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Introduction

A compact complex torus of dimension g is a complex Lie group isomorphic to V/Λ, where
V is a C-vector space of dimension g and Λ is a lattice in V .
Although all compact complex tori of dimension g are isomorphic in the category of real
differentiable manifolds (to the product (S1)2g), they can have non-isomorphic structures
of complex manifolds.
As common in algebraic geometry, it is possible to simplify the study of compact complex
tori using a categorical approach. One possibility is through a functor F : T → H yielding
an equivalence of categories between T , the category of compact complex tori of dimension
g, and H, the category of triples (Λ, V, γ), where Λ is a free Z-module of rank 2g, V is a
C-vector space of dimension g and γ : Λ → V is a lattice inclusion.
This is important for several reasons.
The first reason is that the treatment of compact complex tori under the categorical point
of view allows us to focus our attention more on the relations and morphisms between
them, rather then on the objects themselves.
The second reason is that an equivalence between T and H implies that the two categories
satisfy the same properties. So, in order to understand compact complex tori, it is enough
to understand H, that is an easier category to handle.

The aim of this thesis is to extend F to a functor FB : TB → HB yielding an equivalence
of categories between TB, the category of families of compact complex tori of dimension g
over a fixed complex manifold B, and HB, the category of triples (Λ, V, γ), where Λ is a
locally constant B-Lie group with structural group Z

2g, V is a holomorphic vector bundle
of rank g over B and γ : Λ → V is a morphism of B-Lie groups, such that it yields a lattice
inclusion fiberwise. If B is just a point, the categories TB and HB coincide with T and H.

In Chapter 1 we study compact complex tori and define F , as particular case of the more
general theory. We begin by defining and proving some properties of lattices and complex
Lie groups, then we deal with de Rham Theorem and Hodge decomposition in degree 1
for compact complex tori.

In Chapter 2 and Chapter 3 the goal is to present prerequisities for Chapter 4. More
precisely:

in Chapter 2 we begin by stating Ehresmann theorem, then we apply it to families of
compact complex manifolds;
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in Chapter 3, given a fixed complex manifolds B, we define B-Lie groups and discuss the
link between holomophic vector bundles over B and locally free OB-modules of finite rank.

In Chapter 4 we generalize the results of Chapter 1 to families of compact complex tori.
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Chapter 1

Compact complex tori

We begin this chapter by defining lattices and stating a characterization of them.
Then, we define complex Lie groups and show how to define a complex manifold’s structure
on a quotient by a discrete group’s action. In particular, we will study the quotient V/Λ,
where V is a finite dimensional C-vector space and Λ ⊂ V a lattice, acting on V by
translation.
We deal with cohomology, in order to prove de Rham Theorem and Hodge decomposition
in degree 1 for compact complex tori.
Finally, we define the functor F : T → H and prove it yields an equivalence of categories.

1.1 Lattices

Definition 1.1.1. A subgroup Λ of a finite dimensional real vector space V is a lattice if
it is discrete and cocompact in V .

Proposition 1.1.1. A subgroup Λ of a finite dimensional real vector space V is a lattice
if and only if Λ is a finitely generated abelian group such that every Z-basis λ1, . . . , λn of
Λ is an R-basis of V .
In particular, if Λ is a lattice in V , then V/Λ is diffeomorphic to the real n-torus R

n/Zn.

Proof. Let Λ be a subgroup of a finite dimensional real vector space V , with dimRV =
n. Since V is a free abelian group, Λ is free and abelian too. Since there is a linear
isomorphism V ∼= R

n, we can suppose Λ ⊆ R
n.

Suppose that every Z-basis λ1, . . . , λn of Λ is an R-basis of Rn. Then, we prove that Λ is
a lattice.
In fact, let λ1, . . . , λn be a basis of Λ and f : Rn → R

n be the linear isomorphism defined
by f(ei) = λi, for i = 1, . . . , n, where e1, . . . , en denotes the canonical basis of Rn. Then,
f induces a commutative diagram of abelian groups

0 Z
n

R
n

0 Λ R
n

f|Zn∼ f∼

8



with exact rows, where the arrows Λ → R
n and Z

n → R
n are the inclusions, f|Zn is

the restriction of f to Z
n. By commutativity, the diagram induces an isomorphism

f : Rn/Zn → R
n/Λ at the level of Cokernels. At the level of topological spaces, f is

an homeomorphism, so that f|Zn and f are homeomorphisms too. Then, Λ ⊆ R
n is a

lattice because it is discrete, since Z
n is discrete, and R

n/Λ is compact, since R
n/Zn is

compact.
To conclude, we prove compactness of Rn/Zn. Since [0, 1]n ⊂ R

n is compact and a funda-
mental set for Zn, Rn/Zn is compact too.
Conversely, suppose that Λ is a lattice. Then, we prove that every Z-basis λ1, . . . , λn of Λ
is an R-basis of Rn.
This is due to the following theorem:

Theorem 1.1.1. Let Λ ⊆ R
n be a discrete subgroup of Rn. Then, there exist λ1, . . . , λm ∈

Λ linearly independent over R (so that m ≤ n) such that

Λ =
m
⊕

i=1

Zλi.

Moreover, Λ is cocompact if and only if n = m.

Proof. Let Λ ⊆ R
n be a discrete subgroup. If V = Λ⊗Z R ⊆ R

n, then

R
n/Λ ∼= V/Λ⊕ R

n/V. (1.1)

Once the first statement of the theorem is proved, in order to prove the latter one we
fix λ1, . . . , λm generators of Λ linearly independent over R, so that V = ⊕m

i=1Rλi. Then,
V/Λ ∼= R

m/Zm is compact and R
n/V is an R-vector space of dimension n−m. By (1) we

conclude that Λ is cocompact if and only if n = m.
By (1.1), we can assume that V = R

n. Let Λ
′
⊆ Λ be the discrete subgroup generated

by a basis of Rn composed with elements of Λ. By definition Λ
′ ∼= Z

n. Let us prove that
Λ/Λ′ is finite, so that Λ ∼= Z

n and, as subgroup of Rn, it is necessarely generated by a
R-basis of Rn.
To conclude, let F ⊂ R

n be a compact subset and a fundamental set for Λ
′
. Note that

F exists since [0, 1]n satisfies these properties for Z
n. Then, S = F ∩ Λ is compact (it is

finite) and surjects continuously in Λ/Λ
′
. So, Λ/Λ

′
is finite because it is discrete (quotient

of a discrete set) and compact (image under a continuous map of a compact set).

Finally we deduce that the previous homeomorphism f : Rn/Λ → R
n/Zn is a diffeo-

morphism.
We fix x ∈ R

n/Λ, a local chart (U, φ) of Rn/Λ, with x ∈ U , and a local chart (V, ψ) of
R
n/Zn, with f(x) ∈ V and ψ(f(x)) = f(φ(x)), where f is the homeomorphism defined

before. Computations show that the differential D(ψ ◦ f ◦ φ−1)(φ(x)) = A, where A is
the matrix associated to f . Then, f is a diffeomorphism because A ∈ GLn(R) and all the
transition maps of the atlas of Rn/Λ and R

n/Zn are C∞-maps.
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1.2 Complex Lie groups

Definition 1.2.1. Let G be a group and a complex manifold at the same time. Then G
is called a complex Lie group if the map G×G→ G, (x, y) 7→ x · y−1 is holomorphic.

Definition 1.2.2. Let G and H be complex Lie groups. A morphism of complex Lie groups
from G to H is a map f : G→ H such that f is holomorphic and a group homomorphism.

1.2.1 Quotients by a discrete group

Let X be a topological space and let G be a group that acts continuously on X, i.e. there
exists an action G × X → X such that, for any g ∈ G, the induced map g : X → X is
continuous.
We will denote this action by g · x, for all g ∈ G, x ∈ X.
The quotient space (or orbit space) X/G is endowed with a topology such that the pro-
jection map X → X/G is continuous, by saying that V ⊂ X/G is open if and only if
π−1(V ) ⊂ X is open.

Definition 1.2.3. Consider the following two properties:

i. for all x ∈ X, there exists an open neighborhood Ω of x in X such that g ·Ω∩Ω = ∅,
for all 1G 6= g ∈ G;

ii. for all (x, x
′
) ∈ X ×X, x

′
/∈ G · x, there are open neighborhoods Ω and Ω

′
of x and

x
′
, respectively, such that g · Ω ∩ Ω

′
= ∅, for all g ∈ G.

The action of G on X is free and discontinuous (resp. free and properly discontinuous) if
it satisfies i. (resp. i. and ii.).

Definition 1.2.4. Let X be a complex manifold and G be a complex Lie group. The action
of G is holomorphic if the map G×X → X is holomorphic.

In particular, if the action of a complex Lie group G on a complex manifold X is
holomorphic, then, for all g ∈ G, the induced map g : X → X is biholomorphic.
In order to prove this, fix g ∈ G. Then, the induced map g : X → X is holomorphic.
This is a biholomorphism since the map induced by g−1 : X → X is the inverse of the map
induced by g.

Proposition 1.2.1. Let X be a complex manifold and G be a discrete group, whose
action on X is holomorphic, free and properly discontinuous. Then, the quotient X/G is
a complex manifold in a natural way and the quotient map π : X → X/G is holomorphic.

Proof. By covering space theory [1, 164-166], X/G is Hausdorff and π : X → X/G is a
covering map. Then, there exists an open covering X =

⋃

Ui by charts (Ui, φi) such
that g · Ui ∩ Ui = ∅, for all 1G 6= g ∈ G. Hence, the restriction π|Ui

: Ui → π(Ui), of
π to Ui, is bijective and π(Ui) is open in X/G, since π−1(π(Ui)) =

⊔

g∈G g · Ui (where
⊔

denotes that the union is disjoint). Thus, holomorphic charts for the quotients are
given by (π(Ui), ψi := φi ◦ (π|π(Ui))

−1). Indeed, for i, j the transitions functions ψij :=

ψi ◦ ψ
−1
j : ψj(Ui ∩ Uj) → ψi(Ui ∩ Uj) are holomorphic. In fact, if i and j are such that
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π(Ui)∩ π(Uj) 6= ∅, there exist Vi ⊆ Ui and Vj ⊆ Uj such that π(Vi) = π(Vj), so that there
exists g ∈ G such that g · Vj = Vi. Then, we have a diagram

π(Ui) ∩ π(Uj)

Vj Vi

φj(Vj) φi(Vi)

'

π−1
|π(Uj)

'

(π|π(Ui)
)−1

'
g

'φj ' φi

in which the triangle commutes. Hence, ψij is holomorphic since it is equal to φi ◦ g ◦φ
−1
j .

Finally, we show that π : X → X/G is holomorphic.
We fix x ∈ X, a local chart (Ui, φi) of X, with x ∈ Ui, and (π(Ui), ψi) as local chart of
π(x) ∈ X/G. Then, ψi ◦ π ◦φ

−1
i = φi ◦ (π|π(Ui))

−1 ◦ π ◦φ−1
i = Idφi(Ui). Since ψi ◦ π ◦φ

−1
i is

holomorphic and all the transition maps of the atlas of X and X/G are holomorphic, we
conclude that π : X → X/G is holomorphic.

1.2.2 Example

Let V be a complex vector space of finite dimension and Λ ⊂ V be a lattice, acting on V
by translation. Then, the quotient V/Λ is a complex Lie group. In fact:

i. V/Λ is a complex manifold.
In fact, Λ is discrete and its action on V is free and properly discontinuous. Then,
by Proposition 1.2.1, V/Λ is a complex manifold.

ii. V/Λ is a complex Lie group.
Let m : V ×V → V be the map on V defined by (x, y) 7→ x−y, for all x, y ∈ V . This
is holomorphic because V is a Lie group, since if we fix coordinates of V the map
m is defined on C

n, for n = dimCV , which is a complex Lie group. The composite
π ◦m is constant on each fiber of the projection h : V × V → V/Λ× V/Λ, because π
is a group homomorphism. Then, there exists a unique continuous map m making
the following diagram

V × V V V/Λ

V/Λ× V/Λ

m

h

π

m

commutative.
Finally, we prove that m is holomorphic.
As in the proof of Proposition 1.2.1, fix an open covering V =

⋃

Ui by charts (Ui, φi)
such that {(π(Ui), ψi)}i is an atlas of V/Λ, with ψi := φi ◦ (π|π(Ui))

−1 for all i. In
particular, {(Ui×Uj , φi×φj)}i,j is an atlas of V ×V and {(π(Ui)×π(Uj), ψi×ψj)}i,j
is an atlas of V/Λ× V/Λ.
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Fix π(x), π(y) ∈ V/Λ, local charts (π(Ui), ψi) and (π(Uj), ψj) of V/Λ, with x ∈
Ui, y ∈ Uj , and (π(Uk), ψk) as local chart of π(x − y) ∈ V/Λ, with x − y ∈ Uk.
Then, ψk ◦m ◦ (ψ−1

i × ψ−1
j ) = φk ◦m ◦ (φ−1

i × φ−1
j ) is holomorphic. Since all the

transition maps of the atlas of V/Λ × V/Λ and V/Λ are holomorphic, we conclude
that m : V/Λ× V/Λ → V/Λ is holomorphic.

Lemma 1.2.1. Let V and V
′
be two C-vector spaces of finite dimension, Λ ⊂ V and

Λ
′
⊂ V

′
be two lattices, f : V/Λ → V

′
/Λ

′
be a holomorphic map such that f(0) = 0.

Then f is a morphism of complex Lie groups. Moreover, there exists a unique C-linear
map F : V → V

′
with F (Λ) ⊆ Λ

′
inducing f .

Proof. Note that (V, 0) → (V/Λ, 0) is a pointed universal covering of V/Λ. Covering space
theory [1, 158-161] implies that there exists a unique continuous map F : (V, 0) → (V

′
, 0)

making the following diagram

(V, 0) (V
′
, 0)

(V/Λ, 0) (V
′
/Λ

′
, 0)

F

π π
′

f

commutative, where π and π
′
are the canonical projections. It is holomorphic. In fact,

locally π
′
is a biholomorphism (since it is a covering map), thus, locally, F is given by

the composition (π
′

|)
−1 ◦ f| ◦ π|, which is holomorphic since composition of holomorphic

functions (here π
′

| , f|, π| denote the restrictions of π
′
, f , π to good open subsets).

Commutativity of the diagram implies that

f(v + Λ) = F (v) + Λ
′
, ∀ v ∈ V.

The result will follow if we show that F is C-linear. For all λ ∈ Λ, define

Fλ : V → V
′

by
v 7→ Fλ := F (v + λ)− F (v), ∀ v ∈ V.

We note that Fλ is continuous, since F is continuous, and that its image is contained in Λ
′
,

by commutativity of the previous diagram. Since V is connected, Fλ has to be constant.
We compute the constant in v = 0:

Fλ(0) = F (λ) + F (0) = F (λ).

Thus, for all v ∈ V , λ ∈ Λ, F (v + λ) = F (v) + F (λ). This implies that the derivatives of
F are periodic, hence constant by Liouville’s Theorem [2, 4], so that F is C-linear.

Let X = V/Λ, X
′
= V

′
/Λ

′
.

Denote by Hom(X,X
′
) the set of morphisms of complex Lie group from X to X

′
. We

endow Hom(X,X
′
) with a structure of abelian group (Hom(X,X

′
),+) by defining

(f + g)(x) = f(x) + g(x), for all x ∈ X

12



for all f , g ∈ Hom(X,X
′
).

Let HomC(V, V
′
) be the C-vector space of C-linear morphisms from V to V

′
and HomZ(Λ,Λ

′
)

be the abelian group of Z-linear morphisms from Λ to Λ
′
.

We define ρa the analytic representation of Hom(X,X
′
)

ρa : Hom(X,X
′
) → HomC(V, V

′
)

by sending
f 7→ F.

This is well defined by Lemma 1.2.1.
The uniqueness part of the Lemma implies that it is injective and a group homomorphism.
We define ρr the rational representation of Hom(X,X

′
)

ρr : Hom(X,X
′
) → HomZ(Λ,Λ

′
)

by sending
f 7→ F|Λ.

By Lemma 1.2.1, F (Λ) ⊆ Λ
′
and F is C-linear, thus the restriction is well defined and is

Z-linear.
This is a group homomorphism since ρa is a group homomorphism and we have

ρr(f + g) = ρa(f + g)|Λ = (ρa(f) + ρa(g))|Λ = ρa(f)|Λ + ρa(g)|Λ = ρr(f) + ρr(g)

for f and g ∈ Hom(X,X
′
).

It is injective because if f and g ∈ Hom(X,X
′
) are such that ρr(f) = ρr(g), then

ρa(f)|Λ = ρa(g)Λ ⇒ ρa(f) = ρa(g) ⇒ f = g.

The first arrow follows from the fact that ρa(f) is uniquely determined by the image of Λ,
because Λ generates V as R-vector space and ρa(f) is R-linear, since it is C-linear. The
second arrow follows from injectivity of ρa.

1.2.3 Compact complex tori

Definition 1.2.5. A compact complex torus of dimension g is a complex Lie group iso-
morphic to V/Λ, where V is a C-vector space of dimension g and Λ is a lattice in V .

By Lemma 1.2.1 it follows that if φ : X → X
′
is a holomorphic map between complex

tori such that φ(0X) = 0X′ , then it is a morphism of complex Lie groups.

Proposition 1.2.2. If X is a compact complex torus of dimension g, then

Z
2g ∼= π1(X, ∗) H1(X;Z).'

Proof. By Proposition 1.1.1 it follows that, as differentiable manifolds,

X ∼= R
n/Zn ∼= (R/Z)n ∼= (S1)2g

13



so that
π1(X, ∗) ∼= π1((S

1)2g, ∗) ∼= π1(S
1, ∗)2g ∼= Z

2g.

By Hurewicz theorem [4, 80-84]

π1(X, ∗)
ab H1(X;Z)' .

Since π1(X, ∗) is abelian, π1(X, ∗)
ab = π1(X, ∗) and, then, we obtain the conclusion.

Let X be a compact complex torus.
We want to compute generators of H1(X;Z) and then, by tensoring with −⊗Z R, also of
H1(X;R) = H1(X;Z)⊗Z R.

We fix a diffeomorphism φ : X (S1)2g'' , so that it induces a group isomomorphism

f∗ : H1(X;Z) H1((S
1)2g;Z)' . Thus, it is enough to compute generators of H1((S

1)2g;Z).
For 1 ≤ i ≤ 2g, let pi : (S

1)2g → S
1 be the projection to the i-th component of the direct

product. By homotopy theory [3, 76-77], we have the isomorphism

π1((S
1)2g, ∗) π1(S

1, ∗)2g'

induced by the projections {pi}1≤i≤2g. Combining this with Hurewicz’s map, we obtain

H1((S
1)2g;Z) H1(S

1;Z)2g'

(pi∗ )i

where, for all 1 ≤ i ≤ 2g, pi∗ is the map induced by pi at the level of homologies.
Then, fixed α : [0, 1] → S

1 a path such that [α] generates H1(S
1;Z), the paths

αi : [0, 1] → (S1)2g, i = 1, . . . , 2g

defined by
(pj ◦ αi)(t) = δi,jα(t), for all 1 ≤ i, j ≤ 2g

are such that their equivalence classes [α1], . . . , [α2g] generate H1((S
1)2g;Z).

Definition 1.2.6. A framed compact complex torus is (X,φ), where X is a compact

complex torus and φ is an isomorphism φ : H1(X;Z) Z
2g' .

1.3 De Rham Theorem

1.3.1 Smooth singular homology

Let X be a differentiable manifold and A be a commutative ring. Let S∗ denote the
singular chain complex of X with coefficients A

. . . Sp+1 Sp Sp−1 . . . .
δp+1 δp

14



For p ∈ N, let Ssmoothp be the free group over A generated by the simplexes σ : ∆p → X,
such that there exists an open neighborhood U ⊆ R

p of ∆p such that σ is the the restriction

of a smooth function σ̃ : U → X. Denote by Ssmooth
∗ the chain complex

. . . Ssmoothp+1 Ssmoothp Ssmoothp−1 . . . .
δsp+1 δsp

where the maps δsp are given by the restriction of δp, for all p ∈ N. The natural inclusion

Ssmoothp (X) Sp(X), for all p ∈ N, induces a diagram

. . . Ssmoothp+1 Ssmoothp Ssmoothp−1 . . .

. . . Sp+1 Sp Sp−1 . . .

δsp+1 δsp

δp+1 δp

in which every square commutes. Then, by [5, 291] the chain map

Ssmooth∗ (X) S∗(X)

given by the inclusion, induces an isomorphism of A-modules

Hsmooth
∗ (X;A) H∗(X;A).'

1.3.2 De Rham pairing

Let X be a differentiable manifold.
We define a map

H1(X;R)smooth ×H1
dR(X;R) → R

by

([σ], [ω]) 7→

∫

σ
ω

for all [ω] ∈ H1
dR(X;R) and [σ] ∈ H1(X;R)smooth.

This map is well-defined. In fact, for [σ] ∈ H1(X;R)smooth and [ω] ∈ H1
dR(X;R), the

integral does not depend on the representatives of [σ] and [ω]:
if we choose σ + δσ1 as representative of [σ], then

∫

σ+δσ1

ω =

∫

σ
ω +

∫

δσ1

ω =

∫

σ
ω +

∫

σ1

dω =

∫

σ
ω

because
∫

δσ1
ω =

∫

σ1
dω, by Stokes’ Theorem [6, 67-269], and

∫

σ1
dω = 0, since ω is closed.

If we choose ω + dω1 as representative of [ω], then
∫

σ
ω + dω1 =

∫

σ
ω +

∫

σ
ω1 =

∫

σ
ω +

∫

δσ
ω1 =

∫

σ
ω

because
∫

σ dω1 =
∫

δσ ω1, by Stokes, and
∫

δσ ω1 = 0, since σ is closed.
Since this map is bilinear, this yields an R-linear map

H1(X;R)smooth ⊗R H
1
dR(X;R) → R.
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Remark 1.3.1. It is important to notice that the isomorphism

ι : H1(X;R)smooth H1(X;R)'

allows us to define integrals of elements [ω] ∈ H1
dR(X;R) along [γ] ∈ H1(X;R) by

∫

γ
ω :=

∫

σ
ω

where ι([γ]) = [σ]. We will always use this convention.

Then we define the bilinear map

Ψ: H1(X;R)⊗R H
1
dR(X;R) → R

by

([σ], [ω]) 7→

∫

σ
ω

for all [ω] ∈ H1
dR(X;R) and [σ] ∈ H1(X;R).

In particular, Ψ induces the R-linear maps

Ψ1 : H1(X;R) → H1
dR(X;R)∨ := HomR(H

1
dR(X;R),R)

defined by

[σ] 7→

∫

σ
for all [σ] ∈ H1(X;R)

and
Ψ2 : H

1
dR(X;R) → H1(X;R) = HomR(H1(X;R),R)

defined by

[ω] 7→

∫

ω for all [ω] ∈ H1
dR(X;R).

1.3.3 Invariant forms

Let X be a differentiable manifolds.

Definition 1.3.1. The translation by an element x0 ∈ X is defined to be the holomorphic
map tx0 : X → X, x 7→ x+ x0.

Let A1(X) be the sheaf of 1-forms on X (see Def. [7, 282])

Definition 1.3.2. We define the R-subvector space over of the invariant forms of A1(X)
as

IF (X) := {ω ∈ A1(X) : t∗xω = ω ∀ x ∈ V }

where t∗xω is the pull back of ω under tx, the translation by x.

Proposition 1.3.1. If X is a differentiable manifold, then the R-vector spaces IF (X)
and HomR(T0X,R) are isomorphic, where T0X is the tangent space at the point 0 ∈ X .
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Proof. Since every element of IF (X) is uniquely determined by its value at the point
0 ∈ X, the evaluation at 0

ev0 : IF (X) → HomR(T0X,R)

defined by
ω 7→ ω(0)

for all ω ∈ IF (V ), defines an isomorphism of R-vector spaces

IF (X) HomR(T0X,R).
'

Proposition 1.3.2. Let V be a C-vector space of dimension g, Λ ⊂ V be a lattice in V
and π : V → V/Λ be the canonical projection. Then, the pull back map

π∗ : IF (V/Λ) → IF (V )

induced by π, is an isomorphism of R-vector spaces.

Proof. Since V is an R-vector space of dimension 2g, we have a canonical isomorphism
T0V ∼= R

2g, so that
HomR(T0V,R) ∼= HomR(R

2g,R) ∼= R
2g.

Thus, IF (V ) ∼= R
2g. If we fix coordinates x1, . . . , x2g of V , dx1, . . . , dx2g are 2g linearly

independent one-forms over R and invariant by translations, so that they generate IF (V )
over R.
To conclude, consider π∗ : IF (V/Λ) → IF (V ). It is R-linear and injective, because if ω1

and ω2 ∈ IF (V/Λ) are such that π∗(ω1) = π∗(ω2), then

ω1(π(0)) = ev0(π
∗(ω1)) = ev0(π

∗(ω2)) = ω2(π(0))

so that ω1 = ω2.
It is also surjective because the dxi’s define one-forms on V/Λ (which we will still denote
by dxi) satisfying π

∗(dxi) = dxi, for all i = 1, . . . , 2g.
Thus π∗ is an isomorphism. In particular, dx1, . . . , dx2g form a basis of IF (V/Λ) over
R.

Proposition 1.3.3. Let X be a compact complex torus of dimension g. Then, there exists
an isomorphism of R-vector spaces

IF (X) H1(X;R).'

Fixed real coordinates of X, it is defined by sending dxi to Ψ2([dxi]), for i = 1, . . . , 2g.

Proof. Since the statement involves only the differential point of view, we can suppose
that X = (S1)2g. In particular, using the same notations of previous sections, we know
that

H1(X;R) =< [α1], . . . , [α2g] >R .

17



Fix real coordinates x1, . . . , x2g of V . Since the dxi’s are closed one-forms, there exists an
R-linear map

φ : IF (X) → H1
dR(X;R)

defined on the basis by sending dxi to its equivalence class [dxi] in H1
dR(X;R), for all

i = 1, . . . , 2g.
Then, we compose φ with the R-linear map induced by Ψ

Ψ2 : H
1
dR(X;R) → H1(X;R).

Since
∫

αi
dxj = δij , for 1 ≤ i, j ≤ 2g, we conclude that the composition

IF (X) H1
dR(X;R) H1(X;R)

φ

is an isomorphism.

1.3.4 De Rham Theorem

Note that in the proof of Proposition 1.4.1, we proved that

Ψ2 : H
1
dR(X;R) → H1(X;R)

defined by sending [ω] ∈ H1
dR(X;R) to

∫

ω ∈ H1(X;R), is surjective.

Theorem 1.3.1 (de Rham Theorem in degree 1 for compact complex tori). If X is a
compact complex torus, the R-linear map

Ψ2 : H
1
dR(X;R) → H1(X;R)

is an isomorphism.

Proof. We need only to check the injectivity.
Let [ω] ∈ KerΨ2. Then

∫

γ ω = 0 for all [γ] ∈ H1(X;R).
Fix x0 ∈ X and define a map

F : X → R

by

F (x) =

∫ x

x0

ω, for all x ∈ X

where the integral is over any path from x0 to x.
The function F is well defined. In fact, let γ1 and γ2 be two paths from x0 to x1. Let γ2
be the inverse path of γ2. Then

∫

γ1

ω =

∫

γ1

ω +

∫

γ2γ2

ω =

∫

γ1γ2

ω +

∫

γ2

ω =

∫

γ2

ω

since the concatenation γ1γ2 is a closed path.
By elementary calculus, F is smooth and its derivative is ω, so that [ω] = [dF ] = 0 ∈
H1
dR(X;R).

18



If we repeat the same construction over C, we can define a C-linear map

ΨC : H1(X;C)⊗C H
1
dR(X;C) → C

defined by

([σ], [ω]) 7→

∫

σ
ω

for all [ω] ∈ H1
dR(X;C) and [σ] ∈ H1(X;C), obtaining the following Theorem:

Theorem 1.3.2 (de Rham Theorem: complex case). If X is a compact comples torus,
ΨC is an isomorphism.

Proof. Same as the real case.

Thus, if X is a compact complex torus, by de Rham Theorem the C-linear maps
induced by Ψ

Ψ1,C : H1(X;C) → H1
dR(X;C)∨ := HomC(H

1
dR(X;C),C)

defined by

[σ] 7→

∫

σ
for all [σ] ∈ H1(X;C)

and
Ψ2,C : H

1
dR(X;C) → HomC(H1(X;C),C) = H1(X;C)

defined by

[ω] 7→

∫

ω for all [ω] ∈ H1
dR(X;C)

are isomorphisms.

1.3.5 Hodge decomposition

Let V be a C-vector space of of dimension g and Λ ⊂ V be a lattice in V . Fix x1, . . . , x2g
real coordinates of V .
Consider the isomorphism

ev0 : IF (V ) HomR(T0V,R)
'

given by the evaluation at 0 ∈ V and the composite

IF (V/Λ) H1
dR(V/Λ;R) H1(V/Λ;R)

φ

'

Ψ2

where φ is the R-linear map

φ : IF (V/Λ) → H1
dR(V/Λ;R)
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defined on the basis by sending dxi to its equivalence class [dxi] in H
1
dR(V/Λ;R), for all

i = 1, . . . , 2g, and

H1
dR(V/Λ;R) H1(V/Λ;R)

Ψ2

'

is the isomorphism of de Rham Theorem. Define

Φ := φ ◦ π−1
∗ ◦ ev−1

0 : HomR(T0V,R) H1
dR(V/Λ;R) .

Proposition 1.3.4. The morphism Φ: HomR(T0V,R) H1
dR(V/Λ;R) is an isomor-

phism.

Proof. We proved that ev0 and π∗ are isomorphisms. In order to conclude we have to
prove that also φ is an isomorphism. This follows from the fact that Ψ2 ◦ φ and Ψ2 are
isomorphisms.

Fix z1, . . . , zg complex coordinates of V .

Proposition 1.3.5. Let Ω1
V/Λ be the sheaf of holomorphic one-forms on V/Λ. Then

H0(V/Λ,Ω1
V/Λ) =< dz1, . . . , dzg >C

Proof. The one-forms dzj ’s are holomorphic, then < dz1, . . . , dzg >C⊆ H0(V/Λ,Ω1
V/Λ).

Conversely, if ω ∈ H0(V/Λ,Ω1
V/Λ), then

ω = f1dz1 + · · ·+ fgdzg

with f1, . . . , fg ∈ OV/Λ(V/Λ). Since V/Λ is compact, OV/Λ(V/Λ) = C, so that

H0(V/Λ,Ω1
V/Λ) ⊆< dz1, . . . , dzg >C .

If we tensor with C the isomorphism Φ, we obtain an isomorphism

ΦC : HomR(T0V,C) H1
dR(X;C).'

Since dz1, . . . , dzg are C-linearly independent elements of HomR(T0V,C), their images
ΦC(dz1) = [dz1], . . . ,ΦC(dzg) = [dzg] are linearly independent elements of H1

dR(X;C).

We define a C-linear map

H0(V/Λ,Ω1
V/Λ) → H1

dR(V/Λ;C)

on generators, by sending

dzi 7→ [dzi] for all 1 ≤ i ≤ g.

Since [dz1], . . . , [dzg] are linearly-independent over C, this map is injective. We will denote
its image by H0(V/Λ,Ω1

V/Λ).
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Theorem 1.3.3 (Hodge decomposition in degree 1 for compact complex tori). Let X be
a compact complex torus of dimension g. Then

H1
dR(X;C) = H0(X,Ω1

X)⊕H0(X,Ω1
X)

where H0(X,Ω1
X) denotes the complex conjugate of H0(X,Ω1

X).

Proof. Since H1
dR(X;C) depends, modulo isomorphism, only on the differentiable struc-

ture of X, and since H0(X,Ω1
X) and H0(X,Ω1

X) depend, modulo isomorphism, only on
the complex one, we can suppose that X = V/Λ, with V a C-vector space of dimension g
and Λ a lattice in V .
Fix z1, . . . , zg complex coordinates of V . The restriction Φ| of Φ to the subset

HomC(T0V,C) =< dz1, . . . , dzg >C⊂ HomR(T0V,C)

yields an isomorphism

Φ| : HomC(T0V,C) H0(X,Ω1
X).

'

The decomposition HomR(T0V,C) = HomC(T0V,C)⊕HomC(T0V,C), where HomC(T0V,C)
denotes the complex conjugate of HomC(T0V,C) yields the Hodge decomposition in degree
1

H1
dR(X;C) = H0(X,Ω1

X)⊕H0(X,Ω1
X).

By taking the duals in the Hodge decomposition we obtain:

Corollary 1.3.1 (Dual Hodge decomposition in degree 1 for compact complex tori). Let
X be a compact complex torus of dimension g. Then

H1
dR(X;C)∨ = H0(X,Ω1

X)
∨ ⊕H0(X,Ω1

X)
∨
.

1.4 Equivalence of categories for compact complex tori

Lemma 1.4.1. Let A and B be two commutative rings, φ : A → B be a ring homo-
morphism. Then, for all M ∈ A − Mod and N ∈ B − Mod, we have a natural group
isomorphism

HomB(M ⊗A B,N) ∼= HomA(M,N|A)

where N|A is N with the structure of A-module induced by φ.

Let T be the category whose objects are compact complex tori of dimension g and
the morphisms φ : X → X

′
are morphisms of complex Lie groups.

Let H be the category whose objects are the triple (Λ, V, γ), where Λ is a free Z-module of
rank 2g, V is a C-vector space of dimension g and γ : Λ → V is a morphism of Z-modules
with the property that

γR : Λ⊗Z R → VR
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which is the morphism obtained by γ using Lemma 1.4.1, is an isomorphism of R-vector
spaces (VR is just V viewed as an R-vector space), and a morphism

φ : (Λ, V, γ) → (Λ
′
, V , γ

′
)

is given by a couple (φ1, φ2), where φ1 : Λ → Λ
′
is a morphism of Z-modules and φ2 : V →

V
′
is a morphism of C-vector spaces, such that they make the following diagram

Λ V

Λ
′

V
′

γ

φ1 φ2

γ
′

commutative.

Proposition 1.4.1. Let Λ be a free Z-module of rank 2g, V be a C-vector space of di-
mension g and γ : Λ → V be a morphism of Z-modules.
Then, γR : Λ⊗Z R → VR is an isomorphism of R-vector spaces if and only if denoted by

γC : Λ⊗Z C → V,

the natural morphism obtained by γ using Lemma 3.1, the following decomposition holds:

Λ⊗Z C = KerγC ⊕KerγC

where KerγC denotes the complex conjugate of KerγC.
Equivalently, upon choosing bases Λ ∼= Z

2g and V ∼= C
g to identify j with a g × 2g matrix

(AB) for A,B ∈ Matg×g(C), the necessary and sufficient condition is that the matrix

(

A B

A B

)

∈ Mat2g×2g(C)

is invertible.

Proof. We note that we can factorize γC as

Λ⊗Z C V ⊕ V

V

γ̃

γC
π

where V := C ⊗σ,C V is the complex conjugate space of V (scalar extension by complex

conjugation σ) and γ̃ : Λ ⊗Z C → V ⊕ V is defined by λ ⊗ c 7→ (cγ(λ), cγ(λ)), for all
λ⊗ c ∈ Λ⊗Z C.
We divide the proof into two steps.

Step 1: We prove that γR is an isomorphism of R-vector spaces if and only if γ̃ is an isomor-
phism of C-vector spaces.
Since C is a faithfully flat R-module, the condition that γR is an isomorphism is
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equivalent to the isomorphism condition after applying scalar extension R → C.
But

C⊗R V = (C⊗R C)⊗C V

with C ⊗R C ∼= C × C as C-algebras via a ⊗ b 7→ (ab, ab), for all a ⊗ b ∈ C ⊗R C.
Hence, C ⊗R V is identified as a C-vector space with V ⊕ V , and in this way the
C-linear scalar extension of γR is identified with γ̃.

Step 2: We prove that γ̃ is an isomorphism of C-vector spaces if and only if we can decompose
Λ⊗Z C as Λ⊗Z C = KerγC ⊕KerγC.
If γ̃ is an isomorphism of C-vector spaces, then

KerγC = Ker(π ◦ γ̃) = γ̃−1(Kerπ) = γ̃−1(V )

and
KerγC = γ̃−1(V ) = γ̃−1(V ).

Thus
Λ⊗Z C = γ̃−1(V )⊕ γ̃−1(V ) = KerγC ⊕KerγC.

Conversely, if we can decompose Λ⊗Z C as KerγC ⊕KerγC, we obtain that

dimCKerγC = dimCKerγC = g

because
Λ ∼= Z

2g ⇒ Λ⊗Z C ∼= C
2g ⇒ dimCΛ⊗Z C = 2g.

Thus, γC restricts to an isomorphism KerγC V' (injective morphism of C-

vector spaces of the same dimension). Moreover, γ(V ) = γ(V ) = 0, so that

γ̃(KerγC) = V

and
γ̃(KerγC) = γ̃(KerγC) = V .

This proves that γ̃ is surjective. Since Λ⊗Z C and V ⊕ V are C-vector spaces of the
same dimension, we conclude that γ̃ is an isomorphism.

The matrix interpretation is immediate by Step 1, upon identifying the 2g × 2g matrix
as computing the C-linear map γ̃ relative to the C-basis of C ⊗Z Λ coming from the
chosen Z-basis of Λ and the C-basis of V ⊕ V coming from the chosen basis of V and the
corresponding conjugate basis of V .

We define F : T → H in the following way: on the objects by F (X) = (H1(X;Z), H0(X,Ω1
X)

∨, γ),
where γ : H1(X;Z) → H0(X,Ω1

x)
∨ is given by the composite:

H1(X;Z) H1(X;C) H1
dR(X;C)∨ = H0(X,Ω1

X)
∨ ⊕H0(X,Ω1

X)
∨

H0(X,Ω1
X)

∨

ι

γ

'

Ψ1C

π1
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where ι : H1(X;Z) → H1(X;C) is the inclusion, Ψ1,C : H1(X;C) → H1
dR(X;C)∨ is the de

Rham isomorphism and π1 : H
0(X,Ω1

X)
∨ ⊕H0(X,Ω1

X)
∨
→ H0(X,Ω1

X)
∨ is the projection

onto the first factor of the direct sum of Dual Hodge decomposition.

On morphisms F is defined in the following way: let X X
′f
be a morphism in T , then

we associate to it the couple (H1(f), H
0(f)∨), where

H1(f) := H1(f ;Z) : H1(X;Z) → H1(X
′
;Z)

and
H0(f)∨ := H0(f,Ω1

X)
∨ : H0(X,Ω1

X)
∨ → H0(X,Ω1

X′ )∨

are the natural maps induced by f .

Proposition 1.4.2. F : T → H is a functor.

Proof. First we prove that F is well-defined.
If X ∈ T , then F (X) = (H1(X;Z), H0(X,Ω1

X)
∨, γ) ∈ H . In fact, H1(X;Z) is a free Z-

module of rank 2g, by Proposition 1.2.2, and H0(X,Ω1
X) is a C-vector space of dimension

g. We only have to prove that

γR : H1(X;Z)⊗Z R → H0(X,Ω1
X)

∨
R

is an isomorphism of R-vector spaces. To do this, we use the equivalent condition of
Proposition 1.4.1. We note that

γ ⊗ IdC = (π1 ◦Ψ1C ◦ i)⊗ IdC = (π1 ⊗ IdC) ◦ (Ψ1,C ⊗ IdC) ◦ (ι⊗ IdC).

Since H1(X;Z)⊗Z C = H1(X;C), we have that

ι⊗ IdC : H1(X;Z)⊗Z C → H1(X;C)

is the identity. Moreover, π1 ⊗ IdC = π1 and Ψ1,C ⊗ IdC = Ψ1,C, since π1 and Ψ1,C are
C-linear morphisms. Then, γ ⊗ IdC = π1 ◦Ψ1,C.
By de Rham Theorem with coefficients in C, Ψ1,C is an isomorphism, so that

H1(X;C) = Ψ−1
1,C(H

0(X,Ω1
X)

∨)⊕Ψ−1
1,C(H

0(X,Ω1
X)

∨
) (1.2)

and Ker(π1 ◦Ψ1,C) = Ψ−1
1,C(Kerπ1) = Ψ−1

1,C(H
0(X,Ω1

X)
∨
).

Since Ker(π1 ◦Ψ1,C) = Ψ−1
1,C(H

0(X,Ω1
X)

∨
) = Ψ−1

1,C(H
0(X,Ω1

X)
∨), from (1.2) it follows that

H1(X;C) = Ker(γC)⊕Ker(γC)

as we wanted.

If X X
′f
is a morphism in T , then

H1(f) : H1(X;Z) → H1(X
′
;Z)
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is a morphism of Z-modules,

H0(f)∨ : H0(X,Ω1
X)

∨ → H0(X,Ω1
X′ )∨

is a morphism of C-modules and they make the following diagram

H1(X;Z) H0(X,Ω1
X)

∨

H1(X
′
;Z) H0(X

′
,Ω1

X′)∨

γ

H1(f) H0(f)∨

γ
′

commutative, by functoriality of H1(X;Z) and H0(X,Ω1
X)

∨.
Finally, in order to be a functor, F has to preservers composition of morphisms and
identities. This is the case, by functoriality of H1(X;Z) and H0(X,Ω1

X)
∨.

1.4.1 The Albanese map

Let X be compact complex manifold satisfying Hodge decomposition in degree 1.
For a fixed base point x0 ∈ X one defines the Albanese map

albx0 : X → H0(X,Ω1
X)

∨/H1(X;Z)

by

x 7→

(

ω 7→

∫ x

x0

ω

)

where the integral is over any path from x0 to x and we identify H1(X;Z) with its image
under the morphism γ : H1(X;Z) → H0(X,Ω1

X)
∨ of Proposition 1.4.2.

The integral
∫ x
x0
ω depend on the chosen path connecting x0 and x, but for two different

choices the difference is an integral over a closed path (same computations of Proposition
1.3.1). Hence, alb(x) is well-defined as an element of H0(X,Ω1

X)
∨/H1(X;Z).

Assume now that X = V/Λ, with V a C-vector space of dimension g and Λ a lattice
in V . Fix complex coordinates z1, . . . , zg of V . Then

H0(X,Ω1
X)

∨ =< dz1, . . . , dzg >
∨
C

and

H1(X;Z) =

{(
∫

σ
dz1, . . . ,

∫

σ
dzg

)

: [σ] ∈ H1(X;Z)

}

because the coordinates of the image of [σ] in H0(X,Ω1
X)

∨ are given by its values on
generators dz1, . . . , dzg.
The map

albx0 : X → H0(X,Ω1
X)

∨/H1(X;Z)

is defined by

x 7→

(
∫ x

x0

dz1, . . . ,

∫ x

x0

dzg

)

mod

{(
∫

σ
dz1, . . . ,

∫

σ
dzg

)

: [σ] ∈ H1(X;Z)

}

.
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Proposition 1.4.3. Let X be a compact complex torus and x0 = 0 ∈ X. The Albanese
map albx0 : X → H0(X,Ω1

X)
∨/H1(X;Z) is an isomorphism of complex Lie groups.

Proof. Since H1(X;Z) depends, modulo isomorphism, only on the differentiable structure
of X and H0(X,Ω1

X)
∨ depends, modulo isomorphism, only on the complex one, we can

suppose that X = V/Λ.

i. albx0 is holomorphic.
For 1 ≤ j ≤ g, define

albjx0(x) :=

∫ x

x0

dzj mod

{
∫

σ
dzj : [σ] ∈ H1(X;Z)

}

.

Then, albx0 is holomorphic if and only if albjx0 is holomorphic, for all 1 ≤ j ≤ g.
By elementary calculus, albjx0 is smooth with derivative dzj . Since this is holomor-
phic, this implies that albjx0 is holomorphic, for all 1 ≤ j ≤ g.

ii. albx0 is a biholomorphism.

• albx0 is a covering map.
Since albx0(0) = 0 and it is holomorphic, it is a morphism of complex Lie groups.
Let F := ρa(albx0). The Jacobian of F at 0 ∈ V is the identity, thus F is a local
biholomorphism at 0. Since F is C-linear, it is a local biholomorphism at each
point x ∈ V . Thus, albx0 is a local biholomorphism at each point x ∈ V/Λ.
In fact, let π : V → V/Λ and π

′
: H0(X,Ω1

X)
∨ → H0(X,Ω1

X)
∨/H1(X;Z) be

the canonical projections. Since they are covering map, they are local biholo-
morphism. Thus, locally, albx0 is given by the composition of biholomorphisms
π

′

| ◦F ◦ (π|)
−1 (where π

′

| , F|, π| denote the restrictions of π
′
, F , π open subsets

over which they are biholomorphisms). By [8, 151], it implies that albx0 is a
covering map.

• albx0 is invertible.
To do this, by covering space theory, it is enough to prove that the induced
map

π1(albx0) : π1(V/Λ, 0) → π1(H
0(X,Ω1

X)
∨/H1(X;Z), 0)

which is injective, is surjective.
Consider the commutative diagram [9, 81]

π1(V/Λ, 0) π1(H
0(X,Ω1

X)
∨/H1(X;Z), 0)

H1(V/Λ;Z) H1(H
0(X,Ω1

X)
∨/H1(X;Z);Z)

π1(albx0 )

' '

H1(albx0 )

where the vertical arrows are given by Hurewicz and H1(albx0) is the map
induced by albx0 at the level of homologies.

26



Commutativity implies that the surjectivity of π1(albx0) is equivalent to the
surjectivity of H1(albx0). But this follows as there is a natural isomorphism

H1(X;Z) ∼= π1(H
0(X,Ω1

X)
∨/H1(X;Z)) H1(H

0(X,Ω1
X)

∨/H1(X;Z);Z)'

and as, under this identification,H1(albx0)([γ]) is identified with

(

∫

γ dz1, . . . ,
∫

γ dzg

)

.

1.4.2 Equivalence of categories

We define a functor G : H → T on the objects by G(Λ, V, γ) = V/γ(Λ), on the morphisms
in the natural way: let

(φ1, φ2) : (Λ, V, γ) → (Λ
′
, V

′
, γ

′
)

be a morphism in H , to it we associate the unique morphism

φ : V/γ(Λ) → V
′
/γ

′
(Λ

′
)

making the following diagram

V V
′

V/γ(Λ) V
′
/γ

′
(Λ

′
)

φ2

π1 π2

φ

commutative, where π1 : V → V/γ(Λ) and π2 : V
′
→ V

′
/γ

′
(Λ

′
) are the natural projections.

In this way, we define a functor.
In fact, if (Λ, V, γ) ∈ H , then, by the condition on γ and Proposition 1.1.1, it follows that
γ(Λ) is a lattice in V , so that V/γ(Λ) is a complex torus of dimension g.
If

(φ1, φ2) : (Λ, V, γ) → (Λ
′
, V

′
, γ

′
)

is a morphism in H , then the morphism φ : V/γ(Λ) → V
′
/Λ

′
exists and it is unique,

since π2 ◦ φ2 preserves the fibers of π1, and it is holomorphic since its composition with
the local biholomorphism π1 (it is holomorphic and locally invertible) is π2 ◦ φ2, which is
holomorphic since φ2 is C-linear, thus holomorphic, and π2 is holomorphic by Proposition
1.2.1). Moreover, by the condition that it makes commutative the diagram

V V
′

V/γ(Λ) V
′
/γ

′
(Λ

′
)

φ2

π1 π2

φ

and that π1, π2 and φ2 respect the origins, it follows that φ preserves the origins too.

Theorem 1.4.1. (F,G) is an equivalence of categories between T and H .
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Proof. We will prove that G is a quasi-inverse of F .
In the same notations of Proposition 1.4.2, for X ∈ T , we have

X ∼= (G ◦ F )(X) = H0(X,Ω1
X)/γ(H1(X;Z)) in T

via the Albanese map.
For (Λ, V, γ) ∈ H , we have

(Λ, V, γ) ∼= (F ◦G)(Λ, V, γ) = (H1(V/γ(Λ);Z), H
0(V/γ(Λ),Ω1

V/γ(Λ))
∨, φγ) in H . (1.3)

Let us prove the isomorphism in (1.3).
Let x0 = 0 ∈ V/γ(Λ) and

albx0 : V/γ(Λ) H0(V/γ(Λ),Ω1
X)

∨/H1(V/γ(Λ);Z)
'

be the Albanese isomorphism.
The morphism ρa(albx0) : V → H0(V/γ(Λ),Ω1

X)
∨ is C-linear and it is an isomorphism. In

fact,
ρa(alb

−1
x0 ) ◦ ρa(albx0) : V → V

and
IdV : V → V

are two C-linear lifts of IdV/Λ. Uniqueness of lift implies that

ρa(alb
−1
x0 ) ◦ ρa(albx0) = IdV .

Similarly,
ρa(albx0) ◦ ρa(alb

−1
x0 ) = IdH0(V/Λ;Ω1

V/Λ
)∨

so that ρa(albx0) is an isomorphism.
The composition φ−1

γ ◦ ρr(albx0) ◦ γ : Λ → H1(V/Λ;Z) is Z-linear, since composition of Z-
linear morphisms, and it is an isomorphism, because γ : V → γ(Λ) and φγ : H1(V/Λ;Z) →
φγ(H1(V/Λ;Z)) are isomorphisms and ρr(albx0) is an isomorphism. In fact

ρa(albx0)
−1
|γ(Λ) ◦ ρa(albx0)|γ(Λ) = (ρa(albx0)

−1 ◦ ρa(albx0))|γ(Λ) = Idγ(Λ)

and

ρa(albx0)|φγ(H1) ◦ ρa(albx0)
−1
|φγ(H1))

= (ρa(albx0) ◦ ρa(albx0)
−1)|φγ(H1) = Idφγ(H1)

where we denoted φγ(H1(V/Λ;Z)) by φγ(H1). Commutativity of the diagram

V H0(V/γ(Λ),Ω1
X)

∨

γ(Λ) φγ(H1(V/Λ);Z))

'

ρa(albx0 )

ρr(albx0 )

'
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where the vertical arrows are given by inclusions, implies commutativity of

V H0(V/γ(Λ),Ω1
X)

∨

Λ H1(V/Λ;Z)

'

φ2

φ1

'

γ φγ

where φ1 = φ−1
γ ◦ ρr(albx0 ◦ γ and φ2 = ρa(albx0). This yields an isomorphism in H .

By functoriality of H1(X;Z) and H0(X,Ω1
X)

∨ and the naturality of the isomorphisms in
(1.3), it follows that the isomorphisms X ∼= (G ◦ F )(X) and (Λ, V, γ) ∼= (F ◦ G)(Λ, V, γ)
are functorial in X and (Λ, V, γ), yielding the isomorphisms of functors

IdT
∼= G ◦ F and IdH

∼= F ◦G.

Let Tf be the category defined as T , but where we replace compact complex tori by
framed compact complex tori, and let Hf be the category defined as H , but where we
replace Λ by Z

2g. The same argument still yields an equivalence of categories between Tf

and Hf .
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Chapter 2

Ehresmann Theorem and families

of complex manifolds

In this chapter, we state Ehresmann Theorem and apply it to X → B, a family of compact
complex manifolds over a complex manifold B, by computing the cohomology groups
H1(Xb;Z) for every b ∈ B, where Xb denotes the fiber over b, and by proving that the
sheaf R1φ∗ZX is a Z-local system on B.

2.1 Ehresmann Theorem

Let X and B be differentiable manifolds and f : X → B be a C1 morphism. Let X0 :=
f−1(0) denote the fibre of f above the point 0 ∈ B and XU := f−1(U) denote the of the
subset U ⊆ B by f .

Theorem 2.1.1 (Ehresmann). Let f : X → B be a proper submersion between two dif-
ferentiable manifolds. Then, for any 0 ∈ B there exists an open U ⊆ B, with 0 ∈ U , and
a diffeomorphism

TU : XU X0 × U'

over U , i.e. such that the following diagram

XU X0 × U

U
f|XU

'

pr2

commutes, where pr2 is the projection onto the second factor and f|XU
is the restriction

of f to XU .

Proof. See [10, 220-221].

If U ⊆ B realizes the isomorphism of Ehresmann’s Theorem, X is said to be topologi-
cally trivial over U .
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2.2 Families of compact complex manifolds

Let B be a fixed complex manifold.

Definition 2.2.1. A complex manifold over B is (X,π), where X is a complex manifold
and π is a holomorphic map π : X → B.

If we will not need to specify the morphism, we will denote (X,π) a complex manifold
over B just by X.
If X and T are complex manifolds over B, we denote by X(T ) or HolB(T,X) the set of
all holomorphic maps f : T → X making the following diagram

T X

B

commutative. We call B-morphisms from T to X the elements of X(T ).
Let (X,φ) be a complex manifold over B.

Definition 2.2.2. We say that (X,φ) is a family of compact complex manifolds if φ is a
proper holomorphic submersion.

Ehresmann Theorem applies to families of complex manifolds.
Suppose that U is an open subset in B over which X is topologically trivial and 0 ∈ U .
Then there is an isomorphism

TU : XU X0 × U'

as differentiable manifolds.
Since complex manifolds are locally contractible, we can suppose that U is contractible.
Then, for b ∈ U , the inclusion

X0 × {b} X0 × U
IdX0

×ιb

is an homotopy equivalence.
The commutative diagram

XU X0 × U

Xb X0 × {b}

TU
'

jb

TU|

'

IdX0
×ιb

where TU|
is the restriction of TU to Xb, implies that the inclusion

Xb XU
jb

is an homotopy equivalence too. So, it induces an isomorphism

H1(XU ;Z) H1(Xb;Z).
j∗b
'

at the level of cohomologies. Then, if s and b ∈ U , there is a natural isomorphism

j∗s ◦ (j
∗
b )

−1 : H1(Xb;Z) H1(Xs;Z).
'
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2.3 Z-Local systems associated to a family of compact com-

plex manifolds

Definition 2.3.1. Let X be a locally connected topological space. An abelian sheaf F on
X is a Z-local system if it is locally isomorphic to a constant abelian sheaf of finite rank.

Theorem 2.3.1 (Proper base-change). Let f : X → Y be a proper map between locally
compact topological spaces. Let F be an abelian sheaf on X. For any y ∈ Y and for all
n ≥ 0, there is a canonical isomorphism

(Rnf∗(F))y Hn(f−1(y);F)'

where Rnf∗ is the n-th derived functor of the functor f∗ from the category of abelian sheaves
on Y to the category of abelian sheaves on X.

Let φ : X → B be a family of compact complex manifolds and fix 0 ∈ B.
Let R1φ∗ZX be the first derived functor of the functor φ∗ and ZX be the constant sheaf
on X of stalk Z.

Proposition 2.3.1. The sheaf R1φ∗ZX is a Z-local system on B.

Proof. Let U be an open subset of B, over which X is topologically trivial, with 0 ∈ U .
By proper base-change

(R1φ∗(ZX))y H1(Xy;ZX)
'

for all y ∈ U . If we compose this isomorphism with

j∗0 ◦ (j
∗
y)

−1 : H1(Xy;Z) H1(X0;Z)
'

we obtain an isomorphism of sheaves on U

R1φ∗(ZX)|U ∼= (H1(X0;ZX)B)|U

where (H1(X0;ZX)B)|U is the restriction of the constant sheaf H1(X0;ZX)B on B of stalk
H1(X0;ZX).

We define the dual

R1φ∗ZX = (R1φ∗ZX)
∨ := HomZX

(R1φ∗ZX ,ZX)

where Hom(R1φ∗ZX ,ZX) is the sheaf of abelian groups over B defined by

U 7→ HomZU
((R1φ∗ZX)|U ,ZU )

for all U ⊆ B open.
Since the dual sheaf of a constant sheaf is constant, we obtain the following result:

Proposition 2.3.2. The sheaf R1φ∗ZX is a Z-local system on B.
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Chapter 3

Group schemes in the category of

complex manifolds

In this chapter, given a fixed complex manifold B, we define B-Lie groups and show the link
between holomorphic vector bundles over B and the category of locally free OB-modules
of finite rank.

3.1 B-Lie groups

Let B be a complex manifold.

Definition 3.1.1. i. A B-Lie group is a compact complex manifold X over B with the
property that for any complex manifold T over B, the set X(T ) is equipped with a
functorial group structure, i.e. there exists a group structure on X(T ) and, for any
complex manifold T

′
over B and f ∈ T (T

′
), the map induced by f

f∗ : X(T ) → X(T
′
)

is a group homomorphism;

ii. A B-Lie group (X,π,m, i, e) is a complex manifold (X,π) over B together with B-
morphisms m : X ×B X → X (group law, or multiplication), i : X → X (inverse)
and e : B → X (identity section), such that the following identities of morphisms
hold:

m ◦ (m× IdX) = m ◦ (IdX ×m) : X ×B X ×B X → X,

m ◦ (e× IdX) = j1 : B ×B X → X,

m ◦ (IdX × e) = j2 : X ×B B → X,

e ◦ π = m ◦ (IdX × i) ◦∆X/B = m ◦ (i× IdX ◦∆X/B) : X → X,

where j1 : B ×B X → X and j2 : X ×B B → X are the canonical isomorphisms and
∆X/B : X → X ×B X is the diagonal morphism.

Proposition 3.1.1. The two definitions of B-group are equivalent.

35



Proof. Iit follows from Yoneda Lemma (See [11, 31]).

If π : X → B is a holomorphic vector bundle over B, then X is a B-group. We verify
that it satisfies the first definition of B-group:

• if φ : T → B is a complex manifold over B, the setX(T ) has a group structure defined
as follows: for f, g ∈ X(T ), f + g is the morphism defined by (f + g)(t) = f(t)+ g(t)
for all t ∈ T , where the sum respects the C-vector space structure of Xφ(t);

• if T
′
is another complex manifold over B and f ∈ T (T

′
), the map induced by f

f∗ : X(T ) → X(T
′
)

is a group homomorphism, because it maps g1+g2 ∈ X(T ) to the morphism defined,
for all t ∈ T , by

((g1 + g2) ◦ f)(t) = (g1 + g2)(f(t)) = g1(f(t)) + g2(f(t)) = ((g1 ◦ f) + (g2 ◦ f))(t)

so that f∗(g1 + g2) = f∗(g1) + f∗(g2).

According to the two definitions of B-Lie groups, we define morphisms of B-groups.

Definition 3.1.2. i. Let X and X
′
be two B-Lie groups. A homomorphism of B-Lie

group from X to X
′
is a morphism f ∈ X

′
(X) such that the map induced by f

f(T ) : X(T ) → X
′
(T )

is a group homomorphism and functorial in T , for any complex manifold T over B;

ii. Let (X,π,m, i, e) and (X
′
, π

′
,m

′
, i

′
, e

′
) be two B-Lie groups. A homomorphism of

B-Lie groups from X to X
′
is a morphism f ∈ X

′
(X) such that f ◦ m = m

′
◦

(f × f) : X ×B X → X
′
. (In particular, this condition implies that f ◦ e = e

′
and

f ◦ i = i
′
◦ f).

Let G be a complex Lie group.

Definition 3.1.3. The B-Lie group with structural group G is the B-Lie group (
⊔

g∈GB, π),
where π :

⊔

g∈GB → B is the canonical projection.

Definition 3.1.4. A locally constant B-Lie group with structural group G is a complex
manifold over B which is locally a constant B-Lie group with structural group G.

Given π : X → B and π
′
: C → B two complex manifolds over B, their fiber product

yields a commutative diagram

C ×B X X

C B

prX

prC π

π
′
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where prX and prC denote the projections to X and C, respectively.
Since all the properties are stable under base-change, (C×BX, prC) is a complex manifold
over C.

If C = {b}, with b ∈ B, and π
′
is the inclusion {b} ↪→ B, C ×B X is canonically

isomorphic to Xb.
Moreover, Xb is a complex Lie group. In fact, Definition ii. of {b}-group yields commuta-
tive diagrams of holomorphic maps

Xb ×Xb Xb

{b}

m

and

Xb Xb

{b}

i

which give holomorphic mapsm : Xb×Xb → Xb and i : Xb → Xb. Since the mapXb×Xb →
Xb defined by (x, y) 7→ x · y−1 is given by the composition of holomorphic maps

m ◦ (IdXb
× i) : Xb ×Xb → Xb

it is holomophic too.

3.2 Holomorphic vector bundles and locally free sheaves

Let φ : X → B be a holomorphic vector bundle.
We define a map by associating to each open subset U ⊆ B the set

X(U) := {s : U → φ−1(U) : s is holomorphic, π ◦ s = IdU}.

This association defines a presheaf of abelian groups over B, denoted by X.
The presheaf X is, in fact, a sheaf.
Indeed, let U ⊆ B be an open subset. The functor X satisfies the uniqueness’ condition of
sheaves, because two sections s and t ∈ X(U) coincide if and only if they coincide on an
open covering of U . Moreover, X satisfies the gluing condition of sheaves, because given
a family of sections defined on an open covering of U , whose restrictions coincide in the
intersections, then it is possible to glue them in a section of X(U).

Definition 3.2.1. The sheaf X is called the sheaf of sections of φ.

Let OB be the sheaf of holomorphic functions on B, i.e. the sheaf on B defined by
associating to each open subset U ⊆ B the C-algebrea of holomorphic functions over it.

Lemma 3.2.1. The sheaf X is an OB-module.
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Proof. Let U ⊆ B be an open subset. The abelian group X(U) has a structure a structure
of OB(U)-module: for s ∈ B(U) and f ∈ OB(U), f · s is the element defined by

(f · s)(x) = f(x)s(x), for all x ∈ U.

The element f · s is such that π ◦ f · s = IdU , because f(x) ∈ C, s(x) ∈ Xx and Xx has the
structure of a C-vector space, so that the element f(x)s(x) belongs to Xx for any x ∈ B.
Moreover, f ·s is holomorphic, since product of holomorphic functions. Thus, f ·s ∈ X(U).
The fact that X(U) satisfies the axioms of a OB(U)-module follows from the fact that,
for each x ∈ B, the fiber Xx satisfies the axioms of a C-module.
If V ⊆ U ⊆ B are open inclusions, the restriction morphism

X(U) → X(V )

maps the element f · s to its restriction (f · s)|V to V . Since (f · s)|V = f|V · s|V , the
restriction is OB(U)-linear.

Proposition 3.2.1. Let B be a complex manifold. Associating to a holomorphic vector
bundle its sheaf of sections defines an equivalence of categories between the category of
holomorphic vector bundles over B and the category of locally free OB-modules of finite
rank.

Proof. Idea of the proof (see [12, 72]): The sheaf of sections of a holomorphic vector bundle
π : X → B of rank g is a locally constant OB-module, since locally on B, X is isomorphic
to a product U × C

g, U ⊆ B open.

Conversely, choosen trivialisations ψi : F|Ui
O⊕g
Ui

' , denote by (ψi)|ij the restriction

of ψi to F|Ui∩Uj
. Defined the transition maps

ψij := (ψi)|ijj ◦ (ψ
−1
j )|ij : O

⊕g
Ui∩Uj

O⊕g
Ui∩Uj

'

the maps ψij(Ui ∩ Uj) are given with a matrix of holomorphic functions on Ui ∩ Uj .
Therefore, {(Ui, ψij(Ui∩Uj)} can be used as a cocyle defining a holomorphic vector bundle
over B. On the morphisms, this correspondence is defined by giving them locally and,
then, by gluing them. Using the fact that holomorphic vector bundles and sheaves are
uniquely determined, up to isomorphism, by their cocycles, one can check that this defines
an equivalence of categories.

Remark 3.2.1. Similarly to Proposition 3.2.1, using cocycles, it is possible to associate
to a Z-local system F on B a locally constant B-Lie group with structural group an abelian
group of rank 2g and to a morphism of Z-local systems F → G on B a morphism on the
associated B-Lie groups.
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Chapter 4

Families of compact complex tori

In this chapter we extend the results of chapter 1 to families of compact complex tori.
Given a fixed complex manifold B, we define families of compact complex tori over B and
study some properties of them.
We generalize the notion of quotient to γ : Λ → V , where Λ is a locally constant B-Lie
group with structural group Z

2g, V is a holomorphic vector bundle of rank g and γ is a
morphism of B-Lie groups, such that it yields a lattice inclusion fiberwise.
Finally, we extend F to a functor FB : TB → HB and prove it yields an equivalence of
categories.

4.1 Families of compact complex tori

Let B be a complex manifold.

Definition 4.1.1. A family of compact complex tori of dimension g over B is a triple
(X,π, σ), where:

• (X,π) is a family of compact complex manifolds over B;

• σ : B → X is a holomorphic section of π, also called the zero section, with the
property that Xb is a compact complex torus of dimension g with zero σ(b), for all
b ∈ B.

Definition 4.1.2. A family of framed compact complex tori of dimension g over B is
(X,π, σ, φ), where:

• (X,π, σ) is a family of compact complex tori of dimension g over B;

• φ is an isomorphism of abelian sheaves over B φ : (R1π∗ZX)
∨

Z
⊕2g
B

' .

Definition 4.1.3. A morphism of compact complex tori over B from (X
′
, π

′
, σ

′
) to (X,π, σ)

is a morphism ψ : X
′
→ X of complex manifolds such that:
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• the following diagram

X
′

X

B
π
′

ψ

π

commutes;

• it preserves the zero sections, i.e. ψ ◦ σ
′
= σ.

Definition 4.1.4. A morphism of framed compact complex tori (X,π, σ, φ) and (X
′
, π

′
, σ

′
, φ

′
)

over B is a morphism φ : X
′
→ X such that:

• it is a morphism of compact complex tori from (X
′
, π

′
, σ

′
) to (X,π, σ);

• it induces the isomorphism between the framings.

4.1.1 The sheaf φ∗Ω
1
X/B.

Let (X,φ, σ) be a family of compact complex tori over B.
Since φ is a submersion, by definition, the induced map at the level of complex tangent
spaces

TxX → Tφ(x)B

is surjective, for every x ∈ X. This implies that the map induced on the holomorphic
tangent bundles (see Def [13, 71]) over X

TX → φ∗TB

is surjective, where φ∗TB denotes the pull back bundle of TB under φ∗. This is because,
for every x ∈ X, the fiber at x of (φ∗TB) is canonically identified with the fiber at φ(x)
of TB.
Moreover, the Kernel of TxX → Tφ(x)B is canonically identified with TxXφ(x). In fact,
by holomorphic implicit function theorem [14, 11] it follows that, for every x ∈ X, there
exists an open neighborhood V ⊆ X of x and a biholomorphism h := (φ, hF ) from V to a
product φ(V )× F over φ(V ). Thus

TxX ∼= TxV ∼= Th(x)(φ(V )× F ) ∼= Tφ(x)B ⊕ ThF (x)F.

By considering the fibers over φ(x) on V , h yields the isomorphism

Xφ(x) ∩ V {φ(x)} × F ∼= F'
h

so that
TxXφ(x)

∼= Tx(Xφ(x) ∩ V ) ∼= ThF (x)F.

Define TX/B := Ker(TX → φ∗TB). This is a holomorphic vector bundle over X, since
the rank of the C-linear map TxX → Tφ(x)B does not depend on x.
Define Ω1

X/B := T∨
X/B to be the dual bundle. It is a holomorphic vector bundle over
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X, with fibers canonically identified with H0(Xφ(x),Ω
1
Xφ(x)

), for all x ∈ X, through the

isomorphisms

(Ω1
X/B)x

∼= ((TX/B)x)
∨ ∼= (TxXφ(x))

∨ H0(Xφ(x),Ω
1
Xφ(x)

).'

The last isomorphism is given by the composition Φ| ◦ Jtx(0)
∨, where

Φ| : (TxXφ(x))
∨ H0(Xφ(x),Ω

1
Xφ(x)

)'

is the isomorphism yielding the Hodge decomposition and

Jtx(0)
∨ : (TxXφ(x))

∨ → (T0Xφ(x))
∨

is the dual of the map induced by tx, the translation by x, on the tangent spaces. Since
tx is a biholomorphism, the map induced on the tangent spaces is an isomorphism. So,
Jtx(0)

∨ is an isomorphism too.
Denote still by Ω1

X/B the associated sheaf, using Proposition 3.2.1. Let φ∗Ω
1
X/B be the

direct image of Ω1
X/B through the functor φ∗. The following result holds:

Proposition 4.1.1. The sheaf φ∗Ω
1
X/B is a locally free OB-module of rank g.

Proof. Let Imσ ⊆ X, be the complex submanifold of X given by the image of the zero
section σ and let N∨ be the dual of the normal bundle of Imσ in X. It is a holomorphic
vector bundle over Imσ with fiber canonically isomorphic to Tσ(b)Xb for avery b ∈ B. In
particular, it has rank g.
In fact, by definition (see Def [13, 71]) there exists a short exact sequence of holomorphic
vector bundles

0 TImσ TX |Imσ N 0

where TImσ is the holomorphic tangent bundle of Imσ and TX |Imσ is the holomorphic
tangent bundle of X restricted to Imσ.

Fix b ∈ B. Denoted by ι : Imσ X the inclusion, note that TX |Imσ = ι∗TX. Thus,
(TX |Imσ)σ(b) is canonically isomorphic to Tσ(b)X.
Exactness of the sequence implies that

0 Tσ(b)Imσ Tσ(b)X Nσ(b) 0

is an exact sequence of C-vector spaces, so that it splits. So,

Tσ(b)X ∼= Tσ(b)Imσ ⊕Nσ(b).

Let V an open neighborood of σ(b) such that there exists a biholomorphism h = (φ, hF ) to
φ(V )×F over φ(V ) (this is possible by holomorphic implicit function theorem). Proceeding
as for TX/B, computations yield

Tσ(b)X ∼= Tσ(b)V Tbφ(V )⊕ Tσ(b)Xb.
'
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Since σ : B → Imσ is a biholomorphism (holomorphic with inverse the restriction of π to
Imσ, which is holomorphic), it induces an isomorphism

Tbφ(V ) Tσ(b)(V ∩ Imσ) ∼= Tσ(b)Imσ
' .

By considering the two decompositions of Tσ(b)X, we obtain Nσ(b)
∼= Tσ(b)Xb.

Let σ∗N∨ be the pull back to B of N∨. By duality, it is a holomorphic vector bundle over
B of rank g, with fiber (σ∗N∨)b ∼= N∨

σ(b)
∼= (Tσ(b)Xb)

∨, for every b ∈ B.

Fix 0 ∈ B, U an open neighborhood of 0 trivializing σ∗N∨ and holomorphic sections
s1, . . . , sg ∈ H0(U, σ∗N∨), such that s1(b), . . . , sg(b) are linearly independent over C, for
every b ∈ U .
For every b, let

Φ|b : (Tσ(b)Xb)
∨ H0(Xb,Ω

1
Xb

)'

be the isomorphism yielding the Hodge decomposition and ωi,b = φ|b(si(b)), for i =
1, . . . , g.
We define holomorphic sections ω1, . . . , ωg of H

0(U, φ∗Ω
1
X/B) by ωi(x) := ωi,φ(x), for every

x ∈ XU , and a morphism of sheaves on U

σ∗N∨
|U → (φ∗Ω

1
X/B)|U

on U
σ∗N∨(U) → φ∗Ω

1
X/B(U)

by sending
si 7→ ωi, for all i = 1, . . . , g

and by extending it to a morphism of OB(U)-module. On the open subsets of U we define
it by taking restrictions of functions.
This yields an isomorphism of OB-module, because at the level of stalks it coincides with
the isomorphism Φb. In fact,

(φ∗Ω
1
X/B)b

∼= (σ∗(φ∗Ω
1
X/B))σ(b)

∼= (ι∗Ω
1
X/B)σ(b)

∼= (Ω1
X/B)σ(b).

Since σ∗N∨ is a holomorphic vector bundle of rank g, its sheaf of section is a locally free
OB-module of rank g. Thus, φ∗Ω

1
X/B is a locally free OB-module of rank g too.

Since the dual of a constant sheaf is constant and O∨
B = OB, we obtain the following

result:

Proposition 4.1.2. The sheaf (φ∗Ω
1
X/B)

∨ is a locally free OB-module of rank g.

4.2 Quotients

Let γ : Λ → V be a morphism of B-groups, where πV : V → B is a holomorphic vector
bundle of rank g and Λ is a locally constant B-Lie group with structural group Z

2g.
Suppose that, for every b ∈ B, the morphism

γb : Λb → Vb
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is such that the induced map
γbR : Λb ⊗Z R → VbR

is an isomorphism of R-vector spaces.
We define an equivalence relation ∼ on V by v ∼ v

′
if and only if πV (v) = πV (v

′
) = b and

v − v
′
∈ γb(Λb).

Definition 4.2.1. We define V/Λ := V/ ∼.

Let π : V → V/Λ be the canonical projection. Since πV is constant on each fiber of π,
there exists a unque continuous map φ making the following diagram

V B

V/Λ

π

πV

φ

commutative.

Proposition 4.2.1. The map φ : V/Λ → B is proper.

Proof. Since the property of being proper is local on B, we will work locally on B.
By considering an open subset of B trivializing Λ and V , we can assume that Λ = B×Z

2g

and V = B × C
g with j corresponding to a g × 2g matrix (ahk) of holomorphic functions

T = (ahk) such that the 2g × 2g matrix

(

T (b)

T (b)

)

∈ Mat2g × 2g(C)

is invertible for each b ∈ B, by Proposition 1.4.1. In particular, the top g×2g matrix T (b)
is surjective as a linear map C

2g → C
g, so by equality of row rank and column rank it has

an invertible g × g submatrix. Working locally around some b0 ∈ B, we may rearrange
the order of the trivialization of Λ, so that the left submatrix of T (b0) is invertible. By
shrinking around b0 we can then assume that the left g× g submatrix of T (b) is invertible
for all b ∈ B.
Writing T = (A1 A2) with g×g matrices A1 and A2 whose entries are holomorphic func-
tions, we have arranged that A1 is invertible, so by multiplying V = B×C

g by IdB×A−1
1 ,

we can arrange that T = (1g Z) for some holomorphic map Z : B → Matg×g(C).
Consider the holomorphic map Z : B → Matg×g(C). By Proposition 1.4.1, the holomor-
phic map

(

1g Z

1g Z

)

: B → Mat2g×2g(C)

is valued in GL2g(C). Equivalently, subtracting the top g× 2g block from the bottom one
gives

(

1g Z

0 Z − Z

)
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so its invertibility is equivalent to that of the g × g matrix Z − Z = −2iim(Z). Thus, if
we write Z = A1 + iA2 for holomorphic maps A1 : B → Matg(R) and A2 : B → Matg(R),
A2 is valued in GLg(R).
Consider the holomorphic map ψ : B × C

g → B × C
g over B defined by

(b, x+ iy) 7→ (b, x+ (A1(b) + iA2(b))y) = (b, (x+A1(b)y) + iA2(b)y).

This is a biholomorphism, as it is invertible with inverse holomorphic

(b, u+ iv) 7→ (b, (u−A1(b)A2(b)
−1v) + iA2(b)

−1v).

This isomorphism yields a commutative diagram

B × C
g B × C

g

B × Z
2g B × (1g Z)Z2g

ψ

'

ι1

ψ|

'

ι2

where ι1 and ι2 are the inclusions and ψ| is the restriction of ψ. Thus, commutatitivity of

the diagram implies that, denoted by ψ the map induced by ψ at the level of the quotients,
it is an isomorphism of topological spaces

ψ : B × Cg/Z2g ∼= (B × C
g)/(B × Z

2) (B × C
g)/B × (1g Z)Z2g ∼= B × V/Λ.'

Moreover, since the previous diagram commutes with the projection onto B, ψ commutes
with the projection onto B too.
Thus, topologically

φ : V/Λ → B

is precisely the projection onto the first factor B × C/Z2g → B, which is proper. In
fact, the inverse image of a compact subset K ⊆ B is K × C

g/Z2g, which is compact in
B × C

g/Z2g because product of compact subsets.

Proposition 4.2.2. The quotient V/Λ has the structure of a complex manifold relative to
which π : V → V/Λ is a covering map and then φ : V/Λ → B yields a family of compact
complex tori over B.

Proof. First, we will work locally on B. By considering an open subset of B trivializing
Λ and V , we can assume that Λ = B × Z

2g and V = B × C
g with j corresponding to a

g× 2g matrix (ahk) of holomorphic functions T = (ahk) = (1g Z), for some holomorphic
map Z : B → Matg×g(C) with imZ invertible.
The group Z

2g acts on B × C
g on the right by :

λ : (b, x) 7→ (b, x+ (1g Z(b))λ) for λ ∈ Z
2g.

Since this is action is free and properly discontinuous, by Proposition 1.2.1, the quotient
under this action is a complex manifold and the canonical projection from V to the quotient
is a covering map. Since the quotient coincides with V/Λ and the canonical projection
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with π, we obtain that π a covering map and V/Λ is a complex manifold.
Thus, we obtain a family of compact complex tori.
In fact, for each b ∈ B, the fiber (V/Λ)b coincides with Vb/γbΛb ∼= (Cg/(1g Z(b))Z2g),
which is a compact complex torus of dimension g.
The map φ : V/Λ → B is proper, by Proposition 4.2.1, and a submersion, since locally it
is given by the composition πV ◦ π−1

| , where π| is the restrion of π to an open subset of V
over which is it a biholomorphism. The composite is a submersion, since composition of
submersions.
Finally, the function

σ̃ : B → V

defined by
b 7→ (b, 0) ∈ V

is holomorphic, since it is holomorphic componentwise, and a section of πV . Then,

σ := π ◦ σ̃

defines a holomorphic section of φ.
Let B = ∪i∈IUi be an open covering of B with Ui as in the previous part. Then,

V/Λ = φ−1(B) = φ−1(∪i∈IUi) = ∩i∈Iφ
−1(Ui) = ∩i∈IVUi/ΛUi

so that {VUi/ΛUi}i∈I is an open covering of V/Λ.
Since the restriction of π

π| : π
−1(VUi/ΛUi) → VUi/ΛUi

is a covering map, π is a covering map too.
Moreover, we can glue the VUi/ΛUi into a complex manifolds, since if i and j ∈ I are such
that Ui ∩ Uj 6= ∅, then we define the function

φij : (VUi/ΛUi)Ui∩Uj → (VUj/ΛUj )Ui∩Uj

as the unique biholomorphism making the following diagram commutative

(ΛUi)Ui∩Uj (VUi)Ui∩Uj (VUi/ΛUi)Ui∩Uj

(ΛUj )Ui∩Uj (VUj )Ui∩Uj (VUj/ΛUj )Ui∩Uj

γ

' '

π

φij'

γ π

where the vertical isomorphisms are given by the cocycles defining Λ and V .
For every b ∈ B there exists Ui such that b ∈ Ui, so that the fiber over b is a compact
complex torus of dimension g, by previous part.
Since the properties of properness and being a submersions are local, on B and on X,
respectively, by the first part of the proof, φ is proper and a submersion.
Finally, we can glue the zero sections σi defined on Ui into a global section σ defined on B
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because the functions φij preserve the origins. In fact, if b ∈ Ui∩Uj , the previous diagram
yields a comutative diagram

Vb Vb/γb(Λb)

Vb Vb/γb(Λb).

'

πb

φij'

πb

Since the vertical isomorphism Vb Vb
' is C-linear and πb(0) = 0, φij(0) = 0 by

commutativity.

4.3 Equivalence of categories for families of compact com-

plex tori

Let TB be the category whose objects are the compact complex tori of dimension g over
B and morphisms are the morphisms of compact complex tori over B preserving origins.
Let HB be the category whose objects are the triple (Λ, V, γ), where Λ is a locally constant
B-Lie group with structural group Z

2g, V is a holomorphic vector bundle of rank g and
γ : Λ → V is a morphism of B-Lie groups with the property that, denoted by γb : Λb → Vb
the map induced by γ, for any b ∈ B, then

γbR : Λb ⊗Z R → VbR

is an isomorphism of R-vector spaces (VbR is just Vb viewed as an R-vector space), and
a morphism φ : (Λ, V, γ) → (Λ

′
, V , γ

′
) is given by a couple (φ1, φ2), where φ1 : Λ → Λ

′
is

a morphism of B-groups and φ2 : V → V
′
is a morphism of holomorphic vector bundles,

such that they make the following diagram

Λ V

Λ
′

V
′

γ

φ1 φ2

γ
′

commutative.
We define FB : TB → HB in the following way: let (X,φ, σ) be a family of compact

complex tori over B. To it, we associate the object FB(X) = (Λ, V, γ), where:

• Λ is the locally constant B-Lie group associated to the Z-local system R1φ∗ZX on
B.
Let U ⊆ B be a contractible open subset over which X is topologically trivial and
0 ∈ U . Then, the canonical map π : Λ → B yields the projection onto the first factor

U ×H1(X0;Z) U.π|

Then, for b ∈ U , the natural isomorphism induced by the inclusion of b in U

j−1
b∗

◦ j0∗ : H1(X0;Z) H1(Xb;Z)
'
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(the fact that jb∗ and j0∗ are isomorphisms can be proved by the same argument we
used at the level of cohomologies) yields an isomorphism

Λb H1(Xb;Z).
'

• V is the dual of the holomorphic vector bundle associated to the sheaf φ∗Ω
1
X/B;

• the map
γ : Λ → V

is defined by sending
(b, [σb]) 7→ (b, γXb

([σb]))

for all b ∈ B, [σb] ∈ H1(Xb;Z), where γXb
: H1(Xb;Z) → H0(Xb,Ω

1
Xb

)∨ is the
morphism of Proposition 1.4.2.

We will denote the map γ also by γX , to specify it is associated to the family X → B.

If φ : X → B and φ
′
: X

′
→ B are families of compact complex tori and f : X → X

′
is

a morphism in TB, let
φ̃1 : R1φ∗ZX → R1φ

′

∗ZX
′

and
φ̃2 : (φ∗Ω

1
X/B)

∨ → (φ
′

∗Ω
1
X

′
/B

)∨

be the morphisms induced by f at the level ol sheaves. These yield morphisms

φ1 : Λ → Λ
′

of B-Lie groups and
φ2 : V → V

′

of holomorphic vector bundles over B. We define F (f) = (φ1, φ2).

Let U ⊆ B be an open subset. If we fix coordinates of XU and, for any b ∈ B,
ω1,b, . . . , ωg,b generators of Xb, then γX has the form:

γX(b, [σb]) 7→

(

b,

(
∫

σb

ω1,b, . . . ,

∫

σb

ωg,b

))

for all b ∈ B, [σb] ∈ H1(Xb;Z).

Theorem 4.3.1. If φ : X → B is a family of compact complex tori of dimension g, then
the map γX is holomorphic.

Proof. Fix U ⊆ B an open subset such that it is contractible and X is topologically trivial
over U . Let

T : XU X0 × U'

be the diffeomorphism of Ehresmann Theorem. Fix Φ an isomorphism

Φ: Z2g H1(XU ;Z)
'
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and let [ai] := Φ(ei), for i = 1, . . . , 2g, where ei is the element of Z2g that has 1 in the i-th
component and 0 in the other ones. For b ∈ U , let [ai(b)] be the image of [ai] through the
isomorphism

H1(XU ;Z) H1(Xb;Z)
j−1
b∗

'

induced by the inclusion

Xb XU .
jb

By shrinking U if necessary, it is possible to construct mappings α1, . . . , α2g : S
1×U → XU

such that:

• α1, . . . , α2g are continuous;

• they make the following diagram

S
1 × U XU

U

pr2

α1...α2g

φ

commutative;

• for each b ∈ U , the map
αib : S

1 → XU

defined by
θ 7→ αi(θ, b)

is a piecewise smooth representative of [ai(b)], for all i = 1, . . . , 2g;

• for each θ ∈ S
1, the map

αiθ : U → XU

defined by
b 7→ αi(θ, b)

is holomorphic, for all i = 1, . . . , 2g (this is a consequence of implicit function theo-
rem, so it is important that the morphism φ is a submersion)

This construction is a generalization of [15, 14] for g ≥ 1.
Then, basic calculus implies that

∫

αib

ωj,b

vary holomorphically with b ∈ U , for i = 1, . . . , 2g, j = 1, . . . , g, where ω1, . . . , ωj are
holomorophic sections of H0(U, φ∗Ω

1
X/B) whose restrictions ω1,b, . . . , ωg,b to H

0(Xb,Ω
1
Xb

)
are linearly independent over C.
Fix ωj , for some 1 ≤ j ≤ 2g. The integral

∫

σb

ωj,b
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vary holomorphically with b ∈ U . In fact, there exist n1, . . . , n2g ∈ Z such that

[σb] = n1[α1b ] + · · ·+ n2g[α2gb ]

since the [αib ]’s generate H1(Xb;Z), so that

∫

σb

ωj,b = n1

∫

α1b

ωj,b + · · ·+ n2g

∫

α2gb

ωj,b

varies holomorphically with b ∈ U , since sum of terms varying holomorphically with b ∈ U .
From this, it follows that

[σb] 7→

(
∫

σb

ω1,b, . . . ,

∫

σb

ωg,b

)

varies holomorphically with b ∈ B. Thus γX(b) vary holomorphically with b ∈ B.

Proposition 4.3.1. FB : TB → HB is a functor.

Proof. Let φ : X → B be a family of compact complex tori and consider FB(X) = (Λ, V, γ).
In order to prove that FB(X) ∈ HB, we only have to show that γ satisifes the necessary
properties.
It is a morphism of B-groups. In fact, since γ is defined fiber by fiber, it makes the
following diagram

Λ V

B

commutative. It is holomorphic by the Theorem 4.3.1 and it can be checked that the
induced map

γ(T ) : Λ(T ) → V (T )

is a group homomorphism and functorial in T , for any complex manifold T over B.
Finally, the induced map γb : Λb → Vb yields an isomorphism

γbR : Λb ⊗Z R VbR
'

for any b ∈ B, by Proposition 1.4.2.
Thus, FB(X) defines an object in TB.
If φ : X → B and φ

′
: X

′
→ B are families of compact complex tori and f : X → X

′
is a

morphism in TB, we have to show that, if FB(f) = (φ1, φ2), the diagram of B-Lie groups’
morphisms

ΛX VX

ΛX′ V
′

γX

φ1 φ2

γ
X

′
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is commutative. This is true since, for every b ∈ B, it coincides with the commutative
diagram

H1(X;Z) H0(X,Ω1
X)

∨

H1(X
′
;Z) H0(X

′
,Ω1

X′)∨.

γ

H1(f) H0(f)∨

γ
′

Finally, in order to be a functor, F has to preservers composition of morphisms and
identities. This is the case, by functoriality of the construction.

4.3.1 The Albanese map on families of compact complex manifolds

Let φ : X → B be a family of compact complex manifolds such that, for each b ∈ B, Xb is
a compact complex manifold satisfying Hodge decomposition in degree 1.
Fixed base points xb ∈ Xb for every b ∈ B, one defines the Albanese map on the family
φ : X → B

alb: X → (φ∗Ω
1
X/B)

∨/R1φ∗ZX

fiber by fiber, by
x 7→ albxb(x), if x ∈ Xb

where we identify the sheaves φ∗Ω
1
X/B, R1φ∗ZX with the associated B-Lie groups and

R1φ∗ZX with its image under the morphsm γ : R1φ∗ZX → (φ∗Ω
1
X/B)

∨.

Lemma 4.3.1. Let X → B and Y → B be biholomorphic submersions between complex
manifolds, and f ∈ Y (X) such that the induced map fb : Xb → Yb between fibers is a
biholomorphism, for every over b ∈ B. Then f is a biholomorphism.

Proof. Since f is a biholomorphism on each fiber, it is bijective. So ti suffices to prove that
it is a local isomorphism. By the holomorphic inverse function theorem, it is equivalent to
prove that for each b ∈ B and for each x ∈ Xb, the map induced on the complex tangent
spaces Jf(x) : TxX → Tf(x)X is an isomorphism.
Let b ∈ B and x ∈ Xb. Since the maps X → B and Y → B are submersions, the induced
maps on the complex tangent spaces

TxX → TbB, Tf(x)Y → TbB

are surjective and the respective kernels are identified with TxXb and Tf(x)Tb. By func-
toriality of derivaties (i.e. the Chain Rule), the map Jf(x) commutes with the quotient
maps onto TbB and carries TxXb to Yf(x)Yb via Jfb(x). That is, we have a commutative
diagram of exact sequences

0 TxXb TxX TbB 0

0 Tf(x)Yb Tf(x)Y TbB 0.

Jfb(x) Jf(x) IdTbB

But fb is an isomorphism by hypothesis, so the left arrow is an isomorphism and hence so
is the middle arrow, by Five-Lemma [16, 98].
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Proposition 4.3.2. Let (X,φ, σ) be a family of compact complex tori over B. The Al-
banese map on this family

albσ : X → (φ∗Ω
1
X/B)

∨/R1φ∗ZX

defined by
x 7→ albσ(φ(x))(x)

is an isomorphism of families of compact complex tori.

Proof. To prove holomorphicity, fix 0 ∈ B and y ∈ X0. Let U be an open neighborhood
of 0 and ω1,0, . . . , ωg,0 be holomorphic one-forms on X0, as in Theorem 4.3.1.
Then, for all b ∈ U and x ∈ Xb,

albσ(x) = albσ(b)(x) =

(
∫ x

σ(b)
ω1,b, . . . ,

∫ x

σ(b)
ωg,b

)

mod Λb

where

Λb :=

{(
∫

σb

ω1,b, . . . ,

∫

σb

ωg,b

)

: [σb] ∈ H1(Xb;Z)

}

.

There exists an open neighborood V of y, with V ⊆ XU , such that, for all x ∈ V , there
exists a path

γx : [0, 1] → Xφ(x)

with
γx(0) = σ(φ(x)), γx(1) = x

piecewise smooth and varying holomorphically with x ∈ V .
Since ω1,b, . . . , ωg,b vary holomorphically with b ∈ U and φ is holomorphic, they vary
holomorphically with x ∈ V . Thus, by elementary calculus

x 7→

(
∫

γx

ω1,φ(x), . . . ,

∫

γx

ωg,φ(x)

)

varies holomorphically with x ∈ V . By shrinking U if necessary, by Theorem 4.3.1,
∫

σb

ω1,b, . . . ,

∫

σb

ωg,b, for [σb] ∈ H1(Xb;Z)

vary holomorphically with b ∈ U , thus the lattices Λφ(x) vary holomorphically with x ∈ V .
Since albσ(φ(x)) does not depend on the path connecting σ(φ(x)) and x, we obtain

albσ(x) =

(
∫

γx

ω1,φ(x), . . . ,

∫

γx

ωg,φ(x)

)

mod Λφ(x)

which varies holomorphically with x ∈ V .
We now establish the existence of V and γx. Since φ : X → B is a submersion, by
holomorphic implicit function theorem, there exists an open neighborhood V ⊆ XU of y
and a biholomorphism to a product

h : V φ(V )× V
′'
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over φ(V ). Thus, h = (φ, h1), with h1 : V → V
′
holomorphic. By passing to local charts,

we can suppose that V , φ(V )× V
′
are subset of Cn, for n = dimX.

If σ(φ(x)) ∈ V , we define
γ : [0, 1]× V → φ(V )× V

′

by
(t, x) 7→ (φ(x), th1(x) + (1− t)(h1 ◦ σ ◦ φ)(x)).

This is continuous, since continuous in each component, and the map

γt : X → φ(V )× V
′

defined by
x 7→ γt(x) = γ(t, x)

is holomorphic, for all t ∈ [0, 1]. Thus the path

γx := h−1(γ(−, x)) : [0, 1] → X

satisfies the required properties.
If σ(φ(x)) /∈ V , we can fix a path connecting σ(φ(x)) and x. By compactness, we can
cover it by finitely many open subsets Vi of X, for i = 1, . . . ,m, to which we can apply
holomorphic implic function theorem. We fix yi ∈ Vi ∩ Vi+1, for i = 1, . . . ,m − 1, y0 =
σ(φ(x)) and ym = x, and in each Vi we construct a path γi as before, connecting yi−1 and
yi, for i = 1, . . . ,m. By gluing the γi’s, we obtain a path γ piecewise smooth, connecting
σ(φ(x)) and x and varying homomorphically with x ∈ V .

This is a morphism over B, since it is defined fiber by fiber, and it preserves the zero
sections, since, by C-linearity, it preserves the origins fiber by fiber.
It is a biholomorphism by Lemma 4.3.1, because it is holomorphic and its restriction to
Xb is the biholomorphism albσ(b), for all b ∈ B.

4.3.2 Equivalence of categories

We define a functor GB : HB → TB on the objects by G(Λ, V, γ) = V/Λ, on the morphisms
in the natural way: let

(φ1, φ2) : (Λ, V, γ) → (Λ
′
, V

′
, γ

′
)

be a morphism in HB, to it we associate the unique morphism of complex manifolds

φ : V/Λ → V
′
/Λ

′

making the following diagram

V V
′

V/Λ V
′
/Λ

′

φ2

π1 π2

φ

commutative, where π1 : V → V/Λ and π2 : V
′
→ V

′
/Λ

′
are the natural projections.

In this way, we define a functor.
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In fact, if (Λ, V, γ) ∈ HB, then, by Proposition 4.2.2, V/Λ → B is a family of complex tori
of dimension g over B.
If

(φ1, φ2) : (Λ, V, γ) → (Λ
′
, V

′
, γ

′
)

is a morphism in HB, then the morphism φ : V/Λ → V
′
/Λ

′
exists and it is unique, since

π2 ◦ φ2 preserves the fibers of π1, and it is holomorphic, since its composition with the
local biholomorphism π1 (it is holomorphic and locally invertible, because it is a covering
map) is π2 ◦ φ2, which is holomorphic since composition of holomorphic functions.
By the condition that φ2, π1 and π2 are morphisms of B-groups, it follows that also φ is
a morphism of B-groups. Thus, for every b ∈ B, there is a commutative diagram

Vb V
′

b

Vb/γb(Λb) V
′

b /γ
′

b(Λ
′

b)

φ2b

π1b π2b

φb

.

Since φ2b , π1b and π2b respect the origins ( φ2b because is C-linear, since φ2 is a morphism
of holomorphic vector bundles, π1b and π2b by definition), it follows that φb preserves the
origins for every b ∈ B. Thus, it preserves the zero sections.

Theorem 4.3.2. (FB, GB) is an equivalence of categories between TB and HB.

Proof. We will prove that GB is a quasi-inverse of FB.
In the same notations of Proposition 4.3.1, for X ∈ TB, we have

X ∼= (GB ◦ FB)(X) in TB

via the Albanese map on families of compact complex tori.
For (Λ, V, γ) ∈ HB, we have

(Λ, V, γ) ∼= (F ◦G)(Λ, V, γ) = ((φ∗Ω
1
X/B)

∨, R1φ∗ZX , φγ) in HB (4.1)

where X := V/Λ. Let us prove the isomorphism in (4.1).
Let σ and σ

′
be the zero sections of φ : V/Λ → B and φ

′
: φ∗Ω

1
X/B/R1φ∗ZX → B, respec-

tively, and

albσ : V/Λ (φ∗Ω
1
X/B)

∨/R1φ∗ZX
'

be the Albanese isomorphism.
Let b ∈ B, 0V ∈ V and 0φ∗ ∈ φ∗Ω

1
X/B be such that π(0V ) = σ(b) and π

′
(0φ∗) = σ

′
(b),

where π : V → V/Λ and π
′
: (φ∗Ω

1
X/B)

∨ → (φ∗Ω
1
X/B)

∨/R1φ∗ZX are the canonical projec-
tions. Since

albσ(π(0V )) = albσ(b)(σ(b)) = σ
′
(b) = π

′
(0φ∗)

covering space theory implies that there exists a unique continuous map

φ2 : (V, 0V ) → ((φ∗Ω
1
X/B)

∨, 0φ∗)
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making the following diagram

(V, 0V ) ((φ∗Ω
1
X/B)

∨, 0φ∗)

(V/Λ, σ(b)) ((φ∗Ω
1
X/B)

∨/R1φ∗ZX , σ
′
(b))

φ2

π π
′

albσ

commutative.
It is a isomorphism of holomorphic vector bundles over B:

• It is holomorphic: locally π
′
is a biholomorphism (since it is a covering map), thus,

locally, φ2 is given by the composition (π
′

|)
−1 ◦ albσ| ◦ π|, which is holomorphic since

composition of holomorphic functions (here π
′

| , albσ|, π| denote the restrictions of

π
′
, albσ, π to open subsets over which they are biholomorphisms);

• Commutativity of the previous diagram and the fact that albσ is a morphism over
B, imply that φ

′
◦ φ2 = φ;

• for all b ∈ B, the map induced by albσ on the fibers is the morphism of compact
complex tori albσ(b). By uniqueness of the lift, the map induced by φ2 has to be
equal to the analytic representation ρa(albσ(b)). Thus,

φ2b : Vb → (φ∗Ω
1
X/B)

∨
b

is C-linear, for all b ∈ B;

• since φ2 is holomorphic and φ2b = ρa(albσ(b)) is an isomorphism, for all b ∈ B, φ2 is
a biholomorphism by Lemma 4.3.1.

Consider the restriction of φ2 to γ(Λ). It induces an isomorphism of B-Lie groups

φ2| : γ(Λ) φγ(R1φ∗ZX).
'

In fact, φ2| is a morphism of B-Lie groups from γ(Λ) to its image, because it is the
restriction of a morphism of B-Lie groups. Since, for all b ∈ B, the restriction of φ2b to
(γ(Λ))b = γb(Λb) is the isomorphism

ρr(albσ(b)) : (γ(V/Λ))b = γb(Λb) φγb(H1(Vb/Λb);Z) = (φγ(R1φ∗ZX))b
'

we deduce that the image φ2|(γ(Λ)) is φγ(R1φ∗ZX) and φ2| is an isomorphism, since holo-
morphic and biholomorphic on each fiber.
The B-Lie groups morphisms γ : Λ → γ(Λ) and φγ : R1φ∗ZX → φγ(R1φ∗ZX) are isomor-
phisms, because holomorphic and isomorphisms fiber by fiber. Then, we define

φ1 := γ−1
X ◦ φ2| ◦ γ : Λ → R1φ∗ZX .
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It is an isomorphism of B-Lie group, since composition of isomorphisms of B-Lie groups.
Moreover, since the following diagram

V (φ∗Ω
1
X/B)

∨

Λ R1φ∗ZX

'

φ2

φ1

'

γ φγ

is commutative, (φ1, φ2) yields an isomorphism in HB.
By functoriality of R1φ∗ZX and φ∗Ω

1
X/B and the naturality of the isomorphisms in (4.1),

it follows that the isomorphisms X ∼= (GB ◦ FB)(X) and (Λ, V, γ) ∼= (FB ◦ GB)(Λ, V, γ)
are functorial in X and (Λ, V, γ), yielding the isomorphisms of functors

IdTB
∼= GB ◦ FB and IdHB

∼= F ◦G.
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