

Università degli Studi di Padova – Dipartimento di Ingegneria Industriale Corso di Laurea in Ingegneria Chimica e dei Materiali

Relazione per la prova finale

«Descrizione dell'impianto di depurazione Ca' Nordio e confronto fra i coagulanti per l'abbattimento del fosforo nelle acque reflue.»

Tutor universitario: Prof. Martina Roso Laureando: Davide Bardaro

Padova, 15/09/2023

INTRODUZIONE

Aumento dei consumi di acqua globali.

Maggiore consapevolezza e sensibilizzazione sull'ambiente.

Aumento e **sviluppo** dei **WWTPs**. **Limiti** di emissioni sempre **più severi**.

Necessità di rimuovere azoto e fosforo per evitare l'eutrofizzazione dei corpi idrici.

Tabella 1. Limiti di emissione per gli impianti di acque reflue urbane						
PARAMETRI (MEDIA GIORNALIERA) (1)	POTENZIALITÀ IMPIANTO IN A.E. (ABITANTI EQUIVALENTI)					
	2.000 – 10.000		>10.000			
	Concentrazione (mg/l)	% di riduzione	Concentrazione (mg/l)	% di riduzione		
BOD ₅ (senza nitrificazione) (2)	25	70-95 (5)	25	80		
COD (3)	125	75	125	75		
Solidi sospesi (4)	35 (5)	90 (5)	35	90		

Tabella 2. Limiti di emissione per gli impianti di acque reflue urbane recapitanti in aree sensibili					
PARAMETRI (MEDIA ANNUA)	POTENZIALITÀ IMPIANTO IN A.E.				
	10.000 – 100.000		> 100.000		
	Concentrazione (mg/l)	% di riduzione	Concentrazione (mg/l)	% di riduzione	
Fosforo totale (P) (1)	2	80	1	80	
Azoto totale (N) (2)(3)	15	70-80	10	70-80	

«Dlgs 152/06, allegato 5 alla 3° parte (Testo Unico Ambientale)»

OBIETTIVI DEL LAVORO

(1) Descrizione dell'impianto di depurazione Ca' Nordio

(2) Confronto fra i coagulanti chimici per l'abbattimento del fosforo: FeCl₃ e PAC

(3) I Sali dei Lantanidi: CeCl₃ e LaCl₃

(1) IMPIANTO DI DEPURAZIONE CA' NORDIO

<u>Informazioni</u>: impianto di depurazione a fanghi attivi, AcegasApsAmga (gruppo Hera)

Data di costruzione: 1980 linea 1, 2007 linea 2, 2010 linea 3

Provenienza acque: Padova, Saonara, Noventa Padovana

Classificazione dei reflui: urbani

Abitanti equivalenti: 197'000

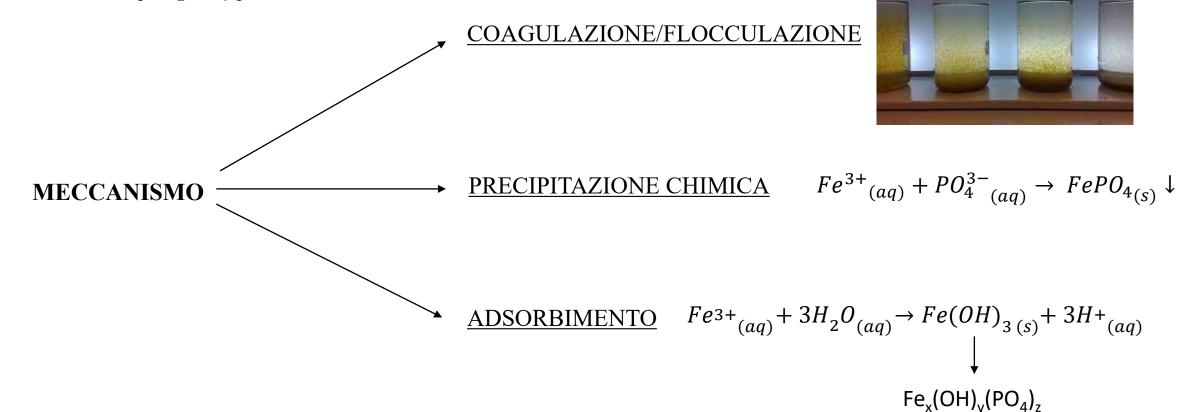
Due metodi diversi per l'abbattimento dell'azoto nell'impianto:

(1) IMPIANTO DI DEPURAZIONE CA' NORDIO

ESSICCAZIONE DEI FANGHI

passaggio dal 30-40% al 70% di secco

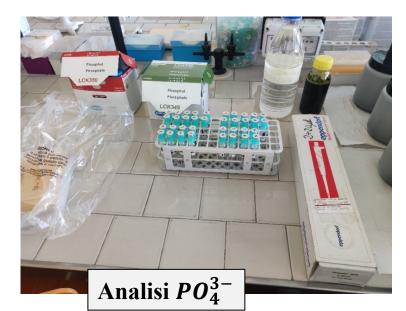
Essiccazione meccanizzata: BIODRYER



Essiccazione <u>naturale</u>: **SERRA SOLARE**

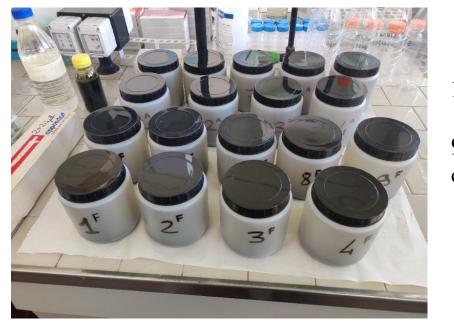
Utilizzo dei SALI MINERALI A CATIONI POLIVALENTI

Esempi: PAC, FeCl₃, Al₂(SO₄)₃



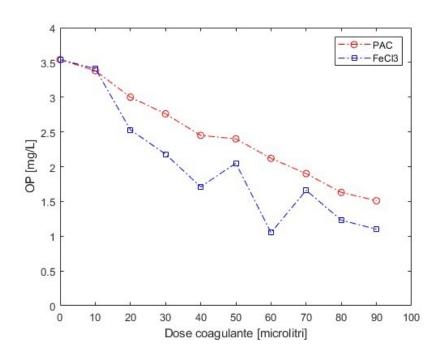
(2) SPERIMENTAZIONE

UNIVERSITÀ DEGLI STUDI DI PADOVA

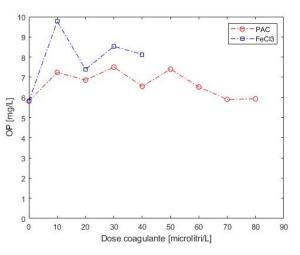

- Confronto **PAC** (10%) e **FeCl**₃ (40%)
- Prelievo campioni: vasche biologiche linea BIO

18 campioni da 900ml

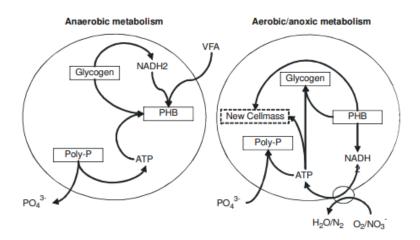
9 **dosaggi crescenti** per coagulante


(2) DISCUSSIONE DEI RISULTATI

1° TENTATIVO:


I fosfati nel refluo prelevato risultavano già abbattuti, nonostante la sospensione dei dosaggi di FeCl₃ da 60h.

2° TENTATIVO:

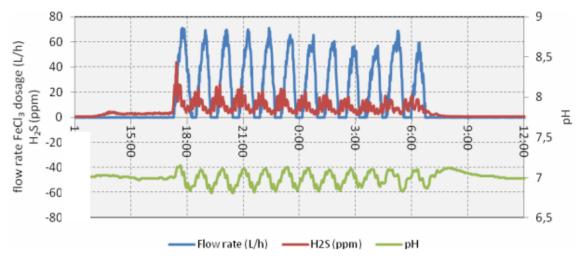


FeCl₃ più efficiente del PAC, a parità di dosaggio (è più concentrato).

<u>3° TENTATIVO:</u>

Presenza dei batteri PAO.

(2) ABBATTIMENTO DEI SOLFURI



PRESENZA DI SOLFURI (H₂S) NEL BIOGAS → RISCHIO CORROSIONE

FeCl₃ limita il rilascio:

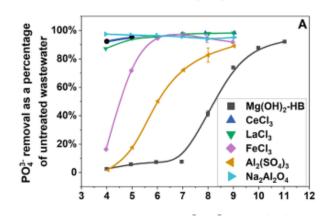
1)
$$2Fe^{3+} + S^{2-} \rightarrow 2Fe^{2+} + S^0$$

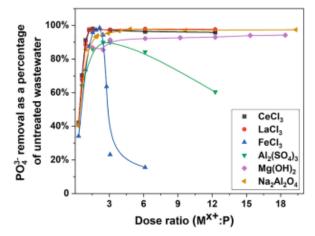
2)
$$Fe^{2+} + HS^{-} \rightarrow FeS \downarrow +H^{+}$$

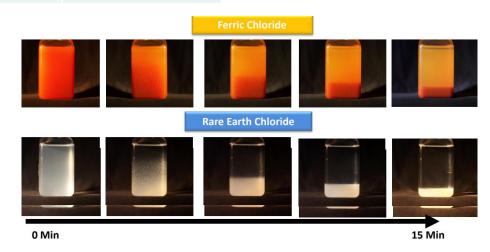
PAC non riesce ad abbatterli:

1)
$$2Al^{3+} + 3S^{2-} \rightarrow Al_2S_3$$

2)
$$Al_2S_3 + 6H_2O \rightarrow 2Al(OH)_3 + 3\mathbf{H}_2\mathbf{S}$$


Estremamente reattivo in soluzione acquosa


(3) I SALI DEI LANTANIDI


	RE100	RE300	PHOSLOCK	ECOLOGIX
AZIENDA	Neo Water	Neo Water	Phoslock Environmental	Ecologix Environmental
	treatment (USA)	treatment (USA)	Technologies (AU)	Systems (USA)
COMPOSIZI	33% w/w di	40.5% w/w di	5% di La e 95% Bentonite	28% di REO (oxide)
ONE	RECl ₃	RECl ₃		

Non sono particolarmente influenzati dal pH.

Rapporti ottimali bassi: $[M^{3+}:P=1]$ è $CeCl_3[1.2] = LaCl_3[1.2]$

Solidi **più densi e compatti**: riduzione del volume di fango prodotto e velocità di sedimentazione maggiore.

Coagulant	Alkaline or acid reagent		Sludge $Cost^{\nabla}$	Coagulant Cost ^a	Total Cost ^E
	Before coagulation ⁶	After coagulation ^{β, ψ}			
Mg(OH) ₂	\$493,316	\$109,203	\$1,249,696	\$1,231,310	\$3,083,525
CeCl ₃	_	\$329,576	\$2,130,622	\$8,673,579	\$11,133,776
LaCl ₃	_	\$318,451	\$2,191,920	\$12,655,236	\$15,165,607
FeCl ₃	\$145,380	\$449,864	\$3,199,471	\$1,488,645	\$5,283,359
Al ₂ (SO ₄) ₃	\$257,822	\$392,153	\$3,532,547	\$2,094,398	\$6,276,919
Na ₂ Al ₂ O ₄	_	\$99,392	\$4,025,280	\$2,223,070	\$6,347,742

Problema: costo dei coagulanti elevato

COAGULAZIONE / FLOCCULAZIONE ----

Al³⁺ ha un potere coagulante maggiore di Fe³⁺.

ABBATTIMENTO FOSFORO -

Al(OH)₃ ha un miglior potere adsorbente di Fe(OH)₃.

Essendo PAC (10%) e FeCl₃ (40%) acquistati a prezzi simili (0.230 e 0.238€/kg), risulta più economico l'uso del cloruro ferrico (più concentrato).

$$C_{A|2O3} = 120g/L$$
 (63.6g di Al³⁺)
 $C_{FeC|3} = 560g/L$ (193.8g di Fe³⁺)

ABBATTIMENTO SOLFURI

FeCl₃, a differenza del PAC, riesce ad abbattere i solfuri.

SALI DEI LANTANIDI

Migliori prestazioni, per il legame diretto REPO₄ preferito all'adsorbimento degli idrossidi RE(OH)₃.

Problema dei costi del coagulante, per difficoltà di estrazione e limitato numero di fornitori.