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Abstract

The existence of entangled systems is one of the most interesting aspects of quantum mechanics:
studying non-classical correlations allows a better understanding of the non-local structure of
quantum theory but also leads to important challenges in the development of new technologies in
quantum information. Nowadays there are many ways to detect entanglement but they are not
so efficient because of the number of measurements required and the numerical complexity to
characterize general states. However using a specific class of observables, called Entanglement
Witnesses, generalizations of the well-known observables used in Bell’s Inequalities, we can
obtain lower bounds for entanglement and so, using Quantitative Entanglement Witness and
the related bounding function, actually a quantification. This work aims to apply this method
to verify and quantify the presence of entanglement in a bipartite system of a qubit and a
harmonic oscillator, following the already known case of two qubits.

L’esistenza di sistemi entangled rappresenta uno degli aspetti più interessanti della meccani-
ca quantistica: lo studio di correlazioni non classiche difatti non solo permette di indagare la
fondamentale struttura non locale di tale teoria ma è anche una sfida ancora aperta per poter
utilizzare questa preziosa risorsa nello sviluppo di tecnologie di informazione quantistica. No-
nostante attualmente siano conosciuti diversi metodi per l’individuazione e la stima dell’entan-
glement questi risultano in molti casi poco efficienti a causa della quantità di misure necessarie
e della complessità numerica per la caratterizzazione di stati generici. Tuttavia tramite delle
particolari osservabili, dette Entanglement Witnesses, generalizzazioni delle ben note osservabili
usate nelle disuguaglianze di Bell, si possono ricavare dei limiti inferiori per l’entanglement e
dunque, tramite Quantitative Entanglement Witness e relativa bounding function, un’effettiva
quantificazione. In questo lavoro si prende in esame un sistema bipartito composto da un qubit
ed un oscillatore armonico proponendosi, tramite tale metodologia, di verificare la presenza di
correlazioni quantistiche e di quantificarle, sul modello di quanto già noto per un sistema a 2
qubits.
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Introduction

Quantum entanglement is one of the most characterizing features of quantum physics: it is not
only interesting to explore the nature of the deep connections between quantistic systems but
it is also a very significant resource in many quantum information’s aspects such as processing
data, quantum errors correction [1], quantum simulators, machine learning [2], cryptography
and teleportation. For this reason, there is a growing interest in theoretical and experimental
methods of entanglement analysis, classification and detection.
Entanglement detection in particular is a challenging task in many experimental configurations

because of the elevated number of measurements required to obtain a quantum tomography:
these measurements are not always available, they can affect the measured states themselves and
they could be very expensive if we consider multipartite systems, as the required measurements
grow exponentially.
A first approach could be to measure the expectation value of a particular kind of observables

called Entanglement Witness (EW), from which it is possible, in some cases, to realize if the
state is entangled or not. This method anyway does not always work well and it does not
provide any quantitative information: a more useful solution is to consider a different family of
observables, the Quantitative Entanglement Witness (QEW), which is able to highlight lower
bounds for entanglement value [3].
In this work, we will use QEW to study entanglement bounds for states of a qubit-cavity system,

following the already known case of two qubits. The qubit-cavity system is significant as it is
used in many quantum information devices, for example for the control of qubits: entangling
a qubit with a resonator, described as a harmonic oscillator, permits in some systems to read
out the qubits’ information or to transmit to the qubits the information to proceed. Moreover,
a cavity system can be entangled to a qubit to implement some operations that change during
algorithms and so permits a more flexible calculation, useful to speed up the process but also
necessary for quantum machine learning [2]. The qubit-cavity type of entanglement is in addition
more stable and resistant to decoherence process.
In chapter 1 we give some basic notions of QEW and cavity’s coherent states and we derive

and justify, in analogy with the two-qubits example, the expression of the observables that
composed the QEW of this system.
In chapter 2 we apply the QEW to entangled cat-states and we find the bounding functions

for two measures of entanglement, entanglement negativity and entanglement of formation.
We also explore the possibility to use this witness for different cavity’s states.
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Capitolo 1

Theoretical background and
derivation of witness

In this chapter we introduce some basic notions about Quantitative Entanglement Witness and
we deduce its expression for a qubit-cavity system.

1.1 Quantitative Entanglement Witnesses

Entanglement Witnesses (EW) are a class of observables (hermitian operators) Ŵ that are able,
with only a few measurements, to give useful information about the entanglement of a certain
class of states.
In fact, if we consider the expectation value of this observable on a generic mixed state ρ of a

certain class of states, obtainable by evaluating the trace of this observable Ŵ applied to ρ, we
can obtain a sufficient condition for having entanglement [4]:

Tr[Ŵρ] < 0. (1.1.1)

On the other hand, we have a necessary condition for separability. It is worth reminding [4]
that for a bipartite system pure states are called separable if they can be written as a tensor
product of two states from subsystem A and B, so their Schmidt rank is equal to one, whether
for mixed states ρAB it means that they are writeable as:

ρAB =
D∑

k=0
pkρA,k ⊗ ρB,k (1.1.2)

in which D is the dimension of the subspaces A and B, pk are the coefficients of the linear
combination of k subspace and are probabilities, so normalized and with pk ∈ [0, 1].
If a state is separable so it means it is not entangled and it respects the necessary condition:

Tr[Ŵρ] ≥ 0. (1.1.3)

Condition in Eq.(1.1.1) is sufficient but not necessary so we can detect through this method only
a part of all the entangled states: in fact, there are some entangled states for which Tr[Wρ] ≥ 0.
To provide this action of entanglement’s detection, EWs have to respect some properties, such

as having at least a negative eigenvalue and a non-negative mean value of product states [5].
For each class of states exist an observable of this kind that can detect its entanglement, even
if it is difficult to construct in some cases. There are many ways to find out a witness and
often it concerns finding the optimal witness or decomposing it into local observables, for better
experimental applications.
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CAPITOLO 1. THEORETICAL BACKGROUND AND DERIVATION OF
WITNESS

Moreover, to obtain more information about the entanglement of a state it is possible to
upgrade the EW’s method to the use of Quantitative Entanglement Witnesses (QEW) [3, 6].
This is a class of observables that has the same features as EWs but it is also able to provi-

de, using so-called Bounding Functions (b(x)), lower bounds to the entanglement’s value of a
state: these functions can connect the information provided by QEW to a measure of bipartite
entanglement.
Finding the most suitable bounding function concern an optimization problem and so it is not

always reachable but for some classes of states, such as isotropic states or Werner states, it can
be computed exactly [6, 7] as :

E(ρ) > b(Tr[Ŵρ]) (1.1.4)

providing a lower bound to the entanglement measure E of the state. Different kinds of entan-
glement measures can be chosen and the bounding function is different for different measures
of entanglement.
In this work, we use two kinds of measures: Entanglement negativity (ENeg) and Entanglement

of Formation (EoF).
This type of analysis can be applied to a bipartite system of two qubits and in particular to the

class of isotropic states, which is defined as the family of pure and mixed states parameterized
by a probability p as:

ρiso(p) = p |Φ+⟩ ⟨Φ+| + (1 − p)
4 I (1.1.5)

with p ∈ [0, 1] and |Φ+⟩ the Bell’s state:

|Φ+⟩ = 1
2(|00⟩ + |11⟩). (1.1.6)

For these states the Quantitative Entanglement Witness can be written as:

Ŵ = Î − σ̂x ⊗ σ̂x − σ̂z ⊗ σ̂z + σ̂y ⊗ σ̂y (1.1.7)

in which σ̂i are Pauli’s matrices.
Applying Eq.(1.1.4) for this QEW and two different entanglement measures, ENeg and EoF, it

is shown [6] that isotropic states are entangled only if p > 1
3 and the bounding functions result

to be:

bNeg(x) =
{

0 x > 1
−x

2 x ≤ 1
(1.1.8)

boF (x) =
{

0 x > 1
−1

4h2(
√

x +
√

2 − x) x ≤ 1
(1.1.9)

where h2 is defined as
h2(t) = −t log2(t) − (1 − t) log2(1 − t) (1.1.10)

and x as
x = Tr[Ŵρiso(p)]. (1.1.11)

The following paragraphs aim to give some theoretical notions about quantum harmonic oscil-
lator to define the analogous problem for states of a bipartite system of a qubit and a cavity.
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CAPITOLO 1. THEORETICAL BACKGROUND AND DERIVATION OF
WITNESS

1.2 Entangled system of a qubit and a cavity

A quantum cavity is a system, practically composed of a set of mirrors, that works as a reso-
nator for some selected frequencies. Doing QED in the cavity the electromagnetic field can be
quantized and this system for these frequencies can be described mathematically as a quantum
harmonic oscillator.
To analyze the entanglement between a qubit and a harmonic oscillator, we need to choose a

basis for the states of the harmonic oscillator.

1.2.1 Coherent states

The states of a quantum harmonic oscillator can be represented in a quantum phase-space
where, differently from classic phase-space, they are not points but a larger portion of space,
according to Heisenberg’s indetermination principle.
The two observables used to describe the states, the position X̂ and the linear momentum P̂,

which are respectively represented on the x and y axis, do not commute and so it is possible only
to study a sort of probability distribution of the states, using the so-called Wigner’s function
[8].
However, we can choose a class of states that minimize the uncertainty so that it can be easier,

on one hand, to study the time evolution of the system and on the other hand to practically
have more control over them experimentally.
These states are called coherent states |β⟩ and they have the property of saturating Heisenberg’s

uncertainty principle:

∆ Q̂β∆ P̂β = ℏ
2 (1.2.1)

in which holds also:
∆ Q̂β = ∆ P̂β. (1.2.2)

Coherent states are defined as the eigenstates of the annihilation operator â and so they respect
the relations:

â |β⟩ = β |β⟩ ⟨β| â† = β∗ ⟨β| (1.2.3)

where β, β∗ ∈ C .
These states can be seen as a displaced vacuum state, which is the eigenstate of the harmonic

oscillator’s hamiltonian with the lower eigenvalue of energy, represented by |0⟩ in the so-called
Fock’s basis [9, 10].
The displacement operator D̂(β) is defined as:

D̂(β) = eβ â†−β∗ â (1.2.4)

and acts on the vacuum state as:

D̂(β) |0⟩ = |β⟩ (1.2.5)

so β is defined through the mean value of position and momentum’s displacement as:

β = ⟨β| X̂ |β⟩ + i ⟨β| P̂ |β⟩ = xβ + ipβ. (1.2.6)
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CAPITOLO 1. THEORETICAL BACKGROUND AND DERIVATION OF
WITNESS

Time evolution of harmonic oscillator states can be seen as the rotation of the probability
distribution in the quantum phase-space and it is regulated by the unitary operator Û defined
as:

Û = e− i Ĥt
ℏ (1.2.7)

in which Ĥ is the hamiltonian of the harmonic oscillator with N̂ the number operator and D
the dimension of the harmonic oscillator, that we choose two-dimensional:

Ĥ = ℏω(N̂ + D

2 ). (1.2.8)

For coherent states, time evolution is easier to describe because the wave’s packet is not disper-
sive and so the mean values of X̂ and P̂ evolve classically: during the evolution the state takes
only a phase, preserving the previous probability distribution’s function.
Coherent states can be also expressed in Fock’s basis. This basis is composed of the eigenstates

{|n⟩} of number operators N̂, so they represent states at different levels of energy for the
harmonic oscillator:

N̂ |n⟩ = n |n⟩ (1.2.9)

in which n represent the sum of the eigenvalues of each dimension number’s operators.
A coherent state is a superposition of such states combined with different coefficients cn:

|β⟩ =
∞∑

n=0
cn |n⟩ =

∞∑
n=0

⟨n|β⟩ |n⟩ . (1.2.10)

These coefficients can be calculated using normalization and so it is possible to express the state
as:

|β⟩ = e− |β|2
2

∞∑
n=0

βn

√
n!

|n⟩ (1.2.11)

From this expression, we can derive that coherent states are not orthogonal and so they do not
form a basis for the harmonic oscillator’s Hilbert space. Indeed, we can calculate scalar product
between two different coherent states such as |β⟩ and |α⟩ and the result is:

⟨β|α⟩ = e− |β|2
2 e− |α|2

2

∞∑
n=0

∞∑
m=0

(β∗)n

√
n!

(α)m

√
m!

⟨n|m⟩ (1.2.12)

which we can also rewrite as:

⟨β|α⟩ = e− |β|2+|α|2
2 eβ∗α = e

β∗α−βα∗
2 e

|α−β|2
2 (1.2.13)

in which the first term is just a phase so it is negligible.

1.2.2 Entangled cat-states

Using coherent states we can define the equivalent of the isotropic class of states for the bipartite
system of a qubit and a cavity.
Concerning the harmonic oscillator, we have to choose two orthogonal states analogous to qu-

bit’s |0⟩ and |1⟩: a possibility is to choose two coherent states, that are often called cat-states
[11], characterized by a real value of β, one placed on the positive x semi-axis and the other on
the negative one. They can be named |β⟩ and |−β⟩.
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CAPITOLO 1. THEORETICAL BACKGROUND AND DERIVATION OF
WITNESS

As shown in Sec.1.2.1 two generic coherent states are not orthogonal and, in this case, Eq.(1.2.13)
becomes:

⟨β| − β⟩ = e−|β|2 . (1.2.14)

If we calculate the probability transition between |β⟩ and |−β⟩ it results:

|⟨β| − β⟩|2 = e−2|β|2 (1.2.15)

so it is easy to understand that the probability of preparing a state |β⟩ but finding it changed
into |−β⟩ decreases exponentially with the value of β.
To have two orthogonal states we should choose |β| → ∞, which experimentally means we

have to prepare states with |β| as large as possible. As the trend is exponential, however, we
can be confident that the non-orthogonality would affect only the states very near the origin
and that can be neglected also for a small value of β.
To verify it we plot the value of the transition probability varying the value of β. As it is

shown in Fig.1.1 this comes to zero rapidly, in fact the squared overlap is gaussian in β with a
standard deviation of 1√

2 .

Figura 1.1: Linear and logarithmic squared overlap |⟨β| − β⟩|2 over β.

Assuming so that we can prepare two quasi-orthogonal coherent states |β⟩ and |−β⟩, it is
possible to define an analogous of Bell’s state for this bipartite system as:

|Φ+
cat⟩ = 1

2(|0⟩ |β⟩ + |1⟩ |−β⟩) (1.2.16)

and the related class of states:

ρcat(p) = p |Φ+
cat⟩ ⟨Φ+

cat| + (1 − p)
4 Î (1.2.17)

with p ∈ [0, 1].

9



CAPITOLO 1. THEORETICAL BACKGROUND AND DERIVATION OF
WITNESS

1.3 Quantitative Entanglement Witness for qubit and cavity

According to the features of coherent states, it is possible to assume that the QEW for the
system of a qubit and a cavity has to be similar to one of two-qubits system.
We can rewrite, for this case, Ŵ as:

Ŵ = Î − σ̂x ⊗ X̂c − σ̂z ⊗ Ẑc + σ̂y ⊗ Ŷc (1.3.1)

in which the observables X̂c, Ŷc, Ẑc are the equivalents of Pauli’s matrices for the harmonic
oscillator.
Starting from this hypothesis it is possible to deduce the structure of these new observables

and verify their correctness by applying them to coherent states expressed on different bases.

1.3.1 X̂c observable

The observable X̂c has to reproduce the action of σ̂x on the two orthogonal states chosen as
the basis of the two-dimensional Hilbert space. The action of σ̂x on the σ̂z basis for the qubit,
|0⟩ and |1⟩, is to flip the qubits:

σ̂x |0⟩ = |1⟩ σ̂x |1⟩ = |0⟩ (1.3.2)

so the aim is to find a Hermitian operator that flips |β⟩ in |−β⟩ and vice versa.
Observing the quantum phase-space we can see that the state |β⟩ changes into |−β⟩ after a

rotation of π and, considering the analogy with classical phase-space, this operation can be
represented as the time evolution of T

2 of the coherent state expressed by Eq.(1.2.7):

Û
(

T

2

)
|β⟩ = e−i

ℏω(N̂+1) T
2

ℏ = e−iπ(N̂+1) |β⟩ . (1.3.3)

It is clear that the factor e−iπ impacts the result only by adding a phase so it is possible to
ignore it to hypothesize a simpler form for the operator X̂c, that so can be written as:

X̂c = e−iπ N̂. (1.3.4)

It is a unitary operator as:

X̂†
c X̂c = eiπ N̂e−iπ N̂ = Î. (1.3.5)

X̂c represents an observable as it is hermitian because it is an analytic function of N̂, that is
an observable itself, but it is also easy to show it:

X̂†
c = eiπ N̂ (1.3.6)

(
X̂†

c

)†
=
(
eiπ N̂)†

= e−iπ N̂ = X̂c. (1.3.7)

Moreover, because X̂c is hermitian and unitary, it is obvious that X̂2
c is the identity matrix.

The heuristic derivation of X̂c has to be justified by the application on coherent states to see
if it acts in the same way as σ̂x, as we suppose.
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CAPITOLO 1. THEORETICAL BACKGROUND AND DERIVATION OF
WITNESS

1.3.2 Motivation of X̂c operator

To apply X̂c to coherent states it is useful to express them in Fock’s basis, as already explained
in Sec.1.2.1:

X̂c |β⟩ = e−iπ N̂e− β2
2

∞∑
n=0

βn

√
n!

|n⟩ . (1.3.8)

As {|n⟩} are eigenstates of number operator is possible to apply X̂c to each member of the sum:

X̂c |β⟩ = e− β2
2

∞∑
n=0

βn

√
n!

e−iπn |n⟩ (1.3.9)

that can also be rewritten as:

X̂c |β⟩ = e− β2
2

∞∑
n=0

(−β)n

√
n!

|n⟩ = |−β⟩ . (1.3.10)

The same calculations can be carried on for the state |−β⟩:

X̂c |−β⟩ = e−iπ N̂e− β2
2

∞∑
n=0

(−β)n

√
n!

|n⟩ = e− β2
2

∞∑
n=0

(−β)n

√
n!

e−iπn |n⟩ (1.3.11)

X̂c |−β⟩ = e− β2
2

∞∑
n=0

βn

√
n!

|n⟩ = |β⟩ . (1.3.12)

So we have demonstrated that X̂c actually acts on coherent states as σ̂x.
Another way to analyze the action of this observable is to study how it acts on the real basis

states.
We can consider the real basis as a discrete one because we assume to have an upper limit to

energy, which is a realistic assumption in any experimental setting.
So this basis is constituted by a finite number of states {|q⟩} which are eigenstates of the

position operator Q̂:

Q̂ |q⟩ = q |q⟩ (1.3.13)

with q ∈ N.
So if we apply X̂c to this class of states the relation can be written as:

X̂c |q⟩ = 1
q

X̂c Q̂ |q⟩ (1.3.14)

that, thanks to the unitary of X̂c, can be rewritten as:

X̂c |q⟩ = 1
q

X̂c Q̂ X̂†
c X̂c |q⟩ . (1.3.15)

We can demonstrate that

X̂c Q̂ X̂†
c = − Q̂ (1.3.16)

using Hadamard’s equation:

e−iπ N̂ Q̂eiπ N̂ =
∞∑

n=0
[...[[Q̂, iπ N̂], iπ N̂]..., iπ N̂]. (1.3.17)
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CAPITOLO 1. THEORETICAL BACKGROUND AND DERIVATION OF
WITNESS

In fact, expressing Q̂ as k(â† + â), in which k is a constant, for n = 0 and n = 1 the Eq.(1.3.17)
becomes:

[k(â† + â), iπ N̂] = kiπ([â†, N̂] + [â, N̂]) = kiπ(− â† + â) (1.3.18)

k(iπ)2[(− â† + â), N̂] = k(iπ)2([− â†, N̂] + [â, N̂]) = k(iπ)2(â† + â) (1.3.19)

and so we can deduce that the general expression for Eq.(1.3.17) can be written as:

X̂c Q̂ X̂†
c = k

( ∞∑
n=0

(−iπ)n

n! â† +
∞∑

n=0

(iπ)n

n! â
)

= k(e−iπ â† + eiπ â) = −k(â† + â) = − Q̂.

(1.3.20)
So Eq.(1.3.15) becomes:

X̂c |q⟩ = −1
q

Q̂ X̂c |q⟩ (1.3.21)

and it is demonstrated that X̂c |q⟩ is equal to |−q⟩ because Eq.(1.3.21) can be rewritten as:

Q̂ X̂c |q⟩ = −q X̂c |q⟩ . (1.3.22)

1.3.3 Ẑc observable

Working on the σ̂z model we aim to find an observable Ẑc that associates the eigenvalues ±1
respectively to its two eigenstates |β⟩ and |−β⟩.
In fact, σ̂z acts in the 2-qubits space as:

σ̂z |0⟩ = |0⟩ σ̂z |1⟩ = − |1⟩ (1.3.23)

so we look for an observable able to change sign only to eigenstates with negative values of β.
The idea so is to adapt the well-known position operator Q̂, which can be expressed in terms

of creation and annihilation operators as:

Q̂ =

√
ℏ

2mω
(â† + â). (1.3.24)

This observable acts on coherent states as:

Q̂ |β⟩ =

√
ℏ

2mω
β |β⟩ (1.3.25)

Q̂ |−β⟩ = −

√
ℏ

2mω
β |−β⟩ . (1.3.26)

We are interested only in the sign of these eigenvalues so is proper to define the searched
observable Ẑc as:

Ẑc = sgn(â† + â) (1.3.27)

that acts on coherent states, real and with large values of β, as wanted:

Ẑc |β⟩ = |β⟩ Ẑc |−β⟩ = − |−β⟩ . (1.3.28)

As seen for the previous observable, also Ẑ2
c is the identity, simply because it is defined as the

squared sign function that does not add any sign to the state.
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The operator (â† + â) is Hermitian, actually as the position operator:(
â† + â

)†
=
(
(â†)† + (â)†

)
= â + â† (1.3.29)

but it is not truly correct to state that also sgn(â† + â) is hermitian because sign is not an
analytic function.
The sign function is not well defined near the origin and, for this reason, it does not admit

Taylor’s series expansion. This problem can be solved on one hand considering only states with
|β| → ∞, which is also a condition for orthogonality, as seen in Sec.1.2.1, or, on the other hand,
using another function that approximates the sign, as we see afterwards.

1.3.4 Motivation of Ẑc operator

To better investigate how this operator acts on coherent states we can express it in two different
bases: the real basis and Fock’s basis.
To use the first one we have to rewrite Ẑc in function of Q̂ and is enough to remember how

we can express annihilation and creation operators in function of Q̂ and P̂:

â = Q̂ − i P̂√
2

â† = Q̂ + i P̂√
2

. (1.3.30)

So we obtain:

Ẑc = sgn(Q̂ + i P̂ + Q̂ − i P̂√
2

) = sgn(
√

2 Q̂). (1.3.31)

The states |β⟩ and |−β⟩, as they are on the real axis, can be considered themselves eigenstates
of Q̂ with respectively eigenvalues ±β. Recalling the definition of β, Eq.(1.2.6), the real part of
the value is represented by qβ and we can assume, for the reason that coherent states minimize
the uncertainty relation, that the mean value of Q̂ calculated for the state represent effectively
the position of the state.
So it is possible to apply the latest form of Ẑc to a coherent state and, as expected, the result

is:

Ẑc |β⟩ = sgn(
√

2 Q̂) |β⟩ = |β⟩ (1.3.32)

Ẑc |−β⟩ = sgn(
√

2 Q̂) |−β⟩ = − |−β⟩ . (1.3.33)

It is also worth trying to express Ẑc in Fock’s basis and apply it to coherent states.
To do this we consider the action of annihilation and creation operators on Fock’s states:

â |n⟩ =
√

n |n − 1⟩ â† |n⟩ =
√

n + 1 |n + 1⟩ . (1.3.34)

Even if |n⟩ are not eigenstates of these operators it would be possible to calculate the result of
the application of (â† + â) on them, which indeed is the position operator minus a multiplicative
factor.
The problem regards, as said before, the sign function: it can not be expanded in Taylor’s

series and, for this reason, it is not possible to apply a term of this operator for each state |n⟩
in the sum.
So if we want to apply Ẑc to a coherent state expressed in Fock’s basis it is necessary to change

the function sign with another function that returns as much as possible the same results of the
previous one and that can be expanded in Taylor’s series.
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The idea is to use the hyperbolic function tanh(Gx), in which G is a constant, which approxi-
mates the sign function according to these relations:

tanh(0) = 0 lim
x→±∞

tanh (Gx) = ±1. (1.3.35)

Its Taylor’s series has two different expressions, for the positive and negative real parts of x:

tanh(x) =
{

1 − 2
∑∞

k=0(−1)ke−2G(k+1)x Re(x) > 0
−1 + 2

∑∞
k=0(−1)ke2G(k+1)x Re(x) < 0

(1.3.36)

If we substitute x with (â† + â) and apply these expressions to coherent states it results for |β⟩:

tanh(â† + â) |β⟩ =
(

1 − 2
∞∑

k=0
(−1)ke−2G(k+1)(â†+â)

)
e− β2

2

∞∑
n=0

βn

√
n!

|n⟩ (1.3.37)

tanh(â† + â) |β⟩ = |β⟩ − 2
∞∑

k=0
(−1)ke−2G(k+1)(â†+â) |β⟩ = |β⟩ − 2

∞∑
k=0

(−1)ke−2G(k+1)β |β⟩

(1.3.38)
and for |−β⟩:

tanh(â† + â) |−β⟩ =
(

−1 + 2
∞∑

k=0
(−1)ke2G(k+1)(â†+â)

)
e− β2

2

∞∑
n=0

−βn

√
n!

|n⟩ (1.3.39)

tanh(â†+â) |−β⟩ = − |−β⟩+2
∞∑

k=0
(−1)ke2G(k+1)(â†+â) |−β⟩ = − |−β⟩+2

∞∑
k=0

(−1)ke2G(k+1)β |−β⟩ .

(1.3.40)
These relations show that, at the first order, we obtain the same result as using the function
sign but it is worth studying whether the other orders of the expansion are negligible or not
and in which situations.
As we see the terms of the sum depend exponentially on β so it is proper to suppose that this

contribution has to be negligible for a large value of β, in which cases so tanh(Gx) represent a
fair substitution of the sign function, but probably not for values of β near the origin.
Moreover, by increasing G we expect to obtain a function that better approximates sgn(x).

To test this supposition it is possible varying β value to create a simulation of the trend of the
state’s correction βc due to the application of tanh(Gx). To compute the sum, as it should be
of infinite terms, we choose a cut-off at N = 500.
As we can see in Fig.1.2 the correction goes to zero fast and the β value at which the correction

is negligible depends on the constant used so can be reduced as small as wanted. Moreover,
remembering the condition for orthogonality tested in Fig.1.1, it seems that the tanh(Gx)’s
approximation does not work so well in the same region of non-orthogonality.
So to solve this problem it is sufficient to use, as said before, a large value of β and, in this

case, the hyperbolic tangent provides a great approximation.
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Figura 1.2: Correction to tanh(â† + â) |β⟩ over β.

1.3.5 Ŷc observable and relation with Pauli’s Matrices

To find an expression also for the operator Ŷc we analyze the action of σ̂y on |0⟩ and |1⟩:

σ̂y |0⟩ = i |1⟩ σ̂y |1⟩ = −i |0⟩ . (1.3.41)

As it is shown the action consists in flipping the qubit but also adding a unitary phase to |1⟩,
so we can deduce that the action of Ŷc has to be a combination of the action of X̂c and Ŷc.
More precisely we know that Pauli’s matrices are related to each other through the relations:

[σ̂i, σ̂j ] = 2iϵijk σ̂k (1.3.42)

{σ̂i, σ̂j} = 2δijk Î (1.3.43)

in which [, ] is the commutator and {, } is the anticommutator.
We can suppose that these relations should be respected also by the new observables and so

using Eq.(1.3.42) it is possible to obtain the expression of Ŷc in function of X̂c and Ẑc:

Ŷc = i[X̂c, Ẑc]
2 = i[eiπ N̂, sgn(â† + â)]

2 . (1.3.44)

If we try to apply this operator to coherent states it shows the expected results:
for |β⟩

Ŷc |β⟩ = i

2
(
eiπ N̂ sgn(â† + â) − sgn(â† + â)eiπ N̂) |β⟩ =

= i

2
(
eiπ N̂ |β⟩ − sgn(â† + â) |−β⟩

)
= i

2 (|−β⟩ + |−β⟩) = i |−β⟩
(1.3.45)

and for |−β⟩

Ŷc |−β⟩ = i

2
(
eiπ N̂ sgn(â† + â) − sgn(â† + â)eiπ N̂) |−β⟩ =

= i

2
(
−eiπ N̂ |−β⟩ − sgn(â† + â) |β⟩

)
= i

2 (− |β⟩ − |β⟩) = −i |β⟩ .

(1.3.46)

As the new operators act like Pauli’s matrices it is interesting to verify if they respect also the
other relations of SU(2) algebra.
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First of all, they have to respect the relation:

σ̂2
i = Î. (1.3.47)

As shown in sections 1.3.2 and 1.3.4, it is respected by X̂c and Ẑc and, because of SU(2) algebra,
the relation is valid also for the operator Ŷc.
Moreover, Eq.(1.3.42) and Eq.(1.3.43) can be demonstrated applying the definition to |β⟩ and

|−β⟩, for example for Ẑc:

{Ẑc, Ẑc} |β⟩ = (Ẑc Ẑc + Ẑc Ẑc) |β⟩ = 2 |β⟩ = 2 Î |β⟩ (1.3.48)

{X̂c, Ẑc} |β⟩ = (X̂c Ẑc + Ẑc X̂c) |β⟩ = (X̂c |β⟩ + Ẑc |−β⟩) = (|−β⟩ − |−β⟩) = 0. (1.3.49)

It is possible to demonstrate in the same way that all the other combinations of operators
respect these relations.
The real motivation of this analogy lies in the fact that new operators, as they act as Pauli’s

matrices on the basis |β⟩ and |−β⟩, have, in this basis, the same matrix form of σ̂i:

X̂c =
(

0 1
1 0

)
Ẑc =

(
1 0
0 −1

)
Ŷc =

(
0 −i
i 0

)
. (1.3.50)

From this evidence, we could deduce that the Eq.(1.3.1) can be connected to Eq.(1.1.7) if
the harmonic oscillator’s observables are expressed in the basis of the two coherent states |β⟩
and |−β⟩. Anyway, as we have seen, this is not truly a basis because of the lack of perfect
orthogonality so in the following section we will better justify in what sense this analogy is
possible.

1.4 Witness decomposition

As we have shown in Sections 1.3.2, 1.3.4, the observables X̂c and Ẑc can both be expressed in
the real basis and we have studied how they act on the eigenstates of position {|q⟩} as:

X̂c |±q⟩ = |∓q⟩ Ẑc |±q⟩ = ± |q⟩ . (1.4.1)

From these relations we can deduce the one for Ŷc:

Ŷc |±q⟩ = ±i |∓q⟩ . (1.4.2)

If we express these operators in their matrix form in the real basis, ordering the eigenvalues
with increasing module (0,±q, ±2q, ±3q...), we obtain:

X̂c =



1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 0 ...


Ẑc =



0 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 −1
0 0 0 0 ...


Ŷc = i



0 0 0 0 0
0 0 1 0 0
0 −1 0 0 0
0 0 0 0 1
0 0 0 −1 0
0 0 0 0 ...


.

(1.4.3)
As we can see they are block matrices and, if we exclude the matrix element ⟨0| ... |0⟩, we can
notice that the blocks on the diagonal are Pauli’s matrices.
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So we can rewrite these operators using the tensor product as:

X̂c = Î ⊗ σ̂x Ẑc = Î ⊗ σ̂z Ŷc = Î ⊗ σ̂y. (1.4.4)

This decomposition allows us to consider the action of these observables on the states of the
harmonic oscillator similar to the one of Pauli’s matrices on the qubit: it underlines that these
observables act on the cavity system as they could isolate a subsystem which responds to the
entanglement detection like a qubit. So it seems that the entanglement information detected by
the witness is only due to this qubit "inscribed" in the harmonic oscillator. This is a significant
achievement as we can expect to have similar bounding functions also in the case of the system
qubit-cavity. Otherwise, we should not forget that this decomposition keeps not track of the
matrix element ⟨0| ... |0⟩ and that it is not correct to use 2-qubits witness to test this type of
system.
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Capitolo 2

Application of the witness

In the previous chapter, we have found the expression for the witness of a bipartite system of
a harmonic oscillator and a qubit. In this second chapter, we want to apply this result to the
entangled cat states of the system and see whether it has the same behaviour as the two qubits’
system.

2.1 Application of the witness on entangled cat states

Recalling the definition of entangled cat states, Eq.(1.2.17), we can apply the new witness, Eq.
(1.3.1), to see for which values of p these states are entangled or not.
To do it we have to use the condition in Eq.(1.1.1) and so it is convenient to express ρcat(p)

and Ŵ in their matrix forms.
For cat states we have:

ρcat(p) =


1+p

4 0 0 p
2

0 1−p
4 0 0

0 0 1−p
4 0

p
2 0 0 1+p

4

 . (2.1.1)

For the different contributions to the witness we have:

σ̂x ⊗ X̂c =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 σ̂z ⊗ Ẑc =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 σ̂y ⊗ Ŷc =


0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0


(2.1.2)

and so, according to Eq.(1.1.7), Ŵ is:

Ŵ =


0 0 0 −2
0 2 0 0
0 0 2 0

−2 0 0 0

 . (2.1.3)

If we apply the witness to the state and calculate the trace we obtain:

Ŵρcat(p) = −


p 0 0 p+1

2
0 p−1

2 0 0
0 0 p−1

2 0
p+1

2 0 0 p

 (2.1.4)
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Tr[Ŵρcat(p)] = 1 − 3p (2.1.5)

so using Eq.(1.1.1) we can affirm that the state is entangled only for p > 1
3 .

We can use this result to obtain the bounding function of two different types of entanglement
measure: the entanglement negativity ENeg and the entanglement of formation EoF.

2.2 Entanglement negativity

The entanglement negativity is an entanglement measure defined as:

ENeg(ρ) = −
D∑

k=0
min[eig(ρT p), 0] (2.2.1)

in which ρT p refers to the partial transpose matrix of the state, D is the dimension of the state
and eig stays for the eigenvalues of that matrix.
It is known, from Peres’ criterion, that a necessary condition for separability is that the partial

transpose matrix has to be a density operator so that it has no negative eigenvalues [5].
This is called also "PPT condition" and for a system of dimensions 2⊗2 or 2⊗3 it is a necessary

and sufficient condition [12]: in fact also in Eq.(2.2.1) if all the eigenvalues are non-negative the
state is not entangled.
So if we apply the definition in Eq.(2.2.1) to ρcat we obtain:

ρT p
cat(p) =


1+p

4 0 0 0
0 1−p

4
p
2 0

0 p
2

1−p
4 0

0 0 0 1+p
4

 (2.2.2)

and the eigenvalues result to be:

λ1,2,3 = 1
4(1 + p) λ4 = 1

4(1 − 3p). (2.2.3)

As p is a probability, λ1,2,3 can not be negative while λ4 is negative if p > 1
3 , that is the same

condition for entanglement of Eq.(2.1.5). So only λ4 with p > 1
3 contributes to the entanglement

measure and Eq.(2.2.1) becomes:

ENeg(ρcat) = 3p − 1
4 . (2.2.4)

Because we expect for p = 1, the case of Bell’s state, to have a maximum for the entanglement
equal to the unit, we can add a multiplying factor 2 to the definition of entanglement negativity:
it does not change the meaning of the measure, it is only a scale factor.
We so obtain:

ENeg(ρcat) = 3p − 1
2 . (2.2.5)

Now we want to link this measure with the witness’ one and to do that we have to find a
bounding function bNeg that respects the equation:

ENeg(ρcat) = bNeg(Tr[Ŵρcat(p)]). (2.2.6)

As from Eq.(2.1.5) and Eq.(2.2.5) we know that it becomes:

3p − 1
2 = bNeg(1 − 3p) (2.2.7)

20
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we can deduce the bounding function for the entanglement negativity:

bNeg(x) = −x

2 (2.2.8)

in which x = 1 − 3p, for p > 1
3 .

If p < 1
3 Eq.(2.1.5) and also Eq.(2.2.5) conditions impose null entanglement, so the complete

buonding function has to be:

bNeg(x) =
{

0 x > 1
−x

2 x ≤ 1
. (2.2.9)

We have found so that the bounding function for the bipartite system of a qubit and a cavity
is, for the entanglement negativity measure, equal to the one of the system of two qubits, in
Eq.(1.1.8).

2.3 Entanglement of formation

The entanglement of formation is an entanglement measure that is based on the fact that any
mixed states can be created by different combinations of projectors on pure states, that can be
themselves entangled or not. A mixed state so can be decomposed into many different families
of projectors weighted with some normalized coefficients and for each family we can write it as:

ρAB =
N∑

j=0
pj |ϕj⟩ ⟨ϕj | (2.3.1)

in which {|ϕj⟩ ⟨ϕj |} is a family of projectors on pure states that are combined with different
classical probabilities pj .
For each possible family we can estimate the entanglement of the mixed state as the sum of

the Von Neumann’s entropy S(ρAj) of each projector, weighted with pj :

E(ρAB) =
N∑

j=0
pjS(ρAj). (2.3.2)

Von Neumann’s entropy is used as an entanglement estimation for pure states and is defined
as:

E(ρAB) = S(ρAB) = −Tr[ρA log2(ρA)] (2.3.3)

in which ρA is the partial trace of the state.
Considering the entanglement value of all the possible families we can calculate the entangle-

ment of formation, which is defined as the minimum on all these configurations that describe
our mixed state [1, 13]:

EoF(ρ) = min
N∑

j=0
pjS(ρAj) (2.3.4)

This calculation is a minimization problem and so it is hard to find a solution in general cases.
Fortunately, for bipartite systems of 2 ⊗ 2 it results to be easier: it can be computed through

the so-called concurrence (C) [1].
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This quantity C is defined as:

C(ρAB) = max(0, λ1 − λ2 − λ3 − λ4) (2.3.5)

in which λi, that are decreasingly ordered, are the square root of the eigenvalues αi of a matrix
R that is defined as:

R = ρAB ρ̃AB (2.3.6)

in which ρ̃AB is:

ρ̃AB = ρAB(σ̂y ⊗ σ̂y)ρAB(σ̂y ⊗ σ̂y). (2.3.7)

So using these elements the expression of the entanglement of formation can be written as:

EoF(t) = h2(t) = −t log2(t) − (1 − t) log2(1 − t) (2.3.8)

in which t is a variable that depends on the concurrence as:

t = 1 +
√

1 − C(ρAB)2

2 . (2.3.9)

We aim to obtain this entanglement measure for a generic cat state so we start calculating R
matrix for the states defined by Eq.(2.1.1).
We can see that ρ̃cat is equal to ρcat, so R becomes:

R(ρcat) = ρ2
cat = 1

16


4p2 + (p + 1)2 0 0 4p(p + 1)

0 (1 − p)2 0 0
0 0 (1 − p)2 0

4p(p + 1) 0 0 4p2 + (p + 1)2

 . (2.3.10)

The eigenvalues of this matrix are:

α1,2,3 = (p − 1)2

4 α4 = (3p + 1)2

4 . (2.3.11)

To calculate the concurrence we have to consider the square roots of these eigenvalues, which
we call λi. We can notice that λ4 is always positive, because of p definition, while if we calculate
λ1,2,3 we obtain:

λ1,2,3 =

√
(p − 1)2

4 = |p − 1|
2 (2.3.12)

so

λ1,2,3 =
{

p−1
2 p > 1

1−p
2 p < 1

. (2.3.13)

Because p can not be larger than the unit we have to choose the second definition and from
that it is possible to calculate that is always true that λ4>λ1,2,3 and apply the Eq.(2.3.5).
So the concurrence results:

C(ρcat) =
{3p−1

2 p > 1
3

0 p < 1
3

. (2.3.14)
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We can so apply the first part of this result in Eq.(2.3.9) and Eq.(2.3.8), which after some
calculations can be expressed as:

t(ρcat) =
1 +

√
1 −

(
3p−1

2

)2

2 = 2 +
√

4 − (3p − 1)2

4 (2.3.15)

EoF(ρcat) = h2

1 +
√

1 −
(

3p−1
2

)2

2

 . (2.3.16)

Finally, we can deduce the bounding function for the entanglement of formation, using Eq.(2.1.5):

h2

1 +
√

1 −
(

3p−1
2

)2

2

 = boF(1 − 3p) (2.3.17)

that becomes:

boF(x) =

h2
(

2+
√

4−x2

4

)
x < 0

0 x ≥ 0
(2.3.18)

in which x=1 − 3p. It is worth noticing that this bounding function is analogous to the one
reported for two qubits [6, 7].

2.4 Comparison between entanglement measures

The trend of the two entanglement measures when p increases is linear for ENeg(ρcat) while is
logarithmic for EoF(ρcat): in fact they detect two different kinds of entanglement, that increase
with probability in different ways. Anyway they both respect the condition of null entanglement
for p ≤ 1

3 and saturate to the unit for p = 1, as is shown in Fig.2.1.

Figura 2.1: bNeg and boF on p.

2.5 Application of the witness for small |β| values

In the previous sections we have deduced the bounding functions for ENeg and EoF applying the
witness to entangled cat-states: we have worked as |β⟩ and |−β⟩ constituted a basis but, as
explained in Sec.1.2.1, it is an approximation valid only for large values of |β|.
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In this section, we want therefore to study if the witness and the bounding functions found
in this work are able to give us some information on the entanglement also outside this ap-
proximation. To do that we consider a pure entangled state, the analogous of Bell’s state for
a qubit-cavity system, and try to compute the entanglement negativity value by applying the
definition. Then we compare the result to the expectation value of the witness inserted in the
relative bounding function.
First of all the state that we consider is the one of Eq.(1.2.16) but as |β⟩ and |−β⟩ are not ortho-

gonal it is better to express them in a different and really orthonormal basis, whose eigenvectors
are:

|+⟩ = |β⟩ + |−β⟩√
2(1 + χ)

|−⟩ = |β⟩ − |−β⟩√
2(1 − χ)

. (2.5.1)

The normalization factors are calculated by imposing ⟨+|+⟩ to be the unit and ⟨+|−⟩ to be zero,
conditions to have an orthonormal basis, and the value called χ is the superposition ⟨β| − β⟩,
already calculated in Eq.(1.2.14).
Using this basis |β⟩ and |−β⟩ become:

|β⟩ =

√
(1 + χ)

2 |+⟩ +

√
(1 − χ)

2 |−⟩ (2.5.2)

|−β⟩ =

√
(1 + χ)

2 |+⟩ −

√
(1 − χ)

2 |−⟩ (2.5.3)

and so the entangled state of Eq.(1.2.16) can be written as

|Φ+
cat⟩ = 1

2

(
|0⟩
(√

(1 + χ) |+⟩ +
√

(1 − χ) |−⟩
)

+ |1⟩
(√

(1 + χ) |+⟩ −
√

(1 − χ) |−⟩
))

.

(2.5.4)
We can therefore write the density matrix of the state, which is diagonal, as:

ρcat(χ) = 1
4


(1 + χ)

√
(1 + χ)(1 − χ) (1 + χ) −

√
(1 + χ)(1 − χ)√

(1 + χ)(1 − χ) (1 − χ)
√

(1 + χ)(1 − χ) −(1 − χ)
(1 + χ)

√
(1 + χ)(1 − χ) (1 + χ) −

√
(1 + χ)(1 − χ)

−
√

(1 + χ)(1 − χ) −(1 − χ) −
√

(1 + χ)(1 − χ) −(1 − χ)


(2.5.5)

and calculate the entanglement negativity varying χ value with the definition in Eq.(2.2.1).
On the other hand we want to calculate the expectation value of the witness, that corresponds

to compute the mean values of observables {Î, σ̂x ⊗ X̂c, σ̂y ⊗ Ŷc, σ̂z ⊗ Ẑc}.
To do that for small values of |β| it is better to express states and operators in the real basis.
We know that coherent states can be expressed as displaced vacuum states and in the real

basis |0⟩ is represented by a normalized gaussian:

|0⟩ = e−x2

4
√

π
(2.5.6)

so

Ψ(x) = ⟨x|β⟩ = ⟨x| D̂(β)|0⟩ = e−(x−β)2

4
√

π
(2.5.7)

Ψ(−x) = ⟨x| − β⟩ = ⟨x| D̂(−β)|0⟩ = e−(x+β)2

4
√

π
. (2.5.8)
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We know that the observables of the witness act on these states as:

X̂cΨ(x) = Ψ(−x) (2.5.9)

ẐcΨ(x) = sgn(x)Ψ(x) (2.5.10)

ŶcΨ(x) = i sgn(x)Ψ(−x) (2.5.11)

so it is possible to calculate all the matrix elements of these observables, that we call Ô,
computing the integrals:

⟨±β| Ô| ∓ β⟩ =
∫ +∞

−∞
dxΨ(±x)∗ ÔΨ(∓x) (2.5.12)

⟨±β| Ô| ± β⟩ =
∫ +∞

−∞
dxΨ(±x)∗ ÔΨ(±x). (2.5.13)

Doing this calculation it is easy to show that for the observables Î and X̂c the matrix elements
are:

⟨±β| Î| ± β⟩ = ⟨±β| X̂c| ∓ β⟩ = 1 (2.5.14)

⟨±β| Î| ∓ β⟩ = ⟨±β| X̂c| ± β⟩ = χ (2.5.15)

while for Ŷc and Ẑc some of them are zero

⟨±β| Ẑc| ∓ β⟩ = ⟨±β| Ŷc| ± β⟩ = 0 (2.5.16)

but the others can not be analytically resolved because of the sign function.
It is anyway possible to express these contributions approximatively with a series expansion
such as:

⟨±β| Ẑc| ± β⟩ = ⟨±β| Ŷc| ∓ β⟩ = − 2√
π

∞∑
k=0

(−1)kβ(2k+1)

(2k + 1)k! . (2.5.17)

In posses of these values, we are so able to compute the expectation value of Ŵ for the ma-
ximal entangled state of qubit-cavity system and compare it with the entanglement negativity
calculated with the definition, making a simulation varying |β| values.

Figura 2.2: ENeg with definition and witness’ method on β.
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CAPITOLO 2. APPLICATION OF THE WITNESS

Figura 2.3: Logarithmic difference of ENeg with definition and witness’ method on β.

As expected entanglement is zero when |β| ≈ 0 because in this case |β⟩ and |−β⟩ are approxi-
matively the same state and so the state in Eq.(1.2.16) is separable.
On the other hand, increasing |β| value, the state becomes maximally entangled as the coherent

states are well separated and quasi-orthogonal. It is worth noticing that the witness follows the
estimation of the definition with maximal discrepancies of 10−1, this is an acceptable value if
we consider that we use also some approximations for the sgn(x) function.
This result allows us to assert that, also for a small value of β, it is valid to use the witness

method for at least an approximate estimation of the entanglement of a qubit-cavity system.
Moreover, this analysis can guide us through the study of another kind of states, the so-called

displaced number states, that, as the name says, are Fock’s basis states displaced [14]:

|β, n⟩ = D̂(β) |n⟩ . (2.5.18)

To test if the witness applies also to these states could be very useful because experimentally it is
often the case that it is difficult to maintain the cavity states precisely on a certain level of energy:
for this reason it is interesting to learn to work with states that are not only displacements of
the vacuum and in general with the so-called thermal states, that are a superposition of states
with different energies that follows Boltzmann’s distribution. Following the example of what is
explained in this section is possible to apply the analysis to states with different energy, easily
changing the expression of Ψ(x) and recalculating integrals.
In particular, if we apply this procedure to the case of n=1 the displaced state can be written

as:

Ψ1(x) = ⟨x|β, 1⟩ = ⟨x| D̂(β)|1⟩ = (x − β)e−(x−β)2

4
√

π
4

(2.5.19)

because in the real basis holds:

|1⟩ = x
e−x2

4
√

π
4

. (2.5.20)

The value of χ in this case can be calculated by an integral of the displaced functions:

χ′ = ⟨−β, 1|β, 1⟩ =
∫ +∞

−∞
2(x − β)(x + β)e−(x−β)2

4
√

π

e−(x+β)2

4
√

π
= (1 − β2)e−β2 (2.5.21)

and substituted in Eq.(2.5.5) to calculate the entanglement negativity with the definition.
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To apply the witness method it is sufficient to recalculate the integrals:

⟨±β| Î| ± β⟩ = − ⟨±β| X̂c| ∓ β⟩ = 1 (2.5.22)

⟨±β| Î| ∓ β⟩ = − ⟨±β| X̂c| ± β⟩ = χ′ (2.5.23)

⟨±β| Ẑc| ± β⟩ = − ⟨±β| Ŷc| ∓ β⟩ = − 2√
π

∞∑
k=0

β
(
(−1)kβ(2k) − (1 + 2k)(−β2)(k)

)
√

π(2k + 1)k! . (2.5.24)

Using these results it is possible to create a simulation analogous to the case of n=0:

Figura 2.4: ENeg for n=1 with definition and witness’ method on β.

Figura 2.5: Logarithmic difference of ENeg for n=1 with definition and witness’ method on β.

Also in this case we can see that witness estimation is lower than the definition’s one but the
maximal discrepancies are of the order of 10−1. According to these results so also in this case
it is possible to use the witness method for an approximate estimation of the entanglement for
small |β| values.
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Conclusion

In this work we have studied how it is possible to apply Quantitative Entanglement Witnes-
ses to provide lower bounds to entanglement measures such as entanglement negativity and
entanglement of formation.
The application of this procedure can be of fundamental importance for the detection of the

entanglement in many aspects of quantum information, such as data processing and commu-
nication, because it is needed to know precisely if the systems we are working on are strongly
entangled or not, doing as few measurements as possible.
In particular, in this study we have considered a prototypical example, a bipartite system

composed of a qubit and a cavity, underlying the analogies with the two-qubits system. This kind
of system results interesting because widely used in quantum devices, in which the estimation
of entanglement allows for example to study the efficiency of the coupling between different
device’s components.
In chapter 1 we have analyzed some properties of the system and found out the expression of

its witness. We have deduced three observables analogous to Pauli’s matrices, justifying them
using different bases of the cavity system, and we have also shown that they respect the same
algebra of Pauli’s matrices.
In chapter 2 we have applied the witness to entangled states of qubit-cavity and we have dedu-

ced the bounding functions for the entanglement negativity and the entanglement of formation
measures: we have found that these functions are the same in the two-qubits case.
Moreover, we have shown that this procedure, firstly applied in the approximation of large |β|,

can be used also in the limit of small |β|, studying more precisely the action of the witness’
observables in the real basis.
This result can be very useful to extend witness analysis also to other kinds of experimental

situations, for example with displaced number states or thermal states.
The previous work, in addition, could be expanded in many directions, considering for example

other kinds of entanglement measures, such as relative entropy, or analyzing tripartite or mul-
tipartite systems: entanglement estimation also for these cases is not easily provided because a
large number of measurements is required for a tomography.
For all these cases this study can be considered only a starting point from which to develop

new theoretical tools for entanglement estimation that is nowadays more than ever necessary
but not easily provided by the already known methodologies.
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