

Universitá degli studi di Padova Dipartimento di Fisica e Astronomia "Galileo Galilei" Corso di laurea in Fisica

Studio a principi primi delle proprietá di polarizzazione di molecole e piccoli clusters metallici

Relatore:

Prof. Paolo Umari

Laureanda:

Francesca Chiocchetta

Anno Accademico 2014/2015

Indice

1	Introduzione teorica [1]			
	1.1 Teoria del funzionale di densitá	5		
	1.2 Equazioni di Kohn-Sham	7		
	1.3 Approssimazione del potenziale di correlazione e scambio	9		
	1.4 Onde piane	9		
2	Verifica di alcune convergenze	11		
3	Studio della proprietá di alcune molecole	13		
4	Calcolo della proprietá elettriche di alcune molecole	19		
	$4.1 {\rm Calcolo} \ {\rm del} \ {\rm momento} \ {\rm di} \ {\rm dipolo} \ {\rm permanente} \ {\rm di} \ {\rm alcune} \ {\rm molecole} \ . \ .$	19		
	4.2 Calcolo della polarizzabilitá elettrica di alcune molecole	22		
5	Calcolo del campo elettrico indotto in alcune molecole	27		
	5.1 Molecole dielettriche	27		
	5.2 Clusters metallici	32		
6	Momento di dipolo elettrico di una sfera di metallica [3]	41		
7	Conclusioni	47		
Bi	ibliografia	49		

Introduzione teorica [1]

L'hamiltoniana di un sistema non relativistico di elettroni di massa m_e e carica -e che interagiscono tra di loro e con nuclei di massa M_I e carica Z_I é la seguente:

$$H = -\sum_{i} \frac{\hbar^2 \bigtriangledown_i^2}{2m_e} - \sum_{I} \frac{\hbar^2 \bigtriangledown_I^2}{2M_I} + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} - \sum_{i,I} \frac{e^2 Z_I}{|\mathbf{r}_i - \mathbf{R}_I|} + \frac{1}{2} \sum_{I \neq J} \frac{e^2 Z_I Z_J}{|\mathbf{R}_J - \mathbf{R}_I|}$$

Dove i e j indicano gli elettroni, I e J indicano i nuclei, $\mathbf{r}_i \in \mathbf{r}_j$ indicano la posizione degli elettroni, $\mathbf{R}_I \in \mathbf{R}_J$ le posizioni dei nuclei.

L'approssimazione di Born-Oppenheimer consiste nel separare i gradi di libertá dei nuclei da quelli elettronici.

Utilizzando questa approssimazione si scrive un' hamiltoniana contente i soli termini elettronici:

$$H_{BO} = -\sum_{i} \frac{\hbar^2 \nabla_i^2}{2m_e} + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} - \sum_{i,I} \frac{Z_I e^2}{|\mathbf{r}_i - \mathbf{R}_I|} = T + V_{int} + V_{est}$$

dove T é l'energia cinetica degli elettroni, V_{int} é il potenziale di interazione tra gli elettroni e V_{est} contiene il potenziale di interazione tra nuclei ed elettroni e un eventuale potenziale esterno applicato.

L'hamiltoniana che descrive il sistema é l'hamiltoniana di un sistema a molti corpi che interagiscono e sono correlati tra loro ed anche con l'approssimazione di Born-Oppenheimer é troppo complessa per essere risolta anche numericamente a causa dell'elevato numero di variabili coinvolte.

È necessario approssimare V_{int} ai fini di renderlo utilizzabile per il calcolo. Per la soluzione di questo problema si hanno i seguenti passaggi:

- DFT (Density Functional Theory).
- Equazioni di Kohn-Sham.

1.1 Teoria del funzionale di densitá

In questa teoria il ruolo centrale non é piú svolto dalla funzione d'onda che descrive il sistema ma dalla densitá di carica $n(\mathbf{r})$ definita da:

$$n(\mathbf{r}) = N \int |\Psi(\mathbf{r}, \mathbf{r}_2, ..., \mathbf{r}_N)|^2 d\mathbf{r}_2 ... d\mathbf{r}_N$$

dove N é il numero di elettroni interagenti.

La DFT si basa su 2 teoremi fondamentali: i teoremi di Hohenberg-Kohn.

PRIMO TEOREMA DI HOHENBERG-KOHN

Dato un sistema di particelle interagenti sottoposte ad un potenziale esterno V_{est} , il potenziale esterno si determina in maniera univoca, eccetto per una costante, dalla densitá di carica dello stato fondamentale $n_0(\mathbf{r})$.

COROLLARIO DEL PRIMO TEOREMA DI HOHENBERG-KOHN

Le proprietá del sistema sono completamente determinate dalla densitá di carica dello stato fondamentale $n_0(\mathbf{r})$.

DIMOSTRAZIONE: per ipotesi si hanno 2 Hamiltoniane che differiscono solo per il potenziale esterno applicato al sistema di cariche $H = T + V_{int} + V_{est}$ e $H' = T + V_{int} + V'_{est}$ (dove V_{est} e V'_{est} sono i potenziali esterni che differiscono tra loro per più di una semplice costante). Siano $\Psi \in \Psi'$ la funzioni d'onda dello stato fondamentale di H e H'. Supponiamo per assurdo che lo stato fondamentale delle densitá di carica sia lo stesso: $n_0[V_{est}] = n'_0[V'_{est}]$. Dato che Ψ non é lo stato fondamentale di H', possiamo stabilire la seguente disuguaglianza stretta: $E' = \langle \Psi' | H' | \Psi' \rangle < \langle \Psi | H' | \Psi \rangle = \langle \Psi | H + V'_{est} - V_{est} | \Psi \rangle$

che equivale a

 $E' < E + \int (V_{est}(\mathbf{r}) - V'_{est}(\mathbf{r}))n_0(\mathbf{r})d\mathbf{r}$

Facendo lo stesso ragionamento a partire dall'energia E si trova:

 $E < E' + \int (V'_{est}(\mathbf{r}) - V_{est}(\mathbf{r})) n_0(\mathbf{r}) d\mathbf{r}$

sommando le 2 disequazioni si trova la disuguagianza assurda:

E + E' < E + E' si verifica quindi che non esistono 2 potenziali esterni, che differiscono per piú di una costante, che danno origine allo stessa densitá di carica dello stato fondamentale.

SECONDO TEOREMA DI HOHENBERG-KOHN

Si puó determinare un funzionale E[n] in termini della densitá di carica $n(\mathbf{r})$, valido per ogni potenziale esterno $V_{est}(\mathbf{r})$. Per ogni particolare $V_{est}(\mathbf{r})$, l'energia dello stato fondamentale del sistema é il minimo globale del funzionale E[n], e la densitá di carica $n(\mathbf{r})$ che minimizza il funzionale é la densitá di carica dello stato fondamentale $n_0(\mathbf{r})$.

COROLLARIO DEL SECONDO TEOREMA DI HOHENBERG-KOHN

Il funzionale E[n] é sufficiente per determinare l'energia e la densitá di carica dello stato fondamentale.

DIMOSTRAZIONE: T l'energia cinetica e E_{int} l'energia potenziale di interazione tra gli elettroni vengono univocamente determinate dalla densitá di carica $n(\mathbf{r})$, é quindi possibile rappresentare l'energia come un funzionale della densitá di carica $n(\mathbf{r})$.

 $E_{HK}[n] = T[n] + E_{int}[n] + \int n(\mathbf{r}) V_{est}(\mathbf{r}) d\mathbf{r} \equiv F[n] + \int n(\mathbf{r}) V_{est}(\mathbf{r}) d\mathbf{r}$

Sia $n^{(1)}(\mathbf{r})$ la densitá di carica dello stato fondamentale corrispondente al potenziale esterno $V_{est}^{(1)}(\mathbf{r})$ e associato alla funzione d'onda $\Psi^{(1)}$ allora il valore di aspettazione dell'hamiltoniana é: $E^{(1)} = E_{HK}[n^{(1)}] = \langle \Psi^{(1)} | H^{(1)} | \Psi^{(1)} \rangle$.

Si consideri una densitá di carica differente $n^{(2)}(\mathbf{r})$ che corrisponde a una differente funzione d'onda $\Psi^{(2)}$. L'energia $E^{(2)}$ in questo stato é maggiore dell'energia $E^{(1)}$, infatti: $E^{(1)} = E_{HK}[n^{(1)}] = \langle \Psi^{(1)} | H^{(1)} | \Psi^{(1)} \rangle < \langle \Psi^{(2)} | H^{(1)} | \Psi^{(2)} \rangle = E^{(2)}[n^{(2)}].$

Scrivendo quindi l'energia come funzionale di $n(\mathbf{r})$ e calcolandola nella densitá di carica dello stato fondamentale $n_0(\mathbf{r})$ si ottiene il valore minimo di questo funzionale rispetto a qualunque altro valore di densitá di carica.

Si é quindi ridotto il problema a N corpi alla determinazione di una funzione tridimensionale $n(\mathbf{r})$ che minimizza il funzionale $E[n(\mathbf{r})]$. Nonostante la notevole semplificazione $F[n(\mathbf{r})]$ é ancora troppo complesso.

1.2 Equazioni di Kohn-Sham

Il problema precedente viene riformulato da Kohn e Sham.

Il sistema di elettroni interagenti viene mappato in un sistema di elettroni non interagenti con la stessa densitá di carica dello stato fondamentale.

Nel caso in cui gli elettroni non interagiscono la densitá di carica é data dalla somma dei moduli quadri delle funzioni d'onda dei singoli elettroni.

 $n(\mathbf{r}) = 2\sum_{i} |\Psi_{i}(\mathbf{r})|^{2}$

dove i va da 1 a N/2 se si assume che gli stati siano occupati da 2 elettroni.

Il funzionale dell'energia del sistema ausiliario ad elettroni non interagenti di Kohn-Sham é composto dai seguenti termini:

$$E[n(\mathbf{r})] = E_{KS} = T_s[n(\mathbf{r})] + E_H[n(\mathbf{r})] + E_{xc}[n(\mathbf{r})] + \int n(\mathbf{r})V_{est}(\mathbf{r})d\mathbf{r}$$

Descrizione dei termini:

- energia cinetica: $T_s[n(\mathbf{r})] = -\frac{\hbar^2}{2m} 2 \sum_i \int \overline{\Psi_i}(\mathbf{r}) \nabla^2 \Psi_i(\mathbf{r}) d\mathbf{r}$, l'energia cinetica del sistema ausiliario approssima l'energia cinetica del sistema di elettroni interagenti,
- energia coulombiana di interazione tra gli elettroni: $E_H[\mathbf{r}] = \frac{e^2}{2} \int \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} d\mathbf{r} d\mathbf{r}',$
- potenziale esterno: $V_{est}(\mathbf{r})$,
- energia di correlazione e scambio, contiene i restanti termini a noi sconosciuti: E_{xc} .

Si deve quindi minimizzare E_{KS} rispetto alla densitá di carica $n(\mathbf{r})$. Il minimo del funzionale rispetto alla densitá di carica é vincolato alla condizione di ortonormalitá delle funzioni d'onda. Si utilizza il metodo dei moltiplicatori di lagrange.

$$E' = E - \sum_{ij} \lambda_{ij} \left(\int \overline{\Psi_i} \Psi_j d\mathbf{r} - \delta_{ij} \right)$$

dove λ_{ij} sono i moltiplicatori di lagrange.

$$E' = T_s[n(\mathbf{r})] + E_H[n(\mathbf{r})] + E_{xc}[n(\mathbf{r})] + \int n(\mathbf{r}) V_{est}(\mathbf{r}) d\mathbf{r} - \sum_{ij} \lambda_{ij} (\int \overline{\Psi_i} \Psi_j d\mathbf{r} - \delta_{ij})$$

Si calcola la derivata rispetto a $\overline{\Psi_i}(\mathbf{r})$ di ambo i membri dell'equazione. Si ha:

• $\frac{\delta E'}{\delta \overline{\Psi_i}(\mathbf{r}')} = 0$ per costruzione,

•
$$\frac{\delta n(\mathbf{r})}{\delta \overline{\Psi_i}(\mathbf{r}')} = \Psi_i(\mathbf{r}')\delta(\mathbf{r}-\mathbf{r}'),$$

•
$$\frac{\delta T_s}{\delta \overline{\Psi_i}(\mathbf{r})} = -\frac{\hbar^2}{2m} 2 \sum_i \nabla^2 \Psi_i(\mathbf{r}),$$

• $\frac{\delta E_H}{\delta \Psi_i(\mathbf{r}')} = e^2 \int \frac{n(\mathbf{r}')}{|r-r'|} d\mathbf{r}' \Psi_i(\mathbf{r})$ Si definisce $V_H \equiv e^2 \int \frac{n(\mathbf{r}')}{|r-r'|} d\mathbf{r}'$ il potenziale di Hartree.

•
$$V_{xc}[n(\mathbf{r})] = \frac{\delta E_{xc}}{\delta n(\mathbf{r})}.$$

Moltiplicando ambo i membri dell'equazione per $\overline{\Psi_i}$ e integrando si ottiene:

$$\lambda_{ij} = \int \overline{\Psi_i}(\mathbf{r}) \left(-\frac{\hbar^2 \nabla^2}{2m} + V_H(\mathbf{r}) + V_{xc}(\mathbf{r}) + V_{est}(\mathbf{r})\right) \Psi_i(\mathbf{r}) d\mathbf{r}$$

Nella rappresentazione diagonale l'equazione diventa:

$$(-\frac{\hbar^2 \nabla^2}{2m} + V_H(\mathbf{r}) + V_{xc}(\mathbf{r}) + V_{est}(\mathbf{r}) - \epsilon_i)\Psi_i(\mathbf{r}) = 0$$
$$V_{KS} \equiv V_H(\mathbf{r}) + V_{xc}(\mathbf{r}) + V_{est}(\mathbf{r})$$
$$(-\frac{\hbar^2 \nabla^2}{2m} + V_{KS}(\mathbf{r}))\Psi_i(\mathbf{r}) = \epsilon_i \Psi_i(\mathbf{r})$$

Il problema diventa il calcolo degli autovalori di H_{KS} : $H_{KS}\Psi_i(\mathbf{r}) = \epsilon_i \Psi_i(\mathbf{r})$

$$H_{KS} = -\frac{\hbar^2 \bigtriangledown^2}{2m} + V_{KS}(\mathbf{r})$$

Il programma QUANTUM ESPRESSO risolve numericamente l'equazione KS.

1.3 Approssimazione del potenziale di correlazione e scambio

Il potenziale V_{ex} non é noto in generale e deve essere approssimato. Due tipi di approssimazioni sono LDA e GGA.

- LDA (Local Density Approximation): la densitá di energia di correlazione e scambio ϵ_{xc} é funzione della densitá di carica $n(\mathbf{r})$. L'energia di correlazione e scambio si ottiene con il seguente integrale: $E_{xc}^{LDA} = \int d^3r n(\mathbf{r}) \epsilon_{ex}(n(\mathbf{r}))$.
- GGA (Generalized Gradient Approximation): la densitá di energia di correlazione e scambio ϵ_{xc} é funzione della densitá di carica $n(\mathbf{r})$ e del gradiente della densitá di carica. L'energia di correlazione e scambio si ottiene con il seguente integrale: $E_{xc}^{GGA} = \int d^3r n(\mathbf{r}) \epsilon_{ex}(n(\mathbf{r}), |\nabla n(\mathbf{r})|)$. Un tipo di approssimazione GGA é stata proposta da Perdew, Burke e Enzerhof (PBE).

1.4 Onde piane

Nel programma QUANTUM ESPRESSO il sistema é simulato ripetendo una cella di volume V che contiene un numero stabilito di atomi o molecole. QUAN-TUM ESPRESSO utilizza condizioni al contorno periodiche per il calcolo numerico.

Il teorema di Bloch impone che tutte le autofunzioni di una hamiltoniana che presenta periodicitá $H(\mathbf{r} + \mathbf{R}) = H(\mathbf{r})$ (\mathbf{R} é un vettore del reticolo) abbiano la forma: $\Psi(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{\mathbf{k}}(\mathbf{r})$, dove \mathbf{k} é il vettore d'onda. $u_{\mathbf{k}}(\mathbf{r})$ é una funzione periodica con la stessa periodicitá del potenziale nel caso specifico V_{KS} e che puó essere espansa in serie di Fourier $u_{\mathbf{k}}(\mathbf{r}) = \frac{1}{\sqrt{V}}\sum_{\mathbf{G}} c(\mathbf{G})e^{i\mathbf{G}\cdot\mathbf{r}}$, dove \mathbf{G} é il vettore del reticolo reciproco.

É necessario troncare il numero di onde piane utilizzate per rendere possibile il calcolo: $\frac{1}{2} |\mathbf{k} + \mathbf{G}|^2 \leq E_{cut}$.

Verifica di alcune convergenze

Aumentando il valore di E_{cut} aumenta il numero di onde piane utilizzate e quindi aumenta la precisione del calcolo. Oltre ad un certo valore di E_{cut} le grandezze fisiche determinate raggiungono un valore asintotico. Si verifica che aumentando il valore E_{cut} l'energia totale converge. É stato verificato per 3 molecole: CH₄, NH₃, H₂O.

Figura 2.1

Aumentando le dimensioni della cella contenente una singola molecola si simula in maniera sempre piú precisa la molecola isolata. Anche in questo caso si puó verificare che l'energia totale converge.

Le celle sono cubiche di lato a.

Si é verificata la convergenza dell'energia per le molecole di $\rm CH_4$ e $\rm H_2O$.

Figura 2.2

Figura 2.3

Studio della proprietá di alcune molecole

La forza che si esercita tra 2 atomi di una molecola, la distanza **r** tra i quali viene variata, corrisponde all'opposto della derivata dell'energia totale rispetto alla distanza stessa: $\mathbf{F} = -\frac{dE}{d\mathbf{r}}$.

Il teorema di Hellmann-Feynman afferma l'equivalenza tra il valore di aspettazione della derivata dell'energia rispetto a \mathbf{r} e il valore di aspettazione della della derivata rispetto a \mathbf{r} dell'hamiltoniana, quindi si ha:

$$\mathbf{F} = -\frac{dE}{d\mathbf{r}} = -\left\langle \Psi \right| \frac{dH}{d\mathbf{r}} \left| \Psi \right\rangle.$$

DIMOSTRAZIONE: sia $H |\Psi\rangle = E |\Psi\rangle$ con la condizione di ortonormalitá $\langle \Psi |\Psi\rangle = 1.$

$$\frac{dE}{d\mathbf{r}} = \frac{d}{d\mathbf{r}} \left\langle \Psi \right| H \left| \Psi \right\rangle = \left\langle \frac{d\Psi}{d\mathbf{r}} \right| H \left| \Psi \right\rangle + \left\langle \Psi \right| \frac{dH}{d\mathbf{r}} \left| \Psi \right\rangle + \left\langle \Psi \right| H \left| \frac{d\Psi}{d\mathbf{r}} \right\rangle = \left\langle \frac{d\Psi}{d\mathbf{r}} \right| E + \left\langle \Psi \right| \frac{dH}{d\mathbf{r}} \left| \Psi \right\rangle + E \left| \frac{d\Psi}{d\mathbf{r}} \right\rangle = E \frac{d}{d\mathbf{r}} \left\langle \Psi \left| \Psi \right\rangle + \left\langle \Psi \right| \frac{dH}{d\mathbf{r}} \left| \Psi \right\rangle = \left\langle \Psi \right| \frac{dH}{d\mathbf{r}} \left| \Psi \right\rangle$$

Variando la distanza tra gli atomi, la forza sará nulla in corrispondenza di un minimo dell'energia totale. La distanza che corrisponde ad un minimo dell'energia é la lunghezza di legame.

Si é verificato che l'energia totale presenta un minimo in corrispondenza della lunghezza di legame C-H della molecola CH_4 per diversi valori di E_{cut} . Il minimo dell'energia é sempre in corrispondenza di 1.2 bohr per ogni valore di E_{cut} .

Figura 3.1

Il teorema di Hellmann-Feynman usato precedentemente non si applica solo alla distanza tra gli atomi ma si estende a qualsiasi parametro λ da cui l'hamiltoniana dipende.

$$\frac{dE}{d\lambda} = \langle \Psi_{\lambda} | \frac{dH_{\lambda}}{d\lambda} | \Psi_{\lambda} \rangle$$

Invece di variare la distanza tra gli atomi si sono variati gli angoli. Nel caso della molecola di H₂O si é variato l'angolo tra i 2 atomi di idrogeno e si é verificato che l'energia totale presenta un minimo. L'angolo \widehat{HOH} per i valori di E_{cut} piú bassi differisce di qualche grado rispetto all'angolo calcolato a valori di E_{cut} piú alti. Aumentando E_{cut} l'angolo \widehat{HOH} tende asintoticamente ad un valore di circa 104.5°.

Figura 3.2

Figura 3.3

Figura 3.4

Figura 3.5

Figura 3.6

Attraverso il programma PW.X si sono rilevati lunghezza di legame e angoli delle molecole di CH_4 , H_2O e NH_3 e confrontati con i valori sperimentali forniti dal NIST. Si é inoltre rappresentata la carica di queste molecole.

\mathbf{CH}_4			
	PW.X	SPERIMENTALE	
Lunghezza di legame C-H [Å]	1.1829	1.087	
Angolo $\widehat{HCH}[^{\circ}]$	109.471	109.471	

Figura 3.7

H_2O			
	PW.X	SPERIMENTALE	
Lunghezza di legame O-H [Å]	0.9692	0.958	
Angolo $\widehat{HOH}[^{\circ}]$	104.334	104.4776	

Figura 3.8

\mathbf{NH}_3			
	PW.X	SPERIMENTALE	
Lunghezza di legame N-H [Å]	1.0357	1.012	
Angolo $\widehat{HNH}[^{\circ}]$	105.017	106.67	

Figura 3.9

Calcolo della proprietá elettriche di alcune molecole

4.1 Calcolo del momento di dipolo permanente di alcune molecole

A partire dalla densitá di carica elettronica complessivamente neutra é possibile calcolare il momento di dipolo permanente di alcune molecole. Il momento di dipolo per una distribuzione di cariche é definito da:

 $\mathbf{D} = \int \rho(\mathbf{r}) \mathbf{r} d\mathbf{r}$

dove $\rho(\mathbf{r})$ é la densitá di carica in ogni cella della griglia, \mathbf{r} é la distanza della densitá di carica della cella dal sistema di riferimento posto sulla griglia (il sistema di riferimento ha origine in un vertice della griglia).

Si é generato un programma in c++ che calcola il momento di dipolo di
: $\rm H_2O,$ $\rm NH_3,$ $\rm CH_4.$

Nel programma si é dovuto tenere conto anche della carica positiva dei nuclei e delle loro posizioni.

• H_2O

La molecola di H_2O é stata orientata nel modo seguente:

- -l'asse OH bisettrice dell'angolo di 104.5° tra i 2 atomi di H, parallela all'asse X,
- la retta che congiunge i 2 atomi di H parallela all'asse Y,
- la perpendicolare al piano della molecola parallela parallela all'asse Z.

Figura 4.1

Con questa orientazione il momento di dipolo permanente della molecola risulta essere:

componente X: -6.08 10^{-30} C m componente Y: 0.00 10^{-30} C m componente Z: 0.00 10^{-30} C m

Le componenti Y e Z del momento di dipolo sono nulle. Il momento di dipolo permanente in una molecola di H2O é quindi parallelo alla bisettrice dell'angolo \widehat{HOH} .

- NH_3 La molecola di NH_3 é stata orientata nel modo seguente:
 - -l'asse X parallelo alla congi
ungente tra2atomi di idrogeno,
 - l'asse Y parallelo alla bisettrice dell'angolo formato dai 2 precedenti atomi di idrogeno con il terzo,
 - l'asse Z perpendicolare al piano su cui giace il triangolo descritto dai 3 atomi di idrogeno.

Figura 4.2

La dimensione della cella é di 20 bohr. Il momento di dipolo permanente risulta essere: componente X: 0.00 10^{-30} C m componente Y: 0.00 10^{-30} C m componente Z: -5.03 10^{-30} C m

Le componenti X e Y del momento di dipolo sono nulle. Il momento di dipolo é parallelo alla retta perpendicolare al piano su cui giace il triangolo descritto dai 3 atomi di H e passante per il nucleo di N.

• CH_4

In questo caso non é necessario orientare la molecola in una direzione particolare.

Figura 4.3

Il momento di dipolo vale: componente X: $0.00 \ 10^{-30}$ C m componente Y: $0.00 \ 10^{-30}$ C m componente Z: $0.00 \ 10^{-30}$ C m

Il momento di dipolo permanente é nullo come ci si aspetta per la simmetria della molecola.

4.2 Calcolo della polarizzabilitá elettrica di alcune molecole

La polarizzabilitá elettrica é la matrice a coefficienti costanti che mette in relazione il campo \mathbf{E} applicato ad un sistema di cariche e il momento di dipolo \mathbf{P} che esso induce nel sistema di cariche.

$$\begin{pmatrix} P_1 \\ P_2 \\ P_3 \end{pmatrix} = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix} \begin{pmatrix} E_1 \\ E_2 \\ E_3 \end{pmatrix}$$

Viene applicato un campo elettrico di modulo 51.42 $10^7 \frac{V}{m}$.

Si é scritto un programma che calcola cella per cella la differenza di carica elettronica tra il caso in cui viene applicato il campo e il caso in cui non viene applicato.

Si utilizzano i programmi precedenti (per il calcolo del momento di dipolo delle molecole) fornendo come input le differenze di cariche elettroniche, ottenendo in questa maniera il momento di dipolo indotto dal campo elettrico.

Calcolando la differenza di carica la carica dei nuclei si elimina.

Calcolato il momento di dipolo indotto per una direzione qualsiasi del campo

elettrico, il sistema generale da risolvere sarebbe quindi costituito da 3 equazioni e 6 costanti (i coefficienti della matrice α).

É possibile orientare le molecole sfruttandone alcune simmetrie in modo tale che la matrice α sia diagonale nel sistema di riferimento adottato. In questo modo le costanti da determinare sono solo 3.

L'orientazione delle molecole scelta nella precedente sezione assicura che la matrice α sia diagonale.

$$\begin{pmatrix} P_1 \\ P_2 \\ P_3 \end{pmatrix} = \begin{pmatrix} \alpha_{11} & 0 & 0 \\ 0 & \alpha_{22} & 0 \\ 0 & 0 & \alpha_{33} \end{pmatrix} \begin{pmatrix} E_1 \\ E_2 \\ E_3 \end{pmatrix}$$

Il campo elettrico viene orientato prima lungo l'asse X, poi lungo l'asse Y ed infine lungo l'asse Z ed é in tutti e tre i casi autovettore della matrice α .

Come ci si aspettava la componente di dipolo indotto nella direzione del campo elettrico é di 2 o 3 ordini di grandezza piú grande rispetto alle altre che vengono quindi trascurate.

Per ottenere gli elementi della matrice é sufficiente quindi calcolare il rapporto tra la componente di dipolo indotto lungo la direzione del campo e l'unica componenente del campo elettrico non nulla.

$$\alpha_{11} = P_x / E_x \ \alpha_{22} = P_y / E_y \ \alpha_{33} = P_z / E_z$$

L'unitá di misura di α nel sistema internazionale é $[C][m]^2[V]^{-1}$. La polarizzabilitá puó anche essere misurata come volume di polarizzazione $[\mathring{A}]^3$ moltiplicando gli elementi della matrice α misurati nel sistema internazionale per la costante $\frac{10^6}{4\pi\epsilon_0}$ 10²⁴. I dati di polarizzabilitá ottenuti vengono confrontati con i dati di Ref. [2].

• H₂O

- CAMPO LUNGO X: Momento di dipolo indotto: lungo X: $9.118 \ 10^{-32}$ C m lungo Y: $0.0 \ 10^{-32}$ C m lungo Z: 0.0 $10^{-32}~{\rm C}~{\rm m}$
- CAMPO LUNGO Y: Momento di dipolo indotto: lungo X: $0.0 \ 10^{-32}$ C m lungo Y: $9.237 \ 10^{-32}$ C m lungo Z: $0.0 \ 10^{-32}$ C m
- CAMPO LUNGO Z: Momento di dipolo indotto: lungo X: $0.0 \ 10^{-32}$ C m lungo Y: $0.0 \ 10^{-32}$ C m lungo Z: $9.092 \ 10^{-32}$ C m

	Valori ottenuti	Ref. $[2]$
α_{11} [Å] ³	1.59	1.65
$\alpha_{22} [\mathbf{\mathring{A}}]^3$	1.61	1.62
α_{33} [Å] ³	1.59	1.60

- NH_3
 - CAMPO LUNGO X: Momento di dipolo indotto: lungo X: 1.303 10^{-31} C m lungo Y: 0.0 10^{-31} C m lungo Z: 0.0 10^{-31} C m
 - CAMPO LUNGO Y: Momento di dipolo indotto: lungo X: 0.0 10^{-31} C m lungo Y: 1.304 10^{-31} C m lungo Z: 0.0 10^{-31} C m
 - CAMPO LUNGO Z: Momento di dipolo indotto: lungo X: 0.0 10^{-31} C m lungo Y: 0.0 10^{-31} C m lungo Z: 1.527 10^{-31} C m

	Valori ottenuti	Ref. [2]
α_{11} [Å] ³	2.28	2.22
$\alpha_{22} [\mathbf{\mathring{A}}]^3$	2.28	2.22
$\alpha_{33} [Å]^3$	2.67	2.66

- CH₄
 - CAMPO LUNGO X: Momento di dipolo indotto: lungo X: 1.558 10^{-31} C m lungo Y: 0.0 10^{-31} C m lungo Z: 0.0 10^{-31} C m
 - CAMPO LUNGO Y: Momento di dipolo indotto: lungo X: 0.0 10^{-31} C m lungo Y: 1.558 10^{-31} C m lungo Z: 0.0 10^{-31} C m
 - CAMPO LUNGO Z: Momento di dipolo indotto: lungo X: 0.0 10^{-31} C m lungo Y: 0.0 10^{-31} C m lungo Z: 1.558 10^{-31} C m

	Valori ottenuti	Ref. [2]
α_{11} [Å] ³	2.72	2.70
α_{22} [Å] ³	2.72	2.70
α_{33} [Å] ³	2.72	2.70

Calcolo del campo elettrico indotto in alcune molecole

5.1 Molecole dielettriche

Si é scritto un programma per il calcolo del campo elettrico indotto in una molecola da un campo elettrico esterno.

Nel programma si é usata la differenza di carica punto per punto tra il caso in cui é applicato il campo e il caso in cui non viene applicato.

In ogni punto della griglia il campo indotto sará determinato dall'interazione con le differenze di carica presenti in tutti gli altri punti.

$$E_x(\mathbf{r}_i) = \sum_j \frac{1}{4\pi\epsilon_0} \frac{\rho(\mathbf{r}_j)}{|\mathbf{r}_i - \mathbf{r}_j|^2} \frac{(\mathbf{r}_i - \mathbf{r}_j)x}{|\mathbf{r}_i - \mathbf{r}_j|}$$
$$E_z(\mathbf{r}_i) = \sum_j \frac{1}{4\pi\epsilon_0} \frac{\rho(\mathbf{r}_j)}{|\mathbf{r}_i - \mathbf{r}_j|} \frac{(\mathbf{r}_i - \mathbf{r}_j)y}{|\mathbf{r}_j|^2}$$

$$E_y(\mathbf{r}_i) = \sum_j \frac{1}{4\pi\epsilon_0} \frac{|\mathbf{r}_i - \mathbf{r}_j|^2}{|\mathbf{r}_i - \mathbf{r}_j|^2} \frac{|\mathbf{r}_i - \mathbf{r}_j|}{|\mathbf{r}_i - \mathbf{r}_j|}$$

$$E_z(\mathbf{r}_i) = \sum_j \frac{1}{4\pi\epsilon_0} \frac{\rho(\mathbf{r}_j)}{|\mathbf{r}_i - \mathbf{r}_j|^2} \frac{(\mathbf{r}_i - \mathbf{r}_j)z}{|\mathbf{r}_i - \mathbf{r}_j|}$$

Il programma é formato da 6 *cicli for*. La memoria non era sufficiente per utilizzare tutti i punti della griglia e si é scelto un cubo di dimensioni ridotte centrato nella molecola. L'errore che si commette é trascurabile in quanto la carica si concentra intorno ai nuclei e quindi al centro della griglia.

Al campo indotto é stato sommato il campo esterno calcolando in questo modo il campo totale.

Il campo totale risulta attenuato rispetto al campo esterno ed é stata calcolata una media pesata sulla densitá di carica del valore di attenuazione ϵ .

Il campo applicato é sempre di 51.42 $10^7 \frac{V}{m}$ lungo la direzione positiva dell'asse X.

Le molecole sono orientate come nella sezione precedente.

MOLECOLA DI H_2O

Proiezione del campo elettrico indotto e totale sul piano della molecola di H₂O.

Il fattore di scala usato é: $\frac{1}{12^8}$. I marker neri indicano le posizioni dei nuclei.

Figura 5.1

Figura 5.2

É stato riportato il grafico che rappresenta la proiezione delle isosuperfici della distribuzione di carica sul piano della molecola.

Figura 5.3

É stato riportato il grafico che rappresenta la proiezione delle isosuperfici della differenza di distribuzione di carica sul piano della molecola tra il caso in cui viene applicato il campo e il caso in cui non viene applicato il campo.

Figura 5.4

In tutti i grafici precedenti i nuclei si trovano sul piano Z=5.29 Å. É stata calcolata la media pesata sulla densitá di carica del campo elettrico totale. Il rapporto tra la media pesata del campo e il campo esterno (S) quantifica di quanto é stato schermato il campo esterno dalla molecola. S=0.615

MOLECOLA DI NH₃

É stato inserito il grafico delle isosuperfici del campo elettrico del piano Z=5.39 Å.

Tabella del valore delle coordinate Z $([\mathring{A}])$ dei nuclei:

Ν	Н	Н	Η
5.76	5.38	5.38	5.28

Il campo delle isosuperfici é misurato in $\frac{V}{m}$.

Isosuperfici del modulo del campo in una molecola di NH3 a cui viene applicato un campo esterno

Figura 5.5

Il rapporto tra la media pesata del campo e il campo esterno (S) quantifica di quanto é stato schermato il campo esterno dalla molecola. S=0.762

MOLECOLA DI CH_4

É stato inserito il grafico delle isosuperfici del campo elettrico del piano Z=6.35 Å.

Tabella del valore delle coordinate Z ([Å]) dei nuclei:

С	Η	Н	Η	Η	
6.35	6.99	6.99	5.71	5.71	

Il campo delle isosuperfici é misurato in $\frac{V}{m}$.

Isosuperfici del modulo del campo in una molecola di CH4 a cui viene applicato un campo esterno

Figura 5.6

Il rapporto tra la media pesata del campo e il campo esterno (S) quantifica di quanto é stato schermato il campo esterno dalla molecola. S=0.547

5.2 Clusters metallici

Si é calcolato il campo elettrico in piccoli clusters metallici e si é verificato che il valore del campo totale interno al cluster diminuisce all'aumentare della dimensione del cluster, infatti ci si avvicina alla situazione fisica macroscopica della sfera metallica immersa in un campo elettrico che al suo interno scherma il campo stesso.

In ogni grafico in cui sono rappresentate le isosuperfici del modulo del campo, il campo é misurato in $\frac{V}{m}$. Il campo rappresentato é il campo totale.

Si é fatta una prova con soli 2 atomi di alluminio posti lungo l'asse X, orientando il campo elettrico prima nella direzione positiva dell'asse X e successivamente nella direzione negativa dell'asse X.

Si verifica che i grafici delle isosuperfici del modulo del campo totale nei 2 casi sono uguali e i grafici delle isosuperfici della differenza di carica sono speculari.

CAMPO ESTERNO LUNGO LA DIREZIONE POSITIVA DELL'ASSE X

Figura 5.7

Isosuperfici del modulo del campo in un cluster di alluminio formato da 2 atomi

Figura 5.8

CAMPO ESTERNO LUNGO LA DIREZIONE NEGATIVA DELL'ASSE X

Differenza di carica in ogni punto della griglia dovuta all'applicazione di un campo

Figura 5.9

Isosuperfici del modulo del campo in un cluster di alluminio formato da 2 atomi

Figura 5.10

CLUSTER DA 6 ATOMI

Figura 5.11

Le isosuperfici vanno da 5.7 $10^8~\frac{V}{m}$ all'esterno in prossimitá del cluster metallico; 4.2 $10^8~\frac{V}{m}$ all'interno del cluster metallico.

CLUSTER DA 10 ATOMI

Figura 5.12

Le isosuperfici vanno da 6.1 $10^8~\frac{V}{m}$ all'esterno in prossimitá del cluster metallico; 4.0 $10^8~\frac{V}{m}$ all'interno del cluster metallico.

CLUSTER DA 40 ATOMI

Figura 5.13

Le isosuperfici vanno da 8.0 10⁸ $\frac{V}{m}$ all'esterno in prossimitá del cluster metallico; 5.0 10⁷ $\frac{V}{m}$ all'interno del cluster metallico. All'interno del cluster da 40 atomi c'é una zona non trascurabile in cui il campo scende a $\frac{1}{10}$ di quello applicato dell' esterno.

É stato inserito il grafico delle isosuperfici della differenza di carica punto per punto della cella dovuto all'applicazione del campo.

Figura 5.14

Le isosuperfici della differenza di carica mostrano che all'interno del cluster non c'é spostamento di carica dovuto all'applicazione del campo. Il comportamento del cluster si avvicina a quello di una sfera metallica macroscopica che scherma il campo.

Momento di dipolo elettrico di una sfera di metallica [3]

Una sfera metallica di raggio \mathbf{R} immersa in un campo elettrico costante nel tempo scherma il campo elettrico che al suo interno é quindi nullo. Il potenziale sui punti della sfera é costante e per comoditá puó essere posto a zero.

Si puó rappresentare la situazione utilizzando il metodo della carica immagine. Se una sfera metallica é sottoposta al campo generato da una carica esterna q alla distanza y dal suo centro, la carica immagine q' é posta dentro la sfera ad una distanza y' dal centro.

Figura 6.1

Il potenziale generato dalle 2 cariche in un punto P a distanza x dal centro della sfera vale:

$$\Phi(x) = \frac{1}{4\pi\epsilon_0} \frac{q}{|\mathbf{x}-\mathbf{y}|} + \frac{1}{4\pi\epsilon_0} \frac{q'}{|\mathbf{x}-\mathbf{y}'|}$$

La condizione da sod disfare é $\ \Phi(R)=0$

L'equazione da risolvere é:

$$\frac{q}{R|\mathbf{n}-\mathbf{n}'\frac{y}{R}|} + \frac{q'}{y'|\mathbf{n}'-\mathbf{n}\frac{R}{y'}|} = 0$$
Questa condizione é soddisfatta per $q' = -\frac{R}{y}q$ e $y' = \frac{R^2}{y}$

Si supponga di avere una sfera metallica immersa in un campo elettrico costante il cui centro coincide con il centro del sistema di riferimento.

Figura 6.2

Un campo elettrico costante puó essere rappresentato da 2 cariche +Q e -Q poste rispettivamente alle distanze x = -X e x = +X dal centro del sistema di riferimento per $X \to \infty$.

Il campo elettrico costante vale $E_0\approx \frac{2Q}{4\pi\epsilon_0X^2}$ ed é parallelo alla retta che congiunge le cariche Q e -Q.

Si utilizza il metodo della carica immagine.

Le cariche immaginarie che corrispondono alle 2 cariche Q
 e -Q fittizie che generano il campo valgono

$$Q' = \pm \frac{RQ}{X}$$
 e si trovano nelle posizioni $x = \pm \frac{R^2}{X}$.

Utilizzando coordinate cilindriche il potenziale diventa:

$$\begin{split} \Phi &= \frac{Q}{4\pi\epsilon_0} \frac{1}{(r^2 + X^2 + 2rX\cos\theta)^{\frac{1}{2}}} - \frac{Q}{4\pi\epsilon_0} \frac{1}{(r^2 + X^2 - 2rX\cos\theta)^{\frac{1}{2}}} - \frac{RQ}{4\pi\epsilon_0 X} \frac{1}{(r^2 + \frac{R^4}{X^2} + 2\frac{R^2r}{X}\cos\theta)^{\frac{1}{2}}} + \\ \frac{RQ}{4\pi\epsilon_0 X} \frac{1}{(r^2 + \frac{R^4}{X^2} - 2\frac{R^2r}{X}\cos\theta)^{\frac{1}{2}}} \end{split}$$

dato che $X \gg r$ per i primi 2 termini si raccogli
e X^2 e per gli ultimi 2 termini si raccogli
e r^2 :

$$\Phi = \frac{Q}{4\pi\epsilon_0 X} \frac{1}{\left(\frac{r^2}{X^2} + 2\frac{r}{X}\cos\theta + 1\right)^{\frac{1}{2}}} - \frac{Q}{4\pi\epsilon_0 X} \frac{1}{\left(\frac{r^2}{X^2} - 2\frac{r}{X}\cos\theta + 1\right)^{\frac{1}{2}}} - \frac{RQ}{4\pi\epsilon_0 Xr} \frac{1}{\left(1 + \frac{R^4}{X^2r^2} + 2\frac{R^2}{Xr}\cos\theta\right)^{\frac{1}{2}}} + \frac{Q}{4\pi\epsilon_0 Xr} \frac{1}{\left(\frac{r^2}{X^2} + 2\frac{r}{X}\cos\theta + 1\right)^{\frac{1}{2}}} - \frac{Q}{4\pi\epsilon_0 Xr} \frac{1}{\left(\frac{r^2}{X^2} + 2\frac{r}{X}\cos\theta + 1\right)^{\frac{1}{2}}} + \frac{Q}{4\pi\epsilon_0 Xr} \frac{1}{\left(\frac{r^2}{X^2} + 2\frac{r}{X}\cos\theta + 1\right)^{\frac{1}{2}}} - \frac{Q}{4\pi\epsilon_0 Xr} \frac{1}{\left(\frac{r^2}{X} + 2\frac{r}{X}\cos\theta + 1\right)^{\frac{1}{2}}} - \frac{Q}{4\pi\epsilon_0 Xr} \frac{1}{\left(\frac{r^2}{X} + 2\frac{r}{X}\cos\theta + 1\right)^{\frac{1}{2}}} - \frac{Q}{4\pi\epsilon_0 Xr} \frac{1}{\left(\frac{r^2}{X} + 2\frac{r^2}{X}\cos\theta + 1\right)^{\frac{1}{$$

$$\frac{RQ}{4\pi\epsilon_{0}Xr}\frac{1}{(1+\frac{R^{4}}{X^{2}r^{2}}-2\frac{R^{2}}{Xr}\cos\theta)^{\frac{1}{2}}}$$

con l'espansione in serie di Taylor delle radici si ha:

$$\begin{split} \Phi &= \frac{Q}{4\pi\epsilon_0 X} \frac{1}{2} (\frac{r^2}{X^2} + 2\frac{r}{X} \cos\theta) - \frac{Q}{4\pi\epsilon_0 X} \frac{1}{2} (\frac{r^2}{X^2} - 2\frac{r}{X} \cos\theta) - \frac{RQ}{4\pi\epsilon_0 Xr} \frac{1}{2} (\frac{R^4}{X^2 r^2} + 2\frac{R^2}{Xr} \cos\theta) + \\ \frac{RQ}{4\pi\epsilon_0 Xr} \frac{1}{2} (\frac{R^4}{X^2 r^2} - 2\frac{R^2}{Xr} \cos\theta) \\ \Phi &= \frac{Q}{4\pi\epsilon_0 X^2} (-2r\cos\theta + 2\frac{R^3}{r^2} \cos\theta) \\ \Phi &= -E_0 (r - \frac{R^3}{r^2}) \cos\theta \end{split}$$

La variazione della componente normale ad una superficie carica del campo elettrico corrisponde all'opposto della densitá di carica superficiale σ diviso ϵ_0 .

$$\sigma = -\epsilon_0 \frac{\partial \Phi}{\partial r}|_{r=R} = 3\epsilon_0 E_0 \cos\theta$$

IL MOMENTO DI DIPOLO ELETTRICO di questo sistema di cariche é:

$$\begin{split} \mathbf{P} &= \frac{2R^2}{X} \frac{QR}{X} \\ \text{si ricava la carica dal campo} \ Q \approx 2E_0 \pi \epsilon_0 X^2 \\ \text{si ottiene: } \mathbf{P} &= 4\pi E_0 R^3 \epsilon_0 \end{split}$$

Figura 6.3

Si é calcolato il momento di dipolo per il cluster da 40 atomi utilizzando i programmi della sezione 4.2 e trova: 1.427 $10^{-29}~{\rm C}$ m.

Figura 6.4

Figura 6.5

Con il momento di dipolo calcolato precedentemente il raggio é: $R_{40} = (\frac{1.42710^{-29}}{4\pi\epsilon_0 E_0})^{\frac{1}{3}} = 6.3 \ 10^{-10} \text{ m.}$ Si trova concordanza tra R_{40} e il raggio approssimativo della distribuzione di carica del cluster di figura 6.3.

Conclusioni

Lo scopo della tesi é lo studio delle proprietá elettriche di piccole molecole e piccoli clusters metallici.

Inizialmente ci si é concentrati principalmente sulle molecole dielettriche H_2O , NH_3 e CH_4 .

Nella prima parte si sono variati alcuni parametri (E_{cut} e dimensione della cella) e si é verificata la convergenza dell'energia totale, delle lunghezze di legame (CH₄), degli angoli (H₂O).

Si é calcolato il momento di dipolo permanente.

Si é applicato un campo esterno e si é calcolata la matrice di polarizzazione per le molecole ed i dati ottenuti sono stati confrontati con i dati di Ref. [2].

Si é poi passati ai clusters metallici di alluminio da 2, 6, 10, 40 atomi, sottoposti sempre ad un campo esterno. Nel cluster da 40 atomi il campo elettrico interno tende ad annullarsi. Si é trovato che il cluster ha un comportamento che si avvicina a quello di una sfera metallica macroscopica.

Bibliografia

M. Martin, Electronic Structure Basic Theory and Practical Methods (2004)
P. Umari, Xavier Gonze, Alfredo Pasquarello Physical Review B 69, 235102 (2004)

[3] Classical Electrodynamics J. D. Jackson John Wiley Sons, Inc (1998)