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Abstract

The open dynamics of single- and multi-qubit systems are governed by the Lind-
blad equation. Thus, by solving the underlying Hamiltonian including the rele-
vant Lindblad operators for specific gates, an algorithm can be revised that simu-
lates quantum operations incorporating Markovian noise. By integrating suitable
stochastic and deterministic noise terms into the logical gate, a novel noisy gate
can be manufactured replacing the exact gate. In this work, we implement such a
solution for single- and two-qubit operations on both the superconducting as well
as the Rydberg architecture. With the prospect of comparing the resemblance
with a real quantum computer, we show that the behaviour of our implementa-
tion is consistent with the exact solution of the underlying Lindblad equation.
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Introduction

The concept of a quantum computer, initially conceived by Richard Feynman in
the 1980s, entails using quantum systems to simulate the fundamental constituents
of matter. This idea has spurred the development of quantum simulators - control-
lable quantum systems tailored for specific applications, such as exploring com-
plex phases or out-of-equilibrium phenomena in condensed matter systems. On
the other hand, Feynman’s idea has rapidly established the field of quantum com-
putation, and with it the development of quantum algorithms, that leverage on
the properties of quantum mechanics, including superposition and entanglement,
to speed up specific computational processes [1]. These general-purpose quantum
computers aim for broader computational capabilities, and current efforts are fo-
cused on achieving quantum supremacy, demonstrating a quantum computer’s
ability to solve problems beyond classical counterparts.
A great challenge lies in constructing universal fault-tolerant quantum comput-
ers [2]. Despite the development of quantum error-correcting algorithms, their
practical implementation is constrained by the quantity and quality of qubits, the
quantum counterparts to classical bits, available in current hardware [3]. Our
quantum computing era is thus called Noisy-Intermediate-Scale-Quantum (NISQ)
era, wherein all quantum platforms are subjected to noise, arising from diverse
sources, and responsible for the degradation of the quantum properties. In the
current era, we cope with the introduced errors in the machines, and it is imper-
ative to establish efficient ways to mitigate and correct them. To this aim it is
paramount to identify, characterize and simulate the noise in quantum computers
to have optimized calibration protocols and error correcting codes, which are nec-
essary for large-scale quantum computation.
Nowadays, the most established quantum computing platforms include supercon-
ducting circuits, trapped ions and neutral atoms, such as Rydberg atoms. On each
platform, an effective two-level system is obtained to represent a single qubit, while
gate operations are implemented as sequences of pulses acting on the qubit(s). In
all these architectures, noise is a major limiting factor and therefore, our effort is
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aimed at understanding and modeling the noise at the gate level. In this work,
we will address this question for two systems, the superconducting and the Ry-
dberg hardware. Superconducting qubits are derived from resonant LC circuits
where the inductor is replaced by a Josephson junction to introduce anharmonicity
into the energy spectrum. Rydberg atoms, on the other hand, are special type
of atoms, where one or more valence electrons are excited to high lying states, so
called Rydberg states. The quantum information is stored in two atomic levels,
while the Rydberg level is used to drive controlled interactions. Rydberg based
architectures are especially promising nowadays, because of their large scalability
[4]. Furthermore, recently it has been shown that an implementation of a two-
qubit controlled-phase gate on a strontium-88 platform can be achieved with a
Bell-state fidelity as high as 99.9% [5].
Usually, the simulation of noisy quantum computers is implemented at the density
matrix level by adding appropriate quantum operations before and after each ideal
gate. This work is based on a recent publication [6], where a novel way of mod-
elling NISQ devices is introduced, by integrating a description of Markovian noise
into the used logical gates. This approach allows the description of the physics
occurring during the execution of gate. Here, we work at the state vector level by
including stochastic operators to account for the noisy dynamics. The basic idea
can be sketched as

|ψ0⟩ Gξ |ψ1⟩ , (0.1)

where Gξ is the solution to a stochastic Schrödinger equation that incorporates
both the dynamics that generate the ideal gate and the noise caused by the envi-
ronment. In this way, one run of the simulation can be seen as the corresponding
run on the actual hardware. In order to implement this idea, the general working
principle consists of finding the ideal gates of the process, understanding which
noises are contributing and then replacing each ideal gate with the corresponding
noisy one.
In this Thesis we successfully implemented this novel approach that allows for an
improved and more efficient simulation of NISQ computers. We tested the proto-
col on superconducting qubits and extended the method to Rydberg atoms. Our
simulations were compared to the theoretical predictions of the Lindblad equation
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for the dynamics, however we plan on accessing the actual hardware as the first
next step.
The thesis is structured as following:

1. Introduction to quantum computing, chapter 1
We give a short recap of all relevant concepts that are used throughout the
work, such as definition of quantum states, density matrices, entanglement
and time-evolution. We also explain the qubit and the relevant concepts in
quantum information, such as gates, channels and quantum circuits. Lastly,
we provide a description of all important noise models we will use.

2. Noisy gate derivation, chapter 2
We derive the noisy gate Gξ starting from the stochastic Schrödinger equation,
using a perturbative approach which assumes that the execution time of a
single gate is much smaller than the characteristic times of the relevant
noises.

3. Example 1: Superconducting qubit, chapter 3
We first introduce the superconducting qubit, starting from a quantum me-
chanical description of an LC circuit. Then we derive the gates that we
use to simulate the hardware: the single-qubit not gate and the two-qubit
cross resonance (CR) gate. Lastly, we show the results of the simulation and
compare it to the exact solution to the differential equation.

4. Example 2: Rydberg qubit, chapter 4
First, we discuss Rydberg atoms in general, before delving into the specifics
on how to achieve single- and two-qubit gates on this architecture. Again,
we compare the results of the simulation to the exact solution.

3



1
Introduction to quantum computing

Quantum computing is a new paradigm of computation that processes information
using the rules of quantum mechanics. In the chapter we first review fundamental
concepts in quantum mechanics such as definition of density matrices, quantum
entanglement and the quantum evolution of closed systems. Building upon these
elements, we delineate the constituents of a quantum computation starting from
the definition of the fundamental unit of information, the qubit, and the subsequent
concepts of quantum registers, gates, channels and quantum circuits.

1.1 State representation and density matrices
Following the first postulate of quantum mechanics [7], a Hilbert space, known as
state space, is associated to any isolated physical object. The system is completely
described by its state vector, a unit vector in the system’s state space.
The simplest quantum mechanical system is a two-level system. Given an or-
thonormal basis, then an arbitrary state vector of this system can be written as

|ψ⟩ = c0 |0⟩+ c1 |1⟩ , (1.1)

where |ci|2 can be interpreted as the probability of finding the system in the state
|i⟩ and the total probability is conserved, i.e. |c1|2 + |c2|2 = 1.
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CHAPTER 1. INTRODUCTION TO QUANTUM COMPUTING

Equation 1.1 can be recast in spherical coordinates

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ , (1.2)

with 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π. In this way a qubit can be visualized as a vector
pointing on the surface of a unitary sphere (see figure 1.1) uniquely defined by the
two angles. The z-axis is called the longitudinal axis and by convention, the |0⟩
state is on the north pole of the sphere. Furthermore, the x− y plane is called the
transverse plane.
In analogy to the bits of the classical computer, a quantum computer stores in-
formation on these two-level systems, known as as quantum bits or qubits. In all
competing architectures, the qubits have two states |0⟩ and |1⟩ that are encoded
on different physical systems, such as two hyperfine levels in trapped ions, charge
states in a superconducting circuits or polarizations in photons.
Already, the advantage of qubits becomes clear. We can store more information
on one qubit than on the classical counterpart. Moreover, the true power emerges
when increasing the number of qubits, since the number of combinations between
input states grows exponentially in number of qubits. However, we know from
quantum mechanics that measurements collapse the wavefunction, thus destroy-
ing any superposition and always giving a classical result. Therefore, so far there is
no advantage over saving the same numbers in memory on classical bits. However,
unlike the classical realm, the superposition can be exploited to parallelize the
computation, while quantum entanglement, see section 1.2 allows for completely
new operations.
Equation 1.2 provides the conventional method for representing a qubit on the
Bloch sphere, see Figure 1.1, offering a valuable visualization of the dynamics of
two-level systems. We now have a representation that can be used to visualize how
states of qubits transform under unitary transformations as rotations of vectors
on the surface of a sphere. An important combination of these rotations is the
Hadamard gate, H. In terms of the Bloch sphere, it corresponds to the transfor-
mation that moves the state on the north pole, |0⟩, into the superposition state,
which lies on the equator of the sphere.
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1.1. STATE REPRESENTATION AND DENSITY MATRICES

Figure 1.1: Bloch sphere representation of a single qubit state. The angles θ and ϕ define a
point on the unit three-dimensional sphere, Bloch sphere, that represents a single qubit. The
z-axis corresponds to the Figure was generated using qutip [8].

Unit vectors like 1.1 are called pure states and provide the whole information
regarding the system. Otherwise, one can generalize this representation to an en-
semble of wave functions ψn, each one having a (classical) probability of describ-
ing the system, a so-called mixed state. In other words and also experimentally
speaking, we more often are working with statistical mixtures of pure states. To
characterize pure and mixed states with a unified formalism, we introduce the
density matrix [7]. Density matrices are positive semidefinite operators acting on
Hilbert spaces. The most general definition of a quantum state via the density
matrix is

ρ =
m
∑

j=1

pj |ψj⟩ ⟨ψj| =
d
∑

i,j=1

ρij |ϕi⟩ ⟨ϕj| , (1.3)

where we first introduce a mixture of m states and then express the wave functions
in terms of a basis of the Hilbert space H with dimension d. The diagonal elements
are the classical probabilities that the system is in that specific state, while the
off-diagonal elements are contributions from coherent superpositions.
Density matrices have the properties,
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CHAPTER 1. INTRODUCTION TO QUANTUM COMPUTING

1. hermitian, i.e. ρ = ρ†;

2. non-negative, i.e. ⟨ψ| ρ |ψ⟩ ≥ 0 ∀ |ψ⟩ ∈ H;

3. Tr(ρ) ≡ ∑n
k=1 ⟨k| ρ |k⟩ = 1, where |k⟩k=1...n is a basis of the n-dimensional

Hilbert space H and Tr() is the trace operation;

4. if ρ is pure, then ρ = |ψ1⟩⟨ψ1| since there is only p1 = 1 and every other
pj = 0 ∀ j ̸= 1 and since ρ is a projector, i.e. ρ = ρ†, Tr(ρ2) = 1;

5. if ρ is mixed, then Tr(ρ2) < 1.

The density operator contains all physical information about the system, which
can be extracted using the expectation value of some observable A

⟨A⟩ = Tr(Aρ). (1.4)

1.2 Composite systems

If we want to simulate more complex systems, such as multiple qubits interact-
ing among each other and the environment, we have to introduce the concept of
composite systems [9]. In composite systems, the total state space the many body
system resides in is given by the tensor product of each single body Hilbert space

HN = H1 ⊗H2 ⊗ ...⊗Hd. (1.5)

A more general n-body state can be written as

|ψ⟩ =
d
∑

i

ci |ϕi⟩ , (1.6)

where again {|ϕi⟩} form the orthonormal basis set for the considered Hilbert space
and any state vector of this system can be attained by choosing different combi-
nations of coefficients under the requirement of normalization, i.e.

∑d
i |ci|2 = 1.

If subsequently, we want to focus on a subsystem of this bigger composite system
can make use of the reduced density matrix, which can be found by taking the
trace over subspaces of the composite Hilbert space, which we are not interested

7



1.2. COMPOSITE SYSTEMS

in

ρA = TrB(ρAB) =
∑

n

⟨n|B ρAB |n⟩B (1.7)

and by definition, Eq. 1.7 is a density matrix itself and thus inherits all the
properties defined in the previous section.
Here, we can introduce the concept of entanglement, where the power of quantum
computation lies. If the wave function of a many-particle system can be written
as a product state of each individual component, the quantum state is said to be
separable. Moreover, performing an operation on a single state of a composite
separable state, like for example a measurement, does not influence the other. If,
on the other hand, the composite wave function can not be written as a product
state then it is entangled. For example the state

ψ =
1

2
[|00⟩+ |01⟩+ |10⟩+ |11⟩] (1.8)

does not posses entanglement since it can be expressed as

ψ = |A⟩ |B⟩ , (1.9)

with |A⟩ = 1/
√
2(|0⟩ + |1⟩) and |B⟩ = 1/

√
2(|0⟩ + |1⟩), it is therefore a separable

state. While

ψ =
1√
2
(|00⟩+ |11⟩) (1.10)

is entangled since it can not be decomposed as a simple product of single-particle
wavefunctions.
As another example, let us look at the bipartite pure state similar to the qubit,
equation 1.2, with ϕ = 0

|ψ⟩ = cos
θ

2
|00⟩+ sin

θ

2
|11⟩ . (1.11)

This state is separable if θ = 0, π and entangled otherwise. Moreover, it is maxi-
mally entangled when θ = π/2, which is referred to as a Bell state. Furthermore,
we can quantify the purity of the subsystems by calculating the trace of the re-
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CHAPTER 1. INTRODUCTION TO QUANTUM COMPUTING

duced density matrix squared, i.e. Tr(ρ2A), as seen in figure 1.2. As described
before, the state is pure if Tr(ρ2) = 1 and mixed otherwise. The purity of the
reduced density matrix is 1 when the state is separable, while it is < 1 otherwise,
since the partial states of a pure and entangled composite state are necessarily
mixed.

0.00 0.25 0.50 0.75 1.00
θ/π

0.5
0.6
0.7
0.8
0.9
1.0

T
r(
ρ
2 A
)

Figure 1.2: Purity of the reduced density matrix for the subsystem A as defined in equation
1.11.

1.3 Evolution of Closed Systems and Quan-
tum Circuits

The closed dynamics of a quantum system are described by the Schrödinger equa-
tion

Hψ = − h̄
i

∂ψ

∂t
, (1.12)

whose general solution is given by

|ψ⟩ = U(t) |ψ(0)⟩ = e−iHt/h̄ |ψ(0)⟩ , (1.13)

where U(t) is a unitary operator and is called the time-evolution operator. In the
language of quantum computation, when dealing with closed systems, we have a
powerful method for manipulating the qubit evolution, namely, through the use of
quantum gates. These gates are algebraic objects consisting of unitary operations
that act on the quantum states. They allow us to manipulate quantum information
without delving into the specifics of the underlying microscopic Hamiltonians that

9



1.3. EVOLUTION OF CLOSED SYSTEMS AND QUANTUM CIRCUITS

govern the system’s dynamics. Later, we will derive various Hamiltonians for
quantum computers that implement these gates and thereby introduce important
concepts such as Rabi oscillations.
For now, if we for example want to rotate the state |0⟩ to |1⟩, we can make use of
the Pauli X-matrix

X |0⟩ = |1⟩ ⇐⇒
(

0 1

1 0

)(

1

0

)

=

(

0

1

)

. (1.14)

The operation, depicted in figure 1.3 using quantum circuit notation, involves the
representation of qubits as lines upon which gates are applied. In the context of
quantum circuits, a quantum register serves as a collection of qubits, collectively
manipulated during the computation. Gates, representing quantum operations,
act on these qubits, influencing their quantum states. It is crucial to note that
a quantum circuit is always ended by a measurement gate. This gate performs a
projection onto the basis states |0⟩ and |1⟩, yielding measurement outcomes. In
quantum circuits, measurements provide classical information and play a pivotal
role in extracting results from quantum computations.

q

1c

X

0

Figure 1.3: Simple circuit to rotate an initial state vector by π radians around the x-axis us-
ing the X operator. Note, this circuit has a classical register that is used to map the outcome
of the qubit to a classical bit. The picture was generated using qutip [8].

The X-gate is an example of a single-qubit gate and a straight forward general-
ization can be done by considering a general initial state

|ψ⟩ = α |0⟩+ β |1⟩ , (1.15)

10



CHAPTER 1. INTRODUCTION TO QUANTUM COMPUTING

then single-qubit gates are simple 2x2 matrices, with

|ψnew⟩ = M |ψold⟩ , (1.16)

where the unitary matrices are equivalent to considered quantum gates.
Following is a list of the most important single-qubit gates.

• Hadamard (is a rotation of the sphere about the y-axis by 90°, followed by
a rotation about the x-axis by 180°)

H =
1√
2

[

1 1
1 −1

]

(1.17)

• Pauli-X (quantum not gate, 180° rotation around x-axis)

X =

[

0 1
1 0

]

(1.18)

• Pauli-Y (180° rotation around y-axis)

Y =

[

0 −i
i 0

]

(1.19)

• Pauli-Z (180° rotation around z-axis)

Z =

[

1 0
0 −1

]

(1.20)

• Phase (90° rotation around z-axis)

S =

[

1 0
0 i

]

(1.21)

• π/8 (45° rotation around z-axis)

T =

[

1 0
0 eiπ/4

]

(1.22)

Another important quantum gate is the controlled-not (CNOT or CX) gate. It
is different from the preceding gates in that it is acting on two-qubits, therefore

11



1.4. QUANTUM OPERATIONS

referred to as a two-qubit gate,

CX =











1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0











. (1.23)

It is made up of a target and a control qubit and basically it applies a X-gate onto
the target qubit whenever the control qubit is in the |1⟩ state, otherwise leaving
the target qubit unchanged. This gate in particular is important since it can be
shown that any two-qubit gate can be derived from a universal single-qubit gate
set plus the CNOT gate [7]. By a universal gate set, we mean a set of all possible
rotations on the Bloch sphere. This is achieved by e.g. the Hadamard H, the S

and the T gates or more generally by the three rotation gates [10]

Rx =

[

cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

]

, (1.24)

Ry =

[

cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

]

, (1.25)

Rz =

[

e−iθ/2 0

0 eiθ/2

]

. (1.26)

1.4 Quantum operations

As we discussed before, quantum states transform using unitaries. These are
operations that 1) preserve probability and 2) are linear maps,

|ψ′⟩ = U |ψ⟩ . (1.27)

Different from what we considered before, we can also transform a quantum state
within the density matrix formalism. The connection between the two formalisms

12



CHAPTER 1. INTRODUCTION TO QUANTUM COMPUTING

is straight forward using the definition of the density matrix

ρ′ =
l
∑

k=1

pk |ψ′
k⟩ ⟨ψ′

k| =
l
∑

k=1

pkU |ψk⟩ ⟨ψk|U † (1.28)

=UρU †. (1.29)

A generalization of this is done by introducing the quantum operation [7, 11]. We
want to describe the unitary evolution of a system with its environment. To do this,
we assume that the two subsystems are not entangled and that the environment
is initially in a pure state. Since we are only interested in the reduced density
matrix of our subsystem, we will use the partial trace to ignore the environment
after the transformation

ρ′ =TrB
[

U(ρ⊗ ρB)U
†
]

(1.30)
=TrB

[

U(ρ⊗ |ψ⟩B ⟨ψ|B U †
]

(1.31)

=
∑

k

B⟨k|U |ψ⟩B ρ B⟨ψ|U † |k⟩B , (1.32)

with B referring to the environment and ρ the system’s density matrix. At this
point, we can define the operators Ek = B⟨k|U |ψ⟩B, so

ϵ(ρ) =
∑

k

EkρE
†
k, (1.33)

with Tr(ϵ(ρ)) = 1. This mapping is called a operator-sum of Kraus operators Ek

which satisfy
∑

k E
†
kEk = 1. So in general, we introduce a transformation

ρ′ = ϵ(ρ), (1.34)

where for now, we have made the reasonable assumption that the initial composite
state starts out in a pure product state.
The introduced map ϵ : ρ→ ρ′ that has the following properties,

1. linear;

2. preserves hermiticity;

3. trace preserving;

13



1.5. NOISE CHANNELS

4. completely positive: if ρ ≥ 0 then ϵ(ρ) ≥ 0.

1.5 Noise channels
We can represent noise channels as quantum operations inside a circuit, in which
the environment is represented by qubits. In this respect, a quantum noise channel
E(ρ) on the system maps the initial quantum state of the system to the final state
after an interaction with the environment.
Let us consider a 3-qubit system, where the environment is represented by 2 qubits
and the system by the third qubit [11]. Initially, the environment is in the pure
state

|ψenv⟩ = α |00⟩+ β |01⟩+ γ |10⟩+ δ |11⟩ . (1.35)

We now examine a transformation as implemented in figure 1.4,

U =











σx 0 0 0

0 σy 0 0

0 0 σz 0

0 0 0 I











. (1.36)

Note, subsequently we use both notations, e.g. σx = X, for the Pauli matrices
interchangeably.

Figure 1.4: Qualitative picture of a general noise channel. White circles represent |0⟩ and
grey circles |1⟩. (Inspired by [11].)
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CHAPTER 1. INTRODUCTION TO QUANTUM COMPUTING

Initially, we have the total density matrix as given by

ρtot,0 = |ψenv⟩⟨ψenv| ⊗ ρs,0











|α|2ρs 0 0 0

0 |β|2ρs 0 0

0 0 |γ|2ρs 0

0 0 0 |δ|2ρs











, (1.37)

where the 0s denote matrices of zeros and ρs is our systems density matrix. After
the considered operation we obtain

ρtot,1 = Uρtot,0U†. (1.38)

To obtain the final state of the system, we trace over the environment

ρ′s,1 =Trenv(ρtot,1) (1.39)
=|α|2σxρsσ†

x + |β|2σyρsσ†
y + |γ|2σzρsσ†

z + |δ|2ρs. (1.40)

We can cast this to an operator sum representation by rewriting the expression as

ρ′s,1 =
3
∑

i=0

EiρsE
†
i . (1.41)

With this depiction we have achieved a quantum circuit that implements the X-
gate when the environment is in the state |00⟩, the Y-gate when in state |01⟩, the
Z-gate when in |10⟩ and the identity when in |11⟩. All the noise channels that
will be studied in this work can be derived from this simple picture by explicitly
choosing the parameters α, β, γ and δ plus the normalization condition |α|2+ |β|2+
|γ|2 + |δ|2 = 1.
In the following we directly use the Kraus operators used in the operator sum
representation, which are

E0 = |δ|I, E1 = |α|σx, E2 = |β|σy, E3 = |γ|σz. (1.42)

Starting from this general expression, we will derive the channels for depolarization,
pure dephasing and amplitude damping [7]. The Depolarization channel drives
the system towards the totally mixed one and therefore is given by setting |α|2, |β|2
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1.5. NOISE CHANNELS

and |γ|2 to p/3, where p is the probability to depolarize. Thus,

E0 = I
√

1− p, E1 = σx

√

1

3
p, E2 = σy

√

1

3
p, E3 = σz

√

1

3
p, (1.43)

or written out

ρnew =
1

3
p
[

σxρσ
†
x + σyρσ

†
y + σzρσ

†
z

]

+ (1− p)ρ. (1.44)

In terms of the Bloch sphere, this achieves a ”shrinking” of the sphere with the
center always at the origin (totally mixed state), as can be seen in figure 1.5a. It
is possible to recast the result as a time evolution, by considering the probability
of depolarization in terms of time and including a decay constant.
We assume that the probability to depolarize is p = 1 − e

− t
Tp . With this, we get

to the transformation

ϵ(ρ) =
1

3
(1− e

− t
Tp )
[

σxρσ
†
x + σyρσ

†
y + σzρσ

†
z

]

+ (1− 1 + e
− t

Tp )ρ, (1.45)

where we expand the exponential in a series up to first order (we require Tp ≫ tg,
where tg is the time we apply the gate) and we replace t with an infinitesimal
time-step dt. Then we get the expression

ρ(t+ dt) =
1

3

dt

Tp

[

σxρσ
†
x + σyρσ

†
y + σzρσ

†
z

]

+ (1− dt

Tp
)ρ

→ ρ(t+ dt) + ρ(t)

dt
=

1

3

1

Tp

[

σxρσ
†
x + σyρσ

†
y + σzρσ

†
z

]

− 1

Tp
ρ

→ ρ̇ =
γd
3

3
∑

k=1

[σkρσk − ρ] ,

(1.46)

with σx = σ1 etc.
Note, it is instructive to make the change of variables s = t/tg, dt = tgds, to get
dimensionless time-steps.
The Amplitude damping channel is achieved by setting |α| = √

p, |β| = 0,
γ = 0 and |δ| =

√
1− p. It drives the system towards the ground state |0⟩

and arises from the interaction with the surrounding environment, e.g. the drive
to thermal equilibrium. It can also arise from control and measurement faults,
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CHAPTER 1. INTRODUCTION TO QUANTUM COMPUTING

Writing the matrices out

ρnew = E0ρE
†
0 + E1ρE

†
1

=

[

1 0

0
√
1− p1

][

ρ00 ρ01

ρ10 ρ11

][

1 0

0
√
1− p1

]

+

[

0
√
p1

0 0

][

ρ00 ρ01

ρ10 ρ11

][

0 0
√
p1 0

]

=

[

ρ00 + p1ρ11
√
1− p1ρ01√

1− p1ρ10 (1− p1)ρ11

]

.

(1.47)

It is represented in figure 1.5b.
Pure dephasing, equivalent to a phase-flip channel, on the other hand is attained
by setting |α| = |β| = 0. It is purely quantum mechanical, in the sense that it only
affects the loss of coherence without the loss of energy. In that case we obtain

ρnew = pzσzρσ
†
z + (1− pz)ρ (1.48)

= pz(ZρZ − ρ) + ρ, (1.49)

with |γ|2 = pz the probability of phase-flipping. Effectively this achieves a defor-
mation of the Bloch sphere to an ellipsoid with the Z-axis its long side’s center.
This can also be seen in figure 1.5c.

x

y

|0

|1

(a) Depolarization

x

y

|0

|1

(b) Amplitude damping

x

y

|0

|1

(c) Dephasing

Figure 1.5: Noise channels that are considered in this work and their effects on the state
vector visualized as a Bloch sphere. Note, the grey Bloch sphere represents no noise channel
and the blue Bloch sphere the effect of the considered noise channel on the available states.
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2
Noisy gate derivation

In this section, we show how we can incorporate the non-unitary dynamics of in-
teractions with the environment into the gate formalism. By integrating stochastic
and deterministic noise into the logical gate, we replace the exact gate with the
noisy alternative. Starting point is the stochastic Schrödinger equation.

2.1 Time-evolution of open systems

In order to describe the continuous temporal evolution of open quantum systems,
it is convenient to first recast the Schrödinger equation in the density matrix
formalism via the von Neumann equation

∂ρ(t)

∂t
= − i

h̄
[Htot, ρ(t)], (2.1)

where in general the Hamiltonian includes environment and environment-system
interaction effects,

Htot = H +Henv +Hint. (2.2)

An open system is a quantum system S coupled to another quantum system E,
called environment. While it is usually assumed that the combined total system
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CHAPTER 2. NOISY GATE DERIVATION

S+E is closed, the state of the subsystem S is subjected to its internal dynamics
and to the interaction with the environment. The interaction leads to certain
system-environment correlations and in general the reduced system S dynamics
cannot be represented in terms of unitary, Hamiltonian dynamics.
The reduced density matrix at time t is obtained from the density matrix of the
total system by tracing out the degrees of freedom of the environment. If the
evolution of the total system S +E is closed, then the equation of motion for the
reduced density matrix is obtained by taking the partial trace over the environment
on both sides of the von Neumann equation, 2.1, ending up with

∂ρS(t)

∂t
= − i

h̄
TrE {[Htot, ρ(t)]} , (2.3)

which is the starting point for deriving an equation for the system state alone,
that yields a non unitary evolution. Equations of this type are called master
equations and generally assume markovity, meaning the time derivative of the
system’s density matrix depends only on the density matrix at the current time
and not on the density matrix at previous times. Master equations are written as

∂ρ(t)

∂t
= L [ρ(t)] , (2.4)

with L the generator of both the unitary and the dissipative, non-unitary dynam-
ics and here, we drop the subscript S to describe the density matrix of the system.
To continue, we also usually work within the Born approximation (system and
environment only interact weakly) and we assume that the system and the envi-
ronment were uncorrelated before the interaction was turned on.
Within the framework of quantum operations, master equations are generally
called Lindblad master equations, where the generator has the form

L(ρ) = − i

h̄
[H, ρ] +D(ρ) = ih̄[H, ρ] +

∑

i

L†
iρLi −

1

2
(L†

iLiρ+ ρL†
iLi). (2.5)

The Lindblad operators Li can be derived from the the previously defined noise
channels, eqs. 1.44, 1.47 and 1.48. To see the correspondence, consider a noise
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2.1. TIME-EVOLUTION OF OPEN SYSTEMS

contribution from pure dephasing,

ρnew = pz(σzρσz − ρ) + ρ. (2.6)

We assume the probability of dephasing to be pz = 1− e−
t
Tz , then

ρ(t+ dt)− ρ(t) =
(

1− e−
t
Tz

)

(σzρ(t)σz − ρ(t)) . (2.7)

If we, like before, expand the exponential series up to first order and replace t
with an infinitesimal time-step dt, we end up with

ρ(t+ dt)− ρ(t)

dt
= γz (σzρ(t)σz − ρ(t)) . (2.8)

Since the Pauli matrices are both hermitian and unitary we can immediately
rewrite the expression in the limit dt→ 0, as

ρ̇ = L†
zρLz −

1

2
(L†

zLzρ+ ρL†
zLz), (2.9)

where Lz =
√
γzσz is the Lindblad operator for pure dephasing.

With this, we have a way to describe the non-unitary dynamics of our system as
an evolution that has a unitary contribution and the Lindblad operators, which
describe the effect of the environment. For a particular system, we now have to
1) find the Hamiltonian that governs the unitary dynamics and 2) the Lindblad
operators Li that generate the non-unitary dynamics.
It is possible to unravel the master equation 2.4, obtaining a stochastic Schrödinger
equation [12]

d |ψ⟩ =
[

− i

h̄
Hdt+

∑

k=1

[i dWk,tLk −
1

2
dtL†

kLk]

]

|ψ⟩ , (2.10)

where dW (t) is a Gaussian stochastic variable and referred to as the Wiener mea-
sure.
In general, we can assume that the mixedness of the density matrix is the result
of an average of several possible pure states |ψ⟩. Each of these states is associated
with a probability P , reflecting the likelihood of the system being in a specific pure
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CHAPTER 2. NOISY GATE DERIVATION

state. Therefore, solutions of stochastic Schrödinger equations are usually called
quantum trajectories and are defined and can be addressed within the framework
of Ito stochastic calculus [13]. Lastly, we again recover an unbiased estimator
of the density matrix by averaging over the trajectories over the pure states |ψ⟩.
The point of doing this unraveling is to derive an expression that can be used
to manipulate the state vector itself. We can then simply replace the previously
defined unitary gate acting on our state with the corresponding non-unitary noisy
gate.

2.2 Noisy gates

This section and section 2.3 follow the previously mentioned article [6].
Usually, modelling noise in gate-based systems is done by including appropriate
noise channels acting before and after the unitary gate [11], i.e. by trotterizing the
evolution and the error . This approximation is justified, since the used gate times
tg are much smaller than the characteristic times of considered decoherence effects.
Instead, a more detailed description can be obtained by integrating the noise into
the gates themselves, so to solve the dynamics that the system coupled with the
environment generate during a gate. The novel description offers a more detailed
description and therefore is expected to yield a more accurate circuit simulations,
thereby helping to understand in more detail how different noises modify the ideal
gate dynamics.

2.3 General derivation of noisy gates

We start by writing the Lindblad term in terms of the dimensionless parameter ϵ

D(ρ) = ϵ2
∑

k=1

[

LkρL
†
k −

1

2

{

L†
kLk, ρ

}

]

, (2.11)

where ϵ =
√
γtot is the sum of all characteristic decay rates normalized by the

gate time tg for the considered noise contributions. The characteristic time scales
are given by 1/γi = Ti/tg, with Ti the specific relaxation time. The assumption
we revisit here is that the typical order of magnitude of the time to execute any
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2.3. GENERAL DERIVATION OF NOISY GATES

gate is multiple orders lower than the typical order of magnitude of the considered
decoherence times, meaning ϵ≪ 1.
We continue by writing the stochastic Schrödinger equation with this newly intro-
duced parameter

d |ψs⟩ =
[

− i

h̄
Hsds+

N2−1
∑

k=1

[iϵ dWk,sLk −
ϵ2

2
dsL†

kLk]

]

|ψs⟩ . (2.12)

Here, we see why it is crucial to introduce the parameter ϵ. We can solve eq.
2.12 approximately with the solution in the order of O(ϵ2), using a perturbative
approach for ϵ. This is valid with the assumptions we made, i.e. that we work
within the small noise expansion.
For simplicity, we consider only the k = 1 term, while the generalization to more
terms can be done straight forwardly,

d |ψs⟩ =
[

− i

h̄
Hsds+ [iϵdW1,sL1 −

ϵ2

2
dsL†

1L1]

]

|ψs⟩ , (2.13)

and we use a perturbative Ansatz of the form

|ψs⟩ = |ψ0
s⟩+ ϵ |ψ1

s⟩+ ϵ2 |ψ2
s⟩+O(ϵ3). (2.14)

As usual, we put the Ansatz into the SDE and associate terms with same powers
of ϵ. Then we get the following system of SDEs

d |ψ0
s⟩ =− i

h̄
Hs |ψ0

s⟩ ds (2.15)

d |ψ1
s⟩ =− i

h̄
Hs |ψ1

s⟩ ds+ iL1 |ψ0
s⟩ dW1,s (2.16)

d |ψ2
s⟩ =− i

h̄
Hs |ψ2

s⟩ ds+ iL1 |ψ1
s⟩ dW1,s −

1

2
L†
1L1 |ψ0

s⟩ ds, (2.17)

with initial condition |ψ0
0⟩ = |ψ0⟩.

The solution to the zeroth order is

|ψ0
s⟩ = Us |ψ0⟩ , (2.18)
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CHAPTER 2. NOISY GATE DERIVATION

with Us = e−
i
h̄
Hs . The first order is an Ornstein-Uhlenbeck process and the so-

lution can be found by first rearranging the SDE and plugging the zeroth order
solution in

d |ψ1
s⟩+

i

h̄
Hs |ψ1

s⟩ ds = iL1Us |ψ0⟩ dW1,s, (2.19)

then multiplying by an integration factor, in this case Us, and integrating both
sides, using the property

[

Usd |ψ1
s⟩+ i

h̄
HsUs |ψ1

s⟩ ds
]

= d [Us |ψ1
s⟩],

Us

[

d |ψ1
s⟩+

i

h̄
Hs |ψ1

s⟩ ds
]

= UsiL1Us |ψ0
s⟩ dW1,s (2.20)

→
∫

d
[

Us |ψ1
s⟩
]

=

∫

UsiLUs |ψ0⟩ dWs. (2.21)

Now, we define Ss =
∫ s

0
dWτLτ and we use the unitary property of the gate

U †
sUs = 1 and that |ψ1

0⟩ = 0, we end up with

|ψ1
s⟩ = iUsSs |ψ0⟩ . (2.22)

For the second order SDE we essentially use the same procedure to find the solution

|ψ2
s⟩ = −Us

∫ s

0

[

1

2
L†
sLsds+ LsSsdWs

]

|ψ0⟩ , (2.23)

with Ls = U †
sL1Us.

Now, the final approximate solution can be constructed,

|ψs=1⟩ = UgN |ψ0⟩+O(ϵ3), (2.24)

with Ug = Us=1 and

N =

[

1 + ϵS1 − ϵ2
∫ 1

0

[

1

2
L†
sLsds+ LsSsWs

]]

, (2.25)
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which can be rewritten using Itos rule (the equivalent of the chain rule in stochastic
calculus [13])

∫ τ

0

dWsLsSs =
1

2

[

S2
s +

∫ τ

0

dWs[Ls, Ss]−
∫ τ

0

dsL2
s

]

. (2.26)

Then,

N = 1 + iϵS1 −
ϵ2

2

[

S2
1 +

∫ 1

0

ds[L†
s − Ls]Ls + C

]

, (2.27)

which are the first terms of a series expansion of an exponential

eΞ = 1 + iϵS1 −
ϵ2

2
S2
1 +O(ϵ3), (2.28)

eΛ = 1− ϵ2

2

(∫ 1

0

ds[L†
s − Ls]Ls + C

)

+O(ϵ4) (2.29)

Therefore

N = eΛeΞ +O(ϵ3), (2.30)

where we have one deterministic and one stochastic term

Λ =− ϵ2

2

∫ 1

0

ds
N2−1
∑

k=1

[L†
k,sLk,s − L2

k,s] (2.31)

Ξ = iϵ

N2−1
∑

k=1

∫ 1

0

dWk,sLk,s, (2.32)

where it is important to remember that, from before, the Lindblad operators are
written in the interaction picture, i.e. Lk,s = U †

sLkUs.
On top of that, we redefine the stochastic part in terms of random variables

Ξij = iϵ

N2−1
∑

k=1

[ξ+kij + iξ−kij], (2.33)
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with Lkij,s = L+
kij,s + iL−

kij,s the entries of each matrix entry written in terms of
real and imaginary part and we defined the Ito integrals

ξ+kij =

∫ 1

0

dWk,sL
+
kij,s (2.34)

ξ−kij =

∫ 1

0

dWk,sL
−
kij,s, (2.35)

which are Ito integrals of non anticipating functions and therefore follow standard
rules, normally distributed with zero mean and correlated by

〈

ξ+kijξ
−
kij

〉

=

∫ 1

0

dsL+
kij,sL

−
ki′j′,s. (2.36)

Finally, we have defined everything we need to implement the gates. If we know
the type of operation, i.e. the Hamiltonian. We can then evaluate the stochastic
and deterministic term separately, exponentiate and multiply with the noiseless
gate Ug to get the noisy version.
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3
Superconducting qubits

In this chapter, we first introduce the basic concepts of the superconducting qubit,
derive the implemented single- and two-qubit unitaries and then discuss the relevant
noise in this hardware. Finally, we show the performance of the noisy gates
algorithm applied to this architecture as compared to the exact solution. To this
aim we implement the noisy gates protocol in a Python code that performs the
noisy gate, when supplied with a Hamiltonian, the different noise terms in the
interaction picture, the covariance matrices of the Wiener integrals and an initial
state vector.

3.1 Quantum LC circuit

The superconducting qubit is essentially an LC circuit, where the inductor is
replaced by a Josephson junction. Therefore, it is instructive to start with a
quantum mechanical treatment of the LC circuit.
The energy stored by the capacitor in an LC circuit is

UC =
1

2
CV 2 =

Q2

2C
, (3.1)

26



CHAPTER 3. SUPERCONDUCTING QUBITS

with C the capacitance, V the voltage and the circuit charge defined as

Q =

∫ t

−∞

I(t′)dt′. (3.2)

The energy stored in the inductor, on the other hand, is

UL =
1

2
LI2 =

Φ2

2L
, (3.3)

with inductance L and the flux defined as

Φ =

∫ t

−∞

V (t′)dt′. (3.4)

We define the flux as the canonical coordinate in the Lagrangian

L = T − U (3.5)

= UC − UL =
1

2
CΦ̇

2 − Φ2

2L
(3.6)

Then the conjugate momentum of the flux is

∂L
∂Φ̇

= CΦ̇ = Q, (3.7)

by the definition of the circuit charge variable.
The corresponding Hamiltonian of this system is

H =QΦ̇− L (3.8)

=
1

2
CΦ̇

2
+

Φ2

2L
=
Q2

2C
+

Φ2

2L
. (3.9)

We can rewrite this in a more instructive form by recalling that

ω =

√

1

LC
, (3.10)
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then

H =
Q2

2C
+ C

ω2

2
Φ2. (3.11)

as compared to the well known Hamiltonian for the harmonic oscillator [14]

H =
p2

2m
+m

ω2

2
x2, (3.12)

where the canonical variables are exchanged and the mass m replaces the capaci-
tance.
For the purpose of having a quantum mechanical description of the system, we
have to promote the charge and flux coordinate to quantum mechanical operators
obeying the commutation relation [15]

[Φ̂, Q̂] = ih̄. (3.13)

For simplicity, however, we drop the hat of the operators in the subsequent treat-
ment.
It is convenient to introduce the reduced flux and reduced charge variables,

ϕ = 2π
Φ

Φ0

, (3.14)

n =
Q

2qe
, (3.15)

where we defined the superconducting magnetic flux quantum as Φ0 = h/2qe.
Using the reduced quantities, we rewrite the quantum mechanical LC Hamiltonian
as

H = 4ECn
2 +

1

2
ELϕ

2, (3.16)

where EC = q2e/2C is the charging energy and EL = (Φ0/2π)
2/L the inductive

energy. To summarize, the obtained Hamiltonian, 3.16, describes a resonant circuit
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CHAPTER 3. SUPERCONDUCTING QUBITS

which has equally spaced energy levels, whose spacing is given by

∆E = h̄ωr =
h̄√
LC

=
√

8ECEL. (3.17)

If we intend to encode quantum information, we need the levels to not be equally
spaced, so we introduce an anharmonicity in the circuit. Then, we can target and
encode information in specific states which, in the case of charge qubit, correspond
to the discrete charge levels (excess in the Cooper pairs) on the superconducting
island, namely the superconducting section of the circuit between the capacitor
and the junction.
The nonlinear inductor placed instead of the linear one is called Josephson junc-
tion, and is made up of two superconductors separated by a thin insulating layer.
The nonlinear behaviour stems from the fact that, if the layer is thin enough, dis-
crete charges can tunnel through the barrier.
The extension of the quantum LC Hamiltonian to the Josephson junction Hamil-
tonian is straight forward using the Josephson equations [16] (we derive them in
Appendix A.1)

I = Ic sin(ϕ), (3.18)

V =
Φ0

2π

∂ϕ

∂t
. (3.19)

where Ic is the (critical) maximum current that can flow inside the junction. The
modified Hamiltonian is then [15]

H = 4ECn
2 − EJ cos(ϕ), (3.20)

where EJ = ICΦ0/2π is the Josephson energy. At this point, we can compare
the two findings. We evaluate the two Hamiltonians and determine the respective
wave functions and energies for the first few levels, as can be seen in figure 3.1.
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(a) Normal QHO: H = 4ECn
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(b) SC qubit: H = 4ECn
2 − EJ cos(ϕ)

Figure 3.1: In this example we set EC = 0.3 and EL = EJ = 15 and we show the first
few low lying energy levels for the two types of potentials. For (a) the quantum harmonic
oscillator, the energy levels are equally spaced with ∆E =

√
8ECEL = 6. In (b), we see that

the energy difference of adjacent levels gets smaller as you climb up the energy levels. The
solutions were obtained by finite differences, note we shifted along y such that both solutions
start at 0.

The LC Hamiltonian 3.16 has a parabolic potential, from which the harmonic
spectrum originates. After introducing the Josephson junction, the parabolic po-
tential is replaced by a cosinusoidal one, whose energy spectrum now is anharmonic.
For the charge qubit, the electrostatic energy of the Cooper-pair on the supercon-
ducting island is larger than the Josephson coupling energy on the junction, i.e.
EJ ≪ EC . The relevant quantum variable is the number of Cooper pairs that
cross Josephson junction. By writing the Hamiltonian 3.20 in the charge basis
highlights the coupling between consecutive charge levels

H =
∑

n

[EC(n− ng)
2|n⟩⟨n|EJ(|n⟩⟨n+ 1|+ |n+ 1⟩⟨n|)], (3.21)

where ng = CV/2e is the number of induced Cooper pairs on the capacitor. The
ratio EJ/EC tunes the sensitivity of the qubit toward the charge noise: In this
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setup, the charge dispersion decreases exponentially in EJ/EC , while the an-
harmonicity decreases with a slow power law of EJ/EC , allowing for a workable
effective two-level system. We will discuss the relevant noises in the charge qubit
in chapter 3.4.

3.2 Single-qubit gate
Here, we review a technique for driving single-qubit gates and certain two-qubit
gates with the SC qubit that is based on the capacitive coupling of a microwave
line to the qubit [15]. The technique we introduce is applicable to all types of
superconducting qubits, even though we refer specifically to the charge qubit, such
as the Cooper-pair box and transmon-like qubits. To demonstrate the capability
of driving single-qubit gates, we consider coupling a superconducting qubit to a
microwave source (or qubit drive) as shown in Figure 3.2.

Figure 3.2: Circuit diagram of a Cooper pair box - here, represented as a Josephson junction
L in parallel with a capacitor C - capacitively (Cg) coupled to a microwave drive line, charac-
terized by a time-dependent voltage Vg.

For the Cooper pair box, the energy stored by the inductor is as before

UL =
1

2
LI2 =

ϕ2

2L
. (3.22)

The energy stored by the capacitor in the LC circuit is also again

UC =
1

2
CV 2 =

1

2
Cϕ̇

2
, (3.23)
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and by the capacitor in parallel with the junction

UCg
=

1

2
Cg(V − Vg)

2 =
1

2
Cg(ϕ̇− Vg)

2. (3.24)

The corresponding Lagrangian is thus

L = T − U =
1

2
Cϕ̇

2 − 1

2L
ϕ2 +

1

2
Cg(ϕ̇− Vg)

2, (3.25)

where the flux ϕ is again identified as the canonical coordinate. From this we get
the Hamiltonian

HLC = Qϕ̇− L =
1

2
Cϕ̇

2
+

1

2L
ϕ2 =

Q2

2(C + Cg)
+

1

2L
ϕ2. (3.26)

If we turn on Vg and disregard terms that do not involve dynamical variables, we
obtain

H = HLC +
Cg

C + Cg

VgQ. (3.27)

We can now, similarly to the momentum operator in the harmonic oscillator, re-
express Q in terms of the raising and lowering operators of a single excitation of
the resonator,

Q = −iQzpf (a− a†), (3.28)

where Qzpf =
√

h̄
2Z

is the zero-point fluctuation of the charge variable, with Z

the impedance of the circuit. Fluctuations arise due to the wave functions having
non-zero standard deviations, partly due to the uncertainty principle, even in the
ground-state, where they are called zero-point fluctuations [17].
HLC is equivalent to the one dimensional quantum harmonic oscillator with the
capacitance C replacing the mass m and resonant frequency ω01 = 1/

√
LC, so can

also be recast using the ladder operators,

HLC = HQHO = h̄ω01(a
†a+ 1/2). (3.29)
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In total we attain

H = h̄ω01(a
†a+ 1/2)− iQzpf

Cg

C + Cg

Vg(a− a†). (3.30)

If we only consider the lowest transition of the obtained oscillator, we can exchange
a and a† for σ− and σ+

H = h̄
ω01

2
1− h̄

ω01

2
σz + ΩVgσy, (3.31)

with Ω = QzpfCg/(Cg + C) and ω01 = (E1 − E0)/h̄. Moreover, by omitting the
rigid shift, we write the Hamiltonian as the sum of H0 and the driving term Hd.
Driven dynamics are conveniently described in a reference frame which rotates
with the qubit’s frame at the frequency ω01. The rotation operator is R =

exp (itH0/h̄) = exp
(

−it1
2
ω01σz

)

. From this we can transform the crucial Pauli
operators

RσzR
† =σz, (3.32)

RσyR
† =cos(ω01t)σy − sin(ω01t)σx. (3.33)

If we only consider the driving part of the Hamiltonian in the rotating frame, we
accordingly get

Hg = ΩVg (cos(ω01t)σy − sin(ω01t)σx) , (3.34)

and drive the voltage with a simple oscillatory behaviour with frequency ωg

Vg = V0s(t) sin(ωgt+ ϕ) = V0s(t) [cos(ϕ) sin(ωgt)− sin(ϕ) cos(ωgt)] , (3.35)

where ϕ now is the set phase of the drive. Combining both, we end up with

Hg = ΩV0s(t) [cos(ϕ) sin(ωgt)− sin(ϕ) cos(ωgt)] [cos(ω01t)σy − sin(ω01t)σx] ,

(3.36)

for the driving Hamiltonian. We now perform the rotating wave approximation, in
which fast oscillating terms are dropped, i.e. terms at frequencies ωg +ω01. In the
subsequent analysis we also assume that the drive has no detuning, meaning that
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we drive the AC power source at the qubit frequency, ωg = ω01. Let us expand
the drive Hamiltonian, eq. 3.36, and see what terms survive after the RWA

Hg = ΩV0s(t)
[

cos(ϕ) sin(ω01t) cos(ω01t)σy − cos(ϕ) sin(ω01t) sin(ω01t)σx+

− sin(ϕ) cos(ω01t) cos(ω01t)σy + sin(ϕ) cos(ω01t) sin(ω01t)σx
]

=
ΩV0s(t)

2

[

cos(ϕ)
�
�

�
�

��

sin(2ω01t)σy − cos(ϕ)(1−
�
�
�
�
��

cos(2ω01t))σx+

− sin(ϕ)(1 +
�

�
�

�
��

cos(2ω01t))σy + sin(ϕ)
�
�

�
�

��

sin(2ω01t)σx
]

=
ΩV0s(t)

2

(

− cos(ϕ)σx − sin(ϕ)σy
)

.

With all these assumptions, we finally end up with the driving Hamiltonian for
the Cooper pair box, where we dropped the subscript g,

H(θ, ϕ) =
θh̄

2
Rxy(ϕ), (3.37)

with Rxy(ϕ) = cos(ϕ)σx + sin(ϕ)σy. For simplicity, in this work we consider con-
stant pulses, i.e. s(t) = s and thus define θ = −ΩV0s/h̄.
The implemented unitaries are therefore of the form

U(θ, ϕ) = exp

(

− i

h̄
H(θ, ϕ)

)

= exp

(

− iθ
2
Rxy(ϕ)

)

, (3.38)

driven for a time interval t = 1 and can be applied as a sequence of gates of the
form [15]

UK ...U1U0 = T
[

K
∏

n=0

exp

(

− iθn
2
Rxy(ϕn)

)

]

, (3.39)

where T is the time-ordering operator, in order to ensure that the pulses are
performed in ascending order.
Let us look into more detail, which explicit gates we can achieve with this type
of unitary. More importantly, if we can show that for a single-qubit, all Bloch
rotations are possible. For this, we show that we can implement the X, Y, Z-gates
and the Hadamard gate [15].
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For different combinations we can achieve, apart from a constant phase shift,

U(π, 0) =− iσx = σzσy, (3.40)
U(π/2, 0) = iσy = σzσx, (3.41)

from which we can acquire the σz gate, since σxσy = iσz. Note, we can see the
introduced phase shift as changing rotations around x to rotations around y and
vice versa, and therefore can be interpreted as effectively applying virtual Z-gates.
The Hadamard gate can be achieved by H = σxσ

(1/2)
y , so a π/2 rotation around

the y-axis followed by a π rotation around the x-axis. Explicitly,

U(π, 0)U(π/2, π/2) = −iσx
[

1√
2
1− i

1√
2
σy

]

= −i 1√
2
[σx + σz] = −iH. (3.42)

3.3 Two-qubit gate

Building on the use of the capacitive coupling to a microwave resonator, one can
extend the previous approach to the implementation of two qubit gates. The cross-
resonance (CR) gate applies to two fixed frequency transmons coupled through a
resonator [18] and has recently been utilized to achieve a CNOT gate with high
fidelity exceeding 0.99 [19]. We report here the final effective Hamiltonian whose
derivation can be found in [20].

H1,2(θ, ϕ) =
θh̄

2
Z ⊗Rxy(θ, ϕ), (3.43)

which implements unitaries of the form

U1,2(θ, ϕ) = exp

(

− iθ
2
Z ⊗Rxy(θ, ϕ)

)

, (3.44)

again for a duration of t = 1.
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3.4 Noise

One contributions to decoherence of the system stems from depolarization [21],
which, as mentioned before, can be thought of as causing random rotations in the
Bloch sphere representation of the qubit. The result is that the quantum state
evolves into the completely mixed state at the origin of the Bloch sphere. The
other mechanisms present are damping in the z-axis (longitudinal noise, along the
quantization axis) and in the x − y plane (transverse noise). They are mainly
induced by interactions with the surrounding environment and occur due to ther-
malization towards equilibrium and result in a damping of both the excited state
as well as the coherences of the qubit. The energy exchange between the qubit
and its environment generates the longitudinal relaxation to the ground state |0⟩
with rate T1. Note, in theory we also have induced transitions from ground to
excited state by couplings to black body radiation, but the way transmon qubits
are normally operated, the frequency of the qubit is much higher than the thermal
energy of the operating temperature, they are greatly suppressed. The decoher-
ence effect that contribute to the transverse relaxation (T2) combines both energy
relaxation and pure dephasing in the transverse plane, which originates from fluc-
tuations in the qubit frequency. If the qubit frequency is not equal to the rotating
frame frequency, the Bloch vector will effectively precess around the z-axis in the
rotating frame eventually causing the x − y plane to be depolarized. The decay
functions of the relaxations considered so far are exponential. In superconducting
qubits, however, the dephasing noise (e.g. charge noise) is broadband and typi-
cally exhibits a 1/f-like power spectrum. Such noise is singular at ω = 0, has long
correlation times, and generally the description adopted so far does not apply.
For this reason, the decay function of the off-diagonal terms in the qubit density
matrix becomes in general non-exponential.
Let us continue, by writing the relevant Lindblad terms for the different noise
mechanisms. As discussed in section 1.5, the Lindblad term for depolarization is
expressed by

Dd(ρ) = γd

3
∑

k=1

[σkρσk − ρ] (3.45)
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with σ1 = X etc. and γd ≥ 0 gives the rate at which depolarization occurs.
Amplitude damping can be expressed by [6]

Da(ρ) = γ1

[

σ+ρσ− − 1

2

{

P(1), ρ
}

]

, (3.46)

where σ± = (σx ± iσy) /2 are the Pauli jump operators, P(1) = |1⟩ ⟨1| and γ1 gives
the rate at which amplitude relaxation occurs.
Note, this expression is equal to the previously defined channel for amplitude
damping, as can be seen by explicitly expanding the matrices

Da(ρ) =γ1

{[

0 1

0 0

][

ρ00 ρ01

ρ10 ρ11

][

0 0

1 0

]

− 1

2

[

0 0

0 1

][

ρ00 ρ01

ρ10 ρ11

]

(3.47)

− 1

2

[

ρ00 ρ01

ρ10 ρ11

][

0 0

0 1

]}

(3.48)

=γ1

[

ρ11 −ρ01
2

−ρ10
2

−ρ11

]

. (3.49)

Furthermore, the Lindblad term for pure dephasing is as before

Dp(ρ) = γz [ZρZ − ρ] , (3.50)

where γz = (2T1−T2)/(4T1T2). In this case, we have a dephasing term that enters
from relaxation of the excited state (T1) and a term coming from pure dephasing
(T2), which have to be taken into account [7].
The total Lindblad term is then

D(ρ) = Dd(ρ) +Da(ρ) +Dp(ρ), (3.51)

which we write in the general Lindblad form,

D(ρ) = ϵ2
3
∑

k=1

[

LkρL
†
k −

1

2

{

L†
kLk, ρ

}

]

. (3.52)

There are other noise terms that we have not included yet, that can be added
similarly into the algorithm. They include correlated errors (in the case of more
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qubits) and state preparation and measurement errors that occur before and after
the execution of the gate, which are represented by bit-flip channels.

3.5 Results
In this section, we show results for implementing sequences of X-gates on single-
qubit and sequences of CR-gates on two-qubit systems. The system dynamics can
be worked out to include noise terms in the form of a Linbladian

dρs
ds

= − i

h̄
[Hs, ρs] +D(ρs), (3.53)

where the evolution is driven for s ∈ [0, 1] with s = t/tg (tg the duration of a gate).
As discussed, we implement the noiseless Hamiltonian Hs and the noise terms
D(ρs) into the noisy gate formalism. We move from the density matrix formalism
to the state vector formalism, by performing a linear stochastic unraveling of the
Lindbald equation. As discussed in Chapter 1, this approach requires the solution
of

Λ =− ϵ2

2

∫ 1

0

ds
N2−1
∑

k=1

[L†
k,sLk,s − L2

k,s], (3.54)

Ξ =iϵ
N2−1
∑

k=1

∫ 1

0

dWk,sLk,s. (3.55)

Finally, this procedure allows the definition of noisy gates of the form

Ng = Uge
ΛeΞ. (3.56)

In Appendix A.2, we show for the single-qubit case exactly how to calculate the
Lindblad operators in the interaction picture and how to sample the obtained
Wiener integrals. To obtain our results, we build a Python class that modifies
a given unitary Hamiltonian with the appropriate noisy terms. We then use the
modified matrices to implement an evolution of an initial state vector, by repet-
itively applying the noisy gate. The algorithm is sketched below for the case of
superconducting single-qubit gates.
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Algorithm 1 Noisy gate for superconducting single qubit
Function scqSingleQubitSampleRun(psi0, N, shots)

Input :ψ0 is the initial state vector
Input :N the number of gates to be applied
Input : shots the number of samples to take the average of

0.1 Initialize noiseless circuit C = [Ug for j in range(N)]

0.2 Calculate deterministic part of noisy gate Λ

0.3 for i in shots do
0.4 for 1 ≤ k ≤ N do
0.5 Sample stochastic process and calculate stochastic part Ξ

0.6 Compute |ψk⟩ = Uge
ΛeΞ |ψk−1⟩

0.7 Compute ρk = |ψk⟩ ⟨ψk|

0.8 Save ρk into results array
0.9 Calculate for each k in results: ρk = ρk/shots

0.10 return results

For the simulation we use the qubit noise parameters of the ibmq Manila de-
vice [22, 23]. The Manila device has 5 fixed-frequency transmon qubits and
thus can be used as a reference for our single-qubit, as well as two-qubit simu-
lations. At the point of determination, in two-qubit mode, the parameters read
T1,ctr = 138.98µs and T2,ctr = 112.21µs for the control qubit and T1,trg = 152.35µs

and T2,trg = 83.655µs for the target qubit. Furthermore, the depolarization charac-
teristic time was given as Td = 321.62µs. For the single-qubit simulation, we used
the parameters for the control qubit T1,ctr and T2,ctr. Lastly, for all simulations,
we used a gate time of tg = 35 ns.
In the following, we present three examples: First, we use a noisy identity Hamil-
tonian and an X-gate on a single-qubit and then, we apply a CR-gate sequence on
a two-qubit system.
In the first example, we initialize the qubit in the state |1⟩ and apply a repetition
of noisy identity Hamiltonians. This effectively simulates preparing a qubit in a
definite state and observing its evolution over a specified period in the presence
of considered noise. The behaviour can be seen in figure 3.3.
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Figure 3.3: The time-evolution of the ρ00 entry is shown for a repetition of identity gates
on a qubit initially in the |1⟩ state. We display both qutip (blue) and noisy gates algorithm
(red), where the average is taken over 5000 samples. T1 = 138.98 µs, T2 = 112.21 µs and
Td = 321.62 µs represent the relaxation times for the considered damping processes and the
values refer to the IBM Manila device.

As anticipated, the |0⟩ state increasingly gets populated due to the presence of
amplitude damping. In Figure 3.3, we also highlight the characteristic times of the
different noise channels, T1,T2 and Td. Both simulations asymptotically converge
to a seemingly arbitrary value. The steady state is determined by the competition
between depolarization and amplitude damping. The first one drives the system
towards the mixed state while the second one towards the ground state. The final
value can be straight forwardly found, by calculating the steady state solution of
the dissipator, equation 3.51,

D(ρ)
!
= 0, (3.57)

which is readily evaluated, yielding

ρ00 =
γ2

γ1 + γ2
;

ρ11 =
γ1

γ1 + γ2
;

ρ01 =ρ10 = 0.

In our specific case, with this solution we predict a steady state ρ00 ∼ 0.81.
We now look at an evolution with a single-qubit noisy gate as derived in equation
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3.38. The results can be seen in figure 3.4. We are initializing the state |1⟩ and
evolve it, using a repetition of X-gates for a total time of Ntg, with N = 10000.
The X-gate is constructed by choosing θ = π and ϕ = 0 in our single-qubit
Hamiltonian.
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(b)

Figure 3.4: Repetition of X-gates on a single qubit initialized in the |0⟩ state. We show the
time-evolution of the ρ00 term. We compare the evolution computed with qutip (a) to the one
obtained with the noisy gate after 1000 samples (b). Again, T1 = 138.98 µs, T2 = 112.21 µs and
Td = 321.62 µs represent the relaxation times for the considered processes and the values refer
to the IBM Manila device.

The values for T1, T2, Td and the gate time tg are the same as in the previous
example. We see oscillations between |0⟩ and |1⟩ as expected from reapplying
the X-gate. The oscillations are damped due to the presence of noises and we
asymptotically reach the value ρ00 = 0.5. Contrary to the ”rest” evolution before,
both depolarization and amplitude damping drive the system towards the totally
mixed state (ρ00, ρ11 = 0.5) because of the repetition of X-gates.
Lastly, we show the implementation of the two-qubit cross resonance (CR) gate.
The effect of a repetition of this gate onto a prepared state can be seen in figure
3.5. This time, we evolve for a duration of Ntg with N = 10000. We implement
the CR-gate as θ = π and ϕ = 0. The resulting Hamiltonian is H1,2 = πh̄

2
Z ⊗X.

We initialize the qubit in the |11⟩ state and the effect of this Hamiltonian is an
oscillation between |11⟩ and |10⟩.
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Figure 3.5: Repetition of CR-gates on a two qubit initialized in the |11⟩ state. We show
the time-evolution of the ρ22 term. The qutip evolution is given in (a). The noisy gate plots
are a result of (b) 100 and (c) 1000 samples. The characteristic relaxation times are given by
T1,ctr = 138.98 µs, T2,ctr = 112.21 µs for the control qubit and T1,trg = 152.35 µs, T2,trg =
83.655 µs for the target qubit. Furthermore, the depolarization characteristic time is given by
Td = 321.62 µs.

From the examples, we can see that we qualitatively reproduce the behaviour of
the exact solution in each evolution. Furthermore, the more samples we take into
account, the more accurately we reproduce the exact solution, which makes sense,
since we expect to recover the exact solution in the large sampling limit due to
the unraveling of the Schrödinger equation done in the preceding steps, meaning
we are averaging out the noise.
This means that we have a strong indication that we implemented the algorithm
correctly and can use it to simulate novel problems.
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4
Rydberg hardware

In this chapter, we first introduce the Rydberg atom, derive the implemented single-
and two-qubit unitaries starting from a semi-classical analysis of the interaction
between light and matter. After having discussed the relevant noises on this hard-
ware, we extend the noisy gate protocol to this architecture and consider single and
two-qubit gates implemented on a rubidium platform.

A prospective approach for quantum computations utilizes arrays of neutral atoms,
specifically Rydberg atoms, where individual atoms serve as qubits. The initializa-
tion and manipulation of their states are achieved through electromagnetic fields
[24]. Optical tweezers, generated by tightly focused laser beams, trap these atoms
by exerting an attractive force, which causes atoms to be drawn toward regions of
high intensity, namely the focus [25].
Next, individually shaped laser pulses are used to stimulate Rabi oscillations in
the atoms, coupling the ground states to specific Rydberg states. These are states
in which the valence electron is in a large and loosely bound orbit. Rydberg atoms
are particularly interesting because of their large electric dipole momenta, which
makes them couple strongly to external electromagnetic radiation and thus easily
addressable. Also, as the interaction among Rydberg atoms is very weak when
they are more than few angstrom apart, many atoms can be packed close together
in a quantum register. However, qubit interactions are essential for implement-
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ing entangling gates. One effective solution involves temporarily exciting atoms
to Rydberg states. This exploits the Rydberg blockade mechanism, preventing si-
multaneous excitation of more than one atom to a Rydberg state within a confined
volume, thereby facilitating entanglement between two qubits.

4.1 Rydberg atoms

Since Rydberg atoms resemble closely hydrogen atoms, it is instructive to first
discuss the solution of the hydrogen atom. It’s Hamiltonian is given by [25]

H =

{−h̄2
2me

∇2 + V (r)

}

ψ = Eψ, (4.1)

with V (r) the spherically symmetric Coulomb potential and me the electronic
mass. To solve it, we look for solutions of the form ψ = R(r)Y (θ, ϕ) in spherical
coordinates.
With this, the Schrödinger equation becomes

1

R

∂

∂r

(

r2
∂R

∂r

)

− 2mer
2

h̄2
(V (r)− E) =

1

Y
l
2Y, (4.2)

where we write the nabla operator in terms of spherical coordinates, with

l
2 = −

(

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂ϕ2

)

. (4.3)

Each side depends on different variables, for the equation to be valid we thus need
each side to be equal to a constant. We can then turn to solve for the radial R
and the angular part Y separately. In fact, the one-electron system is the only
atom which can be solved exactly, while for atoms with more electrons we have
to turn to approximations.
Figure 4.1 shows some solutions to the radial part of the hydrogen Hamiltonian.
The left plot, 4.1a, indicates how the mean radius increases as the principal quan-
tum number n increases, while the wave function becomes more dispersed. The
right plot, 4.1b, indicates that as l approaches n, the wave function becomes highly
localized again. It can be shown, that the mean radial expectation value follows
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⟨r⟩ = n2a0, with a0 the Bohr radius, when l = n− 1.
Rydberg atoms are generally atoms with one or more electrons occupying a state
with a high principal quantum number, typically n > 11. In particular, when
the orbital quantum number l ∼ n, so that the electron is localized and it’s orbit
nearly circular, they are called circular Rydberg atoms. In this work, we assume
to deal with one-valence electron systems, meaning hydrogenic Rydberg atoms for
simplicity.
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Figure 4.1: Radial wave functions for hydrogen, (a) shows some s-orbitals for increasing prin-
cipal quantum number n, the vertical lines show the radial expectation value. On the other
hand, (b) shows some wave functions for high n = 19, varying the orbital quantum number l.
The solutions are obtained by solving the radial Schrödinger equation for a Coulomb potential
V (r) = −Z/r using Numerov’s method under the constraint of reaching n − l − 1 number of
nodes. The vertical lines show the radial expectation value, calculated as ⟨r⟩ = ∆r

∑

i rψ
2
R,

where ∆r is the mesh size.

In the hydrogen atom, the binding energy of the electron is given by the Rydberg
formula,

1

λ
= −RH

1

n2
, (4.4)

where n is the principle quantum number describing the energy level the electron
is residing in and RH = R∞/(1+me/M) = 1.097 ·107m−1 is the Rydberg constant
of the hydrogen atom, where M is the mass of the core. Furthermore, since we
consider only one valence electron atoms, we can use the fact that the effective
potential the valence electron sees tends to approximate that of a hydrogenic atom
for large orbital radii. As the valence electron gets highly excited, the radius of it’s
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orbit increases with the square of the principle quantum number, thus the overlap
of it’s orbital and the ionic core becomes negligible. In this case the other electrons
effectively shield the protonic core and thus the valence electron sees a hydrogenic
potential. However, we have seen that the electron becomes highly dispersed as the
orbital quantum number l becomes lower, eventually penetrating the core and thus
destroying the approximation. For these cases we can make use of the quantum
defect. The formula 4.4 can be extended to include alkaline atoms by introducing
the phenomenological concept of the quantum defect: the quantum defect δl is
subtracted from the principal quantum number and an effective principal quantum
number n∗ is obtained

1

λ
= −RH

1

n∗2
, (4.5)

with n∗ = n−δlj, which depends on the orbital quantum number and is anticipated
to converge towards n for large l.
In general, the lifetime of a Rydberg state is given by

1

τ
=

1

τ0
+

1

τbb
, (4.6)

with radiative lifetime

1

τ0
=
∑

n′

Ann′ , (4.7)

where Ann′ are the Einstein coefficients for spontaneous emission from state n to n′.
For a low orbital quantum number, the state has a large number of dipole allowed
transitions and it’s lifetime scales as n−3, while for large l states the number rapidly
decreases and the lifetime in turn scales as n−5 [24]. In particular, in the limit
case, l = n − 1 the only possible spontaneous decay channel is the transition to
the next lower circular state.
The second main contribution to the lifetime, τbb, resides in interactions with
black body radiation. Rydberg states have very low frequency transitions and
thus couple to room-temperature black body radiation. For large n the blackbody
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rate is given by [26]

1

τbb
=

4α3kBT

3h̄n∗2
, (4.8)

where α is the fine structure constant, kB the Boltzmann constant and T the con-
sidered temperature.
Now that we have characterized Rydberg atoms and given qualitatively the mo-
tivation behind using their exaggerated properties as a means for quantum infor-
mation, we take a small leap and look in general how light interacts with atoms
from a semi-classical point of view.

4.2 Light-matter interaction
If we want to prepare and drive an atomic state, such as a Rydberg state in a
Rydberg atom, we use optical fields, thus it is instructional to discuss general
light-atom interaction from a semiclassical picture. Semiclassical in the sense that
we describe the electromagnetic field as classical, but use quantum mechanics to
describe the atom.
We consider an atom exposed to an electric field with frequency ωL and only
consider relevant coupling between two states, also known as the two-level approx-
imation. The monochromatic field can be written as

E(t) = r̂E0 cos(ωLt). (4.9)

The light source is detuned by an amount ∆ = ωL−ω0, where ω0 is the transition
frequency between the two considered states.
The Hamiltonian that describes the electric dipole interaction is given by

ĤI = −d̂ · E(t) = −(r̂ · d̂)E0

2

(

eiωLt + e−iωLt
)

. (4.10)

Here, we can define the Rabi frequency Ω = (d̂ · r̂)E0

h̄
and rewrite the expression

as

ĤI =
h̄Ω

2

(

eiωLt + e−iωLt
)

(|g⟩ ⟨e|+ |e⟩ ⟨g|) (4.11)
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The Hamiltonian of the atom on the other hand is given by

Ĥ0 = h̄ω0 |e⟩ ⟨e| , (4.12)

and combining both gives the full Hamiltonian Ĥ = Ĥ0 + ĤI ,

Ĥ = h̄

(

0 ω∗

2
(eiωLt + e−iωLt)

ω
2
(eiωLt + e−iωLt) ω0.

)

. (4.13)

The wavefunction at any given time can be written as

|ψ⟩ = c1(t) |g⟩+ c2(t) |e⟩ , (4.14)

substituting into the time-dependent Schrödinger equation yields

iċ1 =
Ω∗

2

(

eiωLt + e−iωLt
)

c2 (4.15)

iċ2 =
Ω

2

(

eiωLt + e−iωLt
)

c1 + ω0c2. (4.16)

We can make a substitution in order to swap to the rotating frame by c̃1 = c1 and
c̃2 = c2e

iωLt

i
∂c̃1
∂t

=
Ω∗

2

(

1 + e−i2ωLt
)

c̃2 (4.17)

i
∂c̃2
∂t

=
Ω

2

(

1 + e−2iωLt
)

c̃1 −∆c̃2. (4.18)

Within the rotating wave approximation we can neglect the terms oscillating at
2ωL and thus we get

i
∂c̃1
∂t

=
Ω∗

2
c̃2 (4.19)

i
∂c̃2
∂t

=
Ω

2
c̃1 −∆c̃2, (4.20)

and corresponding Hamiltonian

Hrwa = h̄

(

0 Ω∗

2
Ω
2

−∆

)

. (4.21)
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The solution to this Hamiltonian are characteristic Rabi oscillations: the electro-
magnetic field continuously drives transitions between the two considered states.
We plot some of them for different combinations of detuning ∆ and Rabi frequency
Ω in figure 4.2. We stress that introducing large detuning into the dynamics ef-
fectively damps the oscillations, a result that will play an important role in the
two-atom dynamics of Rydberg atoms.

0 2 3 4 5 6
time in [Ωt]

0.0

0.2

0.4

0.6

0.8

1.0

|c
2|2

=0
= /2
=
=5

Figure 4.2: The probability for the two-level atom to be in the excited state with respect
to elapsed time. We plot different combinations of detuning ∆ and Rabi frequency Ω, which
show that the introduction of detuning leads to the oscillations having higher frequency, but
get increasingly damped for ∆ > Ω.

4.3 Rydberg-Rydberg interaction
In order to produce entanglement with Rydberg atoms, we need to consider more
than one atom and discuss how different Rydberg atoms interact with each other.
Since Rydberg atoms posses large dipole moments, the main contribution in the
multipolar expansion of the electric potential comes from dipole-dipole interactions
between adjacent atoms. The corresponding potential term is given by [24]

Vdd =
e2

4πϵ0

d1 · d2 − 3 (d1 · eR) (d2 · eR)
R3

, (4.22)

with dipole moments di = −eRi, eR the unit vector along R and R the inter-
atomic distance. From before we can work out the n dependence, since d scales
as n2, Vdd will scale as n4.
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4.3. RYDBERG-RYDBERG INTERACTION

Let us model the interaction for a two atom system, with each atom having one
electron in a Rydberg state. With no external electric field, the atoms are unpolar-
ized and thus have a vanishing dipole moment. In that case the dipole interaction
operator acts as a second order perturbation, by coupling the two Rydberg states
to other pair states of opposite parity [27, 28], which results in a interaction energy
of the form [29]

Crr =
∑

|cd⟩

⟨rr|Vdd |cd⟩ ⟨cd|Vdd |rr⟩
2Er − Ec− Ed

=
C6,r−r

R6
. (4.23)

This corresponds to a Van-der-Waals interaction, where |cd⟩ are all possible inter-
mediate pair states, Ei the energy of the single atom i and C6,r−r the Van-der-
Waals coefficient, which can be shown to scale as n11 [27].
In order to see the dynamics of a two-atom system, consider for simplicity two
atoms that both couple resonantly |g⟩ to |r⟩, i.e.

H =
Ω

2
(|g⟩ ⟨r| ⊗ 1+ 1⊗ |g⟩ ⟨r|+H.C.)− C6,r−r

R6
|rr⟩ ⟨rr| , (4.24)

=
Ω

2
(|gg⟩ ⟨gr|+ ⟨gg| |rg⟩+ |gr⟩ ⟨rr|+ |rg⟩ ⟨rr|+H.C.)− C6,r−r

R6
|rr⟩ ⟨rr| .

(4.25)

Now, we notice that |ψ−⟩ = (|gr⟩ − |rg⟩)/
√
2 is an eigenstate of the Hamiltonian

with eigenvalue zero. Therefore, we can effectively delete it from the dynamics.
This enables us to change the description to an effective three level system with
basis states |gg⟩, |ψ+⟩ = (|gr⟩ + |rg⟩)/

√
2 and |rr⟩ and get a new expression for

the Hamiltonian,

H =

√
2Ω

2
(|gg⟩ ⟨+|+ |+⟩ ⟨rr|+H.C.)− C6,r−r

R6
|rr⟩ ⟨rr| . (4.26)

We note the enhancement of the Rabi frequency by a factor of
√
2. Moreover, we

identify two interaction regimes that implement different dynamics, determined by
the competition between the Rabi frequency Ω and the Van-der-Waals interaction
term C6,r−r/R

6: When |C6,r−r|/R6 ≪ Ω, the two atoms only weakly interact and
we have slightly perturbed Rabi oscillations of the single atoms. In the other
regime on the other hand, when |C6,r−r|/R6 ≫ Ω, we introduce strong detuning
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in the transition of |ψ+⟩ and |rr⟩, effectively eliminating |rr⟩ from the dynamics.
Then, we can reduce the description even further and express the dynamics as a
two-level system, with Hamiltonian

H =

√
2Ω

2
(|gg⟩ ⟨ψ+|+H.C.). (4.27)

This regime is referred to as the Rydberg blockade regime, as can be seen in
figure 4.3. We see that in this regime, we produce Rabi oscillations with the
frequency enhanced by

√
2 between ground and the intermediate |ψ+⟩ state and

that therefore the maximum probability to find an atom in the excited Rydberg
state is 1/2. Usually, the distance at which the two regimes transition is set to be
when they are equal, so at the radius when Ω = C6,r−r/R

6
b .

(a) (b)

Figure 4.3: Depiction of the Rydberg blockade scheme. In (a) we show the effect of the Van-
der-Waals interaction among two Rydberg atoms: In the regime of strong interaction, the
transition to the |rr⟩ state is strongly suppressed and we achieve an effective oscillation be-
tween |gg⟩ and |ψ+⟩. If the interatomic distance is above Rb, the interaction is weak and we
achieve slightly detuned Rabi oscillations of the single atoms, as can be seen in the top of (b).
The bottom of (b) shows how this concept looks qualitatively for a 2d array of neutral atoms:
If one atom is excited in the Rydberg state, the interaction prevents atoms within the Ryd-
berg blockade radius to be excited into the same state. Note, here C6 = C6,r−r from the text.
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In the next chapter, we discuss how these single-atom and multi-atom Hamil-
tonians are used to implement gates on the Rydberg platform and thereby also
explain which types of noises are relevant and modify the dynamics.

4.4 Results
We consider a setup, where Rydberg atoms have the quantum information en-
coded in two low lying hyperfine levels, |0⟩ and |1⟩. To drive single-qubit gates,
|0⟩ and |1⟩ are coupled using microwave fields [30]. Two-qubit gates, on the other
hand, are driven by coupling the state with higher energy, |1⟩, to the |r⟩ Rydberg
state in both atoms, using optical fields [31]. Experimental implementation can
be realized using e.g. strontium-88 atoms [5], rubidium-87 [32] or rubidium-85
[33].
Since we generally have dissipation into states that are outside of our computa-
tional basis, we introduce another state into our description that we simply call
dark state |d⟩, which we use to represent all relaxation channels to states outside
our basis. Then our state vector takes the form |q⟩ = (0, 1, r, d)T .
For our simulations, we focus on rubidium, where Rydberg states can reach life-
times of 50 µs [33]. Similar values also hold for e.g. strontium [5]. Furthermore,
the lifetimes of both |0⟩ and |1⟩ are assumed to be Ta = 4 s [34].
Generally, evolutions are driven with Rabi frequencies on the order of khZ in
single-qubit operations [35, 36, 37] resulting in gate times in the order of µs, while
they are driven in the MhZ regime for two-qubit operations [5], resulting in gate
times 2-3 orders of magnitude smaller.
The two contributions to considerable decoherence stem from spontaneous decay
of both |0⟩ and |1⟩ to states outside of the considered computational basis and de-
phasing. Contributions to dephasing can result from a variety of sources including,
for example, limitations caused by the laser source. These include intensity fluctu-
ations and finite linewidth. They introduce a time-dependent variation in the Rabi
frequency, which in turns introduces a phase that leads to dephasing between the
two quantum states without causing transitions between them. Other mechanisms
that can possibly introduce dephasing can include heating mechanisms within the
trap. However, these are more present in multi-atom traps [38]. For the single-
qubit operation, we consider a dephasing characteristic time of Tdp = 300 ms [34].
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In the following sections, we define the specific noisy gates for this architecture.

4.4.1 Single-body gate

The Hamiltonian is given within the RWA as

Hrwa = h̄

(

0 Ω
2
ξ1

Ω
2
ξ2 −∆

)

, (4.28)

where we made a slight modification of the Hamiltonian from eq. 4.21 to 4.28 by
introducing ξ1 = eik·r and ξ2 = e−ik·r. This parameter should cover an introduced
phase shift that arises from misalignment between the atom and the focus of the
electromagnetic field kr.
In order to find the time-evolution operator, we diagonalize the Hamiltonian and
use the property of the matrix exponential

eA = ueΛut, (4.29)

whenever A = uΛu−1 is a diagonalizeable matrix.
So in order to evaluate

U = e−
i
h̄
Ht, (4.30)

we begin by diagonalizing the argument − i
h̄
Hrwat, which yields the eigenvalues

λ1,2 = t
i

2

(

∆± Ω
′
)

, (4.31)

and the corresponding eigenvectors

ϕ1,2 =

(

−−∆∓ Ω
′

Ωξ2
, 1

)

, (4.32)
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where we define a generalized Rabi frequency Ω
′

=
√

∆2 + Ω2ξ1ξ2.
Having all the ingredients we calculate

U = e−t i
h̄
Hrwa =

(

∆+Ω
′

Ωξ2
∆−Ω

′

Ωξ2

1 1

)(

ei/2(∆−Ω
′
)t 0

0 ei/2(∆+Ω
′
)t

)(

∆+Ω
′

Ωξ2
∆−Ω

′

Ωξ2

1 1

)−1

,

(4.33)

where the inverse is readily calculated as
(

∆+Ω
′

Ωξ2
∆−Ω

′

Ωξ2

1 1

)−1

=
1
2Ω′

Ωξ2

(

1 Ω
′
−∆

Ωξ2

−1 ∆+Ω
′

Ωξ2

)

=

(

Ωξ2
2Ω′

Ω
′
−∆

2Ω′

−Ωξ2
2Ω′

Ω
′
+∆

2Ω′

)

. (4.34)

Full evaluation of the matrix then gives

U =

(

∆+Ω
′

Ωξ2
∆−Ω

′

Ωξ2

1 1

)(

ei/2(∆+Ω
′
)t 0

0 ei/2(∆−Ω
′
)t

)(

Ωξ2
2Ω

′
Ω

′
−∆

2Ω
′

−Ωξ2
2Ω

′
Ω

′
+∆

2Ω
′

)

=

(

∆+Ω
′

Ωξ2
ei/2(∆+Ω

′
)t ∆−Ω

′

Ωξ2
ei/2(∆−Ω

′
)t

ei/2(∆+Ω
′
)t ei/2(∆−Ω

′
)t

)(

Ωξ2
2Ω

′
Ω

′
−∆

2Ω
′

−Ωξ2
2Ω

′
Ω

′
+∆

2Ω
′

)

= ei/2∆t

(

cos
(

Ω
′

/2t
)

− i ∆
Ω

′ sin
(

Ω
′

/2t
)

−iΩξ1
Ω

′ sin
(

Ω
′

/2t
)

−iΩξ2
Ω′ sin

(

Ω
′

/2t
)

cos
(

Ω
′

/2t
)

+ i ∆
Ω′ sin

(

Ω
′

/2t
)

)

(4.35)

We can show that this unitary implements all the relevant operations, i.e. for a
single-qubit all Bloch rotations are possibly achieved, by finding the combinations
of variables that produce the rotation gates [10]:

Rx = U(∆ = 0, ξ1 = 1, ξ2 = 1) =

(

cos
(

Ωt
2

)

−i sin
(

Ωt
2

)

−i sin
(

Ωt
2

)

cos
(

Ωt
2

)

)

, (4.36)

Ry = U(∆ = 0, ξ1 = −i, ξ2 = i) =

(

cos
(

Ωt
2

)

− sin
(

Ωt
2

)

sin
(

Ωt
2

)

cos
(

Ωt
2

)

)

. (4.37)

54



CHAPTER 4. RYDBERG HARDWARE

The Rz gate is achieved by introducing detuning, and can be obtained, apart from
a global phase shift, by

Rz = U(Ω = 0) = ei∆t/2

(

cos
(

∆t
2

)

− i sin
(

∆t
2

)

0

0 cos
(

∆t
2

)

+ i sin
(

∆t
2

)

)

= ei∆t/2

(

e−i∆t/2 0

0 ei∆t/2

)

.

(4.38)

The noise channels in this case are decays from |0⟩ and |1⟩ to states outside the
computational basis and we assume that the Rydberg state is always empty for
the single-body case. Since both |r⟩ and |d⟩ are not involved in any dynamics, the
extension of equation 4.35 to the discussed four level system is straight forward,

U = ei/2∆t











cos
(

Ω
′

/2t
)

− i ∆
Ω

′ sin
(

Ω
′

/2t
)

−iΩξ1
Ω

′ sin
(

Ω
′

/2t
)

0 0

−iΩξ2
Ω′ sin

(

Ω
′

/2t
)

cos
(

Ω
′

/2t
)

+ i ∆
Ω′ sin

(

Ω
′

/2t
)

0 0

0 0 1 0

0 0 0 1











.

(4.39)

The Kraus operators for relaxation of the relevant states are determined by

Ki =
√
γi |d⟩ ⟨i| . (4.40)

Here, we show explicitly how to obtain the Lindblad operator for amplitude damp-
ing of the |0⟩ state,

L0,s = U †ϵ1K0U, (4.41)

which yields

L0,s = −ϵa
ei∆t/2

Ω′

(

0 0 0 0
0 0 0 0
0 0 0 0

(

i∆sin
(

Ω
′t
2

)

−Ω′ cos
(

Ω
′t
2

))

iΩξ1 sin
(

Ω
′t
2

)

0 0

)

, (4.42)
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with ϵa =
√
γa. The Lindblad operator for pure dephasing is determined similarly,

with

Kdp =
√
γdp











1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0











. (4.43)

After having obtained the relevant Lindblad operators in the interaction picture,
we can implement everything in the protocol. In figure 4.4, we show the results of
the single-qubit implementation. Using a Rabi frequency of Ω/2π = 10 kHz and
detuning ∆ = 0, we find the exact gate time tg to drive an X-gate by choosing
Ωt = π in eq. 4.36, resulting in tg = 50 µs. The result is the gate U = −iσx,
similar to the single-qubit gate in the superconducting qubit.
In this case, the amplitude damping channel irreversibly drives the system into
the dark-state. We thus end up with both ρ00 and ρ11 going towards zero as
times passes. Dephasing has the most contribution, and we can see the evolution
towards the totally mixed state before amplitude damping has had a considerable
effect. This is due to the large difference in the two characteristic decay times.

56



CHAPTER 4. RYDBERG HARDWARE

0 10000 20000 30000 40000 50000
time in [tg]

0.0

0.1

0.2

0.3

0.4

0.5

dd

Tdp
qutip
noisygate

(a)

0 10000 20000 30000 40000 50000
time in [tg]

0.0

0.2

0.4

0.6

0.8

1.0

00

Tdp
qutip

(b)

0 10000 20000 30000 40000 50000
time in [tg]

0.0

0.2

0.4

0.6

0.8

1.0
00

Tdp
noisygate

(c)

Figure 4.4: In (a), we show how the dark-state continuously gets filled, (b) and (c) show
the evolution of the |0⟩ state undergoing Rabi oscillations. For the evolution, we use Rabi
frequency Ω/2π = 10 kHz, detuning ∆ = 0, lifetime of both states Ta = 4 s and dephasing
time Tdp = 300 ms.

4.4.2 Two-qubit gate

We show here how to extend the framework of the noisy gates to the case of the
two-qubit gates for Rydberg atoms. As the work is still in progress we just show
a preliminary results in this direction.
In terms of operators we can write the Hamiltonian

H0 = h̄
Ω(t)

2
(σ+eikr + σ−e−ikr)−∆(t)n, (4.44)
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with n = |r⟩ ⟨r| the projector onto the Rydberg state. If instead we are dealing
with N atoms we can extend straight forwardly to

H = H0 +Hint (4.45)

= h̄
N
∑

i=1

[

Ω(t)

2
(σ+

i e
ikri + σ−

i e
−ikri)−∆(t)ni

]

+Hint. (4.46)

With a newly introduced interaction term Hint.
For two atoms, it is simply written as

Hint = V |n1⟩ ⟨n2| , (4.47)

where we introduce the previously discussed Van-der-Waals interaction term V =

C6,r−r/R
6 and |n1⟩ ⟨n2| = |rr⟩ ⟨rr|.

This results in a two-qubit Hamiltonian, written as

Ĥ = Ĥ0 + Ĥ int (4.48)

= h̄

N
∑

i=1

[

Ω(t)

2
(σ+

i e
ikri + σ−

i e
−ikri)−∆(t)ni

]

− C6,r−r

R6
|n1⟩ ⟨n2| , (4.49)

where now Ω couples |1⟩ and |r⟩ of both atoms equivalently and thus |0⟩ does not
take part in the dynamics. The detailed dynamics look as following [32]. The
initial state |00⟩ is uncoupled, thus takes no part in the dynamics. If instead,
one of the atoms is initialized in the state |0⟩, the other atom in the |1⟩ state,
the second atom undergoes Rabi oscillations with frequency Ω. Lastly, if both
atoms are initialized in the excited state, i.e. |11⟩, the Van-der-Waals interaction
term modifies the dynamics. In the strong interaction regime C6,r−r/R6

Ω
≫ 1, we

effectively achieve a Rabi oscillation between |11⟩ and |ψ+⟩ = (|1r⟩+ |r1⟩)/
√
2. In

this case, the Rabi frequency is enhanced and we have to be cautious about this
when constructing the pulse sequences for driving different gates, which in general
are more complex, i.e. both Ω and ∆ have time-dependent shapes in general [39].
In this first simulation, we drive the system in the strong interaction regime and,
for simplicity, we choose kri = 0 and we choose a constant Rabi frequency and zero
detuning. Another important point is, that now we are dealing with 42 = 16 states
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in our computational basis, which means in order to obtain the time-evolution
operator explicitly, we would have to diagonalize a 16x16 matrix. For these cases,
we thus convert to modifying the code and instead, obtain the time-evolution
numerically, with all parameters explicitly chosen. In our simulation, we assume
that cross-talks are negligible and only consider the amplitude damping channel
from the excited Rydberg state of both atoms

K(r,i)
a =Kr

a ⊗ 1, (4.50)
K(i,r)

a =1⊗Kr
a, (4.51)

with

Kr
a =

√
γa |d⟩ ⟨r| , (4.52)

where γa is the rate from the spontaneous decay of the Rydberg state. We note
that, for a realistic description, there are more noise channels such as dephasing
from various sources that have to be taken into account, as described e.g. in
[40]. For now, we only adopt the decay channel from the Rydberg state. We take
parameters that resemble realistic conditions, as e.g. in [5]: Ta = 50 µs, a gate
time of tg = 0.5 µs and evolve within the strong interaction regime as V/Ω = 20.
The resulting dynamics obtained with qutip are displayed in figure 4.5.
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Figure 4.5: We show the expectation value of the |11⟩ state, when driving with the previ-
ously defined two-qubit Hamiltonian, using qutip. We have introduced an amplitude damping
channel for the Rydberg state with a lifetime of Ta = 50 µs and a gate time of tg = 0.5 µs.

We observe the |11⟩ state and witness the characteristic Rabi oscillations which
gradually dampen over time. Concurrently, the |dd⟩ state exhibits a progressively
increasing occupation.
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5
Conclusion and outlook

In this thesis, we followed the methodology proposed by [6] to incorporate Marko-
vian noise into a gate-like formulation. Our initial focus was on demonstrating
the integration of various noise terms, such as relaxation and dephasing, into
single-qubit and two-qubit operations by explicitly defining gates. We thoroughly
discussed the primary noise contributions within the architecture and showcased
the application of the noisy gate protocol using the superconducting qubit as an
illustrative example.
Having established the effectiveness of our algorithm in reproducing qualitative
behavior consistent with the exact solution to the underlying Lindblad equation
for both single-qubit and two-qubit systems, we progressed to apply the formalism
to a novel quantum hardware example: the Rydberg atoms. On this hardware, we
make use of exaggerated properties of Rydberg atoms for quantum information.
The results for the single-qubit showed again good agreement with the predictions.
The two-qubit gate will be implemented in the future.
Now that we know we can reproduce the exact dynamics, the next step is to
compare the algorithm with physical architectures to see how accurate the simula-
tion performs versus the real implemented gates and see if under the assumptions
made in the derivation, we can accurately predict the various contributions to de-
coherence within the computation. We emphasize that, although we have shown
evolutions as far as to the steady state solutions, the regions where t < Ti are most
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interesting from a practical point of view. Moving forward, we plan to implement
real quantum algorithms, such as the quantum Fourier transform, using the noisy
gate formalism.
Moreover, the protocol itself can be extended in many directions. Firstly, we can
implement more complicated noise models, sch as including correlated noise in
the two-qubit gates or include more general non-Markovian noise, in order to also
examine how relevant such noise is in the computers. Another direction is, to
implement more complex pulse shapes. With this generalization, we could survey
if we can recover the previously reported optimal pulse shapes for driving Rydberg
qubits in e.g. [5].
Further insights can also be gained by introducing a function to calculate the entan-
glement entropy and examining its evolution within our methodology. Lastly, the
general applicability of our method allows for exploration across various quantum
devices and explore novel directions. Of such could be e.g. the field of photonics
[41].
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A
Superconducting qubit

A.1 Derivation of the Josephson equations

We follow the derivation done in [16].
The state of a superconductor can be described by a macroscopic wave function

ψ(r) =
√
neiθ, (A.1)

where n is the number of Cooper pairs and their density is ρ = 2qen. In a closed
system the wave function obeys the Schrödinger equation,

ih̄
∂ψ

∂t
= Uψ. (A.2)

If we now, similar to the Josephson junction, place two superconductors in the
vicinity of each other we obtain two coupled equations

ih̄
∂ψ1

∂t
= U1ψ1 + κψ2 (A.3)

ih̄
∂ψ2

∂t
= U2ψ2 + κψ1, (A.4)
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with the coupling constant κ of the interaction between the two superconductors.
Now, we apply the voltage V/2 to the first and −V/2 to the second superconductor.
We assume that both superconductors are equal, therefore U1 = U0 − qV/2 and
U2 = U0+qV/2, with q = 2qe the charge of a Cooper pair. We set U0 for simplicity
and get the expression

ih̄
∂ψ1

∂t
=
qV

2
ψ1 + κψ2 (A.5)

ih̄
∂ψ2

∂t
=

−qV
2

ψ2 + κψ1. (A.6)

Substituting the correct form of the wave functions, we obtain

ih̄
∂n1

∂t
− 2h̄n1

∂θ1
∂t

= − qV n1 + 2κ
√
n1n2e

iϕ, (A.7)

ih̄
∂n2

∂t
− 2h̄n2

∂θ2
∂t

= qV n2 + 2κ
√
n1n2e

−iϕ (A.8)

with ϕ = θ2 − θ1. Next, we uncouple the imaginary and real parts,

∂n1

∂t
=

2κ

h̄

√
n1n2 sin(ϕ) (A.9)

∂n2

∂t
= − 2κ

h̄

√
n1n2 sin(ϕ) (A.10)

∂θ1
∂t

=
qV

2h̄
− κ

h̄

√

n2

n1

cos(ϕ) (A.11)

∂θ2
∂t

= − qV

2h̄
− κ

h̄

√

n1

n2

cos(ϕ). (A.12)

Let us consider a volume that encloses superconductor 1 and passes through the
insulator, the continuity equation then yields

∮

J1 · ds = − ∂

∂t

∫

V

(ρ1)dV (A.13)

→ J1A = − ∂

∂t

∫

V

−2qen1dV (A.14)

= 2qe
∂n1

∂t
AW (A.15)

= 2qeAW
2κ

h̄

√
n1n2 sin(ϕ), (A.16)
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which can be rewritten using Ii = JiA,

I1 = Ic sin(ϕ). (A.17)

We assumed here, that the superconductor has rectangular shape with width W
perpendicular to the junction which has area A.
The second equation is obtained, considering the phase factor

∂ϕ

∂t
=
∂θ2
∂t

− ∂θ1
∂t

. (A.18)

Again, we consider the two superconductors to be equal, we thus have n1 = n2

and we can write

∂ϕ

∂t
=

2qeV

h̄
=

2π

Φ0

V, (A.19)

where again Φ0 = h/2qe is the flux quantum. We rewrite the expression in terms
of the voltage

V =
Φ0

2π

∂ϕ

∂t
. (A.20)

Finally, the two equations, A.17 and A.20, are the Josephson equations.

A.2 Single gate derivation

Single qubit operations can be implemented by the unitary operator

U(θ, ϕ) = e−iθRxy(ϕ)/2, (A.21)

with Rxy(ϕ) = cos(ϕ)X + sin(ϕ)Y and the corresponding Hamiltonian given by

H(θ, ϕ) =
θh̄

2
Rxy(ϕ). (A.22)
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And we introduce the relevant Lindblad operators

L1 =

√

λ1
λ
σ−, L2 =

√

λ2
λ
σ+, L3 =

√

λ3
λ
Z, (A.23)

where ϵ =
√
λ =

√
λ1 + λ2 + λ3 =

√

(2γd) + (2γd + γ1) + (γd + γz).
With this we can evaluate the Lindblad operators (jump operators), remember-
ing the property of exponentiation of Pauli matrices (proven simply by Taylor
expanding the exponential)

eiθX = [cos(θ)1+ i sin(θ)X] , (A.24)

which holds for all Pauli matrices as well as in our case replacing X for Rxy(ϕ).
(to prove this we can simply use cos2(ϕ) + sin2(ϕ) = 1 and XY + Y X = 0 for
combinations of Pauli matrices (anticommutation)). Therefore, for eq. A.21, we
have

U †
s =cos(θ/2)1+ i sin(θ/2) (cos(ϕ)X + sin(ϕ)Y ) (A.25)
Us =cos(θ)1− i sin(θ) (cos(ϕ)X + sin(ϕ)Y ) (A.26)

Then we get (remembering (eA)† = eA
† and (σk)† = σk)

U †
sσ

+Us =
eiϕ

2

[

Rxy(ϕ) + iR(2sθ, ϕ)
]

, (A.27)

U †
sσ

−Us =
e−iϕ

2

[

Rxy(ϕ)− iR(2sθ, ϕ)
]

, (A.28)

U †
sZUs =R(2sθ, ϕ), (A.29)

with R(θ, ϕ) = cos(θ/2)Z + sin(θ/2)Rxy(ϕ) (α = α + π/2).
For the third term L3,s = L†

3,s, thus it vanishes in the final term

Λ = −1

2

∫ 1

0

ds
[

ϵ21σ
+
s σ

−
s + ϵ22σ

−
s σ

+
s

]

, (A.30)
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because e.g. σ+
s σ

+
s = U †

sσ
+UsU

†
sσ

+Us = U †
sσ

+σ+Us = 0.
The integral can then be evaluated

∫ 1

0

dsσ+
s σ

−
s =

1

2

[

1+
sin(θ/2)

θ/2
R(θ, ϕ)

]

, (A.31)

which then gives for

Λ = −ϵ
2
1 + ϵ22
4

1− ϵ21 − ϵ22
4

sin(θ/2)

θ/2
R(θ, ϕ). (A.32)

Exponentiating this term leads to the desired result.
For the stochastic part we need to sample the random variables. This can be
effectively done using standard functions, since the mean of all variables is zero
and so only the covariant matrix has to be set up. The variances and correlations
are easy Ito integrals and can be evaluated straight forwardly.
We start by expanding the sum

Ξ(θ, ϕ) = iϵ
N2−1
∑

k=1

∫ 1

0

dWk,sLk,s (A.33)

= iϵ1

∫ 1

0

dW1,s
e−iϕ

2

[

Rxy(ϕ)− iR(2sθ, ϕ)
]

(A.34)

+ iϵ2

∫ 1

0

dW2,s
eiϕ

2

[

Rxy(ϕ) + iR(2sθ, ϕ)
]

(A.35)

+ iϵ3

∫ 1

0

dW3,sR(2sθ, ϕ) (A.36)

= iϵ1

∫ 1

0

dW1,s
e−iϕ

2
Rxy(ϕ) + ϵ1

∫ 1

0

dW1,s cos(sθ + π/2)Z
e−iϕ

2
(A.37)

+ ϵ1

∫ 1

0

dW1,s sin(sθ + π/2)Rxy(ϕ+ π/2)
e−iϕ

2
(A.38)

+ iϵ2

∫ 1

0

dW2,s
eiϕ

2
Rxy(ϕ)− ϵ2

∫ 1

0

dW2,s cos(sθ + π/2)Z
eiϕ

2
(A.39)

− ϵ2

∫ 1

0

dW2,s sin(sθ + π/2)Rxy(ϕ+ π/2)
eiϕ

2
(A.40)

+ iϵ3

∫ 1

0

dW3,s cos(sθ)Z + iϵ3

∫ 1

0

dW3,s sin(sθ)Rxy(ϕ+ π/2), (A.41)
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where we used sin(ϕ+ π/2) = cos(ϕ) and cos(ϕ+ π/2) = − sin(ϕ).
Then, we can rewrite conveniently in terms of the operators Z and Rxy

Ξ(θ, ϕ) = iZ

[

iϵ1

∫ 1

0

dW1,s sin(sθ)
e−iϕ

2
− iϵ2

∫ 1

0

dW2,s sin(sθ)
eiϕ

2
+ ϵ3

∫ 1

0

dW3,s cos(sθ)

]

+ iRxy(ϕ)

[

ϵ1

∫ 1

0

dW1,s
e−iϕ

2
+ ϵ2

∫ 1

0

dW2,s
eiϕ

2

]

+ iRxy(ϕ)

[

− iϵ1

∫ 1

0

dW1,s cos(sθ)
e−iϕ

2
+

iϵ2

∫ 1

0

dW2,s cos(sθ)
eiϕ

2
+ ϵ3

∫ 1

0

dW3,s sin(sθ)

]

.

(A.42)

Instead of the different Ito integrals we are dealing with in the expression, we
define normally distributed random variables

ξk,+ =

∫ 1

0

dWk,s cos(sθ), ξk,− =

∫ 1

0

dWk,s sin(sθ) (A.43)

ξk,w =

∫ 1

0

dWk,s. (A.44)

With these, we get the final expression for the stochastic part as

Ξ(θ, ϕ) = if0Z + if1Rxy(ϕ) + if2Rxy(ϕ), (A.45)

with

f0 = ϵ3ξ3,+ − i
eiϕϵ2ξ2,− − e−iϕϵ1ξ1,−

2
(A.46)

f1 =
eiϕϵ2ξ2,w + e−iϕϵ1ξ1,w

2
(A.47)

f2 = ϵ3ξ3,− − i
eiϕϵ2ξ2,+ − e−iϕϵ1ξ1,+

2
. (A.48)
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The variances and correlations are computed straight forwardly using the property
of the Wiener measure dWkdWj = dtδkj (they are statistically independent),

⟨ξk,±ξj,±⟩ =
1

2

[

1± sin(2θ)

2θ

]

δkj; (A.49)

⟨ξk,+ξj,−⟩ =
1− cos(2θ)

4θ
δkj; (A.50)

⟨ξk,wξj,w⟩ = δkj; (A.51)

⟨ξk,+ξj,w⟩ =
sin(θ)

θ
δkj; (A.52)

⟨ξk,−ξj,w⟩ =
1− cos(θ)

θ
δkj. (A.53)

So we can exponentiate this term as well and then arrive at the noisy gate expres-
sion

Ng = Uge
ΛeΞ. (A.54)
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