Definition
	Settings
	Training a machine learning model
	Neural Networks

	Continual Learning
	Definition
	Similarities with other machine learning paradigms
	Task-aware vs Task-agnostic scenario
	Task-aware Continual Learning Strategies
	Task-agnostic Continual Learning Strategies

	Gated Linear Networks
	GLN description
	Geometric mixing
	Gated geometric Mixing
	GLN formulation
	Training procedure of GLNs

	GLN analysis

	Prototypes Gated Linear Networks
	Prototype-based gating mechanism
	Prototypes initialization
	Growing ProtoGLN
	Growth mechanism
	GrowPGLN Formulation
	Removal mechanism

	Experiments
	Experimental setting
	Models
	Hyperparameters
	Benchmarks
	Evaluation

	Context standardization on GLNs
	Prototypes GLN
	Data-driven prototypes initialization
	Random prototypes initialization

	GrowPGLN
	Results with growth mechanism only
	Results with both growth and removal mechanisms

	Models comparison

	Conclusions
	Abbreviations
	Bibliography

