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Abstract

The aim of this thesis is to investigate the usage of Rademacher Averages in causal

rule discovery, to overcome two main issues of the state of the art approach. In causal

rule discovery, a rule, defined as a clause on the variables of the dataset, is assessed

as causal or not through the computation of a given statistic. Since the statistic is

computed from observational data, it is necessary to consider its confidence interval.

The state of the art approach has two main limitations: (i) it computes the confidence

interval modeling the error with a normal distribution; (ii) it tests several rules but

without accounting for multiple hypothesis testing correction. We propose an approach

based on Rademacher Averages to compute a confidence interval that: (i) depends on

the features of the chosen statistic; (ii) directly accounts for MHT correction. Further-

more the interval provides rigorous probabilistic guarantees. We tested three different

statistics using simulated data, and found that one provides good performance when

the dataset is sufficiently big, but it has fairly good performance also for smaller sample

sizes.





Sommario

Lo scopo di questa tesi è studiare la possibilità di utilizzo delle Rademacher Aver-

ages nella ricerca di regole causali, al fine superare due limitazioni del corrente stato

dell’arte. Nella ricerca di regole causali, una regola, definita come una clausola sulle

variabili del dataset, è valutata come causale o meno attraverso il calcolo di una sta-

tistica. Dal momento che la statistica è calcolata da dati osservazionali, è necessario

considerare il suo intervallo di confidenza. L’approccio stato dell’arte ha due limi-

tazioni principali: (i) l’intervallo di confidenza è calcolato modellando l’errore con una

distribuzione normale; (ii) vengono testate diverse regole ma senza tenere conto della

correzione per test multipli. Noi proponiamo un approccio basato sulle Rademacher

Averages per calcolare un intervallo di confidenza che: (i) dipende dalle caratteris-

tiche della statistica scelta; (ii) tiene conto della correzione per test multipli. In-

oltre l’intervallo ha garanzie probabilistiche. Abbiamo testato tre diverse statistiche su

dati simulati, e trovato che una dà buoni risultati quanto il dataset è sufficientemente

grande, e abbastanza buoni anche per dataset più piccoli.
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Chapter 1

Introduction

The aim of this thesis is to investigate the usage of Rademacher Averages for causal rule

discovery. Two main concepts needs to be introduced, what are Rademacher Averages

and in what causal rule discovery consists, and of course how they are combined to

reach the final purpose. Rademacher Averages are a statistical tool and they require

a formal definition, thus in this introduction I give only the intuition of their meaning

and usage and I focus more on motivating why causal rule discovery is important.

To introduce this latter topic, let start from an example, reported in Figure 1.1. The

plot shows, on a time window of ten years, the divorce rate in Maine, in red, and the per

capita consumption of margarine, in black. The two trends are very similar, therefore

one could think, for example, that divorcing causes a reduction on the consumption of

margarine, even if, intuitively, it does not make much sense. This is because this is not

a causal relation, but rather a correlation.

Figure 1.1: Correlation between divorce rate in Maine and margarine consumption
(taken from [11]).

Let us now formalize better these two concepts; I will refer to the work of Person,

who was one of the main developers of causation and correlation theory. Pearson, in

“The Grammar of Science” [8] defines causation as follows: “If a sequence of events

D, E, F are always preceded by the event C, then C is a cause of D, E, F”. Correla-

tion instead, according to him, is given by “all the relationship between two events,

1



2 CHAPTER 1. INTRODUCTION

both dependence and independence ones”. Causation is therefore a particular case of

correlation, that holds when there are no spurious relations, which, intuitively, are as-

sociations that make seem an event as a cause of another, even if it is not the case. At

this point should be more clear that the example of Figure 1.1 is affected by a spurious

relation and it is not a real causal one.

I want to present now another example, more focused on the aim of this thesis

and which should better characterise the concept of spurious relation; it is taken from

“Introduction To Causal Inference”, by Brady Neal [6]. Let us focus first on Figure 1.2

(a). Suppose that someone told us that from a study emerged that sleeping with the

shoes on is associated with headache, but without specifying anything else. One could

therefore think that there is a causal relation between the two, but clearly this does not

make much sense. Suppose now that we have access to another piece of information,

see Figure 1.2 (b), that before was hidden, which is the fact that the night before the

person drank. It is now evident that that the two events “go to bed with shoes on”

and “wake up with headache” have a common cause, namely drinking alcohol. This

latter is called confounder, because it is an event that influences both events involved

in the association and leads to a wrong conclusion, what we called a spurious relation.

Once we know the presence and the role of the confounder, we can act to remove its

influence and found true causal relations.

Figure 1.2: Example of a spurious relation (going to bed with shoes causes headache)
due to the presence of a confounder (drink alcohol the night before), (taken from [6]).

One way to remove spurious dependencies is through a randomized controlled trial,

a type of experiment in which the population under study is split into two, one half will

receive a treatment, while the other half no; the aim is to infer if the treatment causes

a particular outcome. The treatments are called also actionable variables. Recalling

the previous example, the treatment consists in going to bed with the shoes on and the

outcome to observe is waking up with headache or not. The outcome of the experiment

will be that there is no evidence of a relation between sleeping with shoes and headache.

Randomized control trials are however, in general, difficult to perform in practise

and we would like instead to develop an approach relying on the data available.

In most scenarios we have access only to observational data, which, for the way they

are collected, contains any kind of association, included spurious ones. However, under
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certain conditions, that will be exhaustively discussed in section 2.3, it is possible to

extract true causal relations from observational data.

The causal framework on which this thesis is based is the one proposed by [3]. The

main idea is the following. For every causal association of the type “event A causes

event B”, is computed by taking properly account for the presence of the confounding

events, a “score”, thus assessing whether such rule is causal or not, and, in case of

positive answer, the magnitude of the relation is considered. Since this score, called

effect by [3], is estimated from the data, it is necessary to provide also a confidence

interval for it; the authors computed it assuming the error follows a normal distribution.

The contribution of this thesis is the application of Rademacher Averages in causal

rule discovery, to provide a different framework for dealing with this topic. Rademacher

Averages requires the definition of a statistic, that is what I called “score” before, to

assess the presence of a causal relation or not. The major difference with respect to

the work of [3] is that Rademacher Averages allows the computation of a confidence

interval that depends on the statistic itself, without resort to an approximation of the

error with a known distribution.
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Chapter 2

Preliminaries

In this chapter I provide an overview of the key concepts used in this thesis. Based

on what was presented in [3], I start introducing in Section 2.1 the type of dataset

of interest and what kind of information we want to extract from it. Then I define

formally the fundamental mathematical concepts for causal rule discovery: bayesian

network and causal graph, in Section 2.2, and the causal framework in Section 2.3.

In Section 2.4 I formalize the concept of statistical hypothesis testing [4] and the

multiple hypothesis testing correction, necessary when more than one test is performed

at the same time. Then, in Section 2.5 I define the Rademacher Averages [9], which

are the statistical tool at the base of the contributions of this thesis. Finally, Section

2.6 is dedicated to the formalization of the problem analysed.

2.1 Basic Definitions and General Meaning

In this section I provide the basic definitions that will allow me, in the following

paragraphs, to formally characterize the problem analyzed in this thesis. In particular,

I describe the characteristics of the datasets of our interest and which kind of relations

we want to extract from them.

The dataset D is divided into three sets of variables D ≙ (Z,X,Y). Z is the

confounders’ set, composed by the variables that may lead to spurious associations, X

the set of the actionable variables and Y is the target variable; all the variables are

discrete.

The aim is to extract causal relations from the data, eliminating the effect of Z.

There are different frameworks for dealing with causality, the one analyzed in this

thesis focuses on the search of conditions σ, defined on the set X, that cause a specific

value of the target y ∈ Y. Such conditions are defined as a conjunction over a subset

X ≙ {X1, . . . ,Xi, . . . ,Xℓ} ⊂ X; for each variable is expressed a clause, for example

γi ≙ Xi ≤ 3, thus the resulting formula can be expressed as:

σ ≙ γ1 ∧ . . . ∧ γl. (2.1)

5
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In order to find causal rules π ∶ σ → y the dependence of X from Z must be removed.

The mathematical concept that formalises such independence is the Pearl’s do-notation

P (Y ≙ y∣do(X ∶≙ x)), which represents the probability of observing a particular value

y for the target once all the actionable variables are fixed to assume value x. Such

probability, in general, is different from the standard conditional probability P (Y ≙
y∣X ≙ x) because the former forces X to assume a particular value x a priori, without

any external influence, while in the second case variables from the set Z may have

influenced directly or indirectly, thus though X, the outcome.

In practice, as anticipated in Chapter 1, we have access to observational data, col-

lected without control on the values assumed by X, that therefore follows the standard

conditional probability distribution. However, under certain conditions, it is possible

to derived from them the desired Pearl’s do-notation, but before explaining how it can

be done I need to define the concepts of Bayesian Network and causal graph.

2.2 Bayesian Network and Causal Graph

A Bayesian Network is a DAG (Direct Acyclic Graph) G = (V,E), whereV≙ {V1, . . .Vn}
is the set of vertices and E is the set of edges, that do not contain direct cycles. Each

node represents a variable (e.g. X, Y, Z,. . . ,X1,. . . ,Xn) and the arcs between the

nodes represent the conditional dependencies among variables, defined accordingly to

a conditional probability distribution p.

In particular the structure of the network satisfies the Markov condition [5]:

Definition 2.2.1. ∀V ∈ V, V is independent from all its non-descendant, for a given

value of its parents (which are the variables that directly influence V).

Thanks to the Markov assumption it is possible to infer some statements about the

data starting from the graphical structure.

However in causal inference we would like to do the opposite, that is starting from

data trying to infer something about their dependency structure. Thus an implication

in the opposite direction is needed, which is expressed in the faithfulness assumption

[10]:

Definition 2.2.2. A graph G is faithful to a joint conditional distribution p if and

only if every independence in p is represented in G.

Thanks to this we can search for dependencies in the data and those will tell some-

thing about the structure of the graph. The missing step is how to search for relations

in the data that are causal, in fact we are only interested in them; in other words, how

we can approximate the Pearl’s do-notation to extract the desired information.

Before entering in the details I need to define the three key structures of a graph,

chain, fork and collider, and discuss the dependence relations among the variables;
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X represent the actionable variable, Z the confounder and Y the target. Figure 2.1

reports the three structures.

Figure 2.1: The three fundamental structures in a graph, from left to right: chain,
fork, collider.

The first two entail the same dependency/independence relations among variables

X and Y. Let us start from the chain. X and Y are dependent, in fact X influences

Z, that in turn influences Y; however if it could be possible to fix the value of the

confounder Z, then the dependence is removed. In fact, in this case, Z will not depend

on X, thus the only factor that determines Y is Z.

For the fork, instead, the dependence between X and Y is due to the fact that Z is

a common cause for both and this leads to the identification of a spurious correlation.

However fixing the value of Z, that corresponds somehow to observe that value, removes

the dependence. Such observation translates, from a mathematical point of view, into

conditioning on the value of Z.

The formal proof of the independence between X and Y for the fork is reported

below.

Proof. We want to show the independence between X and Y conditioning on Z in the

fork, that is:

P (X,Y∣Z) ≙ P (X∣Z)P (Y∣Z) (2.2)

Recalling the definition of conditional probability, we have that:

P (X,Y∣Z) ≙ P (X,Y,Z)
P (Z) (2.3)

We then apply the bayesian network factorization to the numerator since, for the

Markov assumption, every child variable depends only from its non-descendant, ob-

taining:

P (X,Y,Z) ≙ ∥P (X∣Z)P (Y∣Z)∥P (Z) (2.4)

Substituting in Eq.(2.3) we get:

P (X,Y∣Z) ≙ P (X∣Z)P (Y∣Z)P (Z)
P (Z) (2.5)
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Therefore simplifying P(Z) we derive:

P (X,Y∣Z) ≙ P (X∣Z)P (Y∣Z) (2.6)

A similar reasoning can be applied also for the chain, while for collider the relations

among variables are opposite. In this case X and Y influence Z, so conditioning on Z,

X and Y are dependent because they are forced to assume a value according to their

“effect” Z, while without conditioning they are independent.

2.3 The Causal Framework

As stated in Section 2.1, to find causal relations π ∶ σ → y the dependence of X

from Z must be removed; in other words it is necessary to find a way to compute

P (Y ≙ y∣do(X ∶≙ x)) from the data, which instead follows the conditional probability

distribution P (Y ≙ y∣X ∶≙ x).
A condition under which these two probabilities are equal, meaning that there is

independence from the set Z, is expressed by the Back-Door Adjustment Theorem

([7], Theorem 3.3.2), but before giving its formulation it is necessary to introduce the

definition of (blocked) spurious path and the Back-Door Criterion. Both definitions

below are from [3]

Definition 2.3.1. Given a pair of nodes X and Y, a spurious path is any undirected

path connecting them with an incoming edge towards X.

Definition 2.3.2. A spurious path is blocked by Z if one of these two is satisfied: i)

the path contains a collider not in the set Z ii) the path has a non-collider in Z.

At this point the Back-Door Criterion can be introduced (from [3]):

Definition 2.3.3. Given a set of nodes X and a node Y, the set of nodes Z satisfies

the Back-Door Criterion if the following holds: i) ∀ Z in Z and ∀ X in X, Z is not a

descendant of X; ii) all the spurious path between any X in X and Y are blocked by

the set Z.

It is now possible to state the Back-Door Adjustment theorem (from [3]):

Theorem 2.3.1. If the set Z satisfies the Back-Door Criterion with respect to X and

Y, in the subset of the input dataset for which Z assumes value z (called z-stratum) it

holds:

p(y∣do(X ∶≙ x)) ≙ p(y∣x,z). (2.7)



2.3. THE CAUSAL FRAMEWORK 9

To summarise, the crucial implication of the Back-Door Adjustment theorem is that

if the Back-Door Criterion holds and the analysis is restricted to the z-stratum because

we are fixing Z, then the conditional probability p(y∣x,z) is exactly the “desired” one.

Before going on, I want to make an important observation. Let us consider, for

example, the fork. As said before, conditioning on Z, so restricting to a z-stratum, X

and Y are independent. But looking at the collider if we restrict to the stratum, X and

Y are dependent, in fact the fixed value of Z, forces X and Y to assume values according

to it and not freely. This is an intuition to say that this structure does not satisfy the

Back-Door Criterion, thus it is not possible to exploit Eq.(2.7). As a consequence of

this, not for all graphs we can use conditional probabilities to assess the presence or

not of a causal rule.

Now that they key concepts have been formalized, it is possible to provide the

definition of effect of a rule π ∶ σ → y, the metric proposed by [3] to assess the causality

of the rule.

In general there can be several assignment to the vector x that satisfy σ; for example

if a clause is defined as Xi ≤ 4 it is true for Xi ≙ 4, Xi ≙ 3, and so on. This is formalized

by the stochastic policy Qσ, that is a family of conditional probability distributions.

A typical area of application is reinforcement learning, in which it is defined as the

conditional probability πS(A∣S) of all the possible actions given all possible states. In

our case we want the policy to take into account the fraction of times we observe the

value X ≙ x in the z-stratum we defined:

Qσ(do(x)) ≙ p(X ≙ x∣σ ≙ T,Z ≙ z) (2.8)

It is now possible to define the probability of observing a particular value y of the

target, given a rule σ; given an input dataset D = (Z,X,Y) with the desired properties,

we have:

p(y∣do(Qσ) ≙ ∑
x:σ(x)≙T

∑
z∈Z

p(y∣x,z)p(z)Qσ(do(x))
≙∑

z∈Z

p(z) ∑
x:σ(x)≙T

p(y∣x,z)Qσ(do(x)) (2.9)

The summation on z ∈ Z is quite obvious since it is necessary to consider all the

contributions from the set Z to compute the overall probability, each weighted by the

probability p(z) of the stratum, while the other one takes into account what explained

above about the policy.

At this point it is possible to give the definition of the effect of a rule σ:

e(σ) ≙ p(y∣do(Qσ)) − p(y∣do(Qσ̄)) (2.10)

where σ̄ is the negation of the rule. The first term is the probability of observing
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the desired target variable y, given a certain rule σ that is a candidate cause for y ; the

second one instead is the probability of observing the same target but considering false

the cause. The intuition behind this definition is the following. If the effect is positive

it means that is more probable to observe that target under the conditions expressed

by σ, rather than its negation, so σ is a cause of y. The magnitude of the effect will

give an idea of how strong the relation is. If the effect is 0 there is the same probability

of observing y in the sample restricted to σ and in all the other cases, so the relation

is not informative. Finally a negative effect tells that the rule under analysis makes no

sense, since the negation of the rule, that is quite general, has an higher probability

than the rule itself.

According to the policy defined in Eq.(2.8) we can rewrite the effect as:

e(σ) ≙ E∥p(y∣σ,Z)∥ −E∥p(y∣σ̄,Z)∥. (2.11)

Since we are dealing with finite datasets, we can only give an estimation of the

probability p, computed directly on the sample, that is we estimate the empirical

probability p̂ as follows:

p̂(y∣σ,z) ≙ # of times in which (σ= T ∧ y) is observed in the z-stratum

total # of instances in the z-stratum
. (2.12)

We can define the estimator with respect to the empirical distribution p̂ as:

ê(σ) ≙E[p̂(y∣σ,z) − p̂(y∣σ̄,z)]
≙∑

z∈Z

(p̂(y∣σ,z) − p̂(y∣σ̄,z))p̂(z)
≙∑

z∈Z

(p̂σ,z − p̂σ̄,z)p̂(z)
(2.13)

where I expressed p̂(y∣σ,z) and p̂(y∣σ̄,z) more compactly as p̂σ,z and p̂σ̄,z.

In order to compute the empirical probabilities p̂(σ,z) and p̂(σ̄,z), for every rule

π ∶ σ → y is derived the correspondent contingency table, that stores the following

counts (the subscript is to stress the fact that we are restricting to a particular z-

stratum):

• Az ≙# of instances of the dataset that satisfies σ and for which Y = y ;

• Bz ≙# of instances of the dataset that satisfies σ and for which Y ≠ y ;

• Cz ≙# of instances of the dataset that do not satisfies σ and for which Y = y ;

• Dz ≙# of instances of the dataset that do not satisfies σ and for which Y ≠ y.

Furthermore I define the following quantities:
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• mσ,z ≙#of instances satisfying σ ;

• mσ̄,z ≙#of instances not satisfying σ ;

• mz ≙ total # of instances of z-stratum.

The contingency table thus is:

Y = y Y ≠ y

σ = T Az Bz mσ,z

σ̄ = T Cz Dz mσ̄,z

mz

With these definitions it is possible to derive the expression for p̂(σ,z) and p̂(σ̄,z),

that are respectively:

p̂(σ,z) ≙
Az

Az +Bz

≙
Az

mσ̄,z

(2.14)

p̂(σ̄,z) ≙
Cz

Cz +Dz

≙
Cz

mσ̄,z

(2.15)

Finally, defining:

p̂(z) ≙ # of times Z takes value z

m
(2.16)

we can express ê(σ) as:

ê(σ) ≙∑
z∈Z

(p̂σ,z − p̂σ̄,z) ⋅ p̂(z)
≙∑

z∈Z

( Az

mσ̄,z

−
Cz

mσ̄,z

) ⋅ p̂(z) (2.17)

The problem of this formulation is that the denominator can be equal to zero; to

avoid zero division it is introduced the Laplace correction, a simple smoothing technique

that consists in adding one to all the counts of the contingency table.

Applying the correction ê(σ) becomes:

ê(σ) ≙∑
z∈Z

( Az + 1

mσ,z + 2
−

Cz + 1

mσ̄,z + 2
) ⋅ p̂(z) (2.18)

An issue with this estimator is that it shows an high variance, resulting thus in

overfitting, a well-known phenomenon for which the model fits too much with the used

dataset but is not able to generalize to other ones.

Before explaining how this was fixed by [3], I would like to provide an high level

description of overfitting and then focus on what this implies in our framework.
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Suppose we want to perform a regression task to learn the model that best fits

our data; assume that the data are the orange dots of figure 2.2. The most natural

choice of a models to fit them is a polynomial of a certain degree. The figure shows

two different situations; on the left the model chosen is a polynomial of high degree,

which fits really well the data, the one on the right instead is simpler, thus also the fit

is more rough.

Figure 2.2: Regression task. Left: the model chosen overfitts, because it is too complex.
Right: the model is simpler but it is able to generalize better (the image is taken from
[1]).

The first situation correspond to overfitting; in this scenario the learned model is

data-dependent, in fact it fits almost perfectly all the dots, however if it is applied on

a different dataset, generated with a different distribution, it will be unsatisfactory.

The simpler model instead, even if it is less accurate, generalises better on a different

domain of application.

When data are spread, as in this case, if we do not include any prior knowledge what

we obtain is a model that tries to capture all of them, resulting in a high complexity.

In the domain of our interest, the fact that the estimate of the effect of a rule shows

an high variance, implies that it takes its value, for example 0.2, only considering that

particular dataset, but in another one may be that the average value is 0.3. So the

importance of the rule is dataset-dependent. This is evident in particular for dataset

of small size. We do not want to learn rules whose relative effect is specific to a sub-

population, thus that overfits, but instead we would like to infer quite general ones.

To avoid this, a bias is introduced, in terms of a correction factor applied directly

to the estimator. The prior knowledge that was chosen is the confidence interval, that

expresses how confident we are about the estimate; it defines a range of values around

the one assumed by the estimator, which represents the oscillations of the estimator

itself. The narrower the interval, the more accurate the estimation. The estimator

(Eq.(2.13)) is composed by two blocks and an interval is computed for both. Inside

the z-stratum the number of instances that satisfy σ and σ̄, denoted by mσ,z and

mσ̄,z respectively, are two binomial random variables with success probability given by

p(y∣σ,z) and p(y∣σ̄,z). If the size of the dataset is high, it is possible to approximate
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them with two normal random variables, thus the confidence intervals for the two terms

are, by definition:

CIσ,z ≙
β

2
√
mσ,z

(2.19)

CIσ̄,z ≙
β

2
√
mσ̄,z

(2.20)

where β is a value, called Z-score, that depends on the distribution and on the

error rate α, a parameter that controls the maximum tolerated error. A more complete

characterization of these quantities can be found in Section 2.4.

Given that, [3] defined the reliable estimator, in a stratum, as:

τ(z) ≙(p̂σ,z − p̂σ̄,z)−⎛⎝ β

2
√
mσ,z

+
β

2
√
mσ̄,z

⎞⎠. (2.21)

From thus formulation, it is easy to see that τ(z) is a consistent estimator of the

difference of the two estimated probabilities; in fact as the number of instances grows,

the correction term becomes negligible:

lim
min(mσ,z,mσ̄,z)→∞

β

2
√
mσ,z

+
β

2
√
mσ̄,z

≙ 0. (2.22)

Substituting the values for p̂σ,z and p̂σ̄,z derived in Eq.(2.14) and Eq.(2.15) and

applying the Laplace correction, we obtain:

τ(z) ≙ A + 1

mσ,z + 2
−

C + 1

mσ̄,z + 2
−

β

2
√
mσ,z + 2

+
β

2
√
mσ̄,z + 2

. (2.23)

Finally we obtain the reliable estimator of a rule simply averaging the corrected

estimators within each z-stratum:

r̂(σ) ≙∑
z∈Z

τ(z)p̂(z). (2.24)

2.4 Statistical Hypothesis Testing

So far I described the approach presented by [3] to compute the effect of a rule, which

is a measure of its causality. It was explained that a positive effect means that there

is a causal relation, a null one that there is no relation and a negative one means

the rule is not informative. All this discussion was performed at a high level, but the

mathematical reason for which from the value of the effect we can draw the above

conclusions about dependence or independence, is that a statistical test is performed.

This section is dedicated to the definition of statistical hypothesis testing and to the

corrections that needs to be applied when multiple tests are performed at the same

time. The main source that I used to write this session is [4].
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Figure 2.3: Example of a two-sided test for a normal distribution, with confidence level
α = 0.05 (the image is taken from [2]).

Statistical hypothesis testing is a statistical procedure whose aim is to decide

whether the data supports an hypothesis. In particular two hypothesis are compared,

the null hypothesis H0 and the alternative hypothesis H1. The possible outcomes are

accept or reject the null hypothesis, basing the decision on the comparison of a statistic

computed on the data with a threshold, or better a rejection region. Intuitively, when

the statistic falls in this region the null hypothesis is rejected. Two types of error can

be made: rejecting H0 when it is true, also known as type I error, and accepting H0

when it is false, called also type II error.

The aim is to bound the type I error, which is regulated by the error rate α, a

parameter that represents the probability of committing such error. A typical choice is

α = 0.05, meaning that in expectation in 5% of the cases we are making a false positive

discovery.

According to the value of α is computed the boundary of the rejection region (the

limit value for which the null hypothesis is not accepted), called also Z-score. It depends

also on the distribution considered and typically are available conversion tables that

reports the value it takes for various α.

There are two types of test, depending on the way the null hypothesis is built:

two-sided or one-sided. In the first is tested H0: θ ≙ θ0 versus H1: θ ≠ θ0; in the second

is tested H0: θ ≤ θ0 versus H1: θ > θ0 or H0: θ ≥ θ0 versus H1: θ < θ0.

Figure 2.3 shows an example of a two-sided test for a normal distribution. The

overall α is 0.05, thus to have such overall error rate, the two Z-scores, corresponding

to the two tails, are computed setting αtail ≙
α
2 ≙ 0.025. their values are, respectively,

-1.96 and 1.96 and are the boundaries of the two rejecting regions. Thus, for example,

if the value of the sample statistic is 2, it falls in the critical region and therefore H0 is

rejected.

In our framework we are interested in this type of tests. For a one-tailed test the

differences are that the rejecting region will be only the left or the right tail; thus only

one Z-score is computed and using the overall α.
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At this point I want to give a more formal and general definition of the test proce-

dure. First it is necessary to define H0, H1 and the statistics. Then the distribution

followed by the data should be approximated with a “standard” one in order to perform

the test, like a normal distribution or a chi-squared. For asymmetric distributions the

test must be one-sided, while in the other cases the choice depends on which property

is tested; once this is fixed is computed the rejection region according to the chosen

α. Finally from the comparison of the observed statistics, that is the one computed

on the sample, and the rejection region, it is decided whether the null hypothesis is

accepted or rejected.

This is the general procedure when only one test is performed. However when mul-

tiple tests are carried on, in order to guarantee an overall small error some corrections

needs to be applied. This issue is discussed in the next section.

2.4.1 Multiple Hypothesis Testing (MHT)

In the following I give some details about MHT (Multiple Hypothesis Testing) cor-

rection, a technique to control the number of false discoveries when multiple tests are

performed.

In particular, the quantity kept under control is the Family-Wise Error Rate (FWER),

that is the probability of rejecting the null hypothesis when it is true or, in other words,

of making a type I error:

FWER ≙ P (making one type I error) = 1 - P (no type I error). (2.25)

The probability of making a type I error is exactly α, so the one of making no

error is 1 - α. Since we are considering multiple tests, say N, and we assume they are

independent the overall probability of making no error is (1 − α)N , thus:
FWER ≙ 1 − (1 − α)N. (2.26)

When only one test is performed, so N = 1, the FWER is exactly α, in fact:

FWER ≙ 1 − (1 − α)N ≙ 1 − (1 − 0.05)1 ≙ 1 − (0.95) ≙ 0.05. (2.27)

Considering for example N = 5, without applying any correction for multiple hy-

pothesis testing, so using the value α in all the tests independently, the FWER becomes:

FWER ≙ 1 − (1 − α)N ≙ 1 − (1 − 0.05)5 ≙ 1 − (0.95)5 ≙ 0.226. (2.28)

A simple correction to keep this quantity under control is the Bonferroni one; it

simply divides α by the number N of tests performed:

αcorr ≙
α

N
. (2.29)
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Coming back to the previous example, the computation is:

αcorr ≙
α

N
≙
0.05

5
≙ 0.01 (2.30)

FWER ≙ 1 − (1 − αcorr)N ≙ 1 − (1 − 0.01)5 ≙ 1 − (0.99)5 ≙ 0.049. (2.31)

that is even more restrictive than the desired value.

The problem with Bonferroni correction is that is assumes independence between

all tests and it is conservative since the error rate used in each test is quite small and

this leads to an higher number of false negatives. An alternative approach, developed in

this thesis, exploits Rademacher Averages to compute better bounds, while considering

all the hypothesis together.

2.5 Rademacher Averages

In this section I introduce the concept of Rademacher Averages, basing the discussion

on what was presented in [9]. Their usage in the perspective of this thesis will be

developed in the next section.

Rademacher Averages allow to compute a bound to the error of an estimate, com-

puted with respect to a family of functions. Given a family of functions F defined on

a domain X, f : X → [a,b] ⊂ R, ∀ f ∈ F ; given a set S = {s1,..., sm} of m i.i.d. values

taken from an unknown distribution µ, the sample mean ÊS∥f∥ and its expectation

Eµ∥f∥, are:
ÊS∥f∥ ≙ 1

m
∑
si∈S

f(si) (2.32)

Eµ∥f∥ ≙ Eµ∥f(si)∥ ≙ Eµ[ 1
m
∑
si∈S

f(si)]. (2.33)

We are interested in the error committed estimating the true mean Eµ∥f∥ with
ÊS∥f∥, computed on the sample S, that means giving a bound to the Supremum De-

viation D(F,S), the maximum deviation of the empirical mean from the true one with

respect to all the functions of the family F :

D(F,S) ≙ sup
f∈F

∣ÊS∥f∥ −Eµ∥f∥∣. (2.34)

A possible approach to obtain this bound is given by Rademacher Averages. A

Rademacher random variable takes values in {-1, 1} with the same probability. Given

a vector λ of m i.i.d. Rademacher random variables, λ ≙ {λ1, ..., λm} the Empirical

Rademacher Average (ERA), with respect to the family F and the sample S is:
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R̂(F,S) ≙ Eλ[ sup
f∈F

1

m
∑
si∈S

λif(si)]. (2.35)

The intuition behind this definition is the following. Multiplying by λi is like split-

ting the sample in two groups, the one one for which λi ≙ 1 and λi ≙ −1, respectively;

since λi takes both these values with probability 1
2 , as m increases, more the two groups

will have the same size. Furthermore, as m increases the more the two groups will take

homogeneous values, so the averages computed on them separately will be similar and

thus the expectation will be small. To conclude the reasoning, the ERA gives a mea-

sure about how well, considering the current sample size m, the sample captures the

true mean. If, for a fixed m, the ERA is small, then the sample is sufficient to provide

a good estimate for all the functions of the family F. The problem of such definition

is that the expectation is computed over 2m possible values and this is often infeasi-

ble. An approach to estimate it is through n Monte-Carlo trials and averaging the

obtained values. Given a matrix Λ ≙ {−1,1}n×m where each column λj is a m-vector

of Rademacher random variables, the n-sample Monte-Carlo Empirical Rademacher

Average (n-MCERA) R̂n
m(F,S,Λ) is:
R̂n

m(F,S,Λ) ≙ 1

n

n

∑
j≙1

sup
f∈F

1

m
∑
si∈S

λj,if(si). (2.36)

Thanks to n-MCERA it is possible to provide a formulation of a first bound of the

Supremum Deviation. Defining z = max{∣a∣, ∣b∣}, c = ∣b − a∣ and denoting as R̃:

R̃ ≙ R̂n
m(F,S,Λ) + 2z

√
ln 4

δ

2nm
(2.37)

it has been shown ([9], Theorem 3.1) the following.

Theorem 2.5.1. With probability ≥ 1 - δ over the choices of S and Λ, for a fixed δ ∈

(0,1):

D(F,S) ≤ 2R̃ +

√
c(4mR̃ + c ln 4

δ
) ln 4

δ

m
+
c ln 4

δ

m
+ c

√
ln 4

δ

2m
(2.38)

This is the bound on the error of interest.

2.5.1 Improved Version of the Bound

In [9] (Theorem. 3.5) is presented also a tighter bound to the Supremum Deviation,

that requires, to be applied, more knowledge about the family F and in particular

about its variance. Its formulation is reported in Eq(4.15).

Theorem 2.5.2. With δ, z, c as before, define the following terms:

ρ ≙ R̂n
m(F,S,Λ) + 2z ⋅

√
log 4

δ

2nm
(2.39)
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r ≙ ρ +
1

m
⋅
⎛⎝
√

c⋅(4mρ + c log
4

δ
) ⋅ log 4

δ
+ c log

4

δ

⎞⎠ (2.40)

Let v be an upper bound of the variance of the family of functions F, and define:

ϵ ≙ 2r +

√
2 log 4

δ
⋅ (v + 4cr)
m

+
c log 4

δ

3m
(2.41)

then, with probability ≥ 1 − δ, over the choices of S and Λ, the bound is given by:

D(F,S) ≤ ϵ. (2.42)

2.6 Formalization of the Problem

In this Section I formalize the problem analyzed in this thesis. The objective is to study

a new framework to extract causal relations from a dataset, overcoming two issues of

the approach presented in [3].

Recalling the previous work [3], given a dataset D ≙ {Z,X,Y} with the structure

described in Section 2.1 and such that the underlying causal graph satisfied the Back-

Door Adjustment Theorem (Theorem. 2.3.3), the goal is to extract causal rules from

the data. A rule π is defined by a clause σ, expressed as a conjunction over the set of

actionable variables X, that is a candidate cause for a value y of the target variable

Y: π ∶ σ → y. To assess whether a rule represents a true causal relation or not it is

computed a score, that the authors called effect (Eq.(2.13)), and since it is estimated

from the data, it is necessary to compute a confidence interval. It is then performed a

statistical test: if the effect, corrected for the interval, is greater than 0, then σ and y

are causally dependent, otherwise not.

The two limitations of the state of the art approach are that (i) in the computation

of the confidence interval the error is modeled with a normal distribution and (ii)

several rules are tested, but without correcting for multiple hypothesis testing.

The new approach proposed in this thesis makes use of Rademacher Averages (pre-

sented in Section 2.5) to overcome these two issues. For a given family of functions

f ∈ F , Rademacher Averages allow the computation of a confidence interval to bound

the empirical estimation of each function f. The bound is computed reflecting the prop-

erty of the family itself, thus not approximating the error with a known distribution,

and considering all the functions in F simultaneously, directly accounting for MHT

correction. In addition, the bound is provided with rigorous probabilistic guarantees.

My contributions are the following. I defined and tested three families of functions

F , each of which is a different statistic to assess the causality of a rule. In particular,

each function f of the family is the statistic computed with respect to the rule π under

analysis. I then bounded such quantities with the confidence interval computed with
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Rademacher Averages; the bound defines the acceptance region of the null hypothesis

for the statistical test, which is formally defined below.

Definition 2.6.1. For a rule π ∶ σ → y, the null hypothesis H0 states the independence

between σ and y.

I performed the experimental evaluation of my statistics on synthetic datasets. A

first analysis, presented in Chapter 4, shows that only the last one is really promising;

the detailed results can be found instead in Chapter 5.

Now that the key concepts and the focus have been explained, it is possible to move

on to the technical discussion.
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Chapter 3

Methods

In this chapter I present the statistics that I defined to assess the causality of a rule.

As required by Rademacher Averages, for each statistic I provide the overall definition

and the sample version one. Furthermore, all these definitions are provided both in the

conditional and unconditional case. Finally, for each statistic I specified the relative

test procedure.

3.1 Statistic that mimics the “overall effect”

The first approach is a statistic which behaviour mimics the one of the effect, presented

in [3]. I therefore called this first class of functions for which the Rademacher Averages

are computed, Fe.

Recalling the definition (Eq.(2.35)), Rademacher Averages depend on the dataset

S ≙ {s1,⋯, sm} and a family of functions f ∈ F , each of which is computed on all the

elements si ∈ S. F represents a class of functions for which we want to compute the

error committed in estimating its true expectation through the empirical sample mean,

computed on S. For our purposes, F is a class such that its empirical mean captures a

particular data property: the presence or not of a causal relation.

As anticipated, the first choice is a class Fe of functions whose mean mimics the

behaviour the effect. To be more clear, since each fe ∈ Fe is relative to a specific rule

π ∶ σ → y, I will denote it as fe,π for all possible rules π, therefore: Fe ≙ {fe,π ∣ ∀π}.
For sake of clarity, I report the definition of the effect on a contingency table

(Eq.(3.1)) and the table itself (Table 3.1). The following discussion will be developed

in the unconditional case; in the final part of this section I will give the definition

of the statistic fe,π,cond in the conditional case, considering the contributions of each

z-stratum. As a reminder, the effect e(σ) of a rule is:

e(σ) ≙ A

A +B
−

C

C +D
. (3.1)

It is necessary to find a way to express which is the contribution of a sample si (that

is a row of the dataset) to the effect. The reasoning that I made was the following. I

21
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Y = y Y ≠ y
σ = T A B mσ

σ̄ = T C D mσ̄

my mȳ m

Table 3.1: General form of the contingency table for a rule π ∶ σ → y

considered the denominators (A+B) and (C+D) known constants (they can be easily

derived from the data once the rule is fixed) and I focused on numerators, noticing

that only counts A and C appear in the formula. Therefore, in correspondence of a

particular rule π, each element si can contributes with only one of the followings: 1
A+B

if the current observation satisfies σ and the target Y assumes the desired value y,

−
1

C+D if it does not satisfy σ but the target is the desired one and 0 in the other two

cases.

The definition of the sample statistic fe,π(si) thus is:

fe,π(si) ≙
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
A+B if σ ≙ T and Y ≙ y;

−
1

C+D if σ̄ ≙ T and Y ≙ y;

0 if σ ≙ T and Y ≠ y;

0 if σ̄ ≙ T and Y ≠ y;

(3.2)

that can be expressed in compact form (Eq.(3.5)) introducing the two following

indicator functions:

1σ ≙

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if σ ≙ T

0 if σ̄ ≙ T
(3.3)

1Y ≙

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if Y ≙ y

0 if Y ≠ y
(3.4)

fe,π(si) ≙ 1σ ⋅ 1Y ⋅
1

A +B
− (1 − 1σ) ⋅ 1Y ⋅

1

C +D
. (3.5)

The summation of fe,π(si),∀si ∈ S is exactly the effect, thus the empirical sample

mean, which is the overall statistic, ÊS∥fe,π(si)∥ ≐ fe,π, is the effect divided by m

(Eq.(3.6)):

fe,π ≙
1

m
∑
si∈S

fe,π(si) ≙ 1

m
[ A

(A+B)
−

C

(C+D)
] (3.6)

therefore the codomain of fe,π is ∥− 1
m
, 1
m
∥ (recall that the effect is in ∥−1,1∥).

At this point I want to derive the codomain of the sample statistic fe,π(si), because
its value directly influences the bound to the Supremum Deviation. The maximum

positive value assumed by fe,π(si) is 1, in fact the positive contribution is given by 1
A+B

and it reaches it maximum for the minimum possible value for which the denominator

is defined, that is 1. Following a similar reasoning, the minimum value assumed by
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fe,π(si) is -1, that derives from − 1
C+D . So fe,π(si) ∶ si → ∥−1,1∥.

Such discrepancy in the order of magnitude of the codomain of the sample statistic

and its empirical sample mean gave some problems, in particular the bound is too

large; the details are discussed in Section 4.3.1.

3.1.1 Extension of fe,π in the Conditional Case

In the conditional case the way of proceeding is very similar. For each value z that the

confounder under analysis Z can assume, the contingency table is (Table 3.2):

Y = y Y ≠ y
σ = T Az Bz mσ,z

σ̄ = T Cz Dz mσ̄,z

my,z mȳ,z mz

Table 3.2: General form of the contingency table for a rule π ∶ σ → y in a z-stratum.

Defining Sz as the subset of the dataset S for which the Z = z, and sj ∈ Sz, the

function fe,π,z(sj) defined on an element of the restricted dataset Sz is:

fe,π,z(sj) ≙[1σ ⋅ 1Y ⋅
1

Az +Bz

− (1 − 1σ) ⋅ 1Y ⋅
1

Cz +Dz

] ⋅ p̂(z). (3.7)

Summing the contributions of all the points, it is obtained the overall effect in that

stratum, already weighted by the relative probability, and dividing by mz the empirical

sample mean ÊSz
∥fe,π,z(sj)∥ ≐ fe,π,z of that z-stratum:

fe,π,z ≙
1

mz

∑
sj∈Sz

fe,π,z(sj) ≙
≙

1

mz

( Az

Az +Bz

−
Cz

Cz +Dz

) ⋅ p̂(z) ≙
≙

1

mz

( Az

Az +Bz

−
Cz

Cz +Dz

) ⋅ mz

m

≙
1

m
( Az

Az +Bz

−
Cz

Cz +Dz

).

(3.8)

Finally, from the summation of all the contributions fe,π,z it is obtained the total

empirical sample mean ÊS,cond∥fe,π,z∥ ≐ fe,π,cond:
fe,π,cond ≙∑

z∈Z

fe,π,z. (3.9)

Recalling the worst case analysis in the unconditional case, the codomain of the

sample statistic fe,π,z(sj) is ∥−1,1∥ ⋅ p̂(z). The worst possible case in when p̂(z) → 1,

thus we obtain again the range ∥−1,1∥. The empirical sample mean, instead, as before

is the effect divided by m, so it lies in ∥− 1
m
, 1
m
∥.
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Before defining the test procedure, I prove the following theorem.

Theorem 3.1.1. The value of the statistic in the conditional and unconditional case

is different: fe,π ≠ fe,π,cond.

Proof of Theorem 3.1.1. The proof is trivial. In the conditional case the computation

of the statistic in a stratum, fe,π,z, is based on a subset Sz of the original dataset S.

Considering the formulation of Eq.(3.8), due to the asymmetry introduced by the

denominators (Az+Bz) and (Cz+Dz), the only way to obtain fe,π, summing the strata

contributions, is when these two holds:

• (Az +Bz) ≙ (A +B), ∀z;
• (Cz +Dz) ≙ (C +D), ∀z.
However, this implies that there is only one stratum, thus we are in the uncondi-

tional case.

3.1.2 Test Procedure for Fe

Once the value of the statistic is computed, conditioning or not, the independence test

is performed. For a rule π ∶ σ → y, the null hypothesis H0 states the independence

between σ and y (see Definition 2.6.1). It is therefore necessary to compute also the

expected value of fe,π and fe,π,cond under the null hypothesis.

Theorem 3.1.2 states which is the expected value under the null hypothesis.

Theorem 3.1.2. The expected value of statistics fe,π and fe,π,cond under the null

hypothesis is 0.

Below is reported the proof of this statement, but before I propose a rewriting of

the contingency tables of Tables 3.1 and 3.2, needed for the proof, and that will be

used also later in this thesis. I start form Table 3.1. Observe that the values A, B, C,

D can be modeled with a Binomial random variable Bin(n,p), which, I recall, counts

the number of successes, defined by the probability p, out of n trials. For example, A

is the number of times, out of the total number of samples m, in which σ ≙ T and Y

= y, thus is is modeled by: XA ∼ Bin(m, p(σ, y)). Similarly, B, C and D are modeled,

respectively, by: XB ∼ Bin(m, p(σ, ȳ)), XC ∼ Bin(m, p(σ̄, y)) andXD ∼ Bin(m, p(σ̄, ȳ)).
At this point it is possible to rewrite the contingency table. The number of times

we “expect” to fall in case A, is given by the expected value of XA, that is: Ê∥XA∥ ≙
m ⋅ p(σ, y). Following the same reasoning for B, C and D, we obtain the contingency

of Table 3.3.

In the conditional case the way of proceeding is very similar. The counts to be

modeled are relative to a z-stratum, thus the total number of samples is mz and the

probabilities of success take into account for the presence of the confounder, condition-

ing on it. For example, Az is modeled by: XAz
∼ Bin(mz, p(σ, y∣z).
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Y = y Y ≠ y
σ = T m ⋅ p(σ, y) m ⋅ p(σ, ȳ) m ⋅ p(σ)
σ̄ = T m ⋅ p(σ̄, y) m ⋅ p(σ̄, ȳ) m ⋅ p(σ̄)

m ⋅ p(y) m ⋅ p(ȳ) m

Table 3.3: Rewriting of the contingency table in the unconditional case using proba-
bilities.

Z = z Y = y Y ≠ y
σ = T mz ⋅ p(σ, y∣z) mz ⋅ p(σ, ȳ∣z) mz ⋅ p(σ∣z)
σ̄ = T mz ⋅ p(σ̄, y∣z) mz ⋅ p(σ̄, ȳ∣z) mz ⋅ p(σ̄∣z)

mz ⋅ p(y∣z) mz ⋅ p(ȳ∣z) mz

Table 3.4: Rewriting of the contingency table in the conditional case using probabilities.

Repeating the previous reasoning we obtain the rewriting showed in Table 3.4

At this point it is possible to prove Theorem 3.1.2.

Proof of Theorem 3.1.2. Unconditional case Let us start form the unconditional case;

in Eq.(3.10) is defined the random variable that represents the value assumed by the

sample statistic fe,π(si), according to what was derived in Table 3.3.

Xe,π,si ≙

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
m⋅p(σ) with p(σ, y)
−

1
m⋅p(σ̄) with p(σ̄, y)

0 with p(σ, ȳ)
0 with p(σ̄, ȳ).

(3.10)

Its expected value is:

Ê∥Xe,π,si∥ ≙ 1

m ⋅ p(σ) ⋅ p(σ, y) − 1

m ⋅ p(σ̄) ⋅ p(σ̄, y). (3.11)

Under the null hypothesis (Definition 2.6.1), the joint probability can be split,

obtaining the following expression for the expectation:

ÊH0
∥Xe,π,si∥ ≙ 1

m ⋅ p(σ) ⋅ p(σ) ⋅ p(y) − 1

m ⋅ p(σ̄) ⋅ p(σ̄) ⋅ p(y) ≙
≙

1

m
⋅ p(y) − 1

m
⋅ p(y) ≙ 0. (3.12)

From this it can be easily derived that also the expected value of the overall

statistic fe,π is 0. In fact, it is computed by summing all the single contributions

fe,π(si),∀si ∈ S (Eq.(3.6)) and by the property of linearity of expectation: ÊH0
∥fe,π∥ ≙

∑si∈S
ÊH0
∥Xe,π,si∥ ≙ 0.

Conditional case. Let us now switch to the conditional case. The random variable

Xe,π,si,z, representing the values assumed by the sample statistic in a z-stratum, is
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obtained as in the previous case, with values taken from Table 3.4.

Xe,π,si,z ≙

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
mz⋅p(σ∣z)

with p(σ, y∣z);
−

1
mz⋅p(σ̄∣z)

with p(σ̄, y∣z);
0 with p(σ, ȳ∣z);
0 with p(σ̄, ȳ∣z).

(3.13)

The expected value is given by:

Ê∥Xe,π,si,z∥ ≙ 1

mz ⋅ p(σ∣z) ⋅ p(σ, y∣z) − 1

mz ⋅ p(σ̄∣z) ⋅ p(σ̄, y∣z) (3.14)

which under the null hypothesis becomes:

ÊH0
∥Xe,π,si,z∥ ≙ 1

mz ⋅ p(σ∣z) ⋅ p(σ∣z) ⋅ p(y∣z) − 1

mz ⋅ p(σ̄∣z) ⋅ p(σ̄∣z) ⋅ p(y∣z) ≙
≙

1

mz

⋅ p(y∣z) − 1

mz

⋅ p(y∣z) ≙ 0. (3.15)

This is exactly the same situation as before. The overall expected value is obtained

combining all the strata contributions, but since in each stratum it is 0 we can conclude

that also in the conditional case the expected value of the statistic under the null

hypothesis is 0.

Now that Theorem 3.1.2 has been proved, it is possible to define the test procedure

for the class Fe:

• compute fe,π (or fe,π,cond) from the dataset S ;

• compare this value with the one expected under H0: if the confidence interval

built around the statistic traps the 0, then the null hypothesis is accepted (be-

cause we fall “close” the value expected under independence); otherwise the null

hypothesis is rejected, thus there is dependence between σ and y.

Figure 3.1 reports a summary of the test procedure. In orange are reported the

statistic and the confidence interval, while in green the expected value under H0, which

is 0. It the example reported, in the unconditional case there is dependence, while in

the conditional one no.

3.2 Statistic that mimics the “broken down effect”

In this paragraph I present another statistic, or better a family of statistics, F4, which

aims at the estimation of the effect, but in a different way with respect to the previous
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Figure 3.1: Graphical summary of the test procedure for Fe

one. In fact, instead of considering the overall effect, it is broken down into four pieces,

hence the name, estimated separately.

In order to better understand the idea behind F4, I report below the general defi-

nition of the effect, based on a contingency table, and a manipulation of the formula

needed for our purposes:

e(σ) ≙ A

A +B
−

C

C +D
≙

≙

A
m

A+B
m

−

C
m

C+D
m

≙

≙
p(σ, y)
p(σ) − p(σ̄, y)

p(σ̄) .

(3.16)

The idea is to estimate each probability p(σ, y), p(σ̄, y), p(σ), p(σ̄), respectively
with the statistics f4.1,π, f4.2,π, f4.3,π, f4.4,π. The advantage of doing so is that the

issue regarding the discrepancy in the order of magnitude between the statistic and

the relative bound, which arose with fe,π (the other statistic that mimics the effect),

is solved. In fact, each of the four statistic has a magnitude bigger than the relative

bound, but other problems arose when the four statistics are combined to obtain the

overall one f4,π. This will be exhaustively discussed in Section 4.3.2.

Let us start by the formalization of the sample statistics in the unconditional case

(Eqs.(3.17)-(3.20)). For example, since f4.1,π estimates the probability p(σ, y), its sam-

ple version f4.1,π(si) will be 1 only when σ ≙ T and the target Y is the desired one y.

Given this explanation, the derivation of the other three is trivial.
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f4.1,π(si) ≙
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 when σ ≙ T and Y ≙ y

0 when σ ≙ T and Y ≠ y

0 when σ̄ ≙ T and Y ≙ y

0 when σ̄ ≙ T and Y ≠ y

(3.17)

f4.2,π(si) ≙
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 when σ ≙ T and Y ≙ y

0 when σ ≙ T and Y ≠ y

1 when σ̄ ≙ T and Y ≙ y

0 when σ̄ ≙ T and Y ≠ y

(3.18)

f4.3,π(si) ≙
⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 when σ ≙ T

0 when σ̄ ≙ T
(3.19)

f4.4,π(si) ≙
⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 when σ ≙ T

1 when σ̄ ≙ T
(3.20)

Making use of the indicator functions of Eqs.(3.3) and (3.4), they can be rewritten

in a compact way (Eqs.(3.21)-(3.24)).

f4.1,π(si) ≙ 1σ ⋅ 1Y (3.21)

f4.2,π(si) ≙ (1 − 1σ) ⋅ 1Y (3.22)

f4.3,π(si) ≙ 1σ (3.23)

f4.4,π(si) ≙ (1 − 1σ) (3.24)

At this point it is possible to define the overall statistics; let us start from f4.1,π.

The sum of the values f4.1,π(si),∀si ∈ S gives A and dividing by the dataset size m we

obtain the probability p(σ, y), thus:
f4.1,π ≙ ÊS∥f4.1,π(si)∥ ≙ 1

m
∑
si∈S

f4.1,π(si) ≙ A

m
≙ p(σ, y) (3.25)

Similarly, summing f4.2,π(si), f4.3,π(si), f4.4,π(si),∀si ∈ S we get, respectively, C,

(A+B) and (C+D) and dividing by m the corresponding probabilities:

f4.2,π ≙ ÊS∥f4.2,π(si)∥ ≙ 1

m
∑
si∈S

f4.2,π(si) ≙ C

m
≙ p(σ̄, y) (3.26)
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f4.3,π ≙ ÊS∥f4.3,π(si)∥ ≙ 1

m
∑
si∈S

f4.3,π(si) ≙ A +B

m
≙ p(σ) (3.27)

f4.4,π ≙ ÊS∥f4.4,π(si)∥ ≙ 1

m
∑
si∈S

f4.4,π(si) ≙ C +D

m
≙ p(σ̄) (3.28)

The codomain of each sample statistic, which influences the bound, is {0,1} like

the one of the overall statistics (observe that they are probabilities). Therefore family

F4 solves the problem due to the discrepancy in the order of magnitude between the

bound and the statistic, which arose with Fe.

The estimation of the effect, thus f4,π, is given by the combination of the four

statistics:

f4,π ≙ ê(σ) ≙ f4.1,π

f4.3,π
−
f4.2,π

f4.4,π
. (3.29)

In this case, we are estimating four different bounds, one for each statistic, thus the

procedure to compute the confidence interval is more complicated than just removing

and adding the bound to the overall estimation. The lower bound is given by the

following expression:

lb4 ≙

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f4.1,π−b1
f4.3,π+b3

−
f4.2,π+b2
f4.4,π−b4

when 0 ≤
f4.1,π−b1
f4.3,π+b3

≤ 1,0 ≤
f4.2,π+b2
f4.4,π−b4

≤ 1

f4.1,π−b1
f4.3,π+b3

− 1 when 0 ≤
f4.1,π−b1
f4.3,π+b3

≤ 1, f4.4,π − b4 ≤ 0

0 −
f4.2,π+b2
f4.4,π−b4

when f4.1,π − b1 ≤ 0,0 ≤
f4.2,π+b2
f4.4,π−b4

≤ 1

0 − 1 when f4.1,π − b1 ≤ 0, f4.4,π − b4 ≤ 0.

(3.30)

The first line correspond to the case in which both ratios, which are probabilities, are

well defined. Since it is the lower bound, we need to minimize the first ratio composing

f4,π, which has positive sign; to do that we reduce the numerator, subtracting b1 and

we increment the numerator adding b3. The second ratio, which instead has negative

sign, needs to be maximised; for this purpose the numerator is increased adding b2,

while the denominator is decreased of the quantity b4.

However it can be that f4.4,π − b4 is negative, changing the sign of the second ratio

and this could lead to a lower bound greater that the statistic itself (it was observed

also experimentally). To avoid that one could think to bring the negative value to the

lowest possible for a probability, but this implicates a zero division, which gives infinity.

For this reason, I decided to set the second term equal to 1, which is the maximum

significant value, thus the corresponding infinity. It could happen that also f4.1,π −b1 is

negative. In this case the approach is easier because it appears in the numerator, thus

it is sufficient to set it equal to zero and all the first term becomes null. Finally, the

fourth row is relative to the case in which both the critical terms are negative.

To obtain the upper bound it is necessary to combine the bounds and the statistics

in the opposite way. In the following I report its definition:
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ub4 ≙

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f4.1,π+b1
f4.3,π−b3

−
f4.2,π−b2
f4.4,π+b4

when 0 ≤
f4.1,π+b1
f4.3,π−b3

≤ 1,0 ≤
f4.2,π−b2
f4.4,π+b4

≤ 1

1 −
f4.2,π−b2
f4.4,π+b4

when f4.3,π − b3 ≤ 0,0 ≤
f4.2,π−b2
f4.4,π+b4

≤ 1

f4.1,π+b1
f4.3,π−b3

− 0 when 0 ≤
f4.1,π+b1
f4.3,π−b3

≤ 1, f4.2,π − b2 ≤ 0

1 − 0 when f4.2,π − b2 ≤ 0, f4.3,π − b3 ≤ 0.

(3.31)

3.2.1 Extension of f4,π in the conditional case

In the conditional case it is necessary to combine the results coming from all the

strata, however within a z-stratum the estimation procedure is exactly the same of the

unconditional case. The quantity to be estimated is:

ê(σ) ≙∑
z∈Z

( Az

Az +Bz

−
Cz

Cz +Dz

) ⋅ p̂(z) ≙
≙∑

z∈Z

( Az

mz

Az+Bz

mz

−

Cz

mz

Cz+Dz

mz

) ⋅ p̂(z) ≙
≙∑

z∈Z

(p(σ, y∣z)
p(σ∣z) − p(σ̄, y∣z)

p(σ̄∣z) ) ⋅ p̂(z)
(3.32)

though the four functions: f4.1,π,z, f4.2,π,z, f4.3,π,z and f4.4,π,z.

The sample statistics are defined in Eqs.(3.33)-(3.36) and as usual, sj are the ele-

ment of S for which the value of the confounder is the analysed one z.

f4.1,π,z(sj) ≙
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 when σ ≙ T and Y ≙ y, given z

0 when σ ≙ T and Y ≠ y, given z

0 when σ̄ ≙ T and Y ≙ y, given z

0 when σ̄ ≙ T and Y ≠ y, given z

(3.33)

f4.2,π,z(sj) ≙
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 when σ ≙ T and Y ≙ y, given z

0 when σ ≙ T and Y ≠ y, given z

1 when σ̄ ≙ T and Y ≙ y, given z

0 when σ̄ ≙ T and Y ≠ y, given z

(3.34)

f4.3,π,z(sj) ≙
⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 when σ ≙ T, given z

0 when σ̄ ≙ T, given z
(3.35)

f4.4,π,z(sj) ≙
⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 when σ ≙ T, given z

0 when σ̄ ≙ T, given z
(3.36)

Differently from the previous cases, the stratum probability p̂(z) is not already in-
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cluded in the sample statistics. In fact, if this would be the case when f4,π is computed,

p̂(z) will simplify in the ratios.

Now I define the four overall statistics. Summing the values f4.1,π,z(sj), f4.2,π,z(sj),
f4.3,π,z(sj) and f4.4,π,z(sj) ∀sj ∈ Sz, we obtain the counts relative to the z-stratum

under analysis, respectively Az, Cz, (Az + Bz) and (Cz +Dz) and dividing by mz we

obtain the desired probabilities:

f4.1,π,z ≙ ESz
∥f4.1,π,z(sj)∥ ≙ 1

mz

∑
sj∈Sz

f4.1,π,z(sj) ≙ Az

mz

≙ p(σ, y∣z) (3.37)

f4.2,π,z ≙ ESz
∥f4.2,π,z(sj)∥ ≙ 1

mz

∑
si∈Sz

f4.2,π,z(sj) ≙ Cz

mz

≙ p(σ̄, y∣z) (3.38)

f4.3,π,z ≙ ESz
∥f4.3,π,z(sj)∥ ≙ 1

mz

∑
sj∈Sz

f4.3,π,z(sj) ≙ Az +Bz

mz

≙ p(σ∣z) (3.39)

f4.4,π,z ≙ ESz
∥f4.4,π,z(sj)∥ ≙ 1

mz

∑
sj∈Sz

f4.4,π,z(sj) ≙ Cz +Dz

mz

≙ p(σ̄∣z) (3.40)

The estimation of the effect in a z-stratum ê(σ∣z), for us f4,π,z, is given by the

combination of the four statistics above, as in the unconditional case:

f4,π,z ≙ ê(σ∣z) ≙ f4.1,π,z

f4.3,π,z
−
f4.2,π,z

f4.4,π,z
(3.41)

while the lower and upper bounds have the same formulation of before, but re-

stricted to the stratum of interest:

lb4,z ≙

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f4.1,π,z−b1
f4.3,π,z+b3

−
f4.2,π,z+b2
f4.4,π,z−b4

when 0 ≤
f4.1,π,z−b1
f4.3,π,z+b3

≤ 1,0 ≤
f4.2,π,z+b2
f4.4,π,z−b4

≤ 1

f4.1,π,z−b1
f4.3,π,z+b3

− 1 when 0 ≤
f4.1,π,z−b1
f4.3,π,z+b3

≤ 1, f4.4,π,z − b4 ≤ 0

0 −
f4.2,π,z+b2
f4.4,π,z−b4

when f4.1,π,z − b1 ≤ 0,0 ≤
f4.2,π,z+b2
f4.4,π,z−b4

≤ 1

0 − 1 when f4.1,π,z − b1 ≤ 0, f4.4,π,z − b4 ≤ 0

(3.42)

ub4,z ≙

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f4.1,π,z+b1
f4.3,π,z−b3

−
f4.2,π,z−b2
f4.4,π,z+b4

when 0 ≤
f4.1,π,z+b1
f4.3,π,z−b3

≤ 1,0 ≤
f4.2,π,z−b2
f4.4,π,z+b4

≤ 1

1 −
f4.2,π,z−b2
f4.4,π,z+b4

when f4.3,π,z − b3 ≤ 0,0 ≤
f4.2,π,z−b2
f4.4,π,z+b4

≤ 1

f4.1,π,z+b1
f4.3,π,z−b3

− 0 when 0 ≤
f4.1,π,z+b1
f4.3,π,z−b3

≤ 1, f4.2,π,z − b2 ≤ 0

1 − 0 when f4.2,π,z − b2 ≤ 0, f4.3,π,z − b3 ≤ 0.

(3.43)

Finally, the overall effect estimation is obtained summing the single strata contri-
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butions, defined in Eq.(3.41), each multiplied by the relative probability:

f4,π,cond ≙ êcond(σ) ≙∑
z∈Z

(f4.1,π,z
f4.3,π,z

−
f4.2,π,z

f4.4,π,z
) ⋅ p̂(z) (3.44)

while the lower and upper bounds, combining the values obtained in the single

strata, each weighted by the relative probability:

lb4,cond(σ) ≙∑
z∈Z

lb4,z ⋅ p̂(z) (3.45)

ub4,cond(σ) ≙∑
z∈Z

ub4,z ⋅ p̂(z). (3.46)

The analysis of the bounds is reported in paragraph 4.3.2.

3.2.2 Test procedure for F4

Once the statistic and the relative lower and upper bounds are computed, the test

procedure is the same that for fe.

In principle I should formally prove that the expected value of f4,π and f4,π,cond under

the null hypothesis is 0, but it can be avoided making the following observation. Let

us consider the expression for the statistic in the unconditional and conditional case,

derived respectively in Eqs.(3.29) and (3.44), they are exactly equal to the empirical

effect. From previous literature ([3]) we know that the expected value of the effect,

conditioning and not, is always 0, thus I can avoid the proof.

To conclude, the test procedure for the family F4, for a given rule π, is:

• compute the value of the statistic, f4,π if it is considered the unconditional version

of the rule, f4,π,cond otherwise;

• compute the lower and the upper bounds;

• if the confidence interval built around the statistic traps the 0, then the null

hypothesis is accepted (thus independence holds), otherwise it is rejected (there

is dependence).

3.3 Statistic “Ratio”

The first two families of functions, Fe and F4, do not lead to satisfactory results;

the details can be found in section 4.3. I therefore defined a new statistic that I called

“Ratio” because its definition is simply a ratio; I denote the relative family of functions

FR.
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The idea is to construct a function such that if it is computed on a sample si it lies

in ∥−1,1∥, but such that its average still lies in ∥−1,1∥, unlike with fe,π. More formally,

the requirements are: fR,π(si) ∶ si → ∥−1,1∥ and fR,π ≙
1
m ∑si∈S

fR,π(si) ∈ ∥−1,1∥.
I start from the unconditional case; the new statistic fR,π , with respect to the rule

π ∶ σ → y under analysis is:

fR,π ≙
A +D −B −C

m
. (3.47)

Each sample si contributes to the overall statistic adding or removing one unit,

therefore the sample statistic is:

fR,π(si) ≙
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if σ ≙ T and Y = y

1 if σ̄ ≙ T and Y ≠ y

−1 if σ ≙ T and Y ≠ y

−1 if σ̄ ≙ T and Y = y

(3.48)

or in a more compact form (⊕ is the logical XOR function):

fR,π(si) ≙ sign{1
2
− (σ ⊕ y)}. (3.49)

Averaging the values fR,π(si), ∀si ∈ S, we obtain exactly Eq.(3.47). It can be easily

seen that both fR,π(si) and fR,π lie in ∥−1,1∥, solving the issue due to the discrepancy

in the order of magnitude that affects fe,π.

Before extending the statistic in the conditional case, I want to give an intuition of

how it works. Recalling the definition of effect, e(σ) ≙ A
(A+B) −

C
(C+D) , we have that it

takes a positive value when A or D, or both are high. This behaviour is reflected also

by fR,π, in fact A and D have a positive sign, so the highest, the bigger the statistic

is. Similarly the effect is negative when B and C are high and again this holds for

fR,π. Finally, the only missing case is when the effect is null. This does not have a

counterpart for the new statistic, not in the sense that it cannot be 0, but because for

fR,π being 0 does not mean independence. This will be discussed in detail in the rest

of the chapter.

3.3.1 Extension of fR,π in the Conditional Case

Let Az, Bz, Cz and Dz be the entries of the contingency table relative to a certain z-

stratum and p̂(z) the stratum probability. Then, in the conditional case, the statistic

relative to that stratum fR,π,z is:

fR,π,z ≙
Az +Dz −Bz −Cz

mz

⋅ p̂(z) (3.50)
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For sj ∈ Sz (Sz as before is the dataset restricted to the entries for which Z = z),

the statistic computed on an element of the sample is:

fR,π,z(sj) ≙
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ⋅ p(z) if σ ≙ T and Y = y, given z

1 ⋅ p(z) if σ̄ ≙ T and Y ≠ y, given z

−1 ⋅ p(z) if σ ≙ T and Y ≠ y, given z

−1 ⋅ p(z) if σ̄ ≙ T and Y = y, given z

(3.51)

or, equivalently, in a more compact form:

fR,π,z(sj) ≙ sign{1
2
− (σ ⊕ y)} ⋅ p̂(z). (3.52)

The sample statistic averaged across all sj gives exactly Eq.(3.50). As final step,

to obtain the expression of the statistic in the conditional case, it is sufficient to sum

the values fR,π,z for all the z-strata:

fR,π,cond ≙∑
z∈Z

fR,π,z. (3.53)

In this case, the sample statistic is in {−1,1} ⋅ p̂(z); the worst case is when p̂(z)→ 1,

thus the codomain is {−1,1} as in the unconditional case. The empirical sample mean

in a stratum fR,π,z is in ∥−1,1∥ ⋅ p̂(z), therefore the overall one, which is obtained

combining all the strata contributions, is in ∥−1,1∥.
The detailed analysis of the bounds is reported in paragraph 4.3.3.

3.3.2 Analysis of Statistic “Ratio”

The first tests that I performed on FR underlined that, given a rule and its conditional

form, the statistic is the same in the two cases; this behaviour is different from the one

of Fe and F4. In fact for the former it was proven in Theorem 3.1.1 that the statistic is

different in the conditional and unconditional case. For the latter it was not formally

proved, but since it is exactly the effect, the fact follows.

Theorem 3.3.1 states the behaviour of FR.

Theorem 3.3.1. Given a rule and its conditional form, the value of statistic in the

conditional and unconditional case is the same: fR,π ≙ fR,π,cond.

Before proving it formally I present an example; it is relative to the first chain

dataset of size m = 1000. In particular, the rule considered is X ≙ 0 → Y ≙ 0 and its

conditional form X ≙ 0→ Y ≙ 0 ∣ Z (the confounder values are binary). I start from the

unconditional case, the contingency is reported in Table 3.5.

Applying Eq.(3.47) we obtain: fR,π ≙
A+D−B−C

m
≙

457+194−329−20
1000 ≙

302
1000 ≙ 0.302.

In Table 3.6, instead, are reported the contingency tables relative to the conditional

case.
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Y = y Y ≠ y
σ ≙ T 457 329 786
σ̄ ≙ T 20 194 214

477 523 1000

Table 3.5: Contingency table for the first chain dataset of size m = 1000, for the rule
X ≙ 0→ Y ≙ 0 in the unconditional case.

Z = z0 Y = y Y ≠ y
σ ≙ T 441 82 523
σ̄ ≙ T 12 0 12

453 82 535

Z = z1 Y = y Y ≠ y
σ ≙ Y 16 247 263
σ̄ ≙ T 8 194 202

24 441 465

Table 3.6: Contingency table in the conditional case.

The application of Eq.(3.50) to the two strata gives: fR,π,z0 ≙
Az0
+Dz0

−Bz0
−Cz0

mz0

⋅p̂(z0) ≙
441+0−82−12

535 ⋅
535
1000 ≙

347
1000 ≙ 0.347 and fR,π,z1 ≙

Az1
+Dz1

−Bz1
−Cz1

mz1

⋅ p̂(z1) ≙ 16+194−247−8
465 ⋅

465
1000 ≙

−
45

1000 ≙ −0.045. Combining the two to compute the overall contribution we obtain the

same value of the unconditional case: fR,π,cond ≙ 0.347 − 0.045 ≙ 0.302.

I will now prove this fact formally, focusing on a rule π.

Proof of Theorem 3.3.1. The proof is really simple, since it naturally follows from

Eq.(3.53); expanding the summand we get:

fR,π,cond ≙∑
z∈Z

f2,π,z ≙

≙∑
z∈Z

Az +Dz −Bz −Cz

mz

⋅
mz

m
≙

≙∑
z∈Z

Az +Dz −Bz −Cz

m
.

(3.54)

Observe that the summation on all the z-strata of Az is exactly A (in fact no sample

is missing when all the contingency tables are considered), thus ∑z∈ZAz ≙ A; similarly

for B, C and D. As a consequence of this:

fR,π,cond ≙∑
z∈Z

Az +Dz −Bz −Cz

m

≙
A +D −B −C

m
≙ f2,π

(3.55)

which is equal to the statistic in the unconditional case.

At this point, it remains to derive the expected value of the statistic under the null

hypothesis H0, that is the key value to perform the independence test.

3.3.3 Test Procedure for FR

The first experiments that I performed suggested that the expected value of the statistic

under the null hypothesis, in the unconditional and conditional case are different. This
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fact is formalized in Theorem 3.3.2.

Theorem 3.3.2. For family FR, the expected value of statistic under the null hypothe-

sis H0 in the unconditional and conditional case is different: EH0
∥fR,π∥ ≠ EH0

∥fR,π,cond∥.
Before proving it I want to stress the differences between family FR and the previous

two. For these latter, given a rule, the statistic takes different values conditioning or

not, while the expected value under the null hypothesis is the same (and it is equal to

0). For the new class FR, instead the statistic takes the same value, for a given rule,

but the expected value under H0, which is the reference quantity for the independence

test, is different conditioning or not. This suggests that the test procedure for FR will

be different.

Proof of Theorem 3.3.2. Unconditional case. The derivation in the unconditional case

is trivial. Let XR,π,si be a random variable that represents the value assumed by the

sample statistic fR,π(si) with the relative probabilities (Eq.(3.56)):

XR,π,si ≙

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 with p(σ, y)
1 with p(σ̄, ȳ)
−1 with p(σ, ȳ).
−1 with p(σ̄, y).

(3.56)

Its expected value is given by:

Ê∥XR,π,si∥ ≙ p(σ, y) + p(σ̄, ȳ) − p(σ̄, y) − p(σ, ȳ). (3.57)

Under H0, σ and y are independent, thus the joint probability can be decomposed

into the product p(σ) ⋅ p(y), leading to:

ÊH0
∥XR,π,si∥ ≙ p(σ)p(y) + p(σ̄)p(ȳ) − p(σ̄)p(y) − p(σ)p(ȳ). (3.58)

At this point, the only missing step is to compute the expected value of the overall

statistic:

ÊS,H0
∥fR,π∥ ≙ 1

m
∑
si∈S

ÊS,H0
∥fR,π(si)∥ ≙

≙
1

m
⋅m ⋅ ÊS,H0

∥fR,π(si)∥ ≙
≙ p(σ)p(y) + p(σ̄)p(ȳ) − p(σ)p(ȳ) − p(σ̄)p(y).

(3.59)

I will now switch to the conditional case.

Conditional case Let XR,π,si,z be the random variables representing the values as-

sumed by the sample statistic fR,π,z(si) in a z-stratum:
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XR,π,si,z ≙

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ⋅ p̂(z) with p(σ, y∣z)
1 ⋅ p̂(z) with p(σ̄, ȳ∣z)
−1 ⋅ p̂(z) with p(σ, ȳ∣z)
−1 ⋅ p̂(z) with p(σ̄, y∣z).

(3.60)

Its expected value is given by the following expression:

Ê∥XR,π,si,z∥ ≙ p̂(z) ⋅ p(σ, y∣z) + p̂(z) ⋅ p(σ̄, ȳ∣z) − 1 ⋅ p̂(z) ⋅ p(σ, ȳ∣z) − 1 ⋅ p̂(z) ⋅ p(σ̄, y∣z) ≙
≙[p(σ, y∣z) + p(σ̄, ȳ∣z) − p(σ, ȳ∣z) − p(σ̄, y∣z)] ⋅ p̂(z).

(3.61)

which under the null hypothesis becomes:

Applying the independence assumption to Eq.(3.61), which states σ á y ∣ z, we get
the following expression for the expectation under H0:

ÊS,H0
∥fR,π,z(sj)∥ ≙[p(σ∣z)p(y∣z) + p(σ̄∣z)p(ȳ∣z) − p(σ∣z)p(ȳ∣z) − p(σ̄∣z)p(y∣z)] ⋅ p̂(z)

(3.62)

(as usual I indicate with sj the elements in Sz, the subset of the dataset restricted

to the rows in which Z = z).

By the linearity of the expectation, the expected value in a z-stratum is:

ÊS,H0
∥fR,π,z∥ ≙ 1

mz

∑
sj∈Sz

ÊS,H0
∥fR,π,z(sj)∥ ≙

≙
1

mz

⋅mz ⋅ ÊS,H0
∥fR,π,z(sj)∥ ≙

≙[p(σ∣z)p(y∣z) + p(σ̄∣z)p(ȳ∣z) − p(σ∣z)p(ȳ∣z) − p(σ̄∣z)p(y∣z)] ⋅ p̂(z).
(3.63)

The only missing step is to sum all the contributions coming from the different

strata; this is:

ÊS,H0
∥fR,π,cond∥ ≙ ∑

z∈Z

ÊS,H0
∥fR,π,z∥ ≙

≙ ∑
z∈Z

[p(σ∣z)p(y∣z) + p(σ̄∣z)p(ȳ∣z) − p(σ∣z)p(ȳ∣z) − p(σ̄∣z)p(y∣z)] ⋅ p̂(z) ≙
≙ ∑

z∈Z

[p(σ∣z)p(y∣z) ⋅ p̂(z)]+[p(σ̄∣z)p(ȳ∣z) ⋅ p̂(z)]−[p(σ∣z)p(ȳ∣z) ⋅ p̂(z)]−[p(σ̄∣z)p(y∣z) ⋅
(3.64)

To show that Eq.(3.64) is different from Eq.(3.59) the reasoning that has been made

starts from a wrong derivation. Let us consider the general form of the expected value

in the conditional case and suppose that we first marginalize (passage (i)) and then we
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apply the independence assumption (passage (ii)):

ÊS∥fR,π,cond∥ ≙ ∑
z∈Z

[p(σ, y∣z) + p(σ̄, ȳ∣z) − p(σ, ȳ∣z) − p(σ̄, y∣z)] ⋅ p̂(z) ≙
≙ ∑

z∈Z

p(σ, y,z) +∑
z∈Z

p(σ̄, ȳ,z) −∑
z∈Z

p(σ, ȳ,z) −∑
z∈Z

p(σ̄, y,z) ≙
≙ (i) ≙ p(σ, y) + p(σ̄, ȳ) − p(σ, ȳ) − p(σ̄, y)
≙ (ii) ≙ p(σ)p(y) + p(σ̄)p(ȳ) − p(σ)p(ȳ) − p(σ̄)p(y).

(3.65)

We obtain the same expression of the unconditional case, so one could think that

Theorem 3.3.2 is wrong. However the problem is that we applied the wrong indepen-

dence assumption; in fact in the conditional case it states σ ⊥⊥ y ∣ Z but marginalizing

we have removed the confounder.

Thus the correct derivation is:

ÊS,H0
∥fR,π,cond∥ ≙ ∑

z∈Z

[p(σ, y∣z) + p(σ̄, ȳ∣z) − p(σ, ȳ∣z) − p(σ̄, y∣z)] ⋅ p̂(z) ≙
≙ ∑

z∈Z

[p(σ∣z)p(y∣z) + p(σ̄∣z)p(ȳ∣z) − p(σ∣z)p(ȳ∣z) − p(σ̄∣z)p(y∣z)] ⋅ p̂(z)
(3.66)

and there is no way of marginalizing to obtain ÊS,H0
∥fR,π∥ thus we can conclude

the two are different.

Given these results, in the next paragraph I define the test procedure for the family

FR.

To summarize, so far it was shown that:

• the value of the statistic in the conditional and unconditional case is the same;

• under H0, the expected value of the statistic conditioning or not is different.

As anticipated, the behaviour is different with respect to fe,π and f4,π. In fact, in

this case the threshold to be used to assess the independence, which is the expected

value under H0 is different conditioning or not, while the statistic is fixed.

The test procedure, for a rule π, is formalized in the following.

• Compute fR,π (or fR,π,cond even if it is the same);

• compute the the expected value under the null hypothesis, ÊS,H0
∥fR,π∥ for a non

conditional rule or ÊS,H0
∥fR,π,cond∥ for a conditional one;

• if the confidence interval built around the statistic traps the expected value under

H0, then the null hypothesis is accepted (because the statistic takes the same

value it would take in case of independence); otherwise, the null hypothesis is

rejected (because the statistic is far from its value in case of independence).
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Figure 3.2 is reports a graphical representation of the test procedure. In orange are

reported the value of the statistic and the relative confidence interval, while in green

the expected value under if independence holds. It is reported an example in which

not conditioning there is dependence, while conditioning it is removed.

Figure 3.2: Graphical illustration of the test procedure using family FR.

This concludes the formal definition and discussion about this statistic. In section

4.3.3 is reported the analysis of the order of magnitude of the bound to the Supremum

Deviation when the family FR is used.
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Chapter 4

Implementation, Experimental

Setup and Bound Evaluation

In this chapter are discussed the technical details of the thesis. I start with the de-

scription of the procedure for the computation of the n-MCERA (Eq.(2.36)), since it

is not trivial. I then switch to the definition of the synthetic datasets that I used to

test the statistics. Finally, I perform the analysis of the magnitude of the two bounds

to the Supremum Deviation for each statistic, when it is applied to my datasets.

4.1 n-MCERA Implementation

I start explaining how the computation of n-MCERA was performed, since it is a not

trivial step of the code; for simplicity, I report its definition:

R̂n
m(F,S,Λ) ≙ 1

n

n

∑
j≙1

sup
f∈F

1

m
∑
si∈S

λj,if(si). (4.1)

Let us start from the summation to the right: it requires the computation of the

sample statistic f(si),∀si ∈ S. Moving to the left, there is a superior computed on all

the functions f of the family F : from this it is possible to infer that we need the values

f(si) not only ∀si ∈ S, but also ∀f ∈ F . All this information will be stored in a matrix

A, of size m × k with k cardinality of F, where each row is relative to an element si

of the dataset, while each column corresponds to a function f ∈ F . To give a better

intuition, each function f is labeled by a number, from 1 to k, to stress the fact they

are different functions. Here I report the matrix:

A ≙

⎡⎢⎢⎢⎢⎢⎢⎣
f1(s1) . . . fk(s1)
⋮ ⋱ ⋮

f1(sm) . . . fk(sm)
⎤⎥⎥⎥⎥⎥⎥⎦

(4.2)

Each value fℓ(si), with ℓ ∈ {1, . . . , k}, is multiplied by a Rademacher random vari-

able λj,i, with j ∈ {1, . . . , n} and i ∈ {1, . . . ,m}. Thus a second matrix Λ of size n ×m,

41
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containing all such random variables is needed:

Λ ≙

⎡⎢⎢⎢⎢⎢⎢⎣
λ1,1 . . . λ1,m

⋮ ⋱ ⋮

λn,1 . . . λn,m

⎤⎥⎥⎥⎥⎥⎥⎦
(4.3)

We perform the matrix product between Λ and A, obtaining B ≙ Λ ⋅ A, with size(n × k), where each row is relative to one of the n-trials of the Monte Carlo approach

and each column is relative to a function fℓ. An entry, say (r,t) of B, stores the

following information: ∑si∈S
λr,ift(si). I denote a row of matrix B as B∥j, ∶∥; the final

computation of the n-MCERA thus is:

R̂n
m ≙

1

m ⋅ n

n

∑
j≙1

maxB∥j, ∶∥ (4.4)

in which I substituted the sup with a max, since we are dealing with a finite set of

functions.

4.2 Synthetic Datasets Definition

As anticipated at the beginning of the chapter, the proposed statistics were tested on

synthetic datasets; in this section I provide the details about how I constructed them.

For each fundamental structure of a graph (chain, fork, collider) and for each size

m ∈ {1000,100000} I created 100 datasets. Each variable, corresponding to a node,

takes values according to a Bernoulli distribution and such value is combined with a

certain noise, also modeled with a Bernoulli random variable. The relations among

the variables are defined through the logical or function (∨), while the noise is added

through the xor function (⊕).

Figure 4.1 shows the relations among variables in the three structures, together

with the choice of the parameters of the Bernoulli random variables.

Figure 4.1: Relation among the variables X, Z and Y in the three fundamental struc-
tures (from left to right, chain, fork and collider), that I chose to create the synthetic
datasets.
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Before moving on, I want to motivate why the noise was added through the xor

function, instead than the or. Consider for example the chain and suppose that the

noise is added everywhere though the or function: when X is 1 (or true) there is no

way for Z or Y to be 0. Thanks to the xor instead, the value of Z or Y can flip from 1

to 0, simulating a real-world behaviour.

4.3 Bound Estimation

In this section I develop the estimation of the order of magnitude of the bounds to

the Supremum Deviation (Eqs.(2.38) and (2.42)) for the three families Fe, F4 and FR,

varying some of the parameters defining them.

4.3.1 Estimation of the Bounds for Fe

Let us start with Fe. As anticipated in paragraph 3.1, there is discrepancy in the

order of magnitude of the overall statistic fe,π and its sample version fe,π(si) and this

gives some problems when bounding it. Their codomain are, respectively, ∥− 1
m
, 1
m
∥ and∥−1,1∥, and the extreme values of the latter are involved in the definition of the bound

for fe,π, resulting in a too large interval. Given this evidence, the major aim of this

analysis is to see if varying some parameters, like the number of Monte-Carlo trials n,

the issue can be fixed.

I decomposed the first bound (Eq.(2.38)) in the following four factors:

R̃ ≐ R̂n
m(F,S,Λ) + 2z

√
log δ

4

2nm
(4.5)

f1 ≐

√
c(4mR̃ + c log(4

δ
)) log(4

δ
)

m
(4.6)

f2 ≐
c log δ

4

m
(4.7)

f3 ≐ c

√
log δ

4

2m
. (4.8)

Recalling that f ∶ X → ∥a, b∥ ⊂ R, z ≙ max{∣a∣, ∣b∣}, c ≙ ∣b − a∣ and according to what

was derived in paragraph 3.1, we have that fe,π(si) ∶ X → ∥−1,1∥ and therefore z ≙ 1

and c ≙ 2. I fixed the significance level δ equal to 0.05.

In the following I do the analysis of the order of magnitude of each factor, for m =
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n = 1000; with this setting the n-MCERA is order of 10−4.

R̃ ∼ 10−4 + 100 ⋅

√
1

103 ⋅ 103

∼ 10−4 +
√
10−6

∼ 10−3

(4.9)

f1 ∼

√
100 ⋅ (103 ⋅ 10−3 + 100)

103

∼

√
100 ⋅ (100)
103

∼ 100 ⋅ 10−3

∼ 10−3

(4.10)

f2 ∼ 10
0
⋅
1

103

∼ 10−3
(4.11)

f3 ∼ 10
0
⋅

√
1

103

∼

√
10−3

∼ 10−1.5

(4.12)

The first three terms have the same order of magnitude of the maximum values the

statistic fe,π can take, in fact it lies in ∥−0.001,0.001∥ for the considered sample size.

However in general it is order of 10−4 so this is not sufficient to provide an informative

bound. In any case the biggest problem is given by f3 that will completely erase the

information of the statistic.

Since the factors composing the bound depends onm one could think that increasing

m the issue could in part be solved. Nevertheless also the codomain of fe,π is reduced

in magnitude, thus the problem still remains.

It is possible to increase n, however this will affect only the factor R̃, which is not

the major source of problems.

Table 4.1 presents a summary of the previous reasoning. I report the magnitude

of the bound for the two sample sizes m and for three different values of n, together

with the range of values (column “Range”) assumed by the statistic. (Note: for m =

100000 the order of the n-MCERA is 10−7 while the other parameters are the same; I

do not report the derivation of the order of magnitude of the bound for this size, but

only its value).



4.3. BOUND ESTIMATION 45

Looking at the result it is clear that this approach is unsatisfactory. In fact, sub-

tracting and adding to the statistic a bound which is at least three order of magnitude

higher, will completely erase any information.

m n Bound Range
1000 1000 0.1221 ∥−0.001,0.001∥
1000 10000 0.1151 ∥−0.001,0.001∥
1000 100000 0.1127 ∥−0.001,0.001∥
100000 1000 0.0104 ∥−0.00001,0.00001∥
100000 10000 0.0098 ∥−0.00001,0.00001∥
100000 100000 0.0096 ∥−0.00001,0.00001∥

Table 4.1: Value of the bound to computed for various values of m and n; z = 1.

However, before switching to the improved bound, another observation was made.

The codomain of fe,π(si) is ∥−1,1∥, but this was obtained in the worst case scenario

in which there is only one sample that satisfies σ (alternatively, (A+B) is 1) and only

one satisfying σ̄ (or (C+D) is 1). This is conservative, but in practise having that σ

is satisfied (or not) by only one sample is likely to be an error. Therefore I fixed a

minimum support, that is a minimum number of samples that have to satisfy σ (or

σ̄) to consider the rule π ∶ σ → y valid. I arbitrarily set this threshold to m
100 . More

formally, a rule π is acceptable if: min ≙ {(A+B), (C+D)} ≥ m
100 , where, as usual, A, B,

C, D are the entries of the relative contingency table.

Given that, the largest possible codomain of fe,π(si) is [ − 1
m

100

, 1
m

100

] and therefore z

= 0.1 and c = 0.2 for m = 1000, while z = 0.001 and c = 0.002 for m = 100000.

Table 4.2 shows the results obtained in this setting. With respect to the previous

case, they are smaller of a factor 10; the range of values assumed by the statistic is the

same, the only difference is that rules with low support are not considered. In any case

they the bound is still not informative (only setting the support equal to m it becomes

informative, but this makes no sense).

m n Bound Range
1000 1000 0.01249 ∥−0.001,0.001∥
1000 10000 0.01183 ∥−0.001,0.001∥
1000 100000 0.01160 ∥−0.001,0.001∥
100000 1000 0.00104 ∥−0.00001,0.00001∥
100000 10000 0.00098 ∥−0.00001,0.00001∥
100000 100000 0.00096 ∥−0.00001,0.00001∥

Table 4.2: Value of the bound to computed for various values of m and n; z = 0.1.

At this point I switched to the improved version of the bound of Eq.(2.42), keeping

the assumption of the minimum support fixed to m
100 for reasons of significance of the

results.

The bound ϵ depends on other two quantities, ρ and r, and on v, the upper bound

of the variance of the family of functions F. In the following I analyse the order of
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magnitude of each factor and for sake of simplicity I report their definition.

ρ ≙ R̂n
m(F,S,Λ) + 2z ⋅

√
log 4

δ

2nm
(4.13)

r ≙ ρ +
1

m
⋅
⎛⎝
√

c⋅(4mρ + c log
4

δ
) ⋅ log 4

δ
+ c log

4

δ

⎞⎠ (4.14)

ϵ ≙ 2r +

√
2 log 4

δ
⋅ (v + 4cr)
m

+
c log 4

δ

3m
(4.15)

However, before proceeding I need to derive the expression of v.

The variance of a random variable X is: V ar(X) ≙ E∥X2∥ − (E∥X∥)2. Let Xe,π be

the random variable that represents the values assumed by the statistic fe,π(si), for a
rule π:

Xe,π ≙

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
A+B with p(σ, y)
−

1
C+D with p(σ̄, y);

0 with p(σ, ȳ)
0 with p(σ̄, ȳ)

(4.16)

Its expected value is given by:

E∥Xe,π∥ ≙ ∑
x∈Xe,π

x ⋅ p(x) ≙
≙

1

A+B
⋅ p(σ, y) − 1

C+D
⋅ p(σ̄, y) ≙

≙
1

p(σ) ⋅m ⋅ p(σ, y) − 1

p(σ̄) ⋅m ⋅ p(σ̄, y)
(4.17)

where it was exploited the fact that (A+B) is the number of elements satisfying σ,

that can be rewritten as the probability of such event, p(σ), multiplied by the total

number of elements m; similarly for (C+D).

We develop the calculation of the variance under the null hypothesis; thanks to

independence assumption it is possible to split the joint probabilities as the product of

the probabilities of the single events, obtaining:

E∥Xe,π∥ ≙ 1

p(σ) ⋅m ⋅ p(σ)p(y) − 1

p(σ̄) ⋅m ⋅ p(σ̄)p(y) ≙
≙
p(y)
m
−
p(ȳ)
m
≙ 0

(4.18)

The reason for which we can do this assumption is that in the considered framework,

the null hypothesis H0 states the independence between σ and y. Thus, since the

procedure consists in testing H0 versus H1, we compute the bound that defines the

accepting region for the null hypothesis under such hypothesis.
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Finally, the variance is:

V ar(Xe,π) ≙ E∥(Xe,π)2∥ − (E∥Xe,π∥)2 ≙
≙( 1

A+B
)2 ⋅ p(σ) ⋅ p(y)+⎛⎝ − 1

C+D

⎞⎠
2

⋅ p(σ̄) ⋅ p(y) − 0 ≙
≙( 1(p(σ))2 ⋅m2

) ⋅ p(σ) ⋅ p(y)+( 1(p(σ̄))2 ⋅m2
) ⋅ p(σ̄) ⋅ p(y) ≙

≙
1

m2
⋅ p(y)⋅( 1

p(σ) + 1

p(σ̄)) ≙
≙

1

m2
⋅ p(y)⋅(p(σ) + p(σ̄)

p(σ) ⋅ p(σ̄) ) ≙
≙

1

m2
⋅ p(y)⋅( 1

p(σ) ⋅ p(σ̄)) ≙
≙

1

m2
⋅
A+C

m
⋅

1
A+B
m
⋅
C+D
m

≙

≙
A+C

m ⋅ (A+B) ⋅ (C+D)

(4.19)

Since the term v is the upper bound to the variance, to compute its value first I

performed the analysis of its denominator, to find the minimum, and then I combined

this information with the one relative to the numerator in order to maximize the overall

value.

I define x ≐ (A+B), therefore (C+D) ≙m−x, thus the denominator can be rewritten

as: t(x) ≙m⋅x⋅(m−x) ≙m2 ⋅x−m⋅x2. Studying the sign of the inequality −m⋅x2+m2 ⋅x ≥

0, it can be easily seen that in the range of values of interest, that is ∥ m
100 ,

99
100 ⋅m∥ it

is always positive (as it should). Then I studied the first derivative to search for

maximal and minimal points: dt
dx
≙ −2m ⋅ x +m2 ≥ 0. It is strictly positive, therefore

increasing, when x < m
2 , and negative for x > m

2 , therefore the point x ≙ m
2 is a

maximum. The minima are thus at the extreme of the interval of interest: xmin,1 ≙
m
100

and xmin,2 ≙
99
100 ⋅m.

Since the goal it to maximise v, we are interested in minimizing the denominator;

given the symmetry of the problem, I will develop the rest of the reasoning considering

x ≙ xmin,1 ≙
m
100 .

At this point the rows of the contingency table are fixed (in fact x is (A+B)), what

misses is to fix also the columns. This is trivial since we are under the null hypothesis,

then the two rows must be in the same proportion to have a null effect. The choice

that will maximise the numerator (A+C) is obtained in the extreme case in which all

the samples fall in the first column, therefore we obtain: A ≙ m
100 , B ≙ 0, C ≙

99
100 ⋅m,

D ≙ 0.

I report the contingency tables that maximises v (Tables 4.3 and 4.4) and the

relative computations (Eqs.(4.20) and (4.21)), for dataset sizes m = 1000 and m =

100000.
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y ȳ mσ/σ̄

σ 10 0 10
σ̄ 990 0 990

my/ȳ 1000 0 1000

Table 4.3: Contingency table that maximise the variance; dataset size m = 1000.

y ȳ mσ/σ̄

σ 1000 0 1000
σ̄ 99000 0 99000

my/ȳ 100000 0 100000

Table 4.4: Contingency table that maximise the variance; dataset size m = 100000.

v1k ≙
103

103 ⋅ 10 ⋅ 990
≙ 1.01 ⋅ 10−4 (4.20)

v100k ≙
105

105 ⋅ 103 ⋅ 99 ⋅ 103
≙ 1.01 ⋅ 10−8 (4.21)

It is now possible to analyse the order of magnitude of the improved bound. I start

the analysis for size m = 1000; in this case the n-MCERA is order of 10−4, while the

other parameters are: n = 103, z = 100
m
≙ 0.1, c = 200

m
≙ 0.2 and v ≙ 1.01 ⋅ 10−4.

∥ρ∥ ∼ 10−4 + 10−1 ⋅
√

1

103 ⋅ 103

∼ 10−4 + 10−1 ⋅
√
10−6

∼ 10−4 + 10−1 ⋅ 10−3

∼ 10−4

(4.22)

∥r∥ ∼ 10−4 + 10−3⋅(√10−1 ⋅ (103 ⋅ 10−4 + 10−1) + 10−1)
∼ 10−4 + 10−3⋅(√10−1 ⋅ (10−1 + 10−1) + 10−1)
∼ 10−4 + 10−3⋅(√10−1 ⋅ (10−1) + 10−1)
∼ 10−4 + 10−3⋅(√10−2 + 10−1)
∼ 10−4 + 10−3⋅(10−1 + 10−1)
∼ 10−4 + 10−3 ⋅ 10−1

∼ 10−4 + 10−4

∼ 10−4

(4.23)
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∥ϵ∥ ∼ 10−4 +
√

10−4 + 10−1 ⋅ 10−4

103
+
10−1

103

∼ 10−4 +

√
10−4 + 10−5

103
+ 10−4

∼ 10−4 +
√
10−4 ⋅ 10−3 + 10−4

∼ 10−4 +
√
10−7 + 10−4

∼ 10−4 + 10−3.5 + 10−4

∼ 10−3.5

(4.24)

The improved bound is definitely closer to the statistic in magnitude, but it is still

not suitable for this sample size (recall that the statistic lies in ∥−0.001,0.001∥, but in
practice, since it is given by the effect (which is order of 10−1) divided by m, it is order

of 10−4).

Even trying to adjust the parameters there is no relevant improvement. I started

by the consideration that the dominant term is always the n-MCERA, except in ϵ in

which it is determined by v. At best it is possible to equal the order of the n-MCERA,

in fact further refinements will be useless. For example, fixing the minimum support

for a rule to 100, we have z = 0.01, v = 1.11 ⋅ 10−5 and ϵ becomes:

∥ϵ∥ ∼ 10−4 +
√

10−5 + 10−2 ⋅ 10−4

103
+
10−2

103

∼ 10−4 +

√
10−5 + 10−6

103
+ 10−5

∼ 10−4 +
√
10−5 ⋅ 10−3 + 10−5

∼ 10−4 +
√
10−8 + 10−5

∼ 10−4 + 10−4 + 10−5

∼ 10−4

(4.25)

which equals the order of magnitude of fe,π; however in practice the bound is still

higher and the requirements on the support are too strict.

An exact computation of the factors and the bound, for the two support settings,

is reported in Table 4.5, together with the value of the statistic. This latter value is

computed for the first chain dataset and is relative to the rule X ≙ 0 → Y ≙ 0. What

emerges is that even under the most conservative hypothesis on the minimum support,

the bound is higher than the statistic, or at best, following the order of magnitude

analysis of the same order. Thus it is not informative.

The behaviour for size m = 100000 is different. The statistic in this case is order of

10−6 and the n-MCERA is order of 10−7 (this is a conservative assumption, it is around
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Support ρ r ϵ Statistic
10 4.360 ⋅ 10−4 1.632 ⋅ 10−3 7.067 ⋅ 10−3 4.879 ⋅ 10−4

100 1.696 ⋅ 10−4 3.430 ⋅ 10−4 1.296 ⋅ 10−3 4.879 ⋅ 10−4

Table 4.5: Values of the quantities ρ, r, ϵ that define the improved bound of the
Supremum Deviation, computed for the first chain dataset of size m = 1000, for n =
1000 repetitions of the Monte Carlo approach and for the two minimum supports of
10 and 100.

8 ⋅10−8), while the other parameters are: n = 103, z = 100
m
≙ 10−3, c = 200

m
≙ 2 ⋅10−3 and

v ≙ 1.01 ⋅ 10−8. From the analysis reported below it is possible to see that in this case

the bound is smaller than the statistic.

∥ρ∥ ∼ 10−7 + 10−3 ⋅
√

1

105 ⋅ 103

∼ 10−7 + 10−3 ⋅
√
10−8

∼ 10−7 + 10−3 ⋅ 10−4

∼ 10−7

(4.26)

∥r∥ ∼ 10−7 + 10−5⋅(√10−3 ⋅ (105 ⋅ 10−7 + 10−3) + 10−3)
∼ 10−7 + 10−5⋅(√10−3 ⋅ (10−2 + 10−3) + 10−3)
∼ 10−7 + 10−5⋅(√10−3 ⋅ (10−2) + 10−3)
∼ 10−7 + 10−5⋅(√10−5 + 10−3)
∼ 10−7 + 10−5⋅(10−2.5 + 10−3)
∼ 10−7 + 10−5 ⋅ 10−2.5

∼ 10−7 + 10−7.5

∼ 10−7

(4.27)

∥ϵ∥ ∼ 10−7 +
√

10−8 + 10−3 ⋅ 10−7

105
+
10−3

105

∼ 10−7 +

√
10−8 + 10−10

105
+ 10−8

∼ 10−7 +
√
10−8 ⋅ 10−5 + 10−8

∼ 10−7 +
√
10−13 + 10−8

∼ 10−7 + 10−6.5 + 10−8

∼ 10−6.5

(4.28)
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As before, I report in Table 4.6 the exact computation of such quantities, computed

for the first chain datasets and for the rule X ≙ 0 → Y ≙ 0, together with the value of

the statistic.

n ρ r ϵ Statistic
1000 3.760 ⋅ 10−7 6.066 ⋅ 10−7 2.383 ⋅ 10−6 3.374 ⋅ 10−6

Table 4.6: Values of the quantities ρ, r, ϵ that define the improved bound of the
Supremum Deviation, computed for the first chain datasets of size m = 100000, for n
= 1000 repetitions of the Monte Carlo approach and with support 1000.

The bound provided by ϵ is of the same order of the statistic and it is even lower

than it, but still close. In this case the order is not determined by v, but rather by

the factor 10−7 coming from ρ. With n = 1000, the order of ρ is given by the sum of

two terms of order 10−7; since the second one depends on n, it is possible to slightly

improve the bound increasing its value. In Table 4.7 are reported the results with n =

10000 and it is possible to see that with this setting ϵ turns to be half of the statistic.

n ρ r ϵ Statistic
10000 1.736 ⋅ 10−7 3.483 ⋅ 10−7 1.784 ⋅ 10−6 3.374 ⋅ 10−6

Table 4.7: Values of the quantities ρ, r, ϵ that define the improved bound of the
Supremum Deviation, computed for the first chain dataset of size m = 100000, for n
= 10000 repetitions of the Monte Carlo approach and with support 1000.

However the bound cannot be improved continuously, because at a certain point

the second addend of ρ will become order of magnitudes lower than the first, which is

the n-MCERA, that will drive the overall bound. Furthermore n affects significantly

the computational time. In Table 4.8 is reported a summary of trend of improvement

for various values of n and it is possible to see the saturation.

n ρ r ϵ

1000 3.769 ⋅ 10−7 6.078 ⋅ 10−7 2.386 ⋅ 10−6

10000 1.745 ⋅ 10−7 3.496 ⋅ 10−7 1.787 ⋅ 10−6

100000 1.105 ⋅ 10−7 2.621 ⋅ 10−7 1.583 ⋅ 10−6

1000000 9.029 ⋅ 10−8 2.333 ⋅ 10−7 1.516 ⋅ 10−6

10000000 8.389 ⋅ 10−8 2.240 ⋅ 10−7 1.494 ⋅ 10−6

100000000 8.1864 ⋅ 10−8 2.211 ⋅ 10−7 1.487 ⋅ 10−6

Table 4.8: Values of the factors that compose the improved bound, computed for m =
100000, z = 0.001 and for various n.

At this point since this approach seems promising, I extended the experiments,

always on the first chain dataset of size m = 100000, considering all the possible rules,

both in the conditional and unconditional case. In Table 4.9 are reported the rules,

the value of the statistic fe,π, the magnitude bound ϵ computed for n = 10000 and

support m
100 ≙ 1000, the confidence interval (obtained subtracting and adding ϵ to fe,π)
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and if the null hypothesis is accepted or rejected (column“H0”), according to the test

procedure defined in paragraph 3.1.2.

Rule Statistic ϵ Interval H0

X ≙ 0→ Y ≙ 0 3.37 ⋅ 10−6 1.78 ⋅ 10−6 ∥1.59 ⋅ 10−6,5.15 ⋅ 10−6∥ rejected
X ≙ 0→ Y ≙ 1 −3.37 ⋅ 10−6 1.78 ⋅ 10−6 ∥−5.15 ⋅ 10−6,−1.59 ⋅ 10−6∥ rejected
X ≙ 1→ Y ≙ 0 −3.37 ⋅ 10−6 1.78 ⋅ 10−6 ∥−5.15 ⋅ 10−6,−1.59 ⋅ 10−6∥ rejected
X ≙ 1→ Y ≙ 1 3.37 ⋅ 10−6 1.78 ⋅ 10−6 ∥1.59 ⋅ 10−6,5.15 ⋅ 10−6∥ rejected

X ≙ 0→ Y ≙ 0 ∣ Z −3.36 ⋅ 10−8 1.78 ⋅ 10−6 ∥−1.81 ⋅ 10−6,1.75 ⋅ 10−6∥ accepted
X ≙ 0→ Y ≙ 1 ∣ Z 3.36 ⋅ 10−8 1.78 ⋅ 10−6 ∥−1.75 ⋅ 10−6,1.81 ⋅ 10−6∥ accepted
X ≙ 1→ Y ≙ 0 ∣ Z 3.36 ⋅ 10−8 1.78 ⋅ 10−6 ∥−1.75 ⋅ 10−6,1.81 ⋅ 10−6∥ accepted
X ≙ 1→ Y ≙ 1 ∣ Z −3.36 ⋅ 10−8 1.78 ⋅ 10−6 ∥−1.81 ⋅ 10−6,1.75 ⋅ 10−6∥ accepted

Table 4.9: Summary table for one of the chain datasets of size m = 100000. The table
reports, for each rule, the value of the statistic, the bound ϵ computed for n = 10000,
the confidence interval, if the null hypothesis is accepted or rejected.

From the prior knowledge we have about the chain structure, we know that the test

outcome is always correct. In fact without conditioning there is dependence, thus the

null hypothesis is always rejected, while conditioning the opposite.

However we are in a limit situation because the maximum effect detectable is around

0.18. In fact a rule is detected if the statistic is grater than ϵ: fe,π − ϵ > 0. Thus

fe,π > ϵ ≙ 1.78 ⋅ 10−6 which corresponds to the minimum effect emin(σ) ≙ fe,π,min ⋅m ≙

1.78 ⋅ 10−6 ⋅ 105 ≙ 0.178.

To summarise, family Fe is suitable only for big sample sizes and it is able to detect

only effect of a certain magnitude. The details of the results are presented in Section

5.1.

4.3.2 Estimation of the Bounds for F4

In this paragraph I analyse the bounds for the approach presented in paragraph 3.2,

which makes use of four statistics. It was shown that each of the sample statistics has

codomain {0,1} thus the parameters z and c involved in the bound are both equal to

1.

Let us start by the first bound (Eq.(2.38)). The n-MCERA for size m = 1000

is order of 10−2 and I will consider as usual n = 1000; since we are estimating four

probabilities, in order to have an overall error rate of at most 0.05, for the bound

estimation of each statistic I set δ ≙ 0.0125. The order of the first factor is:

R̃ ∼ 10−2 + 100 ⋅

√
1

103 ⋅ 103

∼ 10−2 +
√
10−6

∼ 10−2 + 10−3

∼ 10−2.

(4.29)
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so the dominant term is the n-MCERA; the other three terms, instead, give:

f1 ∼

√
100 ⋅ (103 ⋅ 10−2 + 100)

103

∼

√
100 ⋅ (101 + 100)

103

∼

√
100 ⋅ (101)
103

∼ 100.5 ⋅ 10−3

∼ 10−2.5

(4.30)

f2 ∼ 10
0
⋅
1

103

∼ 10−3
(4.31)

f3 ∼ 10
0
⋅

√
1

103

∼

√
10−3

∼ 10−1.5.

(4.32)

Each statistic f4.i,π is a probability, thus it lies in ∥0,1∥ and in general the value

taken is order of 10−1; therefore the order of bound seems promising.

In Table 4.10 are reported the bounds relative to the statistic f4.1,π and the range

of values the statistic itself assumes, for the usual values of m and for various n (for

the biggest sample size the n-MCERA is order of 10−3). Since the values of the n-

MCERA is very similar for all the four statistics, once the size m is fixed, and the

other parameters are the same, I will not report the exact computation of the bound

of the other three statistics.

m n bound range
1000 1000 0.1176 ∥0,1∥
1000 10000 0.1127 ∥0,1∥
1000 100000 0.1111 ∥0,1∥
100000 1000 0.0108 ∥0,1∥
100000 10000 0.0103 ∥0,1∥
100000 100000 0.0102 ∥0,1∥

Table 4.10: Value of the bound to f4.1,π, computed for various values of m and n; z =
1.

The magnitude of the bound could is good to bound a single probability, even for

the smaller sample size. However in this latter case, when the four probabilities and
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the relative bounds are combined together, the result is unsatisfactory. To show this

is the case, in Table 4.11 are reported, for each rule, the overall statistic f4,π and the

corresponding confidence interval, for the first chain dataset of size m = 1000.

Rule Statistic Interval
X ≙ 0→ Y ≙ 0 0.488 [-0.986, 0.856]
X ≙ 0→ Y ≙ 1 -0.488 [-2.834, 0.435]
X ≙ 1→ Y ≙ 0 -0.488 [-0.855, 1.003]
X ≙ 1→ Y ≙ 1 0.488 [-0.433, 2.886]

X ≙ 0→ Y ≙ 0 ∣ Z -0.074 [-0.385, 0.741]
X ≙ 0→ Y ≙ 1 ∣ Z 0.074 [-0.843, 0.583]
X ≙ 1→ Y ≙ 0 ∣ Z 0.074 [-0.740, 0.385]
X ≙ 1→ Y ≙ 1 ∣ Z -0.074 [-0.581, 1.012]

Table 4.11: Value of the statistic f4,π and relative lower bound, computed for all the
rules for the first chain dataset of size m = 1000.

The interval, for most of the rules, has a magnitude that covers all the range of

possible values for the statistic, or it is even bigger.

For dataset size m = 100000, instead, the results are good. Table 4.12 reports the

same information of the previous one, again for the first chain dataset (the parameters

defining the bound are the same as for the smaller sample size, expect for the n-

MCERA which is order of 10−3). It is possible to see that in this case the confidence

interval covers an adequate and quite narrow range of values.

Rule Statistic Interval
X ≙ 0→ Y ≙ 0 0.337 [0.283, 0.392]
X ≙ 0→ Y ≙ 1 -0.337 [-0.413, -0.262]
X ≙ 1→ Y ≙ 0 -0.337 [-0.392, -0.283]
X ≙ 1→ Y ≙ 1 0.337 [0.262, 0.413]

X ≙ 0→ Y ≙ 0 ∣ Z -0.003 [-0.155, 0.122]
X ≙ 0→ Y ≙ 1 ∣ Z 0.003 [-0.166, 0.151]
X ≙ 1→ Y ≙ 0 ∣ Z 0.003 [-0.123, 0.155]
X ≙ 1→ Y ≙ 1 ∣ Z -0.003 [-0.152, 0.166]

Table 4.12: Value of the statistic f4,π and relative confidence interval, computed for all
the rules for the first chain dataset of size m = 100000.

Let us now consider the improved bound (Eq.(2.42)). It is necessary to compute

the upper bound to the variance vi, i ∈ 1, ...4 for all the four sample statistics. Starting

from f4.1,π(si), let X4.1,π be the random variable that represents the values taken by

statistic (for the rule under analysis), with the relative probabilities:

X4.1,π ≙

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 with p(σ, y)
0 with p(σ, ȳ)
0 with p(σ̄, y)
0 with p(σ̄, ȳ)

(4.33)
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its expected value is:

E∥X4.1,π∥ ≙ 1 ⋅ p(σ, y) ≙ p(σ, y). (4.34)

As usual, we work under the null hypothesis, thus we can decompose the expected

value.

EH0
∥X4.1,π∥ ≙ p(σ, y) ≙ A

m
(1)

≙ p(σ)p(y) ≙ (A+B)

m
⋅
(A+C)

m
(2) (4.35)

The other term that contributes to the variance is:

EH0
∥(X4.1,π)2∥ ≙ 12 ⋅ p(σ, y) ≙ A

m
(1)

≙ 12 ⋅ p(σ)p(y) ≙ (A+B)

m
⋅
(A+C)

m
(2) (4.36)

thus its final expression is:

V ar(X4.1,π) ≙ EH0
∥(X4.1,π)2∥ − (EH0

∥X4.1,π∥)2 ≙
≙
A

m
−(A

m
)2 (1)

≙
(A+B)

m
⋅
(A+C)

m
−((A+B)

m
⋅
(A+C)

m
)2 (2)

(4.37)

To compute the upper bound to the variance, I focused on the maximization of the

term denoted by (1) of Eq.(4.37) because it was easier to deal with it.

Defining x ≐ A
m
, the expression to analyse becomes t(x) ≙ x − x2; it is positive for

x ∈ ∥0,1∥, which is our domain of interest. To search for maximal and minimal point

it is necessary to study the sign of the first derivative: dt(x)
dx
≙ 1 − 2x. It is strictly

positive, therefore increasing, for x < 1
2 and decreasing for x > 1

2 ; the point x ≙ 1
2 is

thus a maximum. This value for x corresponds to put half samples in A: A ≙ m
2 . At

this point it is possible to compute v1, however first a clarification must be made. The

formula denoted by (1) do not explicitly consider the independence assumption; the

clause derived concerns only entry A of the contingency, but to be precise, the entries

B, C and D should not be assigned randomly, but in a way such that the independence

assumption holds.

However since this in practice does not affect the computation, it is possible to

substitute A ≙ m
2 in Eq.(4.37), obtaining upper bound v1:

v1 ≙
m
2

m
−( m

2

m
)2 ≙ 1

2
−
1

4
≙
1

4
. (4.38)

The computation for f4.2,π(si) is very similar; let X4.2,π be the random variable that
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represents the values taken by the statistic for the considered rule.

X4.2,π ≙

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 with p(σ, y)
0 with p(σ, ȳ)
1 with p(σ̄, y)
0 with p(σ̄, ȳ)

(4.39)

The expected value is:

E∥X4.2,π∥ ≙ 1 ⋅ p(σ̄, y) ≙ p(σ̄, y). (4.40)

which under the null hypothesis becomes:

EH0
∥X4.2,π∥ ≙ p(σ̄, y) ≙ C

m
(1)

≙ p(σ̄)p(y) ≙ (C+D)

m
⋅
(A+C)

m
(2) (4.41)

The other contribution to the variance is given by:

EH0
∥(X4.2,π)2∥ ≙ 12 ⋅ p(σ̄, y) ≙ C

m
(1)

≙ 12 ⋅ p(σ̄)p(y) ≙ (C+D)

m
⋅
(A+C)

m
(2) (4.42)

that in this case is:

V ar(X4.2,π) ≙ EH0
∥(X4.2,π)2∥ − (EH0

∥X4.2,π∥)2 ≙
≙
C

m
−(C

m
)2 (1)

≙
(C+D)

m
⋅
(A+C)

m
−((C+D)

m
⋅
(A+C)

m
)2. (2)

(4.43)

Focusing on Eq.(4.43)(1) and repeating the previous reasoning, it can be easily seen

that the maximum is reached when C ≙ m
2 , leading to the following upper bound:

v2 ≙
m
2

m
−( m

2

m
)2 ≙ 1

2
−
1

4
≙
1

4
. (4.44)

The reasoning for f4.3,π(si) and f4.4,π(si) is even simpler. Starting from the first,

the corresponding random variable, for a given rule, is:

X4.3,π ≙

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 with p(σ)
0 with p(σ̄) (4.45)
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The expected value, in its general form and under H0 is the same:

E∥X4.3,π∥ ≙ EH0
∥X4.3,π∥ ≙ 1 ⋅ p(σ) ≙ p(σ) ≙ A+B

m
. (4.46)

As usual, it is necessary to derive the expression of E∥(X4.3,π)2∥ to compute the

variance; their values are derived, respectively, in Eqs.(4.47) and (4.48).

EH0
∥(X4.3,π)2∥ ≙ 12 ⋅ p(σ) ≙ A+B

m
(4.47)

V ar(X4.3,π) ≙ EH0
∥(X4.3,π)2∥ − (EH0

∥X4.3,π∥)2 ≙
≙
A+B

m
−(A+B

m
)2 (4.48)

Denoting x ≙ (A+B)
m

, the maximum is, as usual, for x ≙ 1
2 , so when half of the samples

falls in A and B. Independently of how the values are arranged, the upper bound v3 is

0.25.

The computation for f4.4,π(si) is exactly the same, but with (C+D) instead of

(A+B).

At this point it is possible to compute the order of magnitude of the bound and

the bound itself; the parameters for the four statistics are the same: vi ≙ 0.25, the

n-MCERA R̂ is order of 10−2 for size 1000, c = z = 1 and, as usual, n = 1000. I start

from the magnitude analysis; the first term, ρ, is dominated by the n-MCERA:

∥ρ∥ ∼ 10−2 + 100 ⋅
√

1

103 ⋅ 103

∼ 10−2 +
√
10−6

∼ 10−2 + 10−3

∼ 10−2

(4.49)

but is not true for the second one r, as can be seen in the derivation below.

∥r∥ ∼ 10−2 + 10−3⋅(√100 ⋅ (103 ⋅ 10−2 + 100) + 100)
∼ 10−2 + 10−3⋅(√(101 + 100) + 100)
∼ 10−2 + 10−3⋅(100.5 + 100)
∼ 10−2 + 10−3 ⋅ 100.5

∼ 10−2 + 10−1.5

∼ 10−1.5

(4.50)
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∥ϵ∥ ∼ 10−1.5 +
√

10−1 + 100 ⋅ 10−1.5

103
+
100

103

∼ 10−1.5 +

√
10−1 + 10−1.5

103
+ 10−3

∼ 10−1.5 +
√
10−1 ⋅ 10−3 + 10−3

∼ 10−1.5 +
√
10−4 + 10−3

∼ 10−1.5 + 10−2 + 10−3

∼ 10−1.5

(4.51)

As usual, in Table 4.13 are reported the terms composing the bound, the bound

itself and the range of values assumed by f4.1,π, for the usual m and n. Even if the

results are relative to f4.1,π, they are representative also of the other statistics since all

the parameters are the same. The bound is comparable with the previous one for both

sizes m (thus we can conclude that for the smaller one is not satisfactory at all); for

this reason I will no develop further the analysis in this context.

m n ρ r ϵ range
1000 1000 0.0229 0.0354 0.1309 ∥0,1∥
1000 10000 0.0209 0.0329 0.1252 ∥0,1∥
1000 100000 0.0203 0.0322 0.1234 ∥0,1∥
100000 1000 0.0023 0.0027 0.0109 ∥0,1∥
100000 10000 0.0021 0.0025 0.0105 ∥0,1∥
100000 100000 0.0020 0.0024 0.0103 ∥0,1∥

Table 4.13: Values of the improved bound ϵ, together with the factors ρ and r defining
it, and range of values assumed by the statistic f4.1,π, for various m and n.

The detailed results for the two bounds can be found in section 5.2. In particu-

lar, since for the smaller sample size both bounds are completely unsatisfactory, the

discussion will regard only the bigger sample size.

4.3.3 Estimation of the Bounds for FR

In this section I perform the estimation of the bounds for family FR, defined in para-

graph 3.3.

Let us start by the first bound (Eq.(2.38)). It is necessary to derive the values of

z and c relative to the family FR ≙ {fR,π ∣ ∀π}. Recalling the definition of the sample

statistic fR,π(si) (see Eq.(3.48)), we have that fR,π(si) ∈ {−1,1} thus z = 1 and c =

2. In the following I analyse the order of magnitude of the factors, both m and n are

equal to 1000; the n-MCERA, instead, is order of 10−2, while δ, as usual, is 0.05.
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R̃ ∼ 10−2 + 100 ⋅

√
1

103 ⋅ 103

∼ 10−2 +
√
10−6

∼ 10−2 + 10−3

∼ 10−2

(4.52)

f1 ∼

√
100 ⋅ (103 ⋅ 10−2 + 100)

103

∼

√
100 ⋅ (101)
103

∼ 101 ⋅ 10−3

∼ 10−2

(4.53)

f2 ∼ 10
0
⋅
1

103

∼ 10−3
(4.54)

f3 ∼ 10
0
⋅

√
1

103

∼

√
10−3

∼ 10−1.5

(4.55)

As before, the driving term is f3, however in this case the statistic lies in ∥−1,1∥
and in practice its value is order of 10−1, therefore a significant bound can be provided.

In Table 4.14 are reported the bound, together with the range of values covered by

the statistic, for the usual two sample sizes m and different n (for m = 100000 the

n-MCERA is order of 10−3; I do not report the derivation of the magnitude of the

bound for this sample size).

m n Bound Range
1000 1000 0.1883 ∥−1,1∥
1000 10000 0.1831 ∥−1,1∥
1000 100000 0.1814 ∥−1,1∥
100000 1000 0.0160 ∥−1,1∥
100000 10000 0.0156 ∥−1,1∥
100000 100000 0.0155 ∥−1,1∥

Table 4.14: Value of the bound for fR,π, computed for various values of m and n; z =
1.
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Differently from the previous two statistics, the bound in this case works much

better, even if for the smaller sample size, the behaviour is not excellent. In fact, in

this case, the maximum value of the statistic that is detectable, in the sense that it is

not overwhelmed by the magnitude of the bound, is around 0.18. This means that if

the statistic and its version computed under the null hypothesis are not at a distance

of at least 0.18, then the null hypothesis is always accepted. However this is still a

good results, since for the precedent ones for size m = 1000 the bound does not work

at all. For the biggest sample size, instead, the results are really good, providing an

interval even narrower than the one obtained using family F4. Thus FR is the best

approach, not only because its works also for the smaller sample size, but also because

it improves the results also for the bigger one.

In this case it is not possible to vary z, since the sample statistic takes binary values,

-1 and 1, not in a continuum range.

I switch now to the analysis of the improved bound, which requires the computation

of the upper bound of the variance v of the family FR. For this purpose, let XR,π be the

random variable that represents the values assumed by the sample statistic fR,π(si):

XR,π ≙

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 with p(σ, y)
1 with p(σ̄, ȳ)
−1 with p(σ, ȳ)
−1 with p(σ̄, y).

(4.56)

As before, the calculation is performed under the null hypothesis; the expected

value is:

EH0
∥XR,π∥ ≙ p(σ)p(y) + p(σ̄)p(ȳ) − p(σ)p(ȳ) − p(σ̄)p(y)

≙ p(σ)[p(y) − p(ȳ)] − p(σ̄)[p(y) − p(ȳ)] ≙
≙[p(σ) − p(σ̄)]⋅[p(y) − p(ȳ)] ≙
≙[p(σ) − (1 − p(σ))]⋅[p(y) − (1 − p(y))] ≙
≙[2p(σ) − 1]⋅[2p(y) − 1] ≙
≙

⎡⎢⎢⎢⎢⎣2 ⋅
A +B

m
− 1

⎤⎥⎥⎥⎥⎦⋅
⎡⎢⎢⎢⎢⎣2 ⋅

A +C

m
− 1

⎤⎥⎥⎥⎥⎦.

(4.57)

Recalling the definition of variance of a random variable X, V ar(X) ≙ E∥X2∥ −(E∥X∥)2, to maximise the variance it is necessary to minimise the expected value of X.

The minimum possible value for EH0
∥XR∥ is 0 and it is achieved when at least one

between the two factors composing it is 0. The first is null when (A+B) ≙ m
2 , so for

example we can decide to put half of the samples in “A”; at this point we are not

free to distribute the other half samples between “C” and “D”. In fact, since we are

working under H0, not all the distributions will give a statistic that equals its value
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computed under the null hypothesis (which is the condition for the independence). A

possible one is to put the other half in “C”; another example of a table satisfying the

condition and with null expected value is the one with all entries equal to m
4 .

The other term that contributes to the variance is EH0
∥(XR,π)2∥:

EH0
∥(XR,π)2∥ ≙ p(σ)p(y) + p(σ̄)p(ȳ) + p(σ)p(ȳ) + p(σ̄)p(y) ≙

≙ p(σ)[p(y) + p(ȳ)] + p(σ̄)[p(y) + p(ȳ)]
≙[p(σ) + p(σ̄)]⋅[p(y) + p(ȳ)]
≙ 1.

(4.58)

Thus the maximum variance is v ≙ 1; it is now possible to perform the analysis of

the bound. For m = n = 1000 we get (δ as before is equal to 0.05 and the n-MCERA

is order of 10−2):

∥ρ∥ ∼ 10−2 + 100 ⋅
√

1

103 ⋅ 103

∼ 10−2 +
√
10−6

∼ 10−2 + 10−3

∼ 10−2

(4.59)

∥r∥ ∼ 10−2 + 10−3⋅(√100 ⋅ (103 ⋅ 10−2 + 100) + 100)
∼ 10−2 + 10−3⋅(√(101 + 100) + 100)
∼ 10−2 + 10−3⋅(100.5 + 100)
∼ 10−2 + 10−3 ⋅ 100.5

∼ 10−2 + 10−1.5

∼ 10−1.5

(4.60)

∥ϵ∥ ∼ 10−1.5 +
√

100 + 100 ⋅ 10−1.5

103
+
100

103

∼ 10−1.5 +

√
100 + 10−1.5

103
+ 10−3

∼ 10−1.5 +
√
100 ⋅ 10−3 + 10−3

∼ 10−1.5 +
√
10−3 + 10−3

∼ 10−1.5 + 10−1.5 + 10−3

∼ 10−1.5

(4.61)

The asymptotic analysis seems promising to bound the statistic: In Table 4.15 are
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reported the results for the usual sample sizes and various n and it is possible to see

that they are comparable with the ones obtained with the other formulation of the

bound.

m n ρ r ϵ range
1000 1000 0.0229 0.0422 0.1956 ∥−1,1∥
1000 10000 0.0209 0.0396 0.1894 ∥−1,1∥
1000 100000 0.0203 0.0387 0.1875 ∥−1,1∥
100000 1000 0.0023 0.0028 0.0151 ∥−1,1∥
100000 10000 0.0021 0.0026 0.0146 ∥−1,1∥
100000 100000 0.0020 0.0025 0.0145 ∥−1,1∥

Table 4.15: Values of the improved bound ϵ, together with the factors ρ and r defining
it, and range of values assumed by the statistic fR,π, for various m and n.

The detailed description of the results on synthetic datasets can be found in para-

graph 5.3.



Chapter 5

Experimental Results

In this Chapter I discuss the results for family of statistics, Fe, F4, FR, tested on the

synthetic datasets I defined in Section 4.2. As already discussed, for each fundamen-

tal structure (chain, fork and collider) and for sizes in {1000,100000} I created 100

datasets; for each (structure, size) configuration the results are the average across all

the 100 datasets. For each family were pre-tested the two bounds of Eqs.(2.38) and

(2.42) under different parameters settings; the detailed analysis is reported in Section

4.3. For simplicity, in this Chapter I report and discuss exhaustively only the results

relative to the best parameter configuration.

To simplify the analysis, I make a short recap of the test procedure. For all the

statistics given a rule π ∶ σ → y, the null hypothesis states the independence between σ

and y (Definition 2.6.1). However the way in which this is assessed is different for the

three, so I report in Table 5.1 a short summary.

Family Condition
Fe The confidence interval traps the 0
F4 The confidence interval traps the 0

FR
The confidence interval traps the value of the
statistic computed under the null hypothesis

Table 5.1: Recap of the test procedure; for each family is reported the condition under
which the null hypothesis is accepted.

I report also, in Table 5.2, the true answer to the independence test for chain, fork

and collider.

Structure Conditional case Unconditional case
Chain Independence Dependence
Fork Independence Dependence

Collider Dependence Independence

Table 5.2: True answer to the independence test for the three fundamental structures
of a graph.

63
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5.1 Results for Family Fe

A key parameter for statistic fe,π(si) ∶ X → ∥a, b∥ is the maximum codomain absolute

value z ≙ max{∣a∣, ∣b∣}. Recalling the discussion of paragraph 4.3.1, the most conser-

vative choice was z = 1, that was completely unsatisfactory. Trying to improve, this

condition was relaxed, setting z ≙ m
100 , but without success; the results that I discuss in

the following are relative to this latter choice of z and to n = 1000 Monte Carlo trials.

I start from the results relative to the smaller sample size m = 1000; Tables 5.3-5.5

are relative, respectively, to the chain, the fork and the collider. For each rule are

reported the following average quantities, across the 100 datasets:

• Statistic, the value assumed by the overall statistic fe,π (or fe,π,cond if the rule is

conditional);

• Interval, the average length of the confidence interval (which extremes are ob-

tained subtracting and adding the bound to the Supremum Deviation to the

statistic value);

• N rejects, the number of times the null hypothesis is rejected, out of 100.

Fe: Chain, m = 1000
Rule Statistic Interval N rejects

X ≙ 0→ Y ≙ 0 3.4138 ⋅ 10−4 2.2489 ⋅ 10−2 0
X ≙ 0→ Y ≙ 1 −3.4138 ⋅ 10−4 2.2489 ⋅ 10−2 0
X ≙ 1→ Y ≙ 0 −3.4138 ⋅ 10−4 2.2489 ⋅ 10−2 0
X ≙ 1→ Y ≙ 1 3.4138 ⋅ 10−4 2.2489 ⋅ 10−2 0

X ≙ 0→ Y ≙ 0 ∣ Z 5.2076 ⋅ 10−6 2.2489 ⋅ 10−2 0
X ≙ 0→ Y ≙ 1 ∣ Z −5.2076 ⋅ 10−6 2.2489 ⋅ 10−2 0
X ≙ 1→ Y ≙ 0 ∣ Z −5.2076 ⋅ 10−6 2.2489 ⋅ 10−2 0
X ≙ 1→ Y ≙ 1 ∣ Z 5.2076 ⋅ 10−6 2.2489 ⋅ 10−2 0

Table 5.3: Results for family Fe on the chain datasets of size 1000. For each rule are
reported the following average quantities: value of the statistic, length of the confidence
interval and the number of times the null hypothesis is rejected.

The results confirm what was already discussed in section 4.3.1, that is the fact that

the bound is not adequate since it is order of magnitude higher than the statistic. Given

that and since the statistic is really small, the 0 is always trapped by the confidence

interval, thus for all the rules the outcome of the independence test is to accept the null

hypothesis. However, we know that for the chain and the fork in the unconditional case

there is dependence, while for the collider this happens conditioning. We can therefore

conclude that for this sample size the information brought by the statistic is erased by

the bound.

Also with size m = 100000 the results are not satisfactory, for the same reason as

before; they are reported in Tables 5.6 - 5.8.



5.1. RESULTS FOR FAMILY Fe 65

Fe: Fork, m = 1000
Rule Statistic Interval N rejects

X ≙ 0→ Y ≙ 0 2.3114 ⋅ 10−4 2.4906 ⋅ 10−2 0
X ≙ 0→ Y ≙ 1 −2.3114 ⋅ 10−4 2.4906 ⋅ 10−2 0
X ≙ 1→ Y ≙ 0 −2.3114 ⋅ 10−4 2.4906 ⋅ 10−2 0
X ≙ 1→ Y ≙ 1 2.3114 ⋅ 10−4 2.4906 ⋅ 10−2 0

X ≙ 0→ Y ≙ 0 ∣ Z 1.7682 ⋅ 10−6 2.4906 ⋅ 10−2 0
X ≙ 0→ Y ≙ 1 ∣ Z −1.7682 ⋅ 10−6 2.4906 ⋅ 10−2 0
X ≙ 1→ Y ≙ 0 ∣ Z −1.7682 ⋅ 10−6 2.4906 ⋅ 10−2 0
X ≙ 0→ Y ≙ 0 ∣ Z 1.7682 ⋅ 10−6 2.4906 ⋅ 10−2 0

Table 5.4: Results for family Fe on the fork datasets of size 1000. For each rule are
reported the following average quantities: value of the statistic, length of the confidence
interval and the number of times the null hypothesis is rejected.

Fe: Collider, m = 1000
Rule Statistic Interval N rejects

X ≙ 0→ Y ≙ 0 −4.9839 ⋅ 10−6 2.4784 ⋅ 10−2 0
X ≙ 0→ Y ≙ 1 4.9839 ⋅ 10−6 2.4784 ⋅ 10−2 0
X ≙ 1→ Y ≙ 0 4.9839 ⋅ 10−6 2.4784 ⋅ 10−2 0
X ≙ 1→ Y ≙ 1 −4.9839 ⋅ 10−6 2.4784 ⋅ 10−2 0

X ≙ 0→ Y ≙ 0 ∣ Z −1.1929 ⋅ 10−4 2.4784 ⋅ 10−2 0
X ≙ 0→ Y ≙ 1 ∣ Z 1.1929 ⋅ 10−4 2.4784 ⋅ 10−2 0
X ≙ 1→ Y ≙ 0 ∣ Z 1.1929 ⋅ 10−4 2.4784 ⋅ 10−2 0
X ≙ 0→ Y ≙ 0 ∣ Z −1.1929 ⋅ 10−4 2.4784 ⋅ 10−2 0

Table 5.5: Results for family Fe on the collider datasets of size 1000. For each rule are
reported the following average quantities: value of the statistic, length of the confidence
interval and the number of times the null hypothesis is rejected.

Fe: Chain, m = 100000
Rule Statistic Interval N rejects

X ≙ 0→ Y ≙ 0 3.4026 ⋅ 10−6 2.1156 ⋅ 10−5 0
X ≙ 0→ Y ≙ 1 −3.4026 ⋅ 10−6 2.1156 ⋅ 10−5 0
X ≙ 1→ Y ≙ 0 −3.4026 ⋅ 10−6 2.1156 ⋅ 10−5 0
X ≙ 1→ Y ≙ 1 3.4026 ⋅ 10−6 2.1156 ⋅ 10−5 0

X ≙ 0→ Y ≙ 0 ∣ Z 1.0238 ⋅ 10−9 2.1156 ⋅ 10−5 0
X ≙ 0→ Y ≙ 1 ∣ Z −1.0238 ⋅ 10−9 2.1156 ⋅ 10−5 0
X ≙ 1→ Y ≙ 0 ∣ Z −1.0238 ⋅ 10−9 2.1156 ⋅ 10−5 0
X ≙ 1→ Y ≙ 1 ∣ Z 1.0238 ⋅ 10−9 2.1156 ⋅ 10−5 0

Table 5.6: Results for family Fe on the chain datasets of size 100000. For each rule are
reported the following average quantities: value of the statistic, length of the confidence
interval and the number of times the null hypothesis is rejected.

From the analysis of paragraph 4.3.1 emerged that the improved version of the

bound was more promising, but only for size m = 100000. For example, in Table 5.9,

which is relative to the chain dataset, we can see that without conditioning the null

hypothesis is correctly always rejected.

Table 5.10 shows instead the results for the fork datasets. In this case the null
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Fe: Fork, m = 100000
Rule Statistic Interval N rejects

X ≙ 0→ Y ≙ 0 2.2988 ⋅ 10−6 2.1168 ⋅ 10−5 0
X ≙ 0→ Y ≙ 1 −2.2988 ⋅ 10−6 2.1168 ⋅ 10−5 0
X ≙ 1→ Y ≙ 0 −2.2988 ⋅ 10−6 2.1168 ⋅ 10−5 0
X ≙ 1→ Y ≙ 1 2.2988 ⋅ 10−6 2.1168 ⋅ 10−5 0

X ≙ 0→ Y ≙ 0 ∣ Z −5.2832 ⋅ 10−9 2.1168 ⋅ 10−5 0
X ≙ 0→ Y ≙ 1 ∣ Z 5.2832 ⋅ 10−9 2.1168 ⋅ 10−5 0
X ≙ 1→ Y ≙ 0 ∣ Z 5.2831 ⋅ 10−9 2.1168 ⋅ 10−5 0
X ≙ 1→ Y ≙ 1 ∣ Z −5.2832 ⋅ 10−9 2.1168 ⋅ 10−5 0

Table 5.7: Results for family Fe on the fork datasets of size 100000. For each rule are
reported the following average quantities: value of the statistic, length of the confidence
interval and the number of times the null hypothesis is rejected.

fe,π: Collider, m = 100000
Rule Statistic Interval N rejects

X ≙ 0→ Y ≙ 0 2.4327 ⋅ 10−9 2.1081 ⋅ 10−5 0
X ≙ 0→ Y ≙ 1 −2.4327 ⋅ 10−9 2.1081 ⋅ 10−5 0
X ≙ 1→ Y ≙ 0 −2.4327 ⋅ 10−9 2.1081 ⋅ 10−5 0
X ≙ 1→ Y ≙ 1 2.4327 ⋅ 10−9 2.1081 ⋅ 10−5 0

X ≙ 0→ Y ≙ 0 ∣ Z −1.1596 ⋅ 10−6 2.1081 ⋅ 10−5 0
X ≙ 0→ Y ≙ 1 ∣ Z 1.1596 ⋅ 10−6 2.1081 ⋅ 10−5 0
X ≙ 1→ Y ≙ 0 ∣ Z 1.1596 ⋅ 10−6 2.1081 ⋅ 10−5 0
X ≙ 1→ Y ≙ 1 ∣ Z −1.1596 ⋅ 10−6 2.1081 ⋅ 10−5 0

Table 5.8: Results for family Fe on the collider datasets of size 100000. For each
rule are reported the following average quantities: value of the statistic, length of the
confidence interval and the number of times the null hypothesis is rejected.

Fe: Chain, improved bound, m = 100000
Rule Statistic Interval N rejects

X ≙ 0→ Y ≙ 0 3.4026 ⋅ 10−6 4.7838 ⋅ 10−6 100
X ≙ 0→ Y ≙ 1 −3.4026 ⋅ 10−6 4.7838 ⋅ 10−6 100
X ≙ 1→ Y ≙ 0 −3.4026 ⋅ 10−6 4.7838 ⋅ 10−6 100
X ≙ 1→ Y ≙ 0 3.4026 ⋅ 10−6 4.7838 ⋅ 10−6 100

X ≙ 0→ Y ≙ 0 ∣ Z 1.0239 ⋅ 10−9 4.7838 ⋅ 10−6 0
X ≙ 0→ Y ≙ 1 ∣ Z −1.0239 ⋅ 10−9 4.7838 ⋅ 10−6 0
X ≙ 1→ Y ≙ 0 ∣ Z −1.0239 ⋅ 10−9 4.7838 ⋅ 10−6 0
X ≙ 1→ Y ≙ 1 ∣ Z 1.0239 ⋅ 10−9 4.7838 ⋅ 10−6 0

Table 5.9: Results for family Fe on the chain datasets of size 100000, relative to the
improved bound. For each rule are reported the following average quantities: value
of the statistic, length of the confidence interval and the number of times the null
hypothesis is rejected.

hypothesis is always accepted, even without conditioning; in fact, halving the bound

we obtain a value greater than the statistic, thus the 0 will be always captured. In

section 4.3.1 I showed that the bound could be improved a little bit increasing the

number of Monte Carlo trials n; in particular I am referring to the results of Table 4.8.
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Fe: Fork, improved bound, m = 100000
Rule Statistic Interval N rejects

X ≙ 0→ Y ≙ 0 2.2988 ⋅ 10−6 4.7966 ⋅ 10−6 0
X ≙ 0→ Y ≙ 1 −2.2988 ⋅ 10−6 −4.695 ⋅ 10−6 0
X ≙ 1→ Y ≙ 0 −2.2988 ⋅ 10−6 4.7966 ⋅ 10−6 0
X ≙ 1→ Y ≙ 1 2.2988 ⋅ 10−6 4.7966 ⋅ 10−6 0

X ≙ 0→ Y ≙ 0 ∣ Z −5.2832 ⋅ 10−9 4.7966 ⋅ 10−6 0
X ≙ 0→ Y ≙ 1 ∣ Z 5.2832 ⋅ 10−9 4.7966 ⋅ 10−6 0
X ≙ 1→ Y ≙ 0 ∣ Z 5.2832 ⋅ 10−9 4.7966 ⋅ 10−6 0
X ≙ 1→ Y ≙ 1 ∣ Z −5.2832 ⋅ 10−9 4.7966 ⋅ 10−6 0

Table 5.10: Results for family Fe on the fork datasets of size 100000, relative to the
improved bound. For each rule are reported the following average quantities: value
of the statistic, length of the confidence interval and the number of times the null
hypothesis is rejected.

However, with this fixing, the maximum detectable statistic is order of 1.8 ⋅ 10−6, thus

even if increasing n the results for the fork will be satisfactory, this will not be the case

for the collider for which the value is around 1.2 ⋅ 10−6 (given this evidence the results

for this latter structure are not reported).

Thus we can conclude that for size m = 100000, the results are satisfactory only

using the improved version of the bound and if the value of the statistic is sufficiently

high with respect to the bound itself, that cannot be improved arbitrarily.

Instead, regarding the dataset size m = 1000, the improved bound was bigger than

the statistic. Its computation is reported in Table 4.5; it is relative to n = 1000, but

since the dominant term of the bound does not depend by this quantity and there are

no other parameters on which we can intervene, I do not report the results because

they are meaningless.

5.2 Results for Family F4

In this section I will discuss the results relative to the family F4.

In paragraph 4.3.2 it was shown that for sample size m = 1000 this family leads

to completely unsatisfactory results. In particular, in Table 4.11, which is relative to

the first chain dataset, it was shown that the interval covers almost all the range of

possible values for the effect, that is what we are estimating. Even if it was derived

only for one of the datasets, it is clear that for the others the outcome will be the same,

for this reason for family F4 I discuss only the results for the bigger sample size, which

instead are promising.

First of all, I recall which are the values assumed by the parameters involved; z = c

= 1, the size m is 100000, the number n of Monte Carlo trials is, as usual, 1000, while

the n-MCERA is order of 10−3.

I report, in Tables 5.11 - 5.13, the results relative to the first bound, applied,
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respectively, to the chain, the fork and the collider. For each rule I report these average

quantities, across the 100 datasets:

• Statistic, the average value of f4,π (or f4,π,cond);

• Interval, the average confidence interval length;

• N rejects, the number of times, out of 100, the null hypothesis is rejected.

It is possible to notice that, for this family, the average confidence interval length

is different for each rule. This is due to the different way, with respect to family Fe, in

which the lower and upper bounds are computed.

F4: Chain, m = 100000
Rule Statistic Interval N rejects

X ≙ 0→ Y ≙ 0 0.3403 0.1084 100
X ≙ 0→ Y ≙ 1 -0.3403 0.1504 100
X ≙ 1→ Y ≙ 0 -0.3403 0.1084 100
X ≙ 1→ Y ≙ 1 0.3403 0.1504 100

X ≙ 0→ Y ≙ 0 ∣ Z 0.0001 0.2773 0
X ≙ 0→ Y ≙ 1 ∣ Z -0.0001 0.3186 0
X ≙ 1→ Y ≙ 0 ∣ Z -0.0001 0.2773 0
X ≙ 1→ Y ≙ 1 ∣ Z 0.0001 0.3185 0

Table 5.11: Results for family F4 on the chain datasets of size 100000. For each rule are
reported the following average quantities: value of the statistic, length of the confidence
interval and the number of times the null hypothesis is rejected.

F4: Fork, m = 100000
Rule Statistic Interval N rejects

X ≙ 0→ Y ≙ 0 0.2299 0.1396 100
X ≙ 0→ Y ≙ 1 -0.2299 0.1426 100
X ≙ 1→ Y ≙ 0 -0.2299 0.1397 100
X ≙ 1→ Y ≙ 1 0.2299 0.1427 100

X ≙ 0→ Y ≙ 0 ∣ Z -0.0005 0.2547 0
X ≙ 0→ Y ≙ 1 ∣ Z 0.0005 0.3760 0
X ≙ 1→ Y ≙ 0 ∣ Z 0.0005 0.2549 0
X ≙ 1→ Y ≙ 1 ∣ Z -0.0005 0.3762 0

Table 5.12: Results for family F4 on the fork datasets of size 100000. For each rule are
reported the following average quantities: value of the statistic, length of the confidence
interval and the number of times the null hypothesis is rejected.

For all the three structures and for all the rules, the outcome of the test is al-

ways correct, in fact there is dependence without conditioning for chain and fork and

dependence, conditioning, for the collider.

The conclusion is the same when the improved version of the bound is considered,

as it is possible to see in Tables 5.14 - 5.16, relative, as usual, to chain, fork and collider

respectively.
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F4: Collider, m = 100000
Rule Statistic Interval N rejects

X ≙ 0→ Y ≙ 0 0.0002 0.1369 0
X ≙ 0→ Y ≙ 1 -0.0002 0.1219 0
X ≙ 1→ Y ≙ 0 -0.0002 0.1369 0
X ≙ 1→ Y ≙ 1 0.0002 0.1219 0

X ≙ 0→ Y ≙ 0 ∣ Z -0.1159 0.1880 100
X ≙ 0→ Y ≙ 1 ∣ Z 0.1159 0.1846 100
X ≙ 1→ Y ≙ 0 ∣ Z 0.1159 0.1880 100
X ≙ 1→ Y ≙ 1 ∣ Z -0.1159 0.1846 100

Table 5.13: Results for family F4 on the collider datasets of size 100000. For each
rule are reported the following average quantities: value of the statistic, length of the
confidence interval and the number of times the null hypothesis is rejected.

F4: Chain, improved bound, m = 100000
Rule Statistic Interval N rejects

X ≙ 0→ Y ≙ 0 0.3403 0.1097 100
X ≙ 0→ Y ≙ 1 -0.3403 0.1522 100
X ≙ 1→ Y ≙ 0 -0.3403 0.1097 100
X ≙ 1→ Y ≙ 1 0.3403 0.1522 100

X ≙ 0→ Y ≙ 0 ∣ Z 0.0001 0.2808 0
X ≙ 0→ Y ≙ 1 ∣ Z -0.0001 0.3226 0
X ≙ 1→ Y ≙ 0 ∣ Z -0.0001 0.2807 0
X ≙ 1→ Y ≙ 1 ∣ Z 0.0001 0.3225 0

Table 5.14: Results for family F4 with the improved version of the bound, on the chain
datasets of size 100000. For each rule are reported the following average quantities:
value of the statistic, length of the confidence interval and the number of times the
null hypothesis is rejected.

F4: Fork, improved bound, m = 100000
Rule Statistic Interval N rejects

X ≙ 0→ Y ≙ 0 0.2299 0.1413 100
X ≙ 0→ Y ≙ 1 -0.2299 0.1442 100
X ≙ 1→ Y ≙ 0 -0.2299 0.1412 100
X ≙ 1→ Y ≙ 1 0.2299 0.1443 100

X ≙ 0→ Y ≙ 0 ∣ Z -0.0005 0.2578 0
X ≙ 0→ Y ≙ 1 ∣ Z 0.0005 0.3809 0
X ≙ 1→ Y ≙ 0 ∣ Z 0.0005 0.2578 0
X ≙ 1→ Y ≙ 1 ∣ Z -0.0005 0.3804 0

Table 5.15: Results for family F4 with the improved version of the bound, on the fork
datasets of size 100000. For each rule are reported the following average quantities:
value of the statistic, length of the confidence interval and the number of times the
null hypothesis is rejected.

Summarising this first result, family F4 is suitable to detect causal relationships

only for “big” dataset’s sizes, of the order of 105, but it is useless for smaller ones.
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F4: Collider, improved bound, m = 100000
Rule Statistic Interval N rejects

X ≙ 0→ Y ≙ 0 0.0002 0.1386 0
X ≙ 0→ Y ≙ 1 -0.0002 0.1234 0
X ≙ 1→ Y ≙ 0 -0.0002 0.1386 0
X ≙ 1→ Y ≙ 1 0.0002 0.1234 0

X ≙ 0→ Y ≙ 0 ∣ Z -0.1159 0.1936 100
X ≙ 0→ Y ≙ 1 ∣ Z 0.1159 0.1869 100
X ≙ 1→ Y ≙ 0 ∣ Z 0.1159 0.1904 100
X ≙ 1→ Y ≙ 1 ∣ Z -0.1159 0.1869 100

Table 5.16: Results for family F4 with the improved version of the bound, on the collider
datasets of size 100000. For each rule are reported the following average quantities:
value of the statistic, length of the confidence interval and the number of times the
null hypothesis is rejected.

5.3 Results for family FR

This section is dedicated to the discussion of the results obtained with family FR, which

is the most promising one.

As usual, the results relative to a pair (structure, size) are averaged across the 100

datasets built for that configuration. The quantities reported for each configuration

and for each rule are:

• Statistic, the average value of the statistic;

• Interval, the length of the confidence interval (which is obtained removing and

adding, respectively, the bound to the Supremum Deviation from the statistic);

• N rejects, the number of times the null hypothesis is rejected (out of 100).

Table 5.17 shows the results for the chain datasets of size 1000. The outcome of

the tests is always correct: without conditioning there is dependence, and in fact the

null hypothesis is rejected, while conditioning it is removed.

FR: Chain, m = 1000
Rule Statistic Interval N rejects

X ≙ 0→ Y ≙ 0 0.3404 0.3831 100
X ≙ 0→ Y ≙ 1 -0.3404 0.3831 100
X ≙ 1→ Y ≙ 0 -0.3404 0.3831 100
X ≙ 1→ Y ≙ 1 0.3404 0.3831 100

X ≙ 0→ Y ≙ 0 ∣ Z 0.3404 0.3831 0
X ≙ 0→ Y ≙ 1 ∣ Z -0.3404 -0.3831 0
X ≙ 1→ Y ≙ 0 ∣ Z -0.3404 -0.3831 0
X ≙ 1→ Y ≙ 1 ∣ Z 0.3404 0.3831 0

Table 5.17: Results for family FR on the chain datasets of size 1000. For each rule
are reported the following average quantities: value of the statistic, magnitude of the
confidence interval and the number of times the null hypothesis is rejected.
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FR: Fork, m = 1000
Rule Statistic Interval N rejects

X ≙ 0→ Y ≙ 0 0.2579 0.3827 74
X ≙ 0→ Y ≙ 1 -0.2579 0.3827 74
X ≙ 1→ Y ≙ 0 -0.2579 0.3827 74
X ≙ 1→ Y ≙ 1 0.2579 0.3827 74

X ≙ 0→ Y ≙ 0 ∣ Z 0.2579 0.3827 0
X ≙ 0→ Y ≙ 1 ∣ Z -0.2579 0.3827 0
X ≙ 1→ Y ≙ 0 ∣ Z -0.2579 0.3827 0
X ≙ 1→ Y ≙ 1 ∣ Z 0.2570 0.3827 0

Table 5.18: Results for family FR on the fork datasets of size 1000. For each rule
are reported the following average quantities: value of the statistic, magnitude of the
confidence interval and the number of times the null hypothesis is rejected.

FR: Collider, m = 1000
Rule Statistic Interval N rejects

X ≙ 0→ Y ≙ 0 -0.0056 0.3826 0
X ≙ 0→ Y ≙ 1 0.0056 0.3826 0
X ≙ 1→ Y ≙ 0 0.0056 0.3826 0
X ≙ 1→ Y ≙ 1 -0.0056 0.3826 0

X ≙ 0→ Y ≙ 0 ∣ Z -0.0056 0.3826 12
X ≙ 0→ Y ≙ 1 ∣ Z 0.0056 0.3826 12
X ≙ 1→ Y ≙ 0 ∣ Z 0.0056 0.3826 12
X ≙ 1→ Y ≙ 1 ∣ Z -0.0056 0.3826 12

Table 5.19: Results for family FR on the collider datasets of size 1000. For each rule
are reported the following average quantities: value of the statistic, magnitude of the
confidence interval and the number of times the null hypothesis is rejected.

In Table 5.18 are reported, instead, the results for the fork, for size 1000. In this

case in the unconditional case not all the single instances make the correct decision, in

fact, 74 out of 100 are correct, however this is still an high accuracy. An explanation

for this is that the value of the statistic is closer to its expected value under H0 in

this case, meaning that some values are too small to be significant with respect to the

magnitude of the bound.

To conclude for the smaller sample size, in Table 5.19 are reported the results

relative to the collider. For this structure we expect dependence in the unconditional

case, however it is possible to see from the last column that only 12 tests captures this.

The reason for that is that the statistic is even closer to the expectation under the null

hypothesis in this case.

Let us switch now to the bigger sample size, m = 100000. Tables 5.20 - 5.22 report,

respectively, the results for chain, fork and collider datasets; for all rules, all the tests

give the correct answer. Furthermore with this dataset size it is obtained a much

tighter bound, with respect to the one relative to family F4.

Given that this approach is the most promising, I tested in also on a series of
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FR: Chain, m = 100000
Rule Statistic Interval N rejects

X ≙ 0→ Y ≙ 0 0.3403 0.0322 100
X ≙ 0→ Y ≙ 1 -0.3403 0.0322 100
X ≙ 1→ Y ≙ 0 -0.3403 0.0322 100
X ≙ 1→ Y ≙ 1 0.3403 0.0322 100

X ≙ 0→ Y ≙ 0 ∣ Z 0.3403 0.0322 0
X ≙ 0→ Y ≙ 1 ∣ Z -0.3403 0.0322 0
X ≙ 1→ Y ≙ 0 ∣ Z -0.3403 0.0322 0
X ≙ 1→ Y ≙ 1 ∣ Z 0.3403 0.0322 0

Table 5.20: Results for family FR on the chain datasets of size 100000. For each rule
are reported the following average quantities: value of the statistic, magnitude of the
confidence interval and the number of times the null hypothesis is rejected.

FR: Fork, m = 100000
Rule Statistic Interval N rejects

X ≙ 0→ Y ≙ 0 0.2586 0.0321 100
X ≙ 0→ Y ≙ 1 -0.2586 0.0321 100
X ≙ 1→ Y ≙ 0 -0.2586 0.0321 100
X ≙ 1→ Y ≙ 1 0.2586 0.0321 100

X ≙ 0→ Y ≙ 0 ∣ Z 0.2586 0.0321 0
X ≙ 0→ Y ≙ 1 ∣ Z -0.2586 0.0321 0
X ≙ 1→ Y ≙ 0 ∣ Z -0.2586 0.0321 0
X ≙ 1→ Y ≙ 1 ∣ Z 0.2586 0.0321 0

Table 5.21: Results for family FR on the fork datasets of size 100000. For each rule
are reported the following average quantities: value of the statistic, magnitude of the
confidence interval and the number of times the null hypothesis is rejected.

FR: Collider, m = 100000
Rule Statistic Interval N rejects

X ≙ 0→ Y ≙ 0 0.0002 0.0322 0
X ≙ 0→ Y ≙ 1 -0.0002 0.0322 0
X ≙ 1→ Y ≙ 0 -0.0002 0.0322 0
X ≙ 1→ Y ≙ 1 0.0002 0.0322 0

X ≙ 0→ Y ≙ 0 ∣ Z 0.0002 0.0322 100
X ≙ 0→ Y ≙ 1 ∣ Z -0.0002 0.0322 100
X ≙ 1→ Y ≙ 0 ∣ Z -0.0002 0.0322 100
X ≙ 1→ Y ≙ 1 ∣ Z 0.0002 0.0322 100

Table 5.22: Results for family FR on the collider datasets of size 100000. For each rule
are reported the following average quantities: value of the statistic, the magnitude of
the confidence interval and the number of times the null hypothesis is rejected.

datasets of size m = 10000. The reason for this is that for the smaller size, it is good

but not excellent and I want therefore to give the idea of the minimum dataset size

that gives the correct results. Tables 5.23 - 5.25 reports the results for this new sample

size. Looking in particular at the collider, which was the most critical one, for all the

rules and for all the datasets the correct decision is made, in fact for this sample size
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FR: Chain, m = 10000
Rule Statistic Interval N rejects

X ≙ 0→ Y ≙ 0 0.3397 0.1078 100
X ≙ 0→ Y ≙ 1 -0.3397 0.1078 100
X ≙ 1→ Y ≙ 0 -0.3397 0.1078 100
X ≙ 1→ Y ≙ 1 0.3397 0.1078 100

X ≙ 0→ Y ≙ 0 ∣ Z 0.3397 0.1078 0
X ≙ 0→ Y ≙ 1 ∣ Z -0.3397 0.1078 0
X ≙ 1→ Y ≙ 0 ∣ Z -0.3397 0.1078 0
X ≙ 1→ Y ≙ 1 ∣ Z 0.3397 0.1078 0

Table 5.23: Results for family FR on the chain datasets of size 10000. For each rule are
reported the following average quantities: value of the statistic, length of the confidence
interval and the number of times the null hypothesis is rejected.

FR: Fork, m = 10000
Rule Statistic Interval N rejects

X ≙ 0→ Y ≙ 0 0.2593 0.1080 100
X ≙ 0→ Y ≙ 1 -0.2593 0.1080 100
X ≙ 1→ Y ≙ 0 -0.2593 0.1080 100
X ≙ 1→ Y ≙ 1 0.2593 0.1080 100

X ≙ 0→ Y ≙ 0 ∣ Z 0.2593 0.1080 0
X ≙ 0→ Y ≙ 1 ∣ Z -0.2593 0.1080 0
X ≙ 1→ Y ≙ 0 ∣ Z -0.2593 0.1080 0
X ≙ 1→ Y ≙ 1 ∣ Z 0.2593 0.1080 0

Table 5.24: Results for family FR on the fork datasets of size 10000. For each rule are
reported the following average quantities: value of the statistic, length of the confidence
interval and the number of times the null hypothesis is rejected.

FR: Collider, m = 10000
Rule Statistic Interval N rejects

X ≙ 0→ Y ≙ 0 -0.0011 0.1081 0
X ≙ 0→ Y ≙ 1 0.0011 0.1081 0
X ≙ 1→ Y ≙ 0 0.0011 0.1081 0
X ≙ 1→ Y ≙ 1 -0.0011 0.1081 0

X ≙ 0→ Y ≙ 0 ∣ Z -0.0011 0.1081 100
X ≙ 0→ Y ≙ 1 ∣ Z 0.0011 0.1081 100
X ≙ 1→ Y ≙ 0 ∣ Z 0.0011 0.1081 100
X ≙ 1→ Y ≙ 1 ∣ Z -0.0011 0.1081 100

Table 5.25: Results for family FR on the collider datasets of size 10000. For each
rule are reported the following average quantities: value of the statistic, length of the
confidence interval and the number of times the null hypothesis is rejected.

the magnitude of the bound is quite narrow.

To summarise so far I showed that family FR is the better, since with big and

intermediate sizes works perfectly, while for the smaller one (m = 1000) is good.

At this point are missing only the results relative to the improved version of the

bound. It was shown in Table 4.15, that such bound was comparable to the first one, for
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this reason I report only the results for the chain datasets of sizes m ∈ {1000,100000},
respectively in Tables 5.26 and 5.27.

FR: Chain, improved bound, m = 1000
Rule Statistic Interval N rejects

X ≙ 0→ Y ≙ 0 0.3404 0.4217 100
X ≙ 0→ Y ≙ 1 -0.3404 0.4217 100
X ≙ 1→ Y ≙ 0 -0.3404 0.4217 100
X ≙ 1→ Y ≙ 1 0.3404 0.4217 100

X ≙ 0→ Y ≙ 0 ∣ Z 0.3404 0.4217 0
X ≙ 0→ Y ≙ 1 ∣ Z -0.3404 0.4217 0
X ≙ 1→ Y ≙ 0 ∣ Z -0.3404 0.4217 0
X ≙ 1→ Y ≙ 1 ∣ Z 0.3404 0.4217 0

Table 5.26: Results for family FR on the chain datasets of size 1000 and with the
improved formulation of the bound. For each rule are reported the following average
quantities: value of the statistic, length of the confidence interval and the number of
times the null hypothesis is rejected.

FR: Chain, improved bound, m = 100000
Rule Statistic Interval N rejects

X ≙ 0→ Y ≙ 0 0.3403 0.0325 100
X ≙ 0→ Y ≙ 1 -0.3403 0.0325 100
X ≙ 1→ Y ≙ 0 -0.3403 0.0325 100
X ≙ 1→ Y ≙ 1 0.3403 0.0325 100

X ≙ 0→ Y ≙ 0 ∣ Z 0.3403 0.0325 0
X ≙ 0→ Y ≙ 1 ∣ Z -0.3403 0.0325 0
X ≙ 1→ Y ≙ 0 ∣ Z -0.3403 0.0325 0
X ≙ 1→ Y ≙ 1 ∣ Z 0.3403 0.0325 0

Table 5.27: Results for family FR on the chain datasets of size 100000 for the improved
formulation of the bound. For each rule are reported the following average quantities:
value of the statistic, length of the confidence interval and the number of times the
null hypothesis is rejected.

To conclude, family FR works really well for datasets of size at least 10000 and

achieves good results also for smaller ones, in particular around 1000. Furthermore

this holds independently from the bound formulation, in fact it was shown that the

results are comparable.
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Conclusions

The aim of this thesis was investigating the possibility of using Rademacher Averages

in causal rule discovery, to overcome two main issues of the state of the art approach

[3]. This latter, in fact, has two main limitations. First, it computes the confidence

interval for the effect, the statistic defined to assess causality, modeling the error with

a normal distribution. Second, are performed several independence tests, but without

correcting for multiple hypothesis testing.

Our approach instead, thanks to the use of Rademacher Averages, compute a con-

fidence interval that (i) depends on the property of the family of statistic defined; (ii)

considers all the functions belonging to the family, directly accounting for the MHT

correction; (iii) furthermore, the bound is provided with rigorous probabilistic guaran-

tees.

I tested three different families of statistics on synthetic datasets. I implemented

the three key structures for a graph, chain, fork and collider; I chose two different

sample sizes m ∈ {1000,100000} and for each (structure, size) configuration I created

100 datasets.

One of them, Fe, is completely unsatisfactory since the bound is order of magnitude

higher than the one of the statistic. F4, instead, works perfectly for the big dataset size,

but is meaningless for the small one, since the interval covers almost all the range of

possible values for the statistic. Finally, FR, works perfectly for the bigger sample size

and in addition the interval is much tighter with respect to the one of F4. Furthermore,

for the smaller dataset sample size, if the statistic is “sufficiently far” from its expected

value under the null hypothesis, it has an high accuracy. Since this family was more

promising, I performed also some additional tests, on datasets of size m = 10000, to

better understand which was the size threshold for which the results are always correct.

With this latter choice of m, the outcome of the independence test is always correct.

To conclude, this work shows it is possible to use Rademacher Averages in causal

rule discovery, with the advantages above mentioned, and in particular one of the

families I tested, works really well in practice.

75



76 CHAPTER 6. CONCLUSIONS



Bibliography

[1] Overfitting. https://it.mathworks.com/discovery/overfitting.html,

[2] Two-sided-test. https://sphweb.bumc.bu.edu/otlt/

mph-modules/bs/bs704_hypothesistest-means-proportions/bs704_

hypothesistest-means-proportions3.html,

[3] Budhathoki, Kailash ; Boley, Mario ; Vreeken, Jilles: Discovering reliable

causal rules. In: Proceedings of the 2021 SIAM International Conference on Data

Mining (SDM) SIAM, 2021, S. 1–9

[4] Casella, George ; Berger, Roger L.: Statistical inference. Cengage Learning,

2021

[5] Eberhardt, Frederick: Introduction to the foundations of causal discovery. In:

International Journal of Data Science and Analytics 3 (2017), S. 81–91

[6] Neal, Brady: Introduction to Causal Inference. Course Lecture Notes (draft),

2020

[7] Pearl, Judea: Causality. Cambridge university press, 2009

[8] Pearson, Karl: The Grammar of Science. Cambridge University Press, 2014

(Cambridge Library Collection - Physical Sciences). http://dx.doi.org/10.

1017/CBO9781139878548. http://dx.doi.org/10.1017/CBO9781139878548

[9] Pellegrina, Leonardo ; Cousins, Cyrus ; Vandin, Fabio ; Riondato, Matteo:

MCRapper: Monte-Carlo Rademacher averages for poset families and approxi-

mate pattern mining. In: ACM Transactions on Knowledge Discovery from Data

(TKDD) 16 (2022), Nr. 6, S. 1–29

[10] Uhler, Caroline ; Raskutti, Garvesh ; Bühlmann, Peter ; Yu, Bin: Geometry
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