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Abstract

In this thesis is dealt the evaluation of a dryer Simulink model; it is the top
Electrolux dryer and adopts the heat pump technology. In the model the components
and interactions of the refrigerant circuit of the heat pump are not simulated but
they are represented by only exchanges of powers that modify the air conditions
passing through the exchangers (evaporator and condenser). The aim of the model
is to allow performance evaluation and software debug of the dryer without use
of the real machine. This means a considerable time and cost saving, allowing to
Electrolux to use these resources in other useful ways.
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“The universe is full of magical things patiently
waiting for our wits to grow sharper.”
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Thesis activity

The thesis activity aims to analyze a Matlab/Simulink model of an old dryer model
with heat pump technology to obtain a complete and exhaustive analysis, allowing
to understand what to modify in the old model to make it more adherent to the top
heat pump dryer model subject of this thesis. This will allow to the company to
earn money since, having better simulations, there will need less real tests (saving
of current, water, ...) and less working hours, obtaining the "same" results in little
minutes instead to wait a machine cycle (2/3 hours).

1





Introduction

This work is the result of my stage in Porcia (Pordenone) near Electrolux, Swedish
multinational home appliance manufacturer, one of the largest appliance maker.
In particular I worked in R & D, in which can be developed a new product or
improved an existing one.
In the last six months I followed the following working plan:

• Phase 0: it was analyzed old Simulink model evaluating its performance
with a dataset of machine of interest. It was chosen to use RMSE and
normalized RMSE as key performance indicators (KPIs) to compare dataset
signals and simulation ones.
Two different comparisons were implemented to understand performance of
pre-existing model:

– Real test (I/O acquired in laboratory) vs Output of the timeseries1
model

– Real tests (I/O acquired in laboratory) vs Snake2 model

• Phase 1: after the first evaluation it was necessary to understand better
the model and those parameters and blocks are important to tune/modify;
for this reason there was a in-depth study of the model and a sensitivity

1A timeseries is a series of data points indexed (or listed or graphed) in time order. It is a
sequence taken at successive equally spaced points in time (thus it allows to evaluate a sequence
of discrete-time data).
The timeseries-model is a Matlab/Simulink model that simulates the behavior of the dryer,
generating output signals. Whose inputs are fed by the signals of a real test in the form of
timeseries

2Snake is an interface available in Electrolux that allows to set some conditions (lab conditions,
laundry conditions, laundry type, ...) in which you can simulate the machine. After that you
put in them, Snake use automatically the model that we implemented.
Snake model is a free evolution model with initial conditions (room temperature, linen quantity,
etc.) equal to those of the real test with which the comparison is made

3
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analysis, so evaluating how to operate and obtain the best result for this
work. Based on this general model view, it will be able to start to modify
the model to reach our objective

• Plus phase: in this last phase it will explained possible model modifications
and will make a least square estimation to improve a particular signal



Chapter 1

Theoretical part

1.1 A dryer

A dryer is a powered household appliance that is used to remove moisture from
a load of laundry. Many dryers consist of a rotating drum, called "tumbler",
through which heated air is circulated to subtract water from the laundry, while
the tumbler is rotated to maintain air space between laundry.

Figure 1.1: Dryer

5
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It is important to note that the incoming air has to have a low relative humidity
(percentage of the humidity in an element), thus the air is not suited for an other
cycle as it is; for this reason it is necessary to find a way to separate humidity and
dry air.

1.1.1 Heat-pump dryer

One of most common way to avoid humidity by laundry is heat-pump. A closed-cycle
heat pump clothes dryer uses this technology to dehumidify the processing air.
Such dryers typically use under half the energy per load of a condenser one.

Figure 1.2: Dryer with heat-pump circuit

Whereas condensation dryers use a passive heat exchanger cooled by ambient air,
these dryers use a heat pump. The hot, humid air from the tumbler is passed
through a heat pump where the cold side condenses the water vapor into either a
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drain pipe or a collection tank and the hot side reheats the air afterward for re-use.
In this way the dryer also conserves much of its heat within the dryer instead of
exhausting it into the surroundings.
Domestic heat pump dryers are designed to work in typical ambient temperatures
from 5 to 35◦C that will be extreme temperatures. Below 5◦C, drying times
significantly increase, while over 35◦C the environment temperature is too much
high to allow a right working of the machine.

1.2 The heat-pump [5]

Heat pumps move thermal energy in the opposite direction of spontaneous heat
transfer, by absorbing heat from a cold space and releasing it to a warmer one. The
most common design of a heat pump involves four main components: a condenser,
a capillary, an evaporator and a compressor (see Figure 1.2). The heat transfer
medium circulated through these components is called refrigerant.
Heat pumps are significantly more energy efficient than simple electrical resistance
heaters (but the typical cost of installing a heat pump is higher than that of a
resistance heater). Heat pumps are more efficient than resistance heaters because
less high-grade energy is required than is released as heat (most of the energy
for heating comes from the external environment). In electrically-powered heat
pumps, the heat transferred can be three or four times larger than the electrical
power consumed, giving the system a coefficient of performance (COP) of 3 or 4,
as opposed to a COP of 1 for a conventional electrical resistance heater, in which
all heat is produced from input electrical energy.
Heat pumps use refrigerant (in our case it used R134a refrigerant) as an intermediate
fluid to absorb heat where it vaporizes, in the evaporator, and then to release heat
where the refrigerant condenses, in the condenser.
There are several factors that will affect the efficiency of a heat pump such as
climate, temperature, auxiliary equipment, technology, size and control system.
The cooling gas in the form of steam is heated in the compressor, which performs
a work included in the gas, increasing its temperature and pressure, moving the
refrigerant inside the circuit.
On the discharge side of the compressor, the now hot and highly pressurized
vapor passes through a heat exchanger, called condenser where it transfers heat
to the air b cooling and changing state (condensing). The liquid refrigerant
then passes through a pressure-lowering device called capillary. The low-pressure
liquid refrigerant then enters another heat exchanger, the evaporator, in which
the fluid absorbs heat and change state (gas). The refrigerant then returns to the
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Figure 1.3: Heat-pump circuit

compressor and the cycle is repeated.
The pressure difference must be great enough for the fluid to condense at the
hot side and still evaporate in the lower pressure region at the cold side. The
greater of temperature difference, the greater of required pressure difference, and
consequently the more energy needed to compress the gas (the coefficient of performance
decreases with increasing temperature difference).



Chapter 2

Phase 0

2.1 First view of the old model

For the first thing it was evaluated the structure of the old model, that it was used
as base model. As from Figure 2.1 the model is characterized by inputs (green
ports), outputs (red ports) and the logical blocks. The logic of the model consists
of three blocks:

• Motor subsystem: this block calculates the motor speed signal and motor
feature one

• TDHP: it simulates the whole air circuit of dryer

• Humidity Sensor: output block signals are variables that depend by this
sensor

Into the block TDHP (see Figure 2.2), that will be that of most interest, there are
four main MATLAB functions that correspond to four main components of the
dryer (air side):

• Fan (blue)

• Drum (light green)

• Evaporator (orange)

• Condenser (red)

9
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In practice, each MATLAB function calculates the specific variables that occur
during that part of cycle; the cycle iteration is allowed by feedback block.
As we will see more deeply later, the model was made with a black-box approach.
It uses many look up tables, deriving by experimental data, to calculate various
model physical variables (temperatures, enthalpies, specific and relative humidity,
...).

Figure 2.1: Structure of the base model

Motor 
subsystem

TDHP

Humidity sensor
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Figure 2.2: Structure of block TDHP
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2.2 Model signal outputs
In this section model signal outputs are listed with a brief description:

• Motor speed: it is the speed of dryer motor. This signal allows to evaluate
RPM at every moment

• Laundry moisture: it is the moisture in the laundry. This output signal
is important. From it, it is observable to drying efficiency, final laundry
moisture (thus if we dry laundry correctly) and if drying performance is
about constant

• Temperature of condenser exit (air side): it is the temperature of
consenser exit (air side), that give an idea of air temperature at the drum
inlet

• Temperature of condenser exit (refrigerant side): in truth it is the
refrigerant temperature to the inlet of condenser

• Temperature of drum exit: it is the air temperature of drum exit. It
allows to understand how much temperature surge we have in the dryer
drum

• Motor feature signal: it is a signal feature of dryer motor

• Condensed water: it is the condensed water of the process. From it, it
is observable to condensation efficiency and so how much water vapour is
released in the environment

• Humidity sensor 1: it is the humidity sensor signal. It is a sum of various
effect of this sensor

• Humidity sensor 2: it is the humidity sensor 1 signal after some rework
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2.3 Timeseries model scripts
When the Matlab/Simulink model was created, was calibrated with acquisitions
of a different machine; moreover it was modified more times during years. In order
to evaluate the performance of the model respect to the tumble dryer object of
the thesis we wanted to compare the model outputs with the signals acquired from
real tests.
Powering the inputs of the model with signals acquired from real tests, the input
data are in the form of a timeseries series. In this subphase some scripts were
implemented, in particular (in order of use):

• avoid_disturbances_tests: it allows to avoid all disturbances/noises by
acquired signals (for example peaks, acquisition error, loss of part of signal
during acquisition) using an interpolation technique. This script was necessary
to allows us a simulated-acquired comparison without errors

• snake_create_timeseries_tests: it creates all timeseries model input/output
signals

• timeseries_starter_multitests: this script allows to simulate the entire
Simulink model; furthermore, put in output a report with graphical comparison
between simulated and acquired signals

2.3.1 Correction of real test dataset

Before to analyze key performance indicators and model performance it is important
to explain better how were avoided the disturbances of the acquisition.
The main problems were due to a unexpected falling/peak, in turn caused by
various motivation:

• errors of laboratory technicians as touching dryer, wrong condition data, ...

• errors due to acquisition sensor types and their accuracy

• errors due to malfunction or break of sensors

Another problem was the absence of some signals in some real tests used for
performance evaluation. These signals have been reconstructed but this has led
to the introduction of possible errors. Some signal reconstruction example are
the motor feature signal and the condensed water one. This work is made in
"snake_create_timeseries_tests" script.
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2.4 Correction of some initial errors
Running the model, some compilation errors were found. The main motivation of
these errors is the presence of new critical cases. A case of particular importance
is due to compressor on/off switch; with the activation/deactivation of compressor
the model did not work, probably due to a different compressor switch rule respect
to the past. For this problem was necessary to modify exchange powers curves (in
particular their tracks, not their target values), that how we will see later, are
some of model knobs and represent our link between refrigerant machine side and
air one.
Moreover, we also removed unused parameters from Model_Parameters.m (it is
a script where are defined some of main model parameters). In particular we
removed the parameter Vdot (volumetric flow of the fan) since in our dryer the
fan is directly powered with dryer motor and not with a dedicated one (so in the
Simulink model there is a parameter controlled by motor speed).
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2.5 Key performance indicators

In this section it is explained what are the model key performance indicators
(KPIs). To choose them it was done a KPI search and a comparison between
different possibilities (for all possibilities it was calculated the relative mean, min,
max value for each signal):

• RMSE: It represents the square root of the second sample moment of the
differences between simulated signals and acquired signals and is scale-dependent

• NRMSE: It facilitates model comparison with different scales and is RMSE
divided by standard deviation of the acquired signal

• Variance-explained: It measures the proportion to which a model accounts
for the variation (variance) of a given data set

• Coefficient of determination under square root (R coefficient): It is
the square of the proportion of the variance in the dependent variable that
is predictable from the independent variable(s).

In the following table there are the corresponding formula.

Figure 2.3: KPI table for comparison between signals
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After some considerations it was chosen to use two KPIs: one to evaluate the
behaviour for single signal and the other one to analyze performances regarding
various signals. The single signal KPI will be RMSE, while the "general" behaviour
KPI will be NRMSE. The second decision was derived from a in-depth analysis
due to a behaviour comparison, an evaluation best-worst case sort (the used key
sort is RMSE), a boxplotevaluation.

2.5.1 Root mean square error (RMSE)

The RMSE serves to aggregate the magnitudes of the errors in predictions for
various times into a single measure of predictive power. It is a measure of accuracy,
to compare forecasting errors of different models for a particular dataset and
not between datasets (as said before it is scale-dependent). RMSE is always
non-negative, and a value of 0 (almost never achieved in practice) would indicate
a perfect fit to the data, while greater is the value and greater is the signal error.
The effect of each error on RMSE is proportional to the size of the squared error;
thus larger errors have a disproportionately large effect on RMSE (RMSE value
also depends by outliers).
Root mean square error is the standard deviation of the prediction errors (called
residuals), commonly used to evaluate fit quality of a model. Residuals are a
measure of how far from the acquired signal. In other words, RMSE tells how
concentrated simulated data respect to acquired data. The formula is

RMSE =

√∑n
i=1(xi − x̂i)2

n
(2.1)

where xi are the acquired data, x̂i are the simulated data, n is the length of the
considered signal, i states test indices (it is useful to remember that for the analysis
of the model were considered 91 acquired tests).
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2.5.2 Normalized root mean square error (NRMSE)

There is a saying that apples should not be compared with oranges or in other
words, don’t compare two items or group of items that are practically incomparable.
But the lack of comparability can be overcome if the two items or groups are
somehow standardized or brought on the same scale. This is the idea behind
NRMSE. In particular for this work RMSE is normalized with standard deviation,
thus the formula is

NRMSE =
RMSE√∑N

i=1(x−mean(x))2

N

(2.2)

where N is the number of considered tests (therefore it is 91). In doing so it is
possible to compare, with same benchmark, different signals.

2.5.3 The special case of motor feature signal

As regards the motor feature signal, for kind of the signal, it is useful to assess
a punctual error to replace RMSE. The motivation of this choice is the punctual
usage of the value as feature of the weight estimation. So, the formula for this
signal is the following

punctual error = abs(xi − x̂i) (2.3)

The same consideration can be used as regards NRMSE. It was used the same
standard deviation formula of other signals, with only difference that in this case
it was considered a punctual value for each test.
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2.6 Comparison: Real tests vs Timeseries
The first comparison was implemented between real test dataset and timeseries
model output.
The timeseries model is the old model, fed by timeseries of the signals, less than
small modifications to run the model.
As all comparisons in this thesis, we will analyze results with KPIs, using some
evaluation table and boxplots.

2.6.1 Evaluation table

For this first comparison we chose to put in the evaluation table (from left to
right) RMSE mean, mean NRMSE, NRMSE min, NRMSE max, mean value of
signal (the acquired one), Standard deviation, Range of signal and Performance.

Figure 2.4: Evaluation table (phase 0 - Timeseries)

A particular look has to be carried out for Performance item. The legend of "traffic
lights" is the following

Figure 2.5: Evaluation table legend

This legend divides (with mean NRMSE as KPI) good and bad simulated signals
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for us, making it clear a performance without an analysis of numerical results.
To conclude, we can divide output signals into four groups:

• Bad performance: drum exit temperature and motor feature signal

• Medium performance: motor speed, condenser exit temperature (refrigerant
side and air one) and delta hat

• Good performance: laundry moisture, condensed water and normalized
delta hat

• Excellent performance: no signals

2.6.2 Boxplot evaluation

What is a boxplot?

A boxplot is a method for graphically depicting groups of numerical data through
their quartiles1. Box plots may also have lines extending vertically from the boxes,
called whiskers, indicating variability outside the upper and lower quartiles. The
distance between the different parts of the box indicate the degree of dispersion
and skewness in the data, showing outliers.
The boxplot allows quick graphical examination of one or more data sets and does
have some advantages, as take up little space and intuitively give a general idea of
many data features.

1There are three quartiles:

• The first quartile (Q1) is defined as the middle number between the smallest number and
the median of the data set

• The second quartile (Q2) is the median of the data

• The third quartile (Q3) is the middle value between the median and the highest value of
the data set
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Boxplot analysis

Figure 2.6: Boxplot analysis (phase 0 - Timeseries)

To conclude first comparison, it is useful to make a boxplot NRMSE analysis.
This analysis gives a better view of whole situation, makes clear distribution of
the error for each signal and for each test, also highlighting the best and worst
tests. The worst simulated signal is motor feature one, for both outliers and mean
NRMSE.
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2.7 Comparison: Real tests vs Snake
The second comparison was implemented between real tests dataset and Snake
dataset; in other words, lab acquired data and Snake simulated data with the
same initial conditions.

2.7.1 Test software recipes

The aim of this section is to bring to the attention the "problem" of the different
recipes. A recipe is a set of various features (for example thresholds, on/off
components, drum inversions that have an impact on signal evolution) that are
used to simulate the outputs of the model. In our case, for the tests there are 9
recipes (see the following table).

Figure 2.7: Test software recipes

It is very important to make this differentiation since in this way simulated test
signals and acquired ones "live" in the same conditions.

2.7.2 Comparison analysis

Signal cut

In general, the acquired signal and the Snake one have not same length time.
Therefore, to make possible the comparison, it is necessary to cut longer signal,
also avoiding anti-crease phase2. To not lose this information, in this comparison

2anti-crease phase is a period, after the end of the process, in which dryer applies drum
inversions to not make folds to laundry



22

it was also evaluated difference of cycle duration between acquisitions and Snake
simulated signals.

Signal critical cases

The most critical problem, shared by laundry moisture, temperature of condenser
exit (air side), temperature of condenser exit (refrigerant side), temperature of
drum exit (air side), condensed water, is due to not optimal simulation of on/off
compressor. In particular, with compressor switch, the simulated signal stops to
work, do not track the acquired signal. By way of example, it is kept a comparison
regarding temperature of condenser exit (air side) for an Universal test. In the
Fig. 2.8, it is easy to note the wrong nature of the simulated signal.

Figure 2.8: Temperature of condenser exit (air side) for a Load5 test, on/off
compressor problem

ACQ
SIM
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• Laundry moisture: for some tests, it is possible to note a differential initial
point, due to a not perfect moisture signal reconstruction

Figure 2.9: Laundry moisture for a Load2 4 Kg test, different initial point
problem

ACQ
SIM
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• Temperatures: for climatic chamber test (laboratory temperature equal to
5◦C), the Snake model does not take into account different machine behaviour
respect to a standard condition (with laboratory temperature equal to 23◦C).
In Fig. 2.10, it is considered the signal regarding temperature of drum exit
(since it is the signal in which the problem is clearer). It is easy to note that
the simulated signal overestimates the acquired one, almost by twice of the
real value.

Figure 2.10: Temperature of drum exit for a Cold climatic chamber load 4 Kg
test, cold temperature problem

ACQ
SIM
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• Motor feature signal: for this signal, the model always simulated a value
equals to 100, that is a good tracking with half-load, but when full load tests
are implemented, acquired signal and simulated one are completely different
(as can be seen from Fig. 2.11)

Figure 2.11: Motor feature signal for a Load1 8 Kg test

ACQ
SIM
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• Humidity sensor signal 1: there is an underestimation problem for all full-load
tests (in particular Load1 full-load

Figure 2.12: Humidity sensor 1 for a Load1 8 Kg test

ACQ
SIM
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2.7.3 Evaluation table

In this subsection results of the comparison will be told; in particular we will
comment KPIs and performance evaluation.

Figure 2.13: Evaluation table (phase 0 - Snake)

In this table we chose to put in the evaluation table (from left to right) RMSE
mean, NRMSE mean, mean value of signal (the acquired one), Standard deviation,
Range of signal and Performance.
A particular look has to be carried out for Performance item. The legend of "traffic
lights" is the following

Figure 2.14: Evaluation table legend

As for previous comparison, legend divides (with mean NRMSE as KPI) good
and bad simulated signals, making it clear a performance without an analysis of
numerical results.
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We can divide output signals into four groups:

• Bad performance: drum exit temperature, motor speed and motor feature
signal

• Medium performance: condenser exit temperature (refrigerant side and
air one)

• Good performance: laundry moisture, condensed water, delta hat and
normalized delta hat, cycle duration

• Excellent performance: no signals

It is important to highlight cycle duration evaluation, since is a not considered
variable in the first comparison (for the explanation of its presence in evaluation,
see section "Signal cut").

2.7.4 Mean NRMSE evaluation for load condition

A load condition is a laundry feature and consists in a wording to identify the
typology of laundry in a specific test (laundry material, ...).
For Snake comparison, respect to the first one, it was decided to also make a
load condition evaluation, in particular using mean NRMSE as KPI. This decision
is due to different importance between two comparison; Snake comparison is
more important because gives a performance picture in the environment in which
company models are used.
A load condition analysis allows to highlight if model problems are present in all
tests or if they are limited at one specific case.

Figure 2.15: Load condition evaluation table (phase 0 - Snake)
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It is easy to note that, in general, four load conditions that enclose the use
of climatic chamber are (surprisingly) the best. This is probably due to a lucky
circumstance, since these four load condition should be the most difficult to simulate;
so their good results are not synonymous with good model.
The worst load condition is Universal; we expected this result since it is a critical
case on a par with test in climatic chamber.

2.7.5 Boxplot analysis

It is possible to note that (obviously) this analysis is similar to first one; this fact
is important since allows to verify good implementation of timeseries. As regards
Fig. 2.16, boxplots are similar but not equal (Snake model is that effectively used
in Electrolux, while Timeseries model is only to evaluate easier the performances).
As first comparison, for outliers, the worst simulated signal is motor feature one,
but as regards mean NRMSE the worst one is motor speed signal.

Figure 2.16: Boxplot analysis (phase 0 - Snake)





Chapter 3

Phase 1

3.1 What is sensitivity analysis?

Sensitivity analysis [3] is the study of how the uncertainty in the outputs of a
mathematical model or system can be divided and allocated to different sources of
uncertainty (in our case sources are model parameters). The sensitivity analysis
is useful for:

• testing the robustness of the results of a model

• increased understanding of the relationships between model parameters and
model output

• uncertainty reduction

• model simplification, searching model parameters that have no effect on
outputs, or identifying and removing redundant parts of the model

• calibrate a model with large number of parameters, a sensitivity analysis can
ease the parameters tuning by focusing on the most important parameters,
not spending time on non-sensitive ones.

All these features lead to develop a better model.
Quite often, some parts of the model are subject to sources of uncertainty, including
errors of measurement, absence of information and poor or partial understanding
of the driving forces and mechanisms. This uncertainty imposes a limit on our
confidence with model outputs.
Good modeling practice requires that the modeler provide an evaluation of the
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confidence in the model. Sensitivity analysis addresses the issues, performing the
role of ordering by importance parameters and the part of the model in which are
"lived".
Typical constraints of a sensitivity analysis are:

• Computational time: sensitivity analysis is almost always performed by
running the model a (possibly large) number of times, thus with a sampling-based
approach. This can be a significant problem if a single run of the model takes
a significant amount of time; also little minutes to run the model, if multiplies
with a large number of simulations, imply many computational time. This
problem is known as the curse of dimensionality1. To limit this constraints
are often used some methods of reducing computational expense include the
use of screening methods (for reducing the dimensionality of the problem)

• Precision of model analysis: this constraint is the opposite of computational
time. To obtain a good precision it must use more computational time, and
vice versa. An optimal range of precision is very important to give value to
sensitivity analysis results; without precision is not possible be sure and this
may involve future wrong modifications of the model

On these items we will build our sensitivity analysis and in particular we will use
Morris method (Campolongo version) to implement it. This method is based on
OAT approach and elementary effects method (that it is a screening method). We
will use following subsections to explain this approach/method.

3.1.1 OAT approach

The logic of one-at-a-time (OAT) approach is to move one parameter, keeping
others at their baseline (nominal) values, then, returning the parameter to its
nominal value, then repeating for each of the other parameters in the same way.
Sensitivity may be measured by monitoring changes in the outputs.
This appears a logical approach so that any change observed in the outputs will
unambiguously be due to the single variable changed. Furthermore, by changing
one parameter at a time, one can keep all other parameters fixed to their central
or baseline values. This minimizes the chances that MATLAB crashes, more likely
when several factors are changed simultaneously.

1The expression "the curse of dimensionality" was conied by Richard E. Bellman when
considering problems in dynamic programming. It denotes the problem that evaluating an extra
model feature, computational time increases exponentially
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Despite its simplicity however, this approach does not fully explore the input space,
since it does not take into account the simultaneous variation of input variables.
This means that the OAT approach cannot detect the presence of interactions
between input variables.

3.1.2 Screening

Screening is a particular instance of a sampling-based method. The objective here
is rather to identify which parameters are contributing significantly to the outputs
uncertainty, rather than exactly quantifying sensitivity.
Screening tends to have a relatively low computational cost when compared to
other approaches. One of the most common screening method is the elementary
effect method.

Elementary effects method

The elementary effects (EEs) method is the most used screening method in sensitivity
analysis. Like all screening, the EEs method provides qualitative sensitivity analysis
measures (so it allows to rank parameters in order of importance respect to the
outputs), but do not quantify exactly the relative importance of the parameters.
A elementary effect is defined as

di(X) =
Y (X1, ..., Xi−1, Xi + ∆, Xi+1, ..., Xk)− Y (X)

∆
=
Y (X∆)− Y (X)

∆
(3.1)

where i is the current simulation number, Y (X) and Y (X∆) are respectively the
calculated outputs with nominal parameter values and vector with one modified
parameter value, ∆ is the difference between nominal value and new parameter
value.
The original EEs method of Morris provides two sensitivity measures for each
input factor:
•

µi =
1

r

r∑
j=1

di(X
(j)) (3.2)

where r is the number of considered points and di(X) is the specific elementary
effect. This measure, that is the mean of EEs, allows to understand how much
important is the parameter for the outputs
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•

σi =

√√√√ 1

r − 1

r∑
j=1

(di(X(j))− µi)2 (3.3)

This measure, that is the standard deviation of EEs, allows to evaluate
parameter interactions and non-linear effects

In this sensitivity analysis it was used the Campolongo version of this method
that allows a greater robustness of the analysis. The difference respect the classic
Morris method is the use of abs in the µ calculation. The new formula is the
following

µi =
1

r

r∑
j=1

|di(X(j))| (3.4)
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3.2 SAFE Tool
To implement sensitivity analysis with Morris method it was used SAFE Tool [7]
in which some tools for this type of sensitivity analysis are already present.

3.2.1 Sensitivity analysis steps

There are a large number of approaches to performing a sensitivity analysis. For
our case we will use the approach in Fig. 3.1.

Figure 3.1: Explanation of sensitivity analysis steps

List of sensitivity analysis parameters

The first step of described approach is to choose sensitivity analysis parameters.
After some consideration and some preliminary sensitivity analysis it was chosen
to vary seven parameters that were considered the most important parameters of
the model. As you can see in Fig. 3.2 chosen parameters can be enclosed in four
groups:

• Exchange powers: evaporator exchange power and condenser exchange
power are very important for the model. They allow to simulate heat-pump
and enclose all its information

• Volumetric flow of holes: in every dryer there are some air leakage. The
old MATLAB/Simulink simulate all these leakage with two holes in which
get out air, and one hole in which go in air. To have a more clear idea, it is
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possible to see Fig. B.1 in Appendix B. These two parameters are two holes
in which get out air, one downstream of the drum and the other one at the
exit of the drum

• Evaporation laundry coefficient: this coefficient depends on laundry
type and dynamic of the drum. To calculate it we use its dependence by
moisture laundry rate (MLR), so water Kg in laundry divide by total laundry
amount. The equation is:

k = a ∗MLR + b (3.5)

where k is the evaporation laundry coefficient, a is a multiplicative constant
and b is an additive constant

• Max volumetric flow of the fan: as the name tells, it is the maximum
value of fan volumetric flow

Figure 3.2: List of sensitivity analysis parameters

Variable range

Another important choice is that regards the range of variability for the parameters.
It needs to evaluate two important constraints:

• Parameter range: it is important do not change a parameter out of its
normal range. For example we have a parameter that usually has values
from 1 to 5, it is not correct to make a simulation with a parameter value
equals to 0.4
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• MATLAB crash: chosen range do not have to be too much big since a
greater parameter variability implies a greater crash probability

Taking into account all these considerations, we choose a range of ±15% of nominal
value.

Simulation number issue

The simulation number issue contains the conflict between computational time
and precision of model analysis. As regards EEs method, the simple formula to
find total simulation number is

N = r ∗ (M + 1) (3.6)

where r is the number of variations for each parameter, M is the number of
sensitivity analysis parameters and N is the total simulation number.

Figure 3.3: Graph for verification of the simulation number

For our project we tried various values of r and at the end we use a range value
equals to 50-100. To verify the quality of our parameters we can analyzed different
value of µ (mean of EEs) during run of sensitivity analysis. As it is possible to
see in Fig. 3.3 it was chosen to take five sample points equally spaced between
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them (160, 320, 480, 640, 800 in the figure) to evaluate µi in the time simulation;
if, as in figure, µi values become similar-constant, then the precision of sensitivity
analysis can be considered adequate.

Model evaluation

After having implemented previous steps, now we can put into SAFE tool project
model (that it was specifically parameterized2, so that during sensitivity analysis
the chosen parameters were able to vary smoothly). This process was a delicate
task since there were different level of workspace and having to repeat more times
the same code (one time for every parameter variation) the MATLAB global
variables are not always able to work properly.

KPI choice

For a sensitivity analysis needs a KPI on which evaluating EEs. In our case
we chose mean NRMSE since we used it as the most important KPI also for
comparison, and in general during whole of the project.

2A MATLAB model is parameterized when the whole model can be controlled with some
parameters whose values can be modified through an external support script
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3.3 Sensitivity analysis
In the following subsection we will tell sensitivity analysis results. It was chosen
to make two different analysis:

• For laundry load condition

• For signal output

Both analysis types are useful since allows to see possible dependencies and issues.
The aim of these two sensitivity evaluations is to study the model in detail.
Moreover, in this moment we have a black-box model with look up tables (in reality
there are some "white" parts that corresponds to thermodynamic process), so this
approach allows us to understand better the whole functioning.
After these two analysis steps we will also make a general sensitivity analysis,
comparing it with other results, and a consideration summary.

3.3.1 Sensitivity analysis for load condition

As we can see in Appendix A, the analyzed load conditions during the project are
the following:

• Load1 4 Kg

• Load1 8 Kg

• Load2 4 Kg

• Load2 8 Kg

• Load3 5.6 kg

• Load4 3.5 Kg

• Load5 6 Kg

• Cold climatic chamber load 4 Kg (environment temperature equals to 5◦C)

• Hot climatic chamber load 4 Kg (environment temperature equals to 35◦C)

• Cold climatic chamber load 8 Kg (environment temperature equals to 5◦C)

• Hot climatic chamber load 8 Kg (environment temperature equals to 35◦C)
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Each of these load condition has different features (threshold, switch rule, ...),
program, load, laundry type (cotton, mixed, ...), laundry amount, environment
temperature (standard one is 23◦C). For these motivations it is not obvious that
all will give same results. For analyzing the following figures, it is useful to known
that different scales were used, so from give visibility to image features.

Figure 3.4: Sensitivity analysis for Load1 4 Kg
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Figure 3.5: Sensitivity analysis for Load1 8 Kg

Figure 3.6: Sensitivity analysis for Load2 4 Kg
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Figure 3.7: Sensitivity analysis for Load2 8 Kg

Figure 3.8: Sensitivity analysis for Load3 5.6 Kg
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Figure 3.9: Sensitivity analysis for Load4 3.5 Kg

Figure 3.10: Sensitivity analysis for Load5 6 Kg
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Figure 3.11: Sensitivity analysis for Cold climatic chamber load 4 Kg

Figure 3.12: Sensitivity analysis for Cold climatic chamber load 8 Kg
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Figure 3.13: Sensitivity analysis for Hot climatic chamber load 4 Kg

Figure 3.14: Sensitivity analysis for Hot climatic chamber load 8 Kg
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3.4 Sensitivity analysis for signal
As for sensitivity analysis for laundry load condition, this section will be only used
for sensitivity analysis graphs. All considerations will make in next section.
For this sensitivity analysis we considered seven of nine output signals; in particular
two motor signal (motor feature and motor speed) were not enclosed in evaluation
since are divided by model heart, and chosen sensitivity analysis parameters do
not influence these outputs. To recap, considered signals are:

• Laundry moisture

• Temperature of condenser exit (air side)

• Temperature of condenser inlet (refrigerant side)

• Temperature of drum exit

• Condensed water

• Humidity sensor 1

• Humidity sensor 2

Following, as sensitivity analysis for load condition, figures can be different scales
to give priority to image features.

Figure 3.15: Sensitivity analysis for Laundry moisture
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Figure 3.16: Sensitivity analysis for Temperature of condenser exit (air side)

Figure 3.17: Sensitivity analysis for Temperature of condenser inlet (refrigerant
side)
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Figure 3.18: Sensitivity analysis for Temperature of drum exit

Figure 3.19: Sensitivity analysis for Condensed water
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Figure 3.20: Sensitivity analysis for Humidity sensor 1

Figure 3.21: Sensitivity analysis for Humidity sensor 2
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3.5 Sensitivity analysis summary
In this final chapter section main results and considerations will be listed and
summarized briefly.
The sensitivity analysis highlights that the most important parameters are (in
order of importance):

1) condenser exchange power

2) evaporator exchange power

3) multiplicative constant of evaporated water coefficient in the drum

4) hole volumetric flows

This indication allow so understanding the most important manipulators of the
model and gives a priority order for future modifications.
Moreover, it is possible to note an influence on results due to

• laundry load amount

• range of the signal (for sensitivity analysis is divided signal by signal)

and a presence of two parameter "couples" (with similar EEs measures for all made
sensitivity analysis), so

- exchange power couple (anyway in general condenser one is a little bit more
important)

- hole volumetric flow couple

As regards the difference between various sensitivity analysis, it is possible to
tell that there are not big ones; importance rank is almost always the same.
However making various types of evaluation is a significant step for a sensitivity
analysis, since gives possibility to differentiate operation approach for different
future modification aim.
The only deviation of interest is present in temperature of condenser exit (air
side) analysis and temperature of condenser inlet (refrigerant side) analysis; in this
two sensitivity analysis hole volumetric flows are more important than evaporated
water coefficient kev. This fact is reasonable since kev is a coefficient of drum, while
these temperatures are to inlet and exit of condenser.
To verify even more considerations of this section, we made a general sensitivity
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analysis (for all load conditions and signals). In Fig. 3.22, it is possible to
see its Morris graph that confirms given importance order of sensitivity analysis
parameters.

Figure 3.22: General sensitivity analysis





Chapter 4

Phase 2

4.1 Code improvements

4.1.1 Black-box model

A black-box model is a model for which interior behaviour is not completely known.
In particular, as regards our model, this not clear part consists of look up tables (for
example with an interpolation and a look up table we find component temperature
with the knowledge of enthalpy and specific humidity). For this motivation in
the following sections we work to make more clear the model with some physical
formula.

4.1.2 Look up table vs Physical formula

The advantages of a physical formula are several but we can concentrate on three
aspects:

• make more clear the model for future modelers

• avoid (or however decrease) the problem of operation range. A look up table
is able to find a value as long as its size. Instead, a physical formula has
not MATLAB operation range but only a possible physical range. This fact
is very important for a MATLAB modeler since allows to avoid MATLAB
crash for out of range problem

• increasing of physical base. This fact is very important for future modeler
too; a physical base allows to make a general model, also if this model was
conceived for a specific machine
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The most important changing to increase physical base in our model were:

•
T =

( h
4.184
− 596 ∗ x)

0.24 + 0.46 ∗ x
(4.1)

where T is the temperature in ◦C, h is the enthalpy in Joule and x is the
specific humidity in Kg/Kg

•
Psat = exp[65.81− 7066.27

T + 273.15
− 5.976 ∗ ln(T + 273.15)] (4.2)

where Psat is the pressure of saturation in Pascal and T is the temperature
in ◦C

•

h = (ha + hv) ∗ 4.184 = (T ∗ 0.24 + x ∗ (596 + 0.46 ∗ T )) ∗ 4.184 (4.3)

where h is the enthalpy in Joule, ha is the specific enthalpy of dry air and
hv is the specific enthalpy of water vapour

Before to finish this section, by way an example it is possible to see a replaced
look up table in Fig. 4.1.

Figure 4.1: Look up table for calculating T from h and x
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4.1.3 Grey-box model

Thanks to physical formula, we obtained a model with some look up table and some
formula, so we can tell that now the model is a grey-box one, with all advantages
that we told before.

Figure 4.2: Different box model
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4.2 Least square estimation of motor feature signal
Concluding this work it is necessary to make a modify to the model, for achieving
a better motor feature performance. In particular it was chosen to implement a
least square estimation.

4.2.1 Least square estimation

Least square estimation [9] (LSE) is a method to estimate a signal by data. It
is about estimating parameters by minimizing the squared discrepancies between
observed data, on the one hand, and their expected values on the other.
The estimated signal Ystim depends on variation of some variable X and their
coefficients K. Given the values of X, the best prediction of Y is the mean f(X)
(function gives byX variables andK coefficients) of Y givenX. We can summarize
this definition in the following formula:

Ystim = f(X) = K0 +K1X1 +K2X2 + ...+KnXn (4.4)

where n is the number of X features of output Y .
We had to decide the features of the output, and using some acquired signal of Y
we found K values. At the end used LSE formula was:

Ystim = K0 +K1X1 +K2X2 (4.5)

where X1 is the laundry load amount and X2 is the laundry initial moisture. As
regards K LSE gave as results

K0 K1 K2

-61.802 39.882 0.466

Table 1: Table of K coefficients

4.2.2 Old motor feature calculation

In this subsection it is possible to see old motor feature MATLAB implementation
(Fig. 4.3). In practice we wait 30 seconds after motor switch on, and set motor
feature signal equals to 100. This approach was enough performing with laundry
half-load but not with other load amount.
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Figure 4.3: Old implementation of the motor feature signal

4.2.3 New implementation

In new motor feature implementation (Fig. 4.4) we use LSE. As you can see new
block is easily a LSE Simulink implementation. However, it is important to note
last two parts:

• Motor speed switch-block: this block allows to delay the count start. As
long as the speed of motor is equal to zero, motor feature signal is all the
same; when motor speed is nonzero, motor signal keeps reference value

• Delay block (z−d): this block allows to delay motor feature signal further,
so that simulated signal starts at the same time of acquired one



58

Figure 4.4: New implementation of the motor feature

4.2.4 Comparison of motor feature mean NRMSE

It is possible to compare KPIs before and after the modification. In particular
it was chosen to use mean NRMSE as key performance index. The results are
written in the following table.

Before modification After modification
1 0.28

Table 2: Table of motor feature signal comparison (mean NRMSE)

4.2.5 Boxplot evaluation

Another performance parameter is boxplot evaluation. As tells in the previous
section 2.6.2 this type of evaluation is very important and encloses in a graph
many information.
During the company experience were made various boxplots (RMSE, for laundry
load amount, ...); in this writing we concentrate on RMSE and NRMSE boxplot
because contains more information.
From Fig. 4.5 and Fig. 4.6 is enough easy to verify introduced improvements after
modification (for both figures, new error of motor feature signal is represented in
the second graph). In fact, for both outliers and mean distribution, there is a
significant decreasing of NRMSE, for all tests.
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Figure 4.5: RMSE boxplot for modification of motor feature signal calculation
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Figure 4.6: NRMSE boxplot for modification of motor feature signal calculation



61

4.3 Exchange power calculation
The last section of this project will be paid for a physical theorical exchange power
calculation; this calculation is more important to give additional theorical base to
the model and verify correctness of our work.
Two equations [2, 4, 6] from which we started are the following{

h = ha + xhv = cpaT + x(r0 + cpvT )
q + h1 = h2 ⇒ q = h2 − h1

(4.6)

where 1 and 2 mean respectively before and after examined component, h is the
enthalpy, ha is the enthalpy of dry air, hv is the enthalpy of water vapour, x is the
specific humidity, T is the temperature in ◦C, cpa = 1.006KJ/(Kg ∗◦ C) is the air
specific heat at constant pressure, q is the heat, cpv = 1.875KJ/(Kg ∗◦ C) is the
water vapour specific heat at constant pressure and r0 = 2501KJ/Kg is the heat
of vaporization.
From this two equations, remembering that Pexchange = ṁaq = ρV̇ q (where ṁa is
the air that crosses component, ρ is the air density and V̇ is the volumetric flow),
we can calculate exchange power that is

Pexchange = ρV̇ [cpa(T2 − T1) + r0(x2 − x1) + cpv(T2x2 − T1x1)] (4.7)

As regards all these terms, many of them are directly calculated by laboratory
technicians, but this is not for specific humidity x. For this motivation we used
the following equation [1] to calculate it

x = 0.622
Pv

Ptot − Pv

(4.8)

where Ptot (total component pressure) is a data, while Pv (pressure of vaporization)
is derived by

Pv = Psat ∗RH (4.9)

where RH is the relative humidity [%] and Psat is calculated as in section 4.1.2 -
equation 4.2.





Chapter 5

Conclusions

The results of the project can be considered satisfying. With using of this model
will be possible to dominate the increasing complexity of industrial processes
and they enable to accelerate innovation cycles, rapidly exploring and exploiting
quickly new possible solutions.
It was possible to increase physical base, improving initial model, and to make
an in-depth analysis of all most important model aspects. Thanks to this work,
feature modelers will be able to modify easily the model to transform it in a model
of different dryer (in some case it will not need of any modifications), earning work
hours for each revision. Moreover it will be possible use various scripts of this
project for most disparate activities (avoid acquisition disturbances, least square
estimation of a signal, report for a simulation/acquisition comparison, in-depth
analysis with error and boxplot evaluation and sensitivity analysis, ...).
The aim of the project, thus to allow performance evaluation and software debug
of the dryer without use of the real machine, was achieved. This will mean a
considerable time and cost saving for Electrolux, a greater evaluation of issues and
a possible using for hardware in the loop activities.
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Appendix A

Real test dataset

This appendix contains the real test dataset. As said above, during the conduct
of the thesis, much time was spend to clean and improve the acquisition signals.
The dataset consists of 91 tests divided by laundry load condition (different types,
including climatic chamber conditions) and laundry load amount (full and half
load, so respectively 8Kg and 4Kg).
Climatic chamber tests are in turn divided into hot conditions (average lab temperature
is 35◦C) and cold conditions (average lab temperature is 5◦C). The choice of these
temperatures is not random but is due to the extreme working dryer temperatures,
precisely 5◦C and 35◦C.
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Figure A.1: Real test Dataset (91 tests)



Appendix B

Holes and circuit in old
MATLAB/Simulink model

Figure B.1: Holes and circuit in old MATLAB/Simulink model
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