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Introduction

A compact complex torus of dimension g is a complex Lie group isomorphic to V/A, where
V is a C-vector space of dimension g and A is a lattice in V.

Although all compact complex tori of dimension g are isomorphic in the category of real
differentiable manifolds (to the product (S')29), they can have non-isomorphic structures
of complex manifolds.

As common in algebraic geometry, it is possible to simplify the study of compact complex
tori using a categorical approach. One possibility is through a functor F': T — H yielding
an equivalence of categories between T, the category of compact complex tori of dimension
g, and H, the category of triples (A, V,~), where A is a free Z-module of rank 2¢g, V is a
C-vector space of dimension g and v: A — V is a lattice inclusion.

This is important for several reasons.

The first reason is that the treatment of compact complex tori under the categorical point
of view allows us to focus our attention more on the relations and morphisms between
them, rather then on the objects themselves.

The second reason is that an equivalence between 7 and H implies that the two categories
satisfy the same properties. So, in order to understand compact complex tori, it is enough
to understand H, that is an easier category to handle.

The aim of this thesis is to extend F' to a functor Fg: Tg — Hp yielding an equivalence
of categories between Tp, the category of families of compact complex tori of dimension g
over a fixed complex manifold B, and Hp, the category of triples (A, V, ), where A is a
locally constant B-Lie group with structural group Z29, V is a holomorphic vector bundle
of rank g over B and «v: A — V is a morphism of B-Lie groups, such that it yields a lattice
inclusion fiberwise. If B is just a point, the categories Tp and Hp coincide with T and H.

In Chapter 1 we study compact complex tori and define F', as particular case of the more
general theory. We begin by defining and proving some properties of lattices and complex
Lie groups, then we deal with de Rham Theorem and Hodge decomposition in degree 1
for compact complex tori.

In Chapter 2 and Chapter 3 the goal is to present prerequisities for Chapter 4. More
precisely:

in Chapter 2 we begin by stating Ehresmann theorem, then we apply it to families of
compact complex manifolds;



in Chapter 3, given a fixed complex manifolds B, we define B-Lie groups and discuss the
link between holomophic vector bundles over B and locally free Og-modules of finite rank.

In Chapter 4 we generalize the results of Chapter 1 to families of compact complex tori.
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Chapter 1

Compact complex tori

We begin this chapter by defining lattices and stating a characterization of them.

Then, we define complex Lie groups and show how to define a complex manifold’s structure
on a quotient by a discrete group’s action. In particular, we will study the quotient V/A,
where V is a finite dimensional C-vector space and A C V a lattice, acting on V by
translation.

We deal with cohomology, in order to prove de Rham Theorem and Hodge decomposition
in degree 1 for compact complex tori.

Finally, we define the functor F': 7 — H and prove it yields an equivalence of categories.

1.1 Lattices

Definition 1.1.1. A subgroup A of a finite dimensional real vector space V is a lattice if
it is discrete and cocompact in V.

Proposition 1.1.1. A subgroup A of a finite dimensional real vector space V is a lattice
if and only if A is a finitely generated abelian group such that every Z-basis A1, ..., A\ of
A is an R-basis of V.

In particular, if A is a lattice in V', then V/A is diffeomorphic to the real n-torus R"/Z™.

Proof. Let A be a subgroup of a finite dimensional real vector space V, with dimgrV =
n. Since V is a free abelian group, A is free and abelian too. Since there is a linear
isomorphism V = R"™ we can suppose A C R".

Suppose that every Z-basis A1, ..., A\, of A is an R-basis of R™. Then, we prove that A is
a lattice.

In fact, let A1,..., A, be a basis of A and f: R™ — R"™ be the linear isomorphism defined
by f(e;) = \i, for i = 1,...,n, where ey,...,e, denotes the canonical basis of R”. Then,
f induces a commutative diagram of abelian groups

YAl R™
le |z le
A R"™
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with exact rows, where the arrows A — R" and Z" — R" are the inclusions, fiz» is
the restriction of f to Z™. By commutativity, the diagram induces an isomorphism
f:R"/Z" — R"/A at the level of Cokernels. At the level of topological spaces, f is
an homeomorphism, so that fiz» and f are homeomorphisms too. Then, A C R" is a
lattice because it is discrete, since Z" is discrete, and R™/A is compact, since R"/Z" is
compact.

To conclude, we prove compactness of R"”/Z"™. Since [0, 1]" C R" is compact and a funda-
mental set for Z", R"/Z" is compact too.

Conversely, suppose that A is a lattice. Then, we prove that every Z-basis A1,..., A\, of A
is an R-basis of R"™.

This is due to the following theorem:

Theorem 1.1.1. Let A C R"” be a discrete subgroup of R™. Then, there exist \,..., Ay €
A linearly independent over R (so that m < mn) such that

A= é ZX;.
i=1

Moreover, A is cocompact if and only if n = m.

Proof. Let A CR"” be a discrete subgroup. If V= A ®z R C R", then
R"/A=ZV/A®R"/V. (1.1)

Once the first statement of the theorem is proved, in order to prove the latter one we
fix A1,..., Ay, generators of A linearly independent over R, so that V' = @ R\;. Then,
V/A = R™/Z™ is compact and R"/V is an R-vector space of dimension n —m. By (1) we
conclude that A is cocompact if and only if n = m.
By (1.1), we can assume that V' = R"™. Let A" C A be the discrete subgroup generated
by a basis of R composed with elements of A. By definition A" 2 Z". Let us prove that
A/A s finite, so that A = Z™ and, as subgroup of R", it is necessarely generated by a
R-basis of R"™.
To conclude, let ' C R™ be a compact subset and a fundamental set for A". Note that
F' exists since [0, 1]" satisfies these properties for Z". Then, S = F'N A is compact (it is
finite) and surjects continuously in A/A". So, A/A" is finite because it is discrete (quotient
of a discrete set) and compact (image under a continuous map of a compact set).

O

Finally we deduce that the previous homeomorphism f: R*/A — R"/Z" is a diffeo-
morphism.
We fix z € R"/A, a local chart (U, ¢) of R"/A, with € U, and a local chart (V,4) of
R"/Z", with f(z) € V and ¥(f(z)) = f(é(x)), where f is the homeomorphism defined
before. Computations show that the differential D() o f 0 ¢71)(¢(z)) = A, where A is

the matrix associated to f. Then, f is a diffeomorphism because A € GL,(R) and all the
transition maps of the atlas of R”/A and R"/Z"™ are C°°-maps. O



1.2 Complex Lie groups

Definition 1.2.1. Let G be a group and a complex manifold at the same time. Then G
is called a complex Lie group if the map G x G — G, (x,y) — -y~ is holomorphic.

Definition 1.2.2. Let G and H be complex Lie groups. A morphism of complex Lie groups
from G to H is a map f: G — H such that f is holomorphic and a group homomorphism.

1.2.1 Quotients by a discrete group

Let X be a topological space and let G be a group that acts continuously on X, i.e. there
exists an action G x X — X such that, for any ¢ € G, the induced map ¢g: X — X is
continuous.

We will denote this action by g -z, for all g € G, z € X.

The quotient space (or orbit space) X/G is endowed with a topology such that the pro-
jection map X — X/G is continuous, by saying that V' C X/G is open if and only if
7~ 1(V) C X is open.

Definition 1.2.3. Consider the following two properties:

i. for all z € X, there exists an open neighborhood Q of v in X such that g-QNQ =0,
forall1g # g € G;

i1. for all (x,x/) eXxX, ¢ G - x, there are open neighborhoods Q0 and Q' of z and
z, respectively, such that g-QNQ =0, for all g € G.

The action of G on X is free and discontinuous (resp. free and properly discontinuous) if
it satisfies i. (resp. i. and ii.).

Definition 1.2.4. Let X be a complex manifold and G be a complex Lie group. The action
of G is holomorphic if the map G x X — X is holomorphic.

In particular, if the action of a complex Lie group G on a complex manifold X is
holomorphic, then, for all g € G, the induced map ¢g: X — X is biholomorphic.
In order to prove this, fix g € G. Then, the induced map g: X — X is holomorphic.
This is a biholomorphism since the map induced by ¢~': X — X is the inverse of the map
induced by g.

Proposition 1.2.1. Let X be a complex manifold and G be a discrete group, whose
action on X is holomorphic, free and properly discontinuous. Then, the quotient X/G is
a complex manifold in a natural way and the quotient map w: X — X /G is holomorphic.

Proof. By covering space theory [1, 164-166], X/G is Hausdorff and 7: X — X/G is a
covering map. Then, there exists an open covering X = (JU; by charts (U;, ¢;) such
that g - U; N U; = 0, for all 1g # g € G. Hence, the restriction 7y, : U; — 7(U;), of
7 to U;, is bijective and 7(U;) is open in X/G, since 71 (7 (U;)) = Uyec g - Ui (where
| | denotes that the union is disjoint). Thus, holomorphic charts for the quotients are
given by (7(U;),; := ¢; o (W‘W(Ui))_l). Indeed, for 4, j the transitions functions v;; :=
;o wj_lz Y;(U; NU;) — ¢3(U; N Uj) are holomorphic. In fact, if ¢ and j are such that
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m(U;) Nw(Uj) # 0, there exist V; C U; and V; C Uj such that =(V;) = 7(V}), so that there
exists g € G such that g - V; = V;. Then, we have a diagram

B m(Ui) N7 (Uj)

WV wi))l

v : A
¢jJ/3 Zi%
¢;(Vj) ¢i(Vi)

in which the triangle commutes. Hence, v;; is holomorphic since it is equal to ¢; o go qﬁj_l.
Finally, we show that 7: X — X/G is holomorphic.

We fix € X, a local chart (U;, ¢;) of X, with x € U;, and (7(U;), ;) as local chart of
m(x) € X/G. Then, 1); owogb;l =¢;0 (7T|7F(Ui))_1 oo gb;l = Idy,(v;)- Since ¢; owoqﬁ;l is
holomorphic and all the transition maps of the atlas of X and X/G are holomorphic, we
conclude that 7: X — X/G is holomorphic. O

1.2.2 Example

Let V' be a complex vector space of finite dimension and A C V be a lattice, acting on V'
by translation. Then, the quotient V/A is a complex Lie group. In fact:

i. V/A is a complex manifold.
In fact, A is discrete and its action on V is free and properly discontinuous. Then,
by Proposition 1.2.1, V/A is a complex manifold.

ii. V/A is a complex Lie group.
Let m: VxV — V be the map on V defined by (z,y) — z—y, for all z, y € V. This
is holomorphic because V is a Lie group, since if we fix coordinates of V the map
m is defined on C", for n = dim¢V, which is a complex Lie group. The composite
mom is constant on each fiber of the projection h: V x V. — V/A x V/A, because 7
is a group homomorphism. Then, there exists a unique continuous map 7™ making
the following diagram

VxV —"—V T35 V/A

V/A X V/A

commutative.

Finally, we prove that 7 is holomorphic.

As in the proof of Proposition 1.2.1, fix an open covering V' = | JU; by charts (U;, ¢;)
such that {(m(Us), ;) }s is an atlas of V/A, with ¢ := ¢ o (mz(y,)) " for all i. In
particular, {(U; x Uj, ¢; X ¢;5) }i; is an atlas of V xV and {(7(U;) x w(Uj), ¥i x ;) }i 5
is an atlas of V/A x V/A.

11



Fix m(x), n(y) € V/A, local charts (7 (U;),v;) and (7w(Uj),;) of V/A, with z €
Ui, y € Uj, and (w(Uy),¢r) as local chart of n(x —y) € V/A, with z —y € Uy.
Then, 1, om o (w;l X 1/);1) =¢gromo (gbfl X gb;l) is holomorphic. Since all the
transition maps of the atlas of V//A x V/A and V/A are holomorphic, we conclude
that m: V/A x V/A — V/A is holomorphic.

Lemma 1.2.1. Let V and V' be two C-vector spaces of finite dimension, A C V and
A c V' be two lattices, f: V/A — V' /A" be a holomorphic map such that f(0) = 0.
Then f is a morphism of complex Lie groups. Moreover, there exists a unique C-linear
map F:V — V' with F(A) C A" inducing f.

Proof. Note that (V,0) — (V/A,0) is a pointed universal covering of V//A. Covering space
theory [1, 158-161] implies that there exists a unique continuous map F': (V,0) — (V',0)
making the following diagram

(V,0) —E— (v',0)

ﬂ &
(V/A,0) —— (V'/A',0)
commutative, where m and 7 are the canonical projections. It is holomorphic. In fact,

locally 7 is a biholomorphism (since it is a covering map), thus, locally, F' is given by
the composition (7r‘/)_1 o f| o m, which is holomorphic since composition of holomorphic

functions (here 7r‘/, f» m| denote the restrictions of 7, f, 7 to good open subsets).
Commutativity of the diagram implies that

fo+A) =F@w) +A, vV veV.
The result will follow if we show that F' is C-linear. For all A € A, define
BV =V

by
v Fy:=Fv+\)—-F), V veV.

We note that F) is continuous, since F' is continuous, and that its image is contained in A/,
by commutativity of the previous diagram. Since V is connected, F\ has to be constant.
We compute the constant in v = 0:

F\(0) = F(\) + F(0) = F()).

Thus, for all v € V, A € A, F(v+ \) = F(v) + F(X). This implies that the derivatives of
F' are periodic, hence constant by Liouville’s Theorem [2, 4], so that F' is C-linear. O

Let X =V/A, X =V'/A.
Denote by Hom(X, X /) the set of morphisms of complex Lie group from X to X " We
endow Hom(X, X') with a structure of abelian group (Hom(X, X'),+) by defining

(f+9)(z)=f(z)+g(x), forall zeX

12



for all f, g € Hom(X,X").

Let Home(V, V') be the C-vector space of C-linear morphisms from V to V' and Homg (A, A")
be the abelian group of Z-linear morphisms from A to A’.

We define p, the analytic representation of Hom(X, X/)

pa: Hom(X, X') = Home(V, V')

by sending
f—F.

This is well defined by Lemma 1.2.1.
The uniqueness part of the Lemma implies that it is injective and a group homomorphism.
We define p, the rational representation of Hom(X,X')

pr: Hom(X, X') — Homgz(A, A)

by sending
f — F‘|A-

By Lemma 1.2.1, F(A) C A" and F is C-linear, thus the restriction is well defined and is
Z-linear.
This is a group homomorphism since p, is a group homomorphism and we have

pr(f +9) = pa(f + 9)a = (pa(f) + pa(9))1a = Pa(f)a + Pa(9)1a = pr(f) + pr(9)

for f and g € Hom(X, X').
It is injective because if f and g € Hom(X, X') are such that p,(f) = p,(g), then

pa(f)ia = pa(9)a = pa(f) = palg) = f = 9.

The first arrow follows from the fact that p,(f) is uniquely determined by the image of A,
because A generates V' as R-vector space and p,(f) is R-linear, since it is C-linear. The
second arrow follows from injectivity of p,.

1.2.3 Compact complex tori

Definition 1.2.5. A compact complex torus of dimension g is a complex Lie group iso-
morphic to V/A, where V is a C-vector space of dimension g and A is a lattice in V.

By Lemma 1.2.1 it follows that if ¢: X — X is a holomorphic map between complex
tori such that ¢(0x) = 0, then it is a morphism of complex Lie groups.

Proposition 1.2.2. If X is a compact complex torus of dimension g, then
Z2g = 7T1(X, *) i) H1(X;Z).
Proof. By Proposition 1.1.1 it follows that, as differentiable manifolds,

X 2R"/2" = (R/Z)" = (S")*

13



so that
(X, %) = (Y%, %) = my (S, %)29 = 729,

By Hurewicz theorem [4, 80-84]
(X, %) = H(X;Z) .

Since 71 (X, %) is abelian, 71 (X, *)ab = 71 (X, *) and, then, we obtain the conclusion. [

Let X be a compact complex torus.
We want to compute generators of Hq(X;Z) and then, by tensoring with — ®z R, also of
H(X;R)=H(X;Z) @z R.
We fix a diffeomorphism ¢: X = (S1)29, so that it induces a group isomomorphism
fe: Hi(X;Z) = H1((SY)?9;Z). Thus, it is enough to compute generators of Hy((S')29;7Z).
For 1 < i < 2g, let p;: (S1)%9 — S! be the projection to the i-th component of the direct
product. By homotopy theory [3, 76-77], we have the isomorphism

771((81)29’ *) — Wl(Sla *)29
induced by the projections {p;}1<i<24. Combining this with Hurewicz’s map, we obtain

Hi((sh)29;2) 2,

H\(S%Z)%

where, for all 1 < i < 2g, p;, is the map induced by p; at the level of homologies.
Then, fixed a: [0,1] — S! a path such that [a] generates H;(S';Z), the paths

;i [0,1] = (SH%9, i=1,...,29

defined by
(pjoai)(t) =0, a(t), forall 1<i,j<2g

are such that their equivalence classes [a1],. .., [ag,] generate H;((S')%9;7Z).

Definition 1.2.6. A framed compact complex torus is (X, ¢), where X is a compact
complex torus and ¢ is an isomorphism ¢: Hy(X;Z) = 729.

1.3 De Rham Theorem

1.3.1 Smooth singular homology

Let X be a differentiable manifold and A be a commutative ring. Let S, denote the
singular chain complex of X with coefficients A

5+1 1)
> Spr1 —— Sp —— Spog —— ...

14



For p € N, let ngo‘)th be the free group over A generated by the simplexes 0: A, — X,
such that there exists an open neighborhood U C RP of A, such that o is the the restriction

of a smooth function &: U — X. Denote by SmeOth the chain complex

55’ 68
smooth __ P+l smooth P smooth
L Sypeth 1 g8 — s Ggmeeth —— .

where the maps 4, are given by the restriction of d,, for all p € N. The natural inclusion
S;moom (X) = Sp(X), for all p € N, induces a diagram

o2 63
smooth __Pt1 smooth r smooth
. —— Gomooth HL, gemooth _ P, gemooth __,

[ [ [

6p+1 5?
. Spy1 > Sp > Sp1 —— ...

in which every square commutes. Then, by [5, 291] the chain map
S (X) s 5. (X)
given by the inclusion, induces an isomorphism of A-modules

Hemooth(X3 A) —=— H,(X; A).

1.3.2 De Rham pairing

Let X be a differentiable manifold.
We define a map
Hy(X;R)"™ " x Hip (X;R) - R

by
w]) — / w

g
for all [w] € Hp (X5R) and [o] € Hy(X;R)*™".
This map is well-defined. In fact, for [o] € Hy(X;R)*™°" and [w] € dR(X R), the
integral does not depend on the representatives of [o] and [w]:
if we choose o + 0o as representative of [o], then

/ w—/w+/w—/w+/dw—/
o+é01 doy

because [5, w = [ dw, by Stokes’ Theorem (6, 67-269], and [ dw = 0, since w is closed.
If we Choose w + dwl as representative of [w], then

o forfo e o -

because [ dw; = [; w1, by Stokes, and [;_wi = 0, since o is closed.
Since this map is bilinear, this yields an R-linear map

Hi(X;R)™" @ Hip (X;R) = R.

15



Remark 1.3.1. It is important to notice that the isomorphism
v Hi(X;R)smooth =5 [ (X;R)

allows us to define integrals of elements [w] € HcliR(X;R) along [v] € H1(X;R) by

fom

where ([7]) = [o]. We will always use this convention.

Then we define the bilinear map
U: Hi(X;R) @p Hip (X;R) - R
by
(ol k)~ [ o
for all [w] € HcllR(X;R) and [o] € H1(X;R).
In particular, ¥ induces the R-linear maps

Uy Hy(X;R) = Hip (X;R)Y := Homg(HjR (X;R), R)

defined by
[o] — / for all [o] € Hi(X;R)
and
Uy: Hip (X;R) = H'(X;R) = Homg(H; (X;R), R)
defined by

[w] / w forall [w]e Hjp(X;R).

1.3.3 Invariant forms
Let X be a differentiable manifolds.

Definition 1.3.1. The translation by an element xg € X is defined to be the holomorphic
map tg: X = X, 2 — x + xp.

Let AY(X) be the sheaf of 1-forms on X (see Def. [7, 282])

Definition 1.3.2. We define the R-subvector space over of the invariant forms of A'(X)
as
IF(X):={wc AAX) : tlw=w V zcV}

where tiw is the pull back of w under t,, the translation by z.
Proposition 1.3.1. If X is a differentiable manifold, then the R-vector spaces IF(X)
and Homg (ToX,R) are isomorphic, where ToX is the tangent space at the point 0 € X .

16



Proof. Since every element of IF(X) is uniquely determined by its value at the point
0 € X, the evaluation at 0

evo: IF(X) — Homg(Tp X, R)
defined by
w +— w(0)

for all w € IF(V), defines an isomorphism of R-vector spaces
IF(X) —— Homg(TpX,R).
O

Proposition 1.3.2. Let Vbe a C-vector space of dimension g, A C V be a lattice in V
and w: V. — V/A be the canonical projection. Then, the pull back map

7 IF(V/A) = IF(V)
mduced by w, is an isomorphism of R-vector spaces.

Proof. Since V is an R-vector space of dimension 2g, we have a canonical isomorphism
ToV = R?9, so that
Homg (TpV, R) = Homg (R%, R) = R,

Thus, IF(V) = R%. If we fix coordinates x1,...,x9, of V, dx1,...,dxs, are 2g linearly
independent one-forms over R and invariant by translations, so that they generate I F (V)
over R.

To conclude, consider 7*: IF(V/A) — IF(V). It is R-linear and injective, because if wy
and we € IF(V/A) are such that 7%(w;) = 7*(w2), then

wi(m(0)) = evo(7"(w1)) = evo (" (w2)) = wa(m(0))

so that wy; = ws.

It is also surjective because the dz;’s define one-forms on V/A (which we will still denote
by dz;) satisfying 7*(dx;) = dx;, for all i = 1,. .., 2g.

Thus 7* is an isomorphism. In particular, dz1,...,dzy, form a basis of IF(V/A) over
R. O

Proposition 1.3.3. Let X be a compact complex torus of dimension g. Then, there exists
an isomorphism of R-vector spaces

IF(X) —= HY(X;R).

Fized real coordinates of X, it is defined by sending dx; to Vo([dx;]), fori=1,...,2g.

Proof. Since the statement involves only the differential point of view, we can suppose
that X = (S1)29. In particular, using the same notations of previous sections, we know
that

Hl(X;R) =< [041], R [0429] >R -

17



Fix real coordinates x1,...,224 of V. Since the dz;’s are closed one-forms, there exists an
R-linear map
¢: IF(X) = HlR(X;R)

defined on the basis by sending dx; to its equivalence class [dx;] in Hc11R<X ;R), for all
i=1,...,2g.
Then, we compose ¢ with the R-linear map induced by ¥

Uy: Hip (X5R) = H'(X;R).

Since fai dxj = 6;5, for 1 <4, j < 2g, we conclude that the composition

IF(X) % HY

dR(X;R) — H'(X;R)

is an isomorphism. ]

1.3.4 De Rham Theorem

Note that in the proof of Proposition 1.4.1, we proved that
Uy Hip(X;R) = H'(X;R)
defined by sending [w] € H(liR(X; R) to [w € H'(X;R), is surjective.

Theorem 1.3.1 (de Rham Theorem in degree 1 for compact complex tori). If X is a
compact complex torus, the R-linear map

Uy: Hyp(X;R) — H'(X;R)
is an isomorphism.

Proof. We need only to check the injectivity.
Let [w] € KerWs. Then [ w =0 for all [y] € Hi(X;R).
Fix zg € X and define a map

F: X >R

by
F(m):/w, forall ze X

o
where the integral is over any path from zg to x.
The function F' is well defined. In fact, let 71 and 2 be two paths from xg to x1. Let 75
be the inverse path of ~5. Then

fom Lo oo [om ]
71 71 Y272 Y172 2 2

since the concatenation 173 is a closed path.
By elementary calculus, F' is smooth and its derivative is w, so that [w] = [dF] = 0 €
Hlp (X:R). O

18



If we repeat the same construction over C, we can define a C-linear map
Ue: Hi(X;C) ©c Hip(X;C) = C

defined by
()l [ w

for all [w] € HcllR(X; C) and [o] € H1(X;C), obtaining the following Theorem:

Theorem 1.3.2 (de Rham Theorem: complex case). If X is a compact comples torus,

W is an isomorphism.

Proof. Same as the real case.

O]

Thus, if X is a compact complex torus, by de Rham Theorem the C-linear maps

induced by ¥

Uy c: Hi(X;C) = Hijp (X;C)Y = Home(H)jR (X;C), C)

defined by
[o] +—>/ for all [o] € Hi(X;C)
and
Uy c: HiR(X;C) = Home(Hy(X;C),C) = H'(X;C)
defined by

[w] — /w for all [w] € HéR(X;(C)

are isomorphisms.

1.3.5 Hodge decomposition

Let V be a C-vector space of of dimension g and A C V be a lattice in V. Fix xq,...

real coordinates of V.
Consider the isomorphism

evo: IF(V) —— Homg(TpV,R)
given by the evaluation at 0 € V and the composite
IF(V/A) - HYp (V/ASR) 23 H'Y(V/A;R)
where ¢ is the R-linear map

¢: IF(V/A) — Hip (V/A;R)

19
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defined on the basis by sending dx; to its equivalence class [dx;] in H(liR(V/ A;R), for all
1=1,...,2g, and

Hip (V/AR) 3 HY(V/ASR)
is the isomorphism of de Rham Theorem. Define
®:=¢om oeyy s Homg(TyV,R) —— Hip(V/AR) .
Proposition 1.3.4. The morphism ®: Homg(TpoV,R) — HéR(V/A; R) is an isomor-
phism.

Proof. We proved that evy and m, are isomorphisms. In order to conclude we have to
prove that also ¢ is an isomorphism. This follows from the fact that W9 o ¢ and ¥y are
isomorphisms. O

Fix z1,..., 24 complex coordinates of V.

Proposition 1.3.5. Let Q%//A be the sheaf of holomorphic one-forms on V/A. Then
HY(V/A,Qy)p) =< dz1,. .., dzg >c

Proof. The one-forms dz;’s are holomorphic, then < dz1,...,dzy >cC HY(V/A, Q%,/A).
Conversely, if w € HO(V/A, Q%//A), then

w = fidz1 + -+ fydzg
with f1,..., fy € Oy/a(V/A). Since V/A is compact, Oy/y (V/A) = C, so that

HO(V/A, Q) C<dz1,...,dz >c -

If we tensor with C the isomorphism ®, we obtain an isomorphism
Oc: Homg(TpV,C) —— Hip(X;C).

Since dz1,...,dzs are C-linearly independent elements of Homg(7pV,C), their images
Pc(dz1) = [dz1], ..., Pc(dzy) = [dzg] are linearly independent elements of HéR(X ;C).

We define a C-linear map
HY(V/A, Q) = Hyp (V/A; C)
on generators, by sending
dz; — [dz;] forall 1<i<yg.

Since [dz1],. .., [dz4] are linearly-independent over C, this map is injective. We will denote

its image by HO(V/A, Q%,/A).
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Theorem 1.3.3 (Hodge decomposition in degree 1 for compact complex tori). Let X be
a compact complex torus of dimension g. Then

Hgyp(X;C) = HO(X, Q) @ HO(X, Q)

where HO(X, Q%) denotes the complex conjugate of HO(X, Q).

Proof. Since H(liR(X ; C) depends, modulo isomorphism, only on the differentiable struc-

ture of X, and since H°(X, Q%) and HO(X, QL) depend, modulo isomorphism, only on
the complex one, we can suppose that X = V/A, with V' a C-vector space of dimension g
and A a lattice in V.

Fix 21,...,24 complex coordinates of V. The restriction ®| of ® to the subset

HOH](C(T()V, (C) =<dz,... ,ng >cC HOH]R(T()V, C)

yields an isomorphism
®: Homg(ToV,C) —— HY(X,Q%).

The decomposition Homg (7TpV, C) = Home (TpV, C)@Home (TpV, C), where Home (TpV, C)
denotes the complex conjugate of Homg(7pV, C) yields the Hodge decomposition in degree
1

Hip(X;C) = H(X, Q%) © HO(X, Q).

By taking the duals in the Hodge decomposition we obtain:

Corollary 1.3.1 (Dual Hodge decomposition in degree 1 for compact complex tori). Let
X be a compact complex torus of dimension g. Then

——— =V
Hyp(X;C)Y = HY(X, Q)Y & HO(X, Q) .

1.4 Equivalence of categories for compact complex tori

Lemma 1.4.1. Let A and B be two commutative rings, ¢: A — B be a ring homo-
morphism. Then, for all M € A — Mod and N € B — Mod, we have a natural group
isomorphism

Homp(M ®4 B, N) = Homa(M, N|4)

where Ni4 1s N with the structure of A-module induced by ¢.

Let 7 be the category whose objects are compact complex tori of dimension g and
the morphisms ¢: X — X " are morphisms of complex Lie groups.
Let S be the category whose objects are the triple (A, V, ), where A is a free Z-module of
rank 2¢g, V is a C-vector space of dimension g and v: A — V is a morphism of Z-modules
with the property that
YR : ARzR — Vg
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which is the morphism obtained by v using Lemma 1.4.1, is an isomorphism of R-vector
spaces (Vg is just V viewed as an R-vector space), and a morphism

¢: (A, V,7) = (A, V,7)

is given by a couple (¢1, ¢2), where ¢1: A — A is a morphism of Z-modules and ¢9: V —
V' is a morphism of C-vector spaces, such that they make the following diagram

ATV

ol e

AN ——V
il

commutative.

Proposition 1.4.1. Let A be a free Z-module of rank 2g, V be a C-vector space of di-
mension g and v: A — V be a morphism of Z-modules.
Then, yr: A ®z R — Vg is an isomorphism of R-vector spaces if and only if denoted by

Y- ARy C—V,
the natural morphism obtained by v using Lemma 3.1, the following decomposition holds:
A ®z C = Keryc @ Keryc

where Keryc denotes the complex conjugate of Keryc.
Equivalently, upon choosing bases A = 729 and V = C9 to identify j with a g x 2g matriz
(AB) for A, B € Matyy4(C), the necessary and sufficient condition is that the matriz

A B
( Z E > € Matzgxgg((C)

15 tnvertible.

Proof. We note that we can factorize ¢ as

A®yC L) VoV
ek
b

where V := C ®qc V is the complex conjugate space of V' (scalar extension by complex
conjugation o) and 7: A ®z C — V @ V is defined by A ® ¢ — (cy(\),ey())), for all
A®ce Ay C.

We divide the proof into two steps.

Step 1: We prove that v is an isomorphism of R-vector spaces if and only if 4 is an isomor-
phism of C-vector spaces.
Since C is a faithfully flat R-module, the condition that ~g is an isomorphism is

22



equivalent to the isomorphism condition after applying scalar extension R — C.
But

CerV =(CerC)ecV
with C ®g C = C x C as C-algebras via a ® b — (ab,ab), for all a @ b € C ®p C.

Hence, C ®g V is identified as a C-vector space with V @ V, and in this way the
C-linear scalar extension of yg is identified with 4.

Step 2: We prove that 7 is an isomorphism of C-vector spaces if and only if we can decompose
A ®7C as A ®7 C = Kerye @ Kerye.
If 4 is an isomorphism of C-vector spaces, then

Keryc = Ker(m 0 7) = 7 H(Kerr) = 4 1(V)

and

Keryec =51(V) =51(V).

Thus o
A®;C=5"1V)®5 V) = Kerye @ Kerc.

Conversely, if we can decompose A ®7 C as Keryc @ Keryc, we obtain that
dimcKerye = dimcKerye = ¢

because
A=7% = A ®yC=C%» = dimcA @z C = 2g.

Thus, 7¢ restricts to an isomorphism Keryc —— V  (injective morphism of C-

vector spaces of the same dimension). Moreover, v(V) = v(V) = 0, so that
Y(Keryc) =V
and o
J(Kerye) = 4(Kerye) = V.

This proves that 7 is surjective. Since A ®7 C and V @V are C-vector spaces of the
same dimension, we conclude that 4 is an isomorphism.

The matrix interpretation is immediate by Step 1, upon identifying the 2g x 2g matrix
as computing the C-linear map 7 relative to the C-basis of C ®7 A coming from the
chosen Z-basis of A and the C-basis of V @V coming from the chosen basis of V' and the
corresponding conjugate basis of V. O

We define F': 7 — J# in the following way: on the objects by F(X) = (H1(X;Z), H*(X, Q%)Y,7),
where v: Hy(X;Z) — H°(X,QL)Y is given by the composite:

v [
Hy(X:Z) ' Hi(X;C) — Hip(X;0)Y = HO(X, Q%)Y & HO(X, Q%)

¥ lﬂl

HO(X, Q%)Y
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where ¢: Hy(X;Z) — H,(X;C) is the inclusion, ¥; ¢: H1(X;C) — H(liR(X; C)V is the de

Rham isomorphism and 71: H°(X, QL)Y & HO(X, Q}()v — HO(X, QL)Y is the projection
onto the first factor of the direct sum of Dual Hodge decomposition.

On morphisms F' is defined in the following way: let X L X' be a morphism in .7, then
we associate to it the couple (Hi(f), H°(f)"), where

Hi(f) = Hi(f:2): Hi(X;Z) — Hi(X'; Z)

and
HO(f)Y = HO(f, Q)" H(X, Q%) — H(X, Q)"

are the natural maps induced by f.
Proposition 1.4.2. F': .9 — 3 is a functor.

Proof. First we prove that F' is well-defined.

If X € 7, then F(X) = (H(X;Z), H*(X,0Q%)V,v) € #. In fact, H(X;Z) is a free Z-
module of rank 2g, by Proposition 1.2.2, and H%(X, Q%) is a C-vector space of dimension
g. We only have to prove that

yr: Hi(X;Z) @7 R — HO(X, Q%)%

is an isomorphism of R-vector spaces. To do this, we use the equivalent condition of
Proposition 1.4.1. We note that

Y@ Ide = (m oV 0i) ®Ide = (m ® Ide) o (¥1,c ®Ide) o (¢ ® Ide).
Since H(X;Z) ®7 C = H1(X;C), we have that
t®Ide: Hi(X;Z) ®7 C — Hi(X;C)
is the identity. Moreover, m ® Idc = 71 and ¥ ¢ ® Idc = ¥y ¢, since m; and ¥y ¢ are

C-linear morphisms. Then, v ® Id¢ = m o ¥y c.
By de Rham Theorem with coefficients in C, ¥y ¢ is an isomorphism, so that

Hi(X3€) = Wi L (HO(X, Q%)) & i £ (HO(X, 94) ) (1:2)

and Ker(my o Uy ¢) = U] L(Kerm) = U7 L(HO(X, QL) ).
Since Ker (71 o ¥y ¢) = ¥ &(HO(X, ng)v) = U t(HY(X,Q4)V), from (1.2) it follows that

H,(X;C) = Ker(yc) @ Ker(yc)

as we wanted.
XL X isa morphism in 7, then

Hi(f): Hi(X;Z) — Hi(X;Z)
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is a morphism of Z-modules,
HO(f)': HY(X,Q%)" — H(X, Q)"

is a morphism of C-modules and they make the following diagram

H\(X;2) —— HO(X,QL)Y

Hl(f)l lHo(f)v

Hi(X'32) —— HOX', QL)Y

v

commutative, by functoriality of Hy(X;Z) and H°(X,Q%)V.
Finally, in order to be a functor, F' has to preservers composition of morphisms and
identities. This is the case, by functoriality of Hy(X;Z) and H°(X,QL)Y. O
1.4.1 The Albanese map

Let X be compact complex manifold satisfying Hodge decomposition in degree 1.
For a fixed base point xg € X one defines the Albanese map

albg,: X — HY(X, Q%)Y /H\(X;7Z)

oo )

where the integral is over any path from z( to = and we identify H;(X;Z) with its image
under the morphism v: Hy(X;Z) — H°(X, Q%)Y of Proposition 1.4.2.

by

The integral ffo w depend on the chosen path connecting xg and x, but for two different
choices the difference is an integral over a closed path (same computations of Proposition
1.3.1). Hence, alb(x) is well-defined as an element of H°(X, Q%)Y /H;(X;Z).

Assume now that X = V/A, with V' a C-vector space of dimension g and A a lattice
in V. Fix complex coordinates z1,...,24 of V. Then

HO(X, Q%)Y =< dz1,...,dzg >¢

H\(X;Z) = {(/szl,...,/(fdzg> : o] eHl(X;Z)}

because the coordinates of the image of [o] in H°(X, Q%)Y are given by its values on
generators dz1, ..., dz,.
The map

and

alby,: X — HY(X,Q%)Y/H\(X;Z)
is defined by

T </dzl/xdzg> mod {(/Udzl,...,/adzg) :[a]eHl(X;Z)}.
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Proposition 1.4.3. Let X be a compact complex torus and o = 0 € X. The Albanese
map alby,: X — HO(X, Q%)Y /H1(X;Z) is an isomorphism of complex Lie groups.

Proof. Since H1(X;Z) depends, modulo isomorphism, only on the differentiable structure
of X and H%(X, QL)Y depends, modulo isomorphism, only on the complex one, we can
suppose that X = V/A.

i. albg, is holomorphic.
For 1 < j < g, define

albl (z) := /x:dzj mod {/Udzj:[a]EHl(X;Z)}.

Then, alby, is holomorphic if and only if albi,o is holomorphic, for all 1 < j <g.
By elementary calculus, albgco is smooth with derivative dz;. Since this is holomor-
phic, this implies that albj, is holomorphic, for all 1 < j < g.

ii. albg, is a biholomorphism.

e alb,, is a covering map.
Since alby, (0) = 0 and it is holomorphic, it is a morphism of complex Lie groups.
Let F' := pg(albg,). The Jacobian of F' at 0 € V is the identity, thus F is a local
biholomorphism at 0. Since F is C-linear, it is a local biholomorphism at each
point € V. Thus, alb,, is a local biholomorphism at each point x € V/A.
In fact, let 7: V. — V/A and 7 : HO(X,QL)"Y — HY(X,Q%)Y/H.(X;Z) be
the canonical projections. Since they are covering map, they are local biholo-
morphism. Thus, locally, alb,,, is given by the composition of biholomorphisms
7r|' oFo (m)*1 (where 7r|/, F}, m denote the restrictions of 7r/, F', ™ open subsets
over which they are biholomorphisms). By [8, 151], it implies that alb,, is a
covering map.

e alb,, is invertible.
To do this, by covering space theory, it is enough to prove that the induced
map

m1(alby,): w1 (V/A,0) — m (HY(X, Q%)Y /H (X Z),0)

which is injective, is surjective.
Consider the commutative diagram [9, 81]

1 (V/A, 0™ o x 0Ly (X Z), 0)

% E

. 0 1\Vv . .
Hl(V/AaZ)HmO)fll(H (X7QX) /Hl(XaZ)7Z)

where the vertical arrows are given by Hurewicz and Hj(alb,,) is the map
induced by alb, at the level of homologies.
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Commutativity implies that the surjectivity of m(alb,,) is equivalent to the
surjectivity of Hj(albg,). But this follows as there is a natural isomorphism

Hy(X;Z) =2 m (HYX, QL)Y /H(X;Z2) —— Hi(HY(X,QL)V/H1(X;2);Z)

and as, under this identification, Hj (alb,,)([y]) is identified with < Jyda, . ) dzg) :

O

1.4.2 Equivalence of categories

We define a functor G: 7 — 7 on the objects by G(A, V,~) = V/~v(A), on the morphisms
in the natural way: let

(1, 62): (A, V,7) = (A, V')

be a morphism in JZ, to it we associate the unique morphism

¢: V/v(A) = V' /4 (A)

making the following diagram

v 2 V/
|

)

V() —5 V7 ()
commutative, where 71: V — V/y(A) and mo: V' — V' /4'(A") are the natural projections.
In this way, we define a functor.
In fact, if (A, V,~) € S, then, by the condition on v and Proposition 1.1.1, it follows that

~v(A) is a lattice in V, so that V/v(A) is a complex torus of dimension g.
If

(61,02): (A, V,7) — (A, V%)

is a morphism in ., then the morphism ¢: V/v(A) — V' /A" exists and it is unique,
since 7o o ¢9 preserves the fibers of 71, and it is holomorphic since its composition with
the local biholomorphism 7; (it is holomorphic and locally invertible) is 79 o ¢o, which is
holomorphic since ¢ is C-linear, thus holomorphic, and 7o is holomorphic by Proposition
1.2.1). Moreover, by the condition that it makes commutative the diagram

1% @2 V'

ml |

V() —= VI /v ()

and that 7, mo and ¢ respect the origins, it follows that ¢ preserves the origins too.

Theorem 1.4.1. (F,G) is an equivalence of categories between J and F .
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Proof. We will prove that GG is a quasi-inverse of F.
In the same notations of Proposition 1.4.2, for X € .7, we have

X = (GoF)(X) = H'(X, Q%) /y(H(X:Z)) in 7

via the Albanese map.
For (A,V,~) € S, we have

(A, V,7) = (FoG)(A, V) = (Hi(V/Y(A); Z), HO(V/4(A), Ry a) Vs 0y) in . (1.3)

Let us prove the isomorphism in (1.3).
Let 20 =0 € V/v(A) and

alby,: V/y(A) —=— HO(V/3(A),Q%)¥/H(V/7(A): Z)

be the Albanese isomorphism.
The morphism pg(albg,): V — H(V/y(A), Q%)Y is C-linear and it is an isomorphism. In
fact,

pa(alby)) o pa(alby,): V=V

and

Idv: V>V
are two C-linear lifts of Idy 5. Uniqueness of lift implies that
pa(albgol) o pa(alby,) = Idy.

Similarly,
pa(alby,) © pa(alby)) = Id oy .01

v/a)”

so that p,(alby,) is an isomorphism.

The composition ¢ Yo pr(alby,) oy: A — Hy(V/A;Z) is Z-linear, since composition of Z-
linear morphisms, and it is an isomorphism, because v: V' — v(A) and ¢ : H1(V/A;Z) —
¢~ (H1(V/A;Z)) are isomorphisms and p,(albg,) is an isomorphism. In fact

Pa(albzo)alx) ° Pa(albxo)w(A) = (Pa(albwo)_l © Pa(albxo))h(A) = Id’y(A)
and
pa(albyy ). (1) © pa(albzo)@(m)) = (pa(albay) © pa(albey) ™, (mry) = 1dg, (iry)
where we denoted ¢~ (H1(V/A;Z)) by ¢(Hi). Commutativity of the diagram

v 2 oy (), 02

I J

1) o o (H(V/A)Z)
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where the vertical arrows are given by inclusions, implies commutativity of

V =2 HO(V/y(A), Q%)

VI o

A % H(V/N;Z)
where ¢1 = ¢ Lo p,(albg, oy and ¢o = p,(alby,). This yields an isomorphism in 7.

By functoriality of Hy(X;Z) and H°(X, QL)Y and the naturality of the isomorphisms in
(1.3), it follows that the isomorphisms X = (G o F)(X) and (A, V,v) = (F o G)(A,V,7)
are functorial in X and (A, V,7), yielding the isomorphisms of functors

Ide 2GoF and Idy = FodG.
O

Let 7} be the category defined as .7, but where we replace compact complex tori by
framed compact complex tori, and let %} be the category defined as J#, but where we
replace A by Z29. The same argument still yields an equivalence of categories between Tr
and 7.
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Chapter 2

Ehresmann Theorem and families
of complex manifolds

In this chapter, we state Ehresmann Theorem and apply it to X — B, a family of compact
complex manifolds over a complex manifold B, by computing the cohomology groups
H'(Xy;Z) for every b € B, where X, denotes the fiber over b, and by proving that the
sheaf R1¢.Zx is a Z-local system on B.

2.1 Ehresmann Theorem

Let X and B be differentiable manifolds and f: X — B be a C! morphism. Let X :=
f71(0) denote the fibre of f above the point 0 € B and Xy := f~1(U) denote the of the
subset U C B by f.

Theorem 2.1.1 (Ehresmann). Let f: X — B be a proper submersion between two dif-
ferentiable manifolds. Then, for any 0 € B there exists an open U C B, with 0 € U, and
a diffeomorphism

TU: XU i> Xo x U

over U, i.e. such that the following diagram

Xy —=— 5 Xox U
f‘XU\ /

commutes, where pra is the projection onto the second factor and f|x,, is the restriction
of f to Xy.

Proof. See [10, 220-221]. O

If U C B realizes the isomorphism of Ehresmann’s Theorem, X is said to be topologi-
cally trivial over U.
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2.2 Families of compact complex manifolds

Let B be a fixed complex manifold.

Definition 2.2.1. A complex manifold over B is (X, m), where X is a complex manifold
and w is a holomorphic map w: X — B.

If we will not need to specify the morphism, we will denote (X, 7) a complex manifold
over B just by X.
If X and T are complex manifolds over B, we denote by X (7') or Holg (7, X) the set of
all holomorphic maps f: T — X making the following diagram

T?X

commutative. We call B-morphisms from 7" to X the elements of X (7).
Let (X, ¢) be a complex manifold over B.

Definition 2.2.2. We say that (X, ¢) is a family of compact complex manifolds if ¢ is a
proper holomorphic submersion.

Ehresmann Theorem applies to families of complex manifolds.
Suppose that U is an open subset in B over which X is topologically trivial and 0 € U.
Then there is an isomorphism

TU:XUéX()XU

as differentiable manifolds.
Since complex manifolds are locally contractible, we can suppose that U is contractible.
Then, for b € U, the inclusion

IdXO Xip

X()X{b}‘—)X()XU

is an homotopy equivalence.
The commutative diagram

Xy —2y Xogx U

jb/[ ]\Idxo Xup

Xp T;U‘> Xox{b}

where TUI is the restriction of Ty to Xp, implies that the inclusion
X, <2 Xy
is an homotopy equivalence too. So, it induces an isomorphism
HY(Xy:Z) —s HY(X, 7).
at the level of cohomologies. Then, if s and b € U, there is a natural isomorphism

jio (i)t HY( Xy Z) —=— HY(X4Z).
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2.3 Z-Local systems associated to a family of compact com-
plex manifolds

Definition 2.3.1. Let X be a locally connected topological space. An abelian sheaf F on
X is a Z-local system if it is locally isomorphic to a constant abelian sheaf of finite rank.

Theorem 2.3.1 (Proper base-change). Let f: X — Y be a proper map between locally
compact topological spaces. Let F be an abelian sheaf on X. For any y € Y and for all
n > 0, there is a canonical isomorphism

(R fo(F))y —— H™"(f () )

where R" f, is the n-th derived functor of the functor f. from the category of abelian sheaves
on'Y to the category of abelian sheaves on X.

Let ¢: X — B be a family of compact complex manifolds and fix 0 € B.
Let ngi)*Z x be the first derived functor of the functor ¢, and Zx be the constant sheaf
on X of stalk Z.

Proposition 2.3.1. The sheaf R'¢.Zx is a Z-local system on B.

Proof. Let U be an open subset of B, over which X is topologically trivial, with 0 € U.
By proper base-change

(R1¢*(ZX))y — Hl(Xyé Zx)
for all y € U. If we compose this isomorphism with
go o (Gy) "t HY(Xy Z) —— H'(Xo;Z)
we obtain an isomorphism of sheaves on U
R'¢.(Zx ) = (H (Xo; Zx)B)|U

where (H'(Xo; Zx)p)|u is the restriction of the constant sheaf H'(Xo; Zx)p on B of stalk
HY(X0;Zx). O

We define the dual
Ri$.Zx = (R'¢:Zx)" := Homg, (R'¢.Zx, Lx)
where Hom(R'¢.Zx,Zx) is the sheaf of abelian groups over B defined by
U — Homg,, (R'¢.Zx) . Zv)

for all U C B open.
Since the dual sheaf of a constant sheaf is constant, we obtain the following result:

Proposition 2.3.2. The sheaf R1¢.Zx is a Z-local system on B.
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Chapter 3

Group schemes in the category of
complex manifolds

In this chapter, given a fixed complex manifold B, we define B-Lie groups and show the link
between holomorphic vector bundles over B and the category of locally free Opg-modules
of finite rank.

3.1 B-Lie groups

Let B be a complex manifold.

Definition 3.1.1. 1. A B-Lie group is a compact complex manifold X over B with the

14.

property that for any complex manifold T over B, the set X(T) is equipped with a
functorial group structure, i.e. there exists a group structure on X(T') and, for any
complex manifold T over B and f € T(T'), the map induced by f

f X(T) = X(T)
18 a group homomorphism;

A B-Lie group (X, m,m,i,e) is a complex manifold (X, n) over B together with B-
morphisms m: X xp X — X (group law, or multiplication), i: X — X (inverse)
and e: B — X (identity section), such that the following identities of morphisms

hold:
mo (m x Idx) =mo (Idy xm): X xp X xp X — X,

mo (e x Idx) =j1: Bxp X — X,
mo([dxxe):jQ:XxBB%X,
eom=mo (ldx xi)oAx/p=mo (i x Idxy oAx/p): X = X,

where j1: BXp X — X and jo: X xg B — X are the canonical isomorphisms and
Ax/p: X — X xp X is the diagonal morphism.

Proposition 3.1.1. The two definitions of B-group are equivalent.
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Proof. 1Iit follows from Yoneda Lemma (See [11, 31]). O

If 7: X — B is a holomorphic vector bundle over B, then X is a B-group. We verify
that it satisfies the first definition of B-group:

e if $: T — B is a complex manifold over B, the set X (7T') has a group structure defined
as follows: for f,g € X(T), f+ g is the morphism defined by (f + g)(t) = f(t) + g(¢)
for all ¢t € T', where the sum respects the C-vector space structure of Xg;

e if T" is another complex manifold over B and f € T(T"), the map induced by f
5 X(T) = X(T)

is a group homomorphism, because it maps g1 + g2 € X (T') to the morphism defined,
forall t € T, by

(914 92) © £)(t) = (91 + 92)(f (1)) = 91(F () + g2(f () = ((g1 0 f) + (92 0 [))(?)

so that f*(g1 4+ g2) = f*(g1) + f*(g2)-
According to the two definitions of B-Lie groups, we define morphisms of B-groups.

Definition 3.1.2. i. Let X and X' be two B-Lie groups. A homomorphism of B-Lie
group from X to X' is a morphism f € X' (X) such that the map induced by f

F(T): X(T) = X'(T)
is a group homomorphism and functorial in T, for any complex manifold T over B;

i. Let (X,m,m,i,e) and (X ,7,m ,i,€) be two B-Lie groups. A homomorphism of
B-Lie groups from X to X' is a morphism f € X (X) such that f om = m' o
(fxf): XxpX — X' (In particular, this condition implies that f oe = e and
foi=iof)

Let G be a complex Lie group.

Definition 3.1.3. The B-Lie group with structural group G is the B-Lie group (|_|g€G B, ),
where |—|g€GB — B is the canonical projection.

Definition 3.1.4. A locally constant B-Lie group with structural group G is a complex
manifold over B which is locally a constant B-Lie group with structural group G.

Given m: X — B and 7 : C — B two complex manifolds over B, their fiber product
yields a commutative diagram

CxpX XX x

e Iy
— > B

C ——

™
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where prx and pro denote the projections to X and C, respectively.
Since all the properties are stable under base-change, (C' x g X, pr) is a complex manifold
over C.

If C = {b}, with b € B, and 7 is the inclusion {b} — B, C xp X is canonically
isomorphic to Xp.
Moreover, X is a complex Lie group. In fact, Definition ii. of {b}-group yields commuta-
tive diagrams of holomorphic maps

XbXXb m

\ {b} / )

and

X, : X,
\ /
{o}

which give holomorphic maps m: Xy x Xy — Xp and ¢: Xy — Xp. Since the map Xpx X, —
X, defined by (z,y) — x -y~ ! is given by the composition of holomorphic maps

mo(Ide Xi):XbXXb—>Xb

it is holomophic too.

3.2 Holomorphic vector bundles and locally free sheaves

Let ¢: X — B be a holomorphic vector bundle.
We define a map by associating to each open subset U C B the set

X(U):={s:U = ¢ *(U):s isholomorphic,7os=Idy}.

This association defines a presheaf of abelian groups over B, denoted by X.

The presheaf X is, in fact, a sheaf.

Indeed, let U C B be an open subset. The functor X satisfies the uniqueness’ condition of
sheaves, because two sections s and ¢t € X (U) coincide if and only if they coincide on an
open covering of U. Moreover, X satisfies the gluing condition of sheaves, because given
a family of sections defined on an open covering of U, whose restrictions coincide in the
intersections, then it is possible to glue them in a section of X (U).

Definition 3.2.1. The sheaf X is called the sheaf of sections of ¢.

Let Op be the sheaf of holomorphic functions on B, i.e. the sheaf on B defined by
associating to each open subset U C B the C-algebrea of holomorphic functions over it.

Lemma 3.2.1. The sheaf X is an Op-module.

37



Proof. Let U C B be an open subset. The abelian group X (U) has a structure a structure
of Op(U)-module: for s € B(U) and f € Op(U), f - s is the element defined by

(f-s)(z) = f(z)s(x), forall zeU.

The element f - s is such that wo f-s = Idy, because f(x) € C, s(x) € X, and X, has the
structure of a C-vector space, so that the element f(x)s(z) belongs to X, for any = € B.
Moreover, f-s is holomorphic, since product of holomorphic functions. Thus, f-s € X (U).
The fact that X (U) satisfies the axioms of a Op(U)-module follows from the fact that,
for each x € B, the fiber X, satisfies the axioms of a C-module.

If V. C U C B are open inclusions, the restriction morphism

X{U)— X(V)

maps the element f - s to its restriction (f - s)y to V. Since (f - s)y = fiv - sy, the
restriction is Op(U)-linear. O

Proposition 3.2.1. Let B be a complex manifold. Associating to a holomorphic vector
bundle its sheaf of sections defines an equivalence of categories between the category of
holomorphic vector bundles over B and the category of locally free Op-modules of finite
rank.

Proof. Idea of the proof (see [12, 72]): The sheaf of sections of a holomorphic vector bundle
m: X — B of rank g is a locally constant Op-module, since locally on B, X is isomorphic
to a product U x C9, U C B open.

Conversely, choosen trivialisations ;: Fiy, — (’)%q , denote by (v;);; the restriction

lij
of ¥; to Fjy,ny,- Defined the transition maps

—1 S ~ ®
bij = Wi)jizs © (V5 )iz Ovio, —— Ouino,

the maps ;;(U; N U;) are given with a matrix of holomorphic functions on U; N Uj.
Therefore, {(U;, ¥4 (U;NU;)} can be used as a cocyle defining a holomorphic vector bundle
over B. On the morphisms, this correspondence is defined by giving them locally and,
then, by gluing them. Using the fact that holomorphic vector bundles and sheaves are
uniquely determined, up to isomorphism, by their cocycles, one can check that this defines
an equivalence of categories. O

Remark 3.2.1. Similarly to Proposition 3.2.1, using cocycles, it is possible to associate
to a Z-local system F on B a locally constant B-Lie group with structural group an abelian
group of rank 2g and to a morphism of Z-local systems F — G on B a morphism on the
assoctated B-Lie groups.
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Chapter 4

Families of compact complex tori

In this chapter we extend the results of chapter 1 to families of compact complex tori.
Given a fixed complex manifold B, we define families of compact complex tori over B and
study some properties of them.

We generalize the notion of quotient to v: A — V, where A is a locally constant B-Lie
group with structural group Z29, V is a holomorphic vector bundle of rank ¢ and ~ is a
morphism of B-Lie groups, such that it yields a lattice inclusion fiberwise.

Finally, we extend F' to a functor Fp: Tp — Hp and prove it yields an equivalence of
categories.

4.1 Families of compact complex tori

Let B be a complex manifold.

Definition 4.1.1. A family of compact complex tori of dimension g over B is a triple
(X, m,0), where:

o (X,7) is a family of compact complex manifolds over B;

e 0: B — X is a holomorphic section of w, also called the zero section, with the
property that Xy is a compact complex torus of dimension g with zero o(b), for all
be B.

Definition 4.1.2. A family of framed compact complex tori of dimension g over B is
(X,m,0,0), where:

o (X,m, 0) is a family of compact complex tori of dimension g over B;
e ¢ is an isomorphism of abelian sheaves over B ¢: (R'm.Zx)" —— Z%% )

Definition 4.1.3. A morphism of compact complex tori over B from (X , 7,0 ) to (X, 7, 0)
is a morphism : X — X of complex manifolds such that:
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e the following diagram
X — % x
\ /
™
B
commutes;

. . . /
e it preserves the zero sections, i.e. Yoo =o.

Definition 4.1.4. A morphism of framed compact complez tori (X, 7, 0,¢) and (X , 7,0 ,¢)
over B is a morphism ¢: X' — X such that:

e it is a morphism of compact complex tori from (X , 7,0 ) to (X, 7, 0);

e it induces the isomorphism between the framings.

4.1.1 The sheaf ng*Qﬁ(/B.

Let (X, ¢,0) be a family of compact complex tori over B.
Since ¢ is a submersion, by definition, the induced map at the level of complex tangent
spaces

T.X — T¢(x)B

is surjective, for every x € X. This implies that the map induced on the holomorphic
tangent bundles (see Def [13, 71]) over X

TX — ¢*TB

is surjective, where ¢*T'B denotes the pull back bundle of T'B under ¢*. This is because,
for every x € X, the fiber at x of (¢*T'B) is canonically identified with the fiber at ¢(x)
of TB.

Moreover, the Kernel of T, X — T, B is canonically identified with T;Xy,). In fact,
by holomorphic implicit function theorem [14, 11] it follows that, for every x € X, there
exists an open neighborhood V' C X of  and a biholomorphism h := (¢, hp) from V to a
product ¢(V) x F over ¢(V). Thus

X =T,V = Th(:v)(d)(v) X F) = T¢($)B ©® ThF(:p)F-
By considering the fibers over ¢(z) on V, h yields the isomorphism
h Iav)
qu(x) nv — {¢(x)} x FEF

so that
TaXp@) = To(Xo@) V) = T

Define T'x/p := Ker(I'X — ¢*TB). This is a holomorphic vector bundle over X, since
the rank of the C-linear map T, X — T} ;) B does not depend on .

Define Qﬁ( /B = T)V( /B to be the dual bundle. It is a holomorphic vector bundle over
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X, with fibers canonically identified with HO(X(b(I), Q*]X¢(z))’ for all z € X, through the
isomorphisms
(/p)e = (Txyp)e)” = (TeX o) —— H'(Xo@), O, )

The last isomorphism is given by the composition ®| o Jt,(0)", where

) (ToXop@)" —— H(Xp@) U, )

is the isomorphism yielding the Hodge decomposition and
Jtm(O)VZ (TmX(b(x))v — (T(]X(b(x))v

is the dual of the map induced by %,, the translation by x, on the tangent spaces. Since
t, is a biholomorphism, the map induced on the tangent spaces is an isomorphism. So,
Jt.(0)V is an isomorphism too.

Denote still by Qﬁ(/B the associated sheaf, using Proposition 3.2.1. Let ¢*Q§(/B be the

direct image of Qﬁ( /B through the functor ¢,. The following result holds:

Proposition 4.1.1. The sheaf gb*Q}(/B is a locally free Op-module of rank g.

Proof. Let Imo C X, be the complex submanifold of X given by the image of the zero
section o and let NV be the dual of the normal bundle of Imo in X. It is a holomorphic
vector bundle over Imo with fiber canonically isomorphic to T, X, for avery b € B. In
particular, it has rank g.
In fact, by definition (see Def [13, 71]) there exists a short exact sequence of holomorphic
vector bundles

0— Time — TxIfme — N — 0

where 77y, is the holomorphic tangent bundle of Imo and Tx|yyy,, is the holomorphic
tangent bundle of X restricted to Imo.

Fix b € B. Denoted by ¢: Imoc —— X the inclusion, note that Tx
(Tx |1 )o(v) 18 canonically isomorphic to T X .

Exactness of the sequence implies that

Tme = ¢*TX. Thus,
0 —— 7:7(;,)11110' E— 7:7(b)X E— Na(b) — 0
is an exact sequence of C-vector spaces, so that it splits. So,
To)X = Top)lmo & No(y).-
Let V' an open neighborood of o (b) such that there exists a biholomorphism h = (¢, hr) to

d(V)x F over ¢(V') (this is possible by holomorphic implicit function theorem). Proceeding
as for Ty, computations yield

Tg(b)X = Ta(b)V —= Tyop(V) & Ta(b)Xb-
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Since 0: B — Imo is a biholomorphism (holomorphic with inverse the restriction of 7 to
Imo, which is holomorphic), it induces an isomorphism

Tb¢<V) —= Ta(b) (V N Ima) = Tg(b)ImU .

By considering the two decompositions of T;;) X, we obtain Ny = T ) Xp.

Let 0* NV be the pull back to B of NV. By duality, it is a holomorphic vector bundle over
B of rank g, with fiber (6" NY), = Ny = (T5,4)Xp)", for every b € B.

Fix 0 € B, U an open neighborhood of 0 trivializing c* NV and holomorphic sections
S1,...,8g € HY(U,0*NV), such that s1(b),...,sy(b) are linearly independent over C, for
every be U.

For every b, let
(I)\b: (Tg(b)Xb)v — HO(Xb,ka)

be the isomorphism yielding the Hodge decomposition and w;p = ¢y(si(b)), for i =

1,...,9.
We define holomorphic sections wi, . .. ,w, of H(U, ¢*Q§(/B) by wi(x) := w; g(z), for every
z € Xy, and a morphism of sheaves on U

O'*N\¥J — (Qs*Qﬁ(/B)lU

on U
o*NY(U) = ¢.0%p(U)

by sending
si—w;, forall i=1,...¢g

and by extending it to a morphism of Op(U)-module. On the open subsets of U we define
it by taking restrictions of functions.

This yields an isomorphism of Og-module, because at the level of stalks it coincides with
the isomorphism ®;. In fact,

(2% /)b = (0:(6:Q%x/8))o(r) = (142 /8)o(r) = (Vi /B)o(v)-

Since o* NV is a holomorphic vector bundle of rank g, its sheaf of section is a locally free
Op-module of rank g. Thus, qﬁ*Qﬁ(/B is a locally free Op-module of rank ¢ too. O

Since the dual of a constant sheaf is constant and O} = Op, we obtain the following
result:

Proposition 4.1.2. The sheaf (@Q%QB)V is a locally free Og-module of rank g.

4.2 Quotients

Let v: A — V be a morphism of B-groups, where 7y : V — B is a holomorphic vector
bundle of rank ¢ and A is a locally constant B-Lie group with structural group Z29.
Suppose that, for every b € B, the morphism

MW Ay =V
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is such that the induced map
Yot Ay Rz R — Vi

is an isomorphism of R-vector spaces.

We define an equivalence relation ~ on V by v ~ v" if and only if 7wy (v) = 7y (v') = b and
v—1v € Y(Ap).

Definition 4.2.1. We define V/A :=V/ ~.

Let m: V' — V/A be the canonical projection. Since 7y is constant on each fiber of ,
there exists a unque continuous map ¢ making the following diagram

1% v s B

commutative.
Proposition 4.2.1. The map ¢: V/A — B is proper.

Proof. Since the property of being proper is local on B, we will work locally on B.

By considering an open subset of B trivializing A and V, we can assume that A = B x Z29
and V = B x CY with j corresponding to a g X 2g matrix (apg) of holomorphic functions
T = (apk) such that the 2g x 2¢g matrix

< g:gg > € Mat2g x 2¢(C)

is invertible for each b € B, by Proposition 1.4.1. In particular, the top g x 2¢g matrix T'(b)
is surjective as a linear map C29 — C9, so by equality of row rank and column rank it has
an invertible g x g submatrix. Working locally around some by € B, we may rearrange
the order of the trivialization of A, so that the left submatrix of T'(by) is invertible. By
shrinking around by we can then assume that the left g x g submatrix of 7'(b) is invertible
for all b € B.

Writing 7' = (A1 Ag) with g X g matrices A; and Ay whose entries are holomorphic func-
tions, we have arranged that A; is invertible, so by multiplying V' = B x C9 by Idp x A;l,
we can arrange that 7' = (1, Z) for some holomorphic map Z: B — Matgx4(C).
Consider the holomorphic map Z: B — Matgy4(C). By Proposition 1.4.1, the holomor-
phic map

1, Z
< 1Z A ) : B — Matggxgg((C)

is valued in G'Ly4(C). Equivalently, subtracting the top g x 2g block from the bottom one
gives
1, Z
( 0 Z-2 >
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so its invertibility is equivalent to that of the g x ¢ matrix Z — Z = —2iim(Z). Thus, if
we write Z = A + i Ay for holomorphic maps A;: B — Maty(R) and Ay: B — Mat,(R),
Aj is valued in GLg(R).

Consider the holomorphic map ¥: B x C9 — B x CY over B defined by

(b, z +iy) = (b, x + (A1(b) +id2(b))y) = (b, (x + A1(b)y) + iA2(b)y).
This is a biholomorphism, as it is invertible with inverse holomorphic
(b,u +iv) = (b, (u — Ay (D) Az (b) " v) + Az (D) " w).
This isomorphism yields a commutative diagram

B><(C9+>B><(C9

Ll[ }2

B x 7.%9 % Bx (1, 2)7%
\
where 1 and ¢z are the inclusions and ¥ is the restriction of ¢. Thus, commutatitivity of

the diagram implies that, denoted by 1 the map induced by 1 at the level of the quotients,
it is an isomorphism of topological spaces

¥ Bx C9/7%9 = (B x C9)/(B xZ?) —=— (BxC9)/Bx (1, Z)Z* =~ B x V/A.

Moreover, since the previous diagram commutes with the projection onto B, 1) commutes
with the projection onto B too.
Thus, topologically

¢:V/AN— B

is precisely the projection onto the first factor B x C/Z?9 — B, which is proper. In
fact, the inverse image of a compact subset K C B is K x CY9/7?9, which is compact in
B x C9/7* because product of compact subsets. O

Proposition 4.2.2. The quotient V//A has the structure of a complex manifold relative to
which m: V. — V/A is a covering map and then ¢: V/A — B yields a family of compact
complex tori over B.

Proof. First, we will work locally on B. By considering an open subset of B trivializing
A and V, we can assume that A = B x Z?9 and V = B x CY with j corresponding to a
g x 2g matrix (apk) of holomorphic functions T = (apx) = (14 Z), for some holomorphic
map Z: B — Matgy4(C) with imZ invertible.

The group Z?9 acts on B x C9 on the right by :

A:(bz) = (byz+ (1, Z(b)N) for \eZ*.

Since this is action is free and properly discontinuous, by Proposition 1.2.1, the quotient
under this action is a complex manifold and the canonical projection from V to the quotient
is a covering map. Since the quotient coincides with V/A and the canonical projection
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with 7, we obtain that 7 a covering map and V/A is a complex manifold.
Thus, we obtain a family of compact complex tori.
In fact, for each b € B, the fiber (V/A), coincides with V, /A, = (CI/(1, Z(b))Z%),
which is a compact complex torus of dimension g.
The map ¢: V/A — B is proper, by Proposition 4.2.1, and a submersion, since locally it
is given by the composition 7y o 7, where 7| is the restrion of 7 to an open subset of V'
over which is it a biholomorphism. The composite is a submersion, since composition of
submersions.
Finally, the function

6: B>V
defined by

b— (b,0) eV

is holomorphic, since it is holomorphic componentwise, and a section of my. Then,

g:=moao
defines a holomorphic section of ¢.
Let B = U;c;U; be an open covering of B with U; as in the previous part. Then,

V/A=¢ 1 (B) = ¢ HUietU;) = Nicrd™* (Us) = Nier Vi, /Au,

so that {Vi,/Av, }ier is an open covering of V/A.
Since the restriction of 7

m: (Vi /Au,) = Vu, /A,

is a covering map, 7 is a covering map too.
Moreover, we can glue the Vi, /Ay, into a complex manifolds, since if ¢ and j € I are such
that U; N U; # 0, then we define the function

Dij: (VUi/AUi)UimUj - (VUj/AUj)UiﬂUj

as the unique biholomorphism making the following diagram commutative

(AUi)UimUj (L> (VUi)UimUj — (VUi/AUi)UimUj

zi :l ~ i bij

(AUj)UiﬁUj (T> (VUj)UiﬁUj T> (VUJ-/AUJ-)UmUj

where the vertical isomorphisms are given by the cocycles defining A and V.

For every b € B there exists U; such that b € U, so that the fiber over b is a compact
complex torus of dimension g, by previous part.

Since the properties of properness and being a submersions are local, on B and on X,
respectively, by the first part of the proof, ¢ is proper and a submersion.

Finally, we can glue the zero sections ; defined on U; into a global section ¢ defined on B
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because the functions ¢;; preserve the origins. In fact, if b € U; NUj, the previous diagram
yields a comutative diagram

Vi —2 Vi/7(Ap)

L

Vo —= Vo/ (M)

Since the vertical isomorphism V, —— Vj, is C-linear and m,(0) = 0, ¢;;(0) = 0 by
commutativity. O

4.3 Equivalence of categories for families of compact com-
plex tori

Let I3 be the category whose objects are the compact complex tori of dimension g over
B and morphisms are the morphisms of compact complex tori over B preserving origins.
Let %% be the category whose objects are the triple (A, V,~), where A is a locally constant
B-Lie group with structural group Z29, V is a holomorphic vector bundle of rank g and
v: A — V is a morphism of B-Lie groups with the property that, denoted by v,: Ap — V4
the map induced by ~, for any b € B, then

Yot Ay Rz R — Vyy

is an isomorphism of R-vector spaces (Vj, is just V} viewed as an R-vector space), and
a morphism ¢: (A, V,v) — (A/,V,’y') is given by a couple (¢, $2), where ¢1: A — A is
a morphism of B-groups and ¢o: V — V' is a morphism of holomorphic vector bundles,
such that they make the following diagram

ATV

ol e

N ——V
Y

commutative.
We define Fp: 95 — % in the following way: let (X, ¢, 0) be a family of compact
complex tori over B. To it, we associate the object Fp(X) = (A, V,~), where:

e A is the locally constant B-Lie group associated to the Z-local system Ri¢.Zx on
B.
Let U C B be a contractible open subset over which X is topologically trivial and
0 € U. Then, the canonical map 7m: A — B yields the projection onto the first factor

U x Hl(Xo;Z) T> U.

Then, for b € U, the natural isomorphism induced by the inclusion of b in U

.t 0 jo. s Hi(X0;Z) —=— Hi(X,};Z)
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(the fact that jp, and jp, are isomorphisms can be proved by the same argument we
used at the level of cohomologies) yields an isomorphism

Ab i> Hl(Xb; Z).

e 1/ is the dual of the holomorphic vector bundle associated to the sheaf d)*Qﬁ( /B

e the map
v A=V

is defined by sending
(b, [ov]) = (b,7x, ([00]))

for all b € B, [0y] € Hi(Xy;Z), where vx,: Hi(XpZ) — HO(Xb,Q}(b)V is the
morphism of Proposition 1.4.2.

We will denote the map v also by vx, to specify it is associated to the family X — B.

If ¢: X —» Band ¢ : X' — B are families of compact complex tori and f: X — X is
a morphism in Jg, let

¢1: RiguZx — Ri1p, Ly
and
d2: (0 /p)" = (.2 )"
be the morphisms induced by f at the level ol sheaves. These yield morphisms

b1 A — A

of B-Lie groups and
¢ps: V>V

of holomorphic vector bundles over B. We define F'(f) = (¢1, ¢2).

Let U C B be an open subset. If we fix coordinates of Xy and, for any b € B,
Wips -+ Wyp generators of Xy, then yx has the form:

(b, [o3]) = (b, (/g L. /U wgvb>>

for all b € B, [O'b] S Hl(Xb;Z).

Theorem 4.3.1. If ¢: X — B is a family of compact complex tori of dimension g, then
the map vx is holomorphic.

Proof. Fix U C B an open subset such that it is contractible and X is topologically trivial
over U. Let
T: Xy —— XoxU

be the diffeomorphism of Ehresmann Theorem. Fix ® an isomorphism

&: 729 —= Hy\(Xy;7)
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and let [a;] ;= ®(e;), fori = 1,...,2g, where ¢; is the element of Z29 that has 1 in the i-th
component and 0 in the other ones. For b € U, let [a;(b)] be the image of [a;] through the

isomorphism
1

Hy(Xy: Z) 2 Hy(X);Z)

induced by the inclusion

Xb ‘j—b> XU.

By shrinking U if necessary, it is possible to construct mappings oz, ..., agy: S'xU = Xy
such that:
® aj,...,0p, are continuous;

e they make the following diagram

StxU R Xy
U
commutative;
e for each b € U, the map
o71% Sl — Xu
defined by
0 — a;(6,b)
is a piecewise smooth representative of [a;(b)], for all i = 1,...,2g;
e for each # € S!, the map
;U — Xy
defined by
b— «;(0,b)
is holomorphic, for all i = 1,...,2g (this is a consequence of implicit function theo-

rem, so it is important that the morphism ¢ is a submersion)

This construction is a generalization of [15, 14] for g > 1.
Then, basic calculus implies that
/ wj7b
@;

b
vary holomorphically with b € U, for ¢ = 1,...,2¢9, 7 = 1,...,g, where wy,...,w; are
holomorophic sections of H(U, qb*Q%(/B) whose restrictions wyp,...,wqp to HO(X, Q%b)
are linearly independent over C.
Fix wj, for some 1 < j < 2g. The integral

Oy
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vary holomorphically with b € U. In fact, there exist nq,...,nay € Z such that
03] = nalon,] + -+ 4 ngglang, ]

since the [a,]’s generate Hy(Xp;Z), so that

op «

varies holomorphically with b € U, since sum of terms varying holomorphically with b € U.

From this, it follows that
[oy] — (/ Wl,bw--v/ wg,b>
oy oy

varies holomorphically with b € B. Thus vx(b) vary holomorphically with b € B.

Wip + +n2g/ Wjb

1y a?gb

Proposition 4.3.1. Fg: 95 — 3 is a functor.

Proof. Let ¢: X — B be a family of compact complex tori and consider Fp(X) = (A, V, 7).
In order to prove that Fg(X) € %, we only have to show that ~ satisifes the necessary
properties.

It is a morphism of B-groups. In fact, since « is defined fiber by fiber, it makes the

following diagram
AN—V
B

commutative. It is holomorphic by the Theorem 4.3.1 and it can be checked that the
induced map
V(T): MT) = V(T)

is a group homomorphism and functorial in 7', for any complex manifold T" over B.
Finally, the induced map ~,: Ay — V} yields an isomorphism

Vot Ap @z R —— Vj,

for any b € B, by Proposition 1.4.2.

Thus, Fp(X) defines an object in Jp.

If : X — B and qﬁ/: X' = B are families of compact complex tori and f: X — X "isa
morphism in 75, we have to show that, if Fg(f) = (¢1, ¢2), the diagram of B-Lie groups’
morphisms

Ay 25 vy

A

/
AX/T)V
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is commutative. This is true since, for every b € B, it coincides with the commutative
diagram
Hi(X3Z) —— HO(X, Q%)

mn| |
H\(X';Z) —— HY(X',0%,)V.
Y

Finally, in order to be a functor, F' has to preservers composition of morphisms and
identities. This is the case, by functoriality of the construction. O

4.3.1 The Albanese map on families of compact complex manifolds

Let ¢: X — B be a family of compact complex manifolds such that, for each b € B, X} is
a compact complex manifold satisfying Hodge decomposition in degree 1.
Fixed base points z, € X, for every b € B, one defines the Albanese map on the family
¢: X - B

alb: X = (¢.Q%/p)" /R1¢uZx

fiber by fiber, by
x> albg, (z), if ze€ X,

where we identify the sheaves QS*Q%( /B R1¢.Zx with the associated B-Lie groups and
R1¢.Zx with its image under the morphsm v: R1¢.Zx — (d)*Qﬁ(/B)V.

Lemma 4.3.1. Let X — B and Y — B be biholomorphic submersions between complex
manifolds, and f € Y(X) such that the induced map fp: Xp — Yy between fibers is a
biholomorphism, for every over b € B. Then f is a biholomorphism.

Proof. Since f is a biholomorphism on each fiber, it is bijective. So ti suffices to prove that
it is a local isomorphism. By the holomorphic inverse function theorem, it is equivalent to
prove that for each b € B and for each z € X}, the map induced on the complex tangent
spaces J f(z): Tp X — T}y X is an isomorphism.

Let b € B and € X;. Since the maps X — B and Y — B are submersions, the induced
maps on the complex tangent spaces

TmX — T‘l,B7 Tf(x)Y — TbB

are surjective and the respective kernels are identified with 7, X} and T'y(,)Tp. By func-
toriality of derivaties (i.e. the Chain Rule), the map Jf(z) commutes with the quotient
maps onto 1B and carries 1, X} to Yf(x)Yb via J fy(x). That is, we have a commutative
diagram of exact sequences

0 —— T Xy —— T, X T,B 0
I52)| @ g

But f; is an isomorphism by hypothesis, so the left arrow is an isomorphism and hence so
is the middle arrow, by Five-Lemma [16, 98]. O
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Proposition 4.3.2. Let (X, ¢,0) be a family of compact complex tori over B. The Al-
banese map on this family

albo: X — (6.0 )" /R1:Zx

defined by
X — albg(¢(x))(l’)

1s an isomorphism of families of compact complex tori.

Proof. To prove holomorphicity, fix 0 € B and y € Xy. Let U be an open neighborhood
of 0 and wy 0, ...,wy0 be holomorphic one-forms on Xy, as in Theorem 4.3.1.
Then, for all b € U and =z € X,

alby(7) = albg((z) = </ wl’b,...,/ wg,b> mod Ay
a(b) a(b)

Ay = {(/U wl,b,...,/abwg,b> o] € Hl(Xb;Z)}.

There exists an open neighborood V' of y, with V' C X, such that, for all x € V, there
exists a path

where

ex [07 1] — X¢>(:v)
with
(0) = 0(6(@), (1) =a

piecewise smooth and varying holomorphically with x € V.
Since wyp,...,wyp vary holomorphically with b € U and ¢ is holomorphic, they vary
holomorphically with « € V. Thus, by elementary calculus

€T +— (/ w1,¢(m),...,/ wg,¢(r))

varies holomorphically with « € V. By shrinking U if necessary, by Theorem 4.3.1,

/wl,b,...,/ Wg,b, for [ab]eﬂl(Xb;Z)
op ap

vary holomorphically with b € U, thus the lattices Ay, vary holomorphically with z € V.
Since alb,(4(z)) does not depend on the path connecting o(¢(z)) and z, we obtain

alb () = < / WL(a)s / wg,¢(x>> mod  Ag(z)

which varies holomorphically with z € V.

We now establish the existence of V' and ~,. Since ¢: X — B is a submersion, by
holomorphic implicit function theorem, there exists an open neighborhood V C X7 of y
and a biholomorphism to a product

h:V —=5 ¢(V)x V'
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over ¢(V). Thus, h = (¢, h1), with hy: V — V' holomorphic. By passing to local charts,
we can suppose that V, ¢(V) x V' are subset of C", for n = dimX.
If o(¢(z)) € V, we define

’

v [0,1] xV = ¢(V) x V

by
(t,z) = (¢(x), thi(z) + (1 — t)(h1 0 0 0 §)(2)).

This is continuous, since continuous in each component, and the map
Y: X = (V) x V'

defined by
x = y(x) =~(t, x)
is holomorphic, for all ¢ € [0,1]. Thus the path

Yo i=h7 (=, 2)): [0,1] = X

satisfies the required properties.
If o(¢p(x)) ¢ V, we can fix a path connecting o(¢(x)) and z. By compactness, we can
cover it by finitely many open subsets V; of X, for ¢ = 1,...,m, to which we can apply
holomorphic implic function theorem. We fix y; € V; N Vi1, fori =1,....m —1, yg =
o(¢(x)) and y,,, = z, and in each V; we construct a path ~; as before, connecting y;—1 and
yi, for i = 1,... m. By gluing the +;’s, we obtain a path ~ piecewise smooth, connecting
o(¢(x)) and = and varying homomorphically with x € V.

This is a morphism over B, since it is defined fiber by fiber, and it preserves the zero
sections, since, by C-linearity, it preserves the origins fiber by fiber.
It is a biholomorphism by Lemma 4.3.1, because it is holomorphic and its restriction to
Xy is the biholomorphism alb, ), for all b € B. O

4.3.2 Equivalence of categories

We define a functor Gg: #p — I on the objects by G(A, V,~) = V/A, on the morphisms
in the natural way: let

(¢11¢2): (Av‘/a7) - (A 7V » Y )
be a morphism in 3, to it we associate the unique morphism of complex manifolds

¢: VA= V' /N

making the following diagram

vV ¢2 V'

| |

VIA —— V' /A

commutative, where 71: V' — V/A and 7o: Vi v / A’ are the natural projections.
In this way, we define a functor.
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In fact, if (A, V,~) € S5, then, by Proposition 4.2.2, V/A — B is a family of complex tori
of dimension g over B.
If

(1,02): (A, Vi) = (A, V',9)
is a morphism in J#3, then the morphism ¢: V/A — V,/ A’ exists and it is unique, since
o 0 ¢ preserves the fibers of 71, and it is holomorphic, since its composition with the
local biholomorphism 71 (it is holomorphic and locally invertible, because it is a covering
map) is my o ¢a, which is holomorphic since composition of holomorphic functions.
By the condition that ¢o, m and 7o are morphisms of B-groups, it follows that also ¢ is
a morphism of B-groups. Thus, for every b € B, there is a commutative diagram

[ /
Vb%vb

Vo) —— Vi /i)

Since ¢y,, m1, and my, respect the origins ( ¢o, because is C-linear, since ¢ is a morphism
of holomorphic vector bundles, 7, and 7y, by definition), it follows that ¢; preserves the
origins for every b € B. Thus, it preserves the zero sections.

Theorem 4.3.2. (F,Gp) is an equivalence of categories between JTp and Hp.

Proof. We will prove that G g is a quasi-inverse of Fg.
In the same notations of Proposition 4.3.1, for X € 95, we have

X2 (GpoFp)(X) in Ip

via the Albanese map on families of compact complex tori.
For (A,V,~) € %, we have

(A7 V?V) = (F o G)(Av Vvaf)/) = (((ﬁ*Q,lX/B)V?Rl(p*ZXv(ﬁY) in I3 (41)

where X := V/A. Let us prove the isomorphism in (4.1).
Let o and ¢’ be the zero sections of ¢: V/A — B and ¢ : qb*Q%(/B/qub*ZX — B, respec-
tively, and

alb,: V/A —— (¢*Q§(/B)V/R1¢*ZX

be the Albanese isomorphism.
Let b € B, Oy € V and 04, € ¢*Q§(/B be such that 7(0y) = o(b) and 7 (04+) = o (b),

where 7: V' — V/A and 7' (qS*Qk/B)V — (gb*Q%(/B)V/qub*ZX are the canonical projec-
tions. Since

alby (1(0v)) = alb, g (0(b)) = o (b) = 7 (0g+)

covering space theory implies that there exists a unique continuous map

¢2: (V,0v) = ((6:Q%/p)", 04.)
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making the following diagram

(V,0v) —2—— (6024 5).05.)

WJ E

(V/A, o) —= (6:2p)" [ RadeZx, 0 (1))

commutative.
It is a isomorphism of holomorphic vector bundles over B:

e It is holomorphic: locally 7 isa biholomorphism (since it is a covering map), thus,
locally, ¢o is given by the composition (7T|/)_1 o alb,| o 7|, which is holomorphic since

composition of holomorphic functions (here 7r|/, alb,|, m denote the restrictions of

7, alb,, 7 to open subsets over which they are biholomorphisms);

e Commutativity of the previous diagram and the fact that alb, is a morphism over
B, imply that ¢ o ¢o = ¢;

e for all b € B, the map induced by alb, on the fibers is the morphism of compact
complex tori albs). By uniqueness of the lift, the map induced by ¢ has to be
equal to the analytic representation pa(alba(b)). Thus,

G2, Vo — (¢*Q§(/B)1\7/
is C-linear, for all b € B;

e since ¢y is holomorphic and ¢2, = ps(alby(y)) is an isomorphism, for all b € B, ¢3 is
a biholomorphism by Lemma 4.3.1.

Consider the restriction of ¢ to v(A). It induces an isomorphism of B-Lie groups
Ga): Y(A) —— by (R1¢uZx).

In fact, ¢g) is a morphism of B-Lie groups from ~(A) to its image, because it is the
restriction of a morphism of B-Lie groups. Since, for all b € B, the restriction of ¢, to
(7(A)p = (Ap) is the isomorphism

pr(albgp)): (Y(V/A)s = (M) —= s, (H1(Ve/Ab); Z) = (¢ (R10:Zx))s

we deduce that the image ¢9|(7(A)) is ¢y (R1¢«Zx) and ¢ is an isomorphism, since holo-
morphic and biholomorphic on each fiber.

The B-Lie groups morphisms v: A — v(A) and ¢ : R1¢p«Zx — ¢(R1¢+Zx) are isomor-
phisms, because holomorphic and isomorphisms fiber by fiber. Then, we define

o1 := 7}—(1 o qﬁzl ov: A= Ri¢p.Zx.
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It is an isomorphism of B-Lie group, since composition of isomorphisms of B-Lie groups.
Moreover, since the following diagram

is commutative, (¢1, ¢2) yields an isomorphism in .#%.

By functoriality of Ri1¢.Zyx and qﬁ*Qﬁ( /B and the naturality of the isomorphisms in (4.1),
it follows that the isomorphisms X = (Gp o Fp)(X) and (A, V,v) = (Fp o Gg)(A,V,7)
are functorial in X and (A, V,~), yielding the isomorphisms of functors

Idz, 2 GpoFp and Idy = Fod.
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