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RIASSUNTO  

 

La globalizzazione, il mercato libero e l’aumento del benessere umano hanno 

caratterizzato gli ultimi decenni e hanno portato ad una crescente attenzione verso ciò che 

mangiamo e verso il background produttivo delle risorse alimentari. In particolare, viene 

data priorità al benessere animale e alla sostenibilità ambientale. A reazione di questo 

contesto, il mercato mondiale ha visto nascere numerosi prodotti a “valore aggiunto”, 

molto apprezzati dai consumatori del primo mondo per le loro particolari caratteristiche 

organolettiche, nutrizionali o etiche.  

Poiché il valore commerciale dei prodotti certificati si basa proprio sui “valori aggiunti”, 

le rispettive materie prime di alta qualità risultano molto vulnerabili al fenomeno 

dell’adulterazione quindi, a tutela della fiducia dei consumatori, sono sorte numerose 

etichette e certificazioni che garantiscano protocolli produttivi specifici.  

L’industria lattiero-casearia, grazie al grande assortimento dei propri prodotti, si è 

dimostrata particolarmente adatta ad offrire articoli dal “valore aggiunto”. 

La determinazione dell’autenticità alimentare e il rilevamento delle contraffazioni, è 

divenuto un problema di rilievo all’interno di questo settore ed è di notevole 

preoccupazione per consumatori, riveditori e per le stesse autorità di vigilanza.  

Di conseguenza, consumatori e produttori, necessitano dello sviluppo di tecniche 

analitiche affidabili ed omnicomprensive che possano autenticare le informazioni 

riportate in etichetta. 

In questo contesto, lo studio metabolomico può dare informazioni dettagliate della 

composizione alimentare, fornendo un ampio screening dei metaboliti anche in matrici 

alimentari complesse quali il latte. 

La direct analysis in real time, associata alla spettrometria di massa ad alta risoluzione 

(DART-HRMS) è tra le tecniche che si utilizzano per ottenere un’impronta digitale 

metabolica del latte. 

Questo studio, quindi, si pone come scopo l’identificazione di particolari biomarcatori 

del latte, riconducibili a specifici sistemi alimentari delle vacche. 

Per ottenere questo, sono stati eseguiti 88 campionamenti di latte crudo di massa 

(cisterna), prodotto in allevamenti provenienti da due aree geografiche differenti, le quali 
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adottavano cinque sistemi alimentari (dai quali derivano i cinque gruppi presi in esame). 

I primi quattro gruppi appartenevano ad un’area di pianura e i loro sistemi alimentari 

erano principalmente composti da: i) HMS elevato uso di insilato di mais ii) MMS misto 

di insilato di mais e altri insilati ii) FCG erba fresca e insilato diverso dal mais e iv) HAY 

fieno di pascolo permanente, senza uso di insilati. L’ultimo gruppo (APS), invece, è stato 

campionato nella provincia dell’Alto Adige e la sua dieta era principalmente composta di 

v) pascolo alpino e fieno alpino. I campioni di latte sono stati diluiti in solventi polari e 

non polari e successivamente analizzati con la DART sia in modalità positiva che 

negativa. Gli spettri ottenuti, sono stati concatenati mediante low-level data fusion e una 

prima discriminazione è stata provata mediante partial least square discriminant analysis 

(PLS-DA). 

A causa della scarsa capacità discriminatoria, i cinque gruppi sono stati riassortiti in tre 

nuovi gruppi: LLS, dalla fusione di HMS e MMS, rappresentava l’uso di insilati di 

pianura; LLF, fondendo FCG e HAY, rappresentava l’uso dei foraggi di pianura; mentre 

APS è rimasto a rappresentare il gruppo di montagna. Per discriminare i tre gruppi, è stata 

eseguita nuovamente la PLS-DA. Successivamente, sui 25 segnali ionici m/z più 

discriminanti, è stata effettuata una hierarchical cluster analysis (HCA) dalla quale si è 

ottenuta una heatmap delle correlazioni tra ioni discriminanti e razioni alimentari a 

confronto. 

Dal tentativo di assegnazione dei valori m/z discriminanti, è risultato che il gruppo LLS 

era rappresentato maggiormente da derivati chetoacidi, creatinina, metil 2-furoato, 3-

idrossi-2-metilglutarato o 2-idrossi-2-etilsuccinato, dimetilfumarato, glucosio, 

glucosamina, N-acetilglucosamina e acido oleico. Il gruppo LLF è stato principalmente 

discriminato da acetolattato, norgramina e MAG 20:2; mentre il gruppo APS da acido 

lattico e i MAG 16:0 e 18:0. 

Una validazione esterna finale del sistema analitico è stata raggiunta utilizzando un 

dataset di validazione su cui è stata effettuata la linear discriminant analysis (LDA). 

È quindi possibile affermare che la DART-HRMS, associata ad una PLS-DA, può essere 

un efficace strumento di autenticazione alimentare e che questo strumento può essere 

impiegato nella prevenzione delle frodi alimentari. 
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ABSTRACT 

 

The last decades have been characterized by increasing globalization, free trade, human 

welfare, and consequent attention to what we eat and the backgrounds involved behind 

food production, with particular regard to animal welfare and environmental 

sustainability. In this contest, a lot of added value products have reached the global 

market, appreciated by “first world” consumers for their organoleptic, nutritional, and/or 

ethical characteristics. The dairy industry is a very thriving trade in this field, thanks to 

its great differentiation of products. To protect consumers’ trust, certifications and labels 

have been designed ad hoc for every added-value category.   

Certified products based their commercial value on regulatory specifications protocols. 

Foods and ingredients presenting high-value are the most vulnerable for adulteration. 

Determination of food authenticity and detection of adulteration in dairy products has 

become an important issue within the food sector and a major concern for consumers, 

retailers, food processors, and regulatory authorities. Thus, consumers and producers 

parties ask for the development of robust and comprehensively analytical techniques that 

could allow authentication of the label’s information (e.g. feeding system).  

In this context, metabolomic approach can be a useful authentication technique that 

provides a detailed picture of food composition by screening and profile metabolites in 

complex matrices. Direct analysis in real time coupled to high resolution mass 

spectrometry (DART-HRMS) is one of the most applied techniques for metabolic 

fingerprinting of milk.  

This study aims to identify particular biomarkers of milk according to the specific forage 

feeding systems. To do so, 88 raw bulk milk samples produced by cows fed with five 

different diets and coming from two areas, were sampled. Four of the groups belonged to 

a lowland area and their diets were mainly composed of i) HMS, high maize silage; ii) 

MMS, mixed maize and crop silages; iii) FCG, fresh grass/crop silages, and iv) HAY 

lowland permanent meadow hay. The last group was APS, alpine pasture system and it 

was sampled on the South Tyrol area, and its diet was mainly composed of v) alpine 

pasture and/or alpine hay. Milk samples were diluted in both polar and non-polar solvents 

and analyzed in both positive and negative DART ion-mode. The obtained spectra were 
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pre-processed and then concatenated with a low-level data fusion approach. On the train 

set (70% of data), a partial least square discriminant analysis (PLS-DA) was performed 

to attempt a discrimination among the feeding groups. Due to poor discrimination 

capability, samples of the five diet groups were re-attributed to only three experimental 

groups: LLS (lowland silages, gathered HMS and MMS), LLF (lowland forages, gathered 

FCG and HAY), and APS which remained the same. The PLS-DA was performed again 

to discriminate the three groups. Furthermore, a hierarchical cluster analysis (HCA) was 

applied to the 25 most discriminative m/z signals (ions) and a heatmap (matrix of 

correlations among ions and dietary groups) was obtained.  

LLS group was discriminated by m/z values whose tentative assignment was ketoacid 

derivate, creatinine, methyl 2-furoate, 3-hydroxy-2-methylglutarate or 2-hydroxy-2-

ethylsuccinate, dimethyl fumarate, glucose, glucosamine, N-acetyl-glucosamine, and 

oleic acid. LLF feeding system was discriminated mainly by acetolactate, norgramine and 

MAG (20:2) while APS group by lactic acid, MAGs (16:0) and (18:0).  

A validation of the statistical modeling approach was carried out by performing a linear 

discriminant analysis (LDA) on the test set (30% of the samples). The resulting confusion 

matrix showed reliable predictive performance only for the comparison between alpine 

and lowland milk samples, meanwhile, a relative high misclassification rate (around 0.55) 

was observed among samples of LLS and LLF theses.  

It is possible to affirm that DART-HRMS coupled to a PLS-DA approach could be a 

powerful tool for food authentication even though further analyses and modeling steps 

need to be performed. 
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1. INTRODUCTION 

 

1.1 Dairy farming and industry  

 

Milk and dairy products represent an important group of foodstuffs that provides high-

value nutrients to a large segment of population. As a consequence of this spread, dairy 

products are subject to fraud. The main reason for adulteration is the commercial profit 

by this frauds are commonly based on partial or total substitution of the declared material 

with cheaper and more easily available components. As a consequence, consumers pay 

more for a lower quality commodity and may also encounter “ethical” issues, such as 

commercial milk labeled as organic, or real health problems, such as the presence of 

allergens or toxic contaminants like melamine as occurred in China in 2008 (Hrbek et al. 

2014). 

Another field of adulteration is the geographical origin declaration, on which is based the 

commercial value of many “origin-protected” dairy products like PDO, PGI, or mountain 

high-quality products (Brescia et al. 2002) (Tenori et al. 2018).  

For the latter, the preservation of milk production in mountain areas is a successful 

strategy to sustain the growth of local communities and supports many other local 

economic sectors like tourism and craftsmanship: dairy industry goes beyond simple cost-

benefit analysis. However, highland production is generally complicated because of lower 

productivity, higher labor costs, and the limited degree of mechanization. For this reason, 

mountain products have to be recognized, valued, and paid for their complementary 

services. However, a single label cannot assure against counterfeits. It can only be trusted 

if analytical methods for the authentication are developed (Asaduzzaman et al. 2020) 

(Scampicchio et al. 2016). 
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1.2 Milk Quality  

 

From a biological point of view, milk is the secretion produced by the mammary gland 

of female mammals, to feed the newborn. It is a white, opalescent liquid, with a sweetish 

taste and a characteristic scent (Treccani n.d.). However, from a juridical point of view, 

only the milking product of a healthy cow can be defined as simply “milk” (art. 15 R.D. 

9.5.1929, n. 994 n.d.). 

Milk is an important human diet constituent. The main nutrients are lipids, proteins, and 

lactose but it is also well appreciated for the presence of bioactive compounds such as 

immunoglobulins and other immune proteins. The beneficial activities of milk, besides it 

being a source of energy, include anti-cancer, anti-microbial, anti-inflammatory, and 

immunosuppression properties (Boudonck et al. 2009). Two of the major consumers’ 

concerns are the authentication of geographical origin and the nutritional value of milk 

linked to its composition (Tenori et al. 2018). Milk’s chemical composition depends on 

several factors such as breed, metabolism, season, health status, nutrition, and milking 

protocols (Lamanna et al. 2011) (Tian et al. 2016). Each of these factors influences the 

metabolic pathways, resulting in milk metabolites variability. 

Milk nutritional quality depends on the concentration of protein (like casein), fat, lactose, 

and somatic cell count. The composition also affects cheese-making attitude and can be 

helpful in herd health monitoring (e.g. the SCC in subclinical mastitis monitoring) 

(Lindmark-Månsson, Fondén, and Pettersson 2003) (Alhussien and Dang 2018). 

As stated by the European Commission (The commission of the European Communities 

2001), milk quality determination shall be officially performed through reference 

methods certified by internationally recognized authorities such as the International 

Organization for Standardization (ISO n.d.), International Dairy Federation (IDF n.d.), 

and Association of Official Agricultural Chemists (AOAC n.d.). Reference methods are 

presented in Table 1 and can be used to calibrate routine methods.  
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Table 1 International reference methods for milk quality analysis (ICAR 2017)  

Fat  

Gravimetry (Rose-Gottlieb) ISO 1211 | IDF 1 

Gravimetry (modified Mojonnier) AOAC 989.05 

Crude (or total) Protein  

Tritrimetry (Kjeldahl) ISO 8968 | IDF 20 

 AOAC 991:20 

 AOAC 991:21 

 AOAC 991:22 

 AOAC 991:23 

Casein  

Tritrimetry (Kjeldahl) ISO 17997 | IDF 29 

 AOAC 998:05 

 AOAC 998:06 

 AOAC 998:07 

Lactose  

HPLC ISO 22662 | IDF 198 

Urea  

Differential pH-method ISO 14637 | IDF 195 

Somatic Cell Count (SCC)  

Direct microscopic somatic cell count ISO 13366-1 | IDF 148-1 

 

Reference methods are expensive, complex, and specific for each compound, therefore a 

lot of rapid chemical methods have been developed and authorized in last years: 

instruments based on multi-analytical approach calibrated on reference methods, but 

faster and easier to handle (Grelet et al. 2015). One of the most successful is the Foss 

Milkoscan™ FT 6000 (Foss Electric, Hillerød, Denmark) which is based on Fourier 

Transform Mid-Infrared Spectroscopy. 

Fourier Transform Mid-Infrared Spectroscopy FT-MIR, firstly marked in 1993, is the 

worldwide recognized method for routine composition and quality milk testing and 

provides fast, non-destructive quantification of milk chemical components (Grelet et al. 

2015). MIR spectroscopy allows the detection of fundamental vibrational transitions in 

the spectral range from 2,500 to 50,000 nm (rather than NIR’s spectral range from 780 to 

2,500 nm) which is the region where is possible to detect C-O, C-C, C-O-H, and C-H 
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stretching (Ferreira et al. 2014). Milkoscan FT6000 allows recording milk fat, protein, 

casein, lactose, urea composition, and chemical traits, pH, b-hydroxybutyrate, freezing 

point, chloride, calcium.  

 

1.3 Milk authentication  

 

During the last years, the interest in authentication tools has increased a lot and many 

technologies and methods have been developed. One of the most validated approaches is 

the use of mass spectrometry techniques to detect the sample’s metabolites which are then 

analyzed through chemometric studies (Dettmer, Aronov, and Hammock 2007). This 

approach also allows to distinguish, among known and unknown metabolites, specifical 

biomarkers that can serve as a signature for milk or create a fingerprint of the samples 

which, in most cases, is able to authenticate these samples according to how they are 

produced (Boudonck et al. 2009).  

Mass Spectroscopy at High Resolution (HRMS) is even more frequently coupled with 

ambient ionization methods, such as Direct Analysis in Real Time (DART), for food 

quality analysis and food authentication. DART-HRMS is a rapid, easy but excellent 

technique to investigate food composition with a high sample throughput (Hrbek et al. 

2014) (Cody, Laramée, and Durst 2005) (Dettmer, Aronov, and Hammock 2007) 

(Hajslova, Cajka, and Vaclavik 2011) (Dal Martello 2020).  

Based on these assumptions, the following work has been carried out to create a 

fingerprint of milk samples in order to identify specific biomarkers able to discriminate 

their main roughage dietary source by using DART-HRMS technique and low-level data 

fusion chemometric technique.  

As shown by Scampicchio (Scampicchio et al. 2016), the limited discriminatory capacity 

of these techniques considered individually is overcome by combining different multi-

variables techniques. In this case, the discriminative potential has been used to discern 

Alps-originated milk samples from the lowland dairy systems ones. 
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1.3.1 Metabolomics 

 

Metabolomics is the study of cells by measuring profiles of their metabolites (Shulaev 

2006). Metabolites are the substrates, intermediates, and products of cellular processes 

and are usually molecules less than 1500 Da in size (Wishart et al. 2007). The metabolome 

embodies the complete set of metabolites in a biological cell, tissue, organ, or organism 

(Jordan et al. 2009).  

Metabolomics is a functional genomic system, which includes genomic decoding but also 

the analysis of genomic expression. Along with genomics, transcriptomics, and 

proteomics, metabolomics allows the study of cellular physiology and also its correlation 

with different environmental and nutritional perturbations. Despite the other analysis’s 

building block, metabolomics is the endpoint of this “omics cascade” and therefore the 

closest to phenotype (Dettmer, Aronov, and Hammock 2007). Metabolomics produces 

large amounts of data, which should be processed and analyzed by specialized 

mathematical, statistical, and bioinformatics tools. There are three major approaches used 

in metabolomics studies: (i) targeted analysis, (ii) metabolite profiling, and (iii) metabolic 

fingerprinting (Shulaev 2006). Another school of thought describes the first two 

categories as targeted metabolomics analyses and the metabolic fingerprint as untargeted 

metabolomic analyses (Cevallos-Cevallos et al. 2009). 

- Targeted analysis is a quantitative approach used to measure the concentration of 

a limited group of known metabolites. Therefore, the structure of the target 

metabolite should be known a priori and the purified form must be available. This 

is a standard that is not fulfilled for a lot of metabolites. (Shulaev 2006) 

- Metabolite profiling is the research and analysis of a known metabolite set in the 

studied sample. Mainly used in human health diagnosis as an extension of 

functional genomic, it allows the study of gene mutation through the changes of 

the cellular metabolome (Shulaev 2006). 

- Metabolic fingerprinting does not measure a specific metabolite or a group of 

them but describes the unique metabolites pattern that characterizes a specific 

cellular line, setting out the peculiar fingerprint of the biological material at issue. 

Some of the found metabolites may remain unknown. (Shulaev 2006) (Dettmer, 

Aronov, and Hammock 2007). 
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Metabolomic studies can also be classified as discriminative, informative, or predictive, 

depending on the analysis and data manipulation (Cevallos-Cevallos et al. 2009).  

The discriminative analysis is used to find differences between sample groups by the only 

use of multivariate data analysis techniques such as principal component analysis, without 

the necessity of statistical models. 

Informative analyses have been aimed to obtain sample intrinsic information. 

Identification and quantification of known and unknown metabolite, in order to describe 

a metabolite database. 

With predictive studies, statistical models based on metabolite profiles are developed and 

used to predict a variable that cannot be quantified by other means. Prediction is the 

analysis method employed in this work. (Cevallos-Cevallos et al. 2009) 

 

1.3.2 Mass Spectrometry  

 

Mass spectrometry (MS) is a technique which aim is the identification of a sample 

through the ratio mass/charge of each molecule that composes the sample, where m is the 

atomic mass number (sum of neutrons and protons, also called nucleon) and z is the 

valency (number of hydrogen atoms that can bind to a generic element forming its binary 

compound). (Shulaev 2006) (Audi, Wapstra, and Thibault 2003) (Scheer et al. 1998) 

Following the mass spectrometry principle, the molecules of the sample are ionized using 

an electron beam at known energy. The ions will separate and sort according to their 

characteristic mass and charge; the unique ionic fingerprint is called “mass spectrum” 

(Sano et al. 2005) (Reusch 2013) (Spettrometria di massa 2019). In general, the MS 

technique is used in combination with separating techniques such as chromatography or 

non-chromatographic approach; in particular, matrix-assisted laser desorption ionization 

time-of-flight (MALDI-TOF-MS) or ambient mass spectrometry techniques as direct 

analysis in real time (DART-MS) (Medina et al. 2019). There are different spectroscopic 

techniques available to achieve the metabolites panel: high-resolution mass spectrometry 

(HRMS), coupled with DART, is the one chosen for this research (Shulaev 2006) (Dal 

Martello 2020). Conventional MS calculates the m/z ratio, basing on nominal masses of 

compounds while High Resolution Mass Spectrometry (HRMS) measures the exact 
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masses of each compound so that the detection capability of the study is extended (ALEX 

HYDE n.d.).  

Due to its high sensitivity and wide range of covered metabolites, MS has become one of 

the most chosen analytical platforms for many metabolomics studies to obtain and 

analyze metabolites (Shulaev 2006) (Dettmer, Aronov, and Hammock 2007).  

 

1.3.3 DART- HRMS 

 

Direct Analysis in Real Time High Resolution Mass Spectrometry is a non-contact, new 

ambient ion source for mass spectrometry at atmospheric pressure (Medina et al. 2019) 

(Cody, Laramée, and Durst 2005). DART technique presents several advantages: it allows 

direct analysis of several kinds of samples, both solid and liquid, in the open air at 

atmospheric conditions with low molecular mass as well, without the need for sample 

preparation by chromatographic techniques. The response is instantaneous, providing 

real-time information. Moreover, the sampling at atmospheric conditions rather than 

exposed to high electrical potentials preserves the integrity of the sample. (Cody, 

Laramée, and Durst 2005) (Gross 2014) (Weston 2010) (Jorabchi, Hanold, and Syage 

2013) (Chernetsova, Morlock, and Revelsky 2011).  

DART analytical technique has been extensively used in the field of food authentication, 

during the last years. It was largely employed in the authentication of alcoholic beverages 

like wine or beer, but also the assessment of vegetables’ farming practice. Nevertheless, 

DART has proved to be particularly capable in animal fat detection and rapid profiling of 

triacylglycerols (TAGs) (Vaclavik et al. 2011) (Medina et al. 2019) (Cubero-Leon, 

Peñalver, and Maquet 2014). 

In particular, DART-HRMS has already been used by Hrbek for dairy authentication, 

with highly effective in detecting the adulteration of dairy products with vegetal oils 

(Hrbek et al. 2014) and by Tata to predict the health status of dairy cows (Tata et al. 2021). 

DART ionization consists of a tube within which a heated gas stream allows the formation 

of a distal plasma discharge of ions, electrons, and metastable species (excited-state atoms 

and/or molecules of gas). These charged particles are immitted in the open air, where the 
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sample is instantly ionized and submitted to thermal desorption before entering the mass 

spectrometer (Cody, Laramée, and Durst 2005) (Song et al. 2009) (Gross 2014).  

 

 

Figure 1. Detailed cutaway view of DART ionization source (JEOL n.d.) 

 

DART-HRMS zones: 

- DART ionization source zone is a pipe divided into three chambers. The flow of 

helium, or sometimes nitrogen, is introduced into the first chamber. A corona 

discharge, which is an electrical discharge resulting from the ionization of air, is 

generated by an electric potential of several kV realized between a needle 

electrode and a perforated disk electrode at a ground electric potential at the end 

of the chamber (Chang, Lawless, and Yamamoto 1991) (Cody, Laramée, and 

Durst 2005) (Gross 2014). 

The contiguous second chamber ends with another perforated disk electrode with 

an electric potential which serves as an eliminator of the cationic species of the 

plasma. The remaining plasma enters into the third chamber, which can be 

optionally heated, and the gas flows throughout an exit grid electrode which 

mediates the purification from anions and electrons. The grid electrode serves as 

an ion repellent, which prevents ion-ion recombination, a process that might result 

in a signal loss  

- Reaction zone is the 5-25mm long open-air zone between the DART ionization 

source and the HRMS, where sample ionization and thermal desorption occurs 

(Hajslova, Cajka, and Vaclavik 2011). The sample can be solid, liquid, or gaseous 

(Cody, Laramée, and Durst 2005). The gas metastable species react with ambient 
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atmosphere components to form reactive species, ionizing the neutral analytes of 

samples (Hajslova, Cajka, and Vaclavik 2011). 

Two different types of ionization processes can be performed, to comply with different 

analyte properties so that different spectra are achievable from the same sample (Jorabchi, 

Hanold, and Syage 2013). 

 

- Positive-ion formation: the helium metastable species react with atmospheric 

water, returning protonated clusters. Protons transfer from these clusters to the 

analyte molecule yielding in the formation of [M+H]+ ion with the release of 

electrons. 

 

- Negative-ion formation: electrons formed during the DART ionization source 

formation allow the formation of negatively-charged oxygen clusters. In this way, 

molecules of analytes are deprotonated [M-H]-  (Hajslova, Cajka, and Vaclavik 

2011). 

 

The spectra obtained from the DART-HRMS modalities can be merged with a data fusion 

method, into a single dataset representative of the sample. Data fusion method consists in 

combining data from different analytical, multimodal sources to provide a more accurate 

characterization of a sample, reducing interferences or error rates. Three different types 

of data fusion can be performed: low-, mid-, high- level data fusion. 

 

- Low-level data fusion: raw data from all sources are concatenated into a common 

data matrix after suitable preprocessing and weighting. It is the one chosen for 

this work.  

- Mid-level data fusion, also known as feature level data fusion, is based on the 

extraction of relevant characteristics from each dataset separately. These relevant 

scores are then merged into a single combination dataset to be analyzed according 

to a multivariate approach.  

- High-level data fusion, also called “decision level”, consists of independent 

models calculated from each dataset and they are, only subsequently, merged 

together. (Schwolow et al. 2019) 
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2. AIM OF THE RESEARCH 

 

The research aimed to investigate the effect of the main dietary roughage source on milk 

composition and chemical traits. 

Moreover, the research aimed to detect the differences between the main quality traits of 

the South Tyrolean alpine milk, compared to that produced in the lowland intensive dairy 

systems throughout a one-year experimental period. 

The main goal of the research was to test the capability of the direct analysis in real time 

coupled to high resolution mass spectrometry (DART-HRMS) to discriminate among the 

milk samples of the experimental dietary thesis. In addition to the detection of the DART 

biomarkers, we also tried their identification and to assess if their presence in the milk 

has an appreciable or depreciative role. 
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3. MATHERIALS AND METHODS 

 

3.1. Experimental design 

 

The study involved 14 dairy farms in the middle of the lowland area of Po Valley (North 

East of Italy, 45°19′49″N 9°47′56″E) and six farms in the Alpine area of South-Tyrol 

(46°30’0” N 11°19’59” E). The farms were selected to represent average herd size, 

breeds, and milk production characterizing both the intensive (lowland) and extensive 

(Alpine) dairy systems of the Italian dairy production chain during every season. In the 

intensive system, the main breeds represented were Italian Friesian and Italian Brown, 

with at least 95% of the lactating cows in each herd belonged to one or the other (Table 

2). In the Alpine system, the main breeds were Brown Swiss, Alpine Grey, Simmental, 

Pinzgauer. Great variability was appreciable between mountain realities: stables’ and 

pastures’ altitudes were spread within 1000 m asl and 2050 m asl, therefore pastures’ 

composition was very heterogeneous with tens of different plant species. During winter, 

alpine cows are fed with locally-produced dry forages or silages, with great variability of 

raw materials among the farms. 

All lowland farms were associated with the Regional Breeders’ Association (Veneto 

Region), ensuring herd performances were recorded monthly over the experimental 

period (Table 2). In the case of the Tyrolean farms, they were associated with 

Sennereiverband Südtirol (South Tyrol Dairy Federation). In the intensive system 

(lowland), herd dry matter intake (DMI) was recorded at each sampling visit (5 recordings 

per farm across one-year experimental period) by calculating the difference between the 

total amount of TMR distributed to the lactating cows and refusals after 24 h or before 

the subsequent distribution. In the extensive system (Alpine Tyrol), herd dry matter intake 

(DMI) referred only to the summer season (2nd and 3rd milk sampling in July and 

September, respectively). It was estimated according to daily theoretical consumption of 

10 kg of DM of alpine grazing pasture for each lactating dairy cow, which receive also a 

supplement of dried and fresh forages and concentrates as described in Table 3a.  
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Table 2. Herd breed incidence (%) and descriptive statistics (average + standard 

deviation) according to the 5 dietary feeding groups based on the main roughage source.  

Lowland  Alpine 

 HMS MMS FCG HAY  APS 

Breed percentage (%) 

Italian H. 

Friesian  
50 100 79 52 

 

1 

Italian Brown  50 - 21 48 4 

Tyrolean Grey - - - - 21 

Simmental - - - - 70 

Pinzgauer - - - - 4 

Herd descriptive statistics 

Lactating cows 

(n) 
109 (±32) 122 (±27) 62 (±12) 71 (±16) 

 

21 (±15) 

1 DIM (n) 198 (±26) 177 (±17) 178 (±21) 165 (±22) n.e. 

Calving interval 

(d) 
427 (±28) 410 (±24) 412 (±20) 401 (±17) 385 (±23) 

2 DMI 

(kg/d/cow) 
23.2 (±1.0) 24.0 (±1.1) 22.6 (±1.5) 22.1 (±1.4) n.e. 

Milk (kg/d/cow) 30.5 (±4.2) 32.7 (±3.4) 29.5 (±3.4) 28.8 (±2.4) 20.8 (±3.4) 

3 FPCM 

(kg/d/cow) 
30.2 (±4.0) 32.1 (±2.9) 28.5 (±3.1) 28.0 (±2.1) 20.8 (±3.1) 

Main roughage source: HMS, high maize silage; MMS, mixed maize/crop silages; FCG, 

fresh grass/crop silages; HAY, lowland permanent meadow hay; APS, alpine 

pasture/alpine hay. 1Days in milk. 2Dry matter intake (kg of DM per cow and day). 3 Fat 

Protein Corrected Milk; 4.0% fat, 3.3% true protein; true protein estimated as 93% of the 

crude protein. n.e., not estimated 

 

The experimental protocol was designed to allocate each farm to one of five feeding 

groups that represent the main dietary roughage source. The five dietary feeding groups 

were formulated according to the percentage (%) of the roughage source: i. high maize 

silage (HMS, maize silage > 28; 4 farms and 20 milk samples); ii. mixed maize/crop 

silages (MMS, maize silage < 20 and crop silages > 20; 3 farms and 18 milk samples); 

iii. fresh grass/crop silages (FCG, crop silage < 20 and fresh-cut grass > 10; 4 farms and 
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19 milk samples); iv. hay (HAY, lowland permanent meadow hay > 40; 3 farms and 13 

milk samples); v. alpine pasture system (APS, alpine pasture and dried forages > 65, 6 

farms and 18 milk samples). On all lowland farms, cows were fed total mixed rations 

(TMR) meanwhile, in the Alpine area, they graze during the summer on natural pastures 

and receive a daily amount of 4 kg (on dry matter basis) of concentrates per lactating cow, 

which defines all the extensive farms’ samples as high-input rearing (Kühl, Flach, and 

Gauly 2020). During winter alpine cows are fed with local-produced hay or silage. 

Lowland-TMR and Alpine-supplements were formulated to cover the herd’s nutritional 

requirements (available energy and protein) based on the NRC standard (Nutr. Requir. 

Dairy Cattle 2001). All forages were produced on the farms although some concentrate 

feeds were purchased. Average rations for the four experimental groups (% on DM) and 

their diet proximate compositions (% on DM) are reported in Table 3a and Table 3b 

respectively. 
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Table 3a Ingredients (%) on dry matter (DM) basis of the 5 dietary feeding groups based 

on the main roughage source.  

Lowland Alpine 

 HMS MMS FCG HAY  APS 1 

Ingredients (% on DM) 

Maize Silage 33 16 0 0 

 

0 

Hay 2 11 10 23 44 12 

Crop silages 3 8 24 18 8 3 

Fresh-cut green 

grass 
0 0 12 3 5 

Alpine pasture 0 0 0 0 60 

Amylaceous 

concentrates 4 
26 27 32 31 12 

Protein 

concentrates 5 
17 19 11 10 8 

Residual6 5 4 4 4 5 

Main roughage source: HMS, high maize silage; MMS, mixed maize/crop silages; FCG, 

fresh grass/crop silages; HAY, lowland permanent meadow hay; APS, alpine 

pasture/alpine hay. 

1Data of APS group referred to the grazing period (12 samplings out 18) and considered 

a theoretical DMI of 20 kg of DM as following: 12 kg of pasture, 4 kg of amylaceous and 

protein concentrates, 3 kg of a mix of hay/fresh cut grass/ensiled grass and 1 kg of 

residual. 2Permanent meadow and alfalfa. 3Sorghum, wheat, alfalfa, Italian ryegrass. 

4Manly maize and barley grain derivate (meal, extruded, rolled, flaked). 5Mainly soybean 

and sunflower products. 6Straw, bran, beet pulps, min-vitamin premix. 
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Table 3b Proximate composition (average + standard deviation) on dry matter (DM) basis 

of the 5 dietary feeding groups based on the main roughage source.  

Lowland  Alpine 

 HMS MMS FCG HAY  APS 1 

Proximate composition (% on DM) 

DM (%) 55.0 (±5.0) 55.8 (±4.8) 59.8 (±6.8) 68.0 (±5.2) 

 

51.0 (±7.2) 

Crude protein  14.0 (±0.5) 13.9 (±0.6) 13.9 (±0.9) 13.8 (±1.0) 14.8 (±1.5) 

Crude fat 2.7 (±0.4) 2.9 (±0.5) 2.7 (±0.5) 2.5 (±0.5) 2.1 (±0.4) 

Crude ash 7.9 (±0.7) 7.6 (±0.4) 8.0 (±0.4) 7.9 (±0.6) 8.8 (±0.6) 

aNDF 37.0 (±1.9) 37.4 (±2.4) 37.8 (±3.4) 40.1 (±3.8) 43.1 (±4.4) 

ADF 21.9 (±1.4) 22.3 (±1.5) 21.8 (±2.3) 23.1 (±1.9) 25.9 (±2.2) 

Non-fiber 

carbohydrates7 
38.4 (±1.8) 38.2 (±1.9) 37.6 (±2.6) 35.7 (±3.3) 31.2 (±3.5) 

Starch 22.4 (±1.8) 21.8 (±2.7) 21.1 (±3.7) 19.9 (±1.5) 17.1 (±1.9) 

Main roughage source: HMS, high maize silage; MMS, mixed maize/crop silages; FCG, 

fresh grass/crop silages; HAY, lowland permanent meadow hay; APS, alpine 

pasture/alpine hay. 

1Data of APS group referred to the grazing period (12 samplings out 18) and considered 

a theoretical DMI of 20 kg of DM as following: 12 kg of pasture, 4 kg of amylaceous and 

protein concentrates, 3 kg of a mix of hay/fresh cut grass/ensiled grass and 1 kg of 

residual. 7NFC was calculated as 100 minus (CP + CF +CA +aNDF).  
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3.2 Milk and ration sampling and analysis 

 

During 2019, five and three raw bulk milk samples were collected on each lowland and 

Tyrolean farm over 5 (March, May, July, September, and December) and 3 (June, July, 

and September), respectively. The first mountain sampling has to be considered as late 

spring sampling because grazing pasture by lactating dairy cows had not yet begun. Thus, 

a total of 88 (70 lowland and 18 Alpine) raw bulk milk samples were analyzed for 

proximate composition, chemical traits, and DART metabolites. Two lowland farms (a 

FCG and a HAY farm) altered diet ingredients depending on the seasonal supply of feeds 

and changed TMR formulation over the experimental period, essentially changing groups. 

The original FCG farm changed once into MMS ration. The HAY farm changed twice 

into MMS ration. However, according to Rego et al. (Rego et al. 2016), we ensured at 

least three weeks between the TMR change and milk sampling. At each sampling, the 

current lowland TMR were collected and formulations recorded. In the Tyrolean farms, 

grazing pasture, mix of fresh and dried forage, and concentrate supplements were sampled 

as the main ingredients of the ration of the lactating dairy cows. The milk and ration 

(TMR and ingredients) samples were refrigerated and carried to the laboratory 

immediately after the sampling and milk sub-samples for wet chemistry, near infrared 

(NIR) spectroscopy, and DART analysis, kept at 2 °C in dark conditions. 

TMR and raw ingredients samples were analyzed for dry matter (DM), crude protein 

(CP), crude fat (CF), crude ash (CA), neutral detergent fiber (aNDF), acid detergent fiber 

(ADF), and starch by means of a FOSS 5000 scanning monochromator bench-top near-

infrared (NIR) instruments (Foss NIRSyste m, Hillrød, DK), using the calibration curve 

as described by (Andrighetto et al. 2018). Non-fiber carbohydrates (NFC) was calculated 

as complement to 100.  

The milk proximate composition (crude protein, casein, lipids, lactose, ash) and chemical 

traits (urea, pH, -hydroxybutyrate) were recorded by a Fourier transform mid-infrared 

(FT-MIR) spectroscopy technique using a MilkoScan FT6000 (Foss Electric A/S, 

Hillerød, Denmark). Additionally, the somatic cell count (SCC) was performed by a 

Fossomatic 5000 (Foss Electric A/S, Hillerød, Denmark). 
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3.3 DART-HRMS 

 

3.3.1 Sample extraction  

 

Two different extraction procedures were applied to the milk samples. In the first one, 

50µL of milk were suspended in 1mL of water and methanol (H2O:MeOH; 20:80 v/v) 

solution (MilliQ water and Methanol HPLC-grade with 99.9% purity, from VWR 

International, Radnor, USA), vortexed for 30 s, sonicated for 15 minutes and centrifuged 

for 5 min at 12000 g to extract the polar metabolites (Dettmer, Aronov, and Hammock 

2007). In the second protocol, 50µL of milk were diluted in 10 mL of pure ethyl acetate 

(EtAc) (99.9% purity, Carlo Erba Reagents, Cornaredo, Italy), vortexed for 30 s, then 

sonicated for 15 minutes to extract the more lipophilic, non-polar metabolites (Dettmer, 

Aronov, and Hammock 2007). A volume (1mL) of the extract was pipetted into a small 

tube and centrifuged for 5 min at 12000 g.  

Subsequently, the two methanol diluted samples would be analyzed one in negative-ion 

mode and the other in positive-ion mode, the same goes for the ethanol diluted samples, 

to obtain four analytical variables. This metabolites fractionation allows differentiated 

analysis and the expansion of the achievable dataset. (Riuzzi et al. 2021). 

 

3.3.2 DART-HRMS Analysis 

 

The instrumental analysis was carried out using a DART SVP 100 ion source (IonSense, 

Saugus, USA) coupled with an Exactive Orbitrap (Thermo Fisher Scientific, Waltham, 

USA). The DART source was coupled with a Dip-it(R) sampler (IonSense, Saugus, MA, 

USA). To facilitate the ions to pass from the DART source to the mass spectrometer, a 

vapor interface was installed. The distance between the DART gun and the ceramic 

transfer tube of the vapour interface was 12 mm. The parameters of the DART and the 

Orbitrap analyzer were set as described by Riuzzi et al. (Riuzzi et al. 2021). The resolution 

was set to 70.000 FWHM and the mass range was 75–1125 Da in both positive and 

negative ion modes.  
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All DART-MS analyses were run with an automated gain control target setting of 3106. 

Melting point tubes were inserted into the autosampler holder, and then 5 L of each 

extract were spotted individually onto them. Subsequently, the spotted melting point 

tubes were automatically moved at a constant speed of 0.3 mm/s through the DART gun 

exit and ceramic tube of the Vapur interface. The time of desorption from the surface of 

each tip was about 20 s.  

The samples were analyzed in triplicate, and XCalibur QualBrowser software (Thermo 

Fisher Scientific, Waltham, USA) was used to visualize the entire spectra in a .raw format. 

These were converted to mzML files using Proteowizard (Holman, Tabb, and Mallick 

2014) and then opened with mMass software (http://www.mmass.org/) to interpret the 

mass spectrometry data. The m/z values were tentatively assigned by consulting the online 

METLIN (https://metlin.scripps.edu) and HUMAN METABOLOME DATABASE 

(www.hmdb.ca) libraries. Prior to statistical analysis, the spectra of the four datasets (two 

extraction solvents and two ion modes) were converted into .csv files with Rstudio 3.6.1 

software (RStudio Team, 2016; RStudio Integrated Development for R; RStudio, Inc., 

Boston, USA). 

 

3.4 Data processing and statistical analysis 

 

3.4.1 Statistical analysis of milk proximate composition and 

chemical traits 

 

Milk proximate composition and chemical traits were analyzed using a linear mixed 

model that included the fixed effects of dietary group and the random effect of the farm 

(SAS PROC MIXED). Pairwise comparisons among levels of all the factors were 

performed using Bonferroni correction. The hypotheses of the linear model on the 

residuals were graphically assessed. This first statistical model was performed using SAS 

9.4 software (SAS Institute Inc., Cary, NC, USA). 

 

https://metlin.scripps.edu/
http://www.hmdb.ca/
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3.4.2 DART statistical modelling according five dietary groups 

 

The triplicate spectral data were averaged and statistically analyzed using Rstudio 3.6.1 

software and the MetaboAnalyst 5.0 web portal (www.metaboanalyst.ca) for 

comprehensive and integrative metabolomic data analysis (Pang et al., 2020).  

The isotopes were removed from the signals recorded in the four datasets, and the m/z 

values aligned with a tolerance of 0.008 Da. All ion signals with more than 75% of 

missing values (no detected ion intensity) were removed. For ions with less than 75% of 

missing values, those missing values were replaced with half of the value of the lowest 

recorded m/z intensity. The signals of each spectrum were also normalized by sum, 

whereas each feature was normalized by Pareto scaling. As reported in Figure 2, the four 

dataset blocks were merged (concatenated) by performing a low-level data fusion 

approach (Borràs et al. 2015). The merged dataset was split into train (70% of the data, n 

= 63) and validation set (30% of the data, n = 25). The merged train set was submitted to 

a partial least squared discriminant analysis (PLS-DA) with the aim of distinguishing 

between the five dietary groups.  

Subsequently, only ions with coefficients >30 were retained. The 25 selected ions were 

submitted to hierarchical cluster analysis (HCA) with Pearson distance and Ward linkage 

to show the correlation between groups and the selected ions. 

The twenty-five m/z values extrapolated by PLS-DA were used to construct a linear 

discriminant analysis (LDA) model on the training set using Rstudio 3.6.1. Its capability 

to correctly classify the samples according to the dietary groups was verified on the 

training set by 10 fold cross-validation. Furthermore, the LDA model was performed 

against the independent validation set withheld previously. The predictions of this blind 

verification were arranged in a confusion matrix and a set of statistical measurements 

(accuracy, sensitivity, specificity, precision, and Matthews correlation coefficient) were 

calculated to assess the predictive discriminating capacity of the supervised classifier 

LDA model based on the 25 most informative ions sorted by the PLS-DA (Bisutti et al. 

2019). 

  

http://www.metaboanalyst.ca/
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3.4.3 DART statistical modelling according three dietary groups 

 

To increase the discriminative capacity to separate milk samples, the multivariate 

statistical approach was carried out again according to only three experimental dietary 

groups. The three dietary theses were: i. lowland silages (LLS for brevity) gathered the 

samples of HMS and MMS (thus the main roughage source was maize silage and other 

cereal silage); lowland dried/ensiled forages (LLF for brevity) gathered the samples of 

FCG and HAY (thus the main roughage source was grass and permanent meadow hay 

and forage crop silage but without maize silage); iii. APS group remained unchanged. 

After that, the DART modelling was repeated as described in the previous paragraph 3.4.2 

and as illustrated in Figure 2. 
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Figure 2. Flow chart of (+/−) direct analysis in real time high resolution mass 

spectrometry (DART-HRMS) signatures to discriminate milk samples according to 

dietary forage groups. After DART-HRMS data pre-processing (yellow boxes, pre-
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processing refers to the removing of isotopes and ions with > 75% of missing values as 

well as normalization of signals by sum and Pareto scaling), the four pre-processed 

datasets were submitted to a low-level data fusion (light green box). The low-level fused 

dataset was randomly separated into train (n = 63, bordeaux box) and validation (n = 25, 

red box) set. 

A partial least squared discriminant analysis (PLS-DA) was carried out (green box) on 

the merged train dataset. Subsequently, only ions with coefficient > 30 were retained and 

used to perform a hierarchical cluster analysis (HCA, blue box) to visualize the 

correlation between groups and selected variables.  

The 25 selected ions were used to build a LDA (orange box) that was cross-validated on 

the fused train set and then validated on the fused validation set (blind validation). A 

confusion matrix (lilac box) was built with the predictions of the cross-validation to 

facilitate the calculation of the accuracy, sensitivity, specificity and Matthews correlation 

coefficient (MCC). 
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4. RESULTS AND DISCUSSION  

 

A total of 88 raw bulk milk were sampled in 18 farms during 2019. They were divided 

into five groups according to the main feeding system and the geographical rearing area. 

70 came from raw bulk milk sampled in intensive, lowland areas of which: 20 from a high 

maize silage-based diet (HMS), 18 from a mixed maize/crop silages diet (MMS), 19 from 

fresh-cut grass diet (FCG), 13 from a permanent meadow hay diet, with the exclusion of 

silages (HAY). The last 18 came from cows reared extensively on the Alps with a diet 

mainly composed of mountain dry matter (hay or silages) and pasture (APS).  

 

4.1 Milk proximate composition and chemical traits 

 

Milk composition is strictly connected with the feeding system and it is well known the 

influences that a lot of diet-parameters have on milk traits (Lindmark-Månsson, Fondén, 

and Pettersson 2003).  

Over the last few decades, maize silage has become, with its high percentage of starch 

(27-35%), the major forage component in many TMR formulations. Maize silage towards 

grass silage allows an increase in DMI (Dry Matter Intake) up to 2kg d-1, in milk yield 

and in protein content (Khan et al. 2015). 

As can be found in several studies, a hay/grass-based feeding system (HAY+APS) 

provides a higher NDF (neutral detergent fiber) intake. Higher NDF percentage means 

higher chewing activity and rumination time, rising of rumen pH, and rumen health 

condition. The consequences of high NDF on milk should be an increase in fat content 

but a lower protein content and a linear decrease in milk production (Beauchemin 1991). 

The rise of fat concentration can be explained by noting that a higher NDF in the feed 

decreases both propionate and valerate milk levels, with a consequent increase of acetate, 

butyrate, isobutyrate, and isovalerate concentrations. These variations lead to an increase 

of acetate/propionate ratio (C2:C3) > 2.2 which is known to be an important parameter 

for milk fat concentration as well as a sign of decreased ruminal acidosis risk in cows 

(Sejrsen, Hvelplund, and Nielsen 2009). 
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The decrease in production can be also simply explained: a higher NDF content implies 

a lower intake potential and a consequent reduction of available energy, which results in 

lower milk production.  

How can be seen in Table 3b, HMS and MMS feeding systems provide a greater starch 

intake, while HAY and ASP diets are higher in dry matter and NDF. The higher the NDF 

is, the lower the yielded milk is: APS milk production (kg/d/cow) is averagely 10 kg 

fewer than in lowland breeding. 

On the other side, the high quantity of concentrates, typical of intensive high-inputs 

rearing, leads to an increase of DMI with a consequent increase of available energy for 

milk secretion and milk proteins synthesis (Nielsen et al. 2006) (Asaduzzaman et al. 

2020). 

Milk samples were analyzed for proximate composition and the results are reported in 

Table 4. SCC was normalized with a log-transformation which allowed us to obtain SC 

score d.  
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Table 4. Effect of dietary forage on milk proximate composition and chemical traits 

  Lowland    Alpine SEM1 
p-

value 

 
HMS 

(n = 20) 

MMS 

(n = 18) 

FCG 

(n = 19) 

HAY 

(n = 13) 

 

APS 

(n=18) 
  

Crude protein 

(g/100 g) 
3.52a 3.48ab 3.38b 3.45ab 3.53a 0.04 0.009 

Casein  

(g/100 g) 
2.70a 2.66ab 2.59b 2.61b 2.72a 0.03 0.014 

Crude fat 

(g/100 g) 
4.15ab 3.92b 3.90b 3.92b 4.25a 0.09 0.043 

Lactose  

(g/100 g) 
4.80 4.82 4.76 4.78 4.82 0.03 0.084 

SCC score 

(units)2 
3.92 3.77 4.08 4.01 4.07 0.17 0.152 

Urea (mg/dL) 24.3 24.9 23.9 24.7 25.4 1.4 0.420 

BHB3 0.056 0.056 0.062 0.055 0.068 0.010 0.300 

Milk native 

pH 
6.65 6.68 6.65 6.66 6.65 0.01 0.197 

Main roughage source: HMS, high maize silage; MMS, mixed maize/crop silages; FCG, 

fresh grass/crop silage; HAY, lowland permanent meadow hay; APS, alpine pasture/ 

alpine hay. Within the dietary groups are reported the number of sampling in brackets. 

1SEM, standard error of the mean; 2SCC score, log2 (SCC/100,000) + 3; 3BHB, -

Hydroxybutyrate (mmol/L).  

a-cLeast squares mean in a row without a common superscript differ (p < 0.05) 

 

Considering these milk productions and NDF content we expected, as explained above, 

low-quality milk composition for HMS and MMS the most productive breeding methods, 

and high fat – poor protein milk content for APS, which is the least productive one.  

Moreover, in APS milk we expected high content of urea and somatic cells, due to a 

poorly balanced ration formulation and poor hygiene conditions, especially by using a 

hand-portable milking machine compare to the mechanized milking parlor. 
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Contrary to expectations, the intensive rearing and the extensive farm had very similar 

chemical compositions: HMS and MMS milk were significant (p-value < 0.05) high in 

crude protein, casein, and crude fat, even higher than FCG and HAY. Lactose was almost 

the same for every thesis even if, according to Asaduzzaman et al. (Asaduzzaman et al. 

2020), it was expected to be higher in high-yielding realities.  

APS had significant (p-value < 0.05) high crude fat levels, as expected, but also high 

crude protein and casein levels, overcoming FCG and HAY which had both a higher DMI. 

Moreover milk urea content and SCC were low, similarly to highly specialized rearing. 

Even if not expected, these results were comparable with other studies’ results thus, the 

quality results of this work should not be considered an exception (Sturaro et al. 2013) 

(Scampicchio et al. 2016). 

The high-quality content of HMS rearing might be explained by the significant presence 

of Brown Swiss cows (almost one-half of the herds, how shown in Table 2) which are 

well known for a great milk content of crude protein, casein, and crude fat (Zanon et al. 

2020). Brown Swiss were probably included in the HMS herds to improve milk cheese-

making properties. Moreover, it can be assumed that the dairy systems that invest more 

in increasing milk yield, pay also more attention to rations formulation and feeding 

practices to have a more valuable product (Sturaro et al. 2013).  

The low urea and SCs content in APS milk, suggests that even in the traditional and less 

mechanized systems, the farmers are able to adopt the necessary good management 

practices to maintain the first quality classification (Sturaro et al. 2013). Also on mountain 

small farms, hygiene and udder health status are factors to care about. Moreover, 

considering the diet proximate composition shown in Table 3b, nutrients and energy 

balance seem to be similar to the proximate composition of intensive rearing. With at 

least 3 kg of concentrates daily administrated, APS can be classified as high-input 

management which explains, how previously outlined, the high milk protein content in 

Table 4.  

 

As could be expected, no discriminative marker between the feeding theses was 

identifiable by the only milk chemical analysis. That is why metabolomic analysis 

associated with chemometric study should be performed on milk samples. (Scampicchio 

et al. 2016) 
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4.2 DART - HRMS modelling and milk 

authentication 

  

4.2.1 Authentication based on five milk-feeding groups 

 

For subsequent analysis, milk samples were diluted in both water:methanol and pure ethyl 

acetate (80:20 v/v) and then vortexed as preparation for DART analysis. DART-HRMS 

spectra were acquired in both positive and negative ion-mode. A mass spectrum is 

composed of m/z values in the X-axis and its relative intensity (or abundance %) in Y-

axis (McLafferty and Turecek 1993). Before the statistical analysis, a pre-processing 

approach was carried out toward the (+/-) DART-HRMS dataset by deisotoping, 

alignment, missing values removing, normalization by sum, and Pareto scaling. The 

preprocessed data were then concatenated with a low-level data fusion, which integrates 

the multiple data sources into a single, more useful information set. A 70% of the samples 

have constituted the train set which has undergone two different discriminant analysis 

models.  

A first statistical and graphical separation was attempted by performing a partial least 

square-discriminant analysis (PLS-DA) between the 5 dietary groups. 

PLS-DA is a supervised, classification method, which means that it aims to assess a 

particular sample – or group of them- and its confidence interval, to the appropriate 

belonging group. Being a supervised model, the classification groups are settled by the 

operator. (Schwolow et al. 2019) (Medina et al. 2019).  

 

The results are graphically shown in the score-plot of Figure 3. The axes of the graphical 

space are built with the first two principal components (that are the theoretical statistical 

representation of the raw variability of DART signals) resulted from the PLS-DA, where 

“principal” stands for the components which the higher percentage of the variance 

explained by the model.  
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Figure 3. PLS-DA score plot of feeding groups based on milk (+/-) DART-HRMS 

signatures. Ninety-five percent ellipses confidence interval s (0.95-CI) are drawn around 

each centroid of grouping. 

The roughage dietary groups are: alpine pasture/alpine hay (APS) in red, fresh grass/crop 

silages (FCG) in green, lowland permanent meadow hay (HAY) in blue, high maize silage 

(HMS) in light blue, and mixed maize/crop silages (MMS) in pink. FCG, HAY, HMS 

and MMS are experimental groups from lowland farms meanwhile APS is an 

experimental group from South Tyrolean farms. 

 

On the resulting PLS-DA scores plotting, it is possible to distinguish APS (reported in 

red) from all the other groups which, however, are not discriminable ones from each other 

because they overlapped. It can be assessed that the 5-group PLS-DA model was able to 

discriminate between alpine and lowland milk but it was unable to separate milk samples 
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within the lowland dairy systems. According to this reduced discriminant capacity, the 

results related to the heatmap and the LDA model are not further discussed.  

 

4.2.2 Authentication based on three milk-feeding groups 

 

After joining the milk samples of the lowland theses (as described in paragraph 3.4.3), a 

similar statistical approach was carried out again with the aim to improve the 

discriminative capacity of the model. Therefore, for this second approach, the three 

dietary theses were classified as lowland silages (LLS for brevity, a thesis that gathered 

the samples of HMS and MMS), lowland dried/ensiled forages (LLF for brevity, a thesis 

that gathered the samples of FCG and HAY) and the original APS group. It has been 

noticed that LLS is an intensive feeding system based on maize silage as the main fibrous 

source (maize silage is a forage but with a high nutritive value) plus a mix of other cereal 

silage and a very low inclusion of hays. The LLF is also an intensive feeding system based 

on grass and permanent meadow hay as a fibrous dietary component and a limited amount 

of forage crop (alfalfa, Italian ryegrass) ensiled to enhance the nutritive value of the ration 

(the total mixed ration, TMR). The APS is an extensive feeding system based on 

seasonality: permanent, polyptych pastures during summer and hay or silages locally 

produced, during winter. Fresh, dried, or fermented, the diet is in any case representative 

of the local vegetation, which is very variable depending on area and altitude. Despite the 

great variability of pasture types, they are always rich in botanical essences usually not 

available in the lowland. The most abundant forage species are Agrostis tenuis, 

Anthoxanthum alpinum, Festuca rubra, Nardus stricta, Phleum alpinum, Poa alpina, 

Trifolium repens, and Achillea millefolium. (Ziliotto, Scotton, and Da Ronch 2004) 

(Orlandi, Clementel, Bovolenta 2005). 

The score plot of the PLS-DA based on 3 experimental dietary groups is reported in 

Figure 4.  
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Figure 4. PLS-DA score plot of feeding groups based on milk (+/-) DART-HRMS 

signatures. Ninety-five percent ellipses confidence interval s (0.95-CI) are drawn around 

each centroid of grouping.  

The roughage dietary groups are: APS, alpine pasture system (South Tyrol); LLS, 

lowland silages, LLF lowland forages (lowland of Veneto region). See the paragraph 

3.4.3 and page 22 for more details about the 3 dietary theses. 

 

With this new model, the APS group remains clearly discriminable from the other groups 

and a slight improvement is achieved in discriminating lowland forage group (reported in 

green), which is maize silage-free, from lowland silage one (reported in blue) that is 

mainly based on whole plant and grain maize silages as well as others maize-similar (i.e., 

sorghum and wheat silages). It can also be noted how lowland’s score plots, despite their 

overlapping, are mainly distributed into two groups, containing both silage (LLS) and 
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forage (LLF) data. This graphical result suggests that a sort of discrimination not only 

based on roughage dietary source has been achieved. According to the bibliography, the 

discrimination hypothesis might be based on intra-group breed-effect or season-effect 

(Scampicchio et al. 2016) (Zanon et al. 2020). 

 

HCA and heatmap 

 

Of the ions (m/z values) arising from the PLS-DA, those having a coefficient higher than 

30 were selected and submitted to hierarchical cluster analysis (HCA) with the application 

of Pearson correlation distance to reveal the 25 most discriminative DART-HMRS 

signatures. HCA is an unsupervised, pattern recognition method, which means that it 

clusters the data into groups considering their nearness in the multidimensional space and 

visualizes the data to highlight their differences and similarities (Jiménez-Carvelo et al. 

2019) (Medina et al. 2019). Being unsupervised, sample classification and prior 

information about the sample identity are unknown while performing this analysis 

(Dettmer, Aronov, and Hammock 2007). The result of HCA is presented in a dendrogram 

that detects groups of similar individuals not necessarily equivalent to the research groups 

(Brescia et al. 2002). HCA allows also the construction of a heatmap using a correlation 

matrix between the selected ions and the dietary roughage group. The positivity or 

negativity of the correlation between every selected ion to each of the three dietary groups 

is graphically represented by red or blue color, respectively. The strength of the 

correlation is represented by the intensity of the color itself. The results are graphically 

shown in Figure 5. 
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Figure 5. Heatmap obtained by hierarchical clustering analysis (HCA) of the informative 

molecular features (Pearson distance, Ward clustering algorithm). It shows the correlation 

between extrapolated features (metabolic ions) and the three dietary groups of the study. 

The red-brown (positive) and blue (negative) color scales indicate the degree of 

correlation between metabolic ions and feeding regimen; the two shorter Pearson’s 

distance-tree clusters among the forage types (columns) and metabolites (rows) are 

represented by the branch height (the lower a node is vertically, the more similar its 

subtree is). 
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Abbreviations are: APS, Alpine pasture system; LLS, lowland silages, LLF lowland 

forages. APS is an Alpine (South Tyrol) dietary group meanwhile LLS and LLF are 

lowland (Veneto region) dietary groups. See the paragraph 3.4.3 and page 22 for more 

details about the 3 dietary theses. 

 

In the first instance, the unsupervised HCA chemometric algorithm resulted in two main 

classes which can be classified as mountain-milk and lowland-milk clusters. However, 

the lowland-milk cluster was slightly divided into the two silage (LLS) and forage (LLF) 

sub-clusters. This HCA behavior suggests a better discrimination capacity between Alp 

and lowland milk-based samples, while only a poorly detectable difference within the 

lowland theses. Similar performances can be noticed by focusing on the heatmap reported 

in Figure 5. APS group is strongly positive correlated to ten putative ions related to the 

actual m/z values: (-) EtAc 89.0241, (+) EtAc 341.3047, 338.3414, 313.2733, 359.3153, 

331.283 348.3106, and (+) MeOH 227.125, 313.2733, 331.2839. On the contrary, the 

same m/z values are negatively correlated to both lowland theses. 

Lowland theses are correlated to the ions’ block going from (+) EtAc 178.1339 to (+) 

MeOH 163.06, which is actually strongly negative correlated with APS group, 

sanctioning a clear division between the two dairy systems, which differ according to the 

environmental (mountain vs. lowland) and botanical origin of the roughage (forage) 

source as well as the herd characteristics.  

In particular, lowland forage group (LLF) is more positively correlated with (+) EtAc 

178.1339, 383.3153, and (-) MeOH 113.0243 ions, while lowland silage group (LLS) is 

stronger positively correlated with (+) MeOH 114.0664, 85.029, 97.0289, 204.0866, 

149.0234, 180.0865, 127.039, 145.0494, 186.0759, 163.06, (-) EtAc 281.2484, and (-) 

MeOH 143.0347. The only strong detectable difference between LLS and LLF seems to 

be (+) MeOH 114.0664, which is strongly positively correlated with LLS and strongly 

negatively correlated with LLF. These results suggest that, within the lowland cluster 

composed of LLS and LLF, ions correlations might be interchangeable. 
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DART-HRMS fingerprinting of milk  

 

Despite the study is characterized by a relatively small-sized and slightly unbalanced 

experimental feeding regimen, the main challenge is related to model building aiming to 

extrapolate the m/z values with the higher discriminative capability. For each of the most 

informative ions, a tentative molecule assignment of the m/z values was carried out with 

the use of the online METLIN (https://metlin.scripps.edu) and HUMAN 

METABOLOME DATABASE (www.hmdb.ca) libraries. The results of the tentative 

identification of metabolites corresponding to the APS’s ions and lowland groups’ ions 

are shown in Table 5 and Table 6, respectively.  

 

https://metlin.scripps.edu/
http://www.hmdb.ca/
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Table 5. List of discriminant (+/-) DART-HRMS metabolites detected in milk samples (discriminant model based on 3 dietary groups). The 

experimental m/z, theoretical m/z, error (ppm), elemental formula, type of ion, ion mode and extraction procedure, tentative assignment, and 

literature references are reported (continues…) 

Dietary 

thesis 

DART-

HRMS m/z 

Theoretical 

m/z 

Error 

(ppm) 

Elemental 

formula 
Type of ion 

Instrument ion mode 

and extraction solvent 

Tentative 

assignment 
Reference 

Alpine 

Pasture 

(APS) 

89.0241 89.0244 -3.37 C3H6O3 [M-H]- (-) Pure EtAc lactic acid 

(Mordenti, Brogna, and Formigoni 

2017) (Melzer et al. 2013) (Riuzzi et al. 

2021) (Hrbek et al. 2014) 

227.1250 -  - - 
(+) MeOH:H2O 

(80:20 v/v) 
-  

313.2733 313.2743 -3.19 C19H38O4 [M-H2O+H]+ 
(+) Pure EtAc 

(+) MeOH:H2O 

(80:20 v/v) 

MAG (16:0) (Roda et al. 2015) (Corazzin et al. 2019) 

331.2839 331.2843 -1.2 C19H38O4 [M-H]+ 
(+) Pure EtAc 

(+) MeOH:H2O 

(80:20 v/v) 

MAG (16:0) (Roda et al. 2015) (Corazzin et al. 2019) 

341.3047 341.3056 -2.05 C21H42O4 [M-H2O+H]+ (+) Pure EtAc MAG (18:0) 
(Corazzin et al. 2019) (Segato et al. 

2017) 

348.3106 348.3108 -0.57 C19H38O4 [M+NH4]+ (+) Pure EtAc MAG (16:0) (Roda et al. 2015) (Corazzin et al. 2019) 

359.3153 395.0958 -1.39 C21H42O4 [M-H]+ (+) Pure EtAc MAG (18:0) 
(Corazzin et al. 2019) (Segato et al. 

2017) 

Abbreviations are: APS, Alpine pasture system; LLS, lowland silages; LLF lowland forages. APS is an Alpine (South Tyrol) dietary group 

meanwhile LLS and LLF are lowland (Veneto region) dietary groups. See the paragraph 3.4.3 and page 22 for more details about the 3 dietary 

theses. 

MAG, monoacylglycerol. 
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For the APS group, six out of seven discriminant m/z values were identified and assigned: 

lactic acid, MAG (16:0) three times, MAG (18:0) two times. 227.1250 m/z value is a 

discriminant for the milk of APS feeding system but the tentative assignment to the 

molecule failed. 

The identification revealed redundancies of m/z values associated with the same 

metabolite MAG (16:0) and MAG (18:0). In the case of data fusion, a detection of similar 

molecular features from the original dataset [(+) or (-) both pure EtAc or MeOH: H2O, 

that it means two ion modes for two extraction solvents] may occur as a result of the 

chemometric modeling (Calderón-Santiago et al. 2016). Attempts to refine redundancies 

and, thus filtering off redundant m/z from the datasets in which their intensity is lower, 

have been carried out. 

Lactic acid (89.0241 m/z) presence in milk is largely reported by the bibliography 

(Melzer et al. 2013), (Mordenti, Brogna, and Formigoni 2017), (Riuzzi et al. 2021) but it 

is usually related to a high starch intake, which is not a condition attributable to APS 

feeding system (Table 3b). However, it could be related to a ruminal unbalance between 

rapidly fermentable (i.e., starch and sugars from barley and/or early-stage plant rich in 

leaves) and structured (NDF)-carbohydrates. Additionally, it may be the consequence of 

a feeding condition based on the use of starch-rich supplements administered before and 

after (typically during the milking in the morning and evening) the daily grazing of high-

mountain swards. Moreover, lactic acid has already been proposed as a biomarker 

candidate for mastitis since a positive correlation exists between lactic acid and SCC 

(57.80%) (Melzer et al. 2013). However, it cannot fully explain the lactic acid presence 

in APS milk since it has been already shown how low SCC in alpine milk is (Table 4).  

MAG (16:0) (313.2733 m/z 331.2839 m/z and 348.3106 m/z) is the monoacylglycerol 

composed of glycerol and the saturated fatty acid (SFA) palmitic acid. Palmitic acid 

discriminant capacity is in line with Borreani et al. (Borreani et al. 2013) results, which 

reports that palmitic acid concentration is higher in hay-based milk production instead of 

silage-milk one.  

MAG (18:0) (341.3047 m/z and 359.3153 m/z) is the monoacylglycerol composed of 

glycerol and the SFA stearic acid. According to Corazzin et al. and Segato et al. (Corazzin 

et al. 2019) (Segato et al. 2017), it is correlated to high-input and hay-based feeding 

systems. 
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Milk and milk derivatives are important sources of fatty acids (FA) and there is still an 

open debate about the effects of FA on human health. Saturated fatty acids (SFA) have 

been associated with human cardiovascular health problems, while monounsaturated fatty 

acids (MUFAs) and polyunsaturated fatty acids (PUFAs) are accountable for a lot of 

beneficial effect on health. Particularly appreciated are the PUFAs, to which belong 

omega 3, omega 6, and the conjugated linoleic acid (CLA) as well. (Roda et al. 2015) 

(Borreani et al. 2013) (Nielsen et al. 2006) (Corazzin et al. 2019).  

Mountain milk is bibliographically associated with a higher content of beneficial MUFA, 

PUFA, and particularly CLA so that the detection of saturated monoacylglycerols in APS 

group might seem a contradiction (Sozooalp 2004) (Dhiman et al. 1999) (Roda et al. 

2015) (Segato et al. 2017). However, it must be noticed that DART-HRMS coupled with 

the proposed chemometric model, lead to the detection of discriminating biomarkers and 

not to an evaluation of the milk composition. Therefore, the presence of saturated MAGs, 

doesn’t mean that APS milk had a higher content of saturated fatty acids (SFAs).  

The C16:0, cis-9 C18:1 and C18:2 n-6 were the most abundant SA, MUFA and PUFA, 

respectively. Generally, the sn-1 and sn-2 position are mainly esterified by palmitic acid, 

whereas short FA such as butyric, caproic, and caprylic acids prefer the sn-3 position of 

the glycerol backbone. The PUFAs that are present in milk in low amounts prefer the 

primary positions (sn-1) of the TAG. It is well known that milk contains a potent 

indigenous lipoprotein lipase (LPL) which has an optimum of activity at the sn-1 and sn-

3 position of triglycerides (Collins, McSweeney, and Wilkinson 2003) (Cossignani, 

Pollini, and Blasi 2019). Therefore, as a result of the early enzymatic activity of LPL in 

milk, trace of MAG rich in C18:0 and C16:0 may occur and they may be play a role as 

metabolites of specific dairy systems. The different FA distribution over the 3 sn positions 

and the environmental-specific activity of LPL (mountain vs. lowland) maybe a key-

factor of the milk authentication chemometric approach, even if this lipidomic analysis 

has been going to enhance by further studies. Indeed, large botanical diversity and 

environmental eating conditions/forage preservation methods (e.g., outdoor/pasture 

grazing vs. indoor/hay) may influence the milk microbiota originating from teat skin and 

the following specific enzymatic activities of the microflora conveyed in the milk (Segato 

et al. 2019) (Moreira et al. 2018) (Rocchetti et al. 2020). 
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Whether they derive from in-source DART fragmentations or from hydrolysis 

phenomena in milk, there is no clear explanation for the detection of MAG as milk 

biomarkers for the APS samples (r = 0.7 on average). 
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Table 6. (…continued) List of discriminant (+/-) DART-HRMS metabolites detected in milk samples (discriminant model based on 3 dietary 

groups). The experimental m/z, theoretical m/z, error (ppm), elemental formula, type of ion, ion mode and extraction procedure, tentative 

assignment, and literature references are reported. 

Dietary 

thesis 

DART-

HRMS m/z 

Theoretical 

m/z 

Error 

(ppm) 

Elemental 

formula 
Type of ion 

Instrument ion mode 

and extraction solvent 

Tentative 

assignment 
Reference 

Lowland 

forage 

(LLF) 

113.0243 113.0239 3.54 
C5H8O4 

 
[M-H-H2O]- 

(-) MeOH:H2O 

(80:20 v/v) 
acetolactate (Mohr et al. 1997) 

178.1339 178.1339 0 C10H12N2 [M+NH4]+ (+) Pure EtAc norgramine (Riuzzi et al. 2021) 

383.3153 383.3156 -0.78 C23H42O4 [M + H]+ (+) Pure EtAc MAG (20:2) 

(Hrbek et al. 2014) 

(Borreani et al. 2013) 

(Riuzzi et al. 2021) 

Lowland 

silage (LLS) 

85.0290 85.0290 0 C4H6O3 [M-H2O+H]+ 
(+) MeOH:H2O 

(80:20 v/v) 
ketoacid derivate  

97.0289 97.0290 1.05 C5H6O3 [M-H2O+H]+ 
(+) MeOH:H2O 

(80:20 v/v) 
ketoacid derivate  

114.0664 114.0662 1.75 C4H7N3O [M + H]+ 
(+) MeOH:H2O 

(80:20 v/v) 
creatinine 

(Scano et al. 2014) 

(Foroutan and et al. 2019) 

(Tenori et al. 2018) 

(Riuzzi et al. 2021) (Sun et 

al. 2017) 

127.0390 127.0390 0 C6H6O3 [M + H]+ 
(+) MeOH:H2O (80:20 

v/v) 
methyl 2-furoate 

(Hrbek et al. 2014) 

(Riuzzi et al. 2021) 
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Lowland 

silage (LLS) 

143.0347 143.0344 2.1 C30H48O3 [M-H]- 
(-) MeOH:H2O 

(80:20 v/v) 

3-hydroxy-2-

methylglutarate or 

2-hydroxy-2-

ethylsuccinate 

(Hrbek et al. 2014) 

(Riuzzi et al. 2021) 

145.0494 145.0495 0.7 C6H8O4 [M + H]+ 
(+) MeOH:H2O 

(80:20 v/v) 

dimethyl 

fumarate 

(Melzer et al. 2013) 

(Riuzzi et al. 2021) 

149.0234 -  - - 
(+) MeOH:H2O 

(80:20 v/v) 
-  

163.0600 163.0607 -4.3 C6H12O6 [M-H2O+H]+ 
(+) MeOH:H2O 

(80:20 v/v) 
glucose 

(Mordenti, Brogna, and 

Formigoni 2017) 

(Melzer et al. 2013) 

(Riuzzi et al. 2021) 

180.0865 180.0861 2.22 C6H12O6 
[M+NH4-

H2O]+ 

(+) MeOH:H2O 

(80:20 v/v) 
glucosamine  

204.0866 204.0872 -2.9 C8H15NO6 [M-H2O+H]+ 
(+) MeOH:H2O 

(80:20 v/v) 

N-acetyl-

glucosamine 
 

281.2484 281.2486 -0.7 C18H34O2 [M-H]- (-) Pure EtAc oleic acid 
(Capuano et al. 2014) 

(Yang et al. 2019) 

Abbreviations are: APS, Alpine pasture system; LLS, lowland silages; LLF lowland forages. APS is an Alpine (South Tyrol) dietary group 

meanwhile LLS and LLF are lowland (Veneto region) dietary groups. See the paragraph 3.4.3 and page 22 for more details about the 3 dietary 

theses. 

MAG, monoacylglycerol. 
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For all the LLF m/z values, a tentative assignment was given: acetolactate, norgramine, 

and MAG (20:2). 

Acetolactate (113.0243 m/z) presence is already bibliographically reported (Mohr et al. 

1997). 

Norgramine (178.1339 m/z) molecule is a ubiquitous presence in milk coming from 

intensive farms based on barley, cereals, and silage feeding systems (Riuzzi et al. 2021).  

MAG (20:2) (383.3153 m/z) is the monoacylglycerol of an omega 6: the polyunsaturated 

eicosadienoic acid. According to Corazzin (Corazzin et al. 2019), herbage intake 

increased the level both of PUFA and MUFA. 

 

Ten out of eleven discriminant m/z values were assigned for the LLS group: two ketoacid 

derivates, creatinine, methyl 2-furoate, 3-hydroxy-2-methylglutarate or 2-hydroxy-2-

ethylsuccinate, dimethyl fumarate, glucose, glucosamine, N-acetyl-glucosamine, and 

oleic acid. For 149.0234 m/z value, discriminating value for LLS milk, no tentative 

assignment was achieved. 

Creatinine (114.0664 m/z value) was found as a potential marker of the health status of 

cows and in the diagnosing of the heat stress status in dairy cows, which may be derived 

from the phosphocreatine in the muscle tissue that has been mobilized for energy supply 

(Sun et al. 2017).  

Methyl 2-furoate (127.0390 m/z) was bibliographically reported by Riuzzi and Hrbek 

(Riuzzi et al. 2021) (Hrbek et al. 2014). 

Dimethyl fumarate (145.0494 m/z) is a fumarate derivate also found by Melzer (Melzer 

et al. 2013). 

For 143.0347 m/z value, a double identity has been assigned: 3-hydroxy-2-

methylglutarate or 2-hydroxy-2-ethylsuccinate. The ion identification is not certain 

information but a tentative performed with the help of ions databases. In case of great 

uncertainty, two different assignments can be given to the same m/z value. 2-hydroxy-2-

ethylsuccinate was also found in milk by Riuzzi (Riuzzi et al. 2021). 

Glucose (163.0600 m/z) finding in the LLS group could be connected with the high starch 

intake, as shown in Table 3b, and with the rapidly fermentable sources of energy (Sun et 

al. 2017).  
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Oleic acid (281.2484 m/z) is considered a marker of corporal fat mobilization (Yang et 

al. 2019). Despite for this MUFA (C18:1 cis-9) was detected a strong seasonal effect 

(higher in summer than in winter), it is more frequently present in milk from ration based 

on ensiled or fresh grass compare to hay-based ones (Capuano et al. 2014) 

No information was found in the bibliography for ketoacid derivate, glucosamine, and N-

acetyl-glucosamine, as milk biomarkers.  

 

Validation of multivariate discriminant model 

 

The twenty-five m/z values extrapolated by PLS-DA were used to construct a linear 

discriminant analysis (LDA) model on the training set. Its capability to correctly classify 

the samples according to the dietary groups was verified on the training set by 10 fold 

cross-validation. Furthermore, the LDA model was performed against the independent 

validation set. The predictions of this blind verification were reported in the confusion 

matrix reported below (Table 7), and a set of statistical measurements (accuracy, 

sensitivity, specificity, precision, and Matthews correlation coefficient) were calculated 

to assess the predictive discriminating capacity of the supervised classifier LDA model. 

In this blind verification, that was carried out in the independent validation set, the 

classification model correctly predicted the APS samples (as indicated by the MCC value, 

the overall correct classification was 1.00). However, pooling together the two maize 

silage- and the maize silage free-based (LLS and LLF), milk collections did not permit a 

correct prediction of the two lowland feeding groups (the overall correct classification 

was lower than 0.20). This set of results demonstrates that the DART-HRMS 

chemometric approach, coupled with robust multivariate modelling, is able to 

authenticate the “all seasons” raw bulk mountain milk compare to the lowland dairy 

production. On the contrary, the relatively high misclassification rate between the two 

lowland theses confirmed that the intensive dairy systems would be characterized by a 

relatively low variability in terms of feeding system. Moreover, the seasonal feeding 

variations linked to cows’ lactation stage and health status, and type of farming 

management, might reduce chemical differences among milk samples from dietary 

regimens with or without maize silage leading to a limited reliability capacity of 

metabolomics in tracing the dairy products. 
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Table 7. Confusion matrix reporting the predicted class probabilities (number of true 

positives, true negatives, false positives, and false negatives) and the descriptive statistic 

(sensitivity, specificity, accuracy, precision, and Matthews correlation coefficient) of the 

milk samples based on the predictions of the LDA model on the (+ / -) DART-HRMS 

validation set (n = 25) 

 

Actual class 

APS LLF LLS 

Predicted class 

APS 5 0 0 

LLF 0 6 8 

LLS 0 3 3 

Predictive statistics 

Sensitivity  1.00 0.67 0.27 

Specificity  1.00 0.50 0.79 

Accuracy  1.00 0.56 0.56 

Precision  1.00 0.43 0.50 

Matthews correlation coefficient  1.00 0.16 0.07 

Abbreviations are: APS, Alpine pasture system; LLS, lowland silages, LLF lowland 

forages. APS is an Alpine (South Tyrol) dietary group meanwhile LLF and LLS are 

lowland (Veneto region) dietary groups. Bold values represent the samples that were 

classified correctly. 
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5. CONCLUSIONS  

 

During 2019, 88 raw bulk milk samples were collected from intensive lowland dairy 

farms and extensive South Tyrolean farms. Milk samples were divided into five groups 

according to geographical origin and to the main dietary roughage: HMS (prevalence of 

maize silage, lowland), MMS (prevalence of cereal and forage silages, lowland), FCG 

(prevalence of ensiled crop and fresh forage, lowland), HAY (prevalence of dried forage, 

lowland), and APS (mountain forage, South Tyrol). The milk chemical composition 

(n=88) showed high-quality traits in the most productive groups (HMS and MMS) and in 

the alpine group as well; particularly, APS had quality values comparable to highly 

specialized rearing. The samples were analyzed by a (+/-) DART-HRMS, then the spectra 

sub-datasets were merged through a low-level data fusion. 75% of the samples have 

undergone a partial least squared discriminant analysis (PLS-DA), according to the five 

experimental groups. After a first attempt of modelling, the five dietary theses were 

redistributed into three groups: LLS (HMS and MMS), LLF (FCG and HAY), and APS, 

and the PLS-DA was performed again. Both multivariate statistical analyses have 

revealed a great ability in discriminating the Alp group (APS) from the lowland ones, 

while only a slight increase in discriminatory capacity among the lowland groups was 

achieved passing from the five-groups to the three-groups approach. 

The statistical modelling approach allowed to identify the metabolites which contributed 

the most to discriminating the groups. By eliminating the m/z values with a coefficient 

lower than 30, the remaining 25 most informative ions were submitted to a hierarchical 

cluster analysis (HCA), which results in an unsupervised clustering of the data and the 

construction of a heatmap. Again, the clustering revealed a reliable capacity of the 

chemometric model into dividing South Tyrolean data (APS) from the lowland ones, 

which were only secondly separated into two different categories representative of LLS 

and LLF data. The heatmap provided a graphical representation of the m/z signals which 

discriminated the groups and a tentative assignment of these DART signatures was 

carried out. APS group was discriminated most by lactic acid and MAGs, while LLF 

group was mainly discriminated by MAG 20:2, acetolactate, and norgramine. Among the 

molecules that discriminated against LLS feeding system were found ketoacid derivates, 
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creatinine, methyl 2-furoate, 3-hydroxy-2-methylglutarate or 2-hydroxy-2-

ethylsuccinate, dimethyl fumarate, glucose, glucosamine, N-acetyl-glucosamine, and 

oleic acid.  

Finally, the discriminative capacity of DART analysis was performed by a linear 

discriminant analysis (LDA) based on the 25 most informative ions and validate on the 

independent validation set, composed of the samples withheld previously, throughout 

blind cross-validation. The classification performances of the LDA model were 

summarized in a confusion matrix, which underlined a correct prediction of the APS 

(misclassification rate of 0.0) meanwhile an overlapping between lowland-milk samples 

was still detected (misclassification rate of 0.55).  

This study showed that a DART-HMRS coupled with a PLS-DA analysis was a 

successful approach to perform fast and accurate discrimination of milk samples only in 

the comparison between mountain (APS group) and lowland (LLS and LLF) feeding 

systems. APS milk production is connected with the use of mountain produced feedstock 

and the practice of summer alpine pasture in the Italian province of South Tyrol.  

Milk produced with this feeding system seemed to have a higher market value due to a 

more sustainable production background perceived by consumers (deepening in the 

following appendix). Nevertheless, even if certain m/z values were founded for APS 

group and a tentative assignment was achieved, none of them was attributable to 

molecules with a marketable organoleptic value. It can be assessed that this modeling 

approach could be applied to certify milk South Tyrolean origin, basing on the specifical 

feeding system which reflects on specifical retrievable ions. However, these ions cannot 

yet be employed as biomarkers of a higher quality of milk. 
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APPENDIX 

SOUTH TYROLEAN MILK 

 

South Tyrol 

 

Trentino-South Tyrol is one of the five Italian autonomous regions, is situated in the 

northeast part of the country and, particularly, is divided into two autonomous provinces: 

Trentino and South Tyrol which, bordering with Austria, is the northern one (46°30’0” N 

11°19’59” E) (Figure I). Since 1972 it enjoys a special self-government form in order to 

safeguard the peculiar territory and culture. 

The province has 531.178 inhabitants (situation at 31.12.18) of which 69,41% belong to 

the German language group and only 26,06% to the Italian group. People are spread 

among 7.400 m2 of land, of which two-thirds are situated at an altitude greater than 1.500 

m asl and only 14% below 1.000 m asl, so large areas are alpine pastures and 40% of the 

territory is protected landscape (Giunta provinciale di Bolzano 2019).   

In addition to these particular geographical conditions, the rare plain valleys are mainly 

occupied by viticulture, orchards, and the few cities. As a result of this background, the 

dairy production realities are mainly dislocated on the mountains, forming a high quote 

capillary net. 
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Figure I. Physical map of Trentino-South Tyrol region, delimitation of the two provinces 

and their borders (Image from ontheworldmap.com). 

 

The alpine meadow scene is mainly constituted by permanent, polyptych, natural, or 

spontaneous pastures. Spontaneous meadow originates from tree-felling and its 

maintenance strictly depends on the regular, annual presence of grazing cows (Ziliotto, 

Scotton, and Da Ronch 2004). Considering the great variability of pasture types, the most 

abundant forage species are Agrostis tenuis, Anthoxanthum alpinum, Festuca rubra, 

Nardus stricta, Phleum alpinum, Poa alpina, Trifolium repens, and Achillea millefolium 

(Orlandi, Clementel, Bovolenta 2005). 

 

Traditional Dairy Farms 

 

Market conditions, technological progress, and economic pressure have led to an 

intensification of dairy production in the last years. Consequently, milk production has 

averagely shifted to more profitable regions while in mountain areas, a high percentage 

of agricultural land has been abandoned, with severe consequences on landscapes, 

biodiversity, migration of people, and cultural loss because mountain dairy farms are of 

high importance for the local economy and the maintenance of traditional landscapes 
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(Kühl, Flach, and Gauly 2020). Counter-trend, South Tyrol has recognized the value and 

preserved its small-size extensive farms in the last decades.  

Of the almost 4.500 farms, 70% of them are carried out as side jobs because this activity 

rarely supports a family on its own (Sennereiverband 2019). The average rearing density 

is 15 cows and 8 calves, the average milk production ranges from 25 to 30 L/d depending 

on the employed breeds (Federazione latterie Alto Adige 2020).  

The traditional approach consists of an extensive grassland-based system. In wintertime 

the animals are raised in closed stalls, mainly tie, usually fed with hay silage or dried 

forages obtained from local meadow, and concentrates. During summer cows are usually 

led to the highland pasture, approximately from May to September, depending on the 

altitude and the climate (Sturaro et al. 2013) (Asaduzzaman et al. 2020). In fact, 34% of 

the South Tyrolean surface is classified as pasture. This annual cattle drive on and off the 

mountains is connected to folkloric events and popular traditions which attract many 

tourists every year (Altoadige-Tirolo 2020).  

Two-thirds of South Tyrolean farms are single-breed (Zanon et al. 2020). The breeds 

mainly chosen, range from high-yielding types like Brown Swiss (31.7%), Simmental 

(29.0%), and Holstein Friesian (19.9%), to the more rural breeds like Alpine Grey 

(13.2%), Pinzgauer (1.8%), Jersey (1%) and other breeds (3.4%) like Pustertaler Sprinzen 

and to find a balance between productive ambitions and resilience necessity 

(Rinderzuchtverband 2019). Brown is considered the most interesting for alpine dairy 

farming to achieve optimal milk quality. Simmental is well appreciated for its good milk 

performance, coupled with its robustness, high carcass value, high market value of calves, 

and adaptability to the mountain farming system (Zanon et al. 2020). For Alpine Grey 

rearing subsidies are provided since it is considered an endangered breed (Kühl, Flach, 

and Gauly 2020).  

As already seen, farms are distributed all over the valleys and mountains, making the 

productive scenario really heterogeneous. Some farms are located in almost inaccessible 

areas, reachable only by forest roads or cableways, like the one shown in Figure II. For 

these and a lot of other reasons, production costs are clearly higher compared to lowland 

areas or other countries: specifically, the cost per kg ECM (energy corrected milk) is 

between 58.1 c/kg and 70.6 c/ costs, averagely more than countries like Germany (36.5 

c/kg), France (36.8 c/kg) or rest of Italy (30.5 c/kg) (Kühl, Flach, and Gauly 2020). 
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In order not to disadvantage them, some measures have been studied: for example, 

insemination costs are the same for big accessible farms as for distant small rearing 

(Vereinigung der südtiroler Tierzuchtverbände. 2019).  

 

Figure II. A dairy farm in Varna, South Tyrol. Here the production keeps going during 

the whole year, not only in summer. The nearest paved street is distant 6 kilometers from 

here. 

 

Chain  

 

Except for the rare self-productive and selling realities, which usually concentrate their 

activity on the summer huts, milk is collected every day by refrigerated tank trucks. They 

pick up milk directly from the farm or from a collecting center and they transfer it, in less 

than 24 h, to one of the nine dairy cooperatives dislocated on the territory (Figure IV). 

Considering the geographical location of the farms, milk collection is often tricky and not 

always paved (Figure III): some situations are even solved with the use of cableways 

(Federazione latterie Alto Adige 2020). 
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Figure III. A refrigerated tank truck that every day deals with gravel paths to collect milk 

on pastures 

 

 

 

Figure IV. The nine dairy cooperatives of the South Tyrolean province (Federazione 

latterie Alto Adige 2020). 
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Every cooperative has its own production chains, its brand, and flagship products (i.e. 

Psairer Bergkäserei produces only organic products) (Federazione latterie Alto Adige 

2020). 

Above these small industrial realities is the oversight of the “Sennereiverband Südtirol, 

Federazione latteria Alto Adige” (South Tyrol Dairy Federation) which coordinates South 

Tyrolean milk production, its quality standards, laboratory controls, and farmers 

education. 

The federation deals with raw milk chemical test, with the test for milk-detectable cow-

infections such as IBR, brucellosis, enzootic 

 bovine leucosis (4.588 analyzed samples during 2019), with truck tank checks, and with 

instruments’ calibration.  

In order to ensure the measures’ reliability, the federation’s lab performs crossed analysis 

with other certified labs in Europe.  

On the final product, traceability proves are performed as well as residue tests like dioxin, 

aflatoxin, PBC, organophosphorus compounds, benzimidazoles, avermectin.  

Throughout 2019, 3.829 products have been checked, 57.141 microbiological analysis 

have been performed, 19.631 chemical analysis, 8.380 physical analysis, 3.191 sensory 

analysis, taking into consideration 1.334 different parameters (Federazione latterie Alto 

Adige 2020) 

 

Aim  

 

70% of Italian annual milk production (12 mio.t) is yielded in three regions: Veneto, 

Lombardy, Emilia-Romagna. Considering the higher cost of production (Kühl, Flach, and 

Gauly 2020) due to peculiar difficulties, it is clear that South Tyrolean dairy production 

cannot compete on quantity with other regions and states (Sennereiverband 2019). Farms 

cannot evolve in big, high populated rearing because of the morphological conformation 

of the territory and the impossibility to use big motorized tools. Also, they cannot employ 

high-yielding breeds because high resiliency is requested on the alpine pasture and those 

breeds are often not appropriate for grazing (Kühl, Flach, and Gauly 2020).  
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Quality 

 

In this perspective, South Tyrolean farmers have to maximize efficiency and profitability 

through the enhanced nutritional and organoleptic quality of their milk and dairy-products 

(Zanon et al. 2020).  

In the dairy field, to be considered high quality by the Ministry of Health, milk has to 

fulfill: 

 Composition requirements:  

Fat content not lower than 3,50% 

Protein content not lower than 32,0 g/L 

 Hygienic-sanitary  requirements:  

Bacterial charge at +30 °C not greater than 100.000 /ml 

Somatic cell content not greater than 300.000 /ml 

Lactic acid content not greater than 30 p.p.m.  

(Ministero della Sanità 1991) [D.M n 185/1991] 

 

Actually, South Tyrolean milk greatly fulfills such parameters, as shown in Table I 

 

Table I. Average South Tyrolean milk content in 2019. 

Components Value  

Somatic Cell Count SCC/ml 204.000 

Fat % 4.17 

Protein % 3.55 

Lactose % 4.74 

Urea mg/dl 22.1 

Casein % 2.82 

 

Source: (Vereinigung der südtiroler Tierzuchtverbände. 2019) 
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Figure V. The logos of the “Qualità Alto Adige-Qualität Südtirol” brand, in both South 

Tyrolean languages. From www.provincia.bz.it 

 

In order to protect and support high-quality industry, South Tyrol has established with the 

provincial law n.12 of 22 December 2005, an umbrella brand for its products. The brand 

covers all the DOP, IGP, DOC products like cheese and other dairies, speck, wines, 

honey, eggs, apple juice, liquors, groceries, but can also be used for productive enterprises 

and service offices. The logo (Figure V) is a guarantor of quality and geographical origin, 

certifying for a 100% South Tyrolean production, processing, and optimizing marketing 

efforts (Regolamento marchio ombrello Alto Adige 2018). 

Regarding dairy, the umbrella logo equals to: 

- Only South Tyrolean farm milk  

- Total absence of GMO 

- Quality controls from the milking to the processing 

- Animal welfare care 

(Federazione latterie Alto Adige 2020) 

 

Quality has also been pursued with the development of some specific products which 

better embodied the South Tyrolean bond with mountain and agricultural production, like 

“Heumilch” (Hay-Milk). It is an Austrian traditional dairy product, which disciplinary 

forbids silage and GMO use. Europe recognizes “Heumilch” as “Traditional Specialty 

Guaranteed" (TSG) which allows its production in European states different from Austria, 

as long as the production specification is being respected (Latte fieno 2020). The diet 

mainly consists of pasture or hay, depending on the season, with the integration of bran 
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and protein crops (Federazione latterie Alto Adige 2020). In 2019, 18,8% of the South 

Tyrolean milk belonged to “Heumilch” category, and 4,0% was organic “Heumilch”, both 

productions were greater than the simple organic production (0,17%) and both had a 

positive trend (Table II). (Sennereiverband 2019).  

 

Table II. South Tyrolean milk production in 2019 and its distribution into categories.  

Source: (Sennereiverband 2019). 

 

To uphold quality and cover higher production costs, the revenue per kg to farmers is 

averagely greater than in other productive areas. The majority of the small-size realities 

would be loss-making if there weren’t subsidies connected with feeding strategy and farm 

structure, premium payments for value-added milk products to support extensive farms. 

Data in Table III refer to 2019 production (Sennereiverband 2019) (Kühl, Flach, and 

Gauly 2020).  

  

 2019 Compare to 2018 

Delivered bovine milk 399,108 t - 1.7 % 

….of which 

Organic 711 t - 33.0% 

“Heumilch” 75,156 t + 19.8% 

Organic “Heumilch” 15,905 t + 24.0% 
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Source: (Sennereiverband 2019) 

 

Added Value 

 

Summer pasture is not a direct profitable practice, it has been demonstrated the 

statistically significant link between production costs and the percentage of the herd on 

alpine pastures (Figure VI) (De Ros G., Baldessari E. 2005). 

Table III. Average revenue (in  €) per kg of milk in South Tyrol and other productive 

areas in the world.  

Area Revenue Area Revenue 

South Tyrolean high 

quality milk 
50.4 cent/kg Germany 33.1 cent/kg 

South Tyrolean 

organic milk 
70.4 cent/kg French 35.0 cent/kg 

Average South 

Tyrolean milk 
51.2 cent/ kg Switzerland 56.5 cent/kg 

EU 34.3 cent/kg New Zealand 30.4 cent/kg 

Lombardy 40.6 cent/kg USA 36.6 cent/kg 

Austria 32.7 cent/kg   
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Figure VI. Milk production costs and utilization level of alpine pasture in 18 dairy farms 

province of Trento analyzed between 2000 and 2002. Edited from (De Ros G., Baldessari 

E. 2005) 

 

Nevertheless, there are a lot of side plus-values in maintaining the cattle-drive in the 

mountains. 

Biodiversity. It is long already known that the presence of grazing animals and the 

limitation to the reforestation of pasturing areas, enriches the landscape variability and 

above all biodiversity. The main reason is due to frequent cows’ cut of the grass, which 

allows small vegetal species to survive despite the presence of strong, bigger species that 

would prevail if left free to grow. Consequently, a greater vegetation variability offers 

habitat opportunities for more wildlife species (Ziliotto, Scotton, and Da Ronch 2004) 

(Figure VII). Furthermore, mountain dairy farms are mostly populated by different local 

breeds, thereby preserving their genetic heritage, like in the case of Tyrolean Grey cattle 

that are listed as endangered (Berton et al. 2016) (Kühl, Flach, and Gauly 2020). 
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Figure VII. Impact of land use and breeding intensity on biodiversity. Edited from (Russo 

2006). 

 

- Ecosystem Service. Pastures’ presence and the correlated human work, along with 

the construction of dry stone walls, play an important role to prevent natural 

hazard events like wildfires, avalanches, and erosions (Gusmeroli 2005). 
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Moreover, they reduce valley meadows’ eutrophication (Ziliotto, Scotton, and Da 

Ronch 2004) and play a role in carbon sequestration (Corazzin et al. 2019). 

 

- Sustainability. We can see there are a lot of strong points in favor of dairy farms 

in mountainous areas when using a multi-indicators approach to assess its 

sustainability without only considering the direct economical reward. Aside from 

the maintenance of local communities, the most interesting element is the low 

competition with human-edible resources because of the energy taken from 

otherwise unusable grasslands:  

 

He (human-edible) Feed Conversion Ration = 0.72 ± 0.46 MJ feed/MJ milk 

 

Considering that conventional dairy cows usually get more energy in human-

edible feedstuffs than what they produce in milk, this ratio lower than 1, sets out 

grazing dairy cows like efficient food producers (Berton et al. 2016). In other 

words, traditional rearing consumes less arable land than the conventional one 

(Sturaro et al. 2013).  

 

- Cultural heritage. Most of the mountain community life revolves around cattle 

rearing and driving to the pasture. The ascent and descent from the Alps are often 

celebrated with popular festivals, which are very attractive for tourists. Food, 

tales, and above all languages, are influenced by farm life. Stable communities 

are keepers of spoken knowledge and traditions (Corti 2005). 

 

- Touristic appeal. A great interest in alpine pasture traditions has developed in the 

last years and even more, people are fascinated by what this reality includes. Farm 

accommodations, guided tours, trekking along the pasture paths and the alpine 

huts, rural food experiences, and popular festivals turn mountain rural 

communities into profitable holiday destinations (Corti 2005) (Sozooalp 2004). 

This is the major element to counterbalance lower-yielding quantity and higher 

production costs from an economical point of view.  
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The South Tyrolean dairy organizations and the province government aim to the 

development and rewarding of these values by providing funds, incrementing advertising 

campaigns, and certifying added values (Vereinigung der südtiroler Tierzuchtverbände. 

2019).  

Also Europe recognizes the relevance of promoting added values to protect the natural 

landscape, as declared in the European Landscape Convention signed by the Council of 

Europe in 2000 (Council of Europe 2000). In 2008 the European Environment Agency 

charted the map of the HNV, namely High Nature Value farmland, to identify farming 

systems and areas with a high biodiversity value (Figure VIII) (European Environment 

Agency 2012). 

 

 

Figure VIII. European distribution of high nature value (HVN) farmlands with particular 

attention on the South Tyrolean area (red circle). Edited from (European Environment 

Agency 2012) 
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Improvement  

 

According to the 2019 activity report of the breeder association “Vereinigung der 

südtiroler Tierzuchtverbände” (Union of South Tyrolean Animal Breeding Associations), 

80% of the farms join voluntarily to performance tests, in order to improve the rearing 

performances and monitor the land advancement. The test is repeated in nine different 

periods of the year and consists of a comprehensive analysis of the animals and the rear, 

separating them according to age and breed to obtain a breed study as well, as shown in 

Table IV and Table V. Milk analysis are performed by the “Sennereiverband” in certified 

labs: protein, fat, urea, lactose, casein, somatic cells, and the derivable health state of 

cows. Furthermore, reproductive data are collected, like calving interval (CI), days open, 

fertility rates to artificial insemination or natural service (a practice still performed, even 

if decreasing), and infectious disease state like IBR, TBC, brucellosis, enzootic leucosis 

are monitored. These results are also shared with “ Associazione Italiana Allevatori” 

(AIA) (Italian Breeders Association) in the project LEO, for the study and protection of 

bovine breeds and disease monitoring. (Vereinigung der südtiroler Tierzuchtverbände. 

2019). During the last years, due to these constant monitoring and upgrades, a progressive 

and regular improvement in milk production (kg) was achieved, as shown in Figure IX.  

 

Table IV. Herd breed incidence, breed’s age, and reproductive performances (average 

data) 

Source (Vereinigung der südtiroler Tierzuchtverbände. 2019). 1Average service per 

pregnancy. 

Breed 
age Days 

Open 

age at first calving 
ASPP1 

Years Months Years Months 

Brown Swiss 4 7 159 2 7 2.2 

Simmental 4 7 121 2 6 1.9 

Alpine Grey  5 2 123 2 8 1.9 

Holstein 

Friesian  
4 1 160 2 5 2.1 

Pinzgauer 4 9 133 2 7 2.1 

Average 4 7 141 2 6 2.1 
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Source (Vereinigung der südtiroler Tierzuchtverbände. 2019). 1Average service per 

pregnancy. 

 

 

 

 

Figure IX. Development of average milk production in South Tyrol from 1978 to 2018. 

Edited from (Vereinigung der südtiroler Tierzuchtverbände. 2019) 

 

Communication 

 

The fourth point that the South Tyrolean dairy organization aims to, to empower the local 

productive reality, is the communicative efficiency throughout every part of the capillary 

chain: from the most remote farm to the central federation and the government.  

The SESAM project aims to develop user-friendly computer programs and to teach 

farmers how to use them (Vereinigung der südtiroler Tierzuchtverbände. 2019). 

Nevertheless, the internet is not available everywhere, so milk analysis results are 

communicated via SMS or Fax. A lot of workshops are organized by the breeders 

association but an important transversal capillary work is done by five farm advisers. The 

advisers go from farm to farm to perform random tests on milk, cows, work tools, verify 

Table V. Average data of South Tyrolean dairy cows population in 2019. 

Age 4 years and 7 months  

Age at first calving  2 years and 6 months 

Days open  141 days  

ASPP1 2,1 
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feed certifications but also to help and update farmers according to the “Sennereiverband” 

guidelines. (Sennereiverband 2019) 

 

Conclusions 

 

In conclusion, the conversion to high input, intensive, high-yielding rearing would seem 

to be economically advantageous for South Tyrolean small-scale dairy farmers. However, 

the geographical conformation would not allow such conversion on mountains and, 

moreover, this could result in problems regarding animal welfare, impact on environment 

and landscape, the regions attractiveness for tourists, loss of cultural heritage, and public 

acceptance. Furthermore, a low percentage of roughage used for milk production could 

lead to less fatty acids in the milk (Borreani et al. 2013). To support extensive mountain 

farms, the European community provides financial help (EC 2008) and has recently 

developed mountain product labels to attract the growing number of consumers 

who perceive milk produced at higher altitudes as an ethical, natural, and sustainable 

choice (Asaduzzaman et al. 2020). 

Also the Province of South Tyrol promotes the development and valorization of the 

traditional dairy industry with economical subsidies and scientific studies (Kühl, Flach, 

and Gauly 2020). 
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