

Università degli Studi di Padova
DEPARTMENT OF MATHEMATICS “TULLIO LEVI-CIVITA”

Bachelor Degree in Computer Science

Migration from a relational database to a NoSQL
database for an Amazon Transportation Services

internal platform

Bachelor Degree Thesis

Academic Year

2021-2022

Bachelor Candidate

Marco Andrea Limongelli
ID: 1225415

Supervisor

Prof. Ombretta Gaggi

 ii

Migration from a relational database to a NoSQL database
for an Amazon Transportation Services internal platform

Bachelor Degree Thesis

Marco Andrea Limongelli, © July 2022

 iii

Acknowledgments

I wish to express my deepest gratitude to my supervisor, Professor Ombretta Gaggi, for all her
support during the internship recognition process and during the writing of this thesis. Without
her help, I wouldn’t have had the chance to graduate in July.

Words cannot express my gratitude to my manager, Medha Pathak, and to my mentor Joao
Patricio, for their guidance during this project and for the feedbacks which made me grow. I
am also grateful to all the PerfectMile Tech team members, which made me feel part of the
team since the day 1, for all the new concepts I have learnt from them.

I would be remiss in not mentioning my friend, Adnan Gazi Latif, for the healthy competition
that made us aim higher and higher. You deserve so much from the future.

Special thanks to my parents for all their sacrifices to allow me to study. In particular, to my
mom for making me insist on the highest standard and to my dad who taught me more things
than he imagines and he is the person I’m inspired by.

Finally, I would like to thank my girlfriend, Anna Bresolini, for all the moral support in these
last 2 years of study and during this internship for being close to me even though we were far
away, in two different countries. I love you.

Padua, July 2022 Marco Andrea Limongelli

 iv

 v

Abstract

This document describes the work carried out during the internship period for a total duration
of about three-hundred hours by the student Marco Andrea Limongelli at Amazon in
Luxembourg. The internship had as main topic the migration from a relational database to a
NoSQL database.

This wasn’t a side project for the team because this database is one of multiple databases
that the team’s core product uses to work. In fact, this project born from the needs to improve
the performance of the existing product that it was no longer able to support the workload
of the application. The identified solution was the migration from a relational database to a
NoSQL database for the type of data I worked on.

The internship project had three main phases. The first one was to design the new database
in such a way that it was able to store the same data in an efficient way. The second one was
the migration of the data from the old database to the new one. The last one was to modify
the existing code to rely on the new database.

 vi

 vii

Contents

1 Introduction ... 1

1.1 The proposed internship project ... 1

1.2 Business Context ... 2
1.2.1 The Amazon Company .. 2
1.2.2 My team: PerfectMile Tech .. 2

2 The internship project ... 4

2.1 Overview .. 4

2.2 The problem to solve ... 5
2.2.1 Constraints .. 5

2.3 Project requirements ... 6
2.3.1 Notation .. 6
2.3.2 Requirements fixed ... 6

3 Working methodology at Amazon .. 7

3.1 Business Processes .. 7
3.1.1 Agile methodology: SCRUM framework in Amazon ... 7

3.2 Software Development in PerfectMile Tech .. 11
3.2.1 Software and Tools ... 11
3.2.2 Deployment to production process .. 15

4 Overview of the AWS technologies ... 17

4.1 Amazon DynamoDB ... 17
4.1.1 Features .. 17
4.1.2 Core components .. 18
4.1.3 Operations for reading data from a table ... 23
4.1.4 Differences from Relational databases ... 24

4.2 AWS Lambda .. 25
4.2.1 Features .. 25
4.2.2 Lambda concepts .. 26

4.3 AWS Step Functions ... 27
4.3.1 Features .. 27
4.3.2 States .. 29
4.3.3 Error handling ... 33

 viii

5 Solution Design .. 35

5.1 Amazon Aurora database schema ... 35
5.1.1 Comments about the Amazon Aurora database schema ... 37
5.1.2 Redesign of the Amazon Aurora database schema .. 38

5.2 Designing the Amazon DynamoDB database .. 40
5.2.1 Version control design pattern implementation .. 40
5.2.2 Type of items stored in the new table .. 42

5.3 Migration plan ... 43
5.3.1 Changes to the system before the migration phase ... 43
5.3.2 Step Function for the migration .. 45

6 Glossary .. 50

7 Sources ... 51

 ix

Table of Figures

Figure 1.1: Amazon logo .. 2
Figure 1.2: PerfectMile team logo .. 2

Figure 3.1: SCRUM framework ... 7
Figure 3.2: Sprint Backlog .. 9
Figure 3.3: Sprint Retrospective board ... 10
Figure 3.4: Amazon Chime logo ... 11
Figure 3.5: Slack logo ... 11
Figure 3.6: Outlook logo ... 12
Figure 3.7: Amazon Meetings logo .. 12
Figure 3.8: Quip logo .. 12
Figure 3.9: IntelliJ IDEA logo .. 13
Figure 3.10: DataGrip logo ... 13
Figure 3.11: AWS logo .. 13
Figure 3.12: GIT logo .. 14
Figure 3.13: Code deployment to production process .. 15

Figure 4.1: Amazon DynamoDB logo ... 17
Figure 4.2: DynamoDB sample table .. 19
Figure 4.3: Functioning of the DynamoDB hash function for Partition Key ... 20
Figure 4.4: Functioning of the DynamoDB hash function for Composite Primary Key ... 21
Figure 4.5: Example of a GetItem operation .. 23
Figure 4.6: Example of a Query operation to get all the songs of an artist ... 23
Figure 4.7: Example of a Scan operation .. 23
Figure 4.8: Differences between DynamoDB and the relational databases on Client’s interaction 24
Figure 4.9: AWS Lambda logo .. 25
Figure 4.10: JSON-formatted document example .. 26
Figure 4.11: AWS Step Functions logo ... 27
Figure 4.12: AWS Step Function workflow example .. 28
Figure 4.13: AWS Lambda function task state example .. 29
Figure 4.14: Pass state example .. 30
Figure 4.15: Choice state example ... 30
Figure 4.16: Wait state example .. 31
Figure 4.17: Succeed state example ... 31
Figure 4.18: Fail state example .. 32

 x

Figure 4.19: Step Function Retrier example ... 33
Figure 4.20: Step Function Catcher example .. 34

Figure 5.1: Amazon Aurora database schema ... 36
Figure 5.2: Amazon Aurora database schema redesigned ... 38
Figure 5.3: DynamoDB metrics table schema .. 40
Figure 5.4: Items stored with the version control design pattern .. 41
Figure 5.5: Primitive metric item example ... 42
Figure 5.6: Hybrid metric item example ... 42
Figure 5.7: MigratedToDynamoDB field definition .. 43
Figure 5.8: Behavior of the AddMetric endpoint during the migration phase ... 44
Figure 5.9: Behavior of the UpdateMetric endpoint during the migration phase .. 45
Figure 5.10: Workflow of the Step Function for the migration .. 45
Figure 5.11: Metric metadata migration Step Function definition .. 46
Figure 5.12: MigrateOneMetricLambda activity diagram ... 47
Figure 5.13: CleanUpDynamoDbFromMigratedMetricMetadataLambda activity diagram 48
Figure 5.14: Metric metadata Step Function invoker ... 48

Introduction - The proposed internship project

1

1 Introduction

Typographic conventions

The following typographical conventions have been adopted in this document:

• The acronyms, abbreviations and ambiguous or uncommon terms mentioned are
defined in the glossary, located at the end of this document;

• The names of the technologies and other technical words are highlighted in italics

1.1 The proposed internship project

The company had some available internship projects with different topics. The project they
proposed to me was about the migration from a relational database called Amazon Aurora to
a NoSQL database called DynamoDB. The product for which I had to perform the migration
uses different databases to store different type of data. My internship project focuses only
on one of these databases.

This project was born from the need to improve the performance of the existing product that
it was no longer able to support the workload of the application. For this reason, in order to
meet the required performance to support the workload of the application, the identified
solution was the migration from a relational database to a NoSQL database for the type of
data I worked on.

The internship project had three main phases:

1. New database design: Design the new database in such a way that it was able to store
the same data in an efficient way;

2. Data migration: Migrate the data from the old database to the new one;

3. Modify the existing code: Modify the existing code to rely on the new database.

Introduction - Business Context

 2

1.2 Business Context

1.2.1 The Amazon Company

Amazon (figure 1.1) is an American multinational technology company founded on July 5,
1994 which focuses on e-commerce (amazon.com website), cloud computing (Amazon Web
Services), digital streaming (Amazon Prime Video) and artificial intelligence (Amazon Alexa).
It is one of the Big Five companies – the most dominant and most prestigious companies in
the information technology industry of the United States – alongside Google, Apple, Facebook
and Microsoft.

Amazon is a very large company and in fact has 1’622’000 employees (March 2022) with
hundreds of offices and operations centers around the world.

1.2.2 My team: PerfectMile Tech

The PerfectMile team (figure 1.2) is a worldwide Business Intelligence and Data Integration
team composed of Software Development Engineers, Business Intelligence Engineers and
Data Engineers. The team is based in Seattle (USA), Philadelphia (USA), London (UK), Paris
(FR), Luxembourg (LU), Munich (DE), Hyderabad (IN) and Beijing (CN).

The PerfectMile team is responsible to develop the homonym product which is an end-to-end
Business Intelligence solution encompassing datasets, metrics, web dashboards, pixel-perfect
pdf reports and corresponding technologies enabling them. Over the past years, PerfectMile
has evolved to become the authoritative source for quality, productivity, performance, and
financial datasets and metrics for transportation businesses across Amazon worldwide.

Figure 1.1: Amazon logo

Figure 1.2: PerfectMile team logo

Introduction - Business Context

 3

The team is structured around two product offerings (owned by different sub-teams):

• PerfectMile Content owns collation of data from multiple transportation systems and
provides Business Intelligence services to businesses;

• PerfectMile Tech provides self-serve Business Intelligence software as a service that
enable content reporting (e.g. PDFs, web UI).

I worked in PerfectMile Tech as a Software Development Engineer Intern in the Back-End sub-
team of PerfectMile Tech.

The internship project - Overview

4

2 The internship project

2.1 Overview

The Back-End team of PerfectMile Tech, in addition to other services, develops a system called
LosPollosHermanos (LPH) whose name is a reference to the fast food restaurant chain of the
famous TV series Breaking Bad. This system serves the metric data relative to the Amazon
deliveries through a serverless API to its consumers (PerfectMile internal website, export
processes and other UIs). Currently there are ~20k metrics and every day on average LPH
serves a total of ~8 million requests only for the GetMetricData endpoint which is used to get
the value of a metric.

At present, the system is no longer able to guarantee adequate performance. The LPH API
availability in Q4 2020 was 99.14%, which translates to a combined 19 hours during which the
PerfectMile website was impacted by metric loading issues. The main cause of the problems
was found in the current MySQL database (Amazon Aurora) which has now reached its
performance limits.

Two types of data are stored in Amazon Aurora:

• The data related to the deliveries on which to calculate the values of the metrics;

• The metadata associated with each individual metric, such as the formula to be used
to calculate it and other data.

The solution the team found to ensure the necessary performance is to save the deliveries
data to a type of database called Apache Druid and to save the metadata associated with the
metrics in a NoSQL key-value database called Amazon DynamoDB. In this way the team can
completely dismiss Amazon Aurora.

The internship project - The problem to solve

 5

2.2 The problem to solve

When I started my internship the team was working on the migration of the metric data to
Apache Druid. The project they assigned to me was the migration of the metadata from
Amazon Aurora to Amazon DynamoDB.

If the LPH Aurora MySQL cluster experienced an outage, then Druid read and write were
impacted. That’s because the metric information and their list of linked dimensions, were all
stored in Amazon Aurora. For this reason we needed to decouple Apache Druid data ingestion
and data read from Aurora completely. So the choice was to migrate and back-fill the metrics
metadata to another database type. DynamoDB was chosen because it is designed to run
high-performance applications at any scale. It stores data as an hashmap and then when you
make a query for a specific metric metadata, you get a faster response than from Aurora.

The problem to solve was how the new DynamoDB database could be designed to store the
metrics metadata in an efficient way ensuring the same LPH API functioning and how to
perform the migration.

2.2.1 Constraints

I was asked to find a solution for this problem keeping in mind the following constraint:

• The new DynamoDB database had to store the same data without loss any
information;

• The data had to be stored in the most efficient way to ensure the best possible
performance to retrieve it;

• The migration didn’t have to cause LPH downtime, so that meant it had to be
performed while LPH was running without affecting its operations;

• No data loss during the migration phase;

• During the migration phase data had to be consistent.

The internship project - Project requirements

 6

2.3 Project requirements

2.3.1 Notation

The requirements will be referred to according to the following notations:

• M for the mandatory requirements, binding as the primary goals required by Amazon;

• D for the desirable requirements, non-binding or strictly necessary goals but with
recognizable added value;

• O for the optional requirements, representing added value that is not strictly
competitive.

The abbreviations indicated above will be followed by a sequential pair of numbers which
identify the requirements.

2.3.2 Requirements fixed

The following objectives are expected to be carried out:

• Mandatory

Þ M01: Drafting of the Design Doc which contains the design of the new
DynamoDB database and the migration plan;

Þ M02: Development of all the classes needed to perform the CRUD operations
(create, read, update and delete) on the new DynamoDB tables;

Þ M03: Perform and complete the migration of all metadata following the
migration plan in the test environment;

Þ M04: Drafting of the Next Steps document which contains the description of
the remaining work to be done;

• Desirable

Þ D01: Modification of all the service classes which rely on Amazon Aurora to
make them rely on the new DynamoDB tables;

Þ D02: Modification of all the existing endpoints which rely on Amazon Aurora
to make them rely on the new DynamoDB tables;

• Optional

Þ No optional requirements have been identified.

Working methodology at Amazon - Business Processes

7

3 Working methodology at Amazon

3.1 Business Processes

3.1.1 Agile methodology: SCRUM framework in Amazon

As I wrote before, the PerfectMile team has two sub-teams: Tech and Content. In PefectMile
Tech they use the AGILE methodology, in particular the Scrum framework (figure 3.1), in order
to always be available to the customers’ needs and to continuously improve their products.

Figure 3.1: SCRUM framework

3.1.1.1 SCRUM Team

A Scrum Team is a collection of individuals (typically between five and nine members) working
together to deliver the required product Increments.

The Scrum Team consists in:

• One Product Owner: The Product Owner is the Team member who knows what the
customer wants and the relative business value of those wants. The Product Owner
must know the business case for the product and what features the customers’ wants
and he is also responsible for managing the Product Backlog. In PerfectMile the
Product Owner was a Technical Product Manager;

• One Scrum Master: The Scrum Master helps to keep the team accountable to their
commitments to the business and also remove any roadblocks that might impede the
team’s productivity. They meet with the team on a regular basis to review work and
deliverables. In my team every day because one Development Team member was also
the Scrum Master;

Working methodology at Amazon - Business Processes

 8

• The Development Team: Development Teams are structured and empowered by the
organization to organize and manage their own work. They are cross-functional, with
all the skills as a team necessary to create a product Increment.

3.1.1.2 Sprint

A Sprint is a short, time-boxed period when a Scrum Team works to complete a set amount
of work. Sprint lies at the core of the Scrum agile methodology and can be thought of as an
event which wraps all other Scrum Events like Daily Scrum, Sprint Review and Sprint
Retrospective. Like all of the Scrum events, Sprint also has a maximum duration. Usually, a
Sprint lasts for one month or less. In my team we have used 3 weeks long Sprints.

3.1.1.3 Product Backlog

The Product Backlog is a continuously improved list, with the initial version listing only the
most preliminary and well-known requirements (not necessary well understood). Product
Backlog evolves based on changes in the product and development environment. The Backlog
is dynamic and it often changes to identify what is necessary to make the product reasonable,
competitive, and useful. The Product Backlog lists all the features, use cases, user stories,
improvements, and bug fixes that will be made to future releases. The Product Backlog exists
as long as the product exists.

Product Backlog Items (PBIs) are usually sorted by value, risk, priority, and necessity. It is a
sequence of highest to lowest priority, with each entry having a unique order. Product to-do
list entries at the top need to be developed immediately. The higher the ranking, the more
urgent the product to-do list entry is, the more you need to think carefully and the more
consistent your opinion on the value.

The Product Backlog Items that the development team will develop in Sprint are fine-grained
and have been decomposed. The Product Backlog Items that the Development Team can
complete in a Sprint are considered fulfilling the definition of “ready” and can be selected at
the Sprint planning meeting.

3.1.1.4 Sprint Planning

Sprint Planning initiates the Sprint by laying out the work to be performed for the Sprint. This
resulting plan is created by the collaborative work of the entire Scrum Team.

The Product Owner ensures that attendees are prepared to discuss the most important
Product Backlog Items and how they map to the Product Goal. The Scrum Team may also
invite other people to attend Sprint Planning to provide advice.

Sprint Planning addresses the following topics:

• Why is this Sprint valuable?

• What can be done in this Sprint?

• How will the chosen work get done?

Working methodology at Amazon - Business Processes

 9

3.1.1.5 Sprint Backlog

The Sprint Backlog (figure 3.2) is composed of the Sprint Goal (why), the set of Product
Backlog Items selected for the Sprint (what), as well as an actionable plan for delivering the
Increment (how).

The Sprint Backlog is a plan by and for the Developers. It is a highly visible, real-time picture
of the work that the Developers plan to accomplish during the Sprint in order to achieve the
Sprint Goal. Consequently, the Sprint Backlog is updated throughout the Sprint as more is
learned. It should have enough detail that they can inspect their progress in the Daily Scrum.

3.1.1.6 Increment

An Increment is a concrete stepping stone toward the Product Goal. Each Increment is additive
to all prior Increments and thoroughly verified, ensuring that all Increments work together. In
order to provide value, the Increment must be usable.

3.1.1.7 Daily SCRUM - Stand-Up meeting

The purpose of the Stand-Up meeting is to inspect progress toward the Sprint Goal and adapt
the Sprint Backlog as necessary, adjusting the upcoming planned work. The Stand-Up meeting
is a 15-minute event for the Developers of the Scrum Team. To reduce complexity, it is held
at the same time and place every working day of the Sprint.

In my team the Stand-Up meeting was every day at 6.00 pm in order to allow other team
members placed in a different time zone to attend the meeting. We used a program that
randomly created a queue where all the Development Team members were present.
Following the queue order, each team member had to talk about what he did during the
working day.

Figure 3.2: Sprint Backlog

Working methodology at Amazon - Business Processes

 10

3.1.1.8 Sprint Review and Sprint Retrospective

Usually, Sprint Review and Sprint Retrospective are two separated events. The purpose of the
Sprint Review is to inspect the outcome of the Sprint and determine future adaptations. The
purpose of the Sprint Retrospective, instead, is to plan ways to increase quality and
effectiveness.

In my team we had a unique Sprint Review-Retrospective meeting that was a mix of Sprint
Review and Sprint Retrospective. At the beginning of this meeting the Scrum Master shares to
all the team members a link to the Sprint Retrospective board (figure 3.3) which contains 4
lists in which every team member can put an entry. Each list has its own topic:

• Kudos: In this list each team member can insert an entry to congratulate another team
member for something he did during the Sprint;

• Went well: what went well during the Sprint;

• To improve: what can be improved for the next Sprint;

• Action items: which action items a team member or the entire team must perform.

After each team member has finished inserting his entries, the whole team discusses about
all the entries inside the board. The discussion focuses on what was done during the past
Sprint and how the team can improve.

Figure 3.3: Sprint Retrospective board

Working methodology at Amazon - Software Development in PerfectMile Tech

 11

3.2 Software Development in PerfectMile Tech

3.2.1 Software and Tools

In Amazon, at least in my team, each Software Development Engineer used to work an Apple
MacBook Pro and the macOS Operative System. The typical software and tools used every
day by the SDEs are listed below.

3.2.1.1 Amazon Chime

Amazon Chime (figure 3.4) is a communication service that the Amazon teams use to organize
and conduct video meetings. It also permits to chat with other people inside the Amazon
organization, but it is not used much for that.

3.2.1.2 Slack

Slack (figure 3.5) is a messaging program designed specifically for the workplace. It offers
rooms organized by topics called channels, private groups and direct messaging. In Slack my
team had a channel for each topic to discuss. Precisely for these functionalities it is used
instead of Amazon Chime for direct messages and contact other team members.

Figure 3.5: Slack logo

Figure 3.4: Amazon Chime logo

Working methodology at Amazon - Software Development in PerfectMile Tech

 12

3.2.1.3 Outlook

Outlook (figure 3.6) is a Personal Information Manager software system. Outlook is primary
an email client but it also includes other functions like the calendar which is very useful
because it is automatically updated with all the meetings you have been invited to join or that
you have created.

3.2.1.4 Amazon Meetings

Amazon Meetings (figure 3.7) is an Amazon internal application used to schedule meetings
with other people within the Amazon organization. Every time you schedule a meeting, it
automatically sends an email to all the invited people and creates an event on the Outlook
calendar.

3.2.1.5 Quip

Quip (figure 3.8) is a collaborative Productivity Software which allows groups of people to
create and edit documents and spreadsheets as a group. It is very useful also because it allows
to add comments wherever you want within the document.

Figure 3.6: Outlook logo

Figure 3.7: Amazon Meetings logo

Figure 3.8: Quip logo

Working methodology at Amazon - Software Development in PerfectMile Tech

 13

3.2.1.6 IntelliJ IDEA

During my internship I always wrote Java code and for this reason I used Intellij (figure 3.9)
which is one of the most popular Integrated Development Environment - a software
application used for software development which contains at least a source code editor, build
automation tools and a debugger - for Java. It also supports other Programming Languages.

3.2.1.7 DataGrip

DataGrip (figure 3.10) is a database Integrated Development Environment that is tailored to
suit the specific needs of professional SQL developers. I used DataGrip to have access to the
relational database I had to work on and to do some queries.

3.2.1.8 AWS Management Console

AWS Management Console (figure 3.11) is a web application that comprises and refers to a
broad collection of service consoles for managing AWS resources. It is used to manage and
monitor users, service usage, health and monthly billing costs of AWS resources.

Figure 3.9: IntelliJ IDEA logo

Figure 3.10: DataGrip logo

Figure 3.11: AWS logo

Working methodology at Amazon - Software Development in PerfectMile Tech

 14

3.2.1.9 Git

Git (figure 3.12) is a free and open-source distributed Version Control System. It is used for
tracking changes in any set of files inside a project and it is mainly used for coordinating work
among programmers. Its goals include speed, data integrity and support distributed non-
linear workflows (thousands of parallel branches running on different systems). The branch
that most developers work against is called mainline and it is also the branch used to deploy
in production.

Git saves different versions of the files in the .git/ folder known as GIT repository. This
repository tracks all changes made to files inside the project folder, building a history over
time. This means that if you delete the .git/ folder, you delete your project’s history.

Figure 3.12: GIT logo

Working methodology at Amazon - Software Development in PerfectMile Tech

 15

3.2.2 Deployment to production process

At Amazon, the Continuous Integration (CI) software development practice is used. This
means that every Software Development Engineer regularly merges his code changes into a
central GIT repository after run automated builds and tests. The key goals of CI are to find and
address bugs quicker through frequent testing, improve software quality and reduce the time
to validate and release new software updates.

The process to ship code changes in production is described in figure 3.13.

When the Software Development Engineers have to push some code in the repository, first of
all they must verify the new code through unit tests. If the unit tests for the functionalities
they have implemented don’t exist, they must create them. After passing all the tests locally
and verifying that the entire program builds correctly without any errors, they must request
a Code Review to at least two team members. Before publishing the Code Review and sending
the notification to the requested reviewers, the Code Review Portal automatically runs some
other tests. If one of these tests fails, it means that the code has some errors or the test
coverage - the percentage of lines covered by tests - decreased and some new test cases must
be created. Once verified that all the tests passed, it is possible to publish the Code Review
and wait the feedbacks from the team mates. Sometimes the reviewers publish some
comments and the author of the code needs to address these comments and change
something on the code and restart the entire process to deploy to production. Instead, if all

Figure 3.13: Code deployment to production process

Working methodology at Amazon - Software Development in PerfectMile Tech

 16

the reviewers approved the code changes, it is possible to push the new code in the mainline
and eventually resolve the conflicts if needed. After that the code is pushed in the mainline,
the changes are ready to be deployed to production. Sometimes when the code changes go
to production, it’s necessary to perform a staged rollout by using feature flags which are
software development processes used to enable or disable functionalities remotely without
deploying new code. The deployment to production of the software product where I made
code changes during my internship was automatic (Continuous Deployment), so every time I
made a code change that was approved, it went to production. In some other software
products, the deployment to production required a manual approval (Continuous Delivery).

Overview of the AWS technologies - Amazon DynamoDB

 17

4 Overview of the AWS technologies

During my internship I used various AWS technologies to solve the problem and meet the
constraints imposed on the project, so an overview of these technologies is mandatory to
understand the solution design.

4.1 Amazon DynamoDB

Amazon DynamoDB (figure 4.1) is a fully managed, serverless, key-value NoSQL database
designed to run high-performance applications at any scale. Developers can use DynamoDB
to build modern serverless applications that can start small and scale globally to support
petabytes of data and tens of millions of read and write requests per second.

4.1.1 Features

These listed below are the main features of DynamoDB.

4.1.1.1 Performance at scale

DynamoDB supports tables of virtually any size with horizontal scaling. This enables
DynamoDB to scale to more than 10 trillion requests per day with peaks greater than 20
million requests per second, over petabytes of storage.

4.1.1.2 Serverless

When you work with DynamoDB there are no servers to provision, patch or manage, and no
software to install or maintain. DynamoDB automatically scales tables to adjust for capacity
and maintains performance with zero administration. Availability and fault tolerance are built
in, eliminating the need to architect your applications for these capabilities.

Figure 4.1: Amazon DynamoDB logo

Overview of the AWS technologies - Amazon DynamoDB

 18

4.1.1.3 Enterprise ready

DynamoDB is built for mission-critical workloads, including support for atomicity, consistency,
isolation and durability (ACID) transactions for a broad set of applications that require
complex business logic. DynamoDB helps secure data with encryption and continuously backs
up data for protection.

4.1.2 Core components

The following are the basic DynamoDB components:

• Tables: As other database systems, DynamoDB stores data in tables which are a
collection of data;

• Items: Each table contains zero or more items. An item is a group of attributes that is
uniquely identifiable among all of the other items. Items in DynamoDB are similar to
rows, records or tuples in other database systems. In DynamoDB there isn’t a limit to
the number of items you can store in a table;

• Attributes: Each item is composed of one or more attributes. An attribute is an atomic
element, something that doesn’t need to be broken any further. Attributes in
DynamoDB are similar in many ways to fields or columns in other database systems.

Overview of the AWS technologies - Amazon DynamoDB

 19

An example of a DynamoDB table which contains some items:

Note the following about the Music table (figure 4.2):

• The primary key for Music consists of two attributes (Artist and SongTitle). Each item
in the table must have these two attributes. The combination of Artist and SongTitle
distinguishes each item in the table from all of the others;

• Other than the Primary Key, the Music table is schemaless, which means that neither
the attributes nor their data types need to be defined beforehand. Each item can have
its own distinct attributes;

• One of the items has a nested attribute (PromotionInfo), which contains other nested
attributes. DynamoDB supports nested attributes up to 32 levels deep.

Figure 4.2: DynamoDB sample table

Overview of the AWS technologies - Amazon DynamoDB

 20

4.1.2.1 Primary Keys

When you create a new table in DynamoDB in addition to the table name, you must specify
the Primary Key of the table. As in other database systems, the Primary Key uniquely identifies
each item in the table, so that no two items can have the same key.

DynamoDB supports two types of Primary Keys.

Partition Key

It is a simple Primary Key composed of one attribute known as Partition Key.

DynamoDB uses the Partition Key’s value as input to an internal hash function (figure 4.3).
The output of the hash function determines the partition (physical storage internal to
DynamoDB) in which the item will be stored. In a table that has only a Partition Key as Primary
Key two items can’t have the same Partition Key value.

Figure 4.3: Functioning of the DynamoDB hash function for Partition Key

Overview of the AWS technologies - Amazon DynamoDB

 21

Partition Key and Sort Key

Referred to as a Composite Primary Key, this type of key is composed of two attributes. The
first attribute is the Partition Key and the second one is the Sort Key.

All the items with the same Partition Key are stored in the same partition in sorted order by
Sort Key value (figure 4.4). If a table has a Composite Primary Key, two items that have the
same Partition Key, they must have a different Sort Key.

In DynamoDB each Primary Key attribute must be a scalar, so the only data types allowed for
Primary Key attributes are String, Number or Binary. There are no such restrictions for other
non-key attributes.

Figure 4.4: Functioning of the DynamoDB hash function for Composite Primary Key

Overview of the AWS technologies - Amazon DynamoDB

 22

4.1.2.2 Data Types

DynamoDB supports many different data types for attributes within a table. They can be
categorized as follows:

• Scalar Types: A scalar type can represent exactly one value. The scalar types are
Number, String, Binary, Boolean and Null;

• Document Types: A document type can represent a complex structure with nested
attributes, such as you would find in a JSON document. The document types are List
and Map;

• Set Types: A set type can represent multiple scalar values. The set types are String Set,
Number Set and Binary Set.

Overview of the AWS technologies - Amazon DynamoDB

 23

4.1.3 Operations for reading data from a table

Amazon DynamoDB provides different operations for reading data.

4.1.3.1 GetItem operation

Retrieves a single item from a table. This is the most efficient way to read a single item
because it provides direct access to the physical location of the item. To perform this
operation (figure 4.5), you need to provide the primary key (simple or composite) of the item
you want to get.

4.1.3.2 Query operation

This operation (figure 4.6) retrieves all of the items that have a specific partition key. Whitin
those items, it is possible to apply a condition to the sort key and retrieve only a subset of the
data.

4.1.3.3 Scan operation

This operation (figure 4.7) retrieves all the items in the specified table. It is possible to apply
a condition to retrieve only a subset of the data.

Figure 4.5: Example of a GetItem operation

Figure 4.6: Example of a Query operation to get all the songs of an artist

Figure 4.7: Example of a Scan operation

Overview of the AWS technologies - Amazon DynamoDB

 24

4.1.4 Differences from Relational databases

Obviously there are some differences between DynamoDB which is a NoSQL database and
relational databases.

4.1.4.1 Schema

DynamoDB is a NoSQL database and is schemaless. This means that, other than the Primary
Key attributes, you don't have to define any attributes or data types when you create tables.
By comparison, relational databases require you to define the names and data types of each
column when you create a table.

4.1.4.2 Relationships

In the relational databases, the relationships are at the foundation of how the entire database
works and the design focuses on the relationships between entities. When you want to query
for some data it is common to join different tables to retrieve the desired data.

Relationships don’t exist in DynamoDB and it isn’t allowed to join tables when making a query.
Therefore, in DynamoDB you need to design the database in a different way respect in a
relational database. That’s why in DynamoDB is allowed to store also Document and Set types.

4.1.4.3 Client’s interaction

On a relational database you need a persistent connection (figure 4.8) which ends when the
application is finished. Instead, in DynamoDB you don’t have a persistent connection:
interaction with DynamoDB is stateless and it occurs using HTTP(S) requests and responses.

Figure 4.8: Differences between DynamoDB and the relational databases on Client’s interaction

Overview of the AWS technologies - AWS Lambda

 25

4.2 AWS Lambda

AWS Lambda (figure 4.9) is a serverless, event-driven compute service that lets you run code
for virtually any type of application or Back-End service without provisioning or managing
servers.

4.2.1 Features

These listed below are the main features of AWS Lambda.

4.2.1.1 Build custom Back-End services

It’s possible to use AWS Lambda to create new Back-End application services triggered on
demand using the Lambda application programming interface (API). AWS Lambda processes
custom events instead of servicing these on the client, helping you avoid client platform
variations, reduce battery drain, and enable easier updates.

4.2.1.2 Completely automated administration

AWS Lambda manages all the infrastructure to run code on highly available, fault tolerant
infrastructure, freeing you to focus on building differentiated backend services. With Lambda,
you never have to update the underlying operating system (OS) when a patch is released, or
worry about resizing or adding new servers as your usage grows.

4.2.1.3 Automatic scaling

AWS Lambda invokes your code only when needed, and automatically scales to support the
rate of incoming requests without any manual configuration. There is no limit to the number
of requests your code can handle. AWS Lambda typically starts running your code within
milliseconds of an event. Since Lambda scales automatically, the performance remains
consistently high as the event frequency increases. Since your code is stateless, Lambda can
start as many instances as needed without lengthy deployment and configuration delays.

Figure 4.9: AWS Lambda logo

Overview of the AWS technologies - AWS Lambda

 26

4.2.1.4 Orchestrate multiple functions

Build AWS Step Functions (chapter 4.3) workflows to coordinate multiple AWS Lambda
functions for complex or long-running tasks. Step Functions lets you define workflows that
trigger a collection of Lambda functions using sequential, parallel, branching, and error-
handling steps. With Step Functions and Lambda, you can build stateful, long-running
processes for applications and backends.

4.2.2 Lambda concepts

4.2.2.1 Function

A function is a resource that you can invoke to run your code in Lambda. It has code to process
the Events passed into the function;

4.2.2.2 Trigger

A Trigger is a resource or configuration that invokes a Lambda function. Triggers include AWS
services that you can configure to invoke a function and event source mappings. An event
source mapping is a resource in Lambda that reads items from a stream or queue and invokes
a function.

4.2.2.3 Event

An Event is a JSON-formatted (figure 4.10) document that contains data for a Lambda function
to process. The runtime converts the event to an object and passes it to your function code.
When you invoke a function, you determine the structure and contents of the Event.

4.2.2.4 Concurrency

Concurrency is the number of requests that a function is serving at any given time. When the
function is invoked, Lambda provisions an instance of it to process the event. When the
function code finishes running, it can handle another request. If the function is invoked again
while a request is still being processed, another instance is provisioned, increasing the
function's concurrency.

Figure 4.10: JSON-formatted document
example

Overview of the AWS technologies - AWS Step Functions

 27

4.3 AWS Step Functions

AWS Step Functions (figure 4.11) is a low-code, visual workflow service that developers use
to build distributed applications, automate IT and business processes, and build data pipelines
using AWS services. Workflows manage failures, retries, parallelization, service integrations,
and observability so developers can focus on higher-value business logic.

4.3.1 Features

AWS Step Functions provides serverless orchestration for modern applications. Orchestration
centrally manages a workflow by breaking it into multiple steps, adding flow logic, and
tracking the inputs and outputs between the steps. As your applications execute, Step
Functions maintains application state, tracking exactly which workflow step your application
is in, and stores an event log of data that is passed between application components. That
means that if networks fail or components hang, your application can pick up right where it
left off.

4.3.1.1 Built-in service primitives

AWS Step Functions provides ready-made steps for your workflow called states that
implement basic service primitives for you, which means you can remove that logic from your
application. States can pass data to other states and microservices, handle exceptions, add
timeouts, make decisions, execute multiple paths in parallel, and more.

4.3.1.2 AWS service integration

Using AWS Step Functions Service Integrations, you can configure your Step Functions
workflow to call over 200 AWS services which includes AWS Lambda and Amazon DynamoDB.

Figure 4.11: AWS Step Functions logo

Overview of the AWS technologies - AWS Step Functions

 28

4.3.1.3 Workflow configuration

Using AWS Step Functions, you define your workflows as state machines (figure 4.12), which
transform complex code into easy to understand statements and diagrams.

4.3.1.4 Workflow abstraction

AWS Step Functions keeps the logic of your application strictly separated from the
implementation of your application. It is possible to add, move, swap, and reorder steps
without having to make changes to the business logic. Through this separation of concerns,
the workflows gain modularity, simplified maintenance, scalability, and code reuse.

4.3.1.5 Automatic scaling

AWS Step Functions automatically scales the operations and underlying compute to run the
steps of your application for you in response to changing workloads. Step Functions scales
automatically to help ensure the performance of your application workflow remains
consistent as the frequency of requests increases.

Figure 4.12: AWS Step Function workflow example

Overview of the AWS technologies - AWS Step Functions

 29

4.3.2 States

Individual states can make decisions based on their input, perform actions, and pass output
to other states. In AWS Step Functions you define your workflows in the Amazon States
Language.

The following (figure 4.13) is an example state named HelloWorld that performs an AWS
Lambda function.

States share some common fields:

• Each state must have a Type field indicating what type of state it is.

• Each state can have an optional Comment field to hold a human-readable comment
about, or description of, the state.

• Each state (except a Succeed or Fail state) requires a Next field or, alternatively, can
become a terminal state by specifying an End field.

4.3.2.1 Task

A Task state (“Type” : “Task”) represents a single unit of work performed by a state machine.

All work in a state machine is done by Tasks (figure 4.10). A Task performs work by using an
activity (a process not hosted by AWS) or an AWS Lambda function, or by passing parameters
to the API actions of other services. AWS Step Functions can invoke Lambda functions directly
from a task state.

Figure 4.13: AWS Lambda function task state example

Overview of the AWS technologies - AWS Step Functions

 30

4.3.2.2 Pass

A Pass state (“Type” : “Pass”) passes its input to its output, without performing work. Pass
states (figure 4.14) are useful when constructing and debugging state machines.

4.3.2.3 Choice

A Choice state (“Type” : “Choice”) adds branching logic to a state machine.

In addition to the common fields, the Choice state (figure 4.15) introduces these additional
fields:

• Choices (required): An array of Choice rules that determines which state will be the
next;

• Default (optional, recommended): The name of the state to transition to if none of
the transitions in Choices is taken.

Figure 4.14: Pass state example

Figure 4.15: Choice state example

Overview of the AWS technologies - AWS Step Functions

 31

4.3.2.4 Wait

A Wait state (“Type” : “Wait”) delays the state machine from continuing for a specified time.
It is possible to choose either a relative time, specified in seconds from when the state begins,
or an absolute end time, specified as a timestamp.

In addition to the common fields, the Wait state (figure 4.16) has one of these fields:

• Seconds: A time in seconds to wait before beginning the state specified in the Next
field. It must be an integer positive value;

• Timestamp: An absolute time to wait until beginning the state specified in the Next
field.

4.3.2.5 Succeed

A Succeed state (“Type” : “Succeed”) stops an execution successfully.

Because Succeed states (figure 4.17) are terminal states, they haven’t the Next field and don’t
need an End field.

Figure 4.16: Wait state example

Figure 4.17: Succeed state example

Overview of the AWS technologies - AWS Step Functions

 32

4.3.2.6 Fail

A Fail state (“Type” : “Fail”) stops the execution of the state machine and marks it as a failure.

The Fail state (figure 4.18) only allows the use of Type and Comment fields from the set of
common state fields. In addition, it allows the use of the following fields:

• Cause (optional): Provides a custom failure string that can be used for operational or
diagnostic purposes;

• Error (optional): Provides an error name that can be used for operational or diagnostic
purposes.

Because Fail states always exit the state machine, they haven’t a Next field and they don’t
require an End field.

Figure 4.18: Fail state example

Overview of the AWS technologies - AWS Step Functions

 33

4.3.3 Error handling

Any state can encounter runtime errors. Errors can happen for various reasons:

• State machine definition issues (for example, no matching rule in a Choice state);

• Task failures (for example, an exception in a Lambda function);

• Transient issues (for example, network partition events).

By default, when a state reports an error, AWS Step Functions causes the execution to fail
entirely.

4.3.3.1 Retrying after an error

Task states can have a field called Retry, whose value must be an array of objects known as
Retriers. An individual Retrier (figure 4.19) represents a certain number of retries, usually at
increasing time intervals.

A Retrier contains the following fields:

• ErrorEquals (required): A non-empty array of strings that match error names;

• IntervalSeconds (optional): An integer that represents the number of seconds before
the first retry attempt;

• MaxAttempts (optional): A positive integer that represents the maximum number of
retry attempts;

• BackoffRate (optional): The multiplier by which the retry interval increases during
each attempt (2 by default).

Figure 4.19: Step Function Retrier example

Overview of the AWS technologies - AWS Step Functions

 34

4.3.3.2 Fallback states

Task states can have a field named Catch. This field's value must be an array of objects, known
as Catchers.

A Catcher (figure 4.20) contains the following fields:

• ErrorEquals (required): A non-empty array of strings that match error names;

• Next (required): A string that must exactly match one of the state machine's state
names;

• ResultPath (optional): A path that determines what input is sent to the state specified
in the Next field.

Note: States.ALL is a wildcard that matches any known error name.

Figure 4.20: Step Function Catcher example

Solution Design - Amazon Aurora database schema

35

5 Solution Design

The purpose of this section is to explain how the Amazon Aurora database was previously
designed, how it should work and finally explain the adopted solution for the design of the
new DynamoDB database and the migration plan.

5.1 Amazon Aurora database schema

The Amazon Aurora relational database (figure 5.1) was designed to store the metrics
metadata. The metadata are information about the metrics used to calculate their value.

For each metric the following common information are stored:

• Name: The metric name;

• Value Type: The value type can be scalar, weighted average, hybrid or percentile;

• Aggregation Style: The type of data aggregation can be sum, last day of period or
percentile;

• Chained metric and Chain cutoff date: They are optional fields. These fields are used
when someone asks for the metric data and the date for which he is requesting the
data is before the chain cutoff date. In this case the system has to take the data from
the chained metric;

• Creation date: The date when the metric was created;

• Creator: The metric creator username;

• Deprecation date: It is used only when the metric is deprecated.

Metrics have two main categories: Primitives which use some dimensions to calculate their
value and Hybrids (Value Type = hybrid) which are calculated using Primitive metrics. For this
reason, Primitives and Hybrids, in addition to the common information, have other specific
information.

A hybrid metric also has this information:

• Hybrid formula: It is used only by the Hybrid metrics which value type is hybrid. The
hybrid formula field contains the formula used to calculate the metric value;

• Consumed metrics: The metrics used by the hybrid metric to calculate its own value.

Solution Design - Amazon Aurora database schema

 36

Instead, a primitive metric has this information:

• Related dimensions: The dimensions used by the primitive metric to calculate its own
value.

Notes about the schema:

• In dimensions_metric_groups that notation means that its primary key is composed by
the foreign keys to dimension and metric_groups;

• In metric_relationships the primary key is composed by the foreign keys to metrics
(consumed_metric and consumer_metric fields);

• In metric_version the primary key is composed by the foreign key to metrics and the
version field.

Figure 5.1: Amazon Aurora database schema

Solution Design - Amazon Aurora database schema

 37

5.1.1 Comments about the Amazon Aurora database schema

5.1.1.1 Metric groups and related dimensions

When the database was designed the idea was to have more metric groups which had to use
the same dimensions. But what happened was the following:

• A primitive metric belongs to exactly one metric group and a metric group contains
exactly one metric. The only exception is the hybrid metrics group;

• The group name is equals to the primitive metric name, because when someone wants
to create a new primitive metric the website first does a call to the Back-End to create
a new metric group with some related dimensions and after that it does a call to create
the new metric which belongs to the new metric group;

• A hybrid metric belongs to the hybrid metrics group which doesn’t have related
dimensions, so the hybrid metrics group doesn’t use the dimensions_metric_groups
table;

• The dimensions_metric_groups table is used only by the Primitive metrics;

• The metric_groups table is used only to connect a single primitive metric to all the
related dimensions to that metric since a metric group contains exactly one primitive
metric.

5.1.1.2 Metric relationship

The metric_relationships table is used only by the Hybrid metrics since the Primitive metrics
don’t consume other metrics to calculate their value.

Solution Design - Amazon Aurora database schema

 38

5.1.2 Redesign of the Amazon Aurora database schema

Before designing the new DynamoDB database, it is useful to redesign the Amazon Aurora
database schema to reflect the correct behavior of LPH.

Keeping in mind the comments above, I arrived at the conclusion that it is useless to have the
metric_groups table because it is only used to connect the metric group with its related
dimensions. Since a metric group has a 1:1 relationship with a metric, it is possible to remove
the metric_groups table and directly connect the related dimension to the metrics table with
a new relationship.

It is safe to remove the metric_groups table because it is possible to distinguish the Hybrid
metrics using the value type: when the value type of a metric is hybrid, it means that it is a
hybrid metric.

Figure 5.2: Amazon Aurora database schema redesigned

Solution Design - Amazon Aurora database schema

 39

Notes about the diagram (figure 5.2):

• The dimensions_metric_groups relationship and the metric_groups table were
removed because they were redundant;

• The dimensions_metric_groups relationship is substituted by the related_dimensions
relationship between metrics and dimensions, so basically in the new
related_dimensions table there are the same data of the dimensions_metric_groups
table with the difference that instead of the metric_group_id there is directly the
metric_id.

Solution Design - Designing the Amazon DynamoDB database

 40

5.2 Designing the Amazon DynamoDB database

The design choices about the database schema made in this section were done keeping in
mind the data access pattern, since NoSQL databases offers less query flexibility than their
SQL equivalent and keeping in mind that the DynamoDB costs depend on the number of
queries - read and write - performed. It was also important to note that using multiple
DynamoDB tables costs because “joins” aren’t possible and therefore multiple reads are
required.

In DynamoDB the single table design is a best practice, so I decided to store the data in a
single table by merging the data from the metrics and metric_versions tables and using the
version control design pattern.

By storing the data in this way, we can get all the information about a metric in a single query.

5.2.1 Version control design pattern implementation

The new DynamoDB metrics table (figure 5.3) has the following characteristics:

• It has a composite primary key (name, version) because we want to store all the
versions of a metric and for this reason there will be more items with the same name
in this table;

• The consumed metrics and the related dimensions are stored as a Set<String>;

• The attributes name, version, updatedAt, UpdatedBy, aggregationStyle and valueType
must have a value and they can’t be null.

Figure 5.3: DynamoDB metrics table schema

Solution Design - Designing the Amazon DynamoDB database

 41

The version control design pattern (figure 5.4) is implemented in the new metrics table which
means that for each metric a version zero item is stored which is a copy of the latest version
item. Storing the version zero item is very useful to use the GetItem operation because when
a query for a specific metric is done, it’s difficult to know the latest version number. So to
retrieve the latest version data, it is only necessary to do a GetItem operation for the version
zero of the metric, then for the primary key {name : metricName, version : 0}.

Notes:

• The version zero item has an additional attribute latestVersion which contains the
latest version number of the metric;

• The field createdAt and createdBy always refer to the creation date-time and creator
of the version 1.

Figure 5.4: Items stored with the version control design pattern

Solution Design - Designing the Amazon DynamoDB database

 42

5.2.2 Type of items stored in the new table

Two types of items will be stored in the new table: one for the Primitive metrics and one for
the Hybrid metrics.

5.2.2.1 Primitive metric item

The Primitive metrics items (figure 5.5) must have the relatedDimensions attribute (not null)
and not the consumedMetrics attribute.

5.2.2.2 Hybrid metric item

The Hybrid metrics items (figure 5.6) must have the consumedMetrics (not null) and the
hybridFormula (not null) attributes. They don’t have the relatedDimensions attribute. The
Hybrid metric items must also have the attribute valueType set to HYBRID.

Figure 5.5: Primitive metric item example

Figure 5.6: Hybrid metric item example

Solution Design - Migration plan

 43

5.3 Migration plan

Before making code changes to the LPH endpoints to rely on the new DynamoDB table, it is
necessary migrate all the data from Aurora to DynamoDB. The problem to solve is how to
migrate data without downtime and be sure that these data remain consistent during and
after the migration without losing information.

Before performing the migration it is needed ensuring that all the new metrics added during
the migration phase, will be inserted both in Amazon Aurora and DynamoDB. In this way LPH
will continue to work as always, the new data will be already in DynamoDB and when the
migration will be performed, it will not be necessary to migrate in DynamoDB the new data
added during the migration phase.

To perform the migration is used a Step Function which can be run when LPH is working
ensuring no LPH downtime during the migration.

5.3.1 Changes to the system before the migration phase

Before passing to the migration phase, some changes were required.

5.3.1.1 Amazon Aurora metrics table

To keep track of which metrics have been migrated to DynamoDB and their migration state,
the migratedToDynamoDB field (figure 5.7) was added in the Amazon Aurora metrics table.
The intermediate state IN_MIGRATION is useful for keeping track of which metrics are
currently performing the migration.

Figure 5.7: MigratedToDynamoDB field definition

Solution Design - Migration plan

 44

5.3.1.2 API endpoint changes

As described before, two API calls are made when someone wants to create a primitive metric:
the first one to add a new metric group with the related dimensions and the second one to
create a new metric with all the other fields.

It is not necessary to modify the endpoint used to create new metric groups. Instead, a change
is required for the endpoint used to create new metrics.

The change to the AddMetric endpoint (figure 5.8) is not the only change that needs to be
done because:

• What if a metric which is already present in DynamoDB must be updated?

• What if a metric which is performing the migration must be updated?

Figure 5.8: Behavior of the AddMetric endpoint during the migration phase

Solution Design - Migration plan

 45

In order to cover these scenarios a change to the UpdateMetric endpoint is required.

The new endpoint behavior (figure 5.9) uses a feature flag to maintain the data consistency:
it blocks updates of a metric when its migration status is IN_MIGRATION. Otherwise, it
updates the metric in Amazon Aurora and if the metric is also stored in DynamoDB it updates
the metric also there.

5.3.2 Step Function for the migration

To perform the migration of a single metric, I decided to use an AWS Step Function. The Step
Function workflow (figure 5.10) involves the use of a main AWS Lambda which try to perform
the migration of all the metric versions and the use of another Lambda used as a Fallback
State of a Catcher in case an error occurred in the main one.

Figure 5.9: Behavior of the UpdateMetric endpoint during the migration phase

Figure 5.10: Workflow of the Step Function for the migration

Solution Design - Migration plan

 46

5.3.2.1 Metric metadata migration Step Function definition

The following code snippet (figure 5.11) shows the Step Function definition.

Figure 5.11: Metric metadata migration Step Function definition

Solution Design - Migration plan

 47

5.3.2.2 MigrateOneMetricLambda – Activity Diagram

The following diagram (figure 5.12) shows the MigrateOneMetricLambda workflow.

Note: In Amazon Aurora are stored only the consumedMetrics and relatedDimensions of the
latest version of the metrics. This implies that in DynamoDB only the latest version and version
zero items will have the attribute relatedDimensions or consumedMetrics.

Figure 5.12: MigrateOneMetricLambda activity diagram

Solution Design - Migration plan

 48

5.3.2.3 CleanUpDynamoDbFromMigratedMetricMetadataLambda – Activity Diagram

The following diagram (figure 5.13) shows the CleanUpDynamoDbFromMigratedMetric
MetadataLambda workflow.

This Lambda is used as Fallback state of the main Lambda Catcher. The task it has to do is
clean-up DynamoDB from any items created by the main Lambda.

The clean-up is necessary because otherwise if a subsequent execution of
MigrateOneMetricLambda tries to create an item with a primary key that already exists,
DynamoDB generates an error. Therefore, if a previous execution of the migration Step
Function failed and DynamoDB wasn’t cleaned-up, the Step Function will continue to fail for
this error with the primary keys.

5.3.2.4 Step Function invoker

In order to automate the migration process, it was used an AWS Lambda as an invoker of
metric metadata migration Step Function executions. The task of the invoker (figure 5.14) is
to query Amazon Aurora for 500 metrics which aren’t already migrated to DynamoDB and for
each metric to start a Step Function execution.

Figure 5.13: CleanUpDynamoDbFromMigratedMetricMetadataLambda activity diagram

Figure 5.14: Metric metadata Step Function invoker

49

 50

6 Glossary

Action item: A documented event, task, activity, or action that needs to take place. Action
items are discrete units that can be handled by a single person.

API: Application Programming Interface, it is a type of software interface offering a service to
other pieces of software.

Back-End: It refers to the separation of concerns between the presentation layer (front-end)
and the data access layer (back-end) of a piece of software.

Business Intelligence: The strategies and technologies used by enterprises for the data
analysis and management of business information.

CRUD: The four basic operations (create, read, update, and delete) of persistent storage.

Data aggregation: The compiling of information from databases with intent to prepare
combined datasets for data processing.

Data ingestion: The process of obtaining and importing data for immediate use or storage in
a database.

Data integration: Combining data residing in different sources and providing users with a
unified view of them.

MySQL: An open-source relational database management system.

NoSQL: Database that provides a mechanism for storage and retrieval of data that is
modeled in means other than the tabular relations used in relational databases.

Serverless: A cloud computing execution model in which the cloud provider allocates
machine resources on demand, taking care of the servers on behalf of their customers.

Stateless: A communication protocol in which the receiver must not retain session state
from previous requests.

User story: An informal, natural language description of features of a software system.

 51

7 Sources

[1] Wikipedia – Amazon: https://en.wikipedia.org/wiki/Amazon_(company)

[2] Wikipedia – Big Tech: https://en.wikipedia.org/wiki/Big_Tech

[3] Scrum.org: https://www.scrum.org/

[4] AWS – Continuos Integration: https://aws.amazon.com/devops/continuous-integration/

[5] AWS – DynamoDB: https://aws.amazon.com/dynamodb/

[6] AWS – Lambda: https://aws.amazon.com/lambda/

[7] AWS – Step Function: https://aws.amazon.com/step-functions/

