
Università degli Studi di Padova

Department of Information Engineering

Master Thesis in Automation Engineering

Automatic offline trajectory generation for surface

coverage problem from a 3D drawing

Supervisor Master Candidate
Prof. Ruggero Carli Luca Battistella
Università di Padova

Co-supervisor
Ing. Roberto Polesel
Euclid Labs S.r.l.

ii

To my parents, without them none of this would have been possible.

iv

Abstract

Surface coverage with a robot manipulator is widely used in different industrial processes.
For this reason having an automated way to program these robots is really important.

In thisworkwe implement an algorithmto automate the process of trajectory generation
for surface coverage, given the 3D model of the target object, with a particular focus on
spray painting process. As first step we divide complex surfaces into simpler patches and the
algorithm successively generates the trajectory for each of them. Then we develop a tool
model for a spray gun to have the ability to simulate paint thickness on target object after
trajectory generation. This way we can improve paint thickness by optimizing end effector
velocity for each paint pass. Once we generate all the trajectories, we check if the robot can
perform them, by doing collision checking and verifying that the robot can reach all the
points composing our trajectories Finally we test the generated program on a real robot,
verifying also for the quality of generated trajectories. Experimental results reveal that the
trajectories generated by this algorithm and the robot code allows the robot to perform the
painting process on a test surface in a smooth and efficient way.

v

vi

Contents

Abstract v

List of figures ix

1 Introduction 1

2 Problem Formulation 3

3 General Algorithms used in this work 9
3.1 Mesh cleaning and refinement . 9
3.2 Patch segmentation . 10
3.3 Pattern Search Algorithm . 10
3.4 Adapted Genetic Algorithm for velocity computation (AGA) 12

3.4.1 Initial Population . 12
3.4.2 Computing Fitness Function . 12
3.4.3 New Population . 12
3.4.4 Crossover . 13
3.4.5 Termination Condition . 13

3.5 Least Square Fitting . 14

4 Robot trajectory generator algorithm 17
4.1 Requirements . 17

4.1.1 Mesh object . 17
4.1.2 Spray gun and paint distribution model 18
4.1.3 Object alignment . 24

4.2 Coverage Algorithm . 24
4.2.1 Surface section generation . 24
4.2.2 Surface Section point and surface section normal generation . . . 25
4.2.3 Spray pattern implementation: Paint pass 1 26
4.2.4 Paint Thickness function for Paint pass 1 28
4.2.5 Optimal speed for paint pass . 30
4.2.6 Spray pattern implementation: Paint pass n 32

vii

5 Algorithm implementation and verification 35
5.1 Covering surfaces Windows program . 35
5.2 Robot program generation . 38

5.2.1 Robot movement and point types 38
5.2.2 Adding painted objects to the robot world 39
5.2.3 Trajectory planning . 39
5.2.4 Robot program generation . 40

5.3 Real experiments . 43
5.3.1 Algorithm test with object from scanner 43
5.3.2 Robot implementation . 44

6 Conclusion 49

References 52

Acknowledgments 55

viii

Listing of figures

2.0 Different windows of developed program 7

4.1 Example of triangular mesh object approximation 18
4.2 The model of the spray tool . 20
4.3 Different values of Paint deposition rate changing the parameters 20
4.4 Material distribution of a pointL on a plane: y is the distance of the point

L to the first path; v the tool velocity, and d the overlapping distance . . . 21
4.5 Paint thickness for different values of overlap 22
4.6 A Surface Section generated by the algorithm 25
4.7 Surface Section main points . 26
4.8 A raster spray pattern . 27
4.9 Filtering effects on trajectory generation 29
4.10 Trajectories generated by the algorithm. 33

5.1 Windows of our program. 37
5.2 Robot with TCP on the tip of its tool . 41
5.3 Robot with TCP on the surface . 42
5.4 Objects scanned with the PhotoNeo. 43
5.5 Trajectories generated by the algorithm. 44
5.6 Robot working cell . 46
5.7 Trajectories generated by the algorithm. 48

6.1 Cylindrical object split in a way that could be painted 51

ix

x

1
Introduction

Coverage problem with a robot manipulator consists of moving a robot manipulator such
that its tool can cover all the surface of a target object.

This topic has been researched for decades for industrial applications [1], with a particular
focus on the spray painting process. The solution to this problem can be used for several in-
dustrial applications, like for cleaning train Cabs [2] (or other surfaces), grinding processes,
for surface coverage for the detection of imperfections. Its main application, however, is in
robotic spray painting, where there is a huge use in automotive and facilitiesmanufacturing.
Using a robot manipulator to perform these tasks, instead of a human worker, has some ad-
vantages such as an increased quality and efficiency, larger working range, and removal of
workers from an environment that could be harmful to health (e.g. a spray painting cell).

For this reason, there are a lot of research papers in literature proposing different ap-
proaches. Focusing on spray painting, it is possible to distinguish two main approaches:
trajectory generation from acquired data (both from point cloud and from 3D drawing) or
visual servoing. Visual servoing approach is interesting for several application like surface
imperfection detection or model acquisition [3] but it is not feasible to use as online paint-
ing method [4] due to the difficulty on keeping the camera cleaned from paint. In fact in a
painting cell there is a lot of paint particles in the air which could dirt the camera, making
visual servoing unusable. This is the main reason why, in this work, we use the approach
where trajectory generation is performed from acquired data.

There are many different options on which data can be chosen to describe the target

1

object. In some papers trajectories are generated directly from point clouds, acquired by a
scanner, with Point Cloud Slicing approach [5], but in this work we choose to use a mesh
approximation to generate the trajectories, because a mesh object can be created by a point
cloud [6] and because usually the 3D drawing of the object to be processed exists and could
be more accurate than a model generated by a point cloud or the point cloud itself.

Since the objects to be painted could be very complex, we choose to split them in sim-
pler surfaces. There are several works concerning patch segmentation, based on different
approaches like the use of semi-supervised mesh segmentation [7], the use of a hierarchical
region decomposition algorithm based on quadric surface fitting [8], or the use of curvature
tensors [9]. However, in this work, we adopt a simple mesh decomposition algorithm based
on the normal of the triangles, since patch segmentation is not the purpose of this work
and the algorithm adopted provides good results.

For trajectory generation we develop a spray painting tool model (Sec.4.1.2) to generate
and optimize the trajectories. In fact, based on the model tool, we can simulate the result-
ing paint thickness (Sec.4.2.4) and optimize the trajectories velocities to achieve the best
paint result (Sec.4.2.5). The algorithm implemented in this work is based on the iterative
algorithmof [10] but it has beenmodified to achieve slightly better performances. Since the
goal of this work is to develop an automated robot programming process, we built a Win-
dows program which generates the robot code to paint the given 3Dmodel (Sec.5.1), and we
test it in a real industrial robot manipulator (Sec.5.2).

2

I like solving problems, and science provides a logical way
of solving real-life problems.

David J. Anderson

2
Problem Formulation

This work is focused on the industrial application of surface coverage problem with a robot
manipulator, to find a solution that allows to automate the process of robot trajectory gen-
eration.

The surface coverage problem with a robot manipulator consists on finding a trajectory
such that the robot tool can cover the entire surface, avoiding to leave empty space on it.
This process can be done using different sources for the target surface, such as point cloud
or 3D drawing, and this work is focused on surface covering from a 3D drawing. Therefore,
given a 3D model of the object, all trajectories for the robot manipulator need to be gener-
ated to perform the required task. In industry, as every task requires its own processing, the
robot trajectories could be really different between each different process. In fact surface
coverage is a general problem that could have different industrial applications, such as sur-
face cleaning, smoothing, painting with a spray gun, and in each application the robot has
to do a different trajectory to perform the task in a proper way. For example in a cleaning
process it does not matter if the tool passes above the same part of surface twice, but in a
painting process this fact leads to an increment of the paint thickness on that part, causing
a dissatisfying final result. A similar consideration can be done for grinding process, in fact
passing twice the same part cause an over ground surface.

In this work, the goal is to develop a general algorithm for surface covering that, with the
right toolmodel, can solve the problem for different processes. In particular, we focus on the
spray painting process. For this reason we develop the spray tool model and the algorithm

3

relying on the work of V. Andulkar, Mayur and Chiddarwar, Shital [10], which allow us
to simulate and optimize trajectories and painting result on the surface. Furthermore this
algorithm could face a general surface coverage problem, by changing the tool model and
some tweaks made ad-hoc for the painting process.

During implementation we modify the original work to improve the results and trajec-
tories that this algorithm generates. Since surfaces can be very different from each other, it
is difficult to define a general set of parameters for the algorithm that work well for every
type of surface.

For this reason, we left the ability to change the default parameters to the user to have
better results based on the surface to be painted (e.g. the possibility to change the filtering
method). We set as default parameters the ones that we found to work better with most of
surfaces. The improvements that we find necessary are:

� we adopt a new method to align the object with the origin of axis;

� we divide a complex surface into simpler patches to make the algorithm working
better, and, when a trajectory for each simpler patch is generated, we reassemble the
original surface to have the final trajectory.

� we implement the variablexincr method described in [10] butwe donot use it because,
thanks to surface decomposition, it gives no significant improvements to trajectory
generation, while adding a lot of computational effort.

� to filter the generated trajectories we use a Least Square filter, instead of just aMoving
Average filtering, in order to have better trajectories and the possibility to reduce the
number of points in a trajectory leading to better result when we program the real
robot.

Finally we built aWindows program (Fig. 2.0) which allows the user to generate trajecto-
ries based on the surface model and surface tool. Surface model can be loaded to the project
(Fig. 2.1a) and the tool model can be edited tomatch with the real one (Fig. 2.0c). Once the
surface and the tool are properly setted up, the algorithm can be run to generate the trajecto-
ries and simulate the resulting paint thickness given by the generated trajectory (Fig. 2.1b).
The user has also the ability to change algorithmparameters to fit better the selected surface,
like the filtering type or the main paint direction, by rotating the object. Once satisfactory
trajectory is generated the painted object can be added to robot world together with all col-
lision objects which are present also in the real world (Fig. 2.0d). Here robot trajectories are

4

simulated, with its planning and collisions checking. Once trajectory planning is success-
ful, meaning that there are no collisions and all points are reachable, the robot program is
created, and after it is loaded on the real robot, the process can be performed.

5

(a)Main window.

(b) Generated trajectory.

6

(c) Tool model window.

(d) Robot world.

Figure 2.0: Different windows of developed program
7

8

I am among those who think that science has great
beauty.

Marie Curie

3
General Algorithms used in this work

In this chapter we present all the algorithms we used in this work. In particular, we de-
scribewhat is amesh object whichwe use to represents the object to paint andwhy it needs to
be refined. Afterwards, we describe the algorithm used to perform patch segmentation and
two derivative-free optimization algorithms that we use for trajectory generation: Pattern
Search Algorithm and an Adapted Genetic Algorithm. Finally, we present Least Square
used to filter trajectories.

3.1 Mesh cleaning and refinement

To ensure that the painting algorithm performs well, the mesh approximation of the ob-
ject needs to be refined and cleaned. Cleaning is necessary just for computational reason
because mesh generation could create more than one point representing the same vertex of
a triangle. Mesh refinement, instead, is indispensable, since it is strongly related to the algo-
rithm performances and results, because if the mesh is not sufficiently refined could lead to
unwanted behaviours of the algorithm, (e.g. inaccurate trajectories or bad paint thickness
simulation with empty triangles that should be painted).

Refining ameshmeans that, once we fix amaximum length lmax, all the edges of the tri-
angles need to be smaller or equal to lmax. The choice of lmax is critical, in fact a bigger value
leads to a faster algorithm but a less accurate paint thickness simulation and possible unde-

9

sired trajectories, while a lower value leads to bigger accuracy on paint thickness simulation
butmakes the algorithm run slower. From experimental result we found that lmax ≤ 0.8R

is a good value. In fact we have observed that in this range all the trajectories generated by
the algorithm are very similar to each other and the only difference is on the precision of
paint thickness simulation. For this reason, the value of lmax is related to the application
of this algorithm. In fact, for a real time application it is preferable to choose a value close
to the upper limit to make the algorithm faster, while for an offline trajectory generation
we can choose a value which gives the desired precision on paint simulation and gives more
accuracy on tool velocity optimization, which uses the paint thickness simulation to find
the optimal velocity.

3.2 Patch segmentation

Generating trajectories for covering a complex surface could be very difficult and could lead
to not optimal result. The simplest andmore effective solution is to divide a complex surface
in simpler patches, applying the painting algorithm to each patch and then recomposing
the whole surface. In this work the segmentation criteria is based on mesh triangles nor-
mals. Chosen amaximumangle θmax, the triangles are grouped based on angular difference
between their normals. Specifically if two triangles have the angle between their normals
smaller or equal than θmax then they belong to the same patch, while if it is bigger than
θmax they belong to different patches. Moreover the subdivision in simpler patches allow
us to suppose that there are no highly curved surfaces to paint, but just smooth ones.

This method could be inaccurate in particularly complex surfaces with edges that are not
well defined, but, considering the industrial application of this work, we suppose to have all
the surfaces with well remarked edges, where this method works well. Other patch segmen-
tationmethods, such as [7] and [8], can be adopted, which could lead to patch segmentation
that better suits the task that has to be done.

3.3 Pattern Search Algorithm

Pattern Search Algorithm (PSA) is a derivative free optimizationmethod. In this work it is
used when a minimization problem with an objective function that has unknown deriva-
tive is faced. Since we use PSA only with two dimensional functions, the algorithm is de-
scribed only in this case but can be easily extended to the n-dimensional case by changing
the pattern.

10

Given a generic objective function y = f(x), the first step is to find a pattern to evaluate
the function. In two dimensional case this pattern is the following: given a point x0, the
other points are chosen as xM = x0 + k and xm = x0 − k where k is an hyper-parameter
that needs to be tuned. This parameter affects the performances of the algorithm and its
ability to explore all the function without getting stuck in a local minima. In fact if k is
too small there is the risk that the algorithm gets stuck in a local minimal, while if k is too
high there is the risk that it skips a minimal if two maxima are closer than k.

Starting from the initial valuex0, this algorithm evaluates the value of f(x) in the points
x0, xm and xM resulting, respectively, in y0, ym and yM . Then it selectsminx{y0, ym, yM}
as the new x0. If the new x0 is the same point as the previous step then it reduces the pattern
by a factor df , then k = k/df , otherwise it continues to iterate. The algorithm runs until
k > kend. Then, after initial point x0, parameter k, decimator factor df and termination
condition kend are chosen, the algorithm works as described in Algorithm 3.1.

Algorithm 3.1 Pattern Search
1: procedure y = PatternSearch(f(x), x0, k, kend, df)
2: while k > kend
3: xM = x0 + k
4: xm = x0 − k
5: y0 = f(x0)
6: yM = f(xM)
7: ym = f(xm)
8: if yM < y0 ▷ This evaluate the x in the pattern that minimizes f
9: if ym < yM
10: x0,new ← xm

11: else
12: x0,new ← xM

13: else if ym < y0
14: x0,new ← xm

15: else
16: x0,new = x0

17: if x0 = x0,new ▷ If the minimum is the same as before reduce the pattern
18: k ← k/df

19: x0 ← x0,new

20: return x0 ▷ Return the x0 that minimizes f(x)

11

3.4 Adapted Genetic Algorithm for velocity computation (AGA)

TheGenetic Algorithm (GA) is a search heuristic algorithm that is inspired byCharles Dar-
win’s theory of natural evolution. This algorithm reflects the process of natural selection
where the fittest individuals are selected for reproduction in order to produce offspring of
the next generation.

Each individual of the population ismade of genes, that are a set of parameters (variables),
that jointly represents a chromosome. Each chromosome describes a different solution, in
this case a different velocity v. In each population there are different individuals, each one
representing a solution. Here a chromosome is a representation of the velocity v in base
2, so each gene belongs to the set of parameters {0, 1}. The length of a chromosome is
the maximum velocity that the robot could reach, described in base 2. Moreover we need
to convert from base 2 to base 10 the velocity v in both sides: from base 2 to base 10 to
compute fitness function and to get the final velocity, from base 10 to base 2 to run the GA.

In order to find the best speed for each paint pass, the genetic algorithm here presented
focus on velocities, maximizing a function cost f(v), where v is the velocity. [11]

The Algorithmmain steps are summarized in Algorithm 3.2 and described above:

3.4.1 Initial Population

The algorithm is initialized by creating all individuals with random chromosomes.

3.4.2 Computing Fitness Function

Given the fitness function f(v), for each individual i of the current population, the fitness
function based on its chromosome is computed. In this way each individual of the current
population has its fitness function f(vi).

3.4.3 New Population

Once the fitness function for each individual is computed, if the termination condition 3.4.5
is not reached, a new population of the same size of the current one is created. Individuals
in current population are called parents, the ones in new population are called childes.

There are different ways to choose the individuals that compose the new population. In
this work a part of individuals, 10% of population size, are chosen by elitism, whichmeans
that best individuals of the current population are added in the new one as they are. Then

12

the remaining individuals of the newpopulation are generated by crossover (Sec. 3.4.4) from
two parents, which are chosen from the best half of parents.

It is possible to choose different values for the elitism percentile but by trials we found
that 10% is a good choice and leads to a fast convergence in most cases.

3.4.4 Crossover

Crossover is the procedure to choose each new gene of the child from genes of the parents,
and can be done in different ways. In this work is done by choosing a random probability
p1 for each gene, and if p1 > 0.5 then i-th gene is taken from the second parent, otherwise
from the first one.

After a child is generated, a mutation can occur with another random probability p2: if
p2 is lower than mutation rate, the gene is generated randomly otherwise the one selected
by crossover is kept. Here we choose a mutation rate equals to 0.01 which is a typical value
used in Genetic Algorithm.

3.4.5 Termination Condition

There are different kind of termination conditions for Genetic Algorithm. In this work,
we choose that GA terminates when the difference between best fitness function of previous
population and best fitness function of current population is smaller than a given threshold
or the number of generations exceeds a givenmaximum gmax. Here as threshold we choose
10−6 because if the difference between the twofitness function is below this valuemeans that
genetic algorithm has found theminima and it is not chosen 0 to get rid of approximation
errors, while we choose gmax = 20 because we see that if the algorithm converges it will do
in the first 10 generations. Moreover, we add the fact that if the fitness function is below
1 the algorithm keeps to iterate, this is because a fitness function lower than 1means that
the result is not so good (but could be the best possible) and we want that the algorithm
keeps to search for a better result. This last aspect of fitness function is the reason why the
algorithm could not converge in less than gmax populations, in fact when the algorithm
terminates due to exceeding the limit on population number, the best fitness function has
always a value under 1, which, in that case, is the best possible value.

13

Algorithm 3.2 Genetic Algorithm
1: procedure v = GeneticAlgorithm(PopSize,ChromoSize,MutationRate)
2: Initial Population
3: Compute Fitness Function
4: Save Best fitness
5: repeat
6: Generate New Population
7: Compute Fitness Function
8: Save Best fitness
9: until {TerminationCondition(prevFitness, CurrentFitness) = true}
10: return v ▷ Return the v of the best individual

3.5 Least Square Fitting

Least Square method is used in linear regression to fit a linear function, given a model set
of functions. In this work we use it to fit the function f(x) that belongs to the model set
of n-th degree polynomials, with n ≥ 4.

The Least Square method is used to find the parameters of the unknown objective func-
tion f(x) that better represents data points, in sense that it is the function that minimizes
the sumof squared residuals (a residual being: the difference between an observed value, and
the fitted value provided by a model). Once the function f̂(x) is estimated the data points
are projected onto it.

Calling β the vector of the unknown parameters of f(x), an estimator for β is given by:

β̂ = (XTX)−1XTy (3.1)

whereX is a matrix whose ij element is the i-th observation of the j-th independent vari-
able and y is a vector whose i-th element is the i-th observation of the dependent variable.
In this work, x coordinate of the trajectory point is the independent variable, while the z
or y coordinate is the dependent variable. In fact, we use this algorithm to filter both y and
z coordinate.

Since the data to be fitted are close to the real model, the least square method is good to
give a description of the trajectory in both z and y direction and to correct the approxima-
tion introduced by numerical errors and the mesh.

Moreover, after we fit themodel f̂(x), with least square filteringwe can generate asmuch
point as desired, describing the trajectory with less points without losing precision. Then

14

we sample the points at a desired step, keeping the start and stop paint, to have a description
of the trajectory which the robot can performwithout having toomuch or too close points,
resulting in a more accurate trajectory following by the robot.

15

16

The science of today is the technology of tomorrow.
Edward Teller

4
Robot trajectory generator algorithm

In this chapter we describe the main algorithm that we use to generate the trajectories.
Firstly we presents all requirements needed to run themain algorithm, such as amesh object
and spray gun model, with computation of the optimal velocity and optimal overlap in a
planar surface. Thenwe describe the trajectory generator algorithmwhere we simulate final
paint thickness and optimize each paint pass, iterating it until all surface is covered.

4.1 Requirements

Here all requirements necessary to run the main algorithm are described:

� the mesh object which is how we describe the data

� the model tool we use to describe the process and to simulate the paint results

� the algorithm we use to align the object so that we can run the trajectory generator
algorithm

4.1.1 Mesh object

The object to be painted is given by a 3D model, so we approximate it with a mesh object.
This is a polygon approximation of the real object and we choose it because a free-form

17

surface can be easier represented by a polygon approximation rather than by parametric
representation. In this work we adopt a triangular mesh, as the example shows in Fig. 4.1

Figure 4.1: Example of triangular mesh object approxima on

Before running the algorithm, the model needs to be preprocessed. Preprocessing con-
sists of: refining the mesh as described in Sec.3.1, and splitting it in simpler surfaces as de-
scribed in Sec.3.2.

Themain advantage is that themesh object can be generated both from aCADmodel of
the object, both from a Point Cloud ([6]) acquired in Real-Time with a camera or a scanner.

4.1.2 Spray gun and paint distribution model

Tool model is one of the most important part of our algorithm because allow us to have a
description of resulting paint thickness. Since the main objective of the painting process is
to have a desired thickness of the paint qd, as uniform as possible, we need a goodmodel for

18

the spray tool, in order to optimize that. In this model, the spray tool has a spray pattern
that can be modelled by a cone as shown in Fig.4.2.

Paint particles are emitted from the tool radially within the spray cone with a fan angle
of θ. The tool is supposed to work at a distance h from the surface (tool stand-off), so the
maximum radius of the cone can be determined asR = h tan(θ), which is defined as spray
radius. The tool spray direction is parallel to the normal of the surface. When the spray cone
intersects a surface, it forms a spray pattern. Another aspect we need to take into account
is that material deposition rate depends on many parameters, like paint flow of the spray
gun, the efficiency (defined as how much paint of paint flow deposits on the surface) or
the gun stand-off. In this work, with a reasonable approximation, we consider all these
parameters to be constant. Then we can define paint deposition rate as function of only
distance between a point inside the spray cone and the center, that we call r = h tan(γ).

Tomodel paint deposition rate we use the Beta paint distributionmodel, which provides
flexibility in selecting β based on the characteristic of the spray gun, and also the possibil-
ity to obtain different distributions such as elliptical (β = 1.5), parabolic (β = 2), and
Gaussian (β ≥ 2.5) as shown in Fig.4.3a. Different paint distributions can be also obtained
varying the spray radius, instead of β, as it is shown in Fig.4.3b.

Using Beta paint distribution (in [10]), the model paint deposition rate is given by:

q̇(r) =
ηQ0β

πR2

(
1− r2

R2

)β−1

(4.1)

where q̇ is the rate of film accumulation at an arbitrary surface point S = (x, y, z) at a
distance r from the center,Q0 is paint flow of the spray gun, η is the efficiency andR is the
spray radius.

Paint Thickness computation

As the spray gun moves along the surface, paint is deposited over the surface. Resultant
paint thickness can be obtained by integrating the paint deposition rate q̇(r) for the time
of travel. The spray gun velocity is considered constant, an aspect that is also supported by
automotive spray painting specialist [10]. When the spray gun moves along x axis with a
constant velocity v, the paint thickness at any point L can be obtained as:

19

O

spray gun

Q
r.

h

R

θγ

Figure 4.2: The model of the spray tool

(a)With different β and sameR. (b)With differentR and same β.

Figure 4.3: Different values of Paint deposi on rate changing the parameters

q(y, v) = 2

∫ t

0

q̇(r)dt 0 ≤ r ≤ R , with q̇(r) =
ηQ0β

πR2

(
1− r2

R2

)β−1

(4.2)

where t is the spray time on L and y is the distance of L from the tool center projected, as
it is shown in Fig.4.4. Then t and r are given by:

t =
√

R2 − y2/v, r =
√

(vt)2 + y2 (4.3)

20

y

x

v v
L

d

y

Figure 4.4: Material distribu on of a pointL on a plane: y is the distance of the pointL to the first path; v the tool
velocity, and d the overlapping distance

Let t = x/v, Eq.4.2 can be rewritten as:

q(y, v) =
2

v

∫ t′

0

q̇(r′)dx , with t′ =
√

R2 − y2, r′ =
√

x2 + y2 (4.4)

Eq.4.4 returns the paint thickness of the point L, for a single painting pass, given the
distance y from tool center projected and the painting pass velocity v.

Optimal overlap distance and velocity on a planar surface

To have minimal paint thickness deviation we compute the optimal overlap dopt between
two adjacent paint pass and the overall optimal velocity vvopt. Since the surface behaviour
is unknown, and could be highly non linear, we compute these optimal values referring on
a planar surface.

To compute optimal overlap dopt we define the function:

q̄(y, d, v)
△
=

q1(y, v) 0 ≤ y ≤ R− d

q1(y, v) + q2(y, d, v) R− d < y ≤ R

q2(y, d, v) R < y < 2R− d

(4.5)

where q1(y, v) = q(y, v) and q2(y, d, v) = q(2R− d− y, v).
The function 4.5 calculates paint thickness deposited by two neighbour pass on a point L,

21

as it is shown in Fig.4.4. The final goal is tominimize paint thickness in the overall surface,
and the overlap dopt between two path is a critical parameter. In Fig.4.5 it is shown how
important is to have an optimal overlap distance between two neighbour passes. In fact if d
is too low it happens that it will be a region in which the paint thickness is lower than the
desired paint thickness qd, while if the overlap d is too high it will be a region with paint
thickness value higher than the desired. With optimal overlap, instead, the paint thickness
deviation is minimized.

(a) High overlap, d = 50mm. (b) Low overlap, d = 30mm.

(c)Op mal overlap, d = 43mm.

Figure 4.5: Paint thickness for different values of overlap

To find the optimal overlap dopt we define a cost function to be minimized in order to
get the minimum paint thickness deviation. The cost function is:

E(d, v)
△
= λ1E1(d, v) + λ2E2(d, v) (4.6)

22

Where:

E1
△
=

∫ 2R−d

0

(qd − q̄(y, d, v)2)dy (4.7)

E2
△
= (q̄max(d)− qd)

2 + (qd − q̄min(d))
2 (4.8)

λ1 =
1

2R− d
, λ2 = 1 (4.9)

Eq. 4.7 is necessary to penalize the mean square error of the material quantity (i.e. paint
thickness) deviation from the required material quantity qd, while Eq. 4.8 penalizes the
material quantity deviation from the averagematerial quantity. The parameterλ1 is chosen
to take an average ofE1(d, v) in [0, 2R− d].

The overall minimization problem is:

min
d∈[0,R],v

E(d, v) (4.10)

Since Eq.4.4 is inversely proportional to tool velocity v, Eq.4.5 can be rewritten as:

q̄(y, d, v) =
1

v
ρ(y, d) (4.11)

and the same could be said for q̄max(d) and q̄min(d).

To find the minimalE(d, v), first compute

∂E(d, v)

∂v
= 0 (4.12)

The solution of Eq.4.12 is given by:

v =
1

2R−d

∫ 2R−d

0
ρ2(y, d)dy + ρ2max(d) + ρ2min(d)

qd

(
1

2R−d

∫ 2R−d

0
ρ(y, d)dy + ρmax(d) + ρmin(d)

) (4.13)

Since tool velocity v can be expressed as a function of the overlapping distance, then Eq.4.6
can be minimized by properly choosing the distance d. To solve Eq.4.10 we use Pattern
Search Method (described in Sec.3.3) to calculate the optimal overlapping distance dopt.

23

Constraints

A good paint quality is defined by deviation in paint thickness from the desired paint thick-
ness. For this reason the constraint is on paint thickness deviation:

Ωs
△
= min |qd − qs|∀s ∈ {1, . . . , n} (4.14)

Other constraints such as material waste, cycle time, reachability, are neglected in this
work.

4.1.3 Object alignment

The main assumption of this algorithm is that the patch to be processed has its oriented
bounding box with a corner corresponding to the origin of the world frame and the main
edge aligned with x axis. The oriented bounding box is found using Principal Component
Analysis (PCA),which is a fastmethodbut couldbe inaccurate in some cases (when the point
distribution is not uniform) leading to sub optimal solution. For this reason, to correct the
rotation, we divide the bounding box in half with respect to x coordinate, keeping a free
region on the middle to avoid that the minima of the two regions coincide. Then we take
the point withminimum y coordinate in both halves, obtaining two points, a and b, where
a is the point in thehalfwithx coordinate closer to0. Thenwe compute the vector l = b−a,
the angle α of l with respect to x axis and we rotate by−α.

4.2 Coverage Algorithm

Here the main algorithm is described. In first sections we describe how the trajectory for a
paint pass is generated, then how we simulate resultant paint thickness for each paint pass
and then the velocity optimization part. Finally we describe how this process is iterated for
all paint passes until the final trajectory is generated and the surface is fully covered.

4.2.1 Surface section generation

The generation of surface sections starts from the origin of axis and proceeds along x axis
until the end of the bounding box is exceeded. We call Tk the triangle k in the surface
and pTk

(x, y, z) its centroid. To generate each surface section we sort the triangles Tk to
be painted inside the range 0 ≤ (x, y) ≤ 2R − dopt, where dopt is computed as described
in Sec.4.1.2. Since it is not guaranteed that all the sorted triangles can be reached by the

24

spray, we sort again all triangles, starting from lower y to the higher y (the added stripes of
triangles are along x axis), until the spray area, taken as πR2, is not exceeded.

Figure 4.6: A Surface Sec on generated by the algorithm

4.2.2 Surface Section point and surface section normal generation

Once the triangles on surface section are sorted, the centroid pss(x, y, z) and its normal
nss(x, y, z) are computed by:

pss(x, y, z) =

∑m
s=1 pT ′

s
(x, y, z)As∑m

s=1As

(4.15)

where pT ′
s
(x, y, z) is the centroid of the triangle s in current surface section, As is its

area andm is the total number of triangles in surface section.

25

nss(x, y, z) =

∑m
s=1nT ′

s
(x, y, z)As∑m

s=1 As

/

∥∥∥∥∥
∑m

s=1nT ′
s
(x, y, z)As∑m

s=1 As

∥∥∥∥∥ (4.16)

wherenT ′
s
(x, y, z) is the normal of the centroid of triangle s in surface section.

(a) Surface point generated. (b) Trajectory point generated.

Figure 4.7: Surface Sec on main points

4.2.3 Spray pattern implementation: Paint pass 1

To perform the whole trajectory we use a raster spray pattern (Fig.4.8), although this ap-
proach can eventually be applied to any spray pattern.

After a surface section, with its centroid andnormal, is computed as described in Secs.4.2.1
and 4.2.2, the next surface section is generated using an incremental distance xincr along
x axis. The new surface section is generated in the range (xpre + xincr, ypre) ≤ (x, y) ≤
(xpre+xincr +2r− dopt, ypre), where xpre, ypre are the coordinates of previous surface sec-
tion. This process is iterated until x axis limit of the object’s bounding box is exceeded. For
computational reason xincr cannot be too small but at the same time cannot be too high
because trajectory and resulting paint would be affected by the surface curvature. Moreover,
we implemented a variable xincr, as described in [10], but we see by testing that it gives no
improvements, adding a computational effort to the algorithm. For this reason we choose
xincr = R/5, which we found by trials to be a good trade-off between computation com-
plexity and trajectory generation accuracy.

26

surface

Spray On
Spray Off

Figure 4.8: A raster spray pa ern

To have a raster spray pattern with the lateral movement outside the object (Fig.4.8),
the turning points between two consecutive passes, where also the spray has been toggled
on/off, are generating using a surface section located at a distance xincr from the border
of the patch. In this case, and when a surface section contains no triangles, the centroid
pss(x, y, z) is set to the middle of surface section area (intended as (xpre + xincr, ypre) ≤
(x, y) ≤ (xpre + xincr + 2r − dopt, ypre)), while the normal is set parallel to z axis.

Afterwards all the unuseful points of the trajectory (i.e. the ones that has no triangles in
its corresponding surface section) are removed, except for the ones where the spray needs to
be toggled on/off.

Filtering

Due to irregular structure of the mesh, computed trajectory is not smooth (especially in y

direction), so the generated points are filtered with a double sided moving average smooth-
ing filter (MA) in y direction, because we want to have a line as smooth as possible to let the
robot moving uniformly. The moving average filter is described by Eq.4.17:

pss,j(y) =
1

2M + 1

M∑
i=−M

pss,i(y) (4.17)

27

To improve the filtering result, after using the moving average, we use a least square fil-
ter (LS), as described in Sec.3.5. Firstly, we fit the polynomial which describes the trajectory
and then we project all the points in the fitted function. Moreover, to have a description
of the trajectory which allows the robot to move uniformly, the points are fitted with a
fixed distance d, giving a more homogeneous description. By experimental result we have
found that a good trade-off between trajectory approximation and capability of robot to
follow smoothly the generated trajectory is using d = 30mm (where d is the fixed distance
between two points mentioned above). In this way y direction is filtered with moving av-
erage filter, and then fitted with a 4th degree polynomial. The choice of degree is done by
considering the fact that we not desire too much overfitting, because the robot trajectory
should be as linear as possible in y direction, but the shape of the trajectory should also be
preserved. Subsequently the trajectory is filtered in z direction, only using a least square
estimator. For this purpose we choose a 6th degree polynomial, to smooth the trajectory
preserving its profile in z direction.

Simulation shows that different kind of filtering could lead tomore uniform trajectories
(Fig. 4.9) than the ones generated without filters. Depending on the surface, it is not guar-
anteed that filtering the trajectories with Least Square in both y and z direction is the best
choice, in fact in Figs 4.9c-4.9f are shown different filters on the same surface, and the only
way to determine which is the best is by trial. Moreover, we have found experimentally that
Least Square filtering in both y and z direction is the filter that gives the better trajectories
in most cases. Summing up, where possible, least square instead of only moving average is
preferred to have the possibility to describe the trajectory with less points without losing
accuracy, even if they both lead to similar results, which leads to a better implementation
in the real robot.

4.2.4 Paint Thickness function for Paint pass 1

While the spray gun tip moves over the surface with a gun stand-off h, paint is deposited on
the surface. Then is necessary to compute paint deposition over the surface to have a simu-
lation of the final result and to have the capacity to improve the paint deposition, having
a feedback on how the final result would be. Paint thickness for the triangulated surface is
computed by considering gun velocity and inclination of the tool with respect to the sur-
face and paint distribution, while we assume a linear motion over triangles when the gun
moves between two subsequent surface section points. The paint thickness function for a
triangulated surface with T number of triangles is computed as described in [10] and [12] and

28

(a) No filters on Snowflake. (b)MA and LS filters on Snowflake.

(c) No filters on a chair. (d)MA filter on a chair.

(e) LS filter on a chair. (f)MA and LS filter on a chair with Z filtering.

Figure 4.9: Filtering effects on trajectory genera on

29

results in:

qs
△
=

(
h

ls

)2 cosγs
cos3θs

q(y, v) γs < 90

0 γs ≥ 90

(4.18)

where γs is the angle between normal of the spray and normal of the point s on the surface,
θs is the angle between the spray normal and the segment ls, which is the one that connects
the spray tool position with the point s. This formula takes into account both the paint
deposition on a planar surface q(y, v) (Eq.4.4) and the different orientation between the
spray path and the surface using Area Magnification approach [12].

To have a correct paint deposition computation over the surface we need to sort again the
surface triangles Tk which composes the paint pass. In fact the triangles in surface section
are sorted in the range (xpre + xincr, ypre) ≤ x, y ≤ (xpre + xincr + 2r − dopt, ypre),
but the spray has diameter of 2R. For this reason, the triangles that compose the paint pass
are sorted taking the ones that are closer thanR from the surface section point. The paint
thickness of a each triangle is computed considering as the point s in Eq.4.18 its centroid
PTk

(x, y, z) and for each point s the contribution of each spray paint point is summed to
obtain the final paint thickness. For this reason, themore the surface is refined, as described
in Sec.3.1, the more realistic the paint thickness simulation is.

4.2.5 Optimal speed for paint pass

If the surface is not planar, using constant speed for the entire paint pass could lead to bad
painting. In fact we want a uniform velocity on the surface to have uniform paint depo-
sition, and this velocity could be different from the robot end-effector velocity. For this
reason a speed optimization of the end effector is performed.

Speed section computation

We use an approach similar to the one used for computing surface section (Sec.4.2.1) to com-
pute speed surface sections. For each surface section point i which composes the paint pass
trajectory, as speed section it is considered the union of surface sections relative to point i,
i− 1 and i+ 1. This is done to have more uniformity on paint pass speed.

Then for every velocity section i we compute the optimal speed as described in the next
Section, that will be the speed of pass point i.

30

Optimal speed computation

For each triangle k ∈ 0, . . . T in the speed section the paint thickness function

f(qk) = qk · vopt (4.19)

is computed, where qk is the paint thickness of triangle k and vopt is the speed of paint pass
i computed for a planar surface. In this way f(qk) does not depend any more on v and it is
possible to compute qk from any v without recomputing paint deposition. Indeed for any
v:

qk,v = f(qk)/v (4.20)

Then the optimal speed for the considered speed section is computed by defining the
optimization problem considering the constraint given in Sec.4.1.2: in this work we use an
Adapted Genetic Algorithm (Sec.3.4) to compute vopt,i, which is the optimal speed for pass
point i. The performance of Genetic Algorithm is strongly related to the choice of fitness
functionW , but since it is an heuristic algorithm its results could be different on every run,
though all very similar between them.

Firstly we need to compute for each triangle k the paint difference function Fk:

Fk = (|qk,v − qd|), where k ∈ (1, 2, . . . T) (4.21)

where qd is the desired Paint Thickness.
Since the goal of optimization is to find v such that there are as few as possible triangles

k outside the maximum paint deviation ∆q and as much as possible close to desired paint
thickness qd we define:

K
△
=

T∑
i=1

ki where ki =

λ1 Fk > ∆q

λ2 0.4 ·∆q < Fk < ∆q

λ3 Fk < 0.4 ·∆q

(4.22)

where λ1, λ2, λ3 are the hyperparameters and they should be chosen in a way that λ1 <

λ2 ≤ λ3 in order to maximize the fact that more triangles are in the interval in which
Fk < 0.4 ·∆q and as less as possible triangle in the interval Fk > ∆q.

From experimental results has been shown that good parameters are: λ1 = −0.2, λ2 =

0.1, λ3 = 1.

31

Now the fitness function can be computed for the velocity section as:

W
△
=

{
2K vmin ≤ v ≤ vmax

− inf otherwise
(4.23)

Looking at Eq.4.23 can be understood why in the termination condition W > 1 is re-
quired, if it is possible. In factW < 1means thatK < 0, and this can happen only if there
are more triangles in the speed section with Ft > ∆q than the ones with Ft in the desired
range.

Also other fitness functions has been tried, such as the one described in [10], but the pre-
sented one gives speeds that leads to better paint thickness over the surface.

4.2.6 Spray pattern implementation: Paint pass n

To implement the raster spray pattern, after the first Paint Pass is computed, the y is incre-
mented byR− d/2 from the ym that is the average of y coordinate of previous pass points.
Then x coordinate is decreased by xincr until it goes to 0 and the paint pass is computed
as described in Sec.s4.2.1-4.2.4. Then y coordinate is again increased by R − d/2 from ym

and this procedure continues iteratively until all the surface is covered (i.e. y is greater than
the y dimension of the bounding box). When the algorithm terminates it has generated
two trajectories showed in Fig.4.10: one on the object surface and one relative to the robot
tool which is composed by the points of surface trajectorymoved by a distance h along their
normal.

32

(a) Surface

(b) Robot tool

Figure 4.10: Trajectories generated by the algorithm.

33

34

In the twenty-first century, the robot will take the place
which slave labor occupied in ancient civilization.

Nikola Tesla

5
Algorithm implementation and

verification

The final goal of this work is to verify the presented covering surface algorithm on a real
robot manipulator. To do this, after the trajectories are generated, all the points from the
object world have to be translated to the robot world. Then one must check if the trajec-
tories can be executed by the robot without any collision and finally the robot program is
generated to perform the task on the real object.

5.1 Covering surfaces Windows program

To run the algorithm and generate the robot program, we create a Windows program (Fig
5.1a). User can load a 3D model, configure all the main parameters (e.g. tool parameters,
filter to use), generate the trajectory and simulate the final result of paint thickness on the
surface.

Once satisfactory trajectories are generated the user can open a new window and choose
the position in the robot world for the object to be painted (Fig. 5.1b).

Then all the points of the trajectories are translated in the robotworld frame, as described
in Sec.5.2.2, and trajectory planning is performed. Since the target object can potentially be
placed anywhere in the robot world, trajectory planning is a fundamental step to check for

35

collisions between robot and objects, and to check if all the points belong to the workspace
of the robot (i.e. are reachable). Once the trajectory planning has been completed success-
fully the user can generate the robot program that will be uploaded in the real robot.

36

(a)Main form

(b) Robot Form

Figure 5.1: Windows of our program.
37

5.2 Robot program generation

In this section we describe all the steps that were necessary to generate a program that can
be uploaded to the robot to perform the task.

5.2.1 Robot movement and point types

To perform a trajectory with the real robot a list of goal points must be passed to it. These
points can be passed to the robot both with joint position coordinates and cartesian coordi-
nates. Joint positions coordinates are unique, since they describe the effective joint position
of the robot, while in cartesian coordinates the same point could be reached by the robot
with different configuration (e.g. with an axes rotated by 360 degree). For this reason when
a point in cartesian coordinates is given, it is possible to set also some configuration bits that
describe the unique configuration of the robot.

A robot has a set of different types of movements to go from the actual position (P0) to
a destination point (P1):

� LIN (linear): this type of movementmakes the robot to perform a straight line from
P0 to P1. This can be used to approximate a trajectory with a set of straight lines.

� CIRC (circular): this type of movementmakes the robot to perform a circular move-
ment fromP0 toP1 passing throughP01 which is the pointwhere the curve changes
its derivative sign.

� PTP (Point To Point): this type of movement makes the robot to go from P0 to P1
with the fastest path (i.e. the path with smaller axes movement). This usually leads
to a curve path since usually robot joints are usually revolute.

� SPLINE: this is amotion type that is particularly suitable for complex, curved paths. A
Spline block passes through all points with a single movement and constant velocity,
using a spline approximation. Such paths can also be generated using approximated
LIN and CIRCmotions, but splines have advantages, such as there is no approxima-
tion in the path, in fact all points are reached precisely (thing that could not happen
with LIN and CIRC), and constant velocity is better maintained. On the other side
if the global trajectory contains a discontinuity point the robot could not perform as
expected: it will perform a longer and different path to be sure to keep the velocity
constant. For this reason, when we design the trajectory our algorithm is designed to
make trajectories which do not contain discontinuity points in the paint pass. Some
discontinuity points could be present when the robot moves from a paint pass to the
next one but in that case the spray is off and will not affect the painting result.

38

All themovements of a robot are performed with respect to its Tool Center Point (TCP),
which it is the frame that describes the position and orientation of the robot tool and usu-
ally is put on the tip of the tool, but can be set potentially everywhere. The robot TCP is
computed by robot calibration (but can be also set numerically) and each robot can have
different tools, where each one is represented by its TCP. Let us suppose that we want to set
a TCP on the tool tip, then robot calibration consists of moving in the same fixed point
as the tool tip (where we want to set the TCP), with different orientations. This way, the
robot is able to compute its new TCP frame. Finally, when a destination point in cartesian
coordinates is given to the robot, the tools to which it refers must be specified, otherwise
a default one will be used, leading to unexpected behaviours, because a robot reaches the
point passed as goal with its TCP, so he needs to know which one has to use to perform the
movement correctly.

5.2.2 Adding painted objects to the robot world

The coverage algorithm is executed in the object world. When an object is added to its
world, it is put with its center on the world reference frame. So the object is aligned to x

axis (as described in Sec. 4.1.3), it is necessary to keep track of the transformation between
initial position and final position, and this is done with the homogeneousmatrix woTo that
describes this transformation.

In the robot world, instead, the robot is added with the robot base frame as world frame
and the objects can be added everywhere in the world. To let the robot to perform the
trajectory computed by the algorithm it is necessary to transform the trajectory points co-
ordinates in the world reference frame that correspond to the robot frame.

Then, when the object is placed on the robot world, the homogeneous matrix that de-
scribes the object points as robot world points wrTo =

wr Tb ∗ (woTo)
−1 is generated, where

wrTb is the position of the object with respect to the robot world.
In this way the trajectory points po can be transformed in robot world coordinates with:

pr =
wr Topo (5.1)

5.2.3 Trajectory planning

After the transformation of trajectory points as described by Eq.5.1, it is possible to plan the
robot trajectory. Since the trajectory above the object is already planned by our coverage

39

algorithm, the only trajectories to be planned are: the one that move the robot from hold
position to the start position to perform the process, and the one that move it from the
last process point back to hold position. In fact is supposed that the object to be painted is
put in a position where the robot can perform the task without any collision. In industrial
processes the hold position is a robot position that allows to load/unload the object to be
processed (e.g. robot home position, a position out of the camera when there is a vision
system, etc.). For the trajectory generated by our program, trajectory planning consist on
checking if all the points generated are reachable by the robot, and, if they are not reachable,
is necessary to change the pose of the object on robot world, that obviously reflects object
position in the real world with respect to the robot base. Since the trajectory points are put
at a distance of d = 30 mm between them (by design), and in reality the robot cannot
jump instantaneously from a point to the next one, these points (which are the ones that
will be passed to the robot) are interpolated using the robot movement described above
(e.g. LIN, PTP), then interpolated trajectory reflects the movement that the real robot will
perform. During this process we also check if robot trajectory has some collisions with other
objects in the world, doing this in all interpolated points. For the trajectories generated by
the algorithm, if there are collisions, the only solution is to move the object somewhere
else, while for the movements from and to hold position the trajectory planner manage
themselves to find, if possible, a trajectory without collisions, with the only prerequisite
that start and end points are in a non-colliding position. Collision checking is a essential
step because non collaborative industrial robot has, depending on robotmodel, amaximum
axes velocity in order of 1-2 m/s, which is translated to a maximum end effector velocity
even bigger. For this reason a collisionwith a human or an object will cause serious damages.
Moreover, they are not capable to check when a collision happens in real world. For this
reason collision checking is an essential step as much as modelling accurately in simulation
the real world near robot to be sure that the robot will not collide even in the real world.

5.2.4 Robot program generation

When the trajectories are correctly planned, the robot program that will perform the pro-
cess on the real robot can be generated. Since some robots cannot have all types of move-
ments described in Sec.5.2.1, here we adopt two types of program to perform the trajectories:

1. LINmotions to perform the paint pass and PTP to perform all the othermovements
where the spray is off.

40

2. Singular SPLINE movement to perform all the covering process and PTP to move
from/to hold position.

In both programs PTP movements are performed passing the point in robot joint posi-
tion to be sure that the robot reaches it with the same configuration of the simulation, while
other points are given in cartesian position. Points given in cartesian position are generated
in a way that their rotations are not too different between two consecutive points. In this
way it is guaranteed that the robot do not change configuration during these movements.
Moreover as hold position we set the robot home position.

LIN motion trajectories

With this program we set the TCP on the tip of robot tool (Fig.5.2), so the trajectory is
made of points generated at a distance h from the surface points along their normal (Fig.
4.10b), where h is defined in Sec.4.1.2. LIN motions are used during the paint pass to have

Figure 5.2: Robot with TCP on the p of its tool

a straight trajectory between two points when the spray is open. This has been done to
guarantee a fixed orientation during the paint process. Moreover to each LIN movement

41

the optimal velocity for the end effector is given, as it is computed in Sec.4.2.5, to obtain
the optimal paint thickness on the surface. Outside the spraying area (i.e. where the paint
pass is performed) the movements are done with PTP movement, which allows to put the
robot in a good axes positions to perform the next paint pass (i.e. with joints far from their
limits). Unfortunately, due to limitations on robot axes velocities and accelerations, it is
not guaranteed that the robot can perform the LINmovement with given velocity causing
a worse painting quality than the one expected by simulation. However, due to the filtering
that we performed on velocities, it is reasonable to expect that velocities performed by the
robot are not too far from the optimal ones.

SPLINE motion trajectories

Since Kuka robots (and some other brands) have the capability to perform SPLINE move-
ment, in this project we use this type of movement. The main advantage of SPLINEmove-
ments is that the given trajectory is performed with constant velocity on TCP. For this
reason we set the TCP on the surface of the object (Fig.5.3) and in this case trajectory points
are the one generated on the surface (Fig.4.10a). In this way we can set as velocity of spline

Figure 5.3: Robot with TCP on the surface

42

block the one computed on Sec.4.1.2 because we desire to have this constant optimal veloc-
ity on the surface during the entire painting process, regardless of the end effector velocity.
With spline block the controller of the robot, computing the path, takes care of the phys-
ical limits of the robot. Then, if the velocity and the path is feasible, the robot computes
the process at given velocity, while, if it is not feasible, it computes the process at the higher
possible velocity. This moreover guarantees a smoother movements during the process and
a better final result due to the uniformity of themovements. Finally themovements to and
from hold position are made in PTP, following the trajectories generated by the planner,
while the rest of the process is done with one unique spline block.

5.3 Real experiments

In this sectionwedescribes the validationof our algorithm, firstly running it froma scanned
mesh, and then running it on a real robot.

5.3.1 Algorithm test with object from scanner

As first experiments we test our algorithm with some mesh objects retrieved from a Photo-
neo (in Fig.5.4) which is a 3D scanner. Themesh obtained by the PhotoNeo is not as perfect
as a 3Dmodel, but the algorithm is still able to generate a good trajectory, exploiting the ca-
pability of this work to be adapted for a Real-Time utilization and to work without having
the model of the object to be painted.

(a) (b)

Figure 5.4: Objects scanned with the PhotoNeo.

The trajectories generated from our algorithm are shown in Fig.5.5 and, despite the noise
added by the scanner, the trajectories are good enough to give an accurate painting result,

43

making our algorithm robust to noise, as long as it does not distort the shape of the surface.

(a) Surface, object Fig.5.4a (b) Robot tool, object Fig.5.4a

(c) Surface, object Fig.5.4b (d) Robot tool, object Fig.5.4b

Figure 5.5: Trajectories generated by the algorithm.

Therefore, themain problemwe found usingmesh object from a scanner is the noise. In
fact here themesh of the objects in Fig.5.4 is manually refined removing all the parts which
correspond to noise or parts which are not part of our object, like the floor. Moreover, doing
this, we have tried to simulate an automated way of noise reduction, meaning that we have
removed all the noise outside the target surface, isolating the target object from the rest of
the scan. However, the noise on the surface to be painted is kept to mimic an automated
object selection, but it is possible to perform some ad hoc processes to refine a noise object
to get a better model.

5.3.2 Robot implementation

Once the robot program has been generated, we tested it in a real industrial cell. Unfortu-
nately, it was not possible to test the resulting paint thickness, because the only available

44

cell was a spray glue dispenser robot, but it was still possible to test the generated trajectory
and the robotmovements on a target object. The robot used for the experiments was a Kuka
KR16R1610, with aKRC4 controller, which is capable to perform splinemovements. This
robot is composed of 6 revolute joints and the tool is attached at a distance of 30 cm from
the robot end effector, inclined by an angle of 20 degrees. Like all industrial robots it has
different workingmode, which set different limits onmaximum axes velocity. Thesemode
are necessary to test the robot programs and verify that the robot does not perform unex-
pected behaviours which could lead damages to people or things in working range of the
robot. After we checked that the program generated works as expected, for the tests we set
the velocities at the maximum possible, without any limit on joint velocities and acceler-
ations. In Fig. 5.6a is shown the simulated environment of the working cell, where the
parallelepipeds are the collision objects, while the real cell is shown in Fig.5.6b.

The object where we test the algorithm is in Fig.5.7a, and the use of the PhotoNeowas not
necessary because we have the CAD model of the object on which we run the experiments.
Moreoverwe perform the trajectory tests only in the diagonal surface of that object (Fig.5.7b)
because in a real spray application the object would be put in a support which would make
possible to reach all its faces, but here we were capable only to paint that surface.

The trajectories generated are shown in Fig.5.7, and has been tested with both programs
generated in Sec.5.2.4, with the robot at maximum speed.

With LIN movements and optimal velocities computed in Sec.4.2.5 the robot did not
perform as expected, in fact when two consecutive points have too much displacement in
orientation the robots tends to slow down, not reaching the optimal velocity and leading
to an overpainting in that zone. Using, instead, SPLINE movements they guarantee that
the motions of the robot are performed with a constant velocity on the surface, leading to
an overall smoother process and expectedly a better paint result.

In both cases the robot programs automatically generated by this program work with-
out any problem, making this work a good approach to automatic offline programming
of painting robots, remembering that, as we show with experiments, is preferable to use
SPLINE movements to obtain a better process result.

45

(a) Simulated

(b) Real.

Figure 5.6: Robot working cell

46

(a) Complete object.

(b) Target diagonal surface.

47

(a) Surface

(b) Robot tool

Figure 5.7: Trajectories generated by the algorithm.

48

6
Conclusion

In this work the problem of covering surface with a robot manipulator from a 3D drawing
is faced. The main advantage of 3D drawing is that it can be derived both from a design
model, both from a scan. Here the focus was on spray painting process, but this algorithm
can be easily adapted to other processes by changing the tool model and some other ad hoc
parts (like velocity optimization or paint thickness computation). The first step of robot tra-
jectory generation has been to split the object in simpler surfaces, to obtain surfaces without
high curvatures and to allow the algorithm to perform better. Then the object has been re-
assembled in the robot world to be painted. An important factor of this algorithm is that
the trajectories generated optimize the resulting paint thickness deviation, to get the most
uniform paint possible.

For the path of the final trajectory a raster spray pattern is adopted, with all the lateral
movements performed outside the surface and with the spray turned off. First of all, the
optimal overlap dopt and the optimal velocity vopt for a paint pass on planar surface are
calculated. Then for each paint pass the algorithm generates surface and trajectory points,
computing the centroid and normal of each surface section, and then all points are filtered
usingLeast Square filter. Once the paint pass is generated for each point the optimal velocity
of the robot end effector is computed with an Adapted Genetic Algorithm. After the paint
pass is done, yincr = ym+R−dopt/2 is calculated, where ym is themedian of y coordinate
of all points which compose the surface trajectory and yincr is the y value of the next paint
pass. This process is iterated until all the surface is covered.

49

Finally we plan the trajectory on a simulated robot to verify that is feasible and collision
checking is performed. Then the robot program is built automatically to perform the task.
A particular focus is given in the use of SPLINEmovement for robot programming, which,
given vopt as velocity of the block, guarantees that the velocity of paint sprayed on the sur-
face is constant and equal to vopt, regardless of robot end effector velocity (unless it reaches
the physical limits of the robot).

The main advantage of our work is that the procedure of painting an object and writing
the robot program is done almost entirely without human interaction, making it a fast way
to programan industrial painting cell. This work can also be adapted for real time trajectory
generation, since our algorithm is fast, in particular if spline movements are used, which
does not requires the speed optimization for each trajectory point. Moreover, there are some
possible improvements and parts that are not taken into account in this work. For example,
it is possible to change the surface division method, using an ad hoc method that splits the
object in optimal parts to be painted. In fact the patch division algorithm we adopted not
always divides the patch in optimal ones. For example in cylindrical object the algorithm
will fail because for a surface section there are more triangles with the same (x, y) centroid,
but with different z. This is because continuous cylindrical object has no faces to be split
in with the method we adopt. A solution is to split this object in two halves as in Fig.6.1
and paint each half at time. Moreover the images taken from a scanner, like we have done
with the PhotoNeo, needs further preprocessing before they can be used in the algorithm to
avoid unwanted trajectories. In fact amesh taken from the scanner needs be cut and filtered
to get rid of noise introduced by the sensor and this part was not automated in our work.

Other problems could be painting zones inside a hole (e.g. the inside of a box), because
due to the limited space and the possible collisions with the object is needed an ad hoc trajec-
tory. Furthermore the borderline effects of painting process are not taken into account. In
fact when the object is resembled painting a patch could paint also some parts of its neigh-
bourhood patches causing overpainting. Regarding optimization of the trajectories, here
we consider only the paint thickness deviation, but other optimizations, such as on mate-
rial waste or path execution time, can be used and it would be possible to generate different
trajectories based on what we want to optimize.

50

Figure 6.1: Cylindrical object split in a way that could be painted

51

52

References

[1] P. Hertling, L. Hog, R. Larsen, J. W. Perram, and H. G. Petersen, “Task curve plan-
ning for painting robots. i. process modeling and calibration,” IEEE Transactions on
Robotics and Automation, vol. 12, no. 2, pp. 324–330, April 1996.

[2] J. Moura and M. S. Erden, “Formulation of a control and path planning approach
for a cab front cleaning robot,” Procedia CIRP, vol. 59, pp. 67 – 71, 2017, proceedings
of the 5th International Conference in Through-life Engineering Services Cranfield
University, 1st and 2nd November 2016.

[3] D. Nakhaeinia, R. Fareh, P. Payeur, and R. Laganière, “Trajectory planning for sur-
face following with a manipulator under rgb-d visual guidance,” in 2013 IEEE Inter-
national Symposium on Safety, Security, and Rescue Robotics (SSRR), Oct 2013, pp.
1–6.

[4] R. Chen, G. Wang, J. Zhao, J. Xu, and K. Chen, “Fringe pattern based plane-to-
plane visual servoing for robotic spray path planning,” IEEE/ASME Transactions on
Mechatronics, vol. 23, no. 3, pp. 1083–1091, June 2018.

[5] M. Li, Z. Lu, C.-f. Sha, and L. Qing Huang, “Trajectory generation of spray painting
robot using point cloud slicing,” Applied Mechanics and Materials, vol. 44, 12 2010.

[6] F. Remondino, “From point cloud to surface: The modeling and visualization prob-
lem,” International Archives of Photogrammetry, Remote Sensing and Spatial Infor-
mation Sciences, vol. 34, 03 2004.

[7] J. Lv, X. Chen, J. Huang, and H. Bao, “Semi-supervised mesh segmentation and la-
beling,” Comput. Graph. Forum, vol. 31, pp. 2241–2248, 2012.

[8] H. Zhang, C. Li, L. Gao, and G. Wang, “Hierarchical mesh segmentation based on
quadric surface fitting,” in 2015 14th International Conference on Computer-Aided
Design and Computer Graphics (CAD/Graphics), Aug 2015, pp. 33–40.

53

[9] L. Guillaume, D. Florent, and B. Atilla, “Curvature tensor based triangle mesh seg-
mentation with boundary rectification,” in Proceedings Computer Graphics Interna-
tional, 2004., June 2004, pp. 10–25.

[10] M. V. Andulkar and S. Chiddarwar, “Incremental approach for trajectory generation
of spray painting robot,” vol. 42, pp. 228–241, 05 2015.

[11] L. Fa-zhong, Z. De-an, and X. Gui-hua, “Trajectory optimization of spray painting
robot based on adapted genetic algorithm,” Proceedings of IEEE International Con-
ference on Measuring Technology and Mechatronics Automation (ICMTMA 2009),
vol. 2, pp. 907 – 910, 05 2009.

[12] H. Chen, N. Xi, and Y. Chen, “Multi-objective optimal robot path planning inman-
ufacturing,” vol. 2, pp. 1167–1172 vol.2, Oct 2003.

54

Acknowledgments

Iwould like to thank everyonewhohashelpedme in thiswork, starting fromIng. Roberto
Polesel, who has givenme the opportunity to do this thesis with its company and helpedme
in the various step of this work, and Silvia Pontarollo for helpingme fix the inevitable issues
that occur during the development of a project. I thank my professor, Dr. Ruggero Carli,
who made me passionate about these topics, in particular in robotics, during my academic
studies and helped and supportedme in this project. I also thank all the employees of Euclid
Labs S.r.l. for their willingness to help me solve any type of issue during my project and for
making it a pleasant experience in the company.

55

	Abstract
	List of figures
	Introduction
	Problem Formulation
	General Algorithms used in this work
	Mesh cleaning and refinement
	Patch segmentation
	Pattern Search Algorithm
	Adapted Genetic Algorithm for velocity computation (AGA)
	Initial Population
	Computing Fitness Function
	New Population
	Crossover
	Termination Condition

	Least Square Fitting

	Robot trajectory generator algorithm
	Requirements
	Mesh object
	Spray gun and paint distribution model
	Object alignment

	Coverage Algorithm
	Surface section generation
	Surface Section point and surface section normal generation
	Spray pattern implementation: Paint pass 1
	Paint Thickness function for Paint pass 1
	Optimal speed for paint pass
	Spray pattern implementation: Paint pass n

	Algorithm implementation and verification
	Covering surfaces Windows program
	Robot program generation
	Robot movement and point types
	Adding painted objects to the robot world
	Trajectory planning
	Robot program generation

	Real experiments
	Algorithm test with object from scanner
	Robot implementation

	Conclusion
	References
	Acknowledgments

