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Abstract

The identification of the low-energy effective field theory associated with a given microscopic

strongly interacting theory constitutes a fundamental problem in theoretical physics, which is

particularly hard when the theory is not sufficiently constrained by symmetries. Recently, a new

approach has been proposed, which addresses this problem for a large class of four-dimensional

superconformal field theories, admitting a dual weakly coupled holographic description in string

theory. This approach provides a precise prescription for the holographic derivation of the

associated effective field theories. The aim of the thesis is to explore the generalization of this

approach to the three-dimensional superconformal field theories admitting a dual M-theory

description, by focusing on a specific model whose effective field theory has not been investigated

so far.
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Introduction

Quantum Field Theories (QFTs) are currently the best way to describe fundamental interac-

tions. However, they are affected by some formal illnesses: for instance, Haag’s theorem put

a strain on the perturbative approach, since it states the non-existence of the interaction pic-

ture1. Even if we accept to work with perturbation theory there could be problems: indeed,

QFTs have typically both weakly-coupled and strongly-coupled energy regimes. While we can

use perturbative technologies for the former, the latter is quite challenging to deal with. A

practical example is the theory of strong interactions: at low energies it is strongly coupled

and hence one should invoke non-perturbative methods in order to get informations. By the

way, it turns out that the low-energy behavior of this theory can be described by an Effec-

tive Field Theory (EFT): namely, we can build an effective Lagrangian in order to perform

calculations in the strongly-coupled regime2. It is important to stress that this Lagrangian

contains informations about the degrees of freedom relevant at low energies, for example pions,

and has the most general expression compatible with the symmetries of the problem. At this

point, one could ask if the UV completion of this theory is actually Quantum Chromodynamics

(QCD), which is the current gauge theory of strong interactions, or alternatively if integrating

out high-momentum degrees of freedom leads to the EFT we are talking about. The answer

should be positive and this is supported by numerical results and experimental observations,

together with basic theoretical considerations (i.e. symmetry consistence). But what about

other theories? Is it always like the QCD case? Does the EFT Lagrangian exist? How can we

build it? A general answer has not been found yet, however in certain cases there are prescrip-

tions that lead exactly to the effective Lagrangian. Within this context, supersymmetry is a

useful implementation to furtherly constrain a theory. Since supersymmetric particles have not

been discovered yet, we should try to introduce a minimal amount of supersymmetry in order

to deal with pseudo-realistic theories.

Recently, a novel approach for building EFT Lagrangians of minimally supersymmetric

theories has been found in [1],[2]: it exploits the power of the so called gauge-gravity corre-

spondence. This technology comes from a seemingly unrelated area of physics, i.e. String

1The original result from Rudolf Haag dates back to 1955 and can be found in “On quantum field theories”,
Matematisk-fysiske Meddelelser, 29, 12.

2See for example [4, 5].
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Theory, and the basic idea is to study the gravity dual of the gauge theory: indeed, the for-

mer is typically weakly-coupled when the latter is strongly-coupled. In these cases we talk

about Holographic Effective Field Theories (HEFT), “holography” being a key word when

dealing with this particular kind of duality. Actually, this term perfectly describes the situ-

ation: the “hologram” is the gravity theory, also called the “bulk” side of the duality, and

leaves in one dimension higher than the gauge theory, also known as the “boundary” side.

More precisely, the “bulk” side has also extra dimensions which can be compactified in order

to have an AdSd+1/CFTd duality, where the AdS stands for anti-de Sitter while the CFT is

a QFT having an additional conformal symmetry. But why have we invoked String Theory?

The reason is that the dynamics of branes, which are the multi-dimensional generalization of

point-particles, is described by a gauge theory supported on their worldvolumes. In a large

class of models, this gauge theory flows under the renormalization group to a non-trivial CFT

and its strongly-coupled regime can be studied switching to the holographic dual. One can

place a stack of branes on different background geometries: this will give rise to a family of

field theories. The typical spacetime splitting is Rd ×X, where Rd is “parallel” to the branes

(and it is identified with the gauge theory spacetime) while X is a transversal manifold, usually

a cone, whose dimension sums with d to ten or eleven, depending on whether we are working in

a superstring or a M-theory context respectively. At this point, the stack generates a seemingly

black hole configuration: if we study the near-horizon geometry we will find an AdSd+1 × Y
splitting, where Y is the (compact) base of the cone X. The most notorious example is the

Maldacena duality [3], which relates IIB superstring theory set on the AdS5 × S5 background

with maximally supersymmetric Yang-Mills theory on R1,3. In this case we are dealing with

AdS5/CFT4 duality, where the extra-dimensions of S5 are compactified. Since this model is

maximally supersymmetric it is quite constrained: one among possible generalizations consists

in replacing S5 with another five-dimensional compact manifold Y5. This would typically lead

to theories with less supersymmetries, the amount of supersymmetry being encoded in the ge-

ometrical structure of Y5. The purpose of this thesis is to investigate a further generalization,

namely the correspondence between three-dimensional superconformal field theories and their

holographic dual. In this case the gravity side is M-theory, which may be interpreted as the

strongly-coupled limit of IIA superstring theory. The spacetime splitting is R1,2 × X8, whose

near-horizon limit becomes AdS4 × Y7. A natural question would be why are we interested in

these kind of models, namely AdS4/CFT3? Firstly, toy-model three-dimensional theories have

been important for the study of strong coupling features. For instance, in M-Theory context

CFTs dual to gravity theories obtained by placing a stack of branes on a particular background

lack an adjustable coupling constant and hence are necessarily strongly-coupled: so, hologra-

phy could shed light on strong coupling phenomena. Secondly, there could exist untreatable

condensed matter three-dimensional models which can be studied from the holographic point
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of view3. Last but not least, three-dimensional theories with N = 2 supersymmetries are ob-

tained from dimensional reduction of four-dimensional theories with N = 1 (because they have

the same number of supercharges), which are actually the most realistic models since they are

minimally supersymmetric and four-dimensional.

In order to compute the HEFT, this thesis will adopt the strategies discussed in [1],[2]. The

first step is the identification of “moduli”, i.e. parameters characterizing the family of M-theory

background geometries: these are related to the geometric features of the background and to

branes positions on it. A fundamental concept is the so called “moduli space”, the space of

inequivalent vacua: one should check that the moduli space of the gravity side coincides with

the field theory moduli space. Indeed, M-Theory moduli will correspond to scalar fields in the

dual field theory description: since this is supersymmetric, moduli turn out to be components

of chiral or vector supermultiplets. Then, the HEFT Lagrangian should describe the dynamics

of these moduli fields. The situation is to some extent similar to massless QCD, i.e. the gauge

theory describing two light quarks mu ∼ 0 ∼ md in four dimensions4. At high energy this theory

has a global symmetry SU(2)L × SU(2)R ' SO(4) called “chiral symmetry”. However, this

symmetry is spontaneously broken down to SU(2) ' SO(3) by VEVs of operators constructed

using quark-antiquark pairs, like 〈uū〉 or 〈dd̄〉. Hence, from Goldstone’s Theorem there should

be exactly dim[SO(4)/SO(3)] = dimSO(4)− dimSO(3) = 6− 3 = 3 Goldstone bosons, which

are massless states. In the low-energy theory, where the original symmetry is spontaneously

broken, only massless modes survive and one can build an EFT Lagrangian for pions π, which

are actually the Goldstone bosons of the model at hand. At two-derivative order this takes the

quite famous form LEFT = f 2
π Tr[∂µU

†∂µU ] and it is also known as the “Chiral Lagrangian”5.

It is possible to show that the Chiral Lagrangian can be recast in a “geometrized” form called

“nonlinear sigma model”: this is characterized by non-trivial kinetic terms due to the presence

of an overall curved metric, namely

LEFT = −1

2
gab(π)∂µπ

a∂µπb, gab(π) = δab −
πaπb

f 2
π − ~π · ~π

.

So, the low-energy physics can be “geometrized”: the dynamics of massless pions is described by

a nonlinear sigma model and their interactions are encoded in the overall metric6. This metric

is actually the one on the space of field theory vacua SO(4)
SO(3)

= S3, which is parametrized by the

three pions themselves. In a similar way, massless moduli parametrize a particular manifold,

which is actually the moduli space, and the HEFT is described by a nonlinear sigma model

too. The main difference is that while the Chiral Lagrangian can be obtained using purely

3As suggested for example in [40].
4See for example [4, 5].
5The quantity fπ is the pion decay constant and has the dimension of a mass, while the U function is

adimensional and U = U(π/fπ).
6Besides, notice that since the dimensionful fπ appears with negative powers in the interaction terms, the

effective Lagrangian is non-renormalizable: this is the price to pay if we want to exploit the EFT at low-energies.
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field-theoretical tools, the HEFT Lagrangian requires holography7: we will find an expression

similar to LEFT, namely

LbosonicHEFT = −KAB̄(Φ, Φ̄)∂µΦA∂µΦ̄B̄, KAB̄(Φ, Φ̄) =
∂2K

∂ΦA∂Φ̄B̄
,

where Φ are the massless moduli parametrizing the moduli space and KAB̄ is the metric on it.

Its explicit expression depends on a function of moduli K: this is called “Kähler potential” of

the moduli space and clearly plays a crucial role.

The original contribution of this work is the application of the aforementioned construction

to a specific model, namely the Q111 theory. M2-branes are placed on a R1,2 ×X8 background

geometry, X8 being the cone over the seven-manifold Q111, whose geometrical structure give

rise to N = 2 three-dimensional theories. After the classification of moduli in the gravity

side, the HEFT Lagrangian is obtained by expanding the supergravity action: its truncation

to two-derivatives order leads to the corresponding nonlinear sigma model. The dual theory

is actually the IR fixed point of a “quiver”, i.e. a gauge theory with matter in the adjoint

and bifundamental representations. Its moduli space is shown to reproduce the cone over Q111,

as expected. Subtleties involving matter fields in the (anti)fundamental representation are

highlighted since they correspond to “flavors” in the field theory and to geometrical D6-brane

solutions in the IIA String Theory side (see for example [6]).

The thesis will be structured as follows. In the first chapter we want to introduce some basic

concepts necessary to understand the main topic of this work: we will talk about supersymmetry

(SUSY), conformal field theories and anti-de Sitter spacetime. Chapter two is dedicated to

complex differential geometry because it is really the language required for this kind of study:

we will try to be “not-so-rigorous” and our attention should be oriented towards the physical

sense of using Calabi-Yau (CY) cones. Then, in the following chapter we present M-Theory,

focusing on M2-branes solutions. We are particularly interested in backgrounds containing a

Calabi-Yau cone CY4: the near-horizon geometry is then investigated. Besides, the crucial

points of gauge/gravity correspondence are illustrated, for example the natural presence of a

gauge theory on the worldvolume of branes. Chapter four is a complete review of the Q111 quiver

field theory: we will introduce the concept of moduli space and we will show how it can be

obtained with different methods. In the fifth chapter we present the HEFT machinery, i.e. the

identification and parametrization of moduli and the Lagrangian describing them, together with

issues about the so called “S-operation”. Finally, chapter six contains the original contribution

of this work, namely the HEFT for the Q111 model. The explicit metric of the moduli space is

found using a suitable parametrization and this allows the construction of the HEFT Lagrangian

as a nonlinear sigma model. Then we will carry out the matching with the field theory side,

checking that the moduli space is actually the same.
7Indeed, LEFT is almost completely fixed by symmetry arguments: the problem is that these arguments are

not sufficient in supersymmetric cases. Moreover, field theories under exam are strongly coupled: this “suggests”
that holography may be a possible solution for building an effective theory at two-derivatives, i.e. an HEFT.



Chapter 1

SUSY, CFT and AdS

The aim of this chapter is to collect the basic ingredients for this work. We start presenting

the main features of supersymmetry (also known as SUSY), starting from a review on d = 4

N = 1 which is propaedeutical to the d = 3 N = 2 case. Indeed, the latter can be seen

as a dimensional reduction of the former. We will follow [7, 4] for the first part and then

[8, 9, 10]. After the SUSY introduction we will present the conformal group as an extension of

the Poincaré one, together with some issues about scale/conformal invariance: we will follow

[12, 13, 14, 15]. The next step is to consider a further extension of Poincaré algebra, taking

into account both SUSY and conformal generators: the superconformal algebra. In the end,

AdS-spacetimes are introduced. For these last topics we will consider [16, 17, 18].

1.1 Basics of SUSY

In the last few decades supersymmetry has played an important role not only in purely theo-

retical contexts but also in particle physics phenomenology.

This new symmetry made is first appearance in the seventies in String Theory context as

a symmetry of the two-dimensional worldsheet. The first version of String Theory was purely

bosonic and this led to two problems: there were tachyons, i.e. unphysical particles with

negative mass, and there were not any fermions, which is unrealistic for phenomenological ap-

plications. Including SUSY in the description solve both of this problems. Indeed, SUSY is a

symmetry which relates bosons and fermions such that every boson has a fermionic “partner”.

Moreover, it can be shown that the resulting (Super)String Theory lacks tachyons. It was then

realized that SUSY could be a powerful tool for studying QFTs and hence it could be relevant

for elementary particle physics. Since then, physicists proposed a lot of supersymmetric the-

ories: minimal (N = 1) SUSY, extended (N > 1) SUSY, gauged SUSY (i.e. Supergravity).

The most realistic SQFT should be a four-dimensional minimally supersymmetric theory rep-

resenting the extension of the Standard Model, which is the current theory describing nature.

Actually, there are several reasons to require SUSY in a phenomenological theory. First of

5



6 CHAPTER 1. SUSY, CFT AND ADS

all, the introduction of supersymmetric partners induces loop-cancellations. As a consequence,

certain small or vanishing classical quantities will remain so once loop-corrections are taken

into account. Furthermore, it seems that SUSY is necessary (although not sufficient for the

last two of the following points) to solve some famous problems like:

• the running of Standard Model coupling constants, allowing the three couplings to meet

at a specific “unifying” scale;

• the hierarchy problem, i.e. the big gap between Planck scale and Electroweak symmetry

breaking scale;

• the smallness of the cosmological constant predicted by QFTs compared with experimen-

tal values;

• the renormalization procedure of quantum gravity.

However, LHC runs have not discovered supersymmetric particles yet. This means that SUSY

must be broken at experimental energy scales since otherwise some of the predicted partners

should be found. By the way, in this thesis we are not so interested in phenomenological results:

SUSY should be regarded as a “simplifying assumption”, constraining our models in such a

way that they become “easy” to study.

1.2 Rigid SUSY in d=3+1

SUSY can be seen as an extension of the Poincaré algebra by generators commuting with

translations1. These new elements of the algebra have “anticommuting grading”, which means

that infinitesimal parameters associated to supersymmetric variations are Grassmann variables.

Supercharges transform either as dotted Q̄I
α̇ or undotted QI

α spinors under the Lorentz group

and satisfy the following algebra: [
Pµ, Q

I
α

]
= 0,[

Pµ, Q̄
I
α̇

]
= 0,[

Mµν , Q
I
α

]
= i(σµν)

β
αQ

I
β,[

Mµν , Q̄
Iα̇
]

= i(σ̄µν)
α̇
β̇
Q̄Iβ̇,{

QI
α, Q̄

J
β̇

}
= 2σµ

αβ̇
Pµδ

IJ ,{
QI
α, Q

J
β

}
= εαβZ

IJ ,{
Q̄I
α̇, Q̄

J
β̇

}
= εα̇β̇(ZIJ)∗.

(1.2.1)

1We are not going to derive the superalgebra but we will make some dictated comments.
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The index I runs over N , which is the number of supersymmetries. It can be shown that N
is related to the number of supercharges # by N = #

dR
, where dR is the real dimension of

the smallest irreducible spinorial representation of SO(1, d− 1)2. ZIJ are the so called central

charges and they commute with every generator of the algebra by definition. Because of the

grading, Z is antisymmetric and hence vanishes in the minimal SUSY case. From an algebraic

point of view there is no reason to limit N : however, it can be shown that consistent QFTs

must have N ≤ 8 if gravity is taken into account and N ≤ 4 if we don’t consider particles with

spin larger than one.

Since the full SUSY algebra contains the Poincaré one, any representation of the superalge-

bra gives a representation of the Poincaré algebra, although in general a reducible one. It is well

known that irreducible representations (irreps from now on) of Poincaré algebra correspond to

what we commonly call particles: instead, an irrep of the superalgebra is associated to several

particles organized in a supermultiplet. The corresponding states are related to each other by

supercharges: since “Q(fermions) = bosons”, states in the same supermultiplet may differ by

one-half spin units.

From the superalgebra (1.2.1) one can obtain three fundamental features of supersymmetric

theories:

1. Supermultiplets always contain an equal number of bosonic and fermionic degrees of free-

dom. Moreover, every field in a supermultiplet transform under the same representation.

2. All particles in a supermultiplet have the same mass. This is because P 2 is a Casimir also

in the SUSY case, i.e. it commutes with every generator of the superalgebra3. However,

they do not have the same spin.

3. The energy P0 of any state in the Fock space is never negative.

The most important massless supermultiplets in the minimal global SUSY case, after integrating

out auxiliary fields, are:

• the chiral multiplet Φ = (ϕ, ψ), containing a complex scalar and a Weyl spinor;

• the vector multiplet V = (χ,A), containing a gauge boson and a Weyl fermion (both in

the adjoint representation of the gauge group).

Since we want to build SQFTs, we have to find representations of the superalgebra on fields:

the most elegant way to achieve this is the so called superspace formalism. The basic idea is

to interpret supercharges as generators of translations in some Grassmannian coordinate, in

2We address the reader to appendix B of [11] for a complete description of spinors in various dimensions.
3There are subtleties in the SCFT case because in conformal field theories P 2 is no more a good quantum

number.
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the same way as momentum generates spacetime translations. Then, the spacetime is enlarged

using these “fermionic coordinates” and becomes a “superspace” parametrized by (xµ, θα, θ̄β̇).

Using this formalism, supercharges act on functions of the superspace variables4 as derivative

operators:

Qα =
∂

∂θα
− iσµ

αβ̇
θ̄β̇∂µ, Q̄β̇ = − ∂

∂θ̄β̇
+ iθασµ

αβ̇
∂µ. (1.2.2)

Since Grassmannian variables anticommutes, any product involving two or more of them van-

ishes. So, one can Taylor-expand a generic superspace (scalar) function, i.e. a superfield,

as:
Y (x, θ, θ̄) =f(x) + θψ(x) + θ̄χ̄(x) + θθm(x) + θ̄θ̄n(x)+

+ θσµθ̄vµ(x) + θθθ̄λ̄(x) + θ̄θ̄θρ(x) + θθθ̄θ̄d(x).
(1.2.3)

This expansion easily generalizes to tensors, with Y... carrying the same index structure of its

components (f..., ψ..., ...). However, a generic superfield contains too many degrees of freedom to

represent an irrep of the superalgebra. Hence, we should impose some SUSY-invariant condition

such that the number of degrees of freedom are lowered. In order to do this we first define some

“covariant derivatives” Dα and D̄β̇, anticommuting with SUSY generators:

Dα =
∂

∂θα
+ iσµ

αβ̇
θ̄β̇∂µ, D̄β̇ = − ∂

∂θβ̇
− iθασµ

αβ̇
∂µ. (1.2.4)

At this point, D̄β̇Φ = 0 is a SUSY-invariant condition and it turns out that it effectively reduce

the number of degrees of freedom in the generic superfield. Actually, a chiral superfield Φ is

defined by

D̄β̇Φ = 0 (1.2.5)

and admits the following expansion:

Φ(x, θ, θ̄) =φ(x) + iθσµθ̄∂µφ(x) +
1

4
θθθ̄θ̄∂2φ(x)+

+
√

2θψ(x)− i√
2
θθ∂µψ(x)σµθ̄ + θθF (x).

(1.2.6)

Notice that it is expressed in terms of x-spacetime coordinate. Instead, the constraint (1.2.5)

is easily solved if we define an y-spacetime coordinate as a shift of the x:

yµ = xµ + iθσµθ̄, ȳµ = xµ − iθσµθ̄. (1.2.7)

Moreover, the chiral superfield expansion is now dependent only on θ and y, while the θ̄ de-

pendence is hidden inside y:

Φ(y, θ) = φ(y) +
√

2θψ(y) + θθF (y). (1.2.8)

4The convention on products of grassmannian variables we will follow is θαθ̄β = − 1
2εαβθθ̄, which is the one

of [10].
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This expansion (1.2.8) underlines the fact that the chiral supermultiplet contains a complex

scalar φ, a Weyl spinor ψ and an auxiliary non-propagating scalar F .

Besides, we are interested in (abelian) vector superfields V . These satisfy the reality condi-

tion:

V = V †. (1.2.9)

Its superfield expansion in the so called Wess-Zumino gauge, i.e. partially gauge-fixed in such

a way that some undesired components are eliminated, is:

VWZ(x, θ, θ̄) = −θσµθ̄Aµ(x) + iθθθ̄λ̄(x)− iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x), (1.2.10)

where Aµ is the gauge potential, λ is the Weyl spinor of the vector multiplet and D is a real

auxiliary scalar. From expansion (1.2.10) it follows that V n
WZ = 0 for n ≥ 3, which turns out

to be useful. Indeed, for non-abelian gauge theories the basic object is eV rather than V itself

and in the WZ-gauge one has:

eV = 1 + V +
V 2

2
. (1.2.11)

Superfield strengths are then defined as

Wα = −1

4
D̄D̄

(
e−VDαe

V
)

(1.2.12)

and one can easily check that they are chiral fields, i.e. satifying (1.2.5).

1.2.1 Supersymmetric Lagrangians in d=3+1

The reason why superspace is such an elegant formalism is that SUSY is manifest at Lagrangian

level. For instance, any Lagrangian of the form∫
d2θd2θ̄Y (x, θ, θ̄) +

∫
d2θW (Φ) +

∫
d2θ̄ [W (Φ)]† (1.2.13)

is automatically SUSY-invariant since it transforms at most by a total spacetime derivative.

Actually, the first term in (1.2.13) can be seen as a kinetic term while the other two are

superpotentials, i.e. products of (anti)chiral superfields which are (anti)chiral superfields too.

Notice that in the kinetic term there are both θ and θ̄ measures, while in the superpotiential

there is only one of them. The reason is that for the former Y has θθθ̄θ̄ components while for the

latter W has at most θθ components, being a chiral superfield. Then, Grassmann-integration

rules pick only these particular components of the expansion for the total action functional.

To be more precise, let us write down some explicit Lagrangians. The most general renor-

malizable kinetic Lagrangian describing matter in a supersymmetric gauge theory is

Lkin =

∫
d2θd2θ̄

∑
i

Φ†ie
V Φi, (1.2.14)
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while for the kinetic term of gauge fields one has

Lgauge =
1

g2
(i)

∫
d2θW (i)

α Wα(i), (1.2.15)

where index i runs over all the matter multiplets. Together with the superpotential terms of

(1.2.13), which we call LW , the total Lagrangian density is given by:

L = Lkin + LW + Lgauge. (1.2.16)

Occasionally, there could be “Fayet-Iliopoulos terms” in the Lagrangian. These are related to

U(1) factors in the gauge group and for each of them we can include

LFI =
∑
a

ζa
∫

d2θd2θ̄V a, (1.2.17)

where V is the abelian vector superfield associated to the U(1).

Lagrangians above are the most general renormalizable ones in four dimensions5. However,

we can drop the renormalizability principle and write the following N = 1 superymmetric

theory:

L =

∫
d2θd2θ̄K

(
(Φ†e2gV )i,Φi

)
+

∫
d2θW (Φ) +

∫
d2θf(ab)(Φi)W

α(a)W (b)
α + c.c (1.2.18)

where K
(
(Φ†e2gV )i,Φi

)
, the so called “Kähler potential”, gives rise to kinetic terms while the

f(ab)(Φi) is a function of the chiral fields only and W (Φ) is generic. Typically (1.2.18) do not

describe a fundamental, i.e. microscopic, theory because we dropped the renormalizability

assumption. Nevertheless, it can describe an effective field theory valid at low energies only:

renormalizability is no longer a criterion and one can build a Lagrangian containing no more

than two spacetime-derivatives, while possible higher-order terms give subleading effects. In

absence of vector fields (1.2.18) contains chiral multiplets only and it is globally supersymmetric.

In this work we will come across an effective Lagrangian like6 L =
∫

d2θd2θ̄K(Φ̄,Φ): expanding

the Kähler potential we are led to the SUSY version of the “nonlinear sigma model”, i.e. a

Lagrangian with nontrivial kinetic term describing interactions between low-energy degrees of

freedom in a “geometric” way7. In the following chapters we will deepen this relation between

physics and geometry in order to explicitly find the Kähler potential of the Q111 model.

5This is true if W (Φ) is at most cubic.
6More precisely, it will be a three-dimensional model while here we are discussing four-dimensional theories.
7As an anticipation, the aforementioned expansion will give something like

L =

∫
d4θK(Φ̄,Φ) = −KAB̄(Φ̄,Φ)∂µΦA∂µΦ̄B̄ + ..., KAB̄ =

∂2K

∂ΦA∂Φ̄B̄
,

where KAB̄ is the nontrivial metric of the nonlinear sigma model.
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The scalar potential

We said that F and D are auxiliary component fields of chiral and vector supermultiplets

respectively. Expanding the supermultiplets one can identify a “scalar potential” V that takes

the form:

V(φ†, φ) = F †F +
1

2
D2 =

=
∑
i

∣∣∣∣∂W∂φi
∣∣∣∣2 +

1

2

∑
a

∣∣ga (φ†T aφ+ ζa
)∣∣2 , (1.2.19)

where the second equality comes from the equation of motion for the auxiliary fields and T a

are generators of the gauge group in some representation. In general, supersymmetric theories

do not have isolated vacua: instead, they exhibit a continuous family of connected vacua. We

call “moduli space” of inequivalent vacua the set of all zero-energy field configurations (modulo

gauge transformations if any) for which (1.2.19) (or its generalizations as we will see) vanishes.

Indeed, notice that since the scalar potential is a sum of squares, vacua are configurations such

that V = 0, i.e. 〈F 〉 = 0 = 〈D〉.

R-Simmetry

Supersymmetric theories have additional global symmetries which can be seen as “supercharge-

rotations”: this is the reason why they are called R-symmetries. It is important to stress that

R-symmetries are not supersymmetries, i.e. there are no related supercharges entering SUSY

algebra. Defining the transformation of θ and θ̄ as

θ → eiqθ, θ̄ → e−iqθ̄, (1.2.20)

SUSY generators transform as

Q→ e−iqQ, Q̄→ eiqQ̄. (1.2.21)

We anticipate that R-symmetries are crucial because the scaling dimensions of chiral fields at

nontrivial fixed points are fixed by their R-charges.

1.3 Rigid SUSY in d=2+1

Although the three-dimensional case with N = 2 supersymmetries can be obtained from

dimensional-reduction of the minimally supersymmetric four-dimensional one8, there exist some

differences between them. First of all, the gauge coupling is dimensionful in three dimensions9.

8They both posses four supercharges because their number is given by # = dRN .
9We anticipate that this means that there cannot exist conformal field theories outside the infrared fixed

point: we will be more clear and provide an intuitive explanation later on.
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Secondly, the superalgebra changes a bit: there are no more dotted indexes because three-

dimensional Poincaré group is SL(2,R) instead of SL(2,C) and hence the fundamental repre-

sentation acts on real (Majorana) spinors. Moreover, the anticommuting rule for supercharges

in (1.2.1) becomes {
Qα, Q̄β

}
= 2γµαβPµ + 2iεαβZ, (1.3.1)

where γ = (iσ2, σ3, σ1) are real. The central charge Z can be interpreted as the dimensional-

reduced momentum along the third space-dimension, namely the P3 component of the four-

momentum. SUSY generators Q and Q̄ are complex now, so they include twice the minimal

amount of supersymmetry in three dimensions. As in the four-dimensional case, there is a

U(1)R symmetry rotating supercharges.

Chiral superfield condition is actually the undotted version of the four-dimensional case

(1.2.5) while vector superfield condition is the very same of (1.2.9): they both contain two real

bosonic and two Majorana fermionic degrees of freedom on-shell. In addition, vector superfields

V may be expressed in terms of linear superfields Σ satisfying

εαβDαDβΣ = εαβD̄αD̄βΣ = 0, Σ† = Σ, (1.3.2)

whose lowest component is a scalar field instead of a spinor. More precisely, the vector super-

multiplet contains a gauge field Aµ, a two-component complex spinor λ (the gaugino), a real

scalar field σ (that can be interpreted as the dimensional-reduced component A3 of the four-

dimensional gauge field) and an auxiliary real scalar D. In Wess-Zumino gauge the expansions

are:

V = −iθθ̄σ − θγµθ̄Aµ + iθθθ̄λ̄+ iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D (1.3.3)

and10

Σ = − i
2
εαβD̄αDβV =

= σ + θλ̄+ θ̄λ+ iθθ̄D +
1

2
θγµθ̄Jµ −

i

2
θθθ̄γµ∂µλ̄+

i

2
θ̄θ̄θγµ∂µλ+

1

4
θθθ̄θ̄∂2σ.

(1.3.4)

The J field in (1.3.4) is the so called “dual field strength”. Indeed, in three spacetime dimensions

there exist a duality between the vector-photon Aµ and the scalar-photon τ such that

Jµ = ∂µτ = εµνρF
νρ, (1.3.5)

where F νρ is the field strength of Aµ. Furthermore, it is possible to dualize the whole linear

multiplet into a chiral multiplet Ψ having σ + iτ as its lowest component.

10We should mention that the following linear superfield expansion works for abelian gauge groups. In this
thesis we will actually use Σ only in this case.



1.4. CONFORMAL FIELD THEORIES 13

1.3.1 Supersymmetric Lagrangians in d=2+1

Kinetic Lagrangians for matter and gauge fields in three dimensions are the same of (1.2.14) and

(1.2.15) respectively. An alternative for abelian vector superfields is to use the linear multiplet

description with a kinetic Lagrangian like

Llin =
1

g2

∫
d2θd2θ̄Σ2. (1.3.6)

In three dimensions we can also include topological “Chern-Simons terms” since they are gauge-

invariant. These take the form

LCS =
∑
i

ki
4π

Tr

(
εµνρ

(
A(i)
µ ∂νA

(i)
ρ +

2i

3
A(i)
µ A

(i)
ν A

(i)
ρ

)
+ 2D(i)σ(i) − λ̄(i)λ(i)

)
, (1.3.7)

where ki ∈ Z are the so called “Chern-Simons levels” and the index i runs over the factors of

the gauge group. In superspace notation we can rewrite (1.3.7) more compactly as

LCS =
k

4π

∫
d2θd2θ̄Tr ΣV. (1.3.8)

Notice that for abelian factors (1.3.8) seems like a Fayet-Iliopoulos term: this can be seen if we

consider the linear multiplet as an external field, i.e. non dynamical. Then, turning off every

component field but the scalar σ, the Lagrangian (1.3.8) becomes exactly (1.2.17) provided that

ζ = kσ.

Another characteristic of three-dimensional SUSY theories is the distinction between real

and complex masses. The latter are parameters entering in the Lagrangian via superpotential

terms like WC = mCΦ†Φ, while the former are “induced” from external vector supermultiplets.

Consider one such background vector Vbg = −iθθ̄σbg+... and imagine that the scalar component

takes a real VEV 〈σbg〉 = mR, whereas the others are all turned off. Then, a Lagrangian like

LR =

∫
d4θΦ†eVbgΦ (1.3.9)

clearly give rise to a mass term m2
R|φ|2 for the scalar in the chiral multiplet Φ and mRψ̄ψ for the

fermionic component. We want to point out that (1.3.9) can be interpreted as a modification to

(1.2.14): indeed, expanding in component fields, the “effective” mass is given by m = mR +〈σ〉,
where σ is the scalar in the vector supermultiplet appearing in (1.2.14). We will see that the

Q111 is in fact characterized by a real mass.

1.4 Conformal Field Theories

A conformal field theory is a quantum field theory invariant under the conformal group. We

usually deal with the Poincaré group as the symmetry group of relativistic theories in flat

spacetime. The explicit form of Poincaré transformations is

xµ → Λµ
νx

ν + aµ,
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that is a combination of Lorentz transformations and spacetime translations. This kind of

transformations preserve distances. We can extend the spacetime symmetry group in such

a way that angles between vectors are preserved: this is the conformal group, which clearly

include the Poincaré one.

The most intuitive such transformation is the dilatation, a rescaling of spacetime coordinates

such that

xµ → λxµ.

It is evident that this is not a Poincaré transformation since the metric does change:

ηµν → λ−2ηµν .

We can say that conformal transformations are generalizations of these scale transformations

such that

x→ x̃(x), ηµν → f(x)ηµν .

1.4.1 The conformal group

First of all in what follows we will deal with d ≥ 3 spacetime dimensions, having finite-

dimensional conformal group11. In order to obtain it we should start from conformal transfor-

mations. These consist of a Weyl transformation, i.e. local rescaling of the metric like

g′µν(x) = Ω2(x)gµν(x), (1.4.1)

combined with a coordinate diffeomorphism such that the metric is left invariant, namely:

g′µν(x
′) =

∂xρ

∂x′µ
∂xσ

∂x′ν
Ω̂2(x)gρσ(x) = gµν(x), (1.4.2)

where the last equality has to be read as “must be equal to” and Ω 6= Ω̂ are arbitrary functions

of the coordinates. Let us consider flat spacetime g′µν = gµν = ηµν . We can rewrite (1.4.2) as

ηρσ
∂x′ρ

∂xµ
∂x′σ

∂xν
= Ω̂2(x)ηµν . (1.4.3)

When Ω̂2 = 1 the Poincaré transformation condition is reproduced. Consider instead an in-

finitesimal coordinate transformation of the form

xµ → x′µ = xµ + εµ +O(ε2). (1.4.4)

11It is important to mention that the d = 2 case is very interesting not only because it plays a crucial role in
String Theory but also because the conformal group is infinite-dimensional. Besides, the d = 1 case seems to
be a “conformal quantum mechanics”: we will not enter in these topics.
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Under (1.4.4) the LHS of (1.4.3) becomes at first order

ηρσ
∂x′ρ

∂xµ
∂x′σ

∂xν
= ηρσ

(
δρµ +

∂ερ

∂xµ

)(
δσν +

∂εσ

∂xν

)
=

= ηµν +

(
∂εµ
∂xν

+
∂εν
∂xµ

)
.

Comparing with (1.4.3), it is clear that at first order in ε we must have

∂µεν + ∂νεµ = ω(x)ηµν , (1.4.5)

where ω is such that Ω̂2 = 1+ω+ ... at infinitesimal level. At this stage we can further simplify

(1.4.5): indeed, tracing both sides we get ω = 2
d
∂µεµ. Substituting back into (1.4.5) we finally

obtain

∂µεν + ∂νεµ −
2

d
(∂ρερ)ηµν = 0, (1.4.6)

which is the fundamental equation identifying conformal transformations (at infinitesimal level).

For d = 2 there are infinite solutions for (1.4.6), while d = 1 is a singular case: however,

recall our interest in d ≥ 3. It can be shown that the solution εµ(x) is at most quadratic in xν

and thus will take the form

εµ(x) = aµ + bµνx
ν + cµνρx

νxρ. (1.4.7)

Notice that for b = 0 = c we recover infinitesimal translations, having momentum operator

Pµ = i∂µ as generator. Inserting the linear term of (1.4.7) into (1.4.6) gives

bµν + bνµ =
2

d
(ηρσbρσ)ηµν

so that we can split the b-coefficient in symmetric and antisymmetric parts like

bµν = αηµν +mµν .

The mµν tensor corresponds to infinitesimal Lorentz transformations, whose generator is Mµν =

i(xµ∂ν − xν∂µ). The symmetric part correspond instead to infinitesimal dilatations with gen-

erator D = ixµ∂µ.

The last class of solutions are the quadratic ones: these correspond to the so called “special

conformal transformation”12 and one can show that they are generated by Kµ = i(2xµx
ν∂ν −

x2∂µ).

12There are issues with finite special conformal transformations since they are not globally defined: one should
consider conformal compactifications of spacetime, including points at infinity, but again this is a subtlety we
do not investigate in this work.
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Having generators we can introduce the conformal algebra:

[Pµ, Pν ] = 0

[Mµν ,Mρσ] = −i(ηµρMνσ + permutations)

[Mµν , Pρ] = i(ηνρPµ − ηµρPν)
[Pµ, D] = iPµ

[Mµν , D] = 0

[Kµ, D] = −iKµ

[Pµ, Kν ] = 2i(ηµνD +Mµν)

[Kµ, Kν ] = 0

[Mρσ, Kµ] = i(ηµρKσ − ηµσKρ).

(1.4.8)

Notice that scale invariance, i.e. dilatation, is necessary for conformal invariance because

D closes the algebra: so, conformal invariance implies scale invariance. The converse is not

(totally) true: scale invariance does not imply conformal invariance. However, in many field

theories the full conformal group seems to emerge from scale invariance only: we will try to give

a partial explanation soon after, but we stress that it is still an open problem. Before doing

this, we should point out that (1.4.8) algebra is isomorphic to so(d, 2), which is the Lorentz

algebra in mixed signature (d, 2). Indeed, conformal generators can be identified with Lorentz

ones as follows

Jµν = Mµν , Jµ+ = Pµ, Jµ− = Kµ, J+− = D, (1.4.9)

so that the algebra is exactly the Lorentz one:

[JMN , JRS] = −i(ηMRJNS + permutations). (1.4.10)

This allows us to anticipate a crucial point of AdS/CFT duality right here: the conformal

group SO(2, d) of d-dimensional flat spacetime is exactly the isometry group of AdS-spacetime

in one dimension higher.

1.4.2 Local Field Representations

We all know that irreps of the Poincaré group are interpreted as particles in a quantum field

theory. However, for a conformal invariant theory the “mass” P 2 is no more a Casimir and one

should replace it with a better quantum number: this leads to the concept of “unparticles”.

Recall that we can realize the conformal algebra on spacetime functions as differential
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operators:

Pµ = i∂µ

Mµν = i(xµ∂ν − xν∂µ)

D = ixµ∂µ

Kµ = i(2xµx
ρ∂ρ − x2∂µ).

(1.4.11)

In QFTs we should realize these symmetries as operators acting on Hilbert spaces (Schrödinger

picture) or on local operators (Heisenberg picture). Focusing on the latter, the action of gen-

erators (1.4.11) on local fields13 reads

[Pµ, O(x)] = −i∂µO(x)

[Mµν , O(x)] = −i(Σµν + xµ∂ν − xν∂µ)O(x)

[D,O(x)] = −i(∆ + xµ∂µ)O(x)

[Kµ, O(x)] = −i(2xµ∆ + 2xλΣλµ + 2xµx
ρ∂ρ − x2∂µ)O(x),

(1.4.12)

where ∆ is the scaling dimension of the operator O(x) and Σµν is the finite dimensional spin

matrix of the Lorentz group. Actually, we have not formally defined the scaling dimension of

an operator yet. So, consider a field operator O and a scale transformation with λ parameter:

the scaling dimension ∆ of O is defined according to

x→ λx, O(x)→ O(λx) = λ−∆O(x) (1.4.13)

and ∆ turns out to be a good quantum number for the purpose of labeling irreps of the conformal

group, together with Lorentz spin j. More precisely, we have the following eigenvalue equations:

D |∆, j〉 = i∆ |∆, j〉 , Mµν |∆, j〉 = Σµν |∆, j〉 . (1.4.14)

Let us consider now a local operator O∆(x) having scaling dimension ∆. When x = 0, this

creates a state |∆〉 = O∆(0) |0〉 with scaling dimension ∆. Instead, if we consider the operator

at x 6= 0 we will have:

|χ〉 ≡ O∆(x) |0〉 = eiPxO∆(0)e−iPx |0〉 = eiPx |∆〉 , (1.4.15)

where in the last equality we have used vacuum invariance under translations. At this stage

it is clear why we have problems interpreting particles as vacuum excitations: if we expand

the exponential in (1.4.15) we end up with a superposition of states having different scaling

dimensions, i.e. different ∆ eigenvalues. To be more clear, notice that from (1.4.8) generators

Pµ and Kµ act as ladder operators for dilatations, rising and lowering the scaling dimension

respectively. Hence, when the momentum operator in eiPx acts on |∆〉 it give rise to a su-

perposition of states and |χ〉 will not have definite scaling dimension. Anyway, an operator

13More precisely, they should be operators which rescale in a homogeneous way.
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annihilated by the lowering operator Kµ is usually called “primary” while the ones obtained

by applying the rising operator Pµ are called “descendant”. One should act with Kµ until the

lowest value of ∆, thus finding a primary operator with scaling dimension ∆ annihilated by

Kµ, and from there start to classify operators with (∆, j).

1.4.3 The stress-energy tensor

Symmetries in quantum field theories constitute an algebra of conserved charges acting on

Hilbert states, as we already stated. We usually say that these symmetries are realized by

local conserved currents ∂µjµ = 0 and that one can build conserved charges integrating j0

over space. The existence of currents rather than charges is not necessary for symmetries:

however, the so called “Noether assumption” is quite useful when studying conformal theories.

For instance, using Noether assumption, the translational invariance is encoded in a conserved

stress-energy tensor, i.e. ∂µTµν = 0. Lorentz invariance further require this stress-energy tensor

to be symmetric so that the “Lorentz current” Jµν(L)ρ = x[µT
ν]
ρ is conserved. We want to focus

on conformal symmetries.

Recall that the variation of an action under infinitesimal transformations xµ → xµ + εµ(x)

in Noether theorem is given by

δS = −
∫

ddxjµa∂µεa. (1.4.16)

When we deal with diffeomorphism, (1.4.16) takes the form

δS = −1

2

∫
ddxT µν(∂µεν + ∂νεµ) (1.4.17)

and using (1.4.6) we arrive to

δS = −1

d

∫
ddxT µµ ∂

νεν . (1.4.18)

So, it seems that in order to have conformal symmetry the stress-energy tensor must be traceless

T µµ = 0. Now, to some extent tracelessness corresponds to scale invariance. More precisely, the

current associated to scale invariance is shown to be J(D)µ = xρTµρ−J(V )µ, where J(V )µ is known

as the “virial current”. Notice that in order to have ∂µJ(D)µ = 0 it must be T µµ = ∂µJ(V )µ.

Then, if the stress-energy tensor can be redefined such that its trace is T ′ ≡ T − ∂µJ(V )µ,

the conservation of the dilatation currents, i.e. scale invariance, would correspond to the

tracelessness of the improved stress-energy tensor T ′µν . Following this rather naive-classical

argument, (1.4.18) is telling us that scale invariance implies conformal invariance when the virial

current can be reabsorbed into an improved stress-energy tensor satisfying T ′ = 0. However,

the problem about the enhancement of scale invariance to conformal invariance is a lot more

subtle than this and it is still an open one. Besides, there is another argument we can follow,

which require some fundamentals of Renormalization-Group (RG) flow.
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The Renormalization-Group flow

The RG-flow is the study of how a QFT evolves from the UV to the IR regimes. A QFT has

usually an ultraviolet cutoff Λ, which is the energy scale beyond which new degrees of freedom

are necessary in the description: RG-flow let us quantify this “ignorance”. One starts with

some field content φ and some coupling g: we want to relate the coupling of the theory with

Λ cutoff to the coupling of the theory with bΛ cutoff, b < 1. In a path integral approach,

redefining φ → φ + φ′, where only φ has non-zero Fourier modes in |k| < bΛ, and integrating

out φ′ gives us an “effective” theory expressed in terms of φ. The “integrating out procedure”

corresponds to a motion through the space of possible Lagrangians: this is the idea of RG-flow.

A fundamental object in the study of RG-flow is the “beta-function”, defined as:

β(g) ≡ Λ
∂g

∂Λ
. (1.4.19)

A positive sign for β(g) means that the coupling increases with energy, while if it is negative

the coupling becomes smaller as the energy increases. When β(g) = 0 we talk about fixed

points: the coupling remains fixed with energy and since there is no “typical” scale Λ the

resulting theory is at least scale-invariant. More precisely, there exist “true” invariant theories

and theories for which β(g∗) = 0 only for particular values of the coupling g = g∗. The latter

case is the one of theories flown to fixed points, like the three-dimensional one of this thesis

which has an infrared fixed point. There, the spectrum is continuous and there will be no well-

defined particles, as we already seen for conformal theories. When the theory flows, operators

acquire anomalous dimension γ(g) which “freezes” at fixed points:

∆ = ∆0 + γ(g∗), (1.4.20)

where ∆0 is the classical canonical dimension of the operator. Using perturbation theory it is

possible to find a relation between the stress-energy tensor and the beta-function, namely

T µµ ∝ β(g). (1.4.21)

It is then clear that the theory is at least scale-invariant, and hopefully conformal-invariant, at

fixed points because of the vanishing of the β-function.

1.4.4 Superconformal algebra

Now we want to include supersymmetry in a conformal theory: it can be shown that the SUSY

extension of the conformal algebra is only possible for d ≤ 6 spacetime dimensions. The bosonic

sector of the superconformal algebra has the form GC ⊕GR, where GC is the conformal algebra

and GR is the R-symmetry algebra acting on the superspace Grassmann-variables. In the

three-dimensional case we have o(2, 3) ⊕ o(N ) ⊂ so(2, 3|N )14. In order to have the complete

14There exists an isomorphism so(2, 3) ' sp(4,R) such that the superconformal algebra is actually Osp(N|4):
we will see the rising of this group when dealing with brane solutions.
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superconformal algebra one should include fermionic generators, namely the supercharges Qa
α

together with a new class of generators Saα called “superconformal charges”: they are necessary

to close the superalgebra. The relevant commutation relations are:{
Saα, S̄

b
β

}
= 2δabγµαβKµ{

Qa
α, S̄

b
β

}
= −iδab(2δαβD + (γ[µγν])αβMµν) + 2iδαβR

ab

[Mµν , S
a
α] =

i

2
(γ[µγν])αβS

aβ

[Kµ, S
a
α] = 0

[Pµ, S
a
α] = −γαβµ Qa

β

[Kµ, Q
a
α] = −γαβµ Saβ

[D,Qa
α] =

i

2
Qa
α

[D,Saα] = − i
2
Saα

[D,Rab] = 0

[Rab, Rcd] = i(δacRbd + permutations)

[Rab, Q
c
γ] = i(δcaδbd − δcbδad)Qd

γ

[Rab, S
c
γ] = i(δcaδbd − δcbδad)Sdγ

[Pµ, R
ab] = [Kµ, R

ab] = [Mµν , R
ab] = 0,

(1.4.22)

where Rab are generators of o(N ). Notice that superconformal charges Q and S are also ladder

operators for dilatations, acting as rising and lowering operators respectively. So, superconfor-

mal representations have primary operators annihilated by both the lowering operators Kµ, S.

Scaling dimensions

In four dimensions one can find that [θ] = [θ̄] = −1
2

is the mass dimension of Grassmannian

coordinates15, while [Φ]4 = 1 from consistency. In the three-dimensional case, Grassmannian

coordinates have the same mass dimension but the canonical dimension of component fields is

lowered by one-half: this is because we have
∫

d3x instead of
∫

d4x for the kinetic actions and

hence [Φ]3 = 1
2
. Having defined ∆ as the scaling dimension of a field operator, it can be shown

that for any N = 2 three dimensional theory at the fixed point of RG-flow all operators satisfy

∆ ≥ |R| , (1.4.23)

whereR is the charge under U(1)R symmetry. Inequality (1.4.23) is saturated for chiral primary

fields, which means that R-symmetry fixes scaling dimensions at fixed points: this is a useful

feature if we want to check that our theories are conformal, or at least scale-invariant. Actually,

15Which means that [d2θ] = [d2θ̄] = 1.
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theories we are considering in this thesis are N = 2 three-dimensional nonlinear sigma models:

in [41] it was shown that if these theories are scale-invariant then they are also superconfor-

mal. So, even if there is no generalized proof, scale invariance is enhanced to superconformal

invariance in some cases and hence it is sufficient to prove the former to obtain the latter. In

order to better understand this statement, recall that nonlinear sigma models in this thesis

are characterized by some function K(Φ̄,Φ) called Kähler potential. Our effective action takes

the schematic form
∫

d3xd4θK and in order to prove scale-invariance we should find that the

scaling dimension of the effective action is zero. Since ∆d3x = −3 and ∆d4θ = 2, it must be

∆K = 1 in order for our theory to be scale-invariant. In [41] this condition is exactly the one

required for a N = 2 d = 3 nonlinear sigma model to be superconformal.

1.5 Anti de Sitter spacetime

Anti de Sitter spacetimes are maximally symmetric solutions to Einstein equations Rµν −
1
2
gµνR+ Λgµν = Tµν , where Tµν = 0, and the cosmological constant Λ is negative. These spaces

AdSn admit the maximal number of Killing vectors n(n+1)
2

and are the minkowskian counterpart

of euclidean hyperbolic spaces since they have negative curvature. n-dimensional anti de Sitter

spacetime comes with a length scale L and is defined as the set of all points (X0, ..., Xn) in a

(n+ 1)-dimensional Minkowski spacetime Rn−1,2 satisfying

−X2
0 +

n−1∑
i=1

X2
i −X2

n = −L2. (1.5.1)

Notice that the action of SO(n − 1, 2) preserves (1.5.1) and that this group acts transitively

on AdSn, i.e. it is its isometry group. Besides, a point on AdSn is left invariant by the action

of SO(n − 1, 1), i.e. it is the isotropy group. So, we can identify anti de Sitter spacetimes as

coset manifolds

AdSn =
SO(n− 1, 2)

SO(n− 1, 1)
, (1.5.2)

making evident that SO(n−1, 2) is the isometry group. We can rewrite (1.5.1) more compactly

as ηµνXµXν −W 2 = −L2, where we have defined W = Xn. By differentiation we obtain the

following metric:

ds2 = ηµνdXµdXν − dW 2 =

(
ηµν − ηµληνρXλXρ

ηαβXαXβ + L2

)
dXµdXν . (1.5.3)

At this stage we can calculate “curvatures”, which take the form:

Rµνρσ = − 1

L2
(gµρgνσ − gµσgνρ)

Rµν = −n− 1

L2
gµν

R = −n(n− 1)

L2

(1.5.4)
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Let us focus on AdS4 for a moment. The line element reads

ds2 = −(dT 2 + dW 2) + (dX2 + dY 2 + dZ2) (1.5.5)

and there seems to be two time-coordinates T and W , while we would like to have only one.

Replacing (T,W ) with (ρ, t) such that (T = ρ sin t,W = ρ cos t) and using canonical spherical

parametrization for the remaining three spacial coordinates gives

ds2 = −(dρ2 + ρ2dt2) + (dr̂2 + r̂2dΩ2) (1.5.6)

Setting L = 1, (1.5.1) corresponds to the constraint ρ2 − r̂2 = 1 and by differentiation and

following insertion in (1.5.6) we und up with

ds2 = −(1 + r̂2)dt2 +
dr̂2

1 + r̂2
+ r̂2dΩ2

n−2, (1.5.7)

which correctly have only one time-coordinate.

It is now possible to express the metric in conformal coordinates. Set r̂ = tanψ so that

(1.5.7) becomes

ds2 =
1

cos2 ψ
(−dt2 + dΩ2

n−1). (1.5.8)

Notice that AdSn is conformally equivalent to Rn−1,1. However, the ψ coordinate ranges from

0 to π/2 and not π, which means that space covers only one hemisphere: it is then improper

to define dΩ2
n−1 = dψ2 + sin2 ψdΩ2

n−2. Thus, we say that spatial sections of AdSn are bounded

by Sn−2, which may be considered as euclidean spaces with a point at infinity. Together with

the time coordinate t the Minkowski R1,n−2 is restored and appears as a boundary.

Consider n = d + 1, where d is the dimension of a spacetime with conformal symmetry.

Then (1.5.2) reads

AdSd+1 =
SO(d, 2)

SO(d, 1)
, (1.5.9)

from which it is clear that the isometry group of AdSd+1 coincide with the conformal group of

its boundary R1,d−1: this is only one of the interesting aspects regarding AdS/CFT duality.

It is worth mentioning some coordinate systems which become very useful when dealing

with AdS/CFT duality: the Poincaré charts. Taking the following definitions

T = t/w, X = x/w, Y = y/w,

W+ ≡ W + Z =
1

w
(x2 + y2 − t2) + w,

W− ≡ W − Z =
1

w
,

(1.5.10)

for AdS4, which is actually the case of interest in this thesis, the metric (1.5.5) becomes:

ds2 =
L2

w2
(−dt2 + dx2 + dy2 + dw2) =

L2

w2
(dw2 + dxµdxµ), (1.5.11)
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which is the analogue of the metric for Poincaré half-plane and the boundary is at w = 0. With

a further change of coordinates w = e−r̃, the boundary appears at infinity and the metric reads

ds2 = L2(dr̃2 + e2r̃dxµdxµ), (1.5.12)

which is a nonsingular form of the anti-de Sitter metric in Poincaré coordinates. Notice that

the metric (1.5.11) has a very important feature: it is invariant under dilatation

(xµ, w)→ (λxµ, λw). (1.5.13)

This is crucial in AdS/CFT correspondence because radial coordinates in the gravity side are

typically associated to some energy scale in the dual field theory. For instance, if we introduce

u = 1
w

then (1.5.11) becomes

ds2 = L2

(
du2

u2
+ u2dxµdxµ

)
(1.5.14)

and u can be identified as an energy scale. The boundary region of AdS is w � 1 and

corresponds to u � 1, which is the UV regime of the dual CFT . On contrary, the horizon

region w � 1 is equivalent to u� 1, so it correspond to low energies, i.e. the IR regime of the

CFT . Taking again L = 1 for clarity, a form of the metric we will come across later on in this

thesis is

ds2 =
dr2

r2
+ r4ds2(R1,2), (1.5.15)

obtained from w = 1
u

= 1
r2

. So, if u has to be identified with some energy scale, the “scaling

dimension” of the new radial coordinate r should be 1
2
: this number is very important in

the conformal check at the end of this work because it allows us to assign the correct scaling

dimensions ∆ of the fields in the HEFT description. Moreover, the coordinate r is actually the

radial coordinate of the conical structure wich we are going to introduce in the next chapter.
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Chapter 2

Complex geometry handbook

This chapter is a mathematical parenthesis on the geometric objects we will come across

throughout this thesis. Even if it seems a “technical vocabulary”, especially in the first part, we

will try to be “not-so-rigorous”: the purpose is to present the most relevant facts concerning

Calabi-Yau (CY) manifolds, one of the main characters in this work. However, we will see

complex geometry in action, together with its physical importance, only in the next chapters,

when we will introduce branes, M-Theory and finally holography. We will closely follow [19]

here, with something from [20], but lots of information and applications can be found in papers

cited in the next chapter.

2.1 Basics of differential geometry

The first thing we want to point out is that the concept of manifold do not coincide with the

concept of metric. A manifold endowed with a metric is called Riemannian manifold, but we

can in principle have different metrics for the same manifold: for instance, we anticipate that

one of the most important calculations in this work is to find a particular metric on a given

manifold. With this statement in mind, we can start to collect the basic geometrical object we

will encounter.

Definition: A complex manifold is a topological space together with a holomorphic atlas.

Example: complex projective space CPn.

The n-dimensional projective space is the space of complex lines through the origin in Cn+1/ {0},
that is the set (z1, ..., zn+1) where zi 6= 0, together with the identification (z1, ..., zn+1) ≈
λ(z1, ..., zn+1) for any non-zero complex λ. We can take sets Uj = {zj 6= 0} as coordinate

neighborhoods and choose coordinates ζ lj = zl

zj
within each Uj. On the overlap Uj ∩Uk we have

ζ lj =
zl

zj
=

zl

zk

zj

zk

=
ζ lk
ζjk
. (2.1.1)

25
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In this thesis we are mainly interested in CP1 spaces because they will emerge when dealing

with the Q111 model. The unidimensional projective space is covered by two coordinate patches

U1 and U2 with coordinate ζ1 ≡ ζ2
1 = z2

z1
and ζ2 ≡ ζ1

2 = z1
z2

, respectively. In the overlap region

U1∩U2 we have ζ1 = 1
ζ2

and we see that the unidimensional complex projective space is actually

the Riemann sphere S2.

Now we introduce the language of differential forms because it will be widely used in this

work.

Definition: A p-form is a totally antisymmetric covariant tensor of rank p defined as

αp =
1

p!
αm1,...,mpdx

m1 ∧ · · · ∧ dxmp , (2.1.2)

where the symbol “∧” is called “wedge-product”. This is the natural product between a p-form

and a q-form and it gives a (p+ q)-form.

Definition: The exterior derivative d is a map from the space of p-forms to the space of

(p+ 1)-forms defined as

dαp =
1

p!
∂mαm1...mpdx

m ∧ dxm1 ∧ · · · ∧ dxmp . (2.1.3)

Definition: The Hodge-star ? is a map from p-forms to (n− p)-forms defined as

? αp =

√
|detg|

p!(n− p)!
ε
m1...mp

l1...ln−p
αm1...mpdx

l1 ∧ · · · ∧ dxln−p , (2.1.4)

where g is some metric. This map let us define an inner product on the space of real forms as

(αp, βq) =

∫
αp ∧ ?βq. (2.1.5)

Given an inner product we can define the adjoint of the exterior derivative d† such that

(αp, dβp−1) = (d†αp, βp−1). One can show that

d† = ?d ? if n even

d† = (−1)p ? d ? if n odd
(2.1.6)

and moreover dd = 0 = d†d†. The action of d† on a p-form is given by

d†αp = − 1

(p− 1)!
∇kαkm2...mpdx

m ∧ dxm2 ∧ · · · ∧ dxmp . (2.1.7)

Definition: The Hodge-deRham operator is the second order differential operator defined as

∆ ≡ dd† + d†d and it is the covariant generalization of the Laplacian.
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Definition: A p-form ω is called harmonic if ∆ω = 0. Using the inner product one can show

that a form on a compact manifold is harmonic if and only if it is both closed and co-closed,

i.e. it satisfies dω = 0 and d†ω = 0 respectively1. The existence of harmonic forms is related to

global properties of the manifold on which they are defined. Indeed, Hodge has shown that a

differential form on a compact manifold can always be written in terms of harmonic, closed and

co-closed components in a unique way ω = α + dβ + d†γ. Similarly, a closed form can always

be written as ω = α+dβ with α harmonic and dβ exact. Surely an exact form is automatically

closed since d2 = 0, but the converse is not generally true: a closed form is exact only if the

harmonic part is zero. Actually, given a closed form ω it is always possible to find a form β

such that ω = dβ within any coordinate patch of the manifold. However, there is no guarantee

that β transform properly on the overlap region between two different patches and hence it

cannot be globally defined in general. So, a closed form is exact only locally.

The study of harmonic forms is matter of Homology and Cohomology: we will only intro-

duce the basic concepts for them relatively to a generic n-dimensional manifold M .

Definition: A p-chain ap is a sum ap =
∑
i

ciNi, where Ni are p-dimensional oriented subman-

ifolds of M . An integral over the chain can be expressed as
∫∑

i
ciNi

=
∑
i

ci
∫
Ni

.

Definition: The boundary operator ∂ associates a manifold M with its boundary ∂M . The

boundary operator acting on p-chains gives (p− 1)-chains ∂ap =
∑
i

ci∂Ni.

Definition: A p-cycle Cp is a p-chain with no boundary, i.e. it satisfies ∂Cp = 0.

Definition: Let Zp be the set of p-cycles and let Bp be the set of p-chains which are bound-

aries of (p+ 1)-chains, namely ap = ∂ap+1. The (simplicial) homology of M is the quotient set

Hp = Zp/Bp. In other words, Hp is the set of p-cycles with two cycles considered equivalent if

they differ by a boundary, i.e. ap ∼ ap + ∂ap+1.

Example: the torus T2.

The bidimensional torus is shown to admit two non-trivial harmonic one-forms. So to speak,

this is because there are “two basic curves which are not boundaries”. Since it is a two-

dimensional manifold we can only consider Hp with p = 0, 1, 2. Zero-chains are points, which

have no boundary: they are then zero-cycles too. Notice that any two points form the bound-

ary of a curve. Hence, H0 consists of multiples of some representative point, i.e. H0 ' R. H1

consists instead of the two independent cycles so that H1 ' R⊕ R, while H2 ' R because the

only two-chain without boundary is T2 itself.

Definition: Let Zp be the set of closed p-forms and let Bp be the set of exact p-forms. The

“de Rham cohomology” is the quotient Hp = Zp/Bp, i.e. Hp is the set of closed p-forms where

1It is important to stress that in the case of non-compact manifolds, such as cones we are going to deal with,
the “if and only if” is not appropriate. Instead, a form being both closed and co-closed is surely harmonic by
definition. Indeed, since ∆ = dd† + d†d, if dω = 0 = d†ω then ∆ω = 0.
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two elements are considered equivalent if they differ by an exact form ωp ∼ ωp + dβp−1.

Theorem: de Rham showed that the two vector spaces Hp and Hp are dual to each other and

hence isomorphic.

Definition: Betti numbers bp = dimHp are topological quantities that give the amount of

linearly independent harmonic p-forms.

Theorem: Given a p-cycle Cp there exists an (n− p)-form αn−p, called the “Poincaré dual” of

Cp, such that ∫
Cp

ωp =

∫
M

αn−p ∧ ωp (2.1.8)

for any closed p-form ωp.

2.2 Riemannian manifolds

Given a manifold M and a metric tensor g on it, the couple (M, g) is called “Riemannian

manifold” (but we will refer to it using M only). On M there exists a unique linear connection

∇ which is also torsion free, i.e. [X, Y ] = ∇XY − ∇YX for any vector fields X, Y on M .

Moreover, it preserves the metric∇g = 0. This is called “Levi-Civita connection” and relatively

to a local chart xa it is defined with “Christoffel symbols” Γcab by ∇∂a∂b = Γcab∂c. Christoffel

symbols can also be expressed in terms of the metric in the unique way:

Γcab =
1

2
gcd(∂agdb + ∂bgad − ∂dgab). (2.2.1)

Using ∇ we can introduce the notion of parallel transport. Given a curve t→ γ(t) on M with

velocity γ̇, we say that a vector field X is parallel along γ if ∇γ̇X = 0. Relatively to a local

chart xa we can write this equation as:

γ̇a∇aX
b = γ̇a(∂aX

b + ΓbacX
c) = Ẋb + Γbacγ̇

aXc = 0. (2.2.2)

A curve is called “geodesic” if its velocity is self-parallel, i.e. ∇γ̇ γ̇ = 0. In the same fashion of

(2.2.2) we get the geodesic equation:

γ̈c + Γcabγ̇
aγ̇b = 0 (2.2.3)

Integration of (2.2.2) bring to the concept of parallel transport. More precisely, consider the

curve γ : [0, 1]→M and the linear map Pγ : Tγ(0)M → Tγ(1)M taking vectors tangent to M at

the point γ(0) ∈M to vectors tangent to M at γ(1). If X ∈ TpM is a tangent vector to M at

p = γ(0) we define the “parallel transport” Pγ(X) relative to γ by first extending X to a vector

field along γ in such a way that solves (2.2.2) and then evaluating the vector field at γ(1). Now
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we fix a point p ∈ M and let γ be a differentiable curve which starts and ends at p. Then Pγ

is a linear map from the tangent space TpM to itself. Notice that we can both decompose and

invert those maps: therefore Pγ forms a group. Restricting to contractible loops, the group of

linear transformations

Hol(p) = {Pγ | γ contractible loop based at p}

is called “(restricted) holonomy group at p” of the connection ∇. The holonomy group is a very

important concept2 and in the case of a riemannian manifold M it is shown to be isomorphic to

SO(n), where n = dimM . Besides, it is interesting that the Lie algebra of Hol(p) is generated

by the Riemann curvature tensor and hence the holonomy group somehow “measures” how

much a space is curved. Indeed, we can fix two vectors X, Y on M and define a linear map as

follows:

R(X, Y ) = [∇X ,∇Y ]−∇[X,Y ]. (2.2.4)

Relatively to a coordinate basis, the linear map (2.2.4) may be written as a tensor Rd
abc defined

by

R(∂a, ∂b)∂c = ∂d (2.2.5)

and hence having components

Rd
abc = ∂aΓ

d
bc − ∂bΓdac + ΓebcΓ

d
ae − ΓeacΓ

d
be. (2.2.6)

Then, the Lie algebra is spanned by “curvature operators” Rab : ∂c → Rd
abc∂d and for a rieman-

nian manifold this is actually so(n) since Rab is antisymmetric.

2.3 Kähler geometry

Definition: Let M be an n-dimensional complex manifold and let zµ be local coordinates. We

define the tensor Imn by

I = i dzµ
∂

∂zµ
− i dzµ̄ ∂

∂zµ̄
. (2.3.1)

I is called “complex structure” and it is a linear map from the tangent space to itself obeying

I2 = −1, i.e. in component InmI
p
n = −δpm. This gives to each tangent space the structure of a

complex vector space and hence the n must be even. Complexifying the tangent space we can

diagonalize I immediately finding its eigenvalues ±i. At this point one can identify two kinds

of complex vector fields Z: type (1, 0) (or holomorphic) satisfy IZ = iZ, whereas type (0, 1) (or

antiholomorphic) satisfy IZ = −iZ. Moreover, we can define two operators P = 1
2
(1− iI) and

Q = 1
2
(1 + iI) projecting out respectively the holomorphic and antiholomorphic components

2For instance, we will see that it is physically related to supersymmetry.
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of a tensor. A complex k-form, with k = p+ q, can be then decomposed in p-holomorphic and

q-antiholomorphic parts in the following way:

ω =
∑
p+q=k

ω(p,q). (2.3.2)

Moreover, when the exterior derivative d acts on a (p, q)-form it gives a linear combination of

forms having different type. This is because d = ∂+ ∂̄, where “Dolbeault operators” are defined

as ∂ ≡ Pd and ∂̄ ≡ Qd. We can think of these operators as type (1, 0) and type (0, 1) parts of

the exterior derivative d. Indeed:

∂ω(p,q) = (dω)(p+1,q)

∂̄ω(p,q) = (dω)(p,q+1).
(2.3.3)

Each Dolbeaut operator defines its cohomology group, whose complex dimension is called

“Hodge number”.

Definition: A complex manifold is called hermitian if it is endowed with a metric of the

form ds2 = gµν̄dz
µdzν̄ . A hermitian metric satisfies gmn = IkmI

l
ngkl: we say that the complex

structure is compatible with the metric. Using the properties of I and hermiticity we can find

that gmkI
k
n = −gnkIkm, which means that hermitian manifolds have always a natural two-form3

Jmn = gmkI
k
n = −Jnm.

We have just seen that complex manifolds admit globally defined tensors I which square to

minus the identity. What if a real manifold admits such a tensor?

Definition: If a real manifold M admits a globally defined tensor I, which in this case is called

“almost complex structure”, such that InmI
p
n = −δpm, then M is called almost complex. If in

addition the metric is hermitian then M is called almost hermitian.

Definition: The Nijenhuis tensor NI of the almost complex structure I is defined as

NI(X, Y ) = I[IX, IY ] + [X, IY ] + [IX, Y ]− I[X, Y ]. (2.3.4)

Theorem: An almost complex structure becomes a complex structure if and only if the asso-

ciated Nijenhuis tensor vanishes. In that case, there exist a holomorphic atlas such that

Iµν = iδµν , I µ̄ν̄ = −iδµ̄ν̄ , I µ̄ν = 0 = Iµν̄ . (2.3.5)

Recall that the Christoffel connection is uniquely determined by two requirements: covariantly

constant metric and symmetric connection. When we have a complex manifold it is quite

natural to require the constant covariance of the complex structure, namely ∇I = 0. A unique

3In order to avoid confusion we must distinguish the (1, 1)-tensor Imn and the (2, 0)-form Jmn. In a free-index
notation, the former is defined from I = Imn ∂m ⊗ dxn while the latter corresponds to J = 1

2Jmndx
m ∧ dxn.
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connection is then singled out requiring the torsion tensor Γr[mn] to be pure in its lower indexes.

It follows that all the mixed components of the connection vanish and hence that a hermitian

connection is pure in its indexes. Using these facts, one can obtain:

Pure connection : Γλµν = gλρ̄∂µgνρ̄

Non-vanishing curvature : Rσ̄
µν̄ρ̄ = −Rσ̄

ν̄µρ̄ = ∂µΓσ̄ν̄ρ̄

Ricci form : R = iRρ̄
µν̄ρ̄dz

µ ∧ dzν̄ = i∂∂̄ log
√
detg.

(2.3.6)

Notice that the Ricci two-form is always closed, i.e. dR = 0, but it is not globally exact altough

(2.3.6) holds globally. The Ricci form defines a particular cohomology class

c1 =

[
1

2π
R

]
(2.3.7)

called “first Chern class”. Actually, c1 is a topological invariant and it does not change under

smooth variation of the metric, which in contrast affect the Ricci form R.

Definition: A hermitian manifold is said to be Kähler if the natural two-form J is closed,

i.e. dJ = 0. On a Kähler manifold J is called “Kähler form”. From dJ = 0 it follows

∂λgµν̄ = ∂µgλν̄ , ∂ρ̄gµν̄ = ∂ν̄gµρ̄, (2.3.8)

which translates into the fact that gµν̄ = ∂µ∂ν̄ϕj for some real scalar ϕj that can be defined on

each patch Uj. These scalars are also known as “Kähler potentials” and we can write

J = i∂∂̄ϕj (2.3.9)

for each patch Uj, whereas in some intersection Uj ∩ Uk we have ϕj = ϕk + fjk(z) with a holo-

morphic transition function. We should stress that J is not exact. Indeed, for a n-dimensional

manifold M the n-fold product J ∧ · · · ∧ J is proportional to the volume form dvol(M): inte-

gration over the manifold M then gives its volume. If J is exact, for example J = dβ, then this

volume is always zero, which is clearly not true. Instead, since J is covariantly constant it is

also co-closed: so, having both dJ = 0 = d†J , the Kähler form is harmonic.

Example: CP1 is a Kähler manifold.

This example will become useful later in this thesis. Recalling (2.1.1), set

ϕj = log

( 2∑
l=1

|ζ lj|2
)

= log(|ζ1
j |2 + |ζ2

j |2) (2.3.10)

as the Kähler potentials so that ϕ1 = log(1 + |ζ1|2) and ϕ2 = log(1 + |ζ2|2). On the overlap

U1 ∩ U2, since ζ1 = 1
ζ2

we have ϕ1 = ϕ2 − log(|ζ2|2) and hence ∂∂̄ϕ1 = ∂∂̄ϕ2. The metric

generated by this potential is the “Fubini-Study” one

gµν̄ = ∂µ∂ν̄ϕ1 =
1

(1 + |ζ1|2)2
δµν̄ . (2.3.11)

An alternative definition of a Kähler manifold is based on holonomy: a manifold (M, g, I) is

said to be Kähler if its holonomy group lies in U(n).
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2.3.1 Ricci-flatness: the Calabi-Yau geometry

We can restrict the holonomy of a Kähler manifold by imposing constraints on the curvature, for

example asking it to be Ricci-flat, i.e. the Ricci tensor vanishes. This request has an important

physical meaning: transversal cones X in the background geometry R1,2 ×X8 that we will see

in the next chapter must satisfy supergravity equation of motion in vacuum in order to be good

stable backgrounds, i.e. X must be Ricci-flat.

Definition: A Calabi-Yau (CY) manifold is a Kähler manifold with vanishing Ricci form.

It can be shown that this is equivalent to demanding that the holonomy group is SU(n) rather

than U(n) ' SU(n) × U(1), the U(1) factor being generated by the the Ricci tensor. So, if

the manifold is Ricci-flat there is no U(1) and the holonomy group is restricted. As we have

previously seen, the Ricci form defines the first Chern class (2.3.7). Consider a generic metric

g and a Ricci-flat metric g′ on the Kähler manifold M . The associated Ricci forms are related

by R(g) = R(g′) + exact-form and since R(g′) = 0 we get c1 = 0. This fact brought to the

following crucial theorem, conjectured by Calabi and later proved by Yau.

Theorem: Given a complex manifold with vanishing first Chern class and any Kähler metric

g with Kähler form J , there exists a unique Ricci-flat Kähler metric g′ whose Kähler form J ′

is in the same cohomology class as J . The utility of this theorem is that one can construct CY

manifolds by simply constructing c1 = 0 manifolds.

Example: CPn is not Ricci-flat.

The Ricci form for the projective space CPn with the Fubini-Study metric (2.3.11) takes the

form

R = −(n+ 1)J. (2.3.12)

Since we know that the Kähler form is not exact, then it is clear from (2.3.7) that the first

Chern class is nontrivial: this means that projective spaces cannot admit a Ricci-flat metric.

A fundamental property of CY manifolds is that they admit covariantly constant spinors

∇(X)η = 0, which have an important physical meaning: they are related to SUSY. Actually,

we will see that not every brane-solution is supersymmetric, but demanding the preservation of

some SUSY implies that the transversal cone X must admit some covariantly constant spinor,

i.e. it must be a CY. So, the CY-condition on transverse space will ensure both a stable

background geometry and the preservation of some supersymmetry.

Hodge numbers of a CY manifold

We stated that Betti numbers are topological numbers bp giving the dimension of the p-th de

Rham cohomology Hp(M) of a manifold M . After the definition of a metric on M , bp counts

the number of linearly-independent harmonic p-forms and for a Kähler metric there exists a

decomposition in terms of “Hodge numbers” hp,q such that bk =
k∑
p=0

hp,k−p, hp,q counting the

number of harmonic (p, q)-forms on M . A CY n-fold has symmetries and dualities relating
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Hodge numbers. For instance, one can prove that hp,0 = hn−p,0 and hp,q = hq,p. Moreover,

Poincaré duality gives hp,q = hn−p,n−q. We are particularly interested in the n = 4 case: these

CY four-folds are characterized by three independent Hodge numbers (h1,1, h1,3, h1,2). Then,

one can compute Betti numbers, which in turn play an important role since they are associated

to symmetries in the field theories we are going to deal with.

2.4 Calabi-Yau cones

As anticipated, in this work we will study branes on a background geometry R1,2 ×X8, where

the branes are parallel to the R1,2 factor and can be considered as pointlike with respect to

the transverse CY cone X8: in this section we want to highlight some geometrical features

about this cone. First of all, it has to be intended as a manifold X8 = R+ × Y7 with metric

ds2
8 = dr2 + r2ds2

7, where Y7 is the (compact) base of the cone. The point r = 0 is singular

unless Y7 = S7: we then talk about conical singularities. Let us be more precise.

Consider the riemannian manifold (Y, gY ) and let X = R+ × Y . We parametrise R+ by

r > 0 and define the metric gX on X such that

ds2
X = gXmndx

mdxn = dr2 + r2ds2
Y = dr2 + r2gYijdx

idxj. (2.4.1)

The riemannian manifold (X, gX) constructed in this way is called “metric cone” of (Y, gY ).

We will sometimes call C(Y ) the singular cone over Y .

One of the most important features of “conelike” metrics is the existence of a Killing vector

generating a rescaling of the radial coordinate. This is usually called “Euler vector” and takes

the form ξ = r∂r: it turns out to be essential for building some geometric structure on the

base Y . We have mentioned earlier that CY manifolds are related to covariantly constant

spinors, also called “parallel spinors”, and that these are related to SUSY generators: we

want to deepen the relation between the CY cone, its base and such spinors. Recall that a

covariantly constant spinor η satisfies ∇(X)η = 0, i.e. it is invariant under parallel transport

and hence its value at any point p ∈ X is invariant under the holonomy group Hol(p). A

manifold admitting such spinor fields is necessarily Ricci-flat, otherwise there must be some

rotation of the spinor after parallel transporting it around a closed loop. We are obviously

interested in Hol(p) = SU(n = 4), which is the CY four-fold case4. Now, it is possible to

find a correspondence between parallel spinors on (X, gX) and some Killing spinors on (Y, gY ),

namely

∇(X)η = 0 ←→ ∇(Y )η = ±1

2
Γη, (2.4.2)

where Γ are the (Dirac) gamma-matrixes on the base of the cone. This fact will let us see

SUSY generators as related to Killing spinors on Y rather than parallel ones on X, so that we

4We should mention that there exists other three holonomy groups related to covariantly constant spinors,
which in the four-fold case are: G2, Sp(2) and Spin(7).
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can use these two terms “interchangeably”. Letting N denote the dimension of the space of

Killing spinors, one can find that the case of CY four-fold have N = 2.5 Besides, in terms of the

seven-manifold at the base, the reduced holonomy of the CY cone implies the existence of some

tensors that contracted with the Euler vector give rise to geometrical objects characterizing the

base Y . For instance, one can build a “Sasakian structure” on Y and then, as usually found

in literature, define a Sasaki space as the base of a Kähler cone. Since we are interested in

Ricci-flat cones because they provide stable supergravity backgrounds, one can also find that

the relative base is an Einstein space, i.e. it has a Ricci tensor proportional to the metric6.

Summarizing, C(Y ) is Kähler if and only if Y is Sasaki, but since the cone is also Ricci-flat

it follows that its base is also Einstein. So, a Calabi-Yau cone has a Sasaki-Einstein base and

both of them are related to N = 2.

Resolutions and moduli: a preview

Cones are singular manifolds with the singularity at the tip. String and M-Theory can be

studied on such singular manifolds giving rise to new features with respect to the flat spacetime

case. One of them is about “resolutions”: we can replace the singularity of the cone with a

smooth manifold and this leads to the so called “resolved cone”. We will sometimes call

C(Y ) the singular cone over the base Y , while X will be identified with the resolved cone.

The resolution is more rigorously defined as a map π : X → C(Y ) such that the singular point

{r = 0} of C(Y ) is effectively replaced by an higher-dimensional locus in X, called “exceptional

set”. The metric on the resolved X is no more invariant under rescalings, but it should be a

CY one approaching the CY metric of C(Y ) asymptotically7: there is a theorem that ensure

this and it is to some extent a non-compact version of the aforementioned Calabi-Yau theorem.

Indeed, if X is compact then the CY theorem implies that it admits a unique Ricci-flat Kähler

metric: the non-compact version is implemented with suitable boundary conditions, namely

that the metric should be asymptotic to the one on C(Y ).

Theorem: Given a singular cone C(Y ) with vanishing first Chern class and any Kähler metric

g with Kähler form J , if π : X → C(Y ) is a resolution of the singular cone then X admits a

unique Ricci-flat Kähler metric g′ which is asymptotic to g and whose Kähler form J ′ is in the

same cohomology class of J .

Sometimes, as in the case of the Q111 model treated in this work, resolution manifolds, i.e.

exceptional sets, are product of CP1 ' S2, whose volumes are regulated by some parameters.

5For completeness, we mention that Spin(7) holonomy gives N = 1, CY four-folds have N = 2 and (“hy-
perkähler”) Sp(2) holonomy gives N = 3, whereas for N > 3 the manifold is necessarily a quotient of C4.

6We can indeed consider a change of coordinates in (2.4.1) using φ = ln r so that ds2
X = e2φ(dφ2 + ds2

Y ),
which is clearly conformally equivalent to the metric of a cylinder over Y , namely dφ2 + gYijdx

idxj . If gXmn in

(2.4.1) is Ricci-flat, after the conformal transformation the Ricci tensor on the base turns out to be RYij = 2gYij ,
i.e. the space is Einstein.

7We will see the physical reason to require this when dealing with holography.
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We anticipate that these parameters, together with the branes positions on X, give rise to a

certain amount of “moduli” that will correspond to fields of a particular field theory.

Resolved cone: an example

Consider the three-dimensional complex cone C(Y5) treated in [39], where the base Y5 has

isometry group SO(4) × U(1). This is called Klebanov-Witten model and we anticipate now

that it will come out later on in this thesis. As a complex manifold, it can be described by a

quadric equation in C4, namely

z2
1 + z2

2 + z2
3 + z2

4 = 0. (2.4.3)

Notice that zi → λzi with λ ∈ C∗ leaves (2.4.3) invariant, so that its real and positive part

s ∈ R∗+ can be interpreted as the typical scaling parameter of a cone. We can find the base Y5

quotienting by R∗+, which is equivalent to intersecting the cone with the unit sphere in C4:

|z1|2 + |z2|2 + |z3|2 + |z4|2 = 1. (2.4.4)

Since SO(4) ' SU(2)×SU(2) acts transitively on (2.4.4) and any point in the base is invariant

under a U(1) action, the base is actually the coset manifold Y5 = SU(2)×SU(2)
U(1)

, also known as

T 11. Alternatively, we can rewrite (2.4.3) using an obvious change of coordinates as

uv − xy = 0. (2.4.5)

The conifold equation (2.4.5) has an immediate solution taking

u = a1b1, v = a2b2, x = a1b2, y = a2b1 (2.4.6)

and notice that the identification is unchanged if we perform a rescaling ai → λai, bi → λ−1bi.

Moreover, the SO(4) ' SU(2) × SU(2) isometry has a clear interpretation: one SU(2) acts

on ai and the other one acts on bi. Now, if we write λ = seiα, with s ∈ R∗+ and α real, the

parameter s can be chosen to set

|a1|2 + |a2|2 = |b1|2 + |b1|2 = 1, (2.4.7)

which makes evident that the isometry group is SU(2)× SU(2) ' S3 × S3. Then, dividing by

the remaining U(1) acting as

ai → eiαai, bi → e−iαbi (2.4.8)

we find the same base manifold Y5 = SU(2)×SU(2)
U(1)

= S2 × S3 = T 11.

At this stage the conifold has a singularity at the tip and there are two different ways to

“smoothen” it. Following [38], they consist in substituting the singular tip with either S2 or S3:

in this work we are more interested in the former option. For the moment, we want to anticipate
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that (a1, a2, b1, b2) admit a field theoretical interpretation. Indeed, when studying field theory

vacua via minimization of a scalar potential like (1.2.19), it may emerge an equation like

|a1|2 + |a2|2 − |b1|2 − |b1|2 = ζ, (2.4.9)

where ζ is a Fayet-Iliopoulos parameter. If ζ = 0 this is exactly (2.4.7) so that one ends up

with a conifold moduli space. If instead ζ 6= 0 then the moduli space is a resolution of the

cone. To some extent, external parameters like FI can be interpreted as resolution parameters

“deforming” the conifold equation and hence “resolving” the singular cone. The generalization

to the case of C(Q111) treated in this thesis is not so straightforward and will be worked out in

the last chapter.



Chapter 3

M-Theory and brane solutions

In this chapter we are going to introduce some basic aspects of M-Theory following [21], focus-

ing on its effective field theory: the eleven-dimensional supergravity. Then, we will consider the

generalization of point-particles in M-Theory, namely M-branes: we are interested in geomet-

rical solution to Einstein equations preserving a fraction of the original supersymmetry. We

will see that M-branes placed on some eleven-dimensional background geometry give rise to a

“warped” geometry, whose near-horizon limit includes an AdS factor and an internal manifold.

Such solutions are studied for example in [22, 23, 24]. We already mentioned that supersym-

metry is related to the number of Killing spinors on internal manifolds but the presence of

branes sometimes reduces the amount of SUSY: this is pointed out also in [25, 26]. Remember

that our interest is oriented towards M-Theory on Calabi-Yau conical four-folds and hence we

will explicitly face this problem only, following [27] and [30] for more general warped solutions.

Besides, we shall get a glimpse on the field theories dual to brane-configurations, which are

matter of the next chapter, starting with the most famous example: the Maldacena duality

[3]. The gauge/gravity correspondence is then explained as in [28], together with possible

generalizations.

3.1 Basics of M-Theory

M-Theory was firstly conjectured by Edward Witten as a theory unifying all the five consistent

versions of superstring theory: type I, type IIA, type IIB, heterotic E8 × E8 and heterotic

SO(32). These ten-dimensional theories are related by string-dualities, which means that there

should be only one theory having different descriptions. On the other hand, M-Theory can be

interpreted as a strong coupling limit of type IIA (or eventually E8 ×E8, but in this thesis we

are more interested in the former scenario), which develops a new dimension and approaches

an eleven-dimensional limit. It is important to stress that M-Theory is not a String-Theory:

indeed, the extended objects generalizing the notion of point-particles are M-branes rather than

strings, which are not present in the eleven-dimensional theory. In what follows we are going to

37
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work with the effective theory of M-Theory, namely the eleven-dimensional supergravity. The

downside is that effective theories are non-fundamental by definition: however, we can study

dualities and brane solutions even in the low-energy limit with important outcomes.

3.1.1 Field content and M-branes

The massless spectrum of eleven-dimensional supergravity is relatively simple.

• First of all, 11-dimensional supergravity contains gravity, so there is a graviton. This is

represented by a symmetric traceless tensor of the little group SO(D − 2), with D = 11.

It has therefore 1
2
(D − 1)(D − 2)− 1 = 44 physical degrees of freedom.

• A SUSY theory should contain some fermionic degrees of freedom: indeed, there is a

gravitino ψM , the supersymmetric partner of the graviton, with spin 3
2
. One can show

that it has 128 degrees of freedom organized in a 32-component Majorana spinor1.

• In order for the theory to be supersymmetric, we must include other 128-44=84 bosonic

degrees of freedom: an eleven-dimensional three-form A3 is what we need. Indeed, mass-

less p-forms in D-dimensional spacetimes have
(
D−2
p

)
physical degrees of freedom.

In general, Mp-branes are extended objects having a (1+p)-dimensional worldvolume which

hosts a gauge theory. They naturally couple to a gauge potential, more precisely to a (1 + p)-

form A1+p. Since eleven-dimensional supergravity contains a three-form gauge potential A3,

there should exist some M2-branes that couple to it2. These fundamental constituents are also

called electric branes, which are by themselves sources of gauge fields, and from electromagnetic

duality we know that there should be also (magnetic) M5-branes in the theory. This is because

the electromagnetic dual of A1+p, which is a massless gauge potential, is CD−(1+p)−2: with

p = 2 and D = 11 we find C6, which naturally couples to a five-dimensional extended object3.

Moreover, they are stable solitonic solutions to supergravity equations, which means that they

look like (extremal) black-holes and share some of their properties.

We mentioned that M-Theory can be interpreted as a strong coupling limit of type IIA and

that M-Theory does not contain strings, even if type IIA is a String Theory. This sounds quite

strange, but we can think that the fundamental string of IIA is actually a M2-brane with a

spatial dimension wrapping a circular eleventh dimension. Indeed, one can obtain type IIA

1Actually, 32 is the real dimension of the smallest spinor representation of the eleven-dimensional Lorentz
group. In order to get it we start writing D = 2k + 2 for even dimensions and D = 2k + 3 for odd dimensions.
The Dirac spinor representation has complex dimension 2k+1, so that the number of real parameters in the
smallest representation must be doubled and then reduced by half for a Majorana condition and by half for a

Weyl condition. Hence, the minimal Majorana spinor in eleven dimensions has 24+1×2
2 = 32 components.

2Just like the four-dimensional photon A1 is associated to point-particles: the (1 + p)-dimensional worldvol-
ume in that case is the worldline.

3By electromagnetic duality F7 = dC6 = ?11dA3 = ?11F4.
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from dimensional reduction of M-Theory over a circle. Analogously, D4-branes4correspond to

M5-branes. Alternatively, an M2-brane not wrapping the eleventh dimension become a D2-

brane in type IIA after dimensional reduction. This is shown to correspond to a D3-brane

in type IIB, which is very important for Maldacena duality. Reduction to type IIA can also

give rise to D6-branes, which to some extent are different from other D-branes because they

correspond to “purely geometrical” M-Theory configurations, i.e. they do not correspond to

any M-Theory localized extended object. The reason why we are interested in this reduction

to type IIA is that there is more control of Superstrings rather than M-Theory: indeed, String

Theory admits a perturbative microscopic description which is not available for M-Theory.

Besides, D6-branes play an important role in dual field theory descriptions, as we shall see in

the following chapters.

3.1.2 Supergravity action

Gauge invariance of A3 together with general coordinate invariance, local Lorentz invariance

and supersymmetry put strong constraints on the action. Its bosonic part takes the unique

form

S11 =

∫
d11x
√
−gRscalar −

1

2

∫
F4 ∧ ?F4 −

1

6

∫
A3 ∧ A3 ∧ F4, (3.1.1)

where Rscalar is the scalar curvature and F4 is the field strenght of A3. The first term of (3.1.1)

is clearly the Einstein-Hilbert action, while the remaining parts are respectively the kinetic

term of A3 and a Chern-Simons term. The reason why we are considering the bosonic part is

that we are mostly interested in classical solutions, i.e. with vanishing fermionic fields in the

background. Hence we can focus on (3.1.1).

Mp-brane solutions

Equations of motion descending from (3.1.1) are satisfied by the following metric:

ds2
11 = h−

d̃
9 (r)dxIdxJηIJ + h

d
9 (r)dyadybδab, h(r) =

(
1 +

k

rd̃

)
, (3.1.2)

together with a field strength

Fp+2 = dvol(Rd) ∧ dh−1(r), (3.1.3)

where d = p + 1 and d̃ = 11− d− 2 are the worldvolume dimensions of the Mp-brane and its

dual, while r =
√
yaybδab is the radial distance in the transverse space. Indeed, I, J = 0, ..., d−1

are spacetime indexes for the longitudinal part, i.e. parallel to the brane, while a, b = d, ..., 10

4For our purposes it is sufficient to know that Dp-branes are the extended objects of String Theory, rather
than M-Theory, having (1 + p)-dimensional worldvolume. Type IIA has “p = even D-branes” while type IIB
has “p = odd D-branes”: they both couple to suitable (1 + p)-forms. We can also see D-branes as extended
object on which open strings can end.
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are space indexes for the transverse part. The constant k in (3.1.2) can be interpreted as the

electric/magnetic charge of the Mp-brane, namely the flux-integral over a suitable cycle: we

will specialize the solution soon after. The solution (3.1.2) together with (3.1.3) is written in a

rather compact fashion but recall that the relevant eleven-dimensional solutions have p = 2 or

p = 5. Take for instance the former one: we want to briefly explain why it can be interpreted as

an M2-brane. First of all, (3.1.2) with p = 2 is invariant under translations and rotations along

the directions (x0, x1, x2). Moreover, it is also invariant under rotations along the “transverse”

directions (x3, ..., x10). These two facts combined lead to the interpretation of the solution as an

extended object, having three-dimensional worldvolume, localized at the origin of the transverse

coordinates. Furthermore, the solution has (electric) charge k so that the interpretation of the

solution as an extended object that couples to a gauge potential is quite appropriate.

Supersymmetric solutions

The complete eleven-dimensional supergravity action is invariant under the following local

supersymmetry transformations:

δeAM = ε̄ΓAψM ,

δAMNR = −3ε̄Γ[MNψR],

δψM = ∇Mε−
1

288

(
ΓPQRSM − 8δPMΓQRS

)
FPQRSε,

(3.1.4)

where eAM are the vielbeins5, ψM is the gravitino, ε is an arbitrary point-dependent 11-dimensional

Majorana spinor and ∇M is the covariant derivative associated to the Christoffel connection.

Γ-matrices satisfy the algebra {ΓM ,ΓN} = 2gMN .

Being interested in classical solutions, every fermionic field in (3.1.4) must be vanishing.

Hence, every variation is zero and the only nontrivial equation among (3.1.4) is

∇Mε−
1

288

(
ΓPQRSM − 8δPMΓQRS

)
FPQRSε = 0. (3.1.5)

This can be also rewritten as

∇Mε+
1

12

(
ΓMF (4) − 3F

(4)
M

)
ε = 0 (3.1.6)

after the definitions

F (4) =
1

4!
FMNPQΓMNPQ, F

(4)
M =

1

3!
FMNPQΓNPQ. (3.1.7)

A nontrivial solution ε to (3.1.5) is a Killing spinor and the equation itself leads to constraints

both on the metric and the field strength, as we will see. Remember that Killing spinors

5Indexes M,N, ... are related to “curved space” while A,B, ... are related to “flat space”. The former
transform under general coordinate transformations, whereas the latter transform under local Lorentz transfor-
mations.
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are associated to supersymmetries and hence supersymmetric solutions should admit some of

them. To some extent they are the SUSY-analogue of Killing vector fields since they can be

interpreted as fermionic parameters for infinitesimal SUSY transformations under which fields

are invariant. So, Killing spinors are associated to fermionic symmetries just like Killing vectors

are associated to bosonic ones.

3.2 M-branes on conical backgrounds

Consider a pure eleven-dimensional Minkowski flat spacetime background: then the metric

solution to supergravity equation takes the form (3.1.2). Interestingly, the near-horizon (NH)

geometry (r → 0) of this solution is the eleven-dimensional spacetime AdSp+2 × S9−p, having

SO(2, p + 1) × SO(10 − p) as isometry group. On the other hand, (3.1.2) is asymptotically

Minkowski as r →∞. Notice that S9−p is the base of the R10−p (non-singular)cone: we should

have considered some different transverse spaces as a generalization, giving brane-solutions

with different isometry groups. Moreover, it turns out that such geometries may be no more

asymptotically minkowskian, for example if we take them to be singular cones. In this thesis

we will actually deal with a stack of N M2-branes placed on a conical background geometry like

R1,2 ×X8, so we are going to analyze the corresponding brane configuration and its NH-limit,

whose physical importance will be clarified in the next section.

3.2.1 M2-brane solutions and the near-horizon limit

When p = 2, the membrane solution (3.1.2) is:

ds2
11 =

(
1 +

k

r6

)− 2
3

dxIdxJηIJ +

(
1 +

k

r6

) 1
3

dyadybδab, (3.2.1)

together with a field strength

F4 = dvol(R1,2) ∧ dh−1(r). (3.2.2)

The charge k can be actually identified with the sixth power of some radius R, whose meaning

will be clear in a while, so we will write k = R6. The metric (3.2.1) is referred to a Minkowski

background: the generalization to a transverse manifold X8 reads

ds2
11 =

(
1 +

R6

r6

)− 2
3

ds2(R1,2) +

(
1 +

R6

r6

) 1
3

ds2(X). (3.2.3)

Recall that if X is a cone then ds2(X) = dr2 + r2ds2(Y ), where Y is the base of the cone. The

flux quantization condition of the four-form field strength in (3.2.2) then reads

1

(2πlP )6

∫
Y

?11F4 =
1

(2πlP )6

∫
X

d ?11 F4 = N ∈ Z, (3.2.4)
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actually giving the number of M2-branes in the stack. Besides, (3.2.4) leads to the relation

R = 2πlP

(
N

vol(Y )

) 1
6

, (3.2.5)

between the eleven-dimensional Planck length lP , the volume of the base, the radius R and N .

We are now ready to study the NH-limit of (3.2.3). This corresponds to placing N M2-

branes at the tip of the cone and then looking at the metric near r = 0. More precisely, we

study the r � R limit and the result is

ds2
NH =

(
r

R

)4

ds2(R1,2) +

(
R

r

)2

dr2 +R2ds2(Y ), (3.2.6)

where the first two terms gives exactly the metric (1.5.15) if R = L = 1. Defining the “holo-

graphic coordinate” z = R2

r2
, the metric (3.2.6) takes the form

ds2
NH =

r4

R4
ds2(R1,2) +

R2

r2
dr2 +R2ds2(Y ) =

=
R2

4

[
1

z2

(
dz2 + ds2(R1,2)

)]
+R2ds2(Y ) =

= R2[ds2(AdS4) + ds2(Y )],

(3.2.7)

so that it is clear that the radius R is actually the AdS-radius.

So, we showed that the near-horizon geometry generated by a stack of N M2-branes placed

at the tip of the cone X8 in a R1,2 × X8 background is AdS4 × Y7 as expected. The general

form of its isometry group is

SO(2, 3)×G, (3.2.8)

where G is the isometry group of the base Y7. When Y7 = S7 then G = SO(8) so that the

algebra of the isometry group coincides with the bosonic sector of the superconformal three-

dimensional algebra Osp(8|4). This suggests that the symmetry of the dual field theory gets

enhanced to a superconformal symmetry only near the horizon. Besides, the 8 of the isometry

group of the sphere coincide with the number of supersymmetries preserved: indeed, the case of

M2-branes on S7 corresponds to N = 8. In general, Y7 is a coset manifold Y = G/H admitting

N Killing spinors, where G takes the form

G = G′ × SO(N ) (3.2.9)

and G′ corresponds to some global symmetry. The R-symmetry factor SO(N ) then combines

with the isometry group of AdS4 producing Osp(N|4). Hence, the isometry group for the

non-spherical case is

Osp(N|4)×G′. (3.2.10)

We expect to see the first factor in (3.2.10) as the bosonic sector of the superconformal symmetry

group of some dual field theory. In the next subsection we will deepen the relation between

brane solutions and residual supersymmety.
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3.2.2 Supersymmetric M2 solutions

We want to solve (3.1.5) in the case where the background splits as R1,2 ×X8. The first step

is gamma-matrices decomposition. We can adopt the basis

ΓM = (Γµ,Γm) ∼ (γµ ⊗ γ9,12 ⊗ γm), (3.2.11)

where γµ and 12 are 2× 2 SO(1, 2) = Poincaré3 matrices, while γ9 and γm are 16× 16 matrices

of the isometry group of X8.6 The most general eleven-dimensional spinor field consistent with

the isometry group of the “warped geometry” (3.2.1) in this gamma-basis can be decomposed

in the following way:

ε11(x, y) = ζ1(x)⊗ η1(y) + ζ2(x)⊗ η2(y), (3.2.12)

where ζ1, ζ2 are three-dimensional 2-component anticommuting spinors, while η = η1 + iη2 is

an eight-dimensional 16-component commuting spinor. More precisely, considering the warp

factor h(r), (3.2.11) reads

Γµ = h−
1
3 (r)(γµ ⊗ γ9), Γm = h

1
6 (r)(12 ⊗ γm). (3.2.13)

Now, it can be useful to anticipate that the eleven-dimensional Killing spinor solution can be

written as

ε11 = ζ0
3 ⊗ η̂ = h

1
6 ζ0

3 ⊗ η, (3.2.14)

where ζ0
3 is a constant three-dimensional spinor and η̂ = h

1
6η turns out to be the Killing spinor

on X8.

When we consider the M2-brane solution on purely Minkowski background we should take

into account the presence of projectors P± = 1
2
(1 ± γ9). Indeed, the action of one projector

on the SO(8) spinor η imposes a chirality condition, halving the number of components. For

instance, consider that purely Minkowski background has the maximal amount of supersymme-

try, encoded in the 32-component ε11 spinor, i.e. 32 supercharges. These can also be interpreted

as 32 = 2×8+2×8 using (3.2.12). When the M2-brane is introduced and warps the geometry,

we are left with a three-dimensional constant spinor ζ0
3 and an eight-dimensional spinor η whose

components are halved, i.e. only 2 × 8 = 16 supercharges are conserved. For the moment, let

us check if (3.2.14) is actually a Killing spinor in the case of vanishing fluxes, i.e. we focus on

the first term ∇Mε11 = 0 in (3.1.5). Since ∇M = (∂µ,∇m), this is true because ∂µζ
0
3 = 0 for a

constant three-dimensional spinor and ∇mη̂ = 0 for a Killing spinor of the transverse manifold

X8. However, it is in general inconsistent to take vanishing fluxes for M-Theory solutions and

hence we are going to describe the procedure that leads to a complete and consistent solution

to (3.1.5).

Before doing this we want to point out that supermembrane solutions may lower the maximal

amount of SUSY and the background can break some SUSY by itself, depending also on the

6γ9 = γ3 · · · γ10 and γ2
9 = 116.
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orientation of X8, or more correctly its base Y7 if we remind the arguments in the previous

chapter. Calling η a Killing spinor on Y7, we can expect N solutions to

∇(Y )
m̃ η − 1

2
γm̃η = 0, (3.2.15)

where the index m̃ is referred to the seven-dimensional base. Then, since a generic eight-

dimensional spinor has 16 components, we are left with a fraction N /16 of the full 32 super-

charges of maximally symmetric background without branes. For example, Y7 = S7 admits

N = 8 + 8 Killing spinors, i.e. it is maximally supersymmetric. These spinors can be viewed as

η = {η+, η−}, where the eight η+ satisfy (3.2.15), while the eight η− satisfy the same relation

with a “plus” sign. The membrane introduction cuts the η− (or the η+ depending on conven-

tions) because of the projectors, recovering the aforementioned halving of supersymmetries7.

However, in this thesis we consider a Sasaki-Einstein base: this possesses N = 2 Killing spinors

and hence preserve N
16
× 32 = 4 supercharges. This 4 is precisely the amount of supersymmetry

of a N = 2 three-dimensional theory. Looking at (3.2.12), the two three-dimensional (constant)

spinors ζ1, ζ2 can be interpreted as the SUSY generators of such a field theory: indeed, they

correspond to 2 + 2 supercharges.

M-Theory solutions preserving N = 2

Let us focus on M-Theory “flux compactification8” to three-dimensional flat spacetime preserv-

ing N = 2 supersymmetries. Our starting point is the warped metric

ds2 = h−
2
3 (y)ηµνdx

µdxν + h
1
3 (y)gmn(y)dymdyn, (3.2.16)

where gmn is the metric on the internal manifold X8. We have seen that the emergence of

N = 2 in three dimensions corresponds to X8 being a Calabi-Yau four-fold. Notice that the

warp factor h(r) has an important consequence: even if the background is a direct product, the

introduction of M2-branes gives a spacetime which is no more a direct product but instead it is

a warped version of it. This is sometimes indicated with R1,2 ×w X8 and notice that if N = 0,

i.e. there are no branes, the warp factor h = 1 + R6

r6
with R given by (3.2.5) is h = 1 and hence

×w → × in this case.

In order to work out the dimensional reduction of (3.1.5) we adopt the gamma-matrix

decomposition (3.2.13) and the spinor decomposition ε(x, y) = ζ(x) ⊗ η(y). Besides, for the

case at hand it can be shown that the only non-vanishing components of F4 are

Fmnpq(y), Fµνρm = εµνρfm(y), (3.2.17)

7There can be “extreme” situations: for example, if one considers the “squashed sphere”, i.e. a round sphere
with reversed orientation, then all supersymmetries are broken.

8We will not give a systematic presentation of this topic. We can say that “flux compactifications” are
techniques employed to study the relation between a D-dimensional theory with fluxes, a field strength for
example, and a d-dimensional one obtained from compactification of D − d directions. In the case at hand,
D = 11 and d = 3, but the 11− 3 = 8 “compact directions” are not compact: they make a cone. Nevertheless,
these techniques are still called flux compactifications.
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where fm(y) is an arbitrary function that we will determine soon. Now it is maybe useful to

switch to the notation in (3.1.6) and (3.1.7) because using the gamma-matrix decomposition

we find

F (4) = h−2/3(12 ⊗ F ) + h5/6(12 ⊗ γ9f),

F (4)
µ = h1/2(γµ ⊗ f),

F (4)
m = −hfm(12 ⊗ γ9) + h−1/2(12 ⊗ Fm),

(3.2.18)

where

F =
1

24
Fmnpqγ

mnpq, Fm =
1

6
Fmnpqγ

npq, f = fmγ
m. (3.2.19)

At this stage we can analyze the internal and external components of δψM = 0 separately.

For the external components M = µ we get

δψµ = ∇µε−
1

4
h−7/6(γµ ⊗ γ9γ

m)∂mh
2/3ε+

1

12

(
ΓµF

(4) − 3F (4)
µ

)
ε = 0. (3.2.20)

Since our three-dimensional external spacetime is minkowskian there always exists a covariantly

constant spinor satisfying ∇µζ(x) = 0.9 This let us simplify (3.2.20), which becomes

γm∂mh
−1η + fη +

1

2
h−3/2F η = 0 (3.2.21)

and leads to the constraints

F η = 0, fm(y) = −∂mh−1(y). (3.2.22)

Notice that the second equation of (3.2.22) provides a relation between some external component

of the flux and the warp factor, hence it is evident that in the case of warping we cannot in

general freely set fluxes to zero: the result would be inconsistent.

For the internal components M = m, using the same decompositions together with (3.2.18)

we can turn δψm = 0 into the expression

∇mη +
1

4
h−2/3∂mh

2/3η − 1

4
h−1/2Fmη = 0. (3.2.23)

This equation is satisfied provided that

Fmη̂ = 0, ∇mη̂ = 0, (3.2.24)

where η̂ is a nonvanishing covariantly constant complex spinor on the internal manifold X8 and

takes the form η̂ = h1/6η. Notice that this calculation leads exactly to the anticipated (3.2.14).

Moreover, in the case we are interested in, namely Q111, the internal components of the flux

can be freely set to zero, i.e. Fmnpq(y) = 0. Thus, the field strength (3.2.2) is completely

characterized by the function fm(y) in (3.2.22).

9Indeed, one can take constant spinors ζ0
3 in three-dimensional Minkowski spacetime so that∇µζ = ∂µζ

0
3 = 0.
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The Q111 base manifold

There exist just three Sasaki-Einstein bases realized as coset manifolds G/H that give rise to

N = 2 supersymmetries:

Mppr =
SU(3)× SU(2)× U(1)× U(1)

SU(2)× U(1)× U(1)
,

Qppp =
SU(2)× SU(2)× SU(2)× U(1)

U(1)× U(1)× U(1)
,

V5,2 =
SO(5)

SO(3)
.

(3.2.25)

In this thesis we will deal withQ111 and so we give some previews on it10. First of all the isometry

group has exactly the form (3.2.9), with the R-symmetry group SO(N = 2) ' U(1)R and

G′ = SU(2)3. The metric on the cone over Q111 can be seen as a C bundle over CP1×CP1×CP1

or as a C2 bundle over CP1 × CP1. We will see that the latter structure is more appropriate

for complex coordinates while using real coordinates the metric takes the form:

ds2(Y = Q111) =
1

16

(
dψ +

3∑
i=1

cos θidφi

)2

+
1

8

3∑
i=1

(
dθ2

i + sin2 θidφ
2
i

)
, (3.2.26)

where (θi, φi) are standard coordinates on three copies of CP1 ' S2, while ψ has 4π period

3.2.3 Warped CY4 backgrounds and deformations

In the previous section we explored M2 solutions where N branes where organized in one stack

set on a suitable M-Theory background, for example a conical one. However, there exist more

general solutions in M-Theory where supergravity backgrounds take the form:

ds2
11 = h−2/3ds2(R1,2) + h1/3ds2(X),

F4 = dvol(R1,2) ∧ dh−1,
(3.2.27)

where now we have a generic warp factor h(r), i.e. it is not the one of (3.1.2). Actually, we

can take the whole discussion of the previous section and repeat it for this generic warp factor

h(r): indeed, solutions preserving N = 2 supersymmetries in three dimensions only depend

on the choice of the transverse manifold, which has to be a Calabi-Yau four-fold in our case.

So, suppose that we are working with such a generic warped background R1,3 ×w CY4. If

CY4 = R8 or CY4 = C(Y7) then we already investigated what happens, in particular with N

coincident M2-branes placed at r = 0. However, we can think of “deforming” these kind of

backgrounds in two quite natural ways: either allowing for M2-branes motion around CY4 and

resolving the singularity of C(Y7) using the π : X → C(Y ) of the previous chapter. In the

10The p indicates a further quotient with some discrete group. For instance, Q222 is a Z2 quotient of Q111.
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latter case it is crucial to require X to be a Calabi-Yau fourfold whose metric is asymptotic

to the metric of a singular cone C(Y ) over a Sasaki-Einstein seven-dimensional base Y , i.e.

ds2
X → ds2

C(Y ) = dr2 + r2ds2
Y . The physical reason is that such resolved cone X loses its scale-

invariance, which in turn is restored only far away from the resolution manifold: this is very

important in holography and we will use this property later in this thesis. Then, placing N

coincident M2-branes at a point y ∈ X leads to an equation for the warp factor

∆Xh =
(2πlP )6N√
detgX

δ8(x− y), (3.2.28)

where ∆X is the Laplacian on (X, gX). This kind of equation typically arises from the supergrav-

ity equations of motion and requires the warp factor to be an harmonic function. Considering

the motion of M2-branes on X, we can imagine that branes are point-like with respect to X

and that they are sitting on it splitted in m stacks such that N =
m∑
i=1

Ni, with Ni M2-branes in

the i-th stack. Defining yi ∈ X the position of every stack, (3.2.28) can be easily generalized to

∆Xh =
(2πlP )6N√
detgX

m∑
i=1

Ni

N
δ8(x− yi). (3.2.29)

A solution to (3.2.29) requires a particular CY metric gX together with some boundary con-

ditions. Since (X, gX) is asymptotic to the singular cone we can require the large-r behavior

of the warp factor to be h ∼ R6/r6 so that it vanishes at infinity. These kind of backgrounds

with asymptotically vanishing warp factor are called “asymptotically AdS × Y ”. For instance,

if we take h = R6/r6 and put it in (3.2.27) we will find the AdS4 × Y7 only for large r, where

ds2(X)→ dr2 +r2ds2(Y ). In any case with h ∼ R6/r6, (3.2.27) will be asymptotic to AdS4×Y7

with N units of F7 ∼ ?11F4 trough Y7. Otherwise stated, given the asymptotically conical metric

and the asymptotically vanishing warp factor, the M-Theory background (3.2.27) is asymptotic

to the large r region of (3.2.7). To some extent, we can think of these asymptotically AdS4×Y7

backgrounds as supergravity solutions realizing the near-horizon physics of a M2-branes stack,

i.e. AdS4 × Y7, at large r. On the other side, at small r we have a metric ds2(X) which can

be completely different from dr2 + r2ds2(Y ) and hence (3.2.27) is not AdS4×Y7 “everywhere”.

Recalling that the isometry group of AdS4 coincides with the conformal group of a CFT3, it is

crucial to require the presence of some AdS4 factor in the supergravity background if we want

the AdS4/CFT3 duality to hold. For instance, in the case of a stack of M2-branes placed on the

tip of C(Y7) the AdS4 factor is found in the near-horizon limit, while for the “deformations”

discussed here, giving asymptotically AdS4 × Y7 solutions, the AdS4 factor is found at infinity.

Actually, it turns out that these kind of M-Theory vacua admit an interpretation in terms of

vacua of a dual three-dimensional SCFT with N = 2: this claim will be widely supported

throughout the thesis, but we should start from the basis of gauge/gravity correspondence in

the next section.
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3.3 The gauge/gravity correspondence

The original Maldacena conjecture [3] states that the large N limit of certain (Super)CFTs

is dual, i.e. equivalent, to a supergravity theory on a background metric containing an anti

de Sitter spacetime and a transverse compact manifold. In particular, he argued that N = 4

super Yang-Mills in four spacetime dimensions with gauge group SU(N) is dual to type IIB

supergravity on AdS5×S5 background. The conjecture is motivated by considering N coincident

branes in the String Theory and then taking a low-energy limit such that the gauge theory on

the branes decouples from the physics in the bulk side. At the same time, branes produce a

warped geometry whose near-horizon decouples from the bulk side in the same limit. The bulk

then “factors-out”, leaving the duality between the gauge theory and the near-horizon physics.

Gauge theories living on D-branes

We want to give an intuitive explanation of why gauge theories are hosted on the worldvolume

of branes. First of all, we know that p-branes are coupled to generalized gauge potentials,

Ap+1. These branes are in some sense stable, i.e. they do not “decay”. Imagine two such

branes living in a D-dimensional spacetime: there are open strings ending on the same brane

and open strings connecting them. The former give rise to a massless vector while the latter

give rise to a massive one. The reason is that strings stretching between branes have nonzero

length, or equivalently nonzero tension T ∼ 1
α′

. The mass of these massive modes is given by:

∆M2 ∼ T 2

D−1∑
i=p+1

|φi1 − φi2|2, (3.3.1)

where φ are fields parametrizing the positions of branes in the transverse space. Notice that

(3.3.1) is zero when the branes coincide, hence giving massless vectors. When a “stack” of

N branes is considered, the generalization is straightforward. Indeed, there will be a N × N
matrix of gauge vectors Aab generating U(N) gauge transformations, where the index a labels

the starting branes and the index b labels the ending brane to which an open string is attached

to. The mass term for these gauge vectors is shown to be

|Aab|2
D−1∑
i=p+1

|φia − φib|2

α′2
, (3.3.2)

so that diagonal components, i.e. with a = b, are massless while off-diagonal components

acquire mass. Then, we can interpret diagonal gauge fields as open strings ending on the

same D-brane and off-diagonal ones as open strings connecting different D-branes in the stack.

Notice that since the mass is proportional to the distance between the D-branes, when branes

coincide every massive vector become massless, which is a sort of “inverse-Higgs” mechanism.

On the other hand, one can think of separating a collection of N1 branes from the remaining
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N2 = N−N1: this corresponds to an “Higgsing”. For instance, if U(N)→ U(N1)×U(N2) then

there will be N2 − (N2
1 +N2

2 ) = 2N1N2 broken generators, giving an equal amount of massive

vector bosons. By the way, we want to stress that while the gauge theory on a single brane is

abelian, its generalization to a stack of N branes is non-abelian.

3.3.1 Maldacena duality

Consider N parallel D3-branes in ten-dimensional spacetime. If we consider the system at low

energies then only the massless states are accounted for in the physics and we can write an

effective supergravity Lagrangian for type IIB. Indeed, closed string massless states constitute

a gravity supermultiplet in ten dimensions. On the other hand, open string massless states give

a N = 4 vector supermultiplet in four dimensions and their low-energy effective Lagrangian is

the one of N = 4 U(N) super Yang-Mills (SYM).

The full effective action for masselss modes takes the form:

S = Sbulk + Sbrane + Sint, (3.3.3)

where Sbulk is the action of ten-dimensional supergravity, Sbrane is the four-dimensional world-

volume action containing the Yang-Mills theory and Sint describes the interaction between brane

and bulk modes. The interaction Lagrangian is proportional to κ, which is the ten-dimensional

gravitational coupling constant. The low-energy limit corresponds to κ → 0, which translates

into the decoupling of brane modes from bulk modes. More precisely, κ ∼ gsα
′2 and the limit

is actually α′ → 0 with fixed string coupling gs ∼ g2
YM . So, the theory in the low-energy limit

describes two decoupled pieces: free IIB supergravity on flat ten-dimensional spacetime and

N = 4 SYM theory in four dimensions.

This decoupling argument can be repeated from a different point of view: warped geometry.

The stack of D3-branes generates a supergravity solution that takes the form:

ds2 =

(
1 +

R4

r4

)− 1
2

ds2(R1,3) +

(
1 +

R4

r4

) 1
2

ds2(R6), (3.3.4)

where R4 ∼ gsNα
′2. So, in the low-energy limit α′ → 0 it seems that (3.3.4) gives the flat

spacetime metric. This situation is equivalent to consider r � R. Besides, there is another

low-energy region. Since gtt depends on r, the energy of an object measured by an observer

at a constant position is affected by a redshift factor with respect to the energy measured at

infinity, namely:

E∞ =

(
1 +

R4

r4

)− 1
4

E(r). (3.3.5)

It is clear from (3.3.5) that an object brought close to r = 0 finds its energy reduced if that

energy is measured by an observer far away from it. Hence, the other low-energy region is

r � R: this actually corresponds to taking the near-horizon geometry of (3.3.4), which is
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AdS5×S5. In conclusion, the low-energy theory consists of two systems separed by a “barrier”

that grows as α′ → 0, making them decouple from each other. This two systems are IIB

supergravity on flat ten-dimensional spacetime and IIB on the near-horizon AdS5 × S5.

At this stage, we have two decoupled systems both from the open strings field theory point

of view and from supergravity solution point of view. Moreover, one of the decoupled systems

is IIB supergravity on flat ten-dimensional spacetime from both sides. This suggests that

the residual systems may be identified, giving an equivalence between N = 4 SYM in four

dimensions and type IIB on AdS5 × S5. This argument is further strengthened by symmetry

considerations. Indeed, the isometry group of AdS5 coincide with the conformal group of CFT4,

which is SO(4, 2). Moreover, the SO(6) isometry of S5 can be identified with the R-symmetry

group SU(N = 4) of the field theory. This means that some relevant properties of the low-

energy description of the field theory living on branes actually corresponds to the near-horizon

physics description.

Coupling constants and large N limit

We stressed that the gauge/gravity correspondence can only be trusted in the large N limit:

we want to clarify this statement.

The dimensionless effective coupling of a SYM theory in a (p+ 1)-dimensional spacetime is

scale dependent [21], namely

g2
eff (E) ∼ g2

YMNE
p−3. (3.3.6)

This coupling is small for large energy in the p < 3 case and for small energy in the p > 3 case.

The p = 3 case of D3-branes theory is exactly the N = 4 SYM in four dimensions: this is a

conformal field theory and indeed (3.3.6) becomes independent on energy scale and corresponds

to the so called ’t Hooft coupling constant:

λ = g2
YMN. (3.3.7)

In the large N expansion we are going to introduce, (3.3.7) is held constant while g2
YM ∼ gs

becomes small. Moreover, combining with R4 ∼ gsNα
′2 we obtain:

gs ∼
λ

N
,

R4

α′2
∼ λ. (3.3.8)

So, the String Theory is weakly-coupled, i.e. gs � 1, when N is large. Besides, a large

coupling λ� 1, i.e. strongly-coupled field theory, corresponds to a big AdS-radius R in string

length units ls ∼
√
α′ or alternatively to a fixed radius with α′ → 0: this reminds the low-

energy limit previously discussed. In conclusion, the combination (3.3.8) with gs � 1 and

λ� 1 corresponds to the duality between a strongly-coupled field theory and a weakly-coupled

supergravity (effective) field theory. The strong-weak coupling duality feature is the whole

point: it is this property that makes the correspondence useful.
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From the field theory point of view, it is possible to show that Feynman diagrams are actually

associated to two-dimensional Riemann surfaces with a determined Euler characteristic χ. If

the diagram has V vertexes, E edges and F faces then χ = F − V + E. Since each face is

a loop, F corresponds to a factor of N , while each vertex and each edge corresponds to g2
YM

and g−2
YM respectively. Recalling that g2

YM = λ
N

, the total contribution to an amplitude goes

like λV−ENF−V+E = λE−VNχ. For instance, this means that an observable O admits a power

series expansion

O =
∞∑
g=0

f(λ)N2−2g, (3.3.9)

where we have expressed the Euler characteristic in terms of the genus g of the surface diagram,

i.e. χ = 2 − 2g. It is then clear from (3.3.9) that “higher-genus contributions” are strongly

suppressed in the large N limit with respect to planar diagrams.

3.3.2 Generalizations of the conjecture

The Maldacena conjecture has found a lot of success not only because of its physical meaning but

also because it is widely generalizable, hence providing a huge laboratory where the conjectured

duality can be tested.

One among possible generalizations consists in studying a stack of D3-branes placed on the

singularity of a R1,3 × CY3 background, where CY3 is the six-dimensional cone over a Sasaki-

Einstein five-dimensional base Y5: an example is the Klebanov-Witten theory described in [39].

Another kind of generalization consists in considering the M-Theory scenario with M2-branes

probing a conical background R1,2×CY4. To some extent, the discussion for D3-branes in ten-

dimensional spacetime can be carefully repeated for M2-branes in eleven-dimensional spacetime

with suitable corrections: for instance, we have (3.2.3) instead of (3.3.4). Moreover, p = 2 and

hence we see from (3.3.6) that the effective coupling constant increases as the energy decreases.

In other words, the resulting field theory is not a conformal theory like N = 4 SYM in four

dimensions because the dimensionful coupling in three dimensions introduced a scale. Hence

the field theory, which for the case at hand is a d = 3 N = 2 quiver, whose structure will be

explored in the next chapter, acquires the conformal symmetry only at the fixed point of an

RG-flow: this is an infrared fixed point since it is found at low energies.

In general, the SCFT dual to the near-horizon physics on AdS4 × Y7 can be thought of as

the IR conformal fixed point of particular three-dimensional gauge theories with N = 2 in the

“far UV region”, typically quiver gauge theories that are matter of the next chapter. One such

microscopic theory has a non-trivial moduli space, whose points represent different field theory

vacua. The crucial argument is that a particular region of this space is related to suitable

background geometries, which are supergravity vacua. We can then say that there is a family

of such geometries but only one point of the moduli space corresponds to the superconformal

vacuum, for example AdS4×Y7. In that particular vacuum every operator we can build has zero
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VEV since there cannot be any dimensionful scale in a conformally invariant theory. Instead,

at a generic point of the moduli space the vacua spontaneously break the conformal symmetry

because operators may acquire some VEV. We can imagine that the “motion” trough the moduli

space corresponds to an RG-flow triggered by VEVs to some extent, but the RG-flow has to

be intended in a two-step fashion and it is a very delicate issue which has not been rigorously

described yet. We try to give the basic idea. From the far UV, where the theory is describable

by a UV-quiver and it is not a SCFT, the flow is towards a “deep IR region” which is the true

dual to the near-horizon physics, i.e. the IR fixed point. At this point we have 〈O〉 = 0 for any

operator O, but since there is no dimensionful scale then we can freely study the theory at the

IR fixed point for any energy regime, even the UV: this however must not be confused with the

“far UV” previously mentioned. Indeed, in the far UV the dual field theory is not a SCFT: it

is required an RG-flow towards the IR as a first step and from there we can reach another UV

region. This new UV region is the high-energy region of the SCFT which does not correspond

to the high-energy region of the UV-quiver. Then, even if some operator acquires a VEV

〈O〉 6= 0 the superconformal symmetry should be present, at least via non-linear realization.

In other words, the VEV 〈O〉 is interpreted as a spontaneous symmetry breaking scale and

hence the conformal symmetry is spontaneously broken at a generic point of the moduli space.

Now, consider one such field theory vacua with non-vanishing VEV. At energies well above this

scale, let us say in the UV region, the conformal symmetry is “recovered”: these vacua are then

interpreted as supergravity vacua which are asymptotically AdS4 × Y7 in the sense previously

discussed. On the other hand, as energies become comparable with that scale the conformal

symmetry starts to spontaneously break down and there will be massive states with a mass

of order 〈O〉. So, at energies well below 〈O〉 we can integrate out these massive states and

build an effective theory for massless modes only. In the branes picture, when the M2-branes

are coincident and placed on the tip of the cone CY4, the NH limit is dual to a SCFT, whose

conformal symmetry is however spontaneously broken at a generic point of the moduli space.

This point may represent the following (combination of) situations:

• the cone is resolved, hence schematically 〈O〉 = 〈resolutions〉 6= 0;

• some or all the M2-branes are no more on the tip and instead are moving around the

cone, hence schematically 〈O〉 = 〈positions〉 6= 0.

Then, if Ñ is the number of mobile M2-branes on CY4, one expects that a portion of the moduli

space of vacua is the symmetrized product of CY4 itself11. In the next chapter we will study

the field theory side, focusing on the Q111 model of this thesis: we will actually find that a

portion of the moduli space is in fact SymÑCY4, which can be parametrized by the positions

of M2-branes on CY4.
11This is because the moduli space of a point-like object on a manifold, like an M2-brane on CY4, should

contain the manifold itself. Thus, considering Ñ identical point-like objects, i.e. “branes indistinguishability”,

the moduli space should contain SymÑCY4.



Chapter 4

Quiver Field Theories

This chapter is dedicated to the field theories we are interested in, namely three-dimensional

quiver gauge theories with Chern-Simons and matter content having N = 2 supersymmetries.

These describe the dynamics of M2-branes placed on a R1,2 ×CY4 background and hence they

are supposed to RG-flow to a N = 2 three-dimensional SCFT dual to M-Theory on AdS4×Y7,

where Y7 is the base of CY4. We will work on a particular example of quiver gauge theory:

the Y7 = Q111 model. Our attention should be oriented towards its moduli space Mquiver,

namely the space of inequivalent vacua of the field theory. Actually, we are interested in a

particular branch M ⊂ Mquiver of the full moduli space, the one that somehow reproduces

the background cone. More precisely, if the N = 2 Chern-Simons three-dimensional theory for

Q111 is conjectured to describe the dynamics of Ñ mobile M2-branes on a CY4, we expect that

the moduli space of the field theory has a branch containing Ñ symmetrized copies of it, i.e.

M = SymÑCY4. It should be clear that if the branes are moving on a resolved version of CY4

then we expect to find the resolved version inside the moduli space of the field theory:

R1,2 × C(Y7)↔M = SymÑC(Y7), R1,2 ×X8 ↔M = SymÑX8.

The moduli space is a Kähler manifold: while its complex structure is preserved under quan-

tum corrections, its Kähler structure generally receives strong quantum corrections. In order to

study the branchM from the field theory point of view we can adopt two strategies: a semiclas-

sical calculation or a computation based on monopole operators. The former includes one-loop

corrections and probes the Kähler structure while the latter is only aware of the complex struc-

ture, i.e. it does not “see” resolutions, but it is one-loop exact. We are very interested in the

Kähler structure because it is the one giving rise to the Lagrangian for the effective field theory,

as anticipated in (1.2.18). The Kähler metric for the nonlinear sigma model Lagrangian can in

principle be calculated from the “far UV” theory: the problem is that the effective field theory

is a low-energy theory where the coupling is strong and hence there are no direct ways to face

the problem of finding the correct Kähler metric in this regime. Indeed, both the semiclassical

and the monopole methods are subject to non-perturbative corrections and we can properly
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use them in the “far UV” region only. So, the problem is to compute the Kähler metric in the

strongly coupled region where the quiver becomes a SCFT. We should mention that the moduli

space of the SCFT obtained RG-flowing the UV-quiver is something different from Mquiver:

we can call it MSCFT . Nevertheless, we want to stress that, at least in the branch M we

will work on, the complex structure is the very same and the information1 about the Kähler

structure we can obtain from the semiclassical computation in the UV are trustable even in

the SCFT. The information we crucially lack is about the metric on MSCFT : it is exactly for

this reason that we are going to use holography, whose techniques will be introduced in the

next chapter, so that we can compute the metric on MSUGRA. Schematically, we can say that

Mquiver ∼MSCFT from the complex point of view but in order to compute the metric we must

switch to the holographic description, i.e. MSCFT →MSUGRA. Quiver field theories and their

duals are studied for example in [1, 2, 29, 30, 31, 32, 33, 34, 6, 35], together with their moduli

spaces

4.1 The quiver structure

Let us start specifying that quivers are not field theories by themselves: they are graphs en-

coding informations about field theories.

More precisely, a quiver is a directed graph consisting of a set of nodes V = {v1, v2, ..., vn},
a set of arrows A and two maps s, t : A → V . For each a ∈ A there is a node s(a) called

“source” and a node t(a) called “target”.

This structure turns out to be useful because the field content of certain field theories may

be described in the following fashion:

• Each node vi ∈ V corresponds to a vector superfield in the adjoint representation of a

Lie group Gi. The full gauge group of the theory is the product of these groups, namely

G1 × · · · ×Gn. In cases we are interested in we associate a gauge group factor U(Ni), or

SU(Ni), to every node.

• Each arrow aij ∈ A, such that s(aij) = vi and t(aij) = vj, corresponds to a chiral superfield

Φij transforming in the fundamental representation of the source (first index) and in the

antifundamental of the target (second index). These are also called bifundamental fields:

sometimes we will use a notation with only one index running over the arrows, namely Φa.

The charge convention we will adopt is to assign it a +1 for the source group U(Ni)s(a)

and a −1 for the target group U(Nj)t(a) so that a field that enters in a node brings a

negative charge under that node. There can also exist arrows such that the source node

1We mean that even if the Kähler metric is strongly corrected using field theoretical techniques, i.e. it is
not possible to directly compute it, the semiclassical method is useful to build a dictionary between resolution
parameters in the field theory side and in the holographic counterpart.
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coincides with the target one: these are associated to chiral fields transforming in the

adjoint representation of that node.

Actually, it is possible that a subset of the nodes does not constitute a gauge group and it is

instead identified with a flavor group. Consider G+ G̃ nodes, where G is the number of gauge

nodes and G̃ =
∑

a∈flavored

ha is the number of flavor nodes. The flavoring of a quiver consists

in introducing ha pairs of chiral fields (qa, pa), where the index a here runs over a subgroup of

the arrow set A, and a flavor group
∏

a∈flavored

U(ha). Then, an arrow having a flavor source with

index k̂ and a gauge target with index i corresponds to a chiral field pa = pk̂i transforming in

the fundamental of the flavor source and antifundamental of the gauge target, while an arrow

having a gauge source j and a flavor target k̂ corresponds to a chiral field qa = qjk̂ transforming

in the fundamental of the gauge source and antifundamental of the flavor target.

We must point out that the Lagrangian of a quiver field theory is not completely fixed.

Indeed, quivers lack information about superpotential and external parameters, like Fayet-

Iliopoulos terms and real masses: these should be included by hand if any.

4.2 Chern-Simons coupled to matter

As we mentioned earlier, we are going to deal with quiver Chern-Simons (CS) theories having

N = 2 supersymmetries in three spacetime dimensions. Typically, their gauge groups are

product of G simple factors, for example
G∏
i=1

U(Ni). There are standard kinetic terms for

gauge fields but there are also CS terms like (1.3.8). Moreover there are always matter chiral

superfields in the adjoint and bifundamental representations, but there could be also flavors

in the sense previously discussed. The relation between these classes of field theories and the

conical singularity is far from trivial and it is not completely understood yet, but there are

some facts supporting the conjectured duality which we will point out step by step.

The full Lagrangian for the complete UV-quiver theory in superspace formulation is

L =

∫
d4θ

∑
Φij

Tr Φ†ije
−ViΦije

+Vj +
G∑
i=1

ζi

∫
d4θTrVi+

+
G∑
i=1

ki

∫
d4θ

∫ 1

0

dtTr

(
ViD̄

α(etViDαe
−tVi)

)
−

−
G∑
i=1

(
1

g2
i

∫
d2θTrWiW

i +

∫
d2θW (Φ, p, q) + c.c.

)
+

+

∫
d4θ

∑
pk̂i,qjk̂

(
Tr q†

jk̂
e−Vjqjk̂e

+Vk̂ + Tr p†
k̂i
e−Vk̂pk̂ie

+Vi

)
,

(4.2.1)
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where the notation is borrowed from the first chapter. The first line involves the kinetic term for

matter chiral fields in the bifundamental and Fayet-Iliopoulos terms for the U(1) factors in the

gauge group. The second line is the Chern-Simons term that give rise to (1.3.7) in components.

In the third line, the first term is the kinetic term for gauge fields while the second term is the

superpotential2 one. The last line encodes the kinetic term and the real mass3 term for the

chiral flavor fields p and q.

We remind that ki are the CS-levels, which are integers labeling every gauge group factor, i.e.
G∏
i=1

U(Ni)ki . The role played by CS-levels is far from trivial and it seems that for a correct duality

between the gauge theory and the M-Theory they must sum to zero, i.e.
∑
i

ki = 0. Notice that

if we rescale vector multiplets Vi with the respective dimensionful Yang-Mills coupling constants

gi as Vi → giVi, then “topological masses” mi = g2
i ki arise for the fields component in the vector

supermultiplets: at large coupling constants with finite CS-levels these masses are big. Hence,

as stated in [40], at low energies compared with mi these fields components can be integrated

out leaving only the CS-terms in the action. So we expect to find “pure” CS theories, i.e. with

kinetic term for gauge fields switched-off, in the low-energy region. Besides, CS-levels can be

interpreted as discrete coupling constants since the dimensionless effective coupling of these

theories turns out to be g2
eff ∼ 1

k
: this has fundamental implication in the large-N argument.

Indeed, the ’t Hooft coupling is shown to be λ = N
k

and hence the holographic analysis is

allowed when k � N , with N � 1: this is actually our situation.

4.3 The Q111 quiver theory

In order to give a concrete idea of the rather abstract structure of quivers we focus on the

theory treated in this thesis, namely the Q111 model. This is the “far UV” theory supposed to

RG-flow towards an IR fixed point where it becomes a SCFT, which is conjectured to be dual

to M-Theory settled on the near-horizon geometry AdS4×Q111. The quiver diagram is the one

borrowed from [6], namely

2The W (Φ, p, q) in (4.2.1) consists of an “unflavored” term depending on Φ and a coupling between the chiral
bifundamental fields Φ and the flavor fields (q, p).

3Recall (1.3.9): here the external background fields are Vk̂.
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and it is characterized by:

• two gauge nodes (the G = 2 circles in the figure) so that gauge group is U1(N1)×U2(N2).

Each of them is labelled by a CS-level, namely ~k = (k1, k2). Recall that
∑
i

ki = 0 is a

necessary condition for the conjectured duality and hence it must be k1 = −k2: in the

case at hand we take them to be ~k = (0, 0). We choose equal ranks N1 = N2 = Ñ for the

gauge group factors so that for G = 2 we have

G∏
i=1

Ui(Ni)ki = U1(Ñ)0 × U2(Ñ)0. (4.3.1)

For reasons that will be clarified in a moment, we will focus on the abelian case where

(4.3.1) is broken to U(1)2Ñ so that the theory actually consists of Ñ copies of the same

abelian field theory with gauge group

U1(1)0 × U2(1)0. (4.3.2)

• Two bi-arrows connecting the gauge nodes, corresponding to four bifundamental fields

(A1, A2, B1, B2). The A-fields go from node 1 to node 2 whereas B-fields have opposite

orientation. In terms of representations of the gauge group, we can say that Aa ∈ (Ñ , Ñ)

while Ba ∈ (Ñ , Ñ).

• Two flavor nodes (the G̃ = h1 + h2 = 1 + 1 = 2 squares in figure), where the flavoring

at hand consists of two U(1) flavor groups coupled to A-fields. The q-fields are arrows

connecting a source gauge node and a target flavor node while the p-fields connect a

source flavor node and a target gauge node. The former live in the (anti)fundamental of

the (flavor)gauge group, while the latter live in the (anti)fundamental of the (gauge)flavor

group. In terms of representations of the gauge group, qa ∈ (1, Ñ) while pa ∈ (Ñ , 1).

Schematically, the charge content for the Q111 quiver is

Ai Bi pi qi
U1(1)0 1 −1 −1 0
U2(1)0 −1 1 0 1

U(1)flavors 0 0 1 −1

(4.3.3)

We previously mentioned that the quiver diagram does not encode every information about

the field theory. Indeed, the superpotential is added by hand and the same is true for parameters

like Fayet-Iliopoulos and real masses. About the latter, we will see that the Q111 model is

characterized by one FI and one real mass. Speaking of the former, the superpotential in

(4.2.1) in this case requires some attention because of flavors. Typically, W (Φ) is a trace of

product of chiral UV-quiver fields Φa: the “flavoring procedure” leads to a change in the typical
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superpotential. It consists in choosing a subset of the Φa bifundamental UV-quiver fields and

introducing ha pairs of chiral multiplets (qa, pa) coupled to them by the superpotential

W (Φ, p, q) = W0(Φ) +
∑

a∈flavored

paΦaqa = W0 + Tr pk̂iΦijqjk̂, (4.3.4)

W0 being the unflavored term. For the Q111 quiver one starts from

W0 = Tr
(
A1B1A2B2 − A1B2A2B1

)
(4.3.5)

and then flavors the A-fields as described above, leading to the flavored superpotential

W = Tr
(
A1B1A2B2 − A1B2A2B1 + p1A1q1 + p2A2q2

)
. (4.3.6)

As we will see, inclusion of flavors is necessary for the correspondence with M-Theory to hold.

In the Q111 model, even if we are interested in a particular branch of the moduli space such that

〈p1,2〉 = 〈q1,2〉 = 0, the presence of flavors is crucial both for the brane interpretation and for

the characterization of the moduli space complex structure. Having identified the field content

of the Q111 model we are ready to study its moduli space.

4.4 The moduli space of Q111

The moduli space of a supersymmetric theory is the space of inequivalent vacua, i.e. vacuum

configurations that cannot be mapped into each other using gauge transformations. This can

be found minimizing a function that we call “scalar potential” V and then quotienting by the

gauge group action in order to identify gauge-equivalent configurations. In a classical vacuum

configuration, fermions are vanishing while bosonic scalar fields may acquire constant VEVs.

We can identify the scalar potential of (4.2.1) from a “theta-expansion” of superfields: it consists

in two pieces V = VD + VF that we call D-term and F-term contribution respectively. After

integrating out auxiliary fields, and forgetting flavors for a moment, these take the component

form

VF =
∑
Φij

∣∣∣∣ ∂W∂Φij

∣∣∣∣2 (4.4.1)

and

VD =
∑
i

g2
i Tr

(
ζi + kiσi − µi(Φ)

)2

+
∑
Φij

Tr(σiΦij − Φijσj)
†(σiΦij − Φijσj), (4.4.2)

where σi are scalar components4 of the vector superfields while µi(Φ) can be expressed as

µi(Φ) =
∑
j

(∑
Φij

ΦijΦ
†
ij −

∑
Φij

Φ†jiΦji

)
. (4.4.3)

4Maybe we should point out that they are Ñ × Ñ matrices.
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In the case at hand (4.4.3) reads

A1A
†
1 + A2A

†
2 −B

†
1B1 −B†2B2 = µ1,

B1B
†
1 +B2B

†
2 − A

†
1A1 − A†2A2 = µ2.

(4.4.4)

It is easy to check that
∑
i

µi(Φ) = 0 for a quiver theory: this is because each quiver field Φ

appears exactly twice in the sum, once with a plus (when it exits from the source node) and once

with a minus (when it enters in the target node). In other words, chiral fields are not charged

under the “diagonal” Udiag(1) and this translates into the fact that the vector associated to this

gauge group, which we call “diagonal photon” Adiag =
G∑
i=1

Ai, is decoupled from matter5.

Notice that the scalar potential is a sum of squares, so vacua can be found looking for the

vanishing of both (4.4.1) and (4.4.2). More precisely, a proper supersymmetric vacuum must

satisfy the following conditions, also called vacuum equations:

∂Φij
W = 0, F-term,

µi(Φ) = ζi1Ñ + kiσi, D-term,

σiΦij − Φijσj = 0, “Extra D-term”,

(4.4.5)

where in the second condition kiσi are not summed over the common index. The reason why

we called the third condition in (4.4.5) “extra D-term” is that it arises in three-dimensional

theories like Q111, as opposed to the four-dimensional case whose moduli space is characterized

by F-term and D-term conditions6.

The solution to the F-term itself is an important object called “master space”, while the

full solution to (4.4.5) constitutes the total moduli space of the field theoryMquiver. The latter

is usually built quotienting the former by some subgroup of the gauge group: this is because

we want to identify inequivalent vacua and hence we must mod by transformations mapping

vacua into vacua. Let us stress that we are interested in a branch M ⊂ Mquiver such that

M = SymÑCY4: this is because the moduli space M should be matched with the moduli

space of supergravity in order for holography to hold. This branch is characterized by chiral

flavors having vanishing VEV while the hermitian scalars in the vector supermultiplets are

diagonalized using gauge transformations, namely

〈qa〉 = 0 = 〈pa〉, σi = diag(σ(i)
n ), n = 1, ..., Ñ . (4.4.6)

Furthermore, one can choose σi = σ so that the “Extra D-term” in (4.4.5) is immediately

satisfied provided that the chiral quiver bifundamental fields Φij take diagonal VEVs too. The

5Recall that the vector supermultiplet, for example (1.3.3), has vector component V = ... − θγµθ̄Aµ + ....
We can in principle dualize A into a scalar τ , but the former must be decoupled from matter. So, only the
diagonal combination admits a dualization into a scalar τ : this turns out to be crucial for the identification of
the correct moduli space.

6In four-dimensional theories there are no CS-levels but the structure of F-term and D-term is the very same.
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primary effect of such diagonal VEVs for σi = σ is that the gauge group of the Q111 theory

gets broken to an abelian subgroup:

U1(Ñ)× U2(Ñ)→
(
U1(1)× U2(1)

)Ñ
. (4.4.7)

The consequence is a factorization of the problem: the non-abelian theory on the branch

defined by (4.4.6) becomes Ñ copies of the abelian U(1)2 quiver theory. We expect that

the moduli space of the U(1)2 quiver theory reproduces CY4 so that the branch (4.4.6) is

actually M = SymÑCY4. Otherwise stated, while the moduli space for the U(1)2 quiver

should reproduce the moduli space of 1 M2-brane probing CY4, the latter being CY4 itself,

the moduli space for U(1)2Ñ should reproduce the moduli space of Ñ M2-branes probing CY4,

the latter being SymÑCY4. In what follows we will focus on this branch for the abelian Q111

theory.

4.4.1 The abelian branch for Q111

The F-term condition in (4.4.5) defines the master space as an affine variety

F = {Φa | ∂ΦaW = 0} ⊂ CA, (4.4.8)

where A, with a little abuse of notation, is the number of arrows in the quiver.

When the theory is abelian, the F-term is trivial because the superpotential is identically

zero. For instance, considering vanishing VEVs for chiral flavors, (4.3.6) is a trace of the

difference of two terms: since the theory is abelian, quiver fields are actually complex numbers

and hence they commute giving trivially W = 0. So, in the abelian Q111 model we have F = C4

parametrized by (A1, A2, B1, B2). This is exactly the same master space of the unflavored case

since we are on a branch with vanishing VEVs for chiral flavor fields q, p.

On the other hand, the D-term is more complicated. In this abelian branch, (4.4.4) takes

the form
|A1|2 + |A2|2 − |B1|2 − |B2|2 = µ1,

−|A1|2 − |A2|2 + |B1|2 + |B2|2 = µ2,
(4.4.9)

where now

µ1 = ζ1 + k1σ, µ2 = ζ2 + k2σ. (4.4.10)

At this stage it seems that since k1 = 0 = k2 the quiver condition
∑
i

µi = 0 is equivalent to

imposing ζ1 = −ζ2 so that we have only one independent equation:

|A1|2 + |A2|2 − |B1|2 − |B2|2 = ζ, ζ = ζ1 = −ζ2. (4.4.11)

However we must take into account a slight modification of D-terms due to loop-corrections of

Chern-Simons levels ki: this should be interpreted as a quantum correction of the “classical”

moduli space.
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Let us begin with saying that CS-levels ki get shifted because of fermionic masses. More

precisely, as reviewed in [36], integrating out massive fermions give rise to CS-terms at loop level

and hence the “effective” levels are shifted with respect to the “bare” ones7. This immediately

translates into a shift of the FI parameters and hence the first modification to (4.4.9) and

(4.4.10) is
|A1|2 + |A2|2 − |B1|2 − |B2|2 = µ1,

−|A1|2 − |A2|2 + |B1|2 + |B2|2 = µ2,
(4.4.12)

where
µ1 = ζeff

1 (σ) = ζbare
1 + ∆ζ1(σ),

µ2 = ζeff
2 (σ) = ζbare

2 + ∆ζ2(σ).
(4.4.13)

The exact expression of ∆ζi(σ) can be found for example in [2, 35]: we will not derive the

whole procedure but we should highlight the crucial steps. First of all, in the case at hand

the massive fermions that give rise to CS-shifts are most of the fermionic components of chiral

superfields: Aa, Ba, qa, pa, a = 1, 2.

For bifundamental fields Φa = Aa, Ba in the quiver, the acquired mass is due to the scalar

components of gauge vector superfields and it is given by

δM [(Φij)
n
l ] = σ(i)

n − σ
(j)
l , n, l = 1, ..., Ñ , (4.4.14)

where the notation is the one of (4.4.6) and remember that we have chosen σ(i) = σ(j) = σ. So,

only the off-diagonal components give rise to CS-shifts when integrated out: notice that shifts

always depend on VEVs of the scalar components in gauge vector multiplets.

For chiral flavor fields the situation is a bit different because we have to take into account

real masses. Indeed, from the last line of (4.2.1) we can obtain a total real mass

δM [(qjk̂)n] = σn −mk̂, δM [(pk̂i)n] = −σn +mk̂. (4.4.15)

To be more explicit, the situation for Q111 is the following

δM [A,B] = σn − σl, δM [q1] = σn −m1 = −δM [p1], δM [q2] = σn −m2 = −δM [p2].

(4.4.16)

At this stage, since σn are arbitrary VEVs we can freely redefine all of them to be σn +m1 so

that (4.4.16) becomes

δM [A,B] = σn−σl, δM [q1] = σn = −δM [p1], δM [q2] = σn+m = −δM [p2], m = m1−m2.

(4.4.17)

Furthermore, in the branch we are studying we repeat that our theory consists of Ñ copies of

an abelian U(1)2 quiver with diagonalized bifundamental fields. So, in (4.4.17) we chose one

particular n and work with

δM [A,B]diagonal = 0, δM [(q1)] = σ = −δM [p1], δM [q2] = σ +m = −δM [p2], (4.4.18)

7In particular, we point out that the effective CS-levels are no more vanishing.
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where now σ is a real parameter.

Another crucial aspect of FI quantum shifts ∆ζi(σ) is that they inherit the property∑
i

∆ζi(σ) = 0 from the “bare relation”
∑
i

ki = 0. So, summing the two equations in (4.4.13) we

get again ζbare
1 = −ζbare

2 = ζbare = ζ so that there is one independent FI parameter. Moreover

it is clear that ζeff
1 (σ) = −ζeff

2 (σ) = ζeff(σ) = ζ(σ). Now, considering the effective shifts, whose

general formula can be found in [2, 35], the “bare” D-term condition (4.4.11) becomes

|A1|2 + |A2|2 − |B1|2 − |B2|2 = ζ(σ), ζ(σ) = ζ +
1

2
|σ|+ 1

2
|σ +m|. (4.4.19)

The moduli space interpretation

The relation (4.4.19) encodes the structure of the moduli space. If we consider the master

space F = C4 parametrized by (A1, A2, B1, B2) and ζ(σ) = 0 in (4.4.19) then we get exactly

(2.4.7), which is the conifold of the Klebanov-Witten four-dimensional theory in [39]. Indeed,

the gauge-invariant combinations8 that we can build are

U = A1B1, V = A2B2, X = A1B2, Y = A2B1, (4.4.20)

and actually satisfy the conifold equation UV − XY = 0. This conifold is the singular cone

C(T 11) and it is a Calabi-Yau three-fold CY3. There, D3-branes are placed on a background

geometry R1,3 × C(T 11) and the corresponding field theory is studied. With only one brane

probing that geometry, the moduli space of the field theory is shown to correspond to CY3.

Having Ñ such branes naturally gives SymÑCY3 in the case of non-coincident D3-branes.

Now consider ζ(σ) 6= 0 with fixed σ: equation (4.4.19) becomes exactly9 (2.4.9), so that

the considered (sub)branch for the moduli space is a resolved version of CY3. Finally, since σ

parametrizes R, F-term and D-term actually describe a resolved CY3 fibered over R. This is a

seven-manifold, so we are lacking one direction to reproduce a CY4. Remember at this point

that we always have one scalar photon τ in our abelian U(1)2 theory. Indeed, since
∑
i

µi = 0

there exits a U(1)diag under which matter is uncharged, i.e. there is no coupling between the

diagonal photon Adiag =
∑
i

Ai and matter fields. So we can freely dualize the diagonal photon

into a scalar photon τ . More precisely, the diagonal photon is only coupled to another gauge

vector B via a Chern-Simons interaction

k̃

G

∫
B ∧ Fdiag, (4.4.21)

where Fdiag = dAdiag, B = k̃−1
∑
i

kiAi and k̃ = gcd{ki}. The equation of motion for B is

B = Gk̃−1 ?3 dAdiag. (4.4.22)

8With respect to the charges in (4.3.3).
9Actually, the ζ here and there are not identified but we want to stress that the conifold equation gets

deformed.
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Now, as a standard procedure in electromagnetic duality, we can introduce a Lagrange multiplier

term −
∫
dτ ∧ Fdiag, τ being a scalar field, and consider Fdiag as an unconstrained field, i.e. it

is no more the field strength of Adiag. Integrating out Fdiag then leads to the identification

B = Gk̃−1dτ. (4.4.23)

Comparing (4.4.22) and (4.4.23) we get the relation

dτ = ?3dAdiag = ?3Fdiag ←→ ∂µτ = εµνρFνρdiag, (4.4.24)

which is exactly the conserved10 current in (1.3.5). As a consequence of dualization, the scalar

photon τ inherits a periodic behavior from the flux quantization condition of Fdiag = dAdiag,
namely ∫

dAdiag = 2πGn, n ∈ Z. (4.4.25)

So, if we have a U(1)G quiver we are always sure to have a diagonal photon that can be dualized

into a scalar photon: this τ parametrizes a U(1) due to its periodic behavior. Hence, the descrip-

tion of CY4 can be completed: the branch we have considered is a U(1) fibration, parametrized

by τ , of a seven-manifold, the latter being a CY3 fibered over a real line parametrized by σ.

Since we have Ñ copies of the same abelian quiver, one finds Ñ copies of (CY3, σ, τ) so that

the moduli space is given by M = SymÑCY4 ⊂ Mquiver. Depending on the presence or not

of effective Fayet-Iliopoulos parameters, the CY4 is a resolved or singular version of C(Q111)

respectively.

4.4.2 The monopole method

The method previously discussed is the semiclassical computation of the moduli space, involving

loop-corrected quantities. As we mentioned in the introduction to this chapter, we can obtain

the same moduli space with a different strategy relying on the so called “monopole operators”.

They are very delicate objects and a complete introduction on them is beyond the aim of this

thesis: we shall address the interested reader to [6, 35] and references therein. By the way, in

what follows we want to give an operative definition of such monopoles and the related method

for at least three reasons:

• quantum corrections to moduli space are taken into account. Moreover, as stated in [35]

it gives a one-loop exact formulation of the moduli space;

• monopole operators seem to play a crucial role when dealing with flavored quivers;

10If it is not clear, the conservation of J = dxµJµ is due to the equation of motion for Fdiag. Indeed, let us
call Jµ = ∂µτ . Then ∂µJµ = εµνρ∂

µFνρdiag = 0 or in forms dJ = d ?3 Fdiag = 0.
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• we will use this method in order to match the complex structure of (one among the Ñ

copies of) the abelian quiver moduli spaceM with the singular CY4 = C(Q111), which is

actually the moduli space of one M2-brane moving on the singular cone.

The monopole method goes as follows. We define a chiral N = 2 multiplet Ψ such that

its lowest component is σ + iτ , where σ and τ are exactly the same objects of the previous

subsection. The scalar photon τ can be interpreted as a phase, i.e. it parametrizes a circle, due

to its periodicity. At this stage monopole operators can be defined as T (n) = exp(nΨ), where n

is the one of (4.4.25): notice that they are actually chiral superfields just like Ψ. We will always

consider n = ±1 in this thesis and hence we define T = T (1), T̃ = T (−1). The introduction of

two new chiral fields (T, T̃ ) produces at least two effects:

• the master space (4.4.8) is clearly augmented because we have two new chiral fields,

namely if we call FT the master space in the monopole method then surely FT ⊂ CA+2;

• the D-term vacuum equations slightly change and hence one should include some ad-

ditional condition on monopole operators in order to find the very same moduli space.

Moreover, since the master space is enlarged we must mod by the full gauge group U(1)G.

To clarify this point, in the semiclassical computation we had a master space F = C4: this is the

same for the three-dimensional Q111 theory and the four-dimensional Klebanov-Witten theory.

There, we imposed the D-term condition and modded by U(1): this two steps in sequence are

usually indicated with F//U(1). This particular quotient “//” is called “Kähler quotient”: it

consists in imposing D-term condition and modding by a gauge group11 . In our case we found

F//U(1) = CY3 and the CY4 was built using (σ, τ) as fibers. Here, with monopoles the master

space is augmented to FT = C6 but we cannot use (σ, τ) with the same interpretation as before

because they are “inside” monopole operators. So, in order to get the correct CY4, at least with

the right dimension, we must mod FT by the full gauge group, namely C6//U(1)2: this should

reproduce the CY4. A simpler but operative way to say this is: gauge-invariant operators built

using UV-quiver bifundamental fields and monopoles should give a suitable parametrization of

CY4.

In the case of a flavored abelian quiver theory, if we introduce ha pairs of flavors (qa, pa)

coupled to some chiral fields Φa then the conjectured constraint on monopole operators reads

T T̃ =
∏

a∈flavored

Φha
a . (4.4.26)

This should be consistent with quiver charges and it can be shown that, due to flavoring,

monopoles pick up a charge

Q[T (n)] =
|n|
2

∑
a∈flavored

haQ[Φa]. (4.4.27)

11The Kähler quotient can also be seen as a quotient by the complexified gauge group: we do not enter in
details, but it is sufficient to know that dimC(A//B) = dimCA− dimCB.
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Consequently, the master space in the monopole method is obtained by adding (T, T̃ ) to the

set of chiral fields, together with the “quantum F-term relation” (4.4.26), namely

FT = {Φa, T, T̃ | ∂ΦaW = 0, T T̃ =
∏

a∈flavored

Φha
a } ⊂ CA+2. (4.4.28)

At this point, the moduli space12 is obtained by a Kähler quotient of (4.4.28) with respect to

the full gauge group U(1)G, namely

M = FT//U(1)G. (4.4.29)

Notice that from (4.4.28) we see that (4.4.29) has complex dimension A + 2 − G and hence

in order to reproduce the correct dimension of CY4 it must be A = G + 2. As we mentioned,

even if this construction seems quite abstract it effectively reproduce the complex structure of

CY4 in a rather easy way13: let us specialize this machinery to the abelian Q111 quiver. The

flavoring that gives (4.3.6) consists of h1 = h2 = 1 flavor pairs (q1, p1), (q2, p2) coupled to A1

and A2 chiral fields respectively. Hence, the master space (4.4.28) for the Q111 quiver using the

monopole method is

FQ
111

T = {Φa, T, T̃ | ∂ΦaW = 0, T T̃ = A1A2} ⊂ C6, (4.4.30)

which has to be modded by U(1)2 in order to get the moduli space M = C(Q111). We recall

that this method does not “see” resolutions, so we expect to find at most the singular cone in

the moduli space. Nevertheless, we also expect that a “sub-branch” of this CY4 reproduces the

singular cone CY3, namely C(T 11): this is indeed what happens. First of all, the charge matrix

for UV-quiver fields and monopoles reads

Ai Bi pi qi T T̃
U1(1)0 1 −1 −1 0 1 1
U2(1)0 −1 1 0 1 −1 −1

(4.4.31)

where the monopole charges are easily computed using (4.4.27). Then we have to build gauge-

invariant combinations: there are eight of them, namely

w1 = T̃B2, w2 = TB1, w3 = A1B1, w4 = A2B2,

w5 = A1B2, w6 = TB2, w7 = T̃B1, w8 = A2B1.
(4.4.32)

Now, the cone over the Sasaki-Einstein base Q111 can be parametrized using a set of eight affine

coordinates {w1, ..., w8} satisfying14

w1w2 − w3w4 = w1w2 − w5w8 = w1w2 − w6w7 = 0,

w1w3 − w5w7 = w1w6 − w4w5 = w1w8 − w4w7 = 0,

w2w4 − w6w8 = w2w5 − w3w6 = w2w7 − w3w8 = 0.

(4.4.33)

12We are talking about one of the Ñ copies. Alternatively, we can think that this moduli space is the one for
1 M2-brane probing CY4.

13By identification of gauge-invariant operators and complex coordinates.
14See for example [34].
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It is easy to check that the gauge-invariant operators in (4.4.32) satisfy the constraints (4.4.33),

provided that we also use the “quantum F-term relation” T T̃ = A1A2. So, we found that

the moduli space of the U(1)2 quiver is M = C(Q111): in the case of U(1)2Ñ we clearly

obtain the symmetrized version SymÑC(Q111). On the M-Theory side, since the moduli space

of Ñ mobile M2-branes on the transverse conical background C(Q111) is SymÑC(Q111), the

matching between the two sides is completed. Moreover, notice that if we consider the relations

not involving monopoles among (4.4.32) we are left with {w3, w4, w5, w8}. Using (4.4.33) we

see that they satisfy w3w4 − w5w8 = 0: recalling (2.4.5), this is exactly the equation for the

three-dimensional conifold C(T 11). At this stage we have only sketched the procedure: a more

consistent matching will be done in the last chapter, were we will introduce toric geometry

and the dimensional reduction from M-Theory to type IIA. This will let us see how external

parameters, like FI and real masses, are mathced with resolution parameters of the M-Theory

background and moreover will provide an explanation of flavors in terms of D6-branes.



Chapter 5

Holographic Effective Field Theory

The purpose of this chapter is to illustrate the technologies introduced in [1] and developed

in [2] to construct Holographic Effective Field Theories (HEFT), namely effective theories for

strongly-coupled (S)CFTs admitting holographic dual descriptions. Let us recap the holography

plot. The strongly coupled regime of a (supersymmetric) field theory is in general very difficult

to treat. However, we have seen that this regime typically admits a dual description in String

Theory or M-Theory: strictly speaking it is a supergravity (SUGRA), namely a low-energy

version of String or M-Theory. Therefore, the low-energy dynamics of the field theory should

be codified in an effective Lagrangian whose construction is necessarily based on the holographic

dual theory. More precisely, the effective Lagrangian should describe the dynamics of “moduli

fields”, i.e. massless modes parametrizing the moduli space of vacua. Moreover, it is expected

to be a nonlinear sigma model, i.e. a Lagrangian with nontrivial kinetic terms, that realizes the

dynamics of moduli fields in a “geometrical way”. Indeed, the nontriviality arises because of an

overall metric: the one over the moduli space, which itself depends on moduli. As we mentioned

in the introduction of the previous chapter, this moduli space is actuallyMSCFT . Even though

we know its complex structure, we cannot compute the metric on it and hence we cannot

obtain an effective field theory using pure field-theoretical tools. However, if we can check that

MSCFT ∼MSUGRA then we can switch to the holographic description and compute the metric

on MSUGRA. Indeed, in the M-Theory side we have a crucial condition that we lack in the

field theory side: the Ricci-flatness, which is required for every stable background geometry.

Now, there must be something in the holographic description that correspond to moduli fields

such that we can build a dual effective theory. As we shall see, the background geometry itself

provides some dual moduli: for instance, branes positions on the cone and resolution parameters

give rise to them. At this stage, the idea is that geometric moduli correspond to scalar fields,

which are the lowest components of chiral or vector superfields in the field theory side. Since

these moduli parametrize the moduli space of M-Theory vacuaMSUGRA, the effective theory is

an Holographic Effective Field Theory (HEFT) describing the physics of moduli as a nonlinear

sigma model, whose non-trivial curved metric is the one on MSUGRA.

67
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Summarizing, in order to find the HEFT there are in general three steps to follow:

• Identification of moduli both from the field theory side and the gravity side.

• Consistency check on the moduli space, namely MSUGRA ∼MSCFT .

• Holographic Lagrangian construction. Its explicit form can be found expanding a super-

gravity action, which is implicitly defined by a function called “Kähler potential”: this

will be presented in this chapter. Then, truncating it to second-derivative order leads to

the so called nonlinear sigma model. This model is characterized by non-trivial kinetic

terms, whose nontriviality is due to a curved overall metric. This metric is actually the

one on the space of M-theory vacua, which in turn is equivalent, at least from the complex

point of view, to the space of field theory vacua thanks to the consistency check. The

main difference is that the metric cannot be calculated using the latter because of strong

coupling issues: it is exactly for this reason that we must switch to the holographic weakly

coupled description.

In the end, the HEFT is completely fixed by geometry.

5.1 Topology, Kähler moduli and harmonic forms

In this section we are going to use some concepts introduced in the chapter dedicated to

complex geometry. Recall that our background cone C(Y ) is a Calabi-Yau eight-dimensional

manifold, i.e. it is Ricci-flat and Kähler, with a Sasaki-Einstein seven-dimensional base. There

is obviously a singularity at the tip, but we can consider resolutions: the singular point is

effectively replaced by an higher-dimensional locus called “exceptional set” and the result is a

resolved cone X. Even if we call it a resolved cone, it lacks a crucial characteristic of cones:

its metric is no more invariant under dilatations. This fact has dramatic consequences in the

dual field theory: the conformal simmetry, at least dilatations, seems lost. It is exactly for

this reason that we ask for supergravity solutions with asymptotically AdS × Y behavior, so

that the dual field theory “returns” conformal at high energy. Hence, one should check that

the CY metric on the resolved cone approaches the one over the singular cone asymptotically:

indeed, recall that these kind of vacua with 〈O〉 = 〈resolution〉 6= 0 are dual to (S)CFTs where

the conformal symmetry is “restored” in the UV, i.e. at energies well above 〈O〉, otherwise

the conformal symmetry is spontaneously broken by 〈O〉. There is a theorem, similar to the

Calabi-Yau one, which states that one such asymptotically conical metric always exists and

moreover it is unique1.

As we mentioned in the second chapter, some crucial topological quantities associated to

manifolds are Betti numbers, which count the number of linearly independent harmonic forms

1See [34], but the proof should be found in mathematical literature.
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on them. In the case at hand, it can be proved that

b2(X) = b2(Y ) + b6(X). (5.1.1)

Relation (5.1.1) is equivalent to say that the number of harmonic 2-forms on the cone, or more

precisely (1, 1)-forms, split into two sets:

ωa = (ω̂α, ω̃σ), a, b, ... = 1, ..., b2(X), α, β, ... = 1, ..., b6(X), σ, τ, ... = 1, ..., b2(Y ). (5.1.2)

The main difference between the two sectors is the “normalizabilty”. Indeed, ω̂α are Poincaré

dual to the b6(X) compact 6-cycles of the resolved cone and are L2-normalizable, namely∫
X

ω̂α ∧ ?X ω̂β <∞, (5.1.3)

while ω̃σ are Poincaré dual to the b2(Y ) non-compact 6-cycles of the resolved cone and are

Lw2 -normalizable, namely ∫
X

e−6Dω̃σ ∧ ?X ω̃τ <∞. (5.1.4)

The w in Lw2 stands for “warped” and indeed the ω̃σ forms are normalizable only if we use a

warped measure. More precisely, the warp factor in (5.1.4), which actually works as a damping

factor, is related to the previously introduced warp-factor h(r) in (3.1.2), specialized to the

M2-brane case, by

e−6D(r) ∼ h(r)− 1 =
R6

r6
, r →∞. (5.1.5)

Indeed, recall that we are working with asymptotically AdS4 × Y7 backgrounds and hence the

warp factor must behave like R6

r6
at large r in order for it to vanish at infinity2.

Harmonic forms admit an interpretation as variation of the Kähler form J , namely

ωa =
∂J

∂va
. (5.1.6)

Using harmonic forms as a basis, we can also expand the Kähler form in the following way:

J = J0 + vaωa, (5.1.7)

where va are the so called “Kähler moduli” of X8 and J0 is the exact component of the Kähler

form. This in turn can be globally expressed as

J0 = i∂∂̄k0 (5.1.8)

2If we take for instance the warp factor (3.1.2) of the M2-brane solution, it is clear that we will have
problems with (5.1.4) because of the constant 1. In general, we can imagine a different warp factor, like

h(r) = e−6D = a + R6

r6

(
1 + o(r−1)

)
: while the second term acts as a damping factor for (5.1.4), the constant

a spoils normalizability and the result will be infinite. On the other hand, warp factors like h(r) = e−6D =

R6

r6

(
1 + o(r−1)

)
, which are exactly the ones consistent with asymptotically AdS4 × Y7 backgrounds, ensure

(5.1.4) to hold because of the choice a = 0.
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for some globally defined function k0(z, z̄; v). Besides, in any local chart the harmonic forms

are generated by “potentials” κa(z, z̄; v) such that

ωa = i∂∂̄κa. (5.1.9)

Since Kähler moduli are actually parameters regulating the volume of some resolution 2-cycle

Ca, i.e. va ∼
∫
Ca J , there exists a sort of quantization condition

∫
Ca ωb ∼ δab ∈ Z. If we

differentiate (5.1.7) with respect to vb then it does emerge a consistency condition between

(5.1.6) and (5.1.7), namely
∂J0

∂vb
= −va∂ωa

∂vb
, (5.1.10)

which translates into
∂k0

∂vb
= −va∂κa

∂vb
. (5.1.11)

More precisely, we can write the Kähler form as

J = i∂∂̄k, (5.1.12)

where k(z, z̄; v) is the (total) Kähler potential defined as

k = k0 + vaκa, together with κa =
∂k

∂va
,

∂κa
∂vb
→ 0 for r →∞. (5.1.13)

These conditions are supposed to be crucial for removing an ambiguity in the definition of

potentials, namely k0 and κa are defined up to coordinate-independent functions depending on

Kähler moduli.

5.2 Chiral parametrization of moduli

On general grounds, the moduli characterizing M-Theory vacua include M2-branes positions on

the cone and Kähler moduli va together with the so called “axionic moduli” of the M-Theory

C6 six-form3. The former admit a parametrization in terms of 4Ñ complex coordinates ziI ,

where i = 1, ..., 4 and I = 1, ..., Ñ . The latter admit a complex parametrization too, say with

ρa where a = 1, ..., b2(X): the real part of ρa correspond to Kähler moduli and the imaginary

part correspond to axionic moduli4. Then, both kind of coordinates are interpreted as chiral

moduli fields. However, while positions moduli have a direct meaning as scalar component of

a chiral superfield, resolution moduli are associated to the respective chiral superfield by the

transformation

Re ρa =
1

2

∑
I

κa(zI , z̄I ; v), (5.2.1)

3Recall that this is the electromagnetic dual of the fundamental three-form A3, i.e. dC6 = ?11dA3.
4In what follows the imaginary part is not necessary and hence we address the reader to [1, 2] for an

explanation of axionic moduli and their role.
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whereas the imaginary part is not necessary for our purpose. An useful formula is

∂ Re ρa
∂vb

= −Gab =

∫
X

e−6Dωa ∧ ?Xωb, (5.2.2)

which let us invert (at least in principle) the relation (5.2.1) between resolution moduli va and

their chiral coordinate counterpart Re ρa.

A comment on moduli spaces and resolution parameters

With the chiral parametrization of moduli above introduced we have 4Ñ + b2(X) coordinates

parametrizing MSUGRA, which means that dimCMSUGRA = 4Ñ + b2(X). In particular, in

(5.2.1) we are considering Kähler moduli as dynamical quantities. However, in the previous

chapter the “resolution parameters” where non-dynamical constant: for instance, external back-

ground vectors gave rise to one Fayet-Iliopoulos and one real mass in the Q111 model. Then,

the whole calculation for the moduli space there should be referred to as the “non-dynamical

parameters case”: the monopole method let us see M = SymÑC(Y7) while the semiclassical

computation gave us the resolved version M = SymÑX8. Both of them have clearly complex

dimension dimCM = 4Ñ and the dual interpretation is of Ñ M2-branes moving respectively

on the cone or its resolved version. So, in the “non-dynamical parameters case” we have

M = MSUGRA = SymÑCY4 with CY4 either singular or resolved. It is clear that there is

a mismatch with the above setting: we should explain how the b2(X) new directions in the

moduli space arise. As we will see later on in this chapter, it is possible to turn non-dynamical

parameters into dynamical fields using the so called “S-operation”: while the former clearly do

not affect the dimension of moduli space, the latter surely modify it. Indeed, when the b2(X)

parameters become dynamical, either in the quiver theory or in the holographic counterpart,

the moduli space develops b2(X) new directions: the result is that the new moduli space is

a fibration of the old SymÑCY4 over these new b2(X) directions and hence it has the correct

complex dimension. Even if we do not verify it, we think that the new fibered moduli spaces

on both side of the duality should match. Besides, the physical implications will become clear

in the next section writing down the HEFT Lagrangian.

5.3 The Holographic Effective Lagrangian

For the discussion of the low-energy effective theory we assume that M2-branes are not mutually

coincident and that the two-derivative approximation can be trusted. The fundamental object

is the Kähler potential on MSUGRA

K = 2π
∑
I

k0(zI , z̄I ; v), (5.3.1)
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which has to be considered as a function of chiral coordinates ΦA = (ρa, z
i
I) obtained inverting

(5.2.1) and hence expressing va as functions of ρa. By promoting the chiral coordinates to

three-dimensional chiral superfields, the HEFT is then described by the effective action

SHEFT =

∫
d3xd4θK(Φ, Φ̄). (5.3.2)

Expanding the Kähler potential to two-derivatives we get the bosonic effective Lagrangian,

which is actually a nonlinear sigma model

LbosHEFT = −KAB̄(Φ, Φ̄)dΦA ∧ ?3dΦ̄B̄, KAB̄ =
∂2K

∂ΦA∂Φ̄B̄
. (5.3.3)

We would like a more explicit form for (5.3.3). First of all, we should derive K and hence k0 in

(5.3.1) with respect to moduli. In particular, we want to compute ∂va

∂ Re ρb
and ∂va

∂ziI
. Let us start

from the obvious identities δba = ∂ Re ρa
∂ Re ρb

and 0 = ∂ Re ρa
∂ziI

. Using chain-derivatives and (5.2.2) we

can write

δba =
∂ Re ρa
∂ Re ρb

=
∂vc

∂ Re ρb

∂ Re ρa
∂vc

= −Gac
∂vc

∂ Re ρb
, (5.3.4)

so that
∂va

∂ Re ρb
= −Gab. (5.3.5)

Then, if we define

AIai =
∂κa
∂ziI

, (5.3.6)

we also get

0 =
∂ Re ρa
∂ziI

=
∂vb

∂ziI

∂ Re ρa
∂vb

+
∂ Re ρa
∂ziI

= −Gab
∂vb

∂ziI
+

1

2
AIai, (5.3.7)

so that
∂va

∂ziI
=

1

2
GabAIbi. (5.3.8)

Using (5.3.5) and (5.3.8) we can find a clearer form of (5.3.3), namely

LbosHEFT = −πGab∇ρa ∧ ?3∇ρ̄b − 2π
∑
I

gij̄(zI , z̄I , v)dziI ∧ ?3dz̄
j̄
I . (5.3.9)

The covariant derivative in (5.3.9) is defined as

∇ρa = dρa −AIaidziI (5.3.10)

and its presence is due to the fact that chiral coordinates ρa are actually function of ziI them-

selves. In other words, the parametrization of the moduli space MSUGRA leads to nontrivial

interactions between Kähler modes, corresponding to resolutions, and the modes associated to

branes positions. Besides, there are different metrics in (5.3.9). The gij̄(zI , z̄I , v) one is exactly

the Calabi-Yau metric of the resolved cone X8, which can be computed imposing Ricci-flatness
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on the Kähler form J . Notice that since it depends both on positions and Kähler modes, in

the case of resolved cone it also give rise to interactions between Kähler moduli and branes

positions. On the other hand, the Gab one is the inverse of (5.2.2): notice that in order for

it to be finite5 it is crucial to require that the warp factor has asymptotic behavior (5.1.5).

This is another reason to have an eleven-dimensional metric asymptotic to AdS4 × Y7 and we

should repeat that it is absolutely non-trivial to show that a Ricci-flat metric on resolved X8

can always be found, and moreover it is unique, such that it asympotically approaches the one

on the singular cone.

As a concluding comment on the HEFT Lagrangian, notice that in the case of non-dynamical

Kähler moduli (5.3.9) is “quite trivial”. Indeed, the first term does not appear and the second

term has an immediate interpretation. Recall that in the “non-dynamical parameters case”

the moduli space is given by MSUGRA = SymÑCY4. Then the HEFT Lagrangian describes

Ñ copies of the same theory of a single M2-brane moving on a resolved cone. Every gij̄ have

the same expression but depend on the I-th set of coordinates parametrizing the positions of

the M2. Since we are interested in the non-trivial case with dynamical moduli, we must find

something that let us go from one description to the other. Indeed, the moduli space check of

the previous chapter actually works for the “trivial case”. We have reasons to think that the

check “is preserved” going from one description to the other, but we will see it in a moment.

The applicability regime of the HEFT

The HEFT Lagrangian provides a tool for studying the dynamics of low-energy degrees of free-

dom of a strongly coupled superconformal field theory. These degrees of freedom are massless

modes: from a top-down perspective, one should reach this HEFT by integrating out massive

modes with a mass of order 〈O〉. Then, we can properly use the HEFT only for energy regimes

well below the scale set by 〈O〉. Recall that this is exactly the region of spontaneous symmetry

breaking of the conformal symmetry: indeed, it is only at high energy, well above 〈O〉, that the

conformal symmetry is restored. So, we stress that we can exclusively exploit the Lagrangian

(5.3.9) in the phase where the conformal symmetry is spontaneously broken. The obvious con-

sequence is that the superconformal symmetry is non-linearly realized on (5.3.9) and hence it

is in general challenging to prove that it is actually related to a SCFT. As we will see in the

last chapter, our strategy is to focus on dilatations only and check if (5.3.2) is scale invariant

using asymptotic calculations.

5.3.1 A dual description with linear multiplets

Remember that in three spacetime dimensions there exists a scalar-vector duality which trans-

lates into a supersymmetric version, namely a duality between chiral and linear supermultiplets.

5See and compare with (5.1.4).
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Imagine that we want to dualize some Kähler moduli ρa into Σa defined in (1.3.4) and satisfying

(1.3.2). The chiral coordinates are now ΦA = (Σa, z
i
I) and the dual formulation of (5.3.2) is

SHEFT =

∫
d3xd4θF(Φ, Φ̄), (5.3.11)

where F is the Legendre transform of (5.3.1), namely

F(z, z̄,Σ) = K(z, z̄,Re ρ) + 4πΣa Re ρa. (5.3.12)

Then, the fundamental relations connecting dual Kähler potentials, chiral and linear multiplets

are:

Σa = − 1

4π

∂K

∂ Re ρa
, Re ρa =

1

4π

∂F
∂Σa

. (5.3.13)

Comparing (5.3.12) with (5.1.13), (5.2.1) and (5.3.1) we can write the dual Kähler potential as

F(z, z̄,Σ) = 2π
∑
I

k(zI , z̄I ; Σ), (5.3.14)

where the linear multiplets here have dynamical Kähler moduli va as lowest scalar component,

i.e. Σa = va + ....

5.3.2 The S-operation

In this subsection we want to give an idea of the role played by the so called “S-operation”

in this work. Roughly speaking, the S-operation has two effects: it turns some non-dynamical

parameters into dynamical parameters (or viceversa) and it turns some U(1) gauge group into

a global symmetry (or viceversa). It is beyond the aim of this thesis to explore the S-operation

pattern, but it is worth mentioning it because of the previous considerations on moduli spaces

and resolution parameters, both in the quiver side and in the HEFT. In particular, it provides a

“bridge” between the “non-dynamical parameters case” and the one with dynamical quantities.

We start saying that b2(Y ) is a very important topological quantity: we know that it counts

the harmonic two-forms on Y7, but we should point out that this number is also related to some

U(1)b2(Y ) “baryonic” symmetry group6 in the dual CFT3. Indeed, denoting ωa these harmonic

two-forms, with a = 1, ..., b2(Y ) here, the M-Theory fundamental three-form can be written as

A3 = Aa∧ωa, where the b2(Y ) massless U(1) one-forms Aa can be obtained by integration over

three-cycles Ca, namely

Aa =

∫
Ca

A3. (5.3.15)

6The term baryonic comes from the type IIB String Theory language and its AdS5/CFT4 version of the
duality, see for instance [1, 34]. Here, we are dealing with M-Theory and AdS4/CFT3 correspondence. We
mention that the main difference between the two cases is that in the CFT3 at the infrared fixed point we can
have the possibility of either gauged/ungauged U(1) symmetries. On contrary, in the CFT4 at the infrared
fixed point the U(1) symmetries are always global.
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In the three-dimensional SUSY language, the gauge fields Aa are actually the vector components

contained in vector supermultiplets V a of the HEFT. Then, the field strengths for V a are the

linear multiplets Σa = − i
2
εαβD̄αDβV

a, which can also be interpreted as topological current

multiplets in the sense of (1.3.5): indeed, these currents are the ones associated to the U(1)b2(Y )

“baryonic” symmetries. Now, we claim that these symmetries can be either gauged or ungauged

and the “bridge” between the two pictures is the S-operation. We will follow [2], working at

HEFT level and making some mandatory comments about the dual quiver interpretation.

Consider the HEFT action (5.3.11) with some external vector supermultiplet Aa gauge-

invariantly coupled to dynamical linear multiplets such that

SHEFT[Aa] =

∫
d3xd4θF(z, z̄,Σ) +

∫
d3xd4θΣaAa. (5.3.16)

The S-operation consists in promoting the Aa to dynamical gauge vector supermultiplets with

a topological interaction. More precisely, a new set of external vector supermultiplets Ba is

added and (5.3.16) becomes

SHEFT[Ba] = SHEFT[Aa]−
∫

d3xd4θΘaBa, (5.3.17)

where Θa = − i
2
εαβD̄αDβAa are the field-strengths of the b2(Y ) vector supermultiplets Aa and

can be interpreted as topological conserved current multiplets too. The last term in (5.3.17)

can be rewritten with an integration by parts as

−
∫

d3xd4θΞaAa, (5.3.18)

where Ξa is the “non-dynamical field-strength” of Ba, namely

Ξa = − i
2
εαβD̄αDβBa = ζa + ...+

1

2
θγµθ̄Jaµ . (5.3.19)

Then, the scalar components ζa of the linear multiplets Ξa can interpreted as Fayet-Iliopoulos

parameters. However, as opposed to (1.2.17), here they should be considered as “point-

dependent” FI parameters rather than constant. At this stage, since the Aa do not appear

in the original action functional (5.3.11), which is the starting point of the procedure, we can

integrate them out, leaving the relation between linear multiplets

Σa = Ξa (5.3.20)

obtained from (5.3.16), (5.3.17) and (5.3.18). This means that the S-operation in the low-

energy region “freezes” the dynamical linear multiplets Σa, having va as scalar components, into

background non-dynamical linear multiplets Ξa, having ζa as scalar components. The latter are

effectively external current multiplets coupled to b2(Y ) dynamical gauge vector supermultiplets

Aa: hence, the resulting theory has U(1)b2(Y ) additional gauge group. Geometrically, when
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the FI parameters are imposed to be constant, (5.3.20) corresponds to Kähler moduli being

non-dynamical, i.e. va = ζa.

The situation depicted till now at HEFT level has a dual interpretation. Consider a quiver

field theory with generic gauge group U(N)G and b2(Y ) independent non-dynamical FI param-

eters. The action (5.3.16) with dynamical linear multiplets Σa and external vector supermulti-

plets Aa does not correspond to that quiver. Instead, it is related to a quiver with gauge group

U(1)G−b2(Y )×SU(N)G and U(1)b2(Y ) global symmetry, together with dynamical FI parameters.

Acting with the S-operation on these global symmetries we promote them to gauge symmetries

but at the same time we turn the dynamical FI into non-dynamical constants. The result is

the U(N)G quiver gauge theory with b2(Y ) independent FI constant parameters.

It is maybe useful to call “Theory A,B,C” the HEFT coupled to external vector supermul-

tiplets A,B, C. The Theory B, having non-dynamical Kähler parameters because of the afore-

mentioned “freezing”, corresponds to the quiver with gauge group U(N)G and non-dynamical

FI parameters. In this case, (5.3.9) is the “trivial” one with the second term only: however, we

want to study the non-trivial version of it having dynamical Kähler moduli and fibered moduli

space. This should correspond to the other quiver with gauge group U(1)G−b2(Y ) × SU(N)G

and U(1)b2(Y ) global symmetry, so let us see how one can obtain this quiver from the one with

non-dynamical FI and full U(N)G gauge group. Restart from Theory B in (5.3.17) and apply S-

operation a second time. We promote Ba to dynamical vector supermultiplets and we also add

a topological interaction between their field strengths Ξa and external vector supermultiplets

Ca so that we arrive to Theory C:

SHEFT[Ca] = SHEFT[Ba]−
∫

d3xd4θΞaCa. (5.3.21)

Hence, it does emerge a term∫
d3xd4θ(−ΘaBa − ΞaCa) =

∫
d3xd4θ(−ΘaBa − BaΩa), (5.3.22)

where Ωa = − i
2
εαβD̄αDβCa. Finally, integrating out Ba we are led to the identification Aa =

−Ca. The interpretation is that we are back to Theory A with a slight change of sign for the

external vector supermultiplets: this means that our quiver has a reduced gauge group with

dynamical FI parameters, as we wanted.

S-operation on flavors and real masses

The previous discussion seems to hold when dealing with unflavored quivers, i.e. the only

external parameters are FI and the only U(1) symmetries are “baryonic” ones7. If we have

7In what follows we want to evidence the difference between flavored and unflavored quivers: while the latter
have only “baryonic symmetries”, the former may have both “baryonic symmetries” and “flavor symmetries”.
For our purpose, we should intend the term “baryonic” as opposed to “flavor”.
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flavor symmetries and real masses as external parameters, like in the Q111 model, the story

is a bit different. Indeed, in the above argument an ungauging of a U(1) baryonic factor in

the quiver, equivalent to go from Theory B to Theory C at HEFT level, corresponds to a new

dynamical parameter. On contrary, in the case of a flavor symmetry U(1)F in the quiver it is

a gauging of it that leads to a new dynamical parameter: we want to sketch this difference.

So, consider for instance the quiver gauge theory U(Ñ)2 = SU(Ñ)2 × U(1)diag × U(1)gaugebar

with global U(1)F having one FI and one real mass as non-dynamical parameters: this is the

Q111 model discussed in the previous chapter and we claim that it is properly dual to a “Theory

B”. At quiver level, we can act “on block” with S-operation both on the U(1)gaugebar , which is a

baryonic gauge symmetry, and on the global U(1)F . The former becomes a global topological

symmetry U(1)bar and the reasoning is the same of going from Theory B to Theory C at

HEFT level: the FI becomes dynamical and the moduli space get larger. The latter becomes

a U(1)gaugeF and the real mass becomes dynamical too: this is because we are promoting the

background vector supermultiplet Vbg = −imθθ̄+ ... in the quiver8, where m is the real mass, to

a gauge vector multiplet. The reason why the moduli space get larger is that this mass, which

is actually a new dynamical field, is a mass for chiral flavor fields: since we always consider

vanishing VEVs for them, i.e. 〈q〉 = 〈p〉 = 0, that dynamical mass is allowed for being a

new direction of the moduli space because it does preserve SUSY. In the end, considering the

S-operation as acting “on block” we have always a U(Ñ)2 quiver gauge group but:

• “Theory B” is dual to U(1)F global and SU(Ñ)2×U(1)diag ×U(1)gaugebar gauge, with non-

dynamical parameters. The moduli space is the one giving a “trivial” (5.3.9), i.e. with

second term only, and the consistency check surely holds because it is given by SymÑCY4

on both sides of the duality.

• “Theory C” is dual to SU(Ñ)2 × U(1)diag × U(1)gaugeF gauge and U(1)bar global, with

dynamical parameters and hence a fibered moduli space, i.e. a non-trivial (5.3.9). Since

this “Theory C” is obtained from “Theory B” applying S-operation, we are led to think

that the moduli space check is “preserved”. We mean that even if the moduli space is

no more SymÑCY4, the new fibered moduli spaces on the two sides of the duality should

match9.

The careful reader could be upset at this stage: the mismatch in the complex dimension of the

moduli space is due to b2(X) new directions, but here with S-operation we can only promote

b2(Y ) non-dynamical parameters to dynamical ones. This can be quite curious, but we antic-

ipate that in the case of the Q111 model we have b2(X) = b2(Y = Q111) = 2 and hence this

problem does not affect us directly.
8Recall how real masses are introduced with (1.3.9).
9We do not explicitely verify it but in the next chapter we will carry out a matching between the parameters

in the quiver field theory side and the resolution parameters in the holographic counterpart, namely (ζ,m) ↔
(v1, v2).
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Chapter 6

The Q111 HEFT

We are finally ready to apply the techniques introduced in the previous chapters to the case

of M2-branes probing a background geometry R1,2 × CY4, where the transverse directions to

M2-branes are either a cone C(Q111) or its resolved version X. This is the original contribution

of this work because the low-energy dynamics of the dual SCFT has not been investigated

so far. Before rushing into the HEFT we should begin with a parenthesis on toric geometry,

particularly focusing on a related tool called Gauged Linear Sigma Model (GLSM), because of

two main reasons: the C(Q111) is a toric manifold and throughout this chapter we will widely

abuse of the GLSM. Indeed, this is an auxiliary field theory that turns out to be very useful in

the matching between moduli spaces, especially if we consider the dimensional reduction from

M-Theory to type IIA String Theory. Indeed, carrying out this reduction let us identify both

the origin of flavors in the Q111 quiver from the brane point of view and construct a dictionary

between the parameters in the quiver field theory, i.e. the FI and the real mass, and the Kähler

parameters related to resolutions.

Then, we will proceed with the identification of general properties regarding C(Q111), also

specializing its GLSM. After this geometric preliminary, we will compute the metric of the

resolved cone X: recall from the previous chapter that it must be Ricci-flat and it should

approach the one on the singular cone asymptotically. A real-coordinates parametrization is

useful for this purpose, see for instance [34], whereas a complex one let us see the Kähler

structure in a clearer way. Hence, we express the metric in a suitable complex parametrization

inspired by [1, 2, 37, 38]. Having the metric, or equivalently the Kähler form, we can obtain

harmonic two-forms as in (5.1.6). Moreover, we can compute “potentials” k, k0, κa together

with the “non-trivial metric” Gab and the “connection” AIai, respectively using (5.3.5) and

(5.3.6). So, we can collect all the ingredients to build the HEFT Lagrangian (5.3.9) for the

Q111 model. Besides, we want to perform new consistency checks between the quiver theory and

the holographic counterpart. One of them is about the dimensional reduction from M-Theory

to type IIA String Theory: in order to do this we will exploit the power of the aforementioned

GLSM. After that, a check on the superconformal symmetry of the HEFT is done. Indeed,

79



80 CHAPTER 6. THE Q111 HEFT

recall that the HEFT is trustable only when the conformal symmetry is spontaneously broken,

i.e. the conformal symmetry should be non-linearly realized. An explicit check on non-linearly

realized superconformal transformations can be in general very difficult: however, there are

cases, like the one treated in this thesis, in which it is sufficient to check the scale-invariance of

(5.3.2).

6.1 Toric geometry and the GLSM

As a premise, this section has not to be intended as an introduction on toric geometry. Instead,

we want to collect at the beginning of this chapter the reasons why it is useful when dealing

with holography and specifically in this work. Indeed:

• the case C(Q111) object of the thesis is toric;

• “toricity” is relevant in quiver gauge theories because it furnishes an useful tool to oper-

atively build the moduli space. The basic idea is to study a gauged linear sigma model

(GLSM), which is an auxiliary theory that automatically reproduces the same moduli

space of the quiver;

• it provides some kind of diagrams which are very useful to understand, at least pictorially,

the dimensional reduction from M-Theory to type IIA that we will work out later on and

in particular the origin of flavor symmetries in the Q111 quiver.

Figure 6.1: An ex-
ample of (a portion
of) toric diagram
borrowed from [6].

The basic feature of a CY4 toric manifold is that it can be “mapped”

into a three-dimensional polyhedron called “toric diagram”, like the one in

figure. The physics behind this structure is that strictly external points1

represent some particular submanifolds of CY4, called “toric divisors”,

that can be wrapped by branes: this give rise to new features in the

dual field description, for example flavors. It can happen that two such

external points in the toric diagram are vertically aligned: then, as stated

in [6], the vertical projection of the 3d diagram into a 2d diagram turns

out to be equivalent to a dimensional reduction from M-Theory to type

IIA along an eleventh compact direction2. The 2d diagram is actually

the toric diagram associated to a different Calabi-Yau toric manifold, this

time with one dimension less: this CY3 is a suitable candidate for a conical

background on which D-branes can be placed3. The reason to introduce

1Here, “strictly” means that these external points are actually vertexes of the polyhedron, i.e. a strictly
external point never lie along a line connecting two external points nor inside a face of the toric diagram.

2This dimensional reduction is characterized by a “wisely chosen” M-Theory circle U(1)M as we will see in
the explicit calculation.

3Moreover, this three-dimensional cone can be obtained from a Kähler quotient of the four-dimensional cone
as CY4//U(1)M = CY3, as we will explicitly see.



6.1. TORIC GEOMETRY AND THE GLSM 81

this rather abstract structure is the following. Imagine 1 + h vertically aligned points in a

three-dimensional toric diagram related to a M-Theory background CY4. Reduction to type

IIA is interpreted as a projection of all 1 + h points down to only one strictly external point in

the 2d toric diagram associated to CY3. Following [6], this give rise to h coincident D6-branes

wrapping the same toric divisor of CY3. At this stage, in type IIA there are also D2-branes

corresponding to dimensionally reduced M2-branes. Having both D2-branes and D6-branes we

can imagine open strings connecting them4: this picture corresponds in fact to some U(h) flavor

symmetry in the field theory and hence to some couples of (q, p) chiral flavor fields discussed

in the previous chapters.

Having sketched the utility of toric diagrams, some comments on the aforementioned gauged

linear sigma model (GLSM) are really mandatory. We said that toric varieties, like C(Q111), can

be realized as the moduli space of an auxiliary model called GLSM. Indeed, there is a precise

algorithm to write down the quiver gauge theory from toric data, see for example [31, 32, 33].

We will not deepen its construction but we will focus on its output, namely:

• A set of fields Pρ called “perfect matchings”, in terms of which the bifundamental chiral

fields of the complete UV-quiver theory (together with monopole operators if considered)

can be expressed:

Φa =
∏

ρ∈R(a)

Pρ, (6.1.1)

where R(a) is a subset of the perfect matchings.

• The 3d toric diagram of CY4. Each perfect matching is mapped to a point of the toric

diagram5 and can be used as a field of a GLSM.

On the other hand, the GLSM can be exploited to characterize the M-Theory background too.

More precisely, we can work out a matching between perfect matchings and complex coordinates

parametrizing the complex cone as well as its resolutions.

Since throughout this chapter we will carry out a lot of different matchings between different

sets of coordinates and/or fields exploiting the GLSM, we make a list of operations that the

reader should take in mind before starting:

• identification of the correct set of perfect matchings and study of their GLSM;

• matching between perfect matchings and the set of complex chiral coordinates {z} char-

acterizing the position of one M2-brane on CY4: this operation will give the M-Theory

background CY4 as a GLSM;

4Recall that D-branes are extended objects on which open strings can end.
5The correspondence is not one-to-one in general. Indeed, different perfect matchings may correspond to the

same toric point.
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• matching between perfect matchings and chiral fields in the UV-quiver using (6.1.1), tak-

ing into account monopole operators (T, T̃ ) in the homonymous method. This operation

will give the moduli space of the quiver6 as a GLSM;

• matching between complex chiral coordinates {z} and chiral fields in the UV-quiver to-

gether with monopoles. Since these complex coordinates parametrize the position of one

M2-brane on CY4 and are in fact the low-energy degrees of freedom in the HEFT, this

operation amounts to find how the degrees of freedom of the quiver, i.e. the far UV

theory, are organized in the effective field theory7;

• construction of gauge-invariant operators using chiral fields in the UV-quiver8;

• construction of gauge-invariant operators using perfect matchings;

• check that these gauge-invariant combinations provide a suitable parametrization of CY4

as an affine toric variety with coordinates {w}, namely gauge-invariant operators should

satisfy some constraint equations defining the cone9 just like in (4.4.33).

6.2 The internal M-Theory geometry

First of all, recall that Q111 is realized as the coset manifold

Q111 =
SU(2)× SU(2)× SU(2)× U(1)

U(1)× U(1)× U(1)
. (6.2.1)

This is the seven-dimensional Sasaki-Einstein base Y7 of the Calabi-Yau cone C(Y7 = Q111) and

hence it gives rise to N = 2 supersymmetries in the dual field theory. The structure (6.2.1)

suggests that the metric should be a U(1) bundle over three spheres, as in (3.2.26), reflecting

the isometry group SU(2)3 × U(1).

Topologically, the resolved cone X is characterized by the following Betti numbers:

b2(X) = 2, b2(Y ) = 2, b6(X) = 0, (6.2.2)

which let us specialize the relation (5.1.1). Recall that Betti numbers count the number of

linearly independent harmonic forms. According to (6.2.2) and (5.1.2), the Q111 model is

characterized by two non-normalizable, or better warp-normalizable in the sense of (5.1.4),

6More precisely, one of the Ñ copies.
7This is to some extent equivalent to find out that pions in the low-energy regime of QCD are bound states

of quarks, the latter being the high-energy degrees of freedom.
8Actually, we have already done this step in (4.4.32).
9A more rigorous statement is that the quantum chiral ring of the quiver must coincide with the ring of

affine coordinates: this is a necessary condition in order for the gauge/gravity correspondence to hold.
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harmonic forms ω̃a: since there are no ω̂a harmonic forms we will identify ω̃a ≡ ωa in what

follows. Consequently, the Kähler two-form should admit the expansion

J = J0 + vaωa = J0 + v1ω1 + v2ω2 = J0 + bωb + cωc, (6.2.3)

where a = 1, 2, va = v1, v2 = b, c are the Kähler moduli and J0 is an exact component. The fact

that b2(X) = 2 is telling us that there are two resolution parameters and indeed we will find

out that the resolved cone admits a parametrization as a C2 vector bundle over the CP1×CP1

“base”10. More precisely, the resolved cone X is given by the total space of the vector bundle

OCP1×CP1(−1,−1)⊕OCP1×CP1(−1,−1), (6.2.4)

which is a notation we are going to explain soon after. Indeed, this is better understood using

the GLSM of the next section. For now, we can imagine that the resolved cone is a product

of two projective unidimensional spaces11, where every point is actually a C2 space. Since the

base of the bundle (6.2.4) consists of a pair of two-cycles Ca = {CPb,CPc}12, the quantization

condition of the harmonic forms reads∫
Ca

ωe = δae , a, e = 1, ..., b2(X) = 1, 2. (6.2.5)

Thinking about (5.1.6), this implies that Kähler moduli va = {v1, v2} = {b, c} can be identified

as volumes of the resolution spheres, namely

va =

∫
Ca

J = vol(Ca). (6.2.6)

6.2.1 The GLSM of C(Q111): M-Theory analysis

The complex cone C(Q111), as well as its resolutions, can be described by a GLSM with six fields

(a1, a2, b1, b2, c1, c2), which in turn are the perfect matchings of the model, and a U(1)2 gauge

group. What follows is a preliminary discussion on the GLSM which is useful to understand

the bundle structure (6.2.4) and let us introduce the complex parametrization {z} of the cone

that we will use to compute our metric. We can think about this GLSM as an abelian gauge

theory with the same gauge group of the quiver13. Their charge matrix takes the form

a1 a2 b1 b2 c1 c2

U(1)I −1 −1 1 1 0 0
U(1)II −1 −1 0 0 1 1

(6.2.7)

10Here we hope that the term “base” does not generate confusion. We should distinguish the base of the
cone, which is the Q111 manifold, from the base of the vector bundle, which is instead the resolution manifold
CP1 × CP1. After computing the metric this should be clear.

11Since we will always deal with unidimensional projective spaces, from now on we will write CP1 ≡ CP
omitting its dimension.

12The a index runs over b2(X) = 2. We will label the two projective spaces with b and c, as well as local
coordinates parametrizing them, but these are not indexes like a, they are only names for the label.

13Clearly, we are thinking about the “single brane case” where we have only one M2 on the cone.
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Since the theory is abelian, the F-term relations are trivial. Then, the two D-term equations

of the GLSM reads

|b1|2 + |b2|2 − |a1|2 − |a2|2 = v1,

|c1|2 + |c2|2 − |a1|2 − |a2|2 = v2,
(6.2.8)

where the resolutions parameters of the M-Theory background are interpreted as Fayet-Iliopoulos

parameters for the GLSM. The singular cone is reproduced choosing vanishing FI parameters

v1 = v2 = 0, while allowing for nonzero values we get resolutions. Let us consider v1, v2 > 0.

Notice that for a1 = a2 = 0 in (6.2.8) we obtain the pair of spheres at the base of the bundle

(6.2.4): indeed, we can imagine that b1,2 and c1,2 fields parametrize respectively CPb and CPc,
whereas the a1,2 fields are the fiber coordinates of the C2. Let us clarify this structure.

The six perfect matchings parametrize the master space F = C6, which has to be (Kähler)

quotiented by the (complexified) gauge group U(1)I ×U(1)II in order to find the moduli space

of the GLSM14. Indeed, remember that we should identify gauge-equivalent combinations to

characterize the space of inequivalent vacua. More precisely, in the case v1, v2 > 0 one has

to subtract from C6 the set Z = {b1 = b2 = 0} ∪ {c1 = c2 = 0}. Otherwise, if we consider

a situation where b1 = b2 = 0 the first line in (6.2.8) clearly gives an absurd. We expect

to find the moduli space (6.2.4) from the GLSM, which should match with the resolved cone

X ' C6−Z
(U(1)I×U(1)II)C

. The action of the complexified gauge group on the master space reads

(a1, a2, b1, b2, c1, c2)→ (ξ−1
1 ξ−1

2 a1, ξ
−1
1 ξ−1

2 a2, ξ1b1, ξ1b2, ξ2c1, ξ2c2), ξ1, ξ2 ∈ C∗. (6.2.9)

At this stage we can choose ξ1 = 1
b2

and ξ2 = 1
c2

so that

(a1, a2, b1, b2, c1, c2)→ (b2c2a1, b2c2a2,
b1

b2

, 1,
c1

c2

, 1), (6.2.10)

provided that b2, c2 6= 0. Then, defining

U = b2c2a1, Y = b2c2a2, λb =
b1

b2

, λc =
c1

c2

, (6.2.11)

which gives the identification between the perfect matchings and the complex coordinates {z},
(6.2.10) reads

(a1, a2, b1, b2, c1, c2)→ (U, Y, λb, 1, λc, 1). (6.2.12)

The complex coordinates {z} = (U, Y, λb, λc) provide a suitable parametrization of (a patch

of) the resolved cone seen as a bundle (6.2.4). Indeed, (λb, λc) are local coordinates on the

base CPb × CPc whereas (U, Y ) are the fibral coordinates for C2. We must stress that it is

not possible to find a globally well-defined metric on the resolved cone: however, we can focus

14Recall that the Kähler quotient “//” corresponds to imposing D-term conditions and then quotienting by
the complexified gauge group.
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on a particular patch and perform calculations. For instance, the (6.2.12) is related to the

NORTH-NORTH patch of (6.2.4), while the SOUTH-SOUTH can be seen as

(a1, a2, b1, b2, c1, c2)→ (X, V, 1, λ̃b, 1, λ̃c), (6.2.13)

where the set of coordinates {z} is now given by15

X = b1c1a1, V = b1c1a2, λ̃b = λ−1
b , λ̃c = λ−1

c . (6.2.14)

Finally, we can give the idea of the notation in (6.2.4). The local coordinates (λb, λc) parametrize

the base CP1 × CP1, which is now identified with CPb × CPc. The (−1,−1) correspond to

negative powers of these local coordinates in the following identifications

U =
1

λb

1

λc
X, Y =

1

λb

1

λc
V. (6.2.15)

The fiber is actually a C2, parametrized by (U, Y ) coordinates in the NN patch, with different

combinations in other patches.

In the end, we have found that the moduli space of the GLSM can be seen as the total space

of the vector bundle (6.2.4), the latter being a complex description of the M-Theory background

X. Recall that this GLSM should reproduce the same moduli space of the U(1)2 quiver as-

sociated to the Q111 model. Since for this quiver the moduli space is actually the resolved

cone, the matching between moduli spaces is complete. However, this situation corresponds

to a single M2-brane probing the resolved background: its position is indeed parametrized by

{z} = (U, Y, λb, λc). In the case of non-coincident Ñ M2-branes on X we have Ñ copies of the

GLSM and hence Ñ copies of the coordinates {z} parametrizing the M2-branes positions on

X. The M-Theory moduli space is now SymÑX, as well as the moduli space of the U(1)2Ñ

quiver. In the above matching argument, the subtlety about dynamical resolution parameters

va discussed in the previous chapter is not investigated: we know that the moduli spaces should

match again but they are fibered versions of the SymÑX ones, where the dynamical parameters

are new fibers.

6.2.2 The Ricci-flat Kähler metric

As we already mentioned, the cone over Q111 can be seen as an affine variety with affine

coordinates wi ∈ C. This means that C(Q111) can be identified using the following set of

constraints:

w1w2 − w3w4 = w1w2 − w5w8 = w1w2 − w6w7 = 0,

w1w3 − w5w7 = w1w6 − w4w5 = w1w8 − w4w7 = 0,

w2w4 − w6w8 = w2w5 − w3w6 = w2w7 − w3w8 = 0,

(6.2.16)

15We hope that the X ∈ {z} of the SS patch will not be confused with the resolved cone X having the same
name.
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where a suitable parametrization satisfying (6.2.16) is given by

w1 =
√
te

i
2

(ψ+φ1+φ2+φ3) cos
θ1

2
cos

θ2

2
cos

θ3

2
, w2 =

√
te

i
2

(ψ−φ1−φ2−φ3) sin
θ1

2
sin

θ2

2
sin

θ3

2
,

w3 =
√
te

i
2

(ψ+φ1−φ2−φ3) cos
θ1

2
sin

θ2

2
sin

θ3

2
, w4 =

√
te

i
2

(ψ−φ1+φ2+φ3) sin
θ1

2
cos

θ2

2
cos

θ3

2
,

w5 =
√
te

i
2

(ψ+φ1+φ2−φ3) cos
θ1

2
cos

θ2

2
sin

θ3

2
, w6 =

√
te

i
2

(ψ−φ1+φ2−φ3) sin
θ1

2
cos

θ2

2
sin

θ3

2
,

w7 =
√
te

i
2

(ψ+φ1−φ2+φ3) cos
θ1

2
sin

θ2

2
cos

θ3

2
, w8 =

√
te

i
2

(ψ−φ1−φ2+φ3) sin
θ1

2
sin

θ2

2
cos

θ3

2
.

(6.2.17)

The coordinate t introduced in (6.2.17) is the so called “radial coordinate” and it should satisfy

t =
8∑
i=1

|wi|2. (6.2.18)

In what follows we are going to find a metric on the NN patch of the cone, so we must identify the

coordinates (U, Y, λb, λc) with combinations of the wi. In other words, we perform a matching

between {z} and {w}.16

First of all, the coordinates parametrizing CPb and CPc are respectively:

λb = e−iφ2 tan
θ2

2
=
w2

w6

=
w8

w4

,

λc = e−iφ3 tan
θ3

2
=
w5

w1

=
w3

w7

.

(6.2.19)

Looking at (6.2.15) and using (6.2.17) we can thus see that a good identification is

U = w1, Y = w4, X = w3 V = w2. (6.2.20)

Then, using (6.2.15), (6.2.19) and (6.2.20), we can obtain (in the NN patch)

8∑
i=1

|wi|2 = (|U |2 + |Y |2)(1 + |λb|2)(1 + |λc|2), (6.2.21)

so that a good radial coordinate t is given by (6.2.21).

We know that a Calabi-Yau metric, i.e. Ricci-flat and Kähler, can be found using gmn̄ =

∂m∂̄n̄k, where k is the Kähler potential of the resolved cone. A good ansatz for it should

consider the presence of a radial coordinate t that measure the distance of a point along the

C2 fiber from the base CPb × CPc, as well as the resolutions. Hence our starting point is17

k(t; b, c) = F (t; b, c) + b log(1 + |λb|2) + c log(1 + |λc|2). (6.2.22)

16The latter can be directly matched with gauge-invariant combinations of perfect matchings in the GLSM
but here we want to focus on the computation of the metric, so we postpone the matching between {w} and
gauge-invariant combinations of (a1, ..., c2).

17We will sometimes omit the arguments of the functions during our calculations.
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Notice that we can see (6.2.22) as k = F (t) + vaka = F (t) + bkb + ckc, where va = {b, c} are

the Kähler moduli regulating the volume of the resolutions two-cycles Ca = {CPb,CPc} while

ka are the Kähler potentials of these cycles. We know from (2.3.10) that these take the form

written in (6.2.22), where the ζ there are the λ here and the metric on CP is the Fubini-Study

one. The relative Kähler two-forms are

jb = i∂∂̄kb = i∂∂̄ log(1 + |λb|2) = ie−2kbdλb ∧ dλ̄b = i
dλb ∧ dλ̄b

(1 + |λb|2)2
,

jc = i∂∂̄kc = i∂∂̄ log(1 + |λc|2) = ie−2kcdλc ∧ dλ̄c = i
dλc ∧ dλ̄c

(1 + |λc|2)2
.

(6.2.23)

It is useful to identify the base of the bundle (6.2.4) with B = CPb × CPc so that its Kähler

potential and form are respectively

kB =
∑
a

ka = kb + kc, jB =
∑
a

ja = jb + jc. (6.2.24)

Moreover, the radial coordinates takes the more compact expression

t = (|U |2 + |Y |2)ekB . (6.2.25)

Having defined (6.2.24), it is easy to check that

jb ∧ jc = −e−2kBdλb ∧ dλ̄b ∧ dλc ∧ dλ̄c. (6.2.26)

WARNING: In what follows we will occasionally omit the “wedge” product since this is the

natural product between forms. It should be clear from context whether we are using“∧”, for

example when working with J , or “⊗”, for example if we switch to the metric ds2 notation.

Indeed, recall that finding the Kähler form is equivalent to finding the metric for a Kähler

manifold18.

Using (5.1.12) on (6.2.22) we immediately obtain

J = i∂∂̄F (t) + bjb + cjc (6.2.27)

and the core of the calculation is the research of a good F (t), i.e. such that the metric is also

Ricci-flat.

Defining ′ ≡ d
dt

, the Kähler form generated by the potential (6.2.22) is

J =(b+ F ′t)jb + (c+ F ′t)jc − i(F ′′t)ekB
[

(UdY − Y dU)(ŪdȲ − Ȳ dŪ)

|U |2 + |Y |2

]
+

+ iekB(F ′′t+ F ′)(dU + U∂kB)(c.c.) + iekB(F ′′t+ F ′)(dY + Y ∂kB)(c.c.).

(6.2.28)

18As explained in the second chapter, the natural two-form of an hermitian complex manifold J = Jij̄dz
i∧dz̄j̄

is related to the metric ds2 = gij̄dz
i ⊗ dz̄j̄ by Jij̄ = igij̄ .
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If we now define γ = F ′t and call ηU = dU + U∂kB, ηY = dY + Y ∂kB, together with their

complex conjugate, then a convenient expression for (6.2.28) is

J =(b+ γ)jb + (c+ γ)jc + iekB
γ

t

[
(UηY − Y ηU)(c.c.)

|U |2 + |Y |2

]
−

− iγ′ekB
[
ηUηŪ + ηY ηȲ − (UηY − Y ηU)(c.c.)

|U |2 + |Y |2

]
.

(6.2.29)

The reason why (6.2.29) is useful is that it is straightforward to compute the volume form on

the resolved cone X. Indeed, at this stage we should check that the Kähler form J is compatible

with the Ricci flatness condition, i.e. the Ricci form in (2.3.6) must vanish. In other words, we

must find a γ such that the determinant of the metric is constant. The easiest way to compute

this determinant is to combine the formulas relating the volume form with the metric and the

4-fold product of the Kähler form, namely:

1

4!
J ∧ J ∧ J ∧ J = dvol(X8) =

(
i

2

)4

(detg)d8z, (6.2.30)

where d8z = dUdY dŪdȲ dλbdλ̄bdλcdλ̄c. Using (6.2.29) and (6.2.26) we can easily get

J ∧ J ∧ J ∧ J ∼ (b+ γ)(c+ γ)γ′
γ

t
d8z, (6.2.31)

leading to the Calabi-Yau equation condition

(b+ γ)(c+ γ)γ′γ =
3

2
t. (6.2.32)

An explicit solution to (6.2.32) is quite difficult to obtain. However, we can still work with an

implicit expression in order to check some regularity behaviors: we will do this in a moment.

Before that, we want to write down an explicit form for the CY metric on the resolved C(Q111) in

real coordinates in order to verify if it truly approach the one of the singular cone asymptotically.

Using (6.2.17), (6.2.19), (6.2.20), (6.2.25) together with lengthy calculations we finally arrive

to

ds2
X =

1

4
(b+ γ)dΩ2

b +
1

4
(c+ γ)dΩ2

c +
1

4
γdΩ2 + γ′t

[
dt2

4t
+

1

4

(
dψ +

3∑
i=1

cos θidφi

)2]
, (6.2.33)

where

dΩ2 = dθ2
1 + sin2 θ1dφ

2
1, dΩ2

b = dθ2
2 + sin2 θ2dφ

2
2, dΩ2

c = dθ2
3 + sin2 θ3dφ

2
3. (6.2.34)

With a change of variable t = ρ2 we further obtain

ds2
X =

1

4
(b+ γ)dΩ2

b +
1

4
(c+ γ)dΩ2

c +
1

4
γdΩ2 + γ′ρ2

[
dρ2

ρ2
+

1

4

(
dψ +

3∑
i=1

cos θidφi

)2]
=

=
1

4
(b+ γ)dΩ2

b +
1

4
(c+ γ)dΩ2

c +
1

4
γdΩ2 + γ′dρ2 +

γ′ρ2

4

(
dψ +

3∑
i=1

cos θidφi

)2

.

(6.2.35)
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Finally, it is convenient to introduce a new radial coordinate and a function, namely

2γ = r2, Φ =
2ρ2γ′

γ
, (6.2.36)

so that (6.2.35) becomes

ds2
X =

1

8
(2b+r2)dΩ2

b +
1

8
(2c+r2)dΩ2

c +
1

8
r2dΩ2 +Φ−1dr2 +Φ

r2

16

(
dψ+

3∑
i=1

cos θidφi

)2

. (6.2.37)

It can be shown, as in [34], that Φ→ 1 at large r and hence (6.2.37) approaches asymptotically

the metric of the singular cone, with base metric (3.2.26), namely

ds2
X →

r2

8

3∑
i=1

(dθ2
i + sin2 θidφ

2
i ) + dr2 +

r2

16

(
dψ +

3∑
i=1

cos θidφi

)2

=

= dr2 + r2ds2(Y = Q111) = ds2
C(Q111).

(6.2.38)

On the other hand, if Kähler moduli are set to zero, i.e. b = c = 0 then Φ = 1 and (6.2.37)

is again the metric on the singular cone, whereas taking only a combination of resolution

parameters different from zero one obtains different partial resolutions of C(Q111). Besides,

if r = 0 then we are sitting on the resolution manifold, as expected from the meaning of the

radial coordinate itself.

6.3 The HEFT ingredients

In this section we are going to collect all the ingredients for the HEFT Lagrangian of the Q111.

We compute the harmonic forms ωa as well as the potentials k, k0, κa necessary for the HEFT.

About the former, we will check that they are in fact harmonic, i.e. ∆ω = 0. For the latter we

will need some asymptotic calculations which turn out to be crucial for our final check on the

conformal symmetry. In both cases we are lacking an explicit solution γ(t; b, c) to (6.2.32), so

the typical objects appearing in the HEFT Lagrangian will be expressed in integral form.

6.3.1 Harmonic forms

In order to compute the harmonic two-forms we will use (5.1.6), with J given by

J =(b+ γ)jb + (c+ γ)jc + iekBγ′[(dU + U∂kB)(c.c.) + (dY + Y ∂kB)(c.c.)]+

+ iekB
(
γ

t
− γ′

)[
(UdY − Y dU)(ŪdȲ − Ȳ dŪ)

|U |2 + |Y |2

]
(6.3.1)
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and va = (b, c). We easily find:

ω1 = ωb =
∂J

∂b
=jb +

∂γ

∂b
jB + iekB

∂γ′

∂b
[(dU + U∂kB)(c.c.) + (dY + Y ∂kB)(c.c.)]+

+ iekB
(

1

t

∂γ

∂b
− ∂γ′

∂b

)[
(UdY − Y dU)(ŪdȲ − Ȳ dŪ)

|U |2 + |Y |2

]
,

ω2 = ωc =
∂J

∂c
=jc +

∂γ

∂c
jB + iekB

∂γ′

∂c
[(dU + U∂kB)(c.c.) + (dY + Y ∂kB)(c.c.)]+

+ iekB
(

1

t

∂γ

∂c
− ∂γ′

∂c

)[
(UdY − Y dU)(ŪdȲ − Ȳ dŪ)

|U |2 + |Y |2

]
.

(6.3.2)

Then, we should check that (6.3.2) are truly harmonic, i.e. they are both closed dω = 0 and

co-closed d†ω = 0. The easiest way to prove it is to use the concept of “primitivity”. As stated

in [21], for a CY4 the primitive (p, q)-forms ωp,q satisfy

J ∧ · · · ∧ J︸ ︷︷ ︸
5−p−q times

∧ωp,q = 0. (6.3.3)

The clue is that if a primitive form is closed, then it is also co-closed19: so we are going to check

that (6.3.2) are both closed and primitive (1, 1)-forms.

Closure is quite obvious since dω = d
(
∂J
∂v

)
= ∂

∂v
(dJ) and J being the Kähler form is closed,

i.e. dJ = 0. For primitivity we must check that J∧J∧J∧ω = 0. From (6.2.31) and (6.2.32) we

know that J∧J∧J∧J does not depend on resolution moduli, i.e. ∂
∂v

(J∧J∧J∧J) = 0. By using

(anti)commutation rules for differential forms calculus this is equivalent to 0 = J ∧J ∧J ∧ ∂J
∂v

=

J ∧ J ∧ J ∧ ω.

6.3.2 Asymptotic behaviors

First of all we go back to (6.2.32) and write it as

(b+ γ)(c+ γ)γ′γ = l1t, l1 = const. (6.3.4)

This can be easily integrated obtaining

1

4
γ4 +

1

3
(b+ c)γ3 +

1

2
bcγ2 = l2 + l1

1

2
t2, l1, l2 = const. (6.3.5)

Since F ′(t) should be regular at t = 0, then it must be γ(t = 0) = 0 from γ = F ′t and so

the constant l2 in (6.3.5) must vanish for consistency. Besides, differentiation of (6.3.5) with

respect to t (two times) leads to γ′(t = 0) =
√

l1
bc

and hence when b, c > 0 we must take l1 > 0

in order to have γ′(t) > 0 everywhere. Then, the constant l1 can always be reabsorbed into the

19In the case of CY4, so n = 8 real dimensions, we have d†χ(1,1) = ?8d ?8 χ
(1,1) for a (1, 1)-form χ. If χ is

also primitive then ?8χ = 1
2J ∧ J ∧ χ. If χ is also closed then dχ = 0. So d†χ = ?8d(J ∧ J ∧ χ): applying the

Leibniz rule for the exterior derivative we find d†χ = 0 because the Kähler form is closed too, i.e. dJ = 0.
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radial variable t and so we choose it to be l1 = 1. The fact that γ(0) = 0 and γ′(t) > 0 let us

interpret γ as a radial variable itself20, defined by

1

2
t2 =

1

4
γ4 +

1

3
(b+ c)γ3 +

1

2
bcγ2. (6.3.6)

Notice that when γ � b, c then from (6.3.6) we get t2 ∼ γ4 and so γ ∼ t
1
2 as t → +∞. Since

we also introduced 2γ = r2 in (6.2.36), then we also get the behavior t ∼ r4 at large r. From

γ = F ′t by integration we obtain

F (t) =

∫ t

0

dt̃

t̃
γ(t̃) ∼ r2. (6.3.7)

This asymptotic behavior for the Kähler potential k ∼ F (t) ∼ r2, see (6.2.22), turns out to be

the correct one for the scale invariance. Actually, γ � b, c corresponds to a region where the

“energy scale” γ is well above the scale set by some VEVs b, c. We can interpret this γ as a

VEV itself, this time for the “radial position” of one of the Ñ mobile M2-branes on the resolved

cone X. Then, for γ � b, c we can imagine that the geometry that the M2-brane “sees” is the

one of the singular cone because it is far away from the resolved singularity. We anticipate that

this is useful because from there we can relate the scaling dimension of the radial coordinate r,

which is known only in the large-r region, with the scaling dimensions of the chiral coordinates

{z}. Since the latter are “pure coordinates” in the sense that their scaling dimensions do not

depend on any asymptotic behavior, we can both make use of them “everywhere”, even in

the γ � b, c region, and compare the result with the field theory predictions for the scaling

dimensions of {z}.21 On the other side, one can also explore the γ � b, c region too. Here,

from (6.3.6) we get t2 ∼ bcγ2 and hence F (t) ∼ t√
bc

: this is good for two reasons. Firstly,

F (0) → 0 makes sense because, looking at (6.2.22), when t → 0 we are “near” the resolution

spheres and hence we expect that the Kähler potential reduces to bkb + ckc just like the metric

(6.2.37) reduces to 1
4
(bdΩ2

b + cdΩ2
c) as r → 0. Secondly, it seems that even if the VEV γ for the

“radial position” of our M2-brane is lower than the VEVs for the resolutions, i.e. the M2-brane

“sees” the resolved geometry, we find a good scaling behavior for F (t). This is curious because

while scaling dimensions can be surely obtained in the asymptotic region far away from the

resolutions, as the M2-brane approaches resolutions we have no right to surely state that such

asymptotic scaling dimensions hold “everywhere”. However, the fact that one can find the

correct scaling dimensions for the chiral coordinates {z}, which are “asymptotic-independent”,

suggests that the asymptotic scaling dimensions in fact hold “everywhere”. We will return on

this topic when we will perform the final SCFT check.

It is useful to observe that one can write

γ(t) = t
1
2 γ̃

(
b

t
1
2

,
c

t
1
2

)
= t

1
2 γ̃(αb, αc), (6.3.8)

20It varies monotonically from 0 to +∞.
21Recall that we should find a matching between complex coordinates {z} and chiral fields in the UV-quiver,

together with monopoles: we will see an example in the next section.
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and correspondingly (6.3.6) translates into

1

2
=

1

4
γ̃4 +

1

3
(αb + αc)γ̃

3 +
1

2
αbαcγ̃

2. (6.3.9)

Then, we define τ = t̃
1
2 so that (6.3.7) reads

F (t) =

∫ t
1
2

0

dτ γ̃(
b

τ
,
c

τ
). (6.3.10)

Notice that (6.3.10) satisfies the homogeneity condition

F (λ2t;λv) = λF (t; v). (6.3.11)

Before going on, we should mention that in our calculations we have omitted some normal-

ization constants in order to be more clear. However, we want to be somehow more precise in

the asymptotic behaviors, especially because they are crucial for the computation of potentials

in the next section. Hence, we show how this constants can be fixed. First of all, one should

require the quantization condition on harmonic forms, namely
∫
Ca ωe = δae . Let us consider the

resolution parameter v1 = b, but the same goes for v2 = c. We can compute∫
CPb

J =

∫
CPb

(b+ γ)jb =

∫
CPb

(b+ γ(t = 0))jb = b

∫
CPb

jb, (6.3.12)

with jb = −1
2

sin θ2dφ2 ∧ dθ2. It is then easy to check that
∫
CPb

jb = 2π and hence b = 1
2π

∫
CPb

J .

Thus, from (5.1.6) we get
∫
CPb

ωb = 2π: it is now clear that we have to normalize the Kähler

form by 2π. Indeed, J → J
2π

and hence ωb → ωb

2π
so that

∫
CPb

ωb = 1 as we wanted. An

alternative check is to make use of the first Chern class (2.3.7) and of the relation (2.3.12) for

the case of n-dimensional projective space with n = 1. Then we have∫
CPb

jb = −1

2

∫
CPb

RCPb
= −π

∫
CPb

c1 = 2π (6.3.13)

since
∫
CPb

c1 = −2 for the unidimensional projective space. Hence we are led to the very

same normalization. At the same time, since J is related to the metric we should consider a

modification of radial variables too, namely:

γ = F ′t→ γ = 2πF ′t, 2γ = r2 → 2γ = πr2. (6.3.14)

Now we can complete the discussion on (6.3.10) and its homogeneity relation (6.3.11). First

of all, (6.3.7) and (6.3.10) become respectively

F (t) =
1

2π

∫ t

0

dt̃

t̃
γ(t̃), F (t) =

1

π

∫ t
1
2

0

dτ γ̃(
b

τ
,
c

τ
). (6.3.15)
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Using (6.3.14), since at large t we have γ ' 2
1
4 t

1
2 , the relation between t and r takes the form

t ' π2

4
√

2
r4. Then, asymptotically integrating (6.3.15) we get:

k ' F (t) ' 2
1
4

π
t
1
2 ' 2

1
4

π

(
π2

4
√

2
r4

) 1
2

=
1

2
r2. (6.3.16)

Now we want to study the next order of the asymptotic expansion. For large t, or better for

t
1
2 � va, at first order in va/τ we can actually find

γ ' 2
1
4 t

1
2 − 1

3
(b+ c) → γ̃ ' 2

1
4 − 1

3
(αb + αc). (6.3.17)

Then, using the correct normalization we get

F (t; v) ' 1

π

[
2

1
4 t

1
2 − 1

6
(b+ c) log t

]
+ F̃ (v) +

∑
n≥1

t−
n
2 f̃(n)(v), (6.3.18)

where (6.3.11) requires

F̃ (λv) = λF̃ (v) +
1

3π
(b+ c)λ log λ, f̃(n)(λv) = λn+1f̃(n)(v). (6.3.19)

Moreover, since F (t; v) is independent from λ, we can differentiate (6.3.11) in order to obtain

va
∂F

∂va
+ 2t

∂F

∂t
= F (6.3.20)

and from there, using 2t∂F
∂t

= 1
π
γ(t; v), we get

va
∂F

∂va
− F = − 1

π
γ. (6.3.21)

Now, deriving (6.3.21) with respect to moduli gives

vb
∂2F

∂va∂vb
= − 1

π

∂γ

∂va
. (6.3.22)

Since ∂γ
∂va
→ −1

3
for large γ,22 it is clear from (6.3.18) and (6.3.19) that

vb
∂2F̃

∂va∂vb
=

1

3π
(6.3.23)

and

F̃ (v) =
1

3π
(b log b+ c log c) + ˜̃F (v) + val̃a + const., (6.3.24)

where l̃a are constants and ˜̃F (λv) = λ ˜̃F (v) so that both (6.3.19) and (6.3.23) are satisfied23.

22Take for instance b. Since ∂
∂b

(
t2

2

)
= 0 then we get ∂γ

∂b =
− 1

3γ
3− 1

2 cγ
2

γ3+ 1
3 (b+c)γ2+bcγ

from (6.3.6).

23This is because the homogeneity of ˜̃F implies va ˜̃Fa = ˜̃F and from there vb ∂2 ˜̃F
∂va∂vb

= 0.
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6.3.3 Potentials

Now we want to compute the explicit form of potentials in (5.1.13), namely k0 and κa. First of

all, we have to slightly modify our notation because the following calculation is very delicate.

The Kähler potential in (6.2.22) is not the complete one because we could have added a function

independent on complex coordinates such that the Kähler form J = i∂∂̄k would have been the

same. So, in what follows (6.2.22) is renamed as k̂ and using the correct normalization reads

k̂ = F (t; v) +
1

2π
vaka =

1

2π

∫ t
1
2

0

dt̃

t̃
γ(t̃) +

1

2π
vaka. (6.3.25)

We stress that k̂ 6= k and the difference is due to the fact that potentials are defined modulo

ambiguities depending on Kähler moduli, namely

k = k̂ + Ω(v) = F (t; v) +
1

2π
vaka + Ω(v). (6.3.26)

Recalling (5.1.13) we then obtain

κa =
∂k

∂va
=
∂F

∂va
+

1

2π
ka + Ωa(v), Ωa =

∂Ω

∂va
. (6.3.27)

Since for large values of t we have ∂2F
∂va∂vb

→ ∂2F̃
∂va∂vb

, see for instance (6.3.18), the asymptotic

condition in (5.1.13) is easily satisfied provided that

Ω(v) = −F̃ (v) = − 1

3π
(b log b+ c log c)− ˜̃F (v)− val̃a − const., (6.3.28)

where we used (6.3.24). Thus, (6.3.26) is telling us that

k = k̂ + Ω(v) = F (t; v) +
1

2π
vaka −

1

3π
(b log b+ c log c)− ˜̃F (v)− val̃a − const., (6.3.29)

whereas from (6.3.27) we get

κa =
∂k

∂va
=
∂F

∂va
+

1

2π
ka −

1

3π
log va − 1

3π
− ˜̃Fa(v)− l̃a, ˜̃Fa =

∂ ˜̃F

∂va
. (6.3.30)

Notice that the homogeneous function ˜̃F (v) remains undetermined: nevertheless, it disappears

from the asymptotic expansion of the potentials24, i.e. when t
1
2 � va. Moreover, we can

compute k0 from (5.1.13) using (6.3.29), (6.3.30) and (6.3.20). The result reads

k0 = k − vaκa =
1

π
γ +

1

3π
(b+ c), (6.3.31)

where we also used the homogeneity relation va ˜̃Fa = ˜̃F . Recall that k0 is very important in the

HEFT because of (5.3.1) and (5.3.2).

24Indeed, for large t the F in (6.3.29) and (6.3.30) is the asymptotic expanded version (6.3.18). Using (6.3.24)

it is clear that ˜̃F (v) goes away.
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6.3.4 The Gab metric and the AIai connection

The only HEFT ingredients left are the Gab matrix and the AIai connection introduced in the

previous chapter. From (5.2.1) and (5.2.2), together with (6.3.30), we obtain

Gab = −∂ Re ρa
∂vb

= −1

2

∑
I

∂κa
∂vb

=
1

2

∑
I

∂2k

∂va∂vb
=

= −1

2

∑
I

[
1

π

∫ t
1
2
I

0

dτ
∂2γ̃

∂va∂vb
− 1

3π
δab

1

vb
− ∂2 ˜̃F

∂va∂vb

]
,

(6.3.32)

where the sum runs over the index I related to the number of branes in the theory25.

On the other hand, connections are given by (5.3.6) and (6.3.30), namely

AIai =
∂κa
∂ziI

=
1

π

[
∂

∂ziI

∫ t
1
2
I

0

dτ
∂γ̃

∂va
+

1

2

∂

∂ziI
log(1 + |λIa|2)

]
, (6.3.33)

where ziI = (U, Y, λb, λc)I in the NN patch: schematically, we should distinguish the case

z = U, Y from z = λ.

First of all we rewrite26 the first term in (6.3.33) as

AIai =
1

π

∂t

∂ziI

∂

∂t

∫ t
1
2

0

dτ
∂γ̃

∂va
(6.3.34)

and using (6.2.25) we can compute

∂t

∂z
=


ŪekB if z = U

Ȳ ekB if z = Y

t∂kB
∂z

= t λ̄
1+|λ|2 if z = λ.

(6.3.35)

Now, the connections (6.3.33) reads

AIa(λ) =
1

π

λ̄Ia
1 + |λIa|2

[
1

2
+ t

∂

∂t

∫ t
1
2

0

dτ
∂γ̃

∂va

]
, z = λ

AIa(U) =
1

π

Ū I

|U I |2 + |Y I |2

[
t
∂

∂t

∫ t
1
2

0

dτ
∂γ̃

∂va

]
, z = U

AIa(Y ) =
1

π

Ȳ I

|U I |2 + |Y I |2

[
t
∂

∂t

∫ t
1
2

0

dτ
∂γ̃

∂va

]
, z = Y.

(6.3.36)

At large values of the radial variable where we can take (6.3.17), connections in (6.3.36) go like:

A(λ) ∼
λ̄

1 + |λ|2
, A(U) ∼

Ū

|U |2 + |Y |2
, A(Y ) ∼

Ȳ

|U |2 + |Y |2
. (6.3.37)

Even though these results are implicit, the HEFT Lagrangian at two-derivatives order is the

nonlinear sigma model (5.3.9) with kinetic terms characterized by (6.3.32), (6.3.33) and (6.2.28).

25We should point out that there is one radial coordinate tI for every brane. Indeed, recall that there are
also different sets of coordinates {z}I .

26Dropping the index I from the radial coordinate tI for clarity.
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6.4 Final consistency checks

In this section we want to perform some consistency checks. One of them is about the moduli

space and the dimensional reduction from M-Theory to type IIA String Theory, the other one

is about the conformal symmetry of the HEFT. For the former we will exploit toric geometry

and the GLSM while for the latter we will use the asymptotic behaviors worked out in the

previous section.

6.4.1 From M-Theory to type IIA

As we mentioned, toric geometry and the GLSM provide an interpretation of flavors in the

quiver theory in terms of branes. Here we will focus on the abelian U(1)2 quiver theory, whose

moduli space was shown to be C(Q111) and was matched to the M-Theory moduli space, i.e.

the moduli space of a single M2-brane probing C(Q111) in this case, using (4.4.32) and (4.4.33).

There, we built gauge-invariant combinations of the UV-quiver chiral fields and monopoles:

these were matched to the set of coordinates {w} parametrizing C(Q111) as an affine variety.

Recall that the monopole method was unable to “see” resolutions and that we argued that there

should be a sector in the moduli space giving a three-dimensional CY cone C(T 11), the latter

being the Klebanov-Witten model (KW) of [39]. An alternative version of the moduli space

was obtained from the semiclassical method, see (4.4.19) and its interpretation, which in turn

is “aware” of resolutions. There, the moduli space CY4 was a resolved cone but it was not the

one of (6.2.4). Indeed, the CY4 was shown to be an U(1) fibration, parametrized by the scalar

photon τ , of a seven-manifold, the latter being a CY3 fibered over the real line parametrized

by σ. The CY3 was a resolved version of C(T 11) with resolution parameter given by (4.4.19).

However, the M-Theory background in (6.2.4), which is the moduli space27 of one M2-brane

probing the resolved cone X, is characterized by two resolution parameters v1, v2 = b, c. We

would like to match these two pictures and in order to do this we should perform a dimensional

reduction of M-Theory to type IIA along a circle U(1)M , namely CY3 = CY4//U(1)M . This

is done by studying the GLSM and choosing a particular M-Theory circle so that U(1)M is

interpreted as a new gauge group: we will follow [6, 35, 2].

Dimensional reduction: monopole method

We begin from the singular cone case. The GLSM is given by

a1 a2 b1 b2 c1 c2

U(1)I −1 −1 1 1 0 0
U(1)II −1 −1 0 0 1 1
U(1)M 0 1 0 0 0 −1

(6.4.1)

27We are again considering non-dynamical parameters.
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where we also wrote the action of U(1)M on perfect matchings (a1, ..., c2) ∈ C6. There are eight

gauge-invariant combinations of perfect matchings with respect to U(1)I × U(1)II , namely

w1 = a1b2c2, w2 = a2b1c1, w3 = a1b1c1, w4 = a2b2c2,

w5 = a1b2c1, w6 = a2b2c1, w7 = a1b1c2, w8 = a2b1c2.
(6.4.2)

Notice that these combinations satisfy the set of constraint (4.4.33) so that the GLSM (6.4.1)

perfectly realizes the toric C(Q111) as its moduli space: here, we matched the perfect matching

with the set of coordinates {w}. Moreover, if we start from (6.2.19),(6.2.20) and try to build a

dictionary between the coordinates {z} parametrizing the position of the M2-brane on C(Q111)

and the perfect matchings variables we can identify the whole set of affine coordinates {w} as

a result.28

Now we can proceed with two calculations: identify the CY3 in the dimensional reduction

and try to match perfect matchings and chiral fields in the UV-quiver. We begin from the

latter and report the gauge charges for clarity, namely

Ai Bi pi qi T T̃
U1(1)0 1 −1 −1 0 1 1
U2(1)0 −1 1 0 1 −1 −1

(6.4.3)

Recall that in order to reproduce the correct moduli space monopole operators should satisfy

the constraint (4.4.26), which in this case is

T T̃ = A1A2. (6.4.4)

We can easily solve (6.4.4) via perfect matching variables in (6.4.1) as

A1 = a1c1, A2 = a2c2, B1 = b1, B2 = b2, T = a2c1, T̃ = a1c2, (6.4.5)

which provides the identification of UV-quiver fields and monopoles with perfect matchings, in

the sense of (6.1.1). Then, using the dictionary (6.4.5) we can translate the gauge-invariant

combinations of perfect matching in (6.4.2) into gauge-invariant combinations of UV-quiver

fields and monopoles: the result is exactly (4.4.32), namely

w1 = a1b2c2 = T̃B2, w2 = a2b1c1 = TB1, w3 = a1b1c1 = A1B1, w4 = a2b2c2 = A2B2,

w5 = a1b2c1 = A1B2, w6 = a2b2c1 = TB2, w7 = a1b1c2 = T̃B1, w8 = a2b1c2 = A2B1.
(6.4.6)

We argued that the combinations without monopoles in (4.4.32) could give rise to the equation

w3w4−w5w8 = 0 defining the conifold CY3 = C(T 11). Here we can be somehow more precise in

28For example, taking U = a1b2c2 and X = a1b1c1 we reproduce (6.2.15). Then we find out that a1b2c2 and
a1b1c1 are actually gauge-invariant combinations of perfect matchings. So, we can identify them with w1 and
w3 respectively.
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saying this thanks to the dimensional reduction and the GLSM. Indeed, notice that according

to the U(1)M charges in (6.4.1) we have

w1 w2 w3 w4 w5 w6 w7 w8

U(1)M −1 1 0 0 0 1 −1 0
(6.4.7)

so that {w3, w4, w5, w8} are in fact uncharged combinations under U(1)M . Hence, the dimen-

sional reduction let us clearly see the sector w3w4 − w5w8 = 0, i.e. the Klebanov-Witten

conifold, “inside” the C(Q111) model. As a side result, we can actually identify some of the

{z} with gauge invariant combinations of quiver fields. For instance, in the NN patch we have

Y = w4 = A2B2 and we know that Y is related to a chiral field in the HEFT Lagrangian (5.3.9)

of the z-kind, i.e. not the ρ-kind one. This field is actually a low-energy degree of freedom

in the HEFT and it turned out to be a combination of fields of the UV quiver theory, in this

case A2B2. Here, we want to point a parallelism with QCD where pions, i.e. some low-energy

degrees of freedom, are bound states of quarks, which are matter fields in the UV theory.

Toric diagram and brane interpretation

Now we want to give a pictorical idea of how flavors are related to D6-branes emerging in

the dimensional reduction using toric diagrams introduced at the beginning of this chapter. A

complete calculation is beyond the aim of the thesis, so we will refer the reader to [6] for a

deeper analysis.

As noticed for example in [6], the quiver structure of Q111 is actually the ABJM one of [40]

with the addition of flavors. The latter is another three-dimensional SUSY model but it has

more supersymmetries than Q111. Moreover, the ABJM quiver is the same of the KW one:

even if they are theories in different spacetime dimensions, the quiver structure is the same.

An interesting discussion involves toric geometry. The ABJM has a 3d toric diagram with four

external points: they are

{(1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1)} ABJM toric diagram. (6.4.8)

If we consider the flavoring of the Q111 quiver, which consists in G̃ = h1 + h2 = 1 + 1 = 2 new

flavor nodes with respect to ABJM quiver, it can be shown that two new points in the ABJM

toric diagram are added: they are both “below” ABJM points in (6.4.8), giving

{(1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), (0, 0, 0), (1, 1,−1)} C(Q111) toric diagram. (6.4.9)

The six points in (6.4.9) are then related to six perfect matchings, which themselves enter in

the GLSM description. With respect to (6.4.1) we shall rename these fields in order to make

evident their positions in the diagram, namely

a1 → a0, a2 → c0, b1 → b0, b2 → d0, c1 → a−1, c2 → c1, (6.4.10)
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so that the index is related to the z-quote. For clarity, we report the toric diagram of [6] for

C(Q111):

Then, we can express (6.4.6) using (6.4.10):

w1 = a0d0c1 = T̃B2, w2 = c0b0a−1 = TB1, w3 = a0b0a−1 = A1B1, w4 = c0d0c1 = A2B2,

w5 = a0d0a−1 = A1B2, w6 = c0d0a−1 = TB2, w7 = a0b0c1 = T̃B1, w8 = c0b0c1 = A2B1.
(6.4.11)

As we mentioned earlier, a projection of the 3d toric diagram into a 2d diagram is equivalent

to a suitable dimensional reduction of M-Theory to type IIA. Actually, projecting (6.4.9) into

the z = 0 plane gives a 2d toric diagram with four points: they are

{(1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 0)} C(T 11) toric diagram (6.4.12)

and we should not be surprised that (6.4.12) is exactly the toric diagram related to the KW

theory. Indeed, we have just found the CY3 = C(T 11) “inside” the CY4 = C(Q111). Then,

since the two points having z 6= 0, i.e. a−1 and c1, are vertically aligned to other two points

having z = 0, i.e. a0 and c0, the vertical projection, equivalent to the dimensional reduction,

give rise to two “detached” D6-branes in type IIA. We mean that there will be D2-D6 systems

with open strings connecting them that give rise to U(h1 = 1) × U(h2 = 1) flavor symmetry

in the quiver field theory29. As an aside, notice that if a0 = a−1 = 0 then the only surviving

combinations in (6.4.11) are w4 and w8, whereas if c0 = c1 = 0 the surviving combinations are

w3 and w5. It is not a case that the surviving combinations are exactly the uncharged ones

under U(1)M , see (6.4.7), but we will refer the reader to [6] for a complete treatment.

Dimensional reduction: semiclassical method

Here we will show that in order to have a consistent dimensional reduction, one such that the

resolved CY4 (6.2.4) takes the fibered form (CY3, σ, τ) with CY3 the resolved version of C(T 11),

29If instead we have 1+h vertically aligned point in the 3d toric diagram, there will be h coincident D6-branes
in type IIA and hence a U(h) flavor group.
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we must identify resolution parameters on the M-Theory side, i.e. Kähler moduli v1, v2, with

“resolution parameters” on the quiver side, i.e. the FI ζ and the real mass m = m1 −m2 in

(4.4.19). We quickly remind that we are in the branch of the moduli space identified by (4.4.6)

where moreover σi = σ, bifundamental chiral fields are diagonalized and the quiver is one of

the Ñ copies of U(1)2. Since the theory is abelian, the F-term condition in (4.4.5) is trivial.

We report for clarity the D-term condition (4.4.19), namely

|A1|2 + |A2|2 − |B1|2 − |B2|2 = ζ(σ) (6.4.13)

where

ζ(σ) = ζ +
1

2
|σ|+ 1

2
|σ +m| =


ζ − 1

2
m− σ if σ ≤ −m

ζ + 1
2
m if −m ≤ σ ≤ 0

ζ + 1
2
m+ σ if σ ≥ 0.

(6.4.14)

This picture characterize the moduli space of the quiver.

On the M-Theory side we exploit the GLSM (6.4.1) but we also add a “new resolution

parameter” r0, or better a new FI parameter for the GLSM theory, namely

a1 a2 b1 b2 c1 c2 FI
U(1)I −1 −1 1 1 0 0 v1

U(1)II −1 −1 0 0 1 1 v2

U(1)M 0 1 0 0 0 −1 r0

(6.4.15)

where v1, v2 ≥ 0 and r0 ∈ R. The D-term equation for the GLSM (6.4.15) take the form

|b1|2 + |b2|2 − |a1|2 − |a2|2 = v1,

|c1|2 + |c2|2 − |a1|2 − |a2|2 = v2,

|a2|2 − |c2|2 = r0.

(6.4.16)

At this point we try to rearrange the gauge groups of the GLSM, i.e. U(1)I , U(1)II , U(1)M ,

and the FI of the GLSM, i.e. v1, v2, r0, in such a way that they somehow reproduce (6.4.14):

this procedure obviously depend on the range of v1, v2, r0.

• If r0 ≤ −v2 ≤ 0 we can reorganize (6.4.15) as follows

a1 a2 b1 b2 c1 c2 FI
U(1)I − U(1)II − U(1)M 0 −1 1 1 −1 0 v1 − v2 − r0

U(1)II + U(1)M −1 0 0 0 1 0 v2 + r0

U(1)M 0 1 0 0 0 −1 r0

(6.4.17)

Then (6.4.16) becomes

|b1|2 + |b2|2 − |a2|2 − |c1|2 = v1 − v2 − r0,

|c1|2 − |a1|2 = v2 + r0,

|a2|2 − |c2|2 = r0.

(6.4.18)
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Notice that since r0 ≤ 0 and v2 + r0 ≤ 0 we can eliminate the combinations

|a1|2 = |c1|2 − (v2 + r0) ≥ 0,

|c2|2 = |a2|2 − r0 ≥ 0,
(6.4.19)

which in turn are the uncharged fields under U(1)I − U(1)II − U(1)M . Then, upon the

identifications

A1 ↔ b1, A2 ↔ b2, B1 ↔ c1, B2 ↔ a2, (6.4.20)

the first equation in (6.4.18) is exactly (6.4.13) with

ζ(σ)↔ v1 − v2 − r0. (6.4.21)

• If −v2 ≤ r0 ≤ 0 we can reorganize (6.4.15) as follows

a1 a2 b1 b2 c1 c2 FI
U(1)I −1 −1 1 1 0 0 v1

U(1)II + U(1)M −1 0 0 0 1 0 v2 + r0

U(1)M 0 1 0 0 0 −1 r0

(6.4.22)

Then (6.4.16) becomes

|b1|2 + |b2|2 − |a2|2 − |a1|2 = v1,

|c1|2 − |a1|2 = v2 + r0,

|a2|2 − |c2|2 = r0.

(6.4.23)

Notice that since r0 ≤ 0 and v2 + r0 ≥ 0 we can eliminate the combinations

|c1|2 = |a1|2 + (v2 + r0) ≥ 0,

|c2|2 = |a2|2 − r0 ≥ 0,
(6.4.24)

which in turn are the uncharged fields under U(1)I . Then, upon the identifications

A1 ↔ b1, A2 ↔ b2, B1 ↔ a1, B2 ↔ a2, (6.4.25)

the first equation in (6.4.23) is exactly (6.4.13) with

ζ(σ)↔ v1. (6.4.26)

• If r0 ≥ 0 we can reorganize (6.4.15) as follows

a1 a2 b1 b2 c1 c2 FI
U(1)I + U(1)M −1 0 1 1 0 −1 v1 + r0

U(1)II + U(1)M −1 0 0 0 1 0 v2 + r0

U(1)M 0 1 0 0 0 −1 r0

(6.4.27)
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Then (6.4.16) becomes

|b1|2 + |b2|2 − |c2|2 − |a1|2 = v1 + r0,

|c1|2 − |a1|2 = v2 + r0,

|a2|2 − |c2|2 = r0.

(6.4.28)

Notice that since r0 ≥ 0 and v2 + r0 ≥ 0 we can eliminate the combinations

|c1|2 = |a1|2 + (v2 + r0) ≥ 0,

|a2|2 = |c2|2 + r0 ≥ 0,
(6.4.29)

which in turn are the uncharged fields under U(1)I + U(1)M . Then, upon the identifica-

tions

A1 ↔ b1, A2 ↔ b2, B1 ↔ a1, B2 ↔ c2, (6.4.30)

the first equation in (6.4.28) is exactly (6.4.13) with

ζ(σ)↔ v1 + r0. (6.4.31)

In the end we can compare (6.4.21), (6.4.26), (6.4.31) with (6.4.14)

ζ(σ) =


ζ − 1

2
m− σ if σ ≤ −m

ζ + 1
2
m if −m ≤ σ ≤ 0

ζ + 1
2
m+ σ if σ ≥ 0

↔ ζ(r0) =


v1 − v2 − r0 if r0 ≤ −v2

v1 if − v2 ≤ r0 ≤ 0

v1 + r0 if r0 ≥ 0

(6.4.32)

so that the quiver picture and the M-Theory picture coincide provided that we identify

r0 ↔ σ, v2 ↔ m, v1 ↔ ζ +
1

2
m. (6.4.33)

At this point, one can be upset because of the inclusion of a “new” FI parameter r0 for the

GLSM: it actually seems an unjustified artifact. However, if we eliminate r0 from (6.4.18),

(6.4.23), (6.4.28) we find the D-term equation (6.2.8) of the “original” GLSM for (6.2.4): so

the procedure is consistent.

6.4.2 Superconformal invariance

We know that the AdS4/CFT3 correspondence translates into the fact that the field theory

dual to M-Theory on the near-horizon background AdS4 × Q111 acquires the superconformal

symmetry. In other words, AdS4 × Q111 corresponds to the superconformal vacuum of the

N = 2 field theory, which is only one point in the moduli space: this is the IR fixed point

characterized by operators with exactly vanishing VEVs, i.e. 〈O〉 = 0. Now, different points in

the moduli space correspond to different vacua characterized by some non-vanishing VEV, i.e.

〈O〉 6= 0. So, our position on the moduli space is parametrized by the VEVs of some operators:
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these are actually the chiral moduli fields. When all these VEVs are zero the interpretation is

that every M2-brane is sitting on the tip of the singular cone in the M-Theory background: this

is exactly the vacuum preserving the full superconformal symmetry. If (some of) these chiral

operators acquire a VEV 〈O〉 6= 0 then the conformal symmetry is spontaneously broken by the

new scale. Recall that from the M-Theory point of view, these field theory vacua with 〈O〉 6= 0

should be in one-to-one correspondence with asymptotically AdS4×Q111 backgrounds, the latter

being related to either mobile M2-branes and resolutions. To be clearer, one should compare the

energy of a typical process in the SCFT with the scale of spontaneous symmetry breaking set by

these VEVs. At energies well above 〈O〉, i.e. the UV region, we expect a “pure” SCFT with the

full superconformal symmetry: this is because in the holographic description the background

is asymptotically AdS4 × Q111, i.e. it has a “restored” conformal invariance. On contrary, at

energies below 〈O〉 we expect a spontaneous symmetry breaking and, as a consequence, there

will be massive states in the theory with a mass of order 〈O〉. It is only at energies well below

〈O〉 that we can consistently exploit the HEFT Lagrangian: indeed, this effective theory can

be obtained by integrating out massive modes so that it describes massless fields only, i.e.

moduli. In other words, the dynamics of moduli can be encoded in the HEFT Lagrangian

only in the spontaneously broken phase, which is actually the low-energy region of a strongly

coupled SCFT. Thus, we expect that the superconformal symmetry is non-linearly realized

at this Lagrangian level: in general, it can be quite difficult to find out non-linear conformal

transformations. However, as showed for example in [41], three-dimensional nonlinear sigma

models with N = 2 supersymmetries characterized by a Kähler potential K are automatically

superconformal provided that ∆K = 1. We remind from the first chapter that this condition

is in fact equivalent to the scale invariance of the theory and hence this is a case where the

scale invariance is enhanced to the superconformal one. So, our strategy for the superconformal

check on (5.3.2) is to compute the scaling dimensions ∆ of the objects we are dealing with and

see if the condition

∆K = 1 (6.4.34)

is satisfied. Before starting to do so, remember that our Kähler potential K is defined in (5.3.1)

and depends on k0, whose expression is (6.3.31). So, our goal is to find ∆γ,∆b,∆c: they should

all be equal to one.

Recall that the fields populating the HEFT are the chiral coordinates {z}, parametrizing

the positions of M2-branes, and the Kähler moduli ρa, the latter related to va = b, c. In

the previous section we found that the chiral coordinates {z} could be expressed in terms of

chiral fields of the UV-quiver and monopole operators, for example we got Y = A2B2. So,

as a first step, we should compute the scaling dimensions of chiral fields in the UV-quiver,

together with monopoles. We begin from the superpotential (4.3.5) of the unflavored three-

dimensional quiver field theory. Since the Q111 quiver has an U(1)R symmetry, every term in

its action functional should be invariant under this R-symmetry: we are particularly interested
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in the superpotential term
∫

d3xd2θW . Recalling (1.2.20) we get Rd2θ = −2, while obviously

Rd3x = 0. Thus, in order for the superpotential action to be invariant under U(1)R it must

be RW = 2. Since we are dealing with a quartic superpotential, i.e. W ∼ Φ4, it is clear that

chiral fields Φ = A1, A2, B1, B2 must haveRΦ = 1
2

by symmetry. At this stage, theR-symmetry

argument in (1.4.23) ensure us that the scaling dimensions of our fields at the IR fixed-point, i.e.

where the quiver theory becomes a SCFT, are fixed by their charge under U(1)R: in particular

∆Φ = RΦ = 1
2
. For monopole operators the calculation is more subtle. Indeed, as stated in [6],

with the flavoring procedure monopole operators get a R-charge

R[T (n)] =
|n|
2

∑
a∈flavored

haR[Φa], (6.4.35)

which is quite similar to (4.4.27). Since n = ±1 and T (1) = T, T (−1) = T̃ , for the case of the

flavored Q111 quiver theory we have

RT = RT̃ =
1

2
h1RA1 +

1

2
h2RA2 =

1

4
+

1

4
=

1

2
, (6.4.36)

which is just the same of a UV chiral field. Then, since monopoles are actually chiral fields too,

they saturate (1.4.23) and hence ∆T = RT = 1
2
. We collect for clarity the scaling dimensions

for chiral fields of the UV-quiver, namely:

∆A1 = ∆A2 = ∆B1 = ∆B2 = ∆T = ∆T̃ =
1

2
. (6.4.37)

Now we can easily compute the scaling dimension of the chiral coordinates {z}. For instance,

∆Y = ∆A2 + ∆B2 = 2∆Φ = 1 and the same is true for the other fibral coordinates of (6.2.4),

namely ∆U = ∆V = ∆X = ∆Y = 1. On the other hand, the local coordinates on the CP at

the base of the bundle (6.2.4) have naturally ∆λ = 0.30 In the end, having the complete set of

scaling dimensions for {z}, namely

∆U = ∆V = ∆X = ∆Y = 1, ∆λ = 0, (6.4.38)

we can compute the scaling dimension for γ. Indeed, notice that according to (6.2.25), the

radial coordinate t has ∆t = 2∆U = 2∆Y = 2. Moreover, in the limit γ � b, c we found the

asymptotic behavior γ ∼ t
1
2 from (6.3.6) and hence ∆γ = 1

2
∆t = 1 as expected. From the

field theory point of view, we can also get quite easily the scaling dimensions for resolution

parameters. Indeed, since they are the scalar components of linear multiplets, i.e. Σa = va+ ...,

which in turn can be interpreted as topological conserved current multiplets, their scaling

30Even if we have not carried out the whole matching between {z} and (Φa, T, T̃ ), it seems that fibral
coordinates can be expressed as product of two chiral fields, like Y = A2B2, while the λs are quotients. For
instance, looking at (6.2.19) and (6.4.6) we can identify λb = B1B

−1
2 and λc = A1T̃

−1. So ∆λ = 1
2 −

1
2 = 0.

Finding ∆λ = 0 is quite appropriate because local coordinates for the CP at the base of (6.2.4) are “fixed” at
r = 0 and hence they do not scale at all.
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dimension is always equal to one31. Thus ∆b = ∆c = 1. Actually, one can avoid using the

asymptotic behavior γ ∼ t
1
2 : indeed, if we have ∆t = 2 from ∆{z} and ∆b = ∆c = 1 from the

consideration on conserved currents, we can obtain ∆γ = 1 from consistency with the complete

(6.3.6), i.e. not the asymptotic version γ ∼ t
1
2 . In the end we get

∆γ = ∆b = ∆c = 1. (6.4.39)

A complementary check on this calculation consists in considering the “holographic coordi-

nate” z = R2

r2
introduced to study the near-horizon geometry in (3.2.7) or alternatively to obtain

the asymptotically AdS4×Q111 metric in the large r region from (3.2.27) with h ∼ R6/r6. This

coordinate is what we called w in (1.5.11) and (1.5.13) and has the fundamental property that

a rescaling (xµ, z) → (Λxµ,Λz) leave the AdS4 metric ds2
AdS4

= R2

z2
(dz2 + dxµdxµ) invariant.

So ∆z = −1 and hence the radial coordinate r has scaling dimension ∆r = 1
2

as anticipated,

at least asymptotically where we can deal with an AdS factor. Since 2γ = r2, see for instance

(6.2.36), we also get ∆γ = 2∆r = 1 and from the asymptotic behavior γ ∼ t
1
2 we obtain ∆t = 2.

We claim that this asymptotic behaviors for scaling dimensions hold everywhere, even for finite

r, γ, t. Indeed, consistency with (6.3.6) fixes the scaling dimensions of Kähler parameters: since

we found ∆γ = 1 and ∆t = 2 then it must be ∆b = ∆c = 1. The agreement with their inter-

pretation as lowest components of linear multiplets Σa = va + ... , and hence with the scaling

dimensions obtained from the field theory calculation, suggests that our claim is quite sup-

ported. Moreover, using (6.2.25) we can obtain ∆U = ∆Y = 1 and ∆λ = 0 from ∆t = 2: even

if the latter is an asymptotic scaling dimension, the former hold everywhere since the scaling

dimensions of the complex coordinates {z} do not depend on any asymptotic behavior. Besides,

the fact that they are the same scaling dimensions obtained from the field theory strengthen our

claim. Actually, this claim seems to be supported by a further consideration. In the preceding

discussion we started in the large-r region and worked with γ � b, c in order to find scaling

dimensions that hold everywhere, i.e. the one of the chiral coordinates {z}. We remind that

in this limit we are comparing a “radial position” VEV γ for one of the Ñ M2-branes with

the resolutions VEV b, c: the interpretation is that the geometry “seen” by this brane is the

singular one and hence we are allowed to obtain the scaling dimensions of {z} from the asymp-

totic scaling dimensions of r, γ, t. However, in the opposite region γ � b, c it seems that this

reasoning collapses: the M2-brane “sees” the resolved geometry and hence the identifications

between coordinates may be questionable. Nevertheless, since we know that chiral coordinate

{z} have “asymptotic-independent” scaling dimensions, i.e. ∆U = ∆Y = ∆X = ∆V = 1 and

∆λ = 0, we can obtain ∆t = 2 “everywhere” from (6.2.25). Then, the scaling dimensions for

γ and b, c are fixed “everywhere”, both for γ � b, c and γ � b, c, from consistency with the

31It is a known result, see for example [13], that conserved currents do not renormalize. This means that their
anomalous dimension is zero and hence they have fixed scaling dimension equal to their canonical dimension,
i.e. ∆J = d − 1 for ∂µJ

µ = 0. Since d = 3 we easily get ∆J = 2. Then, looking at (1.3.4), it is clear that
∆θθ̄ = −1 and hence ∆Σ = 1 as well as its scalar component field.
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Ricci-flatness equation (6.3.6). Indeed, if ∆t = 2 it must be ∆γ = 1 and ∆b = ∆c = 1. So, if

we start from ∆{z} we find out that the asymptotic scaling dimensions hold everywhere32.

In the end, we can check if (5.3.2) is in fact invariant under the superconformal group.

Looking at (6.3.31) we find ∆k0 = 1 because ∆γ = ∆b = ∆c = 1. Then, from (5.3.1) we have

∆K = ∆k0 = 1 (6.4.40)

as we wanted: this concludes our series of consistency checks.

32As an aside, recall that the function F (t) in (6.2.22) can be expressed in the integral form F (t) =
∫ t

0
dt̃
t̃
γ(t̃).

When γ � b, c we found the asymptotic behavior F (t) ∼ r2 while for γ � b, c we got F (t) ∼ t√
bc

. In the former

case we have ∆F (t) = 2∆r = 1, which is the same of the latter because ∆F (t) = ∆t − 1
2 (∆b + ∆c) = 1. Since

γ = F ′t = dF
dt t, then ∆γ = ∆F (t) = 1 both for γ � b, c and for γ � b, c.
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Conclusions and closing remarks

In this thesis, following the holographic prescriptions proposed in [1, 2], we have successfully

identified the effective field theory describing the low-energy dynamics of a strongly coupled

three-dimensional SCFT with N = 2 supersymmetries at a vacuum in the moduli space that

spontaneously break the conformal symmetry. The SCFT under examination is the infrared

fixed point of a microscopic theory, the Q111 quiver model. This in turn is engineered by

placing a stack of coincident Ñ M2-branes on the tip of a Calabi-Yau cone C(Q111) over the

Sasaki-Einstein base Q111. We underline the fact that the Q111 quiver is maybe the simplest

model featuring flavor symmetries and real masses and it is nontrivial to check that it truly

corresponds to our holographic description. However, our results for this case of AdS4/CFT3

correspondence are quite supported by the consistency checks performed at moduli space level.

Indeed, both its complex structure and its Kähler structure, i.e. resolutions, are shown to

match on the two sides of the duality. The monopole method seems to shine for the former

check, while the semiclassical method is especially indicated for the latter. In particular, the

dimensional reduction from M-Theory to type IIA results in a dictionary between external

parameters in the quiver and Kähler parameters, i.e. (ζ,m)↔ (v1, v2).

We stress that the fundamental correspondence is between M-Theory on AdS4×Q111 and the

N = 2 three-dimensional SCFT: indeed, we found a correspondence between M-Theory vacua

admitting an AdS4 factor and field theory vacua of the dual SCFT. If the former is exactly

AdS4 × Q111, i.e. the near-horizon limit of the stack of M2-branes placed on the tip of the

singular cone C(Q111), then the corresponding field theory vacuum is the only one preserving

the full superconformal symmetry. On contrary, at a generic vacuum the conformal symmetry

is spontaneously broken. Indeed, in the M-Theory side one can “lose” the AdS4 structure,

which in turn is recovered at infinity provided that our M-Theory backgrounds are chosen

to be “asymptotically AdS4 × Q111”. Correspondingly, in the field theory side the conformal

symmetry is spontaneously broken by VEVs that clearly have an holographic interpretation:

resolutions and/or M2-branes motion. In these cases, the conformal group is restored at energies

well above the scale set by these VEVs: this statement is to some extent “dual” to the one

107
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about the recovering of the AdS4 structure at infinity.

We remind that our HEFT is trustable only at energies well below the scale set by these

VEVs, which in turn are interpreted as spontaneous symmetry breaking scales. So, the HEFT

describes the dynamics of a system where the conformal symmetry is spontaneously broken.

Indeed, it is still non-linearly realized and we found that the HEFT action is in fact supercon-

formal invariant as a further consistency check. We point out that the spontaneous breaking

of conformal symmetry is a topic not completely understood in general and so these HEFT

models could shed light on it. In particular, since conformal theories lack the usual concept of

particles, a phenomenological realistic theory should require at least some kind of spontaneous

breaking of the conformal symmetry.

Besides, recall that our HEFT is a two-derivative formulation: a possible direction of de-

velopment is to study higher-derivative operators in the holographic Lagrangian and their dual

interpretation. Moreover, we remark that our calculation required mutually non-coincident M2-

branes: if we start with Ñ branes and allow for their motion around the transverse manifold,

spontaneously breaking the dual conformal symmetry of the system, our HEFT corresponds

to Ñ “stacks” consisting of only one brane. One could ask what happens when two or more

M2-branes on C(Q111) coincide: we think that our HEFT breaks down. For instance, if we

place a stack of n M2-branes, with 1� n < Ñ , on a non-singular point and “zoom in”, then we

should find an AdS4 × S7 structure because the n M2-branes are sitting on a “smooth point”.

We mean that the neighborhood of the stack is mildly curved and hence we expect a dual sector

with some SCFT having N > 2 supersymmetries in three spacetime dimensions. Besides, it

could be interesting to investigate particular branches of the moduli space that we have not

treated.

Another very important condition for our holographic calculation is the “large-Ñ , large-

λ” limit, where λ is the ’t Hooft coupling constant. Roughly speaking, this means that we

should take a large number of branes, which in turn correspond to a large number of “colors”

in the dual field theory. We remind that in this limit the M-Theory is in fact a weakly-coupled

eleven-dimensional supergravity and hence our HEFT is actually a perturbative result. It is

worth mentioning that there exist different formulations of the AdS/CFT conjecture and that

the strongest one would like to work with generic values of Ñ and λ: this means that we are

out of the perturbative regime of supergravity and hence, as a possible development of this

work, one may explore if non-perturbative effects can emerge. Indeed, hypothetical matchings

regarding non-perturbative phenomena on the two sides of the duality are very important to

provide evidences on the strongest form of the conjecture.
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