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1 Introduction

Galaxy morphology is a powerful tool for studying the secular processes that
act on galaxies. Section 1.1 discusses morphological classification and its
importance in the study of galaxies. Section 1.2 focuses on elliptical galaxies,
which are the object of study of this thesis, and summarizes their main
properties. Section 1.3 describes the aims of the thesis and its structure.

1.1 Morphology and evolution of galaxies

The classification of galaxies according to their morphology is older than
the concept of galaxy itself, yet it is still very relevant today in the study of
their formation and evolution. Herschel (1864) was the first to systematically
search the sky for weirdly shaped nebulae and roughly classify them accord-
ing to their size, shape, brightness, and central concentration. The study of
galactic morphology however took off with the improvements of telescopes
and photography which underwent in the late 19th century. They allowed as-
tronomers to resolve and recognize details in galactic structure such as spiral
arms, bars, and dust lanes. With this newer technology several nebulae were
found to have a spiral structure. Among them was also the Andromeda neb-
ula (M31), the spiral structure of which was discovered by Roberts (1893).
Further improvements allowed Curtis (1918) to identify a new category of
nebulae, the so-called φ-type spirals, which are known today as barred spi-
rals. Curtis argued that all nebulae were in fact spirals, and that those who
did not look like they were would have been discovered as such in the future,
with improved instrumentation. Hubble (1922) instead argued correctly that
some nebulae had indeed a non-spiral shape. At the same time was going on
what became known as the great debate between Shapley and Curtis about
whether spiral nebulae were part of the Milky Way or external objects. The
debate was ended by Hubble (1925), who through the study of cepheid vari-
able stars came to the conclusion that M31 and the other spiral nebulae were
in fact separate galaxies. Hubble (1926) also published a new classification
system to catalog all the known galaxies at the time. This new system,
known today as the Hubble sequence, distinguishes elliptical (E), spiral (S)
or barred spiral (SB) galaxies. The ellipticals are further categorized with a
number that expresses their ellipticity: E0, E1,..., En, where n ' 10 e and e
is the apparent ellipticity of the galaxy. The spirals are instead categorized
with a letter, a,b or c, according to the shape of their bulges and spiral arms:
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Sa/SBa have a pronounced bulge and tightly-wound smooth arms, while
Sc/SBc are flatter and have a fainter bulge, as well as loosely-wound spiral
arms which can be resolved in star clusters. All these categories were shown
in a continuous sequence that began with circular ellipticals (E0), went on
to flattened ellipticals (E1-E7) and then divided into two branches, one for
normal spirals and one for barred spirals (Figure 1). The only missing link in
this sequence was between the most flattened ellipticals (E7) and the most
bulgy spirals (Sa/SBa). Hubble hypothesized the existence of a galaxy type
that would fill that place in the sequence, shaped like a disk but without a
spiral structure. He designated this new type of galaxy as S0, and objects
of this type were later found to really exist. Irregular galaxies (Ir) have also
been later added, this time at the end of the spiral side, completing thus the
sequence as it is usually represented today.
The Hubble sequence has been the framework through which the morphology
of galaxies has been organized ever since, but a lot of modifications have also
been proposed to it. Sandage (1961, 1994) suggested what is now known as
the revised Hubble-Sandage system, which subdivided the S0 galaxies in dif-
ferent varieties and proposed a more complicated version of Hubble’s “tuning
fork” sequence. Morgan (1958) introduced the cD type of galaxies, giant el-
lipticals found in the center of galaxy clusters, with extremely extended light
distribution. De Vaucouleurs (1959) suggested that spiral galaxies should also
be distinguished based on the presence of lenses and rings. Van der Bergh
(1976) proposed that S0 galaxies should not be the connection between el-
lipticals and spirals, but should instead form a branch on their own, parallel
to the spiral one. Kormendy & Bender (1996) argued that the classification
of elliptical galaxies according to their apparent flatness is not physically rel-
evant. Therefore they modified the elliptical branch of the Hubble sequence
by distinguishing instead “boxy” and “disky” ellipticals based on the shape
of their isophotes.
The reason why morphology is still relevant today is that it gives us a key to
understand the formation and evolution of galaxies. Galaxies with a similar
morphology might represent two successive steps in the same galaxy evolution
pattern, or could represent two parallel and separate paths of evolution, but
in both cases morphology gives us a framework to better understand the pro-
cesses they undergo. An example of this is the so called morphology-density
relation, which is the fact that elliptical and S0 galaxies are far more com-
mon in dense galaxy clusters, while spirals and irregulars are more common
in the field, where the density of galaxies is much lower (Dressler 1980). This

6



Figure 1: The morphological sequence of galaxies proposed by Hubble.

could both indicate that elliptical galaxies tend to form in higher density en-
vironments and/or that spiral galaxies which ended up in such environments
lose their gas and spiral structure to become S0 galaxies. Similarly, different
morphological classes have been shown to relate to different stellar popula-
tions: elliptical and S0 galaxies, also known as early-type galaxies, mostly
have old stars and are very poor in gas, while spirals and irregulars, or late-
type galaxies, are rich in gas, and therefore have a lot of star forming regions
and a younger stellar population, suggesting they formed later. We also
observe a correlation with redshift, and therefore with the look-back time:
galaxies that are further away tend to be smaller, less symmetric and more
irregular, suggesting that they are still undergoing processes of evolution. In
general, studying the morphology of galaxies and its correlation with their
observable properties is extremely useful to understand their formation and
evolution. Another example of this comes from the E-E dichotomy between
boxy and disky elliptical galaxies introduced previously. Compared to disky
ellipticals boxy ellipticals are more luminous and massive, have less rotation,
more anisotropic velocity dispersion, a significantly older stellar population
and a higher presence of α elements (Mg, Si, Ca,...). α elements are mostly
produced by type II supernovae, that happen especially during rapid star
formation processes. These clues suggest that the two types of ellipticals
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have a different origin: boxy ellipticals might have formed by rapid collapse
in the center of galaxy clusters and later evolved by dry mergers with smaller
galaxies, while disky ellipticals might have originally been late-type galaxies
with a disk shape, young stars and high rotation, which got transformed
into their present form by interaction with the environment, for instance by
entering a galaxy cluster (Kormendy et al. 2008).

1.2 Elliptical galaxies

Elliptical galaxies are particularly interesting for the study of formation and
evolution of galaxies because their history reflects conditions of both early
cosmological times, when they initially formed, and recent ones, when they
underwent several mergers with smaller galaxies to reach their current shape.
They are the galaxy type which varies the most in mass, brightness, and size,
and they come in a few different subclasses (e.g., Carroll & Ostlie 1996):

• Normal elliptical galaxies (E) are generally very bright objects and have
mass between 108 and 1013 M�, absolute blue magnitude between −15
and−23, diameter between less than 1 and 200 kpc. Their mass-to-light
ratio, the ratio between the total mass of the galaxy and its luminosity,
can vary between 7 and 100 M�/L� .

• cD galaxies, the giant ellipticals found at the center of galaxy clusters,
can have mass up to 1014 M� and mass-to-light ratio up to 750 M�/L�.
They have a very bright central region and are very extended in the
outer parts, reaching up to 1 Mpc in diameter.

• Dwarf elliptical galaxies (dE) have significantly lower surface brightness
than normal ellipticals with the same absolute magnitude. They can
range in mass between 107 and 109 M� and in absolute blue magnitude
between −13 and −19. Their mass-to-light ratio is about 10 M�/L�
and their diameter is in the order of 1 kpc.

• Blue compact dwarves (BCD) are unusually blue dwarf ellipticals with
young stars and a lot of gas. Their mass-to-light ratio is remarkably
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low, as much as 0.1 M�/L�.

• Dwarf spheroidal galaxies (dSph) are the smallest and least luminous
elliptical galaxies, with absolute blue magnitudes as low as −8 and di-
ameter between 0.1 and 0.5 kpc.

1.2.1 Surface brightness

One of the most important ways to characterize an elliptical galaxy is by
describing its surface brightness, or more specifically the dependence of sur-
face brightness on the distance from the galactic center r. De Vaucouleurs
(1953) showed that the dependency on r of the surface brightness of most
giant elliptical galaxies can be well approximated by the law:

I(r) = Ie exp(−k((r/re)
1/4 − 1)) (1)

where re is the effective radius, the radius inside which lies half of the light
of the galaxy, and k is a constant. More recently it has been shown (Caon et
al. 1993) that the profile proposed by Sérsic (1963) better describes a wider
range of elliptical galaxies, including the small ones. The Sérsic profile, or
Sérsic law, resembles the de Vaucouleurs law but replaces the exponent 4
with a new parameter n, the Sérsic index, and has the following expression:

I(r) = Ie exp(−bn((r/re)
1/n − 1)) (2)

where bn is a parameter that depends on n. This equation has 3 free param-
eters, Ie, re and n, compared to the 2 free parameters of the de Vaucouleurs
law, and reduces to it when n = 4. Ellipticals with larger mass and size
are better described by the Sérsic profile with n ≥ 4, while smaller ellipticals
have Sérsic indices around 1 or 2. This means that they are less concentrated
in the center. This distinction also correlates with the one between boxy and
disky ellipticals: boxy ellipticals tend to have n > 4, whereas disky ellipticals
have n ' 3 (Kormendy et al. 2008). Fitting of the surface brightness profile
of observed galaxies with a Sérsic law is thus very common, and the obtained
parameters are used to characterize them. It is interesting how elliptical
galaxies that dramatically differ in size, luminosity, and formation history
have a surface brightness profile that can be described by the same formula,
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by varying a simple parameter. This tells us that similar processes must be
in act on all elliptical galaxies. However, the different Sérsic indices, as well
as deviations from the Sérsic law, might be even more important. They are
a powerful tool to study the formation of these galaxies.

1.2.2 Dynamics

Elliptical galaxies can also be studied through their internal dynamics. The
average line-of-sight velocity of stars V can be directly measured by spectro-
scopical analysis of absorption lines in their light. However, since in elliptical
galaxies the stars move in very different and uncorrelated orbits, it is often
more meaningful to characterize them with the velocity dispersion σ, which
is the statistical dispersion of velocities about the average in that part of
the galaxy. In elliptical galaxies usually σ >> V , especially in the case of
boxy ellipticals. This means that they are sustained by dynamical pressure,
rather than rotation, as is the case for disky ellipticals. It also means that
the flattening of some boxy elliptical galaxies can not be attributed to their
rotation. The spectroscopical analysis of starlight allows us to trace σ up to
2re. To be able to measure it further from the center it is necessary to use as
tracers planetary nebulae or globular clusters, whose orbits reach further out-
side in the halo of the galaxy. These velocity measurements of matter in the
outskirts of the galaxy allow us to deduce the strenght of the gravitational
field that moves this matter, and thus to calculate the mass which gener-
ates the field, the dynamical mass of the galaxy. Although different methods
obtain different estimates, all the measurements show that the dynamical
mass is much bigger than the observable luminous mass, having often mass
to light ratios of at least 50 (e.g., Gerhard 2006). This means that elliptical
galaxies must have very massive dark matter halos surrounding them, like all
other galaxies. These measurements also show that some elliptical galaxies
have considerable rotation in the outer parts. Several computational studies
(e.g., Barnes & Efstathiou 1987; Bullock et al. 2001) have related this high
angular momentum to their formation history, arguing that major mergers
cause these very high velocities, while mergers with minor satellites leave the
galaxy with negligible rotation speed.
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1.2.3 The fundamental plane

It has been shown that all the characteristic quantities that describe elliptical
galaxies can be related by an equation known as the fundamental plane of
elliptical galaxies (Djorgovski & Davis 1987; Dressler et al. 1987):

log re = 2 log σ − log Ie − log(Me/Le) + C (3)

where Ie and Me/Le are respectively the average surface brightness and the
mass-to-light ratio inside re and C is a constant. This equation comes directly
from a theoretical principle, the virial theorem, which in the case of elliptical
galaxies takes the form:

σ2 ∝ GMe

re

' G (Me/Le) (Iere
2)

re

. (4)

Taking the logarithm we obtain the fundamental plane equation. If the mass-
to-light ratio is assumed constant, it can be seen as the equation of a plane in
the σ, re, Ie space, hence the name of this correlation. The fact that elliptical
galaxies seem to be correctly described by it tells us that gravity is indeed the
main player in the formation and evolution of galaxy. However, deviations
from the fundamental plane have been found. For instance, it has been found
that the plane is tilted, suggesting that the mass-to-light ratio varies with
the total mass of the galaxy (Bernardi et al. 2003). These deviations can tell
us a lot about the secular evolution of elliptical galaxies and how it differs
in different ranges of mass and size, and can give us insights on the role of
secondary factors in these processes, such as gas friction and feedback of an
active galactic nucleus.

1.3 Aim and outline of the thesis

One way of studying how the observable properties of elliptical galaxies relate
to their formation history is by comparing them with theoretical models. A
lot of effort has been put into studying the dynamics of stable gravitationally
bound systems from an analytical point of view. However, complex dynamic
processes such as mergers and interaction with the environment can only be
modeled and studied through numerical simulations. Simulations are also
needed to study the structure and evolution of dark matter halos, which
otherwise can be observed only indirectly and not in detail. To carry out
simulations of these processes, we first need to be able to generate stable
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models of elliptical galaxies, and this can be done with numerical codes that
implement the aforementioned analytical studies on stable gravitational sys-
tems. One such code is the one by Smulders (1995), written as his master
thesis project. It builds stable models of elliptical galaxies that emulate the
de Vaucouleurs law. These models have two components, a luminous matter
spheroid and a dark matter halo, and the code allows the user to choose the
mass and size ratio of the two and the degree of anisotropy. The Smulders
code has been adopted in several papers, such as González-Garćıa & van
Albada (2003) and Tapia et al. (2013). However, due to the limitations of
the de Vaucouleurs law, a code to model ellipticals with any Sérsic index
was needed. This is particularly true when wanting to study the secular
processes acting on elliptical galaxies through the dependence on their Sérsic
index. The first part of the work described in this thesis consisted therefore
in writing a new code, based on the Smulders code, that generates models
of galaxies with surface brightness following the Sérsic law, and with better
accuracy and versatility than the original code.
The outline of the thesis is the following:

• Chapter 2 presents the theoretical basis for the construction of sta-
ble two-component models of elliptical galaxies and derives the main
equations used in the code.

• Chapter 3 discusses the empirical laws for fitting the surface brightness
profiles of galaxies and their deprojection into tridimensional density
profiles, presenting in detail the ones which the code is trying to recre-
ate.

• Chapter 4 explains the numerical methods used to implement all these
features in a N-body simulation.

• Chapter 5 presents the various options available in the code and analyze
the models generated from it, in particular their faithfulness to the
desired density profiles and their stability.

• Chapter 6 shows an application of the code to an actual astrophysical
problem: a simulation of the growth of two elliptical galaxies through
minor mergers, with the objective of understanding if and how the
evolution of elliptical galaxies depends on their initial Sérsic index.
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• Chapter 7 gives a summary and the conclusions of the thesis.

The work on the code and on the simulations has been carried out at the
Instituto de Astrof́ısica de Canarias in San Cristóbal de La Laguna (Tenerife,
Spain) and at the Isaac Newton Group of Telescopes (La Palma, Spain),
under the supervision of prof. Marc Balcells. A scientific paper on this work
is also expected to be completed and published in late 2014.
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2 Galactic dynamics

Over the last century the dynamics of stellar systems have been studied in
great detail (see Binney & Tremaine 1987 for an extensive review). This chap-
ter presents some of the results derived for the particular case of collisionless
systems. Section 2.1 gives a definition of collisionless stellar dynamics and
derives its fundamental equation, the collisionless Boltzmann equation. In
Section 2.2 is derived the Jeans theorem, which under certain conditions al-
lows us to describe the dynamics of a stellar system solely by its energy and
angular momentum. Finally, Section 2.3 derives the formula used in the code
for calculating the distribution function of the system from its density and
potential radial profiles.

2.1 Collisionless Boltzmann equation

A complete analytical description of a gravitational system with billions of
independent objects (like stars and/or dark matter particles) is clearly not
feasible, but many of its properties can still be understood by using an ap-
proximation. This basic assumption is that, instead of considering the inter-
actions between each star and every other, each star feels a smooth galactic
potential Φ that is related to the (smoothed) local star density ρ through the
Poisson equation:

∇Φ(x) = −4 π Gρ(x). (5)

Contributions of close two-body interactions on the motion of stars are thus
not considered. Each star interacts only with the galaxy, as if the star system
was a perfect fluid moving in the galactic potential generated by itself. This
assumption holds well when the density of stars is very low relatively to
the size of the system. This is the case of a galaxy, but might not work
as well when dealing with more compact systems such as globular clusters.
Theoretical models which follow this assumption are called collisionless.
Now that the system we are studying is defined, we need to be able to
describe it quantitatively and to derive the equation for its evolution over
time. In general, a gravitational system is completely determined by knowing
the positions and velocities of all of its stars at a given time. Therefore, a
complete description of the system is given by the distribution function or
phase-space density, f(x,v, t). This is defined as the number of stars having
position in the small volume d3x centered in x and velocity in the range d3v
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centered in v, at the time t. It satisfies f(x,v, t) ≥ 0 ∀x,v, t, and it is usually
defined to be 1: ∫

f(x,v, t) d3x d3v dt = 1. (6)

It can also be convenient to describe positions and velocities of the stars in
a single joint variable w, defined as:

w = (x,v) = (w1, w2, w3, w4, w5, w6). (7)

Newton equation assures that the future and past evolution of a system is
completely determined as soon as the system is determined at any given time
by its distribution function f(w, t). For each single particle they are:

ẇ = (ẋ, v̇) = (v,−∇Φ) (8)

but what we want is an equation for the distribution function itself. The
time evolution of the distribution function is given by the Liouville theorem,
which under very general assumptions states that:

df

dt
= 0. (9)

It can be obtained by considering the system like a fluid moving smoothly in
the 6-dimensional phase space. If in fact we consider a small 6-dimensional
volume in the phase space, the variation of its total mass is given by the
amount of mass which has escaped or entered the 6-dimensional volume:

dM

dt
= −

∫
S

f(w)ẇ d5S. (10)

From the definition of the distribution function, the first member is equal to:

dM

dt
=

d

dt

∫
f(w, t)d6w =

∫
df

dt
(w, t)d6w (11)

and by using the divergence theorem, it results that the second member is
equal to: ∫

S

f(w)ẇd5S = −
∫
V

∇w · (f(w, t)ẇ) d6w. (12)

Putting Equations (11) and (12) together we obtain a continuity equation
for the phase-space density:∫

V

∂f

∂t
(w, t) d6w +

∫
V

∇w · (f(w, t)ẇ) d6w = 0 (13)
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or equivalently:
∂f

∂t
(w, t) +∇w · (f(w, t)ẇ) = 0. (14)

In addition, the star fluid which we are describing has a very special property:

∇w · ẇ =
6∑

α=1

∂ẇα
∂wα

=
3∑
i=1

(
∂vi
∂xi

+
∂v̇i
∂vi

) = −
3∑
i=1

∂

∂vi

∂Φ

∂xi
= 0 (15)

where ∂vi
∂xi

= 0 because xi and vi are independent variables in the phase space

and ∂
∂vi
∇Φ = 0 because the potential does not depend on velocities. This

means that Equation (14) can be rewritten as:

∂f

∂t
+∇wf · ẇ = 0 (16)

which is completely equivalent to the Liouville equation (Equation (9)). In
our case we can substitute v̇ = −∇Φ, and therefore, separating positions
and velocities we obtain the collisionless Boltzmann equation:

∂f

∂t
+∇xf · v −∇vf · ∇xΦ = 0. (17)

This is the fundamental equation of collisionless stellar dynamics, and it de-
scribes the evolution over time of the distribution function of the system.
It might be noted that if collisions were included it would not be true that
∇w · ẇ = 0, and therefore the equation for the distribution function would
have an additional term. Up until now we defined f as the number of stars
per phase-space volume, but it can also be interpreted as the luminosity
density or mass density, when the stars have the same luminosity or mass.
Otherwise, a different collisionless Boltzmann equation should be used for
each type of star.
The equation also holds true in any canonical coordinate system. If in fact
we define a new coordinate system W = (W1,W2,W3,W4,W5,W6), with dif-
ferential d6W, the phase-space density F (W, t) in this system of coordinates
must be related to the old one by

F (W, t)d6W = f(w, t)d6w. (18)

It can now be shown (see Binney & Tremaine 1987, Appendix 1-D) that in
the case of canonical coordinates the 6-dimensional phase-space volume does
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not depend on the chosen set of coordinates, d6W = d6w, therefore it must
be:

F (W, t) = f(w, t). (19)

The distribution function is the same in every set of coordinates, which means
that the collisionless Boltzmann equation also holds true for any given set of
canonical coordinates.

2.2 Jeans theorem

An integral of motion is defined as a function I(x,v) of the canonical coor-
dinates which satisfies:

d

dt
I(x,v) = 0. (20)

Using the equations of motion however, this means that

0 =
dI

dt
=
∂I

∂t
+∇xI · ẋ +∇vI · v̇ =

∂I

∂t
+∇xI · v +∇vI · ∇xΦ. (21)

This means that any integral of motion, or any function of integrals of motion,
satisfies the collisionless Boltzmann equation, which is the basis of the Jeans
theorem: Any steady-state solution of the collisionless Boltzmann equation
depends on the phase-space coordinates only through integrals of motion,
and any function of integrals of motion yields a steady-state solution of the
collisionless Boltzmann equation.
What has already been shown already proves the first part of the theorem:
if f satisfies the collisionless Boltzmann equation it is also an integral of
motion. If instead f(I1, I2, ..., In) is a function of the integrals of motion
I1(x,v), ..., In(x,v), then

d

dt
f(I1, I2, ..., In) =

n∑
i=1

∂f

∂Ii

dIi
dt

= 0 (22)

because dIi/dt = 0 by definition of integral of motion. The condition df/dt =
0 is equivalent to the collisionless Boltzmann equation, therefore, we have
proven that it is satisfied by any function of integrals of motion.
However, this theorem is not enough for our purposes, what we need is the
strong Jeans theorem: The distribution function of a steady-state galaxy in
which almost all orbits are regular with incommensurable frequencies may
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be presumed to be a function of only three isolating integrals.
Any observable Q of the system must have the form:

〈Q(t)〉 =

∫
Q(x,v)f(x,v, t) d3x d3v. (23)

Since the galaxy is in steady-state this average does not depend on time, and
it is also equal to its time average:

〈Q〉 = 〈Q〉 =
1

T

∫ ∞
0

〈Q〉 dt =

∫
Q(x,v) f(x,v) d3x d3v (24)

where

f(x,v) ≡ 1

T

∫ ∞
0

f(x,v, t) dt. (25)

Since f satisfies the collisionless Boltzmann equation, df/dt = 0, we can
write:

f(x,v, t) = f(xt,vt, 0) (26)

where (xt,vt) are the positions and velocities at time t = 0 of the particles
that at time t would have been in (x,v). Now, if the orbits are regular
we can use the action-angle coordinates, (θ,J), which are canonical and do
not change the distribution function. Using the canonical equations, the
frequencies are:

wi = θ̇i =
∂H

∂Ji
(27)

which are constant, since the actions Ji are integrals of motion. We thus
have θi(t) = θi(0) + ωit and we can write:

f(x,v) =
1

T

∫ ∞
0

f(xt,vt, 0) dt =
1

T

∫ ∞
0

f(Jt, θt, 0) dt

=
1

T

∫ ∞
0

f(J, θ − ωt, 0) dt. (28)

We can now apply the time averages theorem, which states that if the frequen-
cies ω are incommensurable, the average time spent by the phase-space point
of a star (on regular orbit) in a region D is proportional to V (D) =

∫
D
d3θ

through D (see Binney & Tremaine 1987, Chapter 3.5). Because of this, we
can write the averaging over time as an averaging over angles:

f(J) =
1

(2π)3

∫
f(J, θ)d3θ (29)

19



This distribution function does not depend on the angles, but depends only
on the three actions Ji. It is equivalent to the original distribution function
of the system, because from what we have shown:

〈Q(t)〉 =

∫
Q(x,v)f(J(x,v)) d3x d3v. (30)

This means that we can adopt f as the distribution function of the system,
and since the actions can be expressed as a combination of any three isolating
integrals of motion we have proven the theorem.
The importance of the strong Jeans theorem is that it allows us to use a
distribution function that only depends on the total energy of the particles
E and on the angular momentum J. In particular, in the case of spherical
systems the distribution function can depend on the angular momentum only
through its magnitude, and therefore our distribution function will be simply
defined as f(E, J).

2.3 Deriving the distribution function from the den-
sity profile

The models of galaxies generated by this code follow specific mass density
profiles, and their potentials are easily obtained through the Poisson equa-
tion. The distribution function of the models however needs to be calculated
from these density-potential pairs, so that the galaxy remains stable. In the
following discussion it is useful to define the relative potential Ψ and the
relative energy E :

Ψ ≡ −Φ + Φ0 (31a)

E ≡ −E + Φ0 = Ψ− 1

2
v2 (31b)

where Φ0 is an arbitrary value, chosen so that the distribution function is
positive for every E ≥ 0 and 0 for every E < 0.

2.3.1 Isotropic models

If the model we want to generate is isotropic, the distribution function is
further reduced, and it depends only on the energy: f = f(E) = f(Ψ− 1

2
v2).

20



In this case, the velocity dispersion in any direction i (i = r, θ or φ) is:

vi2 =
1

ρ

∫
vi

2 f(Ψ− 1

2
(vr

2 + v2
θ + v2

φ)) dvr dvθ dvφ (32)

and we have vr2 = vθ2 = vφ2. If instead the distribution function also depends
on J we have vr2 6= vθ2 = vφ2 and the model is anisotropic.
The spatial density of stars, depends on the distribution function through:

ρ(r) =

∫
f(Ψ− 1

2
v2) d3v = 4π

∫
f(Ψ− 1

2
v2) v2 dv (33)

and changing variable to E = Ψ− 1
2
v2 we have:

ρ(r) = 4π

∫ Ψ

0

f(E)
√

2(Ψ− E) dE . (34)

Differentiating both sides with respect to Ψ and dividing by 2
√

2 π we obtain:

1

2
√

2 π

dρ

dΨ
=

∫ Ψ

0

f(E)dE√
Ψ− E

. (35)

This expression is an Abel integral1, and therefore it can be inverted to get:

f(E) =
1

2
√

2π2

d

dE

∫ E
0

dρ

dΨ

1√
Ψ− E

dΨ. (37)

Expliciting the derivative we finally obtain Eddington’s formula:

f(E) =
1

2
√

2 π2

(∫ E
0

d2ρ

dΨ2

1√
Ψ− E

dΨ +
1√
E

(
dρ

dΨ

)
Ψ=0

)
. (38)

This formula gives us the distribution function for any density-potential pair.
It is worth noting that these density and potential do not have to be related by
the Poisson equation; the formula simply calculates the distribution function

1An integral of the form f(x) =
∫ x
0

g(y)dy
(x−y)α with 0 < α < 1 is an Abel integral, and it

can be inverted to obtain:

g(y) =
sin(πα)

π

d

dx

∫ y

0

f(x)

(y − x)1−α
dx. (36)
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for particles distributed according to a given density and immersed in a given
potential. This is critical to build models with multiple components, such
as the ones built by the code, because each component has an independent
density profile but feels the same potential, the one generated by all the
components. The second term of the equation is equal to zero when the
mass of the system is limited, therefore the equation that will be used in the
code is simply:

f(E) =
1

2
√

2π2

(∫ E
0

d2ρ

dΨ2

1√
Ψ− E

dΨ

)
. (39)

This integral can be calculated analitically in the case of a simple Jaffe model
(see Section 3.1), but not if there are other components (such as the dark
matter halo). In the case of the Prugniel-Simien profile (see Section 3.4),
even with a single component model it’s not possible to obtain an analytic
solution. In all these cases, the integral has to be calculated numerically.
Section 4.3 will show how the integration is done in the code.

2.3.2 Anisotropic models

In the spherical anisotropic case the distribution function must also depend
on the angular momentum: f = f(E , J). Because of this, to get the density
ρ(r) from the distribution function we also have to integrate (non trivially)
over the angles:

ρ(r) =

∫
f(E , J) d3v =

= 2π

∫ π

0

sin(η) dη

∫ ∞
0

f

(
Ψ− v2

2
, |r v sin(η)|

)
v2 dv (40)

where η is the angle between r and v (J = |r× v| = r v sin η ).
There are now various ways of constructing an anisotropic model extending
an isotropic one, but the way used in the code is the one by Osipkov (1979)
and Merrit (1985). It consists in defining the distribution function not as a
simple function of the energy but as function of a quantity that depends on
both the energy and the angular momentum,

Q = E +
J2

2ra

= Ψ− 1

2
v2

(
1− r2

r2
a

sin2(η)

)
. (41)
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Doing the same steps as in the isotropic case, we can change the variable of
integration in Equation (40) to Q (dQ = −(1 + (r/ra)2 sin2(η))vdv), obtain-
ing:

ρ(r) = 2π

∫ π

0

sin(η)dη

∫ Ψ

0

f(Q)

√
2(Q−Ψ)

(1− ( r
ra

)2 sin2(η))
3
2

dQ. (42)

Integrating first over the angles we have:∫ π

0

sin(η)

(1− ( r
ra

)2 sin2(η))
3
2

dη =
2

1 + ( r
ra

)2
(43)

and therefore: (
1 +

r2

ra
2

)
ρ(r) = 4 π

∫ Ψ

0

f(Q)
√

2(Q−Ψ) dQ. (44)

This equation is exactly equivalent to Equation (34) if we define:

ρQ(r) =

(
1 +

r2

ra
2

)
ρ(r). (45)

By analogy with the isotropic case we can therefore conclude that:

f(Q) =
1

2
√

2 π2

(∫ Q

0

d2ρQ
dΨ2

1√
Ψ−Q

dΨ +
1√
Q

(
dρQ
dΨ

)
Ψ=0

)
. (46)

In other words, we can use the Eddington formula of the isotropic case by
substituting E with Q = E + J2/2ra and ρ with ρQ = (1 + (r/ra)2)ρ. ra is
the anisotropy radius, and its absolute value corresponds approximately to
the radius from which anisotropy effects become dominant. If ra > 0 the
model is radially anisotropic, and orbits beyond r = ra are almost radial.
If instead ra < 0 the model is tangentially anisotropic, and orbits beyond
r = −ra are almost circular. When ra → ±∞ the anisotropic model reduces
to an isotropic one.
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3 Density profiles

This chapter presents some of the empirical laws that are used to model the
radial profiles of surface brightness and mass density in observed elliptical
galaxies. Section 3.1 presents the de Vaucouleurs and Sérsic laws for the
surface brightness. Sections 3.2, 3.3, and 3.4 present the Jaffe, Hernquist
and Prugniel-Simien profiles, respectively, which are mass density profiles.
These profiles are particularly relevant in this thesis because they are the
blueprint through which the code creates models of galaxies.

3.1 De Vaucouleurs law and Sérsic law

The formulae in Section 2.3 allow us to calculate the distribution function
that makes an elliptical galaxy stable. However, they depend on the radial
profile of the density ρ(r) and of the potential Φ(r), where r is the distance
from the center. While the potential radial profile can be calculated from
the density radial profile using the Poisson equation, the latter has to be
modeled from observational data. In fact being a tridimensional quantity it
cannot be observed directly, but it can be derived from the surface-brightness
radial profile, which is proportional to its projection along the line of sight.
The surface-brightness profiles of elliptical galaxies have been studied since
the 1930s. It has been shown (de Vaucouleurs 1948, 1953) that the empirical
law, known as the de Vaucouleurs law, represents quite accurately the surface
brightness profile of a lot of large ellipticals:

log I(r) = log I(0)− C r1/4, (47)

where I(0) is the surface-brightness in the center and C a parameter which
depends on the size of the galaxy. Because of the power law which defines it,
it is sometimes referred to as the r1/4 law. Often it is defined by expliciting
the effective radius re and the effetive luminosity Ie, which are respectively
the radius inside which half of the total luminosity is found and the surface
brightness at that radius:

log
I(r)

Ie

= −k

((
r

re

)1/4

− 1

)
(48)

where k ' 3.25 according to the original paper. Burkert (1993) by investi-
gating a large sample of massive elliptical galaxies found that their surface
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brightness profile follows the de Vaucouleurs law with deviations smaller than
5% in the range 0.1 re < r < 1.5 re, but not so well elsewhere.
The de Vaucouleurs law works well for giant elliptical galaxies, but not so well
for the smaller ones. Caon et al. (1993) showed that the surface brightness
of smaller elliptical galaxies is better described by the Sérsic law. Proposed
by Sérsic (1963), this formula replaced the r1/4 power law by de Vaucouleurs
with a more general r1/n power law:

log
I(r)

Ie

= −bn

((
r

re

)1/n

− 1

)
(49)

where n is called Sérsic index and the coefficient bn depends on n and
is defined as the solution of 2γ(2n, b) = Γ(2n), so that re contains half
of the total luminosity (Γ(a) =

∫∞
0
ta−1e−tdt is the gamma function and

γ(a, x) =
∫ x

0
ta−1e−tdt is the lower incomplete gamma function). An approx-

imate solution for 0.5 < n < 10 is given by:

b ' 2n− 1/3 + 0.009876(1/n) (50)

(Prugniel & Simien 1997). Observations show that giant elliptical galaxies
have a Sérsic index n ' 4 or larger, while dwarf ellipticals and the spheroids
of spiral galaxies have a smaller value of n, up to n = 1. The Sérsic law
therefore describes a much wider range of elliptical galaxies, and for this rea-
son it has been chosen as the blueprint of the models generated by the code.
In principle it is possible to directly deproject the de Vaucouleurs law or the
Sérsic law to get a tridimensional density profile, but the result is not analyti-
cal or involves special functions (Baes & Gentile 2011). For this reason, when
doing analytical studies or numerical simulations it is more convenient to use
more simple density profiles which approximate those direct deprojections.
In the rest of this chapter I will discuss the ones used in the code.

3.2 Jaffe profile

The Jaffe profile is a model for the mass density of elliptical galaxies proposed
by Jaffe (1983). Its projection along the line of sight is close to the de
Vaucouleurs law, but unlike the direct deprojection it has the advantage of
being very simple, allowing to deduce analitically many of its properties. It
has the following expression:

ρ(r) =
ρ0

4π

(
r

r0

)−2(
1 +

r

r0

)−2

(51)
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where r0 is the half-mass radius, which is the radius inside which half of the
total mass is contained, and ρ0 is a parameter to be determined from the
desired total mass. In fact, the mass contained within radius r can easily be
obtained by integration:

M(r) =
ρ0r

3
0

4π

∫ r/r0

0

4 π z2 dz

z2(1 + z)2
= ρ0 r0

3 r

r0 + r
. (52)

In the limit r → ∞ we have that the total mass is M = M(∞) = ρ0 r0
3,

therefore ρ0 can be defined as ρ0 = M/r3
0; it can also be noted that M(r0) =

M/2.
In the Jaffe profile the half-mass radius radius r0 is related to the effective
radius re by:

re ' 0.763r0 (53)

Using the Poisson equation in spherical coordinates, the gravitational poten-
tial generated by a galaxy distributed according to the Jaffe profile is:

Ψ(r) =
GM

r0

log
(

1 +
r0

r

)
. (54)

It is also possible to analitically calculate the distribution function for an
isotropic galaxy with a single Jaffe component using Equation (38). In fact,
the density can be expressed as a function of the potential as:

ρ(Ψ) = ρ0

(
e

r0
2GM

Ψ − e−
r0

2GM
Ψ
)4

(55)

which has second derivative:

d2ρ

dΨ2
=

1

πG2Mr0

(
e

2r0
GM

Ψ − e
r0
GM

Ψ − e−
r0
GM

Ψ + e−
2r0
GM

Ψ
)
. (56)

By replacing Equation (56) in Equation (38) we obtain the distribution func-
tion for a self-gravitating Jaffe model:

f(E) =
M

2π3(G2Mr0)3/2
(F−(

√
2Ẽ)−

√
2F−(

√
Ẽ)−

√
2F+(

√
Ẽ) + F+(

√
2Ẽ))

(57)
where Ẽ = −r0E/GM and F±(x) = e∓x

2 ∫ x
0
e±x

′2
dx′ is the Dawson integral.
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3.3 Hernquist profile

The Hernquist profile has been derived by Hernquist (1989), as a variant of
the Jaffe profile which better resembles the de Vaucouleurs law at small radii:

ρ(r) =
M

2π

a

r

1

(r + a)3
(58)

where a is a scale parameter, which we will address as the Hernquist param-
eter. It is related to the half-mass radius and to the effective radius as it
follows:

r1/2 = (1 +
√

2)a ' 1.33re. (59)

The cumulative mass distribution (i.e., the mass contained inside the radius
r) is:

M(r) = M
r2

(r + a)2
. (60)

Using the Poisson equation, the gravitational potential generated by this
model has the very simple form:

Ψ(r) = − GM

r + a
. (61)

Although originally intended for describing the luminous part of elliptical
galaxies, the Hernquist profile has also been often used to describe dark
matter halos (Ciotti 1996) because of its simplicity and its mathematical
properties, for instance the fact that its integral is finite; a property that the
NFW profile (Navarro et al. 1996), which is the most widely used profile to
fit dark matter halos, does not satisfy.

3.4 Prugniel-Simien profile

This density profile, obtained Prugniel & Simien (1997), is actually a gener-
alization to the Sérsic law of an older profile which closely approximated the
deprojection of the de Vaucouleurs law (Mellier & Mathez 1987), without
being too complex to handle. It has the following expression:

ρ(r) = ρ0

(
bn
n r

re

)−p
exp

(
−bn

(
r

re

)1/n
)

(62)
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Figure 2: Plot of the Prugniel-Simien (Sérsic) mass density profile for different
values of the Sérsic index (n = 0.5, 1, 2, 4), with the same total mass (M = 1) and
effective radius (re = 1).

where n and bn are the same parameters of the Sérsic law and p is a parameter
that depends on n and has to be obtained by fitting the direct deprojection
of the Sérsic law. A good approximation (Terzić & Graham 2005) for 0.6 <
n < 10 is

p ' 1.0− 0.6097(1/n) + 0.05463(1/n)2. (63)

For simplicity we can define

x = bn
r

re

(64)

so that the Prugniel-Simien profile has the following expression:

ρ(r) = ρ0x
−p exp

(
−x1/n

)
. (65)
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Figure 3: Plot of the Jaffe (blue line), Hernquist (green line) and Prugniel-Simien
(n = 4; red line) density profiles with the same total mass (M = 1) and effective
radius (re = 1).

The parameter ρ0 is normalized so that the total mass is M :

ρ0 =
M

4π nΓ(n(3− p))

(
bn

re

)3

. (66)

In this case the relation between the effective radius re and the half-mass
radius r1/2 also depends on n:

r1/2 ' (1.356− 0.0293(1/n) + 0.0023(1/n)2)re. (67)

The cumulative mass distribution is:

M(r) = M
γ(n(3− p), x1/n)

Γ(n(3− p))
(68)
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and the potential generated by this density profile through the Poisson equa-
tion is:

Ψ(r) = 4π Gnρ0

(
bn

re

)−2

·

·
(

1

x
γ
(
n(3− p), x1/n)

)
+ Γ

(
n(2− p), (x1/n)

))
(69)

where γ(a, x) =
∫ x

0
ta−1e−tdt and Γ(a, x) =

∫∞
x
ta−1e−tdt are the lower and

upper incomplete Gamma functions, respectively.
Once projected, this density profile approximates almost perfectly the Sérsic
law for every n. The accuracy and the versatilness of the Prugniel-Simien
profile, are the reason why such a mass density profile has been chosen for
building the luminous component of the models. In Figure 2 several Prugniel-
Simien profiles with the same mass and effective radius but different values of
n are plotted, showing that profiles with higher n have a higher density in the
central and outer regions, while profiles with lower n are more concentrated
at r ∼ re. In profiles with n < 0.5 the density decreases towards the center,
giving rise to a ring-like galaxy. In the inner parts the profiles tend to follow
ρ ∝ r−p.
Figure 3 shows a comparison between the Jaffe, Hernquist and Prugniel-
Simien (with n = 4) profiles. The Prugniel-Simien profile with n = 4 closely
reproduces the de Vaucouleurs law. Relatively to it the Jaffe profile is steeper
near the center and more shallow in the outer parts, while the Hernquist
profile is more shallow in both inner and outer regions.
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4 Numerical methods used in the code

This chapter describes the numerical methods that allow the code to cre-
ate stable and accurate models with a finite number of particles. For each
particle, the code first assigns a pseudo-random position so that the overall
density follows the selected mass density profile (Section 4.1). Then it gen-
erates a pseudo-random velocity according to the distribution function f(Q)
associated with that density profile, so that the shape and properties of the
galaxy remain stable (Section 4.2). The distribution function itself needs to
be evaluated numerically. To this aim the Gauss-Chebyshev quadrature was
adopted, since it is computationally very fast without sacrificing accuracy
(Section 4.3).

4.1 Inversion method for generating positions

There are two main methods for generating random numbers according to a
given distribution (see Devroye 1986): the inversion method and the rejection
method, and they are both used in the code, for the positions and for the
velocities respectively.
The inversion method is also known as inverse transform method or Smirnov
transform. It is based on the fact that if X is a pseudo-random variable with
cumulative distribution F (x), then Y = F (X) must be a uniform distribution
between 0 and 1. Therefore, inverting this equation we obtain that if Y is a
random number between 0 and 1 then:

X = F−1(Y ) (70)

is a pseudo-random variable with cumulative distribution F (x).
In the code this is used to generate the radius r of the particles according
to the given mass density profile. We need r to be distributed according to
the distribution f(r)dr = 4πr2ρ(r)dr. If we define u = 1/r, the cumulative
distribution function associated with this variable has to be:

F (u) =
dΨ
du

(u)(
dΨ
du

)
u→∞

. (71)

This in fact is a monotone increasing function that goes from 0 to 1 and it
has derivative:

f(u) =
dF

du
(u) = C

d2Ψ

du2
(u) (72)
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where we defined C =
(
dΨ
du

)
u→∞. Changing variable from u to r it is:

f(u) du = C
∂r

∂u

∂

∂r

(
∂r

∂u

∂Ψ

∂r

)
∂u

∂r
dr = −C ∂

∂r

(
r2∂Ψ

∂r

)
dr =

= −C r2∇2Ψ dr (73)

where we used the polar expression of the Laplacian operator ∇2. Using now
the Poisson equation we obtain:

f(u) du = −4 π GC r2 ρ(r) dr = −GC f(r) dr. (74)

Therefore, by distributing u = 1/r according to the cumulative distribution
in Equation (71) we automatically distribute r according to the density pro-
file. Applying the inversion method then, the variable u has to be generated
by u = F−1(Y ), where Y is a random variable distributed between 0 and 1.
In the code the inversion is done by numerically solving for u the following
equation: (

dΨ

du
(u)

)
= Y

(
dΨ

du

)
u→∞

. (75)

Once the distance from the center is generated with this method, the angles
that complete the determination of the position of the particle are generated
purely randomly (because the models are spherically simmetric).

4.2 Rejection method for generating velocities

The inversion method is very elegant, but it requires that the distribution
function is analytical. This is not the case for the velocities of our parti-
cles. Since the distribution function is obtained by numerical integration we
have to use another method. The rejection method, also known as rejection
sampling or accept-reject method, is basically a Montecarlo method for dis-
tributing a random variable X according to a distribution f(x). It consists
in generating random values of X and then accepting or rejecting them de-
pending on the comparison between the distribution function in X and a
random value that can assume any value between 0 and the maximum of the
function. If the random value is smaller than the value of the function, then
X is accepted, otherwise it is rejected. If Y is a random number between 0
and 1, it results: {

if Y · fmax ≤ f(X) ⇒ X is accepted

if Y · fmax > f(X) ⇒ X is rejected
(76)
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. Where the distribution function f(x) is larger it is more probable for the
values of X to be accepted, and if the number of samples is large enough
then X will be distributed exactly as in f(x).
In the code the radial velocity vr and the tangential velocity vt are first
randomly generated within the available range at their distance from the
center. In fact the condition for a particle to be in a bound orbit is that its
kinetic energy is smaller than its potential energy:

0 <
vr

2 + vt
2

2
< Ψ(r). (77)

Then the code calculates the value of Q (Equation (41)) associated with these
velocities, and it applies the rejection method with the distribution function
f(Q) to decide whether to accept it or not. In principle one might pick a
value of fmax that is larger than all possible values of f(Q), at all radii, but it
is computationally more efficient to pick the smallest value that is larger than
f(Q) for any Q in the range available at that radius (Equation (77)). The
code therefore divides the range of radii into a number of bins and calculates
the value fmax for each of them. If the value of Q is not accepted a new pair
of radial and tangential velocities is generated and the process starts over,
until a value is accepted.

4.3 Gauss-Chebyshev quadrature for calculating the
distribution function

The distribution function f(Q) is calculated from the Osipkov-Merritt for-
mula (Equation (46)), but the integral in that equation has to be calculated
numerically. Since this integral has to be calculated several times for each
particle, it is important to have an integration algorithm that is not too
computationally expensive. On the other hand, the integrand is very steep
near the center, therefore the algorithm also has to be able to handle this
quasi-divergence. The integration method chosen in the code is the Gaussian
quadrature with Chebyshev polinomials (see Press et al. 1986, Chapter 4.5).

A Gaussian quadrature estimates an integral of the type
∫ b
a
W (x)f(x)dx

as a weighted sum of values of the function f :∫ b

a

W (x)f(x)dx '
N∑
j=1

wjf(xj) (78)
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Figure 4: Comparison between the distribution functions of 4 isotropic Prugniel-
Simien models with the same mass and effective radius but different Sérsic indices
(n = 0.5, 1, 2, 4). In all the models the luminous component has mass M = 0.1 and
half-mass radius r1/2 = 1, while the dark matter component has mass M = 0.5
and half-mass radius r1/2 = 5.

where the weighting function W (x), weights wj, and values xj in which the
integrand is evaluated are all related and determined by the choice of a
set of polynomials. In fact, the function W (x) is the one that makes the
polynomials orthogonal over the scalar product defined as:

〈f |g〉 ≡
∫ b

a

W (x)f(x)g(x)dx (79)
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while the values xj are the roots of the polynomial of order N , where N is the
desired number of evaluations (parameter ncheb in the code). Choosing the
Chebyshev polinomials, which are defined as Tn ≡ cos(n cos−1 x), we have

W (x) =
1√

1− x2
, xj = cos

(
π(j − 1

2
)

N

)
, wj =

π

N
. (80)

and the integration range is −1 < x < 1. However, in our case we need to
integrate from 0 to 1, therefore the values xj and the weights wj have been
changed into:

xj = cos

(
π(j − 1

2
)

2N

)
, wj =

π

2N
. (81)

Putting all together, the formula used to calculate the integral is:∫ 1

0

f(x)√
1− x2

dx ' π

2N

N∑
j=1

f(xj). (82)

To put Equation (46) in this format we change the integration variable to
u = 1/r, which yields dΨ = dΨ

du
du:

f(Q) =
1

2
√

2π2

∫ Ψ−1(Q)

0

d2ρQ
dΨ2

(u)
dΨ

du
(u)

1√
Ψ(u)−Q

du. (83)

Changing again variable to z = u/Ψ−1(Q) we then obtain:

f(Q) =
Ψ−1(Q)

2
√

2π2

∫ 1

0

d2ρQ
dΨ2

dΨ

du
(zΨ−1(Q))

√
1− z2

Ψ(zΨ−1(Q))−Q
dz√

1− z2
(84)

It is now possible to apply the Gauss-Chebyshev integration formula (Equa-
tion (82)), to get the formula used in the code:

f(Q) =
Ψ−1(Q)

4
√

2Nπ

N∑
j=1

d2ρQ
dΨ2

dΨ

du
(zjΨ

−1(Q))

√
1− zj2

Ψ(zjΨ−1(Q))−Q
(85)

where zj is the xj given by Equation (81). The second derivative of ρQ as a
function of u can be calculated from its definition (Equation (45)) obtaining:

d2ρQ
dΨ2

(u) =
1

Ψ′3
[(1− 1

(rau)2
)(ρ′′Ψ′ − ρ′Ψ′′)−

− 1

ra
2u3

(2ρΨ′′ − 4 ρ′Ψ′ +
6 ρΨ′

u
)] (86)
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Figure 5: Distribution functions of different two-component models calculated
with the Osipkov-Merritt formula and applying the Gauss-Chebyshev method for
the integration. In both models the luminous component follows the Prugniel-
Simien profile with Sérsic index n = 4, mass M = 0.1 and half-mass radius r1/2 =
1, while the dark matter component has mass M = 0.5 and half-mass radius r1/2 =
5. In the anisotropic case (red line) the anisotropy radius is set to ra = 1 = r1/2.

where ′ identifies the derivative with respect to u. In the isotropic case it
reduces to:

d2ρ

dΨ2
(u) =

ρ′′Ψ′ − ρ′Ψ′′

Ψ′3
. (87)

The distribution functions of several Sérsic models with different Sérsic in-
dices is shown in Figure 4, showing that larger indices and thus larger ce-
tral densities make the distributions reach larger energies. Figure 5 shows
the comparison between the distribution functions of an isotropic and an
anisotropic model.
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5 Features of the code and properties of the

generated models

In this chapter the features and input parameters of the code are presented
(Section 5.1), and the models generated with it are analyzed. In Section 5.2
is discussed the accuracy of the generated models and in Section 5.3 their
stability over time.

5.1 Usage of the code

As already stated, the code generates stable anisotropic models of spherical
galaxies with two components: a dark matter component with mass density
following the Hernquist profile and a luminous matter component with mass
density following either the Jaffe or the Prugniel-Simien profile, with Sérsic
index chosen by the user. The user can also select the size and mass of both
the luminous and dark components, the anisotropy radius and the number
of particles. All these options can be selected in the num.par file, and are
listed in Table 1.
The models are generated in the .xvp format, a direct access binary format
for N-body data developed by Marc Balcells2, which for each particle contains
position, velocity, mass, and gravitational potential in its location, and it al-
lows to group the particles in different groups. Simple software is available
to convert .xvp files into the .ggd format used for instance in the N-body
software Gadget 2 (Springel 2005). The .ggd format contains the same in-
formation of the .xvp format except the gravitational potential. Moreover,
it distinguishes its groups of particles in different types (disk, bulge, gas,...)
that can be treated differently by Gadget 2.

5.2 Accuracy and properties of the models

In this section we will take a look at how well the models satisfy the properties
selected by the user. The units used in all the figures are the internal units
of the model with G = 1, which can easily be converted to any desired set
of units, as long as G = 1 remains satisfied (for instance one might choose

2Additional information on the .xvp format can be found at http://bima.astro.umd.
edu/nemo/man_html/xvp.5.html
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Parameter Description

denstype Type of (luminous) mass density profile:

0 = Prugniel-Simien, 1 = Jaffe
nsersic Sérsic index of the luminous component

(ignored if denstype=1)
gravc Gravitational constant, G

mhalo Mass of the dark (Hernquist) component

rhalo Half-mass radius of the dark (Hernquist) component

mbulge Mass of the luminous (Prugniel-Simien/Jaffe) component

rbulge Half-mass radius of the luminous (Prugniel-Simien/Jaffe)

component
ra1, ra2 Anisotropy radius of the luminous and dark components

(use high values for isotropic model)
umin 1/(Maximum radius of the model)

umax 1/(Minimum radius of the model)

ncheb Number of terms in Gauss-Chebyshev integration formula

eps Arbitrary small number to set the accuracy of the code

nn Number of particles of the luminous component

np Total number of particles (of both components)

iseed Seed for the random number generator

nbins Number of bins for estimating the maximum value of the PDF

Table 1: Description of the parameters in the num.par file.

[L]=0.8 kpc, [M]=1012M�, [T]=0.34 Myr, [V] = 2318.14kms−1). Figure 6
shows the mass density and velocity dispersion profiles of a model generated
by a specific set of parameters. The mass density profile of both the luminous
and dark components are compared with the analytical mass density profiles
following Prugniel-Simien and Hernquist laws. The match is very good.
The surface-brightness of the model is also very similar to the analytical
prediction. Figure 7 shows the surface brightness of the model fitted with
a Sérsic law with the Sérsic index, effective radius and central brightness as
free parameters, and the residuals of the fit. The parameters obtained by
the fit are close to the input ones. We found n = 4.20 instead of n = 4.13,
and re = 1.332 instead of re = 1.330(= 0.784 r1/2). The χ2 value of the fit is
67.73, giving a reduced χν

2 = 1.69. With smaller Sérsic indices the data is
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Figure 6: Example of density and velocity dispersion profiles of a model gen-
erated by the code. The upper plot shows the mass density profile of both the
luminous and dark components of the galaxy, comparing them with the Prugniel-
Simien and Hernquist density profiles of the same mass, effective radius and
Sérsic index. The lower plot shows the radial and tangential velocity disper-
sions of the luminous component. The adopted model is isotropic and has pa-
rameters nsersic=4.13, mhalo=0.52, rhalo=11.4, mbulge=0.052, rbulge=1.696,
nn=50000, and np=250000 (see Table 1).
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Figure 7: Fit with a Sérsic law of the surface-brightness radial profile of a model
generated by the code. The model is isotropic and was generated with input pa-
rameters nsersic=4.13, mhalo=0.52, rhalo=11.4, mbulge=0.052, rbulge=1.696,
nn=50000 and np=250000. The result of the fit is nfit ' 4.2, with χ2

ν = 1.69.

closer to the Sérsic law, getting to χν
2 = 0.46 in the models with n = 1. The

complete data set is given in Table 4.

5.2.1 Shape of the line-of-sight velocity dispersion

The shape of the line-of-sight velocity dispersion σlos of the models is de-
termined by several properties of the galaxy, which can be modified in the
num.par file. Figures 8 and 9 show how the mass and size (half-mass radius)
of the dark matter halo influence the velocity dispersion of the luminous
component respectively. A more massive halo makes the velocity dispersion
higher around the half-mass radius, while a smaller halo in size increases
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Figure 8: Comparison of the velocity dispersion of models in which the dark
matter halo has different masses. In all the models the half-mass radius of the
dark halo is r1/2,halo = 5, while the luminous component is isotropic and has mass
Mlum = 1, half-mass radius r1/2,lum = 1 and Sérsic index n = 4.

the velocity dispersion near the center. The velocity dispersion also depends
on the anisotropy of the models, and Figure 10 compares a purely isotropic
model with a model in which the anisotropy radius of the luminous compo-
nent is ra = 1.

5.3 Stability of the models

The models are generated with velocities assigned by the code so that the
whole system remains stable, meaning that its macroscopic properties (e.g.,
the effective radius and Sérsic index) remain constant over time. Here we
will take a look at how well these properties are conserved by simulating the

43



Figure 9: Comparison of the velocity dispersion of models in which the dark
matter halo has different sizes. In all the models the mass of the dark halo is
Mhalo = 10, while the luminous component is isotropic and has mass Mlum = 1,
half-mass radius r1/2,lum = 1 and Sérsic index n = 4.

time evolution of the models in an isolated state. The time evolution has
been carried out by the software Gadget 2 (Springel 2005) after converting
the models to the .ggd format.

5.3.1 Size

Table 2 compares the half-mass radius of the luminous matter selected in
the num.par file with the one of the actual model generated by the code
at time 0 and after the model has been relaxed (evolved in isolation). A
few different cases are taken into account. In each case the galaxy has the
same mass, size, and number of particles (mbulge=0.052, rbulge=1.696,
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Figure 10: Comparison of the velocity dispersion of an isotropic and an anisotropic
model, with anisotropy radius ra = 1. In both models the luminous component
has mass Mlum = 1, half-mass radius r1/2,lum = 1 and Sérsic index n = 4, while
the dark component has mass Mhalo = 10 and half-mass radius r1/2,halo = 5.

mhalo=0.52,rhalo=11.4, nn=50000 and np=250000) but different Sérsic in-
dex.
We can have a better look at the stability of the models by plotting the radii

containing 1%, 2%, ..., 90% of the mass of the galaxy as a function of time.
This is shown in Figure 11 for a model with n = 4. The figure shows that
the models are mostly stable, and the half-mass radius is almost perfectly
conserved. In the graph time is expressed in units of crossing time. The
crossing time is a characteristic timescale of the evolution of a gravitational
system and is defined as:

tcross =

√
r1/2

3

GM
. (88)
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Input value Value at time 0 Value after relaxation Sersic Index
r1/2,input r1/2(0) r1/2(trel) n

1.70 1.55 1.57 4
1.70 1.72 1.64 2
1.70 1.71 1.62 1

Table 2: Half-mass radius of the luminous matter component.

Input value Value at time 0 Value after relaxation Maximum radius
r1/2,input r1/2(0) r1/2(trel) rmax (= 1/umin)

11.4 10.9 10.6 500
11.4 9.7 9.0 100
22.94 17.2 14.6 100

Table 3: Half mass radius of the dark matter component.

In the n = 4 case the radius including 1% of the mass expands of about
25%, but this is most likely due to the limited resolution of the time evo-
lution software, and not to how the velocities are assigned by the code. In
fact the total energy of the system varies of a factor 0.1% during the time
evolution, whereas in the n = 1 case this problem does not arise and the
total energy varies of 0.05%. This problem also does not affect the dark
matter component, whose central part is perfectly stable as shown in Figure
12. It might instead be noted that the half-mass radius tends to shrink a
little over time, and that the initial value is also smaller than the input one.
This happens because the maximum radius allowed for the particles (deter-
mined by parameter umin) is relatively too small (umin too big), forcing the
particles that would have been beyond the maximum radius to stay inside
it and thus making the galaxy more concentrated and the half-mass radius
smaller. This also makes the gravity stronger than it would be, causing the
further contraction when the model evolves. Table 3 compares the shrinking
of the half-mass radius for three models, showing that it depends on the size
and maximum radius of the dark matter halo.
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Figure 11: Time evolution of the radii including 1, 2, ..., 90% of the mass of
the luminous component of an isotropic model with n = 4, mass Mlum = 0.052
and half-mass radius r1/2,lum = 1.696 (input value). The time is given in units of
crossing time.

5.3.2 Surface brightness and velocity dispersion

As shown in Figure 7, the surface brightness of the models is in good agree-
ment with the Sérsic law when they are first generated. After relaxation the
models seem to deviate from the Sérsic law in the inner region as we see in
Figure 13, in which the same galaxy of Figure 7 has been fitted after some
time evolution (about 150 crossing times). The best fit value of the Sérsic
index of the surface brightness profile is n = 3.93, with χ2 = 282.44, which
gives χ2

ν = 7.06. Looking at the fit, it appears that this deviation is related
with the expansion of the very center of the galaxy as previously observed;
some particles in the center escape to the outer parts changing the shape of
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Figure 12: Plot of the time evolution of the radii inside which lies 1, 2 , ..., 90%
of the mass of the dark component of an isotropic model. The dark halo has mass
Mdark = 0.52 and half-mass radius r1/2,dark = 11.4 (input values). The cutoff of
the model after at radius rcut = 500. Time is given in units of crossing times (of
the luminous matter).

the surface brightness profile. In fact, this effect is also much more prominent
when the Sérsic index is larger. Table 4 shows the evolution of the Sérsic
index in different cases.
The velocity dispersion profile is also conserved over time. Figure 14 shows

the radial and tangential velocity dispersion of the same model of Figure 6,
before and after relaxation. The velocity dispersions seem to get lower near
the center and higher at middle ranges, which is probably related to the small
expansion of the center of the galaxy caused by the evolution. The radial
and tangential velocity dispersions changed in the same way, therefore the
isotropy is preserved during relaxation.

48



Figure 13: Sérsic law fitting of the surface brightness radial profile of a n = 4
model at the relaxation time. The model is the same of Figure 7, but after letting
it evolve in isolation for ∼ 100 dynamical times. The result of the fit is n = 3.93
with χ2

ν = 7.06. The input value of the Sérsic index is n = 4.13, and the fitted
value before relaxation n = 4.20.

Input value Value at time 0 Value after relaxation
ninput n(0) χ2

ν(0) n(trel) χ2
ν(trel)

4.13 4.20 1.69 3.93 7.06
2.06 2.13 1.36 2.05 1.21
1.02 1.06 0.46 1.06 0.69

Table 4: Evolution of the Sérsic index.
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Figure 14: Radial and tangential velocity dispersion of an isotropic model with
Sérsic index n = 4 before and after relaxation.
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6 Galaxy growth through minor mergers

In this chapter an application of the code and its models is discussed. Sec-
tion 6.1 presents the physical problem and the research already done on the
subject, while Section 6.2 discusses the characteristics of the models and of
the simulations used in the experiment. In Section 6.3 the results are shown
and discussed.

6.1 Introduction

In the last years various observations have shown that the most massive el-
liptical galaxies at redshift z ∼ 1.5− 2.5 were much more compact than the
ones of today (Daddi et al. 2005; Trujillo et al. 2006, 2007; van Dokkum et
al. 2008; Buitrago et al. 2008). These galaxies had a mass of M ∼ 1012M�
with an effective radius of re ∼ 1 kpc, while today’s galaxies of that mass
have an effective radius in the order of 5 kpc. This means that the overall
density of high redshift ellipticals was more than 50 times higher. Various
explanations have been proposed to dismiss these observations as an obser-
vational error, such as a strong morphological K-correction or the presence of
an active galactic nucleus (Daddi et al. 2005), but later observations (Trujillo
et al. 2006) disproved these alternative explanations, and the existence of
these compact galaxies is now well enstablished. It has also been shown that
galaxies of this type do not exist in the local universe (Bernardi et al. 2006;
Trujillo et al. 2009; Ferré-Mateu et al. 2012). This suggests that between
z = 2.5 and z = 0 these compact ellipticals have probably evolved into the
giant elliptical galaxies we see today, which is an evidence against the sce-
nario in which early-type elliptical galaxies would have been fully assembled
since z > 1.
The mechanism which caused this growth in size is not clear, but recently
there has been a growing support for the hypothesis that the size growth
of galaxies is dominated by major or minor dry mergers, in both low and
high redshifts (van Dokkum et al. 2010; Trujillo et al. 2011; Cooper et al.
2012). Dry mergers are mergers in which the content of gas of the interacting
galaxies is negligible in the dynamics of the merger itself. This hypothesis
is however still controversial, as other studies have argued that a pure dry
merger scenario is not completely consistent with the observations and that
additional physical processes are needed especially at high redshift (Nipoti
et al. 2009; Cimatti et al. 2012; Newman et al. 2012).
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Because of this controversy it is interesting to understand whether dry merg-
ers can make the compact ellipticals grow into the elliptical galaxies of the
local universe. Tapia et al. (2013) tested this hypothesis by simulating var-
ious merger trees (series of successive mergers). They considered 8 merger
trees that took place in the cosmological simulation between z = 2.5 and
z = 0 and identified the initial masses of the merging galaxies at z = 2.5
and their initial separation, in order to resimulate the mergers at a higher
resolution. Their new simulations were done using the software Gadget 2
(Springel 2005) with galaxy models generated by the Smulders code (Smul-
ders 1995). The resulting galaxies originated from the merger trees showed
significant growth in mass (∼ 2.2×) and especially in size (∼ 4.4×) with
respect to their compact progenitor. These results are consistent with the
observed growth from z = 2.5 to z = 0. Fitting their data Tapia et al. (2013)
obtained an equation that relates size and mass growth of elliptical galaxies:

re,f

re,i

= (1.11± 0.01)

(
M?,f

M?,i

)(1.68±0.12)

. (89)

This shows that the mergers with smaller satellites are the most efficient in
increasing the size of the main galaxy. They also found that the velocity
dispersion of the final galaxies was slightly higher than the progenitors (∼
1.1×). Other studies (Naab et al. 2009; Oser et al. 2012) found instead
that there should be a decrease in the velocity dispersion of about 20%, but
Tapia et al. (2013) argued that these different behaviors simply depend on
the particular spatial configuration of the mergers used in each simulation.
In this chapter a re-simulation of some of the merger experiments of Tapia
et al. with models generated by the new code is discussed. The Sérsic index
of the progenitor galaxy is varied to investigate its influence on the process
of size growth induced by dry mergers. This is an effect that has not been
studied before. Two of their merger trees (MT7 and MT3 in their paper) are
taken and re-simulated them three times each using three different values of
the Sérsic index (n = 1, 2, 4), and their response to the mergers and evolution
over time are compared.
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6.2 Properties of the mergers

6.2.1 Properties of the initial galaxies

Following the recipe of Tapia et al. (2013), the mass of the galaxies and
the spatial configuration of the mergers have been obtained identifying two
merger trees in the GALFOBS project (Galaxy Formation at Different Epochs
and in Different Environments: Comparison with Observational Data), a
series of N-body+SPH cosmological simulations with 227 luminous matter
particles and 227 dark matter particles. The two merger trees will be iden-
tified as A and B, and correspond to the merger trees 7 and 3 of Tapia et
al. (2013), respectively. The size of the progenitor galaxies was chosen to
emulate the observed compact elliptical galaxies. The size of the satellites
was instead taken from the empirical law by Shen et al. (2003), which gives
us the effective radius of elliptical galaxies as a function of mass:

re

kpc
= 1.15

(
M?

1010M�

)0.56

. (90)

This formula was obtained by fitting data of early-type elliptical galaxies in
the Sloan Digital Sky Survey. However, it was derived from data of the local
universe, therefore it needs to be rescaled taking into account the evolution
with redshift. To this purpose, we use the relation by Trujillo et al. (2006):

re(z) = re (1 + z)−0.45±0.10. (91)

The satellites have been generated with a Sérsic index of n = 2, which is a
realistic value for small galaxies in clusters.
All these properties are shown in Table 5 and Table 6.

6.2.2 Size of the dark halos

All the galaxies used in these simulations have a dark matter halo which
follows the Hernquist profile, with mass 10 times the mass of the luminous
component of the galaxy.
To choose the size of the halo have been considered several studies that
evaluate the relation between the concentration c of a dark matter halo and its
mass and redshift (see Coe 2010 for a review). The concentration parameter
is defined as c200 = r200/rNFW, where rNFW is the characteristic radius of the
NFW profile (Navarro et al. 1996) which best fits the halo and r200 is the
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ID M? (1011M�) re (kpc) n
(1) (2) (3) (4)

Progenitor A 1.68 1.020 1,2,4
Satellite A1 0.480 1.860 2
Satellite A2 0.166 1.094 2
Satellite A3 1.661 5.189 2
Progenitor B 0.520 0.960 1,2,4
Satellite B1 0.371 1.928 2
Satellite B2 0.162 1.263 2
Satellite B3 0.527 2.625 2

Table 5: Input parameters of the initial galaxies - Col. (2): stellar mass of the
galaxy. Col. (3): the effective radius, Col. (4): Sérsic index.

radius at which the average density inside it is 200 times the critical density
ρc of the universe (i.e., the virial radius):

r200 =

(
M

4/3 π 200 ρc

)1/3

. (92)

This allows to convert an equation for the concentration into an equation
for a size parameter of the halo, rNFW. Most of the published c = c(M, z)
relations are in the format c = (A/(1 + z)B)MC (e.g., Bullock et al. 2001).
For the models in these simulations it was used the one by Duffy et al. (2008),
obtained through a cosmological simulation, which is the most recent in this
format:

c200 =
6.71

(1 + z)0.44

(
Mhalo

2 · 1012 h−1 M�

)−0.091

. (93)

More recent papers (e.g., Prada et al. 2012) propose a much more compli-
cated model to determine the concentration of the halos, but in the range of
mass covered by the galaxies in these simulations the results are very simi-
lar. The value of the critical density is a function of redshift, and has been
calculated for a standard Λ-CDM cosmology with H0 = 70.4 km s−1 Mpc−1,
Ωd = 0.728, Ωm = 0.272, Ωrad ' 0, and Ω = 1 (Jarosik et al. 2011):

ρc =
3H2

0

8πG
· (Ωd + Ωm a

−3 + Ωrad a
−4 + (Ω− 1) a−2), (94)
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ID Mass ratio Rin (kpc) φ (deg) θ (deg) vR (km s−1) vT (km s−1)
(1) (2) (3) (4) (5) (6) (7)

Merger Tree A
A1 3.5 44.93 0 0 -322.45 163.43
A2 13.0 33.92 56 45 -361.40 177.11
A3 1.4 57.60 59 156 -204.46 179.66

Merger Tree B
B1 1.4 59.90 0 0 -261.49 156.71
B2 5.5 28.29 45.31 25 -265.20 170.85
B3 2.0 34.43 55.04 128 -226.48 207.24

Table 6: Configuration of the mergers - Col. (1): identifier of the merger. Col.
(2): mass ratio of the satellite with respect to the main galaxy (the remnant of the
previous merger). Col. (3): initial separation between the two galaxies. Cols. (4)
and (5): angles that define the position of the satellite. Cols. (6) and (7): radial
and tangential velocities of the orbit of the satellite.

where a = 1/(1 + z) is the scale parameter of the universe. The Hernquist
model with the same mass inside its half-mass radius as the NFW model up
to that same radius was adopted to obtain the Hernquist parameter from
corresponding to rNFW. It is:

ah =

(
1√
k
− 1

)
rNFW, (95)

where

k =
log 2− 1

2

log(1 + c200)− c200
c200+1

.

Putting all these equations together we obtain a relation between the Hern-
quist parameter of a halo and its mass and redshift, which is what has been
used to generate the models.
It is worth noting that the size of the dark halos used in these simulations
depends only on their mass and redshift, not on the size of the luminous
component. This means that the compact primary galaxies have a very large
dark matter halo relatively to their size. This is realistic if we imagine that
these galaxies have shrunk to their current size by gas friction, which does
not affect the halo. For comparison, in the simulations of Tapia et. al (2013)
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all the galaxies had a dark matter halo about 5 times larger in size than the
luminous component.

6.2.3 Computational details

The models used to represent the galaxies are all two-components isotropic
models, with a Prugniel-Simien luminous component and a Hernquist dark
matter halo.
The number of particles of each galaxy has been selected so that in each
merger tree they all have the same mass per particle: 3.35 ·106 M� in Merger
Tree A and 1.04 · 106 M� in Merger Tree B for luminous matter, and twice
as much for dark matter (2.08 · 106 M� and 6.70 · 106 M�, respectively).
This way the progenitor galaxies have 50000 luminous particles and the satel-
lites have an amount of particles scaled according to their mass. The total
number of particles in each Merger Tree is about 750000, of which about
200000 of luminous matter.
The unit conversion between the internal units of the simulations and the
physical units shown in the paper is the following: [L]=0.8 kpc, [M]=1012 M�,
[T]=0.34 Myr, [V] = 2318.14 km s−1.
All the models have been left evolving in isolation before the mergers, to
make sure that they are stable. The input parameters of the code have been
tweaked so that the resulting galaxies have the properties shown in Table 5
after relaxation.
All the simulations, including the relaxation of the initial models, were car-
ried out with the code Gadget 2 (Springel 2005), setting a softening length of
16 pc for the luminous matter and 32 pc for the dark matter. The softening
length for dark matter is twice as big to compensate for the bigger particle
mass. Each of the simulated merger events has been carried out indipen-
dently, waiting for the galaxies to be fully merged before beginning the next
merger; almost all of the mergers were over after 6000 internal time units
(about 2 Gyr).

6.2.4 Measuring methods

All the measurements of effective radius, mass and integrated line-of-sight
velocity dispersion are averages of 30 random projections of the system onto
different planes. For each of these projections the mass has been obtained
by counting the number of particles in concentric rings out to where the
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Figure 15: Snapshots of the second merger of Merger Tree B. From left to right
and top to bottom the snapshots were taken respectively at time: 0 Myr, 34 Myr,
68 Myr, 102 Myr, 170 Myr, 238 Myr, 340 Myr, 510 Myr and 680 Myr from the
beginning of the merger. Each plot has a size of 160× 160 kpc2.

galaxy is 6 magnitudes less bright than the center. The effective radius
is the radius inside which lies half of this truncated mass. The velocity
dispersion is the average velocity dispersion inside this effective radius. The 6
magnitudes criterium was adopted to mimic the fact that in real observations
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the outermost parts of the galaxy are too faint to be detected, and to exclude
tidal structures resulting from mergers. The fits of the surface brightness
profiles with a Sérsic law are non-weighted fits in the range 0.08 to 80 kpc,
carried out with a routine written on purpose which uses the Levenberg-
Marquardt method for non-linear regression (see Press et al. 1986, Chapter
15.5).
After each phase of the merger trees the particles which escaped more than
80 kpc from the center were cut out of the next simulation, because they
would not have had any influence in the next simulation and would have just
slowed it down.

6.3 Results

Each merger tree is composed of 3 successive mergers. Each of them starts
with the infalling satellite at a distance of 30 to 60 kpc from the main galaxy,
which is at least ∼ 10 times its effective radius. The satellite is thus mostly
outside the luminous matter distribution of the main galaxy, but still inside
its dark matter halo. Figure 15 shows an example of how the mergers unfold,
relative to the second merger of Merger Tree B. The merger is seen from above
the orbital plane of the two galaxies. The first passage through the pericenter
occurs between frames 3 and 4, about ∼ 75 Myr from the beginning of the
merger. During this passage the satellite begins to get disrupted by the
gravitational field of the main galaxy, and material from the external parts
of the main galaxy gains energy and goes into new, wider orbits, making the
overall effective radius bigger. The nuclei of the two galaxies are merged after
∼ 250 Myr (Fig. 15, frame 6), and it takes 400 more Myr for the galactic
matter to settle on a circularly-symmetric distribution (Fig. 15, frame 9).
Table 7 shows the physical properties of the main galaxy during the various
stages of the mergers and for each merger tree. The data obtained in Tapia et
al. (2013) for the corresponding merger trees is also shown for comparison. In
each case the surface-brightness radial profile is fitted with a Sérsic law, and
the resulting Sérsic index is shown in the table. The χν

2 value of the Sérsic
law fit is also indicated as a measure of how well the data is represented by
this law. Despite the large deviations from it, the Sérsic law is always adopted
to fit the models because observations show that the surface brightness of
elliptical galaxies follows it. Comparing the surface brightness of the models
with the Sérsic law is thus a way of comparing these simulations to the
observations of real galaxies.
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MT ID M? (1011M�) re (kpc) n χν
2 σe (km s−1)

(1) (2) (3) (4) (5) (6) (7)

A, n = 1

0 1.656 1.020 1.06 1.23 309.23
1 1.881 1.219 3.93 194.46 308.11
2 2.002 1.495 3.59 164.55 308.87
3 3.818 4.780 3.30 101.58 282.19

A, n = 2

0 1.633 1.020 1.94 1.87 313.00
1 1.948 1.319 4.39 82.30 308.00
2 2.054 1.562 4.35 81.16 303.07
3 3.833 5.032 4.22 84.97 283.75

A, n = 4

0 1.583 1.020 4.09 2.88 330.12
1 1.982 1.520 5.44 20.27 314.40
2 2.109 1.787 6.02 14.24 311.89
3 3.846 5.442 6.34 124.85 283.21

B, n = 1

0 0.512 0.960 0.99 1.70 179.90
1 0.778 1.556 3.60 147.14 184.12
2 0.927 2.093 3.68 136.24 181.13
3 1.470 3.978 3.28 96.89 180.78

B, n = 2

0 0.507 0.960 1.94 2.09 181.48
1 0.812 1.803 4.13 57.94 182.26
2 0.944 2.380 4.29 61.86 179.74
3 1.468 4.097 4.04 48.07 180.82

B, n = 4

0 0.487 0.960 3.88 1.06 191.00
1 0.823 2.272 6.80 6.40 186.18
2 0.958 3.027 7.82 9.56 181.81
3 1.475 4.619 7.16 38.29 181.73

Tapia 0 1.48 1.02 ... ... 414.48
A 3 3.63 5.75 ... ... 412.40

Tapia 0 0.45 0.96 ... ... 231.35
B 3 1.46 6.74 ... ... 275.86

Table 7: Physical properties of the main galaxy after each stage of each merger
tree. Col. (1): identifier of the merger tree. Col. (2): stage of the main galaxy
(0=progenitor galaxy, 1=remnant of the first merger, 2=remnant of the second
merger, 3=final remnant). Cols. (3), (4), (5), (6), and (7): stellar mass, effec-
tive radius, Sérsic index, reduced χν

2 of the Sérsic law fit, and average velocity
dispersion within the effective radius, respectively.
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• Size growth: The effective radius gets bigger as expected, and the
ratio of the increase is compatible with the one between local and com-
pact elliptical galaxies at z ∼ 2. However, it is somewhat smaller than
what Tapia et al. (2013) found, possibly because of the relative insta-
bility of the models generated from the Smulders code. Figures 16 and
17 show the radial profile of surface mass density (which assuming a
constant mass-to-light ratio is proportional to surface brightness) and
of velocity dispersion of the final galaxy of each Merger Tree. The pro-
file of the final galaxy is compared with the profiles of the progenitor
and satellite components, as well as with the profile of the progenitor
before the mergers. The figures show that the matter from the satellites
dominates in the outer parts of the final galaxy, despite being several
orders of magnitudes less dense than the core, and that the core of
the progenitor is mostly unaffected. This suggests that the size growth
is mostly determined by the accretion of matter from the satellites in
the outer parts of the primary galaxy. However, there is definitely a
weak dependence on the Sérsic index of the progenitor galaxy. One
might think this is because as the satellites plunge into the progenitor
they get disrupted when the density of the progenitor becomes greater
than their own, depositing their matter at that distance. This distance
would thus depend on the density of the progenitor, and therefore its
Sérsic index. However, this is not the case for these simulations. The
satellites do not reach the core. In fact inside r ∼ 0.1 kpc there are no
particles from the satellites, and their density drops to 0. They deposit
their matter at the same distance from the center and with the same
distribution, regardless of the Sérsic index of the primary galaxy. This
can be seen in Figure 18, which for each satellite of Merger Tree A com-
pares the the surface mass density in the three cases with n = 1, 2, 4.
Most likely this distance is related to the orbital angular momentum
of the satellites, which keeps them from falling in the center where
the different Sérsic index would have made a difference. The observed
difference in effective radius is instead due to the outer parts of the
progenitor, which gain energy from the merger and move to higher or-
bits. The Sérsic profiles with higher n are denser in the outskirts, and
therefore undergo a bigger expansion. This can be seen in Figures 16
and 17 by comparing the distribution of matter of the progenitor before
and after the mergers. The center of the progenitor also undergoes an
expansion, but this is probably related to the time evolution software.

60



F
ig

u
re

16
:

U
p

p
er

p
an

el
s:

S
u

rf
ac

e
m

a
ss

d
en

si
ty

p
ro

fi
le

of
th

e
fi

n
al

ga
la

x
y

of
M

er
ge

r
T

re
e

A
in

th
e

th
re

e
ca

se
s

(n
=

1,
2,

4)
co

m
p

ar
ed

to
th

e
co

n
tr

ib
u

ti
o
n

s
fr

om
th

e
p

ro
ge

n
it

or
an

d
ea

ch
sa

te
ll
it

e.
T

h
e

su
rf

ac
e

b
ri

gh
tn

es
s

of
th

e
o
ri

gi
n

al
p

ro
g
en

it
or

(b
ef

or
e

th
e

m
er

g
er

s)
is

a
ls

o
sh

ow
n

fo
r

co
m

p
ar

is
on

.
L

ow
er

p
an

el
s:

li
n

e
of

si
gh

t
ve

lo
ci

ty
d

is
p

er
si

on
p

ro
fi

le
fo

r
th

e
fi

n
al

g
al

ax
y

an
d

it
s

se
p

a
ra

te
d

co
m

p
on

en
ts

.

61



F
ig

u
re

17
:

A
s

in
F

ig
u

re
16

b
u

t
fo

r
M

er
ge

r
T

re
e

B
.

62



F
ig

u
re

18
:

U
p

p
er

p
an

el
s:

C
o
m

p
a
ri

so
n

o
f

th
e

co
n
tr

ib
u

ti
on

s
of

ea
ch

sa
te

ll
it

e
to

th
e

su
rf

ac
e

m
as

s
d

en
si

ty
p

ro
fi

le
of

th
e

fi
n

al
g
al

ax
y

of
M

er
g
er

T
re

e
A

in
th

e
th

re
e

ca
se

s
(n

=
1,

2,
4)

.
L

ow
er

p
an

el
s:

A
s

in
th

e
to

p
p

an
el

s
b

u
t

fo
r

th
e

li
n

e
o
f

si
g
h
t

ve
lo

ci
ty

d
is

p
er

si
o
n

.

63



Figure 19: Fitting with a Sérsic law of the remnant galaxy of the Merger Tree A
with n = 4. The result of the fit is n = 6.345 with χν

2 ∼ 125.

• Sérsic index of the remnant galaxy: The Sérsic index of the main
galaxy grows by a factor of about 2, which depends on the initial Sérsic
index. The growth mostly happens in the first merger, after which it
does not change much. However, from Table 7 it is evident that the
remnant galaxies are not very well fitted by the Sérsic law, having very
high χν

2 values. Figure 19 shows the surface brightness of the remnant
galaxy of the n = 4 case fitted with a Sérsic law, and the residuals
of the fit. The plot shows that there is an excess of mass at certain
radii, probably resulting from the satellites depositing there most of
their mass. Despite this, it is notable how the Sérsic index appears to
tend towards n ≥ 4, which is the expected index for a massive elliptical
galaxies.
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• Velocity dispersion: The average line-of-sight velocity dispersion is
slightly decreasing by a factor of 5%. This is different from the small
increase found in Tapia et al. (2013). This decrease appears to be most
important for larger Sérsic indices. For the n = 4 case the decrease
is of the order of 10%, which is more in agreement with what was
found by Naab et al. (2009) and Oser et al. (2012). Interestingly, the
final velocity dispersion approaches the same value for every n. It is
283 kms−1 for Merger Tree A and 181 kms−1 for Merger Tree B.
The lower panels of Figures 16 and 17 gives us a more complete picture
by comparing the velocity dispersion radial profiles of the overall final
galaxy with the one of its separate components. The matter from
the satellites shows a higher velocity dispersion at intermediate radii,
r ∼ 1 kpc. This means that the satellites were disrupted further out
and that their matter is on orbits that reach out to larger radii than
the matter of the progenitor at similar radii. In all considered cases the
matter from the progenitor has a higher velocity dispersion in the outer
parts than the before the mergers. This is due to the kinetic energy
gained from the satellites (tidal heating). In the inner parts instead the
velocity dispersion profile of the progenitor is left almost untouched,
with the exception of the case with n = 1 of Merger Tree A. While
in the other cases the high central density and strong gravitational
potential make them insensitive to the mergers in the outer parts, it
appears that in the case A with n = 1 the satellites were able to trasfer
some energy to the core. However, the small number of particles in
the center makes the velocity dispersion oscillate a lot, which makes it
harder to analyze.

Figure 20 and Table 8 summarize the variation in size, mass, velocity disper-
sion and Sérsic index due to the process of dry mergers.
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Figure 20: Upper panels: Sérsic index of the main galaxy as a function of stellar
mass in each stage of each merger tree. Middle panels: effective radius as a function
of stellar mass. Lower panels: average line-of-sight velocity dispersion as a function
of stellar mass.
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MT fM? fre fσe fn
(1) (2) (3) (4) (5)

A, n = 1 2.305 4.686 0.912 3.117
A, n = 2 2.347 4.933 0.906 2.178
A, n = 4 2.429 5.335 0.858 1.552

Tapia et al. A 2.45 5.65 0.99 ...
B, n = 1 2.871 4.144 1.005 3.320
B, n = 2 2.895 4.68 0.996 2.081
B, n = 4 3.029 4.811 0.951 1.844

Tapia et al. B 3.27 7.02 1.19 ...

Table 8: Variation of the physical properties of the progenitor galaxy after the
mergers. Col. (1): identifier of the merger tree. Cols. (2), (3), (4) and (5):
increase in mass, effective radius, velocity dispersion, and Sérsic index of the final
remnant with respect to the progenitor.
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7 Conclusions

The code described in this thesis successfully generates numerical models of
spherical galaxies that follow the Sérsic law. This allows to represent a wide
range of elliptical galaxies, from dwarf ellipticals to giant ones. The adoption
of the Sérsic law is a significant improvement over the older code by Smulders
(1995), which instead generated models following the de Vaucouleurs law, ac-
curate only for the representation of very large elliptical galaxies. Addition-
ally the new code allows the user to select more parameters, and its models
are more accurate and stable. Numerical simulations that employ models
created with this code can be used to study an extensive range of scientific
problems, such as formation processes, dark matter content and distribution,
internal structure, dynamical instability, and scaling laws. While the study
of these phenomena can be approached by analytical means, only numerical
simulations allow a complete description.
One such numerical study has been presented in this thesis, which will be
extended in a paper to be published in late 2014. The main results and future
developments can be summarized as follows:

• The merger experiments show that, through the process of dry mergers
with smaller satellites, compact elliptical galaxies can significantly grow
in size, by a factor ∼ 4.8×, and in mass, by a factor ∼ 2.5×. The
velocity dispersion suffers a slight decrease in the process, up to 10%.
The Sérsic index of the final galaxy is significantly larger than the initial
one, and in most of the examined cases it is larger than 4. These results
therefore support the hypothesis that the compact elliptical galaxies
observed at z ∼ 2 are the progenitors of the giant elliptical galaxies of
the local universe, and that dry mergers with satellites are the primary
cause of this size growth.

• According to the results the dependence on the Sérsic index of this
growth process is weak. The matter from the satellite galaxies does not
reach the compact core of the progenitor, where the different density
profiles would have made a significant difference. The most relevant
factors are instead the mass and orbital angular momentum of the
satellite galaxies. However, this was a small sample of merger trees, and
more simulations might further clarify the picture. In different cases of
galaxy formation processes the Sérsic index might prove more relevant,
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for instance when the difference in density between the progenitor and
the satellites is smaller.

• The surface brightness of remnant galaxies after the mergers does not
exhibit a clear Sérsic law behaviour. With more simulations, it would
be interesting to be able to link specific patterns in the surface bright-
ness radial profile of the final galaxy to its formation process. It is
also worth investigating and understanding how the uniform Sérsic laws
that we observe in real galaxies do arise after their formation processes.
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