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Introduction

In this work we have analyzed some properties of compact Ricci-flat Kähler
manifolds, which by Calabi-Yau theorem coincide with the class of compact
complex manifolds which admit a Kähler metric and have cR1 = 0.
Since the publication of Calabi’s article in 1954, it has been clear that com-
pact Kähler manifolds are particularly well-behaved, being the compact com-
plex manifols for which riemannian geometry and complex geometry interact
in the best possible way. Kähler geometry has always been a very active field
of research, which has attracted both algebraic and differential geoemeters and
yielded a great interaction between the two fields.
The first chapter of thesis recalls some notions of riemannian geometry, with
a special focus on Kähler case. Then Chern classes are defined, we tried to
provide some geometric intution together with the needed formalism. Also in
this case, a section is devoted to discuss Kähler case.
In the second chapter one finds the main result, Beauville’s decomposition theo-
rem. The main ideas of the proof come from riemannian geometry, in particular
from the theory of holonomy representations, and at a first sight it is a rie-
mannian geometry theorem. The Bochner principle together with Calabi-Yau
theorem, though, allow to transfer this theorem in a metric-free world, much
closer to ”pure” algebraic geometry.
The combination of these two results shows that, for Kähler manifolds, having
a certain holonomy representation (for a fixed metric) is equivalent to a certain
structure of cohomology of holomorphic sheaves (which does not depend on the
metric) and allows to state the decomposition theorem in a metric-free context,
with isometries replaced by biholomoprhisms.
This led algebraic geometers to extend some definitions (K3 surfaces, Calabi-Yau
and irreducible symplectic manifolds) born in riemannian setting to algebraic
varieties over arbitrary fields. In the last chapter these three classes of man-
ifolds, which arise from Beauville’s decomposition, are studied. We point out
that the nomenclature is highly non standard, throughout the work Calabi-Yau
manifolds will be complex manifolds with trivial canonical bundle and hp,0 = 0
for 0 < p < dim(X) whereas irreducible-symplectic manifolds will be simply
connected complex manifolds, with a holomorphic symplectic form φ. In this
chapter differential tools are widely used, but the results will be mainly alge-
braic and topological.
The first class has been studied in depth in the last decades. Recently the re-
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search on moduli spaces of sheaves on K3 surfaces is very alive (see [Saw16] for
a recent survey) and keeps providing new results and insights.
Calabi-Yau manifolds have been studied intensively since the ’60s and found
many applications in theoretical physics (see for example [Gre97]). In particu-
lar Calabi-Yau threefolds are at the basis of the main models of string theories,
where the conditions of compactness, existence of a Kähler metric and Ricci-
flatness all come naturally from phyisical motivations (in physics often Calabi-
Yau=Ricci-flat, as this class behave well enough for string theory).
The last class is instead more mysterious: topological properties of irreducible
symplectic manifolds are quite well-understood, but there is great uncertainty
about any kind of classification. Only four deformation classes have been found,
but it has not been established if these are indeed the only ones.

The nature of the subject brought the necessity to work with tools from both
riemannian geometry and complex algebraic geometry. Many standard results
have been assumed and different theorems are not proved. We have presented,
though, some quite detailed examples, especially in the second part, in order to
help the reader to have a concrete view of the objects we have dealt with.
We have tried to summarize the main nowadays literature on the subject, pre-
senting also some very recent results (see 3.3.3) which can be obtained from
Beauville’s theorem.
We also would like to remark that the discussion on the existence of a Kähler
metric for the Douady space X [n] at the end of the paragraph 3.3.1, although
based on known results, has not been found by us in a complete and detailed
form anywhere in the literature.



Chapter 1

Preliminaries

1.1 Kähler Manifolds

In this paragraph we will briefly outline some definitions of Kähler manifolds,
focusing in particular on the riemannian properties.
On a differentiable manifold M there is a natural operation on the graded alge-
bra of vector-valued differential forms, known as Frölicher–Nijenhuis bracket1

[−,−] : Ωk(M,TM)× Ωl(M,TM) → Ωk+l(M,TM)

which for k = l = 1 reads

[K,L](X,Y ) =[KX,LY ] + [LX,KY ] + (KL+ LK)[X,Y ]

−K([LX, Y ] + [X,LY ])− L([KX,Y ] + [X,KY ])

where K,L ∈ Ω1(M,TM) and X,Y are vector fields. Taking K = L = I one
has

2[I, I](X,Y ) = [X,Y ]− [IX, IY ] + I
(
[IX, Y ] + [X, IY ]

)

Definition 1.1.1. An almost complex structure on a real n-dimensional mani-
fold M is an automorphism I of TM such that I2 = −Id. It is said integrable
if [I, I] = 0. An almost complex manifold is a couple (M, I).

The word integrable refers to the fact that [I, I] measures the obstruction
to solve a PDE on M . Indeed the almost complex structure I provides an
well-known R-linear bundle decomposition TM ⊗R C = T 1,0M ⊕ T 0,1M with
fibers

T 1,0
p M := {v ∈ Tp,CM | Ip(v) = iv}
T 0,1
p M := {v ∈ Tp,CM | Ip(v) = −iv}

1See [Mic] for details
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where I is the C-linear extension.
If a real base for TpM is given by

( ∂

∂x1
|p, . . . ,

∂

∂xn
|p,

∂

∂y1
|p, . . . ,

∂

∂yn
|p
)
j=1,...,n

where ∂
∂yj

|p = I( ∂
∂xj

|p), the map

Tp,CM
⋍−→ T 1,0

p M ⊕ T 0,1
p M

v 7→
(
v − iI(v), v + iI(v)

)

shows that in any point

( ∂

∂xj
|p − i

∂

∂yj
|p
)
j=1,...,n

is a complex base of T 1,0
p M whereas

( ∂

∂xj
|p + i

∂

∂yj
|p
)
j=1,...,n

is a complex base of T 0,1
p M . Then I is integrable if and only if

∂

∂zj
:=

∂

∂xj
− i

∂

∂yj

is a local frame for T 1,0M and

∂

∂z̄j
:=

∂

∂xj
+ i

∂

∂yj

is a local frame for T 0,1M . These results are summarized in

Theorem 1.1.2 (Newlander–Nirenberg). For an almost complex manifold (M, I)
the following are equivalent:

• [I, I] = 0

• T 1,0M is spanned by ∂
∂zj

• T 1,0M is closed for Lie bracket

• T 1,0M is closed by parallel transport

• ∂̄2 = 0

If one of the property holds, then there exists a unique complex atlas onM whose
underlying almost complex structure is I.



It is in general a difficult problem to establish whether a differentiable man-
ifold admits an almost complex structure and when this is integrable.
This is why it is usually more practical to consider complex manifolds in the
first place.
We shall now give the definition of Kähler manifold from a riemannian point of
view

Definition 1.1.3. A riemannian almost complex manifold (M, g, I) is Kähler
if I preserves g (i.e. g(u, v) = g(Iu, Iv) for any vector fields u, v) and ∇I = 0
for the Levi-Civita connection.

It is not necessary to require the integrability of I because if the connection
is torsion free, flat tensor fields are always integrable in the generalized sense.2

Hermitian structures

Let E → X be a complex vector bundle, then a hermitian metric h is a C∞

assignment x 7→ hx where hx is an hermitian form on Ex. Now let E = TX ,
in this case a hermitian metric induces naturally a riemannian structure on the
underlying differentiable manifold by

g := Rh

which in this way is automatically I-compatible.
The converse holds true as well via

h := g + ig(−, I(−))

The difference between these two structures is then encoded in a 2-form

ω := g(−, I(−))

If one extends g by C-sesquilinearity to g̃, then an easy computation shows that

T 1,0M ⊕⊥ T 0,1M

and the C-bilinear extension of ω to a complexified 2-form turns out to be in
Ω1,1(X). Notice also that g̃ on the complexified tangent space coincides with h
on the holomorphic tangent bundle, because

g̃(u− iI(u), v − iI(v)) = 2h(u, v)

g̃(u+ iI(u), v + iI(v)) = 2h(u, v)

The following result is well known

2For example if D ⊂ TM is a parallel distribution and X,Y are sections of D, then

[X,Y ] = ∇XY −∇Y X

and the term on right hand side belongs to D, since

∇XY |q = lim
t→0

1

t

(

Pγ(t)(Y )− Y |q
)

where γ(t) is any integral curve for X with γ(0) = q and Pγ(t)(Y ) ∈ D by hypothesis (and
analogously for ∇Y X).



Lemma 1.1.4. On a complex manifold X there is a one to one correspondence
between hermitian metrics, compatible riemannian metrics (regarding X as a
differentiable manifold) and elements of Ω1,1(X) ∩ Ω2

R
(X).

Proof. For the two first families consider:

h 7→ g := Rh

then g is clearly real, symmetric and positive definite. The inverse is given by

g 7→ h := g − ig(I(−),−)

and such an h satisfies h(u, v) = h(v, u), is C-linear in the first argument and
C-antilinear in the second one and is positive definite.
For the first one and the last one consider:

h 7→ ω := −I h

with inverse
ω 7→ h := ω(−, I(−))− iω

It is often convenient to perform computations in coordinates: let (z1, . . . , zn)
be holomoprhic coordinates, then

h
(
αi

∂

∂zi
, βj

∂

∂zj

)
= αiβjhij

i.e.
h = hij̄dz

i ⊗ dzj

which implies

ω =
i

2
hij̄dz

i ∧ dzj

The second and most common definition of Kähler metric is

Definition 1.1.5. A hermitian metric (or the corresponding compatible rie-
mannian metric) over the complex manifold X is said Kähler if dω = 0.

A useful characterization of Kähler metrics in terms of their Taylor expansion
if the following

Lemma 1.1.6. An hermitian metric h over X is Kähler if and only if for every
p ∈ X there are local holomorphic coordinates (z1, . . . , zn) such that h reads

h(z) = Idn +O(‖z‖2)



Proof. If h has such a local expression, then clearly dω = 0. Conversly, first
choose a local chart centered in p such that h(p) = Id, then

h =
∑

i

dzi ⊗ dzi +
∑

ij

ǫijdz
i ⊗ dzj +O(‖z‖2)

where ǫij =
∂hij

∂zk
(0)zk +

∂hij

∂zl
(0)zl and since h is hermitian

∂hij
∂zk

=
(∂hji
∂zk

)

Thus ω can be written as:

ω =
i

2

(
δij +

∂hij
∂zk

(0)zk +
∂hij

∂zl
(0)zl

)
dzi ∧ dzj +O(‖z‖2)

The fact the dω = 0 implies that

∂
(∂hij
∂zk

∣∣∣
z=0

zkdzi ∧ dzj
)
=
∂hij
∂zl

∣∣∣
z=0

dzl ∧ dzi ∧ dzj

hence
∂hij
∂zl

∣∣∣
z=0

=
∂hlj
∂zi

∣∣∣
z=0

Thus there exist holomorphic functions φj : Cn → C such that

∂hij
∂zl

∣∣∣
z=0

zl =
∂φj
∂zi

One can clearly choose φj vanishing in 0 and in this way it is possible to define
new coordinates in a neighbourhood of the origin wj = zj + φj , since

φj(z) =
∂φj

∂zi∂zk

∣∣∣
z=0

zizk +O(‖z‖3) = ∂hij
∂zk

∣∣∣
z=0

zk +O(‖z‖3)

In these new coordinates, then:

dwi = dzi +
∂φi
∂zk

dzk

Thus one obtains:

∑

i

dwi ∧ dwi =
∑

i

dzi ∧ dzi +
∑

i,k

(
∂φi
∂zk

dzk ∧ dzi +
∂φi
∂zk

dzi ∧ dzk) +O(‖z‖2)

=
∑

i

dzi ∧ dzi +
∑

i,k

ǫkidzk ∧ dzi +O(‖z‖2)

and this last expression equals 2
iω + O(‖z‖)2. Now since the expansion of the

change of coordinates Φ has order at most two around 0, if f(z) = O(‖z‖)2,
then f(Φ(w)) = O(‖w‖)2. This shows that

ω =
i

2

∑

i

dwi ∧ dwi +O(‖w‖)2



hence
h =

∑

i

dwi ⊗ dwi +O(‖w‖)2

This result immediately implies the following important characterization

Theorem 1.1.7. For a hermitian manifold (M,h) (or equivalently for a rie-
mannian almost complex manifold (M, g, I)) the following are equivalent:

1. h is Kähler

2. I is flat for ∇LC , i.e. ∇LC(IZ) = I(∇LCZ) for any real vector field Z

3. After the canonical identification (in the cateogry of C∞-vector bundles
over X) of TX and TRX, ∇Ch = ∇LC

Proof. Since ∇Ch is a complex connection it is C-linear and under the identifi-
cation Re : TX → TRX one has i = I, hence 3. implies 2..
To prove that 2. implies 1., for the Levi-Civita connection

d(g(W,Z)) = g(∇W,Z) + g(W,∇Z)

holds by definition, so if ∇LC commutes with I one has

d(ω(W,Z)) = ω(∇W,Z) + ω(W,∇Z)

then for three vector fields Y,W,Z

Y (ω(W,Z)) = ω(∇YW,Z) + ω(W,∇Y Z)

Now the well known formula for exterior derivative

dω(Y,W,Z) =Y (ω(W,Z))−W (ω(Y, Z)) + Z(ω(Y,W ))

− ω([Y,W ], Z) + ω(Y, [W,Z]) + ω([Y, Z],W )

yields dω = 0, writing all the brackets in terms of covariant derivatives.
For the last implication, note that ∇Ch and ∇LC coincide in the trivial case
X = Cn and h =

∑
dzi ⊗ dzi. Moreover, both the connections at each point

depend on the metrics only up to the first order.
Now by the previous lemma if h is Kähler then in local coordinates it is trivial
to the first order, which means that the two corresponding two connections
coincide.

The previous theorem shows that Kähler condition is really a natural one to
ask.



1.2 Connections

Let X be a complex manifold and E → X a complex vector bundle, the bundle
of E-valued k-forms will be denoted byAk

X,E = Ak
X ⊗ E or simply Ak

E , where

Ak
X is the k-th exterior power of the complexified cotangent bundle. The bundle

of holomorphic forms will be denoted as ΩkX and the spaces of global section as
Ak(X) or ΩkX(X). In particular A0

X,E(U) = C∞(U,E) for U open in X.

Definition 1.2.1. A connection ∇ is a C-linear sheaf homomorphism

∇ : A0
E → A1

E

satisfying Leibniz rule
∇(fσ) = df ⊗ σ + f∇(σ)

for any section σ and any f ∈ C∞(X;C), where for any differential form α and
any Y section of TCX one sets:

(α⊗ σ)(Y ) = (α(Y ))σ

The definition of real connection is analogous, by replacing C with R. For a
holomorphic vector bundle E → X there is a notion of holomorphic connection,
defined replacing Ai

E with ΩiX ⊗ E, but it will not be used in this work.
A connection is not not C∞-linear but the difference of two connections always
is, indeed the space of connections for E → X is an affine space over A1(X)⊗
End(E). In particular given a connection ∇ all the other connections will be of
the form ∇′ = ∇+ φ with φ ∈ A1(X)⊗ End(E).
It is useful to have a local expression: if U ⊂ X is a trivializing open set for E,
with basis given by (s1, . . . , sk), then

∇(f isi) = df i ⊗ si + f i∇si

Set ∇si = ωji sj where ωji ∈ A1(X). The 1-forms ωji completely determine the
connection.
Since for X one has the projection operators

pr1,0 : A1(X) → A1,0(X) pr0,1 : A1(X) → A0,1(X)

any connection can be decomposed as:

∇1,0 = pr1,0 ◦ ∇ : A0
E(X) → A1,0

E (X)

and
∇0,1 = pr0,1 ◦ ∇ : A0

E(X) → A0,1
E (X)

Even though an exterior derivative for E-valued forms

Ak
E(X) → Ak+1

E (X)



is a priori not defined, if E is holomorphic, s ∈ H0(X,A0,q
E ) and (e1 . . . , ek) is

a local trivialization over U ⊂ X, one has s = αi ⊗ ei with α
i ∈ A0,q(U). Then

one defines
(∂̄E)U (α) := (∂̄α1, . . . , ∂̄αk)

and this operator is well defined, indeed:

Lemma 1.2.2. If U, V are two overlapping open subsets of X, (E1, . . . , Ek)
a trivialization over U and (F1, . . . , Fk) a trivialization over V , then for each
α ∈ A0,q

E (U ∩ V ) one has

(∂̄E)U (α) = (∂̄E)V (α)

Proof. Let α = αi ⊗Ei = βj ⊗ Fj and M be the transition matrix between the
two local frame. Then β =Mα and:

(∂̄E)V (a) = (∂̄E)V (β1, . . . , βk)

= (∂̄β1, . . . , ∂̄βk)

=M(∂̄α1, . . . , ∂̄αk)

since ∂̄βi = ∂̄(
∑
jMijα

j) =
∑
jMij ∂̄(a

j).

The definition exploits that transition matrix has holomorphic coefficients,
thus is annihilated by ∂̄. It is not possible to define ∂E : Ap,0

E (X) → Ap+1,0
E (X)

in an analogous way. It is now natural to relate ∂̄E and ∇0,1.

Definition 1.2.3. A connection ∇ for a holomorphic vector bundle E → X is
said compatible with the holomorphic structure if ∇0,1 = ∂̄E .

If a complex vector bundle E → X has a hermitian structure, it is instead
natural to require that

Definition 1.2.4. ∇ is said hermitian (or compatible with h) if

d(h(σ, τ)) = h(∇σ, τ) + h(σ,∇τ)

where the natural extension of h is considered:

h(α⊗ σ, τ) = αh(σ, τ)

h(σ, α⊗ τ) = ᾱh(σ, τ)

for each σ, τ ∈ Ω0(E) and α ∈ Ω1(X).

If ∇ is hermitian and φ ∈ A1(X), then ∇′ = ∇+ φ is hermitian if and only
if

h(φ(σ), τ) + h(σ, φ(τ)) = 0

Then one sets

Definition 1.2.5. Define End(E, h) the subsheaf of E of sections φ which sat-
isfies

h(φ(σ), τ) + h(σ, φ(τ)) = 0



Clearly the space of connections compatible with the holomorphic structure
is an affine space modelled over A1,0(X) ⊗ End(E, h) whereas the space of
hermitian connections is an affine space modelled over A1(X)⊗End(E, h). This
leads to

Lemma 1.2.6. For a holomorphic hermitian vector bundle E → X there exists
a unique connection ∇, called Chern connection, compatible with the complex
structure and with the metric.

Proof. Let s1, . . . , sk be local holomorphic sections which are a local basis for
E. Compatibility condition reads:

d(h(si, sj)) = h(∇si, sj) + h(si,∇sj)

Since ∇ = d + ω and the si are holomorphic, ω is a matrix of elements of
A1,0(X). Then

∂(h(si, sj)) = h(∇1,0si, sj)

or in matrix notation
∂h = ωth

which implies
ω = h̄−1∂(h̄)

Example 1.2.7. Let (L, h) → X be a holomorphic hermitian line bundle.
Clearly h corresponds to a C∞ function X → R+. Then the Chern connection
is given by ∇ = d+ ∂ log(h).

In real riemannian geometry one can proceed analogously and look for con-
nections compatible with the structures on the manifold. For arbitrary real
riemannian vector bundles (E, g) → X (i.e. whose structure group can be re-
duced to O(n)) it makes sense to ask for compatibility with g, but this does not
determine a unique connection. Indeed the real vector space A1(X)⊗End(E, g)
is not trivial (this is again related to the fact that there is a priori no natural
way to differentiate E-valued form). If E = TX, though, it makes sense to ask
for compatibility of the connection with the differentiable structure.

Definition 1.2.8. Let M be a differentiable manifold with a connection ∇ on
TM . Its torsion is defined as

T (X,Y ) := ∇XY −∇YX − [X,Y ]

for any X,Y section of TM .

Notice that if the torsion vanishes, then LXY = ∇XY −∇YX.

Definition 1.2.9. For a riemannian manifold (M, g) the unique connection on
TM compatible with metric and without torsion is called Levi-Civita connec-
tion.



The existence and uniqueness can be proved easily.
Given a connection it is possible to extend it to a differential operator

∇ : Ak
E(X) → Ak+1

E (X)

by setting, for a k-form σ and τ a section of E

∇(σ ⊗ τ) = dσ ⊗ τ + (−1)deg(σ) ∧∇(τ)

Then one has

Definition 1.2.10. The curvature of ∇ is defined as

R∇ = ∇ ◦∇ : A0
E(X) → A2

E(X)

Unlike connections, it is easy to check that curvature is C∞-linear and this
allows to view it as a global section of A2(X)⊗End(E) (the so-called curvature
form).
If a local frame (s1, . . . , sk) is fixed for E, then

(R∇si)(X,Y ) = Ωji (X,Y )sj

for any X,Y sections of TCX. Again the collection of 2-forms (Ωji )
dim(X)
i,j=1 com-

pletely determines the curvature. By definition

R∇(si) = (dωji + ωjk ∧ ωki )sj
which implies the following formula, known as Cartan’s structure equation

Ωji = dωji + ωjk ∧ ωki
If moreover one fixes local coordinates (z1, . . . , zn) for X, then

Ωji = Rjiαβdz
α ∧ dzβ +Rj

iαβ̄
dzα ∧ dz̄β +Rj

iᾱβ̄
dz̄α ∧ dz̄β

With the coordinate expression is easy to see that if ∇ is a connection on the
tangent bundle, its associated curvature reads

R∇(X,Y )(σ) = ∇X∇Y σ −∇Y∇Xσ −∇[X,Y ]σ

for any vector fields X,Y, Z.

Example 1.2.11. Let (L, h) → X be a hermitian line bundle. Then ∇(s) = ωs
hence R∇ = dω. If ∇ is the Chern connection, in particular, the coordinate
expression reads

R∇ = ∂̄∂log(h)

whereas for an arbitrary vector bundles R∇ = ∂̄(h̄−1∂(h̄))).

Since the curvature can be seen as a two form, it is natural to ask in which
component of A2(X) ⊗ End(E, h) it lives. For Chern connection the following
holds



Lemma 1.2.12. Let ∇ be the the Chern connection for a holomorphic vector
bundle (E, h) → X, then

R∇ ∈ A1,1
iR (X)⊗ End(E, h)

Proof. A simple computation yields

h(R∇(s1), s2) + h(s1, R∇(s2)) = 0

The fact that R∇ has no (0, 2)-part follows from the definition

R∇ = (∇1,0 + ∂̄)(∇1,0 + ∂̄)

and this also implies that h(R∇(s1), s2) has no (0, 2) part whereas h(s1, R∇(s2))
has no (2, 0) part, then they necessarily both have only (1, 1) part.
To see that R∇ is pure-imaginary, consider a local ortonormal frame (s1, . . . sk)
for E, so that in coordinates h = Id. Then for any vector fields X,Y one has

(R∇(X,Y ))ij = h
(
R∇(X,Y )(si), sj

)
= −h

(
si, R∇(X,Y )(sj)

)
= −(R∇(X,Y ))ij

Definition 1.2.13. A section s of E is said parallel if ∇s = 0.

If ψ is a fixed vector field on X, then the covariant derivative along ψ is
defined as

∇ψ : A0
E(X) → A0

E(X)

σ 7→ ∇ψ(σ) = ∇(σ)(ψ)

and ∇(σ)(−) is not only C-linear but C∞-linear, i.e. it is a morphism of sheaves
of C∞-modules. In particular

(
∇ψ(σ)

)
p
depends only on the pointwise value

of ψ. This reinforces the idea that connections are derivations of tensor fields
along a chosen direction, as

• If X and X ′ are two vector fields with X|p = X ′|p, then ∇XT |p = ∇X′T |p
• If T and T ′ are two tensor fields with T |γ(t) = T ′|γ(t) where γ is an integral
curve for X, then ∇XT |γ(t) = ∇XT

′|γ(t)
Another classical object of riemannian geometry is

Definition 1.2.14. Given a connection ∇ for E → M and a local trivializa-
tion (e1, . . . , ek), the Christoffel Symbols associated to the connection and the
trivialization are given by:

∇∂j (ek) = Γijkei

We now focus on the case in which E = TX. A connection for this bundle
can be interpreted as a way to differentiate vector fields along a fixed vector
field ψ.



Definition 1.2.15. The Ricci curvature tensor of a connection ∇ on TM with
associated curvature R is defined as

Ric(X,Y ) = tr(R(−, X)Y )

In a local orthonormal frame (e1, . . . , en) for TM , the above formula yields:

Ric(X,Y ) = tr(R(−, X)Y )

=
∑

i

g(R(Ei, X)Y,Ei)

which implies in particular that Ric(X,Y ) = Ric(Y,X). The term g(R(Ei, X)Y,Ei)
is often written as R(Ei, X, Y,Ei). and is knwon by riemannian geometry as
sectional curvature (see [DF92] for details). In local coordinates one has

Ric(X,Y ) = Rijdx
i ⊗ dxj(X,Y )

and a simple computation shows that Rij = Rkikj .
The geometric intuition behind Ricci tensor is the following: fix p ∈ M and
let (x1, . . . , xn) be normal geodesic coordinates around p (these are coordi-
nates associated to a chart φ centered in p, such that φ−1xi are geodesic and
g(∂xi|p, ∂xj |p) = δij), then the volume form can be locally written as:

dVg =
(
Id− 1

6
Ric(xi, xj) +O(‖x3‖)

)
dx1 . . . dxn

thus the Ricci tensor is the main contribution of the curvature in the distorsion
of the volume.
Given a connection ∇ on E → X, we will now define induced connections on
tensor bundles, exterior power bundles and the dual bundle. They actually
descend from a unique object, indeed if E → X is a rank k complex vector
bundle and Fr(E) → X is the underlying GL(Ck)-principal bundle, all these
bundles are obtained from Fr(E) via different representations.
If E ⋍ Fr(E)×ρ Ck, then

E⊗n
⋍ Fr(E)×ρ⊗n (Ck)⊗n

n∧
E ⋍ Fr(E)×ρ∧n

n∧
Ck

E∗
⋍ Fr(E)×ρ∗ (Ck)∗

and the formulas below descend from this.

Definition 1.2.16. If ∇ is a connection on E → X, then the natural induced
connections are defined on generators as

• On E⊗n, ∇⊗n
X (s1 ⊗ · · · ⊗ sn) =

∑
i(s1 ⊗ · · · ⊗ ∇Xsi ⊗ · · · ⊗ sn)

• On
∧n

E, ∇∧n
X (s1 ∧ · · · ∧ sn) =

∑
i(s1 ∧ · · · ∧ ∇Xsi ∧ · · · ∧ sn)



• On E∗, the induced connection satisfies X(ξ(s)) = ξ(∇Xs)+(∇∗
Xξ)(s) for

any ξ section of E

• On End(E) = E∗ ⊗ E, ∇End
X (f)(s) = ∇X(f(s))− f(∇Xs)

Example 1.2.17. Let ∇ be a connection on TM → M , then the natural
extension of ∇ to all the tensor bundles T pqM = TM⊗p ⊗ T ∗M⊗q is given by

(∇XT )(ω1, . . . , ωp, Y1, . . . , Yq) =X
(
T (ω1, . . . , ωp, Y1, . . . , Yq)

)

−
∑

i

T (ω1, . . . ,∇Xω
i, . . . , ωp, Y1, . . . , Yq)

−
∑

j

T (ω1, . . . , ωp, Y1, . . . ,∇XYj , . . . , Yq)

where (∇Xω
i)(Z) = X(ωi(Z))− ωi(∇XZ).

The following property yields some useful symmetries of the curvature tensor.
Since R∇(X,Y ) is a section of End(E) and this bundle has a natural induced

connection ∇̃, it is possible to apply this connection to R∇(X,Y ). The precise
expression is:

(∇̃WR∇(X,Y ))(s) = ∇W

(
R∇(X,Y )(s)

)
−R∇(X,Y )

(
∇W (s)

)

for any vector field W . Notice in particular that (∇(R∇))(s) 6= ∇(R∇(s)).

Lemma 1.2.18 (Bianchi Identity). Any connection ∇ on a vector bundle E →
X satisfies ∇̃(R∇) = 0.

For any torsion-free connection on the tangent bundle, Bianchi identity spec-
ifies to

Lemma 1.2.19 (First Bianchi identity in vector form). If ∇ is without torsion,
then for the curvature tensor R one has:

R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0

Proof.

∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

+∇Y∇ZX −∇Z∇YX −∇[Y,Z]X

+∇Z∇XY −∇X∇ZY −∇[Z,X]Y

=∇X [Y, Z] +∇Y [Z,X] +∇Z [X,Y ]

−∇[X,Y ]Z −∇[Y,Z]X −∇[Z,X]Y

=[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]]

=0



If one has also a metric tensor g, consider the tensor

R(X,Y, Z,W ) = g(R(X,Y )Z,W )

for any X,Y, Z,W sections of TM . If the connection is also compatible with
the metric (i.e. it is the Levi-Civita connection) one has

Lemma 1.2.20 (Second Bianchi Identity).

(∇XR)(Y, Z, T,W ) + (∇YR)(Z,X, T,W ) + (∇ZR)(X,Y, T,W ) = 0

Proof. Since ∇XR is C∞-linear in all the four arguments, it suffices to prove
the identity in a point p for X,Y, Z, T,W coordinate vector fields which are
orthogonal in p. In this way (∇XY )|p = 0. With this assumption

(∇XR)(Y, Z, T,W ) = X(R(Y, Z, T,W )) = g(∇X(R(Y, Z)T ),W )

and the last term equals

g(∇X∇Y∇ZT −∇X∇Z∇Y T,W )

The conclusion follows by permuting ciclically X,Y, Z and summing everything
together.

Now letX be a Kähler manifold. Since I is flat for the Levi-Civita connection

R(X,Y )(IZ) = ∇X∇Y IZ −∇Y∇XIZ −∇[X,Y ]IZ = IR(X,Y )Z

and since g is compatible

R(X,Y, IZ, IT ) = R(X,Y, Z, T ) = R(IX, IY, Z, T )

which implies

Ric(IX, IY ) =
∑

i

gR(ei, IX)IY, ei)

=
∑

i

g(R(Iei, X)Y, Iei)

= Ric(X,Y )

since if (ei) is an orthonormal frame, so is (Iei). This allows to define an
important object, called Ricci Form, by

ρ(X,Y ) = Ric(IX, Y )

From now on we will not distinguish between the real Ricci-form and its C-
bilinear extension. The first property of Ricci form

Lemma 1.2.21. For a Kähler manifold X, the form ρ is in A1,1
X and is closed.



Proof. One has:

Ric(I
∂

∂zi
,
∂

∂zj
) =Ric(

∂

∂yi
+ i

∂

∂xi
,
∂

∂xj
− i

∂

∂yj
)

=Ric(
∂

∂yi
,
∂

∂xj
) + Ric(

∂

∂xi
,
∂

∂yj
)

+ i
(
Ric(

∂

∂xi
,
∂

∂xj
)− Ric(

∂

∂yi
,
∂

∂yj
)
)

=0

and by conjugation one sees that ρ is a (1, 1)-form.
To show that ρ is closed:

Ric(X,Y ) =
∑

i

R(ei, X, Y, ei)

=
∑

i

R(ei, X, IY, Iei)

=
∑

i

−
(
R(X, IY, Iei, ei) +R(IY, ei, X, Iei)

)

=
∑

i

R(X, IY, ei, Iei) +R(Y, Iei, X, Iei)

= tr(R(X, IY ) ◦ I)− Ric(X,Y )

which yields, writing 2ρ(X,Y ) = tr(R(X,Y ) ◦ I):

2dρ(X,Y, Z) = 2
(
(∇Xρ)(Y, Z) + (∇Y ρ)(Z,X) + (∇Zρ)(X,Y )

)

= 2tr
(
(∇XR)(Y, Z) ◦ I + (∇YR)(Z,X) ◦ I + (∇ZR)(X,Y ) ◦ I

)

= 0

by the second Bianchi identity.

For Kähler manifolds the ∂∂̄-lemma ensures that there exists a function
f ∈ C∞(X,C) such that ρ = ∂∂̄f . We will now show that this primitive is
strongly related to the metric structure.
Let (x1, . . . , xn, y1, . . . , yn) with yi = I(xi) be real coordinates with associated
complex coordinates (z1, . . . , zn, z̄1, . . . , z̄n), then

ρij̄ − ρj̄i = ρ(
∂

∂zi
,
∂

∂z̄j
) = Ric(I

∂

∂zi
,
∂

∂z̄j
)

= iRic(
∂

∂zi
,
∂

∂z̄j
) = i(Ricij̄ +Ricj̄i)

since Ric is symmetric. Thus we have found that if Ric = Rij̄dz
i ⊗ dz̄j , then

ρ =
√
−1Rij̄dz

i ∧ dz̄j



We will show that curvature tensor for Kähler manifolds has many symmetries.
Greek indices will range from 1 to n whereas the Latin ones from 1 to 2n. In
particular Zi =

∂
∂zi

if i ≤ n and Zi =
∂
∂z̄i

if i ≥ n+ 1. Complexified Christoffel
symbols are given by

∇Zi
Zj = ΓkijZk

Since the connection is torsion free, they are symmetric in the bottom indices
and since T 1,0 is ∇-parallel

Γαiβ̄ = 0

This all together shows that the only non-vanishing components are:

Γαβγ Γᾱβ̄γ̄

Now recall that the ∇LC
X Y = ∇Ch

X−iIX(Y − iIY ) for any X,Y sections of TX.
Then

∂hβδ̄
∂zα

=
∂

∂zα
h(Zβ , Zδ̄) = h(∇Zα

Zβ , Zδ̄) = Γγαβhγδ̄

by compatibility of h and the fact that ∇Zα
Zδ̄ = 0. Thus one has the formula

Γǫαβ =
∂hβδ̄
∂zα

hδ̄ǫ

In the same spirit, for the complexified curvature tensor

R(Za, Zb)Zc = RdabcZd

Since T 1,0M is parallel, Rγ
abδ̄

= 0. For the only non-vanishing components, one
has

Rδαβ̄γZδ = −∇Zβ̄
∇Zα

Zγ = −∇Zβ̄

(
ΓδαγZδ

)
= −

∂Γδαγ
∂z̄β

Zδ

thus

Rδαβ̄γ = −
∂Γδαγ
∂z̄β

To get the associated complexified Ricci tensor one has to sum over the upper
index with the first lower one, obtaining

Ricβ̄γ = −
∂Γααγ
∂z̄β

Together with the previuos formula this yields

Γααγ = hδ̄α
∂hγδ̄
∂zα

=
1

det(h)

∂det(h)

∂zα

where the last equality follows from Jacobi formula for the determinant. Then

Ricαβ̄ = −∂
2log

(
det(h)

)

∂zα∂z̄β

and
ρ = i∂̄∂log

(
det(h)

)



Remark 1.2.22. If ∇ is a connection on a complex vector bundle E → X, we
have seen that the natural connection on det(E) → X is given by

∇(s1 ∧ · · · ∧ sn) =
∑

i

(s1 ∧ · · · ∧ ∇si ∧ · · · ∧ sn)

which implies that if the local expression for the connection is ∇si = ωji sj , for
det(E) is

∇(s1 ∧ · · · ∧ sn) = (ω1
1 + · · ·+ ωnn)s1 ∧ · · · ∧ sn

Thus the induced curvature on det(E) is d(ω1
1 + · · ·+ ωnn).

By taking the trace of the curvature of E, given by Ωij = dωij + ωkj ∧ ωik, one
finds ∑

i

Ωii =
∑

i

dωii +
∑

i,k

ωki ∧ ωik =
∑

i

dωii

where the second summand vanishes since

∑

i,k

ωki ∧ ωik =
∑

k,i

ωik ∧ ωki = −
∑

k,i

ωki ∧ ωik

We thus have two ways of getting a 2-form on X, by considering two different
traces of the curvature: the Ricci-form ρ and the curvature form on the deter-
minant

∑
i Ω

i
i. These are different objects in general, but in the next paragraph

we will see that for Kähler manifolds they coincide. This is a highly non trivial
property, it is indeed equivalent to the fact that ρ coincides, up to a constant,
with the first Chern class cR1 (X).

1.3 Chern Classes

Chern Classes are a particular type of characteristic classes, whose general def-
inition is the following

Definition 1.3.1. Let Vectk : Man → Set be the functor which associates to
M the set of iso-classes of rank k vector bundles over M and let H∗ : Man →
Set be the cohomology functor. Then a characteristic class is a natural trans-
formation Vectk =⇒ H∗.

This definition provides a first intuition, but is clearly too abstract to be
useful in practice. We will first define Chern classes in terms of the curvature.
This approach provides in particular a way to compute these objects. At the
end of the paragraph we will give the intersection-theoretic definition of Chern
classes, which helps to understand the geometric idea behind them.

1.3.1 The Chern-Weil homomorphism

Let E → X be a k-vector bundle and ∇ a connection on X. If Ωji are the
2-forms of the curvature in a local frame, under a change of local frame for E,



ẽj = Aijei, one has Ω̃ = A−1ΩA, indeed

AljΩ
k
l ek = R∇(Aljel) = R∇(ẽj) = Ω̃ij ẽi = Ω̃ijA

k
i ek

Consider now a polynomial p ∈ k[x1, . . . , xr2 ] for an arbitrary field, which can
be identified as a polynomial function Mr×r(k) → k. Then p is said invariant if

p(A−1XA) = p(X) for any A ∈ GL(r × r, k)

Two easy examples are trk(X) = tr(Xk) and by the coefficients of det(X+λId),
seen as a polynomial in λ. If one takes k = C, the latter is in some sense the
most important invariant polynomial, since

Theorem 1.3.2. The ring of invariant complex polynomials on gl(r,C) is gen-
erated as an algebra over C by the coefficients fi(X) of det(λId+X). Thus,

Inv(gl(r,C)) = C[f1(X), . . . , fr(X)]

For a proof see [Tu17, p. 313].
Consider now a homogeneous invariant polynomial of degree k on gl(r,C), fix a
point p ∈ U , with U trivializing E, and consider the C-algebra

A =

dimX⊕

i=0

2i∧
T ∗
C,pX

The matrix Ω|p clearly belongs to A and one has

p(Ω̃|p) = p(Ω|p) for any p ∈ U

We have defined in this way a local 2k-differential form over U . Since p is
invariant, if Uα andUβ are two overlapping trivializing open set for E, p(Ω) is
still well defined in Uα ∩ Uβ , because the induced action of the structure group
GL(r,C) on A2k is given by adjoint action.
Therefore one has a well defined 2k-form over X. The important result is that

Theorem 1.3.3. The 2k-form p(Ω) is closed and its cohomology class is inde-
pendent of the connection.

Proof. To prove that d(p(Ω)) = 0 we use the fact that if V is a complex vec-
tor space of dimension n, the C-algebra Symk(V ∗) of symmetric multilinear
forms of degree k is isomorphic to the algebra of d-homogeneous polynomials
C[x1, . . . , xn]d. Now let V = gl(r,C) and let GL(r,C) act on it by adjoint
representation. This induces a left action on Symk(V ∗) and on C[x1, . . . , xn]d
via

(LAσ)(v1, . . . , vk) = σ(LAv1, . . . , LAvk)

(LAp)(x1, . . . , xn) = p(LA(x1, . . . , xn))

and the isomoprhism above is equivariant with respect to these two actions.
This allows to identify the GL(r,C)-invariant subalgebra of Symk(V ∗) with the



GL(r,C)-invariant subalgebra of C[x1, . . . , xn]d.
Now if f is an invariant element of Symk(V ∗),

d(f(Ω, . . . ,Ω)) = ∇̃(f(Ω, . . . ,Ω)) = kf(∇̂Ω, . . . ,Ω) = 0

where ∇ is the trivial connection on X ×C and ∇̂ is the induced connection on
End(TM). The second equality follows from symmetry and the the third one
by general Bianchi identity.
Thanks to the above isomoprhisms, we conclude that p(Ω) is closed.
If ∇0 and ∇1 are two different connection, since the space of connection is an
affine C-vector space over A1(M,TM), consider the segment of connections

∇t = t∇0 + (1− t)∇1 t ∈ [0, 1]

Then ωt = ω0 + t(ω1 − ω0) and as Ωt = dωt + ωt ∧ ωt
( d
dt

Ωt

)
dt = d(ω1 − ω0) + (ω1 − ω0) ∧ ωt + ωt ∧ (ω1 − ω0)

= ∇t(ω1 − ω0)dt

= 0

Set φ = k ·
∫ 1

0
f((ω1 −ω0),Ωt, . . . ,Ωt)dt, since (ω1 −ω0) transforms in the same

way as the curvature, the integrand does not depend on the choice of local frame
and f((ω1 − ω0),Ωt, . . . ,Ωt) is a well-defined 2k − 1 form and so is φ.
As ∇tΩt = 0, we find

k · df((ω1 − ω0),Ωt, . . . ,Ωt) = k · f(∇t(ω1 − ω0),Ωt, . . . ,Ωt)

= k · f
( d
dt

(Ωt),Ωt, . . . ,Ωt

)

=
d

dt
f
(
Ωt,Ωt, . . . ,Ωt

)

hence

dφ = k ·
∫ 1

0

d

dt
f(Ωt,Ωt, . . . ,Ωt)dt

which shows that if f is symmetric f(Ω1, . . . ,Ω1) and f(Ω0, . . . ,Ω0) are in the
same cohomology class. The result for arbitrary invariant polynomials follows
by the above isomorphism.

This allows to define a C-algebra homomorphism

cE : Inv(gl(r,C)) → H∗(X)

p(X) 7→ [p(Ω)]

called Chern-Weil homomorphism. Complex characteristic classes are then the
elements of the image of cE .
We see that although characteristic classes can be defined in term of a chosen



connection, they depend only on some features that all the possible connections
detect. Indeed, as we will see later, characteristic classes depend only on the
topology of the vector bundle.
We can now give

Definition 1.3.4. Let E → X be a complex vector bundle which admits a
connection ∇. Then the real Chern classes of E ci(E) are defined as

det
(
Id +

i

2π
Ω
)
= 1 + cR1 (E) + · · ·+ cRr (E)

The term real refers to the fact that ci(E) as defined here are actually the
image of a more fundamental object under the map

H∗(X,Z) → H∗(X,R) = H∗(X,Z)⊗ R

1.3.2 Integer Chern classes

We recall that a complex vector bundle over a complex manifold X is said topo-
logical, differentiable or holomoprhic if the cocycles are respectively continuous,
smooth or holomoprhic. Every total space over X is then in a natural way
respectively a topological manifold, a real differentiable manifold or a complex
manifold. A morphism over X is respectively a continuous, smooth or holomor-
phic map E → F making the obvious diagram commute.

Definition 1.3.5. Let L → X be a holomorphic line bundle over a smooth
complex manifold X. Then c1 is defined by the long exact sequence

· · · → H1(X;OX) → H1(X;O∗
X)

c1−→ H2(X;Z) → H2(X;OX) → . . .

coming from the exponential sequence of sheaves

0 → Z
2πi−−→ OX

exp−−→ O∗
X → 0

The group H1(X;O∗
X) is in bijection with the set of isomorphism classes of

holomoprhic line bundles (see [Voi02]), endowing the latter with tensor product
one has a group isomorphism H1(X;O∗

X) ⋍ Pic(X). Thus c1 is invariant by
isomorphism, but it is not a complete invariant, as in general c1 is not injective.
Indeed, ker(c1) is a interesting invariant of the manifold X. If X is algebriac,
ker(c1) has a natural algebraic structure and is known as Picard variety of X,
Pic0(X).
We know give a necessary and sufficient condition for Pic0(X) not to be trivial.

Theorem 1.3.6. The variety Pic0(X) is trivial if and only if h0,1(X) = 0.

Proof. If X is compact the map H0(X,OX) → H0(X,O∗
X) is surjective, thus

H0(X,O∗
X) → H1(X,Z) is the zero map, which implies that H1(X,Z) →



H1(X,OX) is injective. Now ker(c1) = Im(H1(X,OX) → H1(X,O∗
X)) and

by exactness

ker(c1) ⋍
H1(X,OX)

Im(H1(X,Z) → H1(X;OX))
⋍
H1(X,OX)

H1(X,Z)

It can be proved that H1(X,Z) is a lattice inside H1(X,OX), hence the latter
group is a complex torus of dimension h0,1(X).

Algebraic varieties with this property have a particular name

Definition 1.3.7. An algebraic variety X (over an arbitrary field) is said with-
out irregularities if H1(X,OX) = 0.

Alternatively definition one might define c1 via another exponential se-
quence, namely

0 → Z
2πi−−→ CX

exp−−→ C∗
X → 0

where CX is the sheaf of continuous C-valued functions. Then c1 is the map

H1(X;C∗
X)

c1−→ H2(X;Z)

which is now an isomorphism, since CX is a flasque sheaf, hence Hi(X;CX) = 0
if i > 0. The advantage of this second definition is that it applies to any
topological complex vector bundle.
As before, H1(X;C∗

X) is in bijection with the isomorphism classes of complex
topological line bundles. The fact the c1 is not injective in the first case but
it is in the second reflects the existence of line bundles which are topologically
trivial but not holomorphically trivial.
This definition also allows to interpret geometrically c1: a topological line bundle
L → X is uniquely determined by the continuous cocycles tij : Uij → C∗ and
these can be identified with an element of H1(X,C∗

X). Equivalently, a line
bundle is defined by a choice of an open cover Ui (which can be assumed finite)
and some continuous functions fi : Ui → C such that fi/fj = tij . These fi
are clearly not uniquely determined, but if one requires that they intersect the
zero section in a real codimension 2 topological submanifold, with finitely many
connected components, then the associated fundamental class Z = [Z(fi)+· · ·+
Z(fk)] is uniquely determined. Moreover, two cocycles gives rise to the same Z
if and only if they are isomorphic, thus coincides with Z = c1(L).
In particular, in holomorphic setting we have the important identity

c1(O(D)) = [D]

We now give two examples: in the first one c1(L) = 0 even though L is not
trivial and in the second one cR1 (L) = 0 whereas c1(L) 6= 0.

Example 1.3.8. Let X a genus one Riemann surface and take x, y ∈ X. Then
O(x − y) is not holomorphically trivial, since zero is the only global section.
Indeed P

(
H0(X;O(x − y)

)
⋍ |x − y| and the latter is trivial. To prove that

c1(O(x−y)) = 0, we use the fact c1(O([D]) = [D]. In this case [x−y] = [x]− [y]
as taking fundamental class is linear, and [x] ⋍ [y] since X is path-connected.



Example 1.3.9 (Enriques Surfaces). Let X be a complex surface with KX non
trivial but K⊗2

X ⋍ OX and without irregularities, so that in particular c1 is an
isomorphism. We have that H0(X,KX) = 0 as any non zero global section s
should satisfy s⊗ s ∈ C, but this would imply that s is itself trivial (see at level
at stalks) and non zero. In particular c1(KX) 6= 0. But by what we will prove
later, 0 = c1(KX)⊗2 = 2c1(KX), which implies that cR1 (KX) = 0.

The quickest way to define Chern Classes is by axioms.

Definition 1.3.10. Let X be a real topological manifold. Then the Chern class
map is the unique map c which associates a complex vector bundle E → X an
element (called Chern polynomial)

c(E) ∈ H∗(X;Z)[t]

with deg2i(c(E)) = ci(E) satisfying:

1. If rank(E) = 1, c(E) = 1 + tc1(E)

2. For any map f : Y → X, one has c(f∗E) = f∗(c(E)) (naturality)

3. If E and F are two vector bundles over X, then c(E ⊕ F ) = c(E)c(F )
where the ring structure of H∗(X;Z)[t] is used (Whitney sum)

Whitney sum implies that ck(E ⊕ F ) =
∑k
i ci(E)ck−i(F ).

To prove the existence, given a rank k + 1 complex vector bundle E → X with
dimCX = n, the associated projective bundle P(E) → X is defined as

∐
i(Ui × Pk)

∽

where {Ui} is a trivializing cover for E → X and (x, [α]) ∽ (x, [tij(α)]) for any
x ∈ Ui ∩ Uj and with tij transition functions of E → X. In this way P(E) is a
(n+ k)-complex manifol with the obviuos charts and it naturally gives rise to a
fiber bundle P(E) → X. Thus one can consider the pullback diagram

f∗E E

P(E) X

f̃

π p

f

where
f∗E = {

(
(x, l), e

)
∈ P(E)× E : x = p(e)}

and π
(
(x, l), e

)
= (x, l), which shows that f∗E → P(E) is a rank k vector

bundle. Now define

OE(−1) := {
(
(x, l), e

)
∈ f∗E : e ∈ l}



which is a subbundle of f∗E with one dimensional fiber, known as the tauto-
logical line bundle associated with E → X. Over each direction in Ex, which is
a point in P(E), the fiber is exactly the line which had been identified; in some
sense this recovers the information lost with the projectivization.
We will denote its dual by

OE(1) = OE(−1)∗

Let η = c1(OE(1)) ∈ H∗(P(E)), we have that η = [1] ∈ H2(P(E)) and [1] can
be identified with the Poincaré dual of the submanifold of P(E)

Y = {(x, l) ∈ P(E) : l 6= l0}

where l0 is a fixed line in C and we use the same trivialization φ−1
i : Ui × C →

E|Ui
to determine the two lines in P(E).

The ring homomorphism

h∗ : H∗(X,Z) → H∗(P(E),Z)

turns H∗(P(E),Z) into a H∗(X,Z)-algebra. The following theorem states that
this module is free and finetely generated and that a basis is given by monomials
of η.

Theorem 1.3.11. The cohomology classes 1, η, . . . , ηk−1 are a basis of H∗(P(E))
over H∗(X). In particular h∗ is injective.

Theorem 1.3.12. The map c defined by axioms above always exists.

Proof. The identity

ηk + f∗c1(E)ηk−1 + · · ·+ f∗ck(E) = 0

in H∗(P(E),Z) clearly determines ci(E) ∈ H2i(X,Z), after having set c0(E) =
1.
We claim that it satisfies the axioms and that c(E) defined in this way is the
unique polynomial satisfying them.
The first condition is satisfied if E has rank 1: P(E) is isomorphic to X via f
and S = f∗E. Then by definition

η = −c1(OE(−1)) = −c1(E)

and this agrees with η + f∗c1(E) = 0. If the rank is greater than one, one
cocncludes with the splliting construction below.
For the second condition, let g : Y → X. Then

µk + h∗c1(g
∗E)µk−1 + · · ·+ h∗ck(g

∗E) = 0

with h : P(g∗E) → Y and 1, µ, . . . , µr a basis of H∗(P(g∗E)). Let u be the
natural map P(g∗E) → P(E), then µi = u∗ηi for any i and fu = gh. By
injectivity of f∗ and u∗ one sees that the same relation is satisfied by g∗c(E).



For the last condition, let E = F ⊕ G. Then P(E) contains to projective
subbundles P(F ) and P(G) which do not intersect. Let ZF = P(E) \ P(F ) and
ZG = P(E) \ P(G) and consider πF : ZG → P(F ), πG : ZF → P(G).
The tautological bundle OE(−1) restricted to ZG is isomoprhic to π∗

F (OF (−1))
and the restriction to ZF is isomoprhic to π∗

G(OG(−1)). Consider now the
monic polynomial c′ = tkc( 1t ) which by definition annihilates h, in particular

c′(F )(hF ) = 0 in H2·rk(F )(P(F )) and c′(G)(hG) = 0 in H2·rk(G)(P(G)). then

π∗
F

(
c′(F )(hF )

)
= c′(F )(hE)|ZG

= 0 in H2·rk(F )(P(G))

π∗
G

(
c′(G)(hG)

)
= c′(G)(hE)|ZF

= 0 in H2·rk(G)(P(F ))

As P(E) = ZF∪ZG, the cup product c′(F )(hE)∪c′(G)(hE) vanishes inH2·rk(E)(P(E)),
since the two relations above shows that c′(F )(hE) and c′(G)(hE) can be rep-
resented by cochains supported respectively in an open neighborhood of P(G)
and P(F ). As the polynomial c′(F )c′(G) annihilates hE and is monic of degree
k, it must be equal to c′(E). Thus c(E) = c(F )c(G).
We also have to prove that c defined in this wat is unique. For this we need the
following two lemmas.

Theorem 1.3.13 (Splitting Construction). Let E → X be a complex vector
bundle of rank k, with X a topological (differentiable) manifold. Then there ex-
ists a topological (differentiable) manifold Fl(E), called flag manifold associated
to E → x and a continuous (smooth) map

f : Fl(E) → X

such that:

• The pullback f∗E → Fl(E) is isomorphic to a direct sum of k line bundles

• The map f∗ : H∗(X) → H∗(Fl(E)) is injective

Proof. By induction on rank(E). If E is a line bundle there is nothing to prove.
If rank(E) = k, consider the tautological and the quotient bundle over P(E)
defined by

0 → OE(−1) → f∗E → QE → 0

Since QE has rank(QE) = k − 1, it can be pulled back to a direct sum of k − 1
line bundles. The diagram depicts the situation

OE(−1)⊕ L1 ⊕ · · · ⊕ Lk OE(−1)⊕QE ⋍ g∗E E

P(QE) P(E) X

p

gh



where we used that short exact sequences of complex vector bundles always
split. Thus f = g ◦ h is the map which realizes the splitting.
To prove injectivity of f , by the very definition of Chern classes one has

H∗(P(E)) =
H∗(X)[x]

(xk + c1(E)xk−1 + · · ·+ ck(E))

H∗(P(QE)) =
H∗(P(E))[y]

(yk−1 + c1(QE)xk−2 + · · ·+ ck−1(QE))

and combining the two one finds

H∗(P(QE)) =
H∗(X)[x, y]

(xk + c1(E)xk−1 + · · ·+ ck(E), yk−1 + c1(QE)xk−2 + · · ·+ ck−1(QE))

The theorem is particularly convenient because Chern classes of line bundles
are simple objects. It naturally yields the following

Theorem 1.3.14 (Splitting Principle). If a polynomial identity between Chern
classes holds in H∗(Fl(E)), then it also holds in H∗(X).

Indeed if one wants to verify a polynomial identity p(c1(E), . . . , ck(E)) = 0
in H∗(X), consider the pullback

f∗p(c1(E), . . . , ck(E)) = p(f∗c1(E), . . . , f∗ck(E)) = p(c1(f
∗E), . . . , ck(f

∗E))

Thus if the identity holds for direct sums of line bundles

p(c1(E), . . . , ck(E)) = 0

by injectivity of f .

Proof of the unicity. Let f : Fl(E) → X be as in the lemmas, then

f∗(c(E)) = c(f∗E) = c(⊕ki=1Li) =

k∏

i=1

(1 + tc1(Li))

and injectivity of f∗ completely determines c(E).

We will now give some consequences of the splitting principle.

Lemma 1.3.15 (Vanishing). If E → X has rank k, then ci(E) = 0 for any
i > k.

Proof. Since the term on the right is a polynomial of degree at most k, so must
be f∗c(E).

Lemma 1.3.16. If E → X of rank k admits a never vanishing section s, then
cr(E) = 0.



Proof. In this case E can be written as E = C⊕ F , where the trivial bundle is
spanned by s. Then the result follows by Whitney sum property.

Alternatively, onw may observe that the vector bundle f∗E⊗OE(1) admits
a never vanishing global section, given by gluing the local sections s⊗ s∗, where
s is in the image of OE(−1) −֒→ f∗E, thus ck(f

∗E ⊗ OE(1)) = 0 and this is
equivalent to the above relation.
It is not immediate to provide a geometric intuition to Chern classes. The above
lemma shows that ck measures the obstruction to the existence of a never van-
ishing section. One can indeed prove (see [EH16]) that for a complex topological
vector bundle E → X of rank k

ci(E) = [D(s0, . . . , sk−i] ∈ H2i(X,Z)

where s0 are continuous global sections which fail to be independent in a codi-
mension i complex topological submanifold and D is exactly this locus.
The splitting principle also provides a way to compute Chern classes of tensor
bundles. The general formula is rather complicated and can be found in [EH16].

Lemma 1.3.17. If E and F are two complex vector bundles over X of rank e
and f respecively, one has

c1(E ⊗ F ) = f · c1(E) + e · c1(F )

Proof. If E = ⊕iLi and F = ⊕jMj where Li and Mj are line bundles, then

E ⊗ F =
⊕

i,j

Li ⊗Mj

and consequently

c(E ⊗ F ) =
∏

i,j

c(Li ⊗Mj)

Extracting the degree two part yields

c1(E ⊗ F ) =
∏

i,j

c1(Li ⊗Mj) = f · c1(Li) + e · c1(Mj)

where in the second equality we used the line bundle definition of c1.
For arbitrary E and F , let u∗E ⋍ ⊕iLi and v∗F ⋍ ⊕jMj with u, v defined as
in previous lemmas. Then

c(u∗E ⊗ v∗F ) = c(u∗ ⊗ v∗(E ⊗ F )) = u∗ ⊗ v∗(c(E ⊗ F ))

and if u∗, v∗ are injective, so is u∗ ⊗ v∗ : H∗(E ⊗ F ) → H∗(X).

This lemma implies in particular that if L is a line bundle, c1(L
∗) = −c1(L).

If E is not invertible, one again uses splitting principle: if E ⋍
⊕

i Li, then



E∗ =
⊕

i L
∗
i hence c(E∗) =

∏
i(1− c1(Li)) which implies ci(E

∗) = (−1)ici(E);
if f∗E ⋍

⊕
i Li, then

f∗c(E∗) =
∏

i

(1− c1(Li)) = −f∗c(E)

hence the conlcusion.

Lemma 1.3.18. Let E → X be a rank k complex vector bundle. Then

c1(det(E)) = c1(E)

Proof. If E ⋍
⊕

i Li then det(E) = ⊗iLi. This is easy to see this by checking
the cocycles. Then

c1(det(E)) =
∑

i

c1(Li) = c1(E)

If f∗E ⋍
⊕

i Li, one has the conclusion as f∗c1(det(E)) = f∗c1(E).

This result is indeed equivalent to c1(E) = [D(s1, . . . , srank(E)].
We conclude the paragraph with two examples. Let X be a complex manifold,
Chern classes can be computed for some special bundles on it: the holomorphic
tangent bundle TX , its dual ΩX , the canonical bundle KX and the anticanonical
bundle K∗

X . Chern classes of the holomoprhic tangent bundle are denoted as
ci(X) = ci(TX).

Example 1.3.19. For X = Pn, the so called Euler sequence

0 → OPn → OPn(1)⊕n+1 → TPn → 0

is built in the following way. On a vector space V , let

q : V \ {0} → PV

be the quotient map and
dqv : V

×
v → T[v]P

n

its differential. One clearly has that ker(dqv) = L(v), since radial derivation is
mapped to the trivial one. Thus one has an isomorphism

V/L(v) → T[v]P
n

which depends on v. It is possible to make it canonical by normalizing: for any
linear form α : L(v) → k, α(v)dqv does not depend on v anymore, but only on
its class. This yields a canonical identification

L(v)∗ ⊗ V/L(v) → T[v]P
n

on fibers, which comes from the sheaf morhism

OPn(1)⊗Q→ TPn



which implies the Euler sequence.
One can also build the dual sequence as

0 → ΩPn → OPn(−1)⊕n+1 → OPn → 0

Thus by Whitney formula one finds

c(TPn) = (1 + ζ)n+1

where ζ = c1(OPn(1)).
This implies in particualr that every section of TPn vanishes in some point, since

cn(TPn) = (n+ 1)ζn

Example 1.3.20. Let Y ⊂ X be a complex submanifold, then there is an
injective holomorphic map of bundles TY → TX |Y . This yields an exact sequence
of bundles over Y

0 → TY → TX |Y → NY/X → 0

where NY/X is known as normal bundle.
Then the so called adjunction formula holds, where the isomorphism is in the
holomorhic category

KY ⋍ KX |Y ⊗ det(NY/X)

If Y is a hypersurface, then NY/X ⋍ O(Y )|Y where O(Y ) is the line bundle on
X associated to the divisor Y . The normal sequence splits in the differentiable
category, thus

c(i∗TX) = c(TY ) · c(i∗O(Y ))

or more explicitly

c(TY ) = i∗
(
c(TX)(1− c1(O(Y ))

)

and in particular

c1(TY ) = i∗
(
c1(TX)− c1(O(Y ))

)

Indeed the formula for the first chern clss could also have been obtained by the
adjunction formula, as

c1(TY ) = −c1(KX) = −
(
c1(i

∗KX) + c1(i
∗O(Y ))

)

If Y ⊂ Pn is of he form Y = V (F ), with F a homogeneous polynomial of degree
d, then Y is the vanishing locus of some s ∈ H0(Pn;O(d)), since H0(Pn;O(d))
is naturally identified with C[x0, . . . , xn]d.
Then by adjunction formula KY = KPn |Y ⊗ det(O(d)) = O(d− n− 1)|Y . Thus

c1(Y ) = −c1(KY ) = c1(i
∗O(n+ 1− d))

In particular if d = n + 1, c1(Y ) = 0. We will see later on that this class of
algebraic hypersurfaces is particularly relevant.



Example 1.3.21. With the above nation, fix n = 3, d = 4, then c2(Y ) =
i∗c2(P3) and

c2(TP3) = c2(O(1)⊕3+1) = 6(c1(O(1)))2

by the Euler sequence and the Whitney sum property.
Then one can compute

∫

Y

c2(Y ) =

∫

Y

i∗c2(P
3) =

∫

P3

c2(P
3)c1(P

3)

=

∫

P3

c2(P
3)c1(P

3) = 24

∫

P3

(c1(O(1))3

where we used that c1(P3) = 4(c1(O(1)) and that c1(O(1)) belongs to the hy-
perplane class of Pn, which is by definition the cohomology class of Pd(Pn−1).
Thus one has

∫

P3

(c1(O(1))3 =

∫

P2

i∗(c1(O(1))2 =

∫

P1

j∗(c1(O(1)) = 1

where we used that

i∗(c1(OP3(1)) =
1

4
i∗c1(P

3) =
1

4

(
c1(P

2) + c1(OP2(1))
)
= c1(OP2(1))

and the last two equalities holds since

i∗OP3(P2) ⋍ OP2(1)

which can be checked comparing the cocycles.
The result

∫
Y
c2(Y ) = 24 has a really surprising geometric meaning: it is the

Euler characteristic of Y , and by Poincaré-Hopf theorem it coincides with the
sum of the indices of zeros of a generic differentiable vector field.

1.3.3 First Chern class for Kähler manifolds

For a complex vector bundle E → X over an arbitrary complex manifold X,
Chern-Weil theory allows to compute cRi (E), after the choice of any connection.
If E = TX , then cRi (X) = cRi (TX) by definition. In particular

cRi (X) = tr
( i

2π
Ωij

)
=

i

2π

∑

j

Ωjj

and we have seen that
∑
j Ω

j
j is the curvature form on det(TX). This agress

with the fact that c1(E) = c1(det(TX)).
If X in endowed with a Kähler metric h, there is a peculiar representative
for cR1 (X), given by a multiple of the Ricci form induced by the Levi-Civita
(equivalently Chern) connection, i.e. ρ

2π . This is easy to see thanks to the
computation of the previous paragraph, indeed

ρ = i∂̄∂ log(det(h))
∑

j

Ωjj = ∂̄∂ log(h̃) = ∂̄∂ log(det(h))



where h̃ = det(h) is the induced metric on −KX . This is a surprising fact since
cR1 (X) does not depend at all on the metric structure.
Thus if X is a (not necessarily compact) Kähler manifold then ρ = 2πcR1 (X)
in real cohomology. If one restricts consider compact Kähler manifolds, this
famous result holds

Theorem 1.3.22 (Calabi, Yau, [Yau78]). Let (X,ω) be a compact Kähler mani-
fold. Then for any closed form α ∈ A1,1

R
(X) in the class of 2πcR1 (X), there exists

a unique Kähler form ωα in the class of ω, whose Ricci form ρωα
= α.

In other words if ω is fixed, there is a bijection between the class of 2πcR1 (X)
and Kähler forms in the class of [ω]. If instead one has a complex manifold X
which admits a Kähler metric, but this is not a priory fixed, for every represen-
tative α of 2πcR1 (X) there exists a Kähler metric h with ρα = 2πcR1 (X). This
Kähler metric is not uniquely determined, unless one restricts to a particular
cohomology class of the corresponding ω.

Idea of the proof. We follow the original Yau’s paper [Yau78].
If ρωα represents 2πcR1 (X), which we know is represented by ρ, then by ∂∂̄-
lemma

ρωα
− ρ = ∂̄∂F

for some F ∈ C∞(X,C).
If ρωα

is the Ricci form of h̃, then

ρωα
= i∂̄∂ log(det(h̃))

implies that

∂̄∂
(
i log

det(h̃)

det(h)
− F

)
= ∂̄∂φ = 0

Now if ∂∂̄φ = 0, locally ∂̄φ = ∂ψ, with ψ another smooth function, but this
says that φ is holomorphic, as A1,0(U)∩A0,1(U) = 0 for any open set U . Since
M is compact, φ is constant, i.e.

det(h̃) = c exp(−iF ) det(h)

for some c ∈ C.
If ωα is in the same class of ω, then

h̃ij̄ = hij̄ +
∂2u

∂zi∂z̄j

and the above equation becomes

det
(
hij̄ +

∂2u

∂zi∂z̄j

)
= C exp(F ) det(hst̄)



Then solving the Calabi conjecture is equivalent to finding for some C a smooth
φ such that the corresponding h̃ is Kähler. Moreover such C is actually uniquely
determined by

C

∫

X

exp(F ) det(h) dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

=

∫

X

det(h̃) dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

and det(h) dz1∧dz̄1∧· · ·∧dzn∧dz̄n is modulo constant the volume form, indeed

if
(

∂
∂xi

, ∂
∂yi

= I ∂
∂xi

)
is a coordinate frame orthonormal in p,

det(h)|p dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

= det(h)|p dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn

which equals 1 when evaluated against
(

∂
∂x1

, ∂
∂y1

, . . . , ∂
∂x1

, ∂
∂y1

)
.



Chapter 2

Beauville’s decomposition
theorem

2.1 Parallel transport and holonomy

Parallel transport is a foundamental object of riemannian geometry. If a rie-
mannian manifold (M, g) is the configuration space of a physical system, with
g being the kynetic energy tensor, parallel transport can be interpreted as an
energy minimizing way to move vectors, covectors and more in general sections
of bundles along a given path on M .

Definition 2.1.1. Let E → X be a differentiable vector bundle and s ∈ Ep.
Given a curve γ(t) in the base space, the parallel transport of s along γ(t) is
defined as

Pγ(t) = S|γ(t)
where S is the unique parallel extension of s.

To show that such an extension always exists and that it is unique, if s = siei
for a local frame (ei)

k
i=1, one has to consider the ODE

d

dt
(si ◦ γ)(t) +

∑

j

∑

h

(Γijh ◦ γ)(γj)′sh = 0

with the initial conditions (si(γ(0)) = si for i = 1, . . . , n.
A special example of parallel transport, for a connection ∇ on the tangent
bundle, is provided by transporting a vector along its integral curve. These are
indeed special objects.

Example 2.1.2. A geodesic is a curve γ(t) such that ∇γ′γ′ = 0.

Geodesics in particular provide a diffeomorphism, for any point p, between
an open subset U ⊂ TpM and a neighborhood of p, via the so called exponential

36



map

expp : U ⊂ TpM →M

v 7→ γv(1)

where γv(t) is the unique geodesic with γv(0) = p, γ′v(0) = 0.

Definition 2.1.3. A riemannian manifold is said geodesically complete if every
solution to the geodesic ODE can be extended to the whole R, or equivalently
if at each point the exponential map is defined on the whole tangent space.

An important theorem relates geodesic completeness with metric complete-
ness

Theorem 2.1.4 (Hopf-Rinow). A riemannian manifold M is geodesically com-
plete if and only if M is complete as a metric space.

If the manifold is compact, Hopf-Rinow theorem ensures that this is always
the case.
Fix a point p ∈ M and a loop γ based in p and consider α ∈ Ep, then parallel
transport of α along γ provides an automorphism φγ of Ep: it is indeed easy to
see that parallel transport of α along γ−1 provides the inverse transformation
of the fiber φ−1

γ . Since the set of loops based in p has a natural group structure,
it is natural to organize this into a group representation

Holp → GL(n)

called holonomy representation in p.
If M is path connected, for any x, y ∈M one has Holx ⋍ Holy via conjugation,
making possible to consider Hol → GL(n) independently from the point. We
will denote Hol0p the subgroup of Holp of contractible loops.
We shall recall the following definition from representation theory

Definition 2.1.5. A group representation ρ : H → GL(n, k) is said reducible
if it admits a proper subrepresentation, i.e. there is a proper subspace of the
underlying k-vector space which is stable by the action ofH. If ρ is not reducible,
it is said irreducible.

Reducible representations are somehow not optimal. The holonomy repre-
sentation is not irreducible in general, but we will see that whenever they are
reducible they are also decomposable, i.e. if V ⊂ TpM is H-stable then TpM \V
is H-stable too.
We will study holonomy representations only for the Levi-Civita conenection.
In this case parallel transport is an isometry on tangent space and accordingly
on all the tensor bundles. Indeed one has for any X,Y ∈ TpM

d

dt
g(Pγ(t)X,Pγ(t)Y ) = γ′(t)

(
g(Pγ(t)X,Pγ(t)Y )

)

= g(∇γ′(t)Pγ(t)X,Pγ(t)Y ) + g(Pγ(t)X,∇γ′(t)Pγ(t)Y )

= 0



which means that Hol → GL(n) actually factors through O(n).
This is a first example of a deep principle, which will be central in the following,
that structures on a manifold and subgroups of GL(n) through which holonomy
representation factors are strongly related.
We present now a useful lemma whose proof is just definition rearrangement.

Lemma 2.1.6 (Holonomy Principle). For a riemannian manifold (M, g) and
a fixed point p ∈M , a parallel tensor field of a fixed type on M is equivalent to
a tensor of the same type in p which is invariant by the holonomy action.

Proof. The non trivial part of the statment is that any tensor in p invariant
by holonomy extends in a unique way to a parallel tensor field on M . This
can be realized by setting τq = Pγ(1)τp where γ is a path connecting p and q:
since τp is invariant by holonomy, τq does not depend on the choice of γ. The
resulting tensor field is smooth, since it locally solves a linear ODE with smooth
coefficients.

This simple lemma allows to characterize structures on a manifold in terms of
factorization of the holonomy representation. This is very similar (and actually
related) to reduction of the structure group for the associated frame bundle.

Theorem 2.1.7. Let (M, g) be a connected n-dimensional riemannian mani-
fold with Levi-Civita connection. Then the following classes of manifolds are
characterized by the following factorizations of the holonomy.

1. Orientable manifolds: Hol ⊆ SO(n)

2. Flat manifolds: Hol0 = Id

3. Kähler manifolds: Hol ⊆ U(m)

4. Weakly Calabi-Yau manifolds: Hol ⊆ SU(m)

5. Hyperkähler manifolds: Hol ⊆ Sp(r)

For the last class of manifolds, recall that the compact simplectic group of
dimension n is defined as

Sp(n) = {M ∈ GL(n;H) such that M tHM = H}
and H is the standard hermitian metric on Hn, i.e.

xtHy = x1y1 + · · ·+ xnyn

and the conjugation operation is the obvious one. Equivalently Sp(n) = U(n,H).
Notice that U(n2 ,C) = O(n) ∩Gl(n2 ,C) and U(n4 ,H) = O(n) ∩Gl(n4 ,H).

Definition 2.1.8. A Riemannian manifold (M, g) is said hyperkähler1 if it
is endowed with three integrable almost complex structures I, J,K such that
I2 = J2 = K2 = IJK = −1 and the three corresponding Kähler forms are all
closed.

1Notice that sometimes in the literature hyperkähler is used in place of irreducible sym-
plectic.



The three almost complex structures give to each TpM the structure of a
free H-module of dimension 1

4dimRM .

Proof. 1. M is orientable if and only if Ωn is trivial. In this case a global
section is given by the volume form νg, which is preserved by parallel
transport as the connection is riemannian. By the holonomy principle,
the induced representation ρ̃ on ΛnT ∗

pM is trivial. If ρ : Hol → GL(n) is
the holonomy representation for TpM , 1 = ρ̃(γ) = det(ρ(γ)) for any loop
γ.

2. Given a contractible loop one can always assume that it is contained in a
single chart. 2 The manifold is flat if and only if in each chart

( ∂

∂x1
, . . . ,

∂

∂xn

)

is an orthonormal frame, which is equivalent to have all the ∂
∂xi

parallel
for the connection. By the holonomy principle, this happens if and only
if ∂
∂xi

∣∣
p
is invariant by restricted holonomy. Then Hol0(p) = Id.

Notice that this does not hold in general for Hol(p): the Klein bottle,
obtained by isometrically twisting a square, has by previuos point Hol *
SO(n) (in this case Hol = Z2) but the induced connection is flat.

3. Let n = 2m. Fix a point p ∈ M and choose coordinates such that g|p =
Id . Then, after the choice of an endomorphism Ip ∈ O(TpM), with
I2p = −Id, U(m) can be identified with the matrices U ∈ O(n) with
UIp = IpU , which is the definition of Ip invariant by holonomy.
Thus by the holonomy principle Hol ⊆ U(m) if and only if there exists a
almost complex structure on M which is compatible with g and parallel.
Such an almost complex structure is always integrable, thus M is Kähler.

4. Let (M, g, I) be Kähler. Since

SU(m) = U(m) ∩ SL(n,R)

SU(m) is the subgroup of matrices whose n-th Krönecker product is the
identity, i.e. the ones which preserve an alternating complex n-form. By
the holonomy principle, this is equivalent to the existence of α ∈ ΩnX ,
α 6= 0, parallel by ∇. This implies that the canonical bundle of X is
trivial and viceversa if KX ⋍ OX , the trivial connection on OX provides
such a form for KX .
If instead Hol0 ⊆ SU(m), then the induced contractible representation on
ΩnX is the identity and by the previous point ΩnX is flat. Since the curva-
ture of ΩnX is up to a scalar the Ricci curvature of X, this is the class of

2The idea is the following: let γ be a loop based in p, p ∈ Ui and h(x, t) a homotopy
between γ and ǫp. One can assume (see ......) that h smooth and that h(x, t) ⊂ Ui for
t ∈ (1− ǫ, 1] with ǫ small enough and that for such t is an isotopy. Then the inverted isotopy
h(x, 1− t), t ∈ [ǫ, 1], allows to extend the local coordinates of Ui in a neighborhood of γ.



Ricci-flat Kähler metrics.
The two definitions clearly coincide in the case of simply connected man-
ifolds but they do not coincide in general. See the example on Enriques
surfaces.

5. Assume that n = 4r. By definition that Sp(r) is the group of H-linear
automorphisms of Hn preserving H. One can decompose

H = h+ φJ

where h is a complex hermitian form on (Hn, I) and φ is a C-linear 2-form,
using that any quaternion h can be written in a unique way as h = z+Jw,
with z, w ∈ C via

h = α+ Iβ + Jγ +Kδ = (α+ Iβ) + J(γ − Jδ)

thus H(α+ Jβ, γ + Jδ) = H(α, γ) +H(β, δ) + J(H(β, γ)−H(α, δ)) and
setting {

h((α+ Jβ, γ + Jδ) = H(α, γ) +H(β, δ)

φ(α+ Jβ, γ + Jδ) = H(β, γ)−H(α, δ)

it is easy to verify that h is hermitian and φ is C-bilinear and alternating.
Then Sp(n) is the subgroup of U(2n) whose elements preserve φ and by
holonomy principle a Kähler manifold X has Hol ⊂ Sp(n) if and only if it
admits a holomorphic parallel 2-form α, with α 6= 0.

We remark the three classes of manifolds




Hol = SU(m)
Calabi-Yau
manifolds



 ⊂





Hol ⊂ SU(m)
KX ⋍ OX , c1(X) = 0
weakly Calabi-Yau

manifolds





⊂





Hol0 = SU(m)
cR1 (X) = 0
Ricci-flat
manifolds





The first inclusion is strict, too. We will see later some examples.
A fundamental result in the theory of riemannian holonomy is Berger’s theorem,
which shows that for a riemannian manifold only few subgroups of O(n) can
occur as the restricted holonomy. For a proof we refer to the original paper
[Ber55] or for a more geometric approach to the recent [Olm05].

Theorem 2.1.9 (Berger, 1955). Let (M, g) be a n-dimensional riemannian
manifold. If M is not locally symmetric3, then Hol0 is isomorphic to one of the
following subgroups of O(n):

• SO(n)

3M is said locally symmetric in p if all the local diffeomoprhisms φ which fix p and reverse
all the geodesics passing through p are isometries. M is said locally symmetric if this holds
for any p ∈ M . It can be proven that M is locally symmetric if and only if ∇(R(x, y)z) = 0
for any vector fields x, y, z.



• U(m), 2m = n

• SU(m), 2m = n

• Sp(r), 4r = n

• Sp(1) · Sp(r), 4r = n

• Spin(7), n = 8

• Spin(9), n = 16

• G2, n = 7

All the four last groups can not be embedded in U(m), thus they are a
priori excluded in Kähler setting. It in interesting to notice that Berger did not
establish which one of these groups may indeed occur: for G2, for example, an
example was found only in , a compact example in 1994. A major step was done
in 2015, see [Cor+15].

2.2 De Rham Decomposition

In this paragraph we will present the powerful De Rham’s decomposition theo-
rem, which is one of the main tools in Beauville’s proof. We will write only the
proof of the main theorem, which is based on Pantilie’s article [Pan92]. All the
preparatory results can be founded with detailed proofs in [KN63] and [KN69].
We first recall some definitions.

Definition 2.2.1. Let τ be a subbundle of TM of rank k. A submanifold N
is said integral for τ around x if there exists a neighborhood U of x such that
TyN = τy for any y ∈ U . If x is fixed, all such neighborhoods U are partially
ordered by inclusion and for any ascending chain (Ui)

k
i=1 their union is still

integral. From this one has the definition of maximal integral submanifold.

Definition 2.2.2. A submanifold N of (M,∇) is said totally geodesic at a point
x if for any v ∈ TxN , the associated geodesic γ(t) with γ(0) = x and γ′(0) = v
is contained in N if t is small enough. It is said totally geodesic if it is totally
geodesic at any point.

It can be shown that if ∇ is Levi-Civita and N is totally geodesic, then every
geodesic in N with respect to the induced metric is a geodesic in M . This is
sometimes taken as the definition of totally geodesic submanifold, but is actually
stronger.
The statement of the decomposition theorem reads

Theorem 2.2.3 (De Rham, 1952). Let (M, g) be a simply connected complete
Riemannian manifold. Then M is isometric to a product M0 × M1 × · · · ×
Mn where M0 is euclidean and the Mi are all irreducible (i.e. have irreducible
holonomy representation). The holonomy of M splits for this decomposition,
which is unique up to order.



In order to prove it, some lemmas are needed. First one has to show that a
reducible holonomy representations always splits, then that the decomposition
of the tangent space in a point extends to a global decomposition of the tangent
bundle.

Lemma 2.2.4. Let (M, g) be a complete reducible riemannian manifold. Then
for each x ∈ M the decomposition of TxM induces a local decomposition of the
tangent bundle. Each factor of this decomposition is involutive and the corre-
sponding maximal integral submanifold around x is a complete totally geodesic
submanifold.

Now let T ′′
xM be the orthogonal complement to T ′

xM . It is easy to see that
one has an orthogonal bundle decomposition T ′M ⊕ T ′′M . A refinement of
Frobenius theorem allows to prove

Lemma 2.2.5. If T ′M,T ′′M are two involutive distributions complementary
at each point then there exist local coordinates such that xi = ci, i = 1, . . . k,
is an integral submanifold for T ′M and xi = ci, i = k + 1, . . . n, is an integral
submanifold for T ′′M .

This particual choice of basis is particularly convenient and is used in the
proof of the following lemma.

Lemma 2.2.6. Let T ′M,T ′′M and M ′
x,M

′′
x defined as above. Then there

exist three open neighborhoods V, V ′, V ′′ of x ∈ M contained respectively in
M,M ′

x,M
′′
x such that gV = gV ′ × gV ′′ .

The local decomposition V = V ′ × V ′′ allows to prove the existence of a
pointwise decompositon of the holonomy representation. The idea is first to
decompose an arbitrary loop γ in x in a finite product of special loops γi (here
it is crucial that M is simply connected), such that studying parallel transport
along γi reduces to studying parallel transport of a loop β contained in V .

Lemma 2.2.7. Let T ′M and T ′′M be as above. If M is simply connected,
then the holonomy representation in x is the direct product of the two holonomy
representations on T ′

xM and T ′′
xM .

In particular it follows that if γ is a loop based in x contained in M ′ (resp.
M ′′), then it acts trivially on T ′′

xM (resp. T ′
xM). Although we only need

this version, the loop factorization above is necessary: wihout it the holonomy
factorization holds only for loops contained in V = V ′ × V ′′.

Proof of the existence. Fix x ∈ M . We will show that M is isometric to the
product of the maximal integral submanifolds M ′

x and M ′′
x . Let u ∈ T ′

xM and
v ∈ T ′′

xM . Then the main part of the proof consists in showing the for any two
curves γ′ ⊂M ′ and γ′′ ⊂M ′′ connecting respectively x and expu, x and exp v,
one has

expPγ′(1)v = expPγ′′(1)u



This is the main ingredient used by Pantilie, we refer to the original article
[Pan92] for a proof.
Now fix a, b ∈M such that they are both contained M ′′ and a is contained also
in M ′. Let v ∈ T ′′

aM such that b = exp v. For arbitrary x ∈ M ′, γ′ ⊂ M ′

connecting a and x, u ∈ T ′
a such that x = expu and γ′′ ⊂M ′′ connecting a and

b one has
expPγ′(1)v = expPγ′′(1)u

Thus it is possible to identify isometrically different maximal integral subman-
ifold by

φba :M ′
a →M ′

b

x 7→ expPγ(1)w

where γ is any curve connecting a and b contained in M ′′ and w ∈ T ′
aM is

such that x = exp(w). This map is well defined and depends only on a and b,
moreover φcb ◦ φba = φca. One can build analogously for b, c, d ∈M ′ an isometry

ψdc :M ′′
c →M ′′

d

such that ψcb ◦ ψba = ψca.
By what we formula above it follows that φba(c) = ψca(b) for any a ∈M , b ∈M ′′

a

and c ∈M ′
a. Moreover φba is an isometry since

dφba|x = Px,φb
a(x)

: T ′
xM → T ′

φb
a(x)

M

where δ ⊂M ′′
x is any curve connecting x and φba(x).

Thus for a fixed a ∈M the map

Ha :M ′
a ×M ′′

a →M

(x, y) 7→ φya(x) = ψxa(y)

is well defined and is a local isometry. In particular M ′
a ×M ′′

a is connected and
complete, thus it is a Riemannian covering map. Since M is simply connected,
Ha is an isometry.

In the last part of the proof we have used

Theorem 2.2.8 (Ambrose). A local isometry f :M → N between riemannian
manifolds with N connected and M complete is a covering map.

To find a decomposition in irreducible factors as in the statement, one only
has to iterate the costruction. The euclidean term M0 appears if and only if
there is a flat vector field and its dimension is the number of such invariant
vector fields.
The unicity of the irreducible factors has to intended in this precise sense. For
a proof see [KN63, p. 185].



Theorem 2.2.9. If there is an isometry

φ :M0 ×
k∏

i=1

Mi → N0 ×
j∏

i=1

Ni

between two irreducible factorizations, where the holonomy action on M0 and
N0 is trivial, then dim(M0) = dim(N0), k = j and there is a permutation σ of
1, 2, . . . , j such that

φ(m0,m1, . . . ,mn) = (u0(m0), uσ(1)(mσ(1)), . . . , uσ(j)(mσ(j)))

for some isometries ui.

If M admits a Kähler metric, the following result holds, whose proof is
straightforward. It is based on the fact that a g compatible almost complex
structure I which is flat for ∇ restricts to almost complex structures Ij on each
factor, which are invariant by the restricted metrics gj and flat for the restricted
conections ∇j . See [KN69, pp. 171–173] for details.

Theorem 2.2.10. With the above notation, if (M, g) is Kähler, then all the
(Mi, gi) are Kähler and the decomposition is a holomorphic isometry.

Thanks to this theorem it is possible to restrict the study of Hol0 to irre-
ducible representations.
The following is another importnat theorem which will be used in the proof. A
geodesic line is a geodesic γ(t) with the property that

dist(γ(t0), γ(t1)) = |t1 − t0| for any t0, t1

Theorem 2.2.11 (Cheeger, Gromoll). Let M be a complete and connected
riemannian manifold with Ric ≥ 0.Then M isometric to a product M × Rk

where M contains no geodesic lines and Rk has its standard flat metric.

2.3 Covering spaces and holonomy

In this paragraph we will prove the first version of the main theorem of this work.
We now recall the main results of the theory of topologial covering spaces. All
the details can be found for example in [Hat02].
A map p : Y → X between topological spaces is a covering map if for any p ∈ X
there exists an open neighborhood U such that p−1(U) ∼= U × F where F is a
discrete non empty topological space called fiber of the covering. If X is path
connected, F does not depend on U or the point x. The cover is said finite if
|F | <∞ and infinite otherwise.
Covering spaces over X are strongly related to the group π1(X). Indeed if X
is path-connected, locally path-connected and semilocally simply-connected 4,

4Spaces with these extra properties are often called in the literature good spaces.



which are properties that all topological manifolds have, there is a correspon-
dence between the subgroup lattice structure of π1(X,x0) and isomorpshism
classes of covering spaces.
The intuition is that each cover provides a way to unwind non-contractible loops
in the base: fix x0 ∈ X and consider a loop γ based in x0. It can be proved
that for any y in the fiber p−1(x0) there exists a unique lift γ̃y of γ such that

γ̃y(0) = y. Moreover if γ−1 is the inverse loop and γ̃y(1) = ξ, then γ̃−1
ξ(1) = y.

Thus one has a well defined map

φyx0
: {loops based in x0} → Aut(p−1(x))

γ 7→ [y 7→ γ̃y(1)]

This map factors through π1(X,x0), providing a group representation known as
monodromy representation and one can prove that ker(φyx0

) = p∗π1(Y, y).
It is natural to define the category Cov(X) of covers of X, whose morphisms for
two objects Y → X and Z → X are continuous maps Y → Z preserving fibers.
One can show that if X is a good space then Cov(X) has an initial object
U → X, known as universal cover. The theory shows that U is necessarily
simply connected.
The universal cover for a X is obtained by unwinding all the non contractible
loops in the base, while the other covers are obtained unwinding only some of
them. Indeed the construction of universal cover first defines U as the set of all
homotopy classes (with fixed endpoints) of paths starting at a point x0, then
puts a suitable topology on it and define the projection as [γ] 7→ γ(1).
To be more precise, let p : Y → X be an arbitrary cover, fix x0 ∈ X and consider
the group homomorphism p∗ : π1(Y, y) → π1(X,x) given for any y ∈ p−1(x) by
p∗([α]) = [p ◦ α]. One can prove p∗ is injective and that

⋃
y∈p−1(x) p∗(π1(Y, y))

is a conjugacy class in π1(X,x). The first bijection is given by

{subgroups of π1(X,x0)} ↔





iso-classes of path-connected pointed
covering spaces over X

(Y, y0) → (Z, z0)





where to H ≤ π1(X,x0) one associates a covering space p : YH → X with
p∗(π1(YH , y0)) = π1(X,x0) for some y0 in the fiber of x0. Such a space is defined
starting with U and making H act on it: [γ] ∽ [γ′] if and only if γ(1) = γ′(1)
and [γ ∗ γ′−1] ∈ H. Then p∗(π1(YH , y0)) = π1(X,x0) if one chooses as y0 the
class of constant path ǫx0

.
The association is injective since one can prove a map f : Y → Z ∈ Cov(X)
which takes a point y0 to a point z0 (both in the fiber of x0) is an isomoprhism
if and only if pY ∗(π1(Y, y0)) = pZ∗(π1(Z, z0)).
If one removes the marking in the fibers the following bijection holds

{conjugacy classes of π1(X,x0)} ↔




iso-classes of path-connected

covering spaces over X
Y → Z







where the partition of Cov(X) in iso-classes is now coarser.
Among all the covering spaces, some have the properties that their automor-
phism group acts transitively on each fiber. They are called normal (or Galois)
covers and the name comes from the fact that each pointed iso-class of normal
cover corresponds to a normal subgroup of π1(X,x0). In particular the universal
cover is always normal. Notice also that in this case the covering can be seen
as an Aut(F )-principal bundle.
The group of automoprhism of p : Y → X (i.e. fiber preserving homeomor-
phisms of Y ) is denoted as Deck(p) and acts always properly on Y . For Galois
covers, one has that

Deck(p) ⋍
π1(X,x)

p∗π1(Y, y)

and one can prove that p is Galois if and only if X ⋍ Y/Deck(p) and the
following diagram commutes, or equivalently if and only if the action of Deck(p)
is transitive on each fiber.

Y Y

Y/Deck(p) X

p

⋍

In the following we will restrict our attention to riemannian covers, which are
covers between riemannian manifolds which are also local isometry. Once that
p : Y → (X, g) is a fixed differentable cover, h = p∗g is the unique metric on Y
making the cover riemannian, indeed

h(X,Y ) = g(p∗X, p∗Y ) = (p∗g)(X,Y )

Moreover in this case all the smooth cover automorphisms φ : Y → Y respect
the metric, as

h(φ∗X,φ∗Y ) = (p∗g)(φ∗X,φ∗Y ) = (pφ)∗g(X,Y ) = g(p∗X, p∗Y ) = h(X,Y )

If X is a differentiable manifold and q : U → X is its universal topological cover,
one can pullback the differentiable structure of X and thus obtain the smooth
universal cover for X. The remarkable fact is that all the smooth covers over
X are obtained by the action of π1(X) on U , which is a smooth action with
respect to the induced differentiable structure.
Analogously, one defines the universal riemannian cover and the action of π1(X)
on U is a local isometry with respect to the induced metric.
The following lemma will be important later on.

Lemma 2.3.1. If π : Y → X is a riemannian cover, there is a canonical
injection j : Hol(Y ) −֒→ Hol(X) which sends Hol0(Y ) onto HolH(X), where

HolH(X) = {γ : [γ] ∈ H}

and H is the conjugacy class corresponding to the cover.



Proof. The map j associates to a loop γ based in y the loop π(γ) based in
x = π(y). If π(γ) induces the trivial holonomy on TxX, then γ induces the
trivial holonomy on TyY as well. Indeed it is a known result from the theory of
covering spaces that in this case there exists a neighborhood V of π(γ) such that
π−1(V ) = V × F and γ is entirely contained in the sheet of y. Thus π|π−1(V ) is
an isometry.
Now fix γ ∈ HolH(X). If y ∈ Y is fixed, the loops in y correspond to the loops
in x whose class are in one of the conjugated subgroups. Moving y along the
fiber, one finds all the elements in the conjugacy class.

For example, if U → X is the universal cover, then Hol(X) = Hol0(Y ) =
Hol0(Y ).

2.4 Vanishing results

The following results usually go under the name of Bochner’s vanishing theo-
rems. They prescribe, in general, vanishing of sections of bundles under some
negativity (or positivity) assumption on the curvature. In its first version (see
for details [Pet06]), the theory developed by Bochner, Yano, Lichnerowicz and
others regarded riemannian manifolds and harmonic functions: for a rieman-
nian manifold (X, g) and a smooth function u : X → R Bochner discovered the
following formula

1

2
∆‖grad(u)‖2 = g(grad(∆u), gradu) + ‖Hess(u)‖2 +Ric(grad(u), grad(u))

where grad(u) = (du)♯, ∆ is the Laplace-Beltrami operator (∆(u) = div(grad(u)
where the divergence is defined for any vector field X by div(X)volg = LXvolg)
and the Hessian is defined by Hess(u) = ∇grad(u), with ∇ the Levi-Civita
connection.
This formula can be manipulated to get all the vanishing result but the approach
we will adopt now, mainly based on [Kob87], is more straightforward. We need
two lemmas

Lemma 2.4.1. For a holomorphic hermitian vector bundle (E, h) → X, with
X complex manifold X, the following formula holds

∂∂̄h(s, s) = h(∇1,0s,∇1,0s)− h(R∇s, s)

for any s ∈ H0(X,E).

Proof. Consider first the case of a smooth C-valued function f , regarded as a
smooth section of the trivial line bundle over X. In this case

∂̄∂s = ∇0,1∇1,0s

Now let f = h(s, s); since s is holomorphic ∇0,1s = 0, hence

∂∂̄h(s, s) = −∇0,1h(∇1,0s, s) = h(∇1,0s,∇1,0s)− h(∇0,1∇1,0s, s)



where we used that

∇1,0h(α, β) = h(∇1,0α, β) + (−1)deg(α)h(α,∇0,1β)

∇0,1h(α, β) = h(∇0,1α, β) + (−1)deg(α)h(α,∇1,0β)

Since R∇(s) = ∇∇s = ∇0,1∇1,0s+∇1,0∇0,1s = ∇0,1∇1,0s, we have proved the
formula.

We need to define a new riemannian object, as positivity of vector bundles
will be always meant in terms of this tensor. Assume that the base X of the
hermitian holomorphic vector bundle is endowed with an hermitian metric g.
This provides a new way to contract the tensor: if Ri

jαβ̄
is the local expression

of the curvature, one defines

Ki
j = gαβ̄Rijαβ̄ Kjk̄ = hik̄K

i
j

and the tensor K = Kij̄dz
i⊗dz̄j is known as mean curvature of (E, h) → (X, g).

Now the formula of the previous lemma reads in coordinates

∂2h(s, s)

∂zα∂z̄β
= hij̄∇αs

i∇β̄ s̄
j − hik̄R

i
jαβ̄s

j s̄k

Multiplying both sides by gαβ̄ and summing over repeated indices yields

gαβ̄
∂2h(s, s)

∂zα∂z̄β
= ‖∇1,0s‖2 −Kjk̄s

j s̄k

One of the special features of Kähler manifolds is that if E = TX and g = Re(h)
then Kjk̄ = Ricjk̄, since curvature tensor enjoys extra symmetries. The second
lemma still holds for arbitrary of (E, h) → (X, g), we will next focus on the
Kähler case.

Lemma 2.4.2. Let (E, h) be an Hermitian vector bundle over a compact her-

mitian manifold (X, g). If K̂ ≤ 0, then every holomorphic section s is parallel

and K̂(s, s) = 0.

Proof. We will use the following maximum principle by Hopf

Lemma 2.4.3. Let U ⊂ Rn be open and connected; let f and gij, 1 ≤ i, j ≤ n,
be smooth real function with (gij) symmetric and positive-definite. Set

L(f) = gij
∂2f

∂xi∂xj

If L(f) ≥ 0 and f attains a local maximum in the interior of U , then f is
constant.



Now let f = h(s, s). Since X is compact, f attains a maximum M . Its
preimage is closed and we will show that it is also open. Let x0 ∈ f−1(M) and
consider a coordinate neighborhood U of x0. Then we have

L(f) = gαβ̄
∂2h(s, s)

∂zα∂z̄β
= ‖∇1,0s‖2 −Kjk̄s

j s̄k ≥ 0

which means that f =M on the whole U . Thus f−1(M) = X, hence L(f) = 0
everywhere on X. Then ∇1,0s = 0 and since s is holomorphic ∇s = 0.

We can finally present the main result

Theorem 2.4.4 (Bochner’s principle for Kähler manifolds). Let X be a compact
Kähler manifold with Ric ≥ 0. Then every s ∈ H0(X,ΩpX) is parallel with

respect to the Chern connection. If Ric ≤ 0, then every every t ∈ H0(X,T⊗k
X )

is parallel.

Proof. We only have to apply the previous lemma: if Ric ≥ 0 (respectively

Ric ≤ 0) then for (TX, h) → (X,h) one has that K̂ ≥ 0 (respectively K̂ ≤ 0)

and for (ΩX , h
∗) → (X,h) that K̂ ≤ 0 (respectively K̂ ≥ 0).

Since positivity and negativity of K̂ is preserved by taking tensor products and
exterior powers, one has the thesis.

Clearly if Ric = 0, holomorphic sections of all the above bundles are parallel.

Corollary 2.4.5. For a compact manifold X with a Ricci-flat Kähler metric h,
the following map is a bijection

φx : H0(X,ΩpX) → Inv(ΩpX,x) for any x ∈ X

where Inv(ΩpX,x) is the subspace of forms of ΩpX,x invariant by holonomy.

2.5 The main theorem

Theorem 2.5.1 (Beauville, 1983). Let X be a Ricci-flat Kähler manifold. Then
its Riemannian universal cover is holomorphically isometric to

Ck ×
∏

i

Vi ×
∏

j

Wj

where Ck has the standard flat hermitian metric, Hol(Vi) = SU(ni) and Hol(Wj) =
Sp(mj). The decomposition is unique up to order.
From this one can obtain a finite riemannian cover

T ×
∏

i

Vi ×
∏

j

Wj

where T is a k-dimensional complex torus.



Proof. Let X̃ be the riemannian universal cover of X, which is itself a Kähler
Ricci-flat manifold. De Rham decomposition provides a holomorphic isometry

X̃ → Ck ×
∏

l

Ml

where every Ml is irreducible. By theorem (...),
∏
lMl is compact. Since every

Ml is Ricci-flat, its restricted holonomy is contained in SU(nl). Berger classifi-
cation tells that Hol0(Ml) can be either SU(nl) itself or Sp(rl), since if Ml were
symmetric and compact it would have positive Ricci curvature. Being simply
connected implies then that Hol(Ml) is either SU(nl) or Sp(rl).
For the construction of a finite cover, we will make act a suitable subgroup of
π1(X) on X̃. We need an additional lemma.

Lemma 2.5.2. Let X be a compact, simply connected and Ricci-flat Kähler
manifold. Then the group of holomorphic automorphisms Aut(X) is discrete
and the subgroup of isometries Isom(X) is finite.

Proof. The group Aut(X) admits a complex Lie group structure and its Lie
algebra can be identified with sections of the holomoprhic tangent bundle TX
(for a proof see [BM47]). Let σ be such a section. Bochner’s principle ensures
that σ is parallel, thus σ(p) is invariant by holonomy for any p ∈ X. By the
first part of Beauville’s theorem, though, X is necessarily irreducible, which
implies that σ is the zero section. Then Aut(X) is discrete and since Isom(X)
is compact (see [KN63], p. 239) it is finite.

Since the cover is riemannian, π1(X) acts isometrically on X̃ and by unicity
of De Rham decomposition every u in the image of the representation split as

u(z,m) = (u1(z), u2(m)) where z ∈ Ck, m ∈
∏

l

Ml

Consider the composition Φ : π1(X) → Isom(X̃) → Isom(
∏
lMl) and let Γ =

kerΦ. The action of Γ is necessarily free on Ck. The quotient Ck/Γ is compact,
since π1(X)/Γ ≤ Isom(

∏
lMl) and the latter is finite by previous lemma, and

finite covering of compact spaces are compact. Notice also that if Γ were trivial,
π1(X) would be finite, hence the covering X̃ → X.
By Bieberbach theorem, the subgroup of translations Γ′ ≤ Γ is non trivial and of
finite index, thus X̃/Γ′ is a finite cover and is isomorphic to T×Isom(

∏
lMl)

Notice that the only ”degeneracy” of uniqueness can happen for SU(2) =
Sp(1). We will later study in detail these manifolds, known as K3 surfaces.
Together with the results contained in the next chapter (which still follow from
the decomposition theorem), the theorem implies the following results.

Corollary 2.5.3. There is an exact sequence of groups 1 → Z2k → π1(X) →
G→ 1 where the group G is finite.

Corollary 2.5.4. If χ(OX) 6= 0, then any finite covering space Y is without
irregularities and π1(X) is finite.



Corollary 2.5.5. If dim(X) is odd, then χ(OX) = 0.

Proof. contenuto...

Corollary 2.5.6. Let n = 2r = dim(X). Then 0 ≤ χ(OX ≤ 2r. The equality
is obtained if and only if X = (K3)r.

Proof. Let Y =
∏
iMi → X be the finite cover in the form of the theorem. One

has that
0 ≤ χ(OMi

)(mi/2)+1 ≤ 2(mi/2)+1

and one has an equality if and only ifMi is a K3. One concludes observing that

χ(OX) ≤ χ(OY ) =
∏

i

χ(OMi
)

Corollary 2.5.7. There is a bound hp,0(X) ≤
(
n
p

)
for all p. If one has an

equality for some 0 < p < n, then X is a torus.

Proof. Let T × ∏
jMj be the finite cover of X, where T is a torus. Then

hp,0(Mi) ≤ hp,0(Ti) and the equality holds if and only if Mi is a torus. Thus
hp,0(Y ) ≤

(
n
p

)
. Assume that the equality holds for p0, then one sees immediately

that Y has to be a complex torus. We shall show that in this case X is a torus
as well.
Without loss of generality, we assume that the cover is Galois. SinceHp0,0(X) ⋍
Hp0,0(Y )G and they have the same dimension, G acts trivially on the whole
Hp0,0(Y ). As Y is a complex torus and a basis for Hp0,0(Y ) is provided by
dzi1 ∧ · · · ∧ dzip0 , the action of G on H1,0(Y ) has to be the multiplication with
a p0-th root of unity. The Lefschetz fixed-point formula yields

1−
(
n

1

)
Lg +

(
n

2

)
L2
g + · · ·+ (−1)n = (1− Lg)

n = 0

which is verified if and only if Lg = 1 and the induced action on H1,0(Y ) is
trivial if and only if G acts by translation. Then X = Y/G is a torus.

The original version of Beauville’s theorem does not prescribe the unicity of
the finite étale decomposition. Some improvements were presented shortly after
by Beauville himself in [Bea83a]. First one has the following

Lemma 2.5.8. Let X = T × S, with T a complex torus and S a compact
Kähler metric with b1(S) = 0. Then any auotomorphism u of X is of the form
u = (v, w) with v ∈ Aut(T ) and w ∈ Aut(S).

We say that a Kähler manifolds X is split if X = T × S and that a finite
covering Y → X is split if Y is split. A split covering π : T × S → X is said
minimal if it is a Galois covering and Deck(π) does not contain any element of
the form (τ, IdS) where τ is a translation of the torus. The term minimal is
explained by the following theorem.



Theorem 2.5.9. If a compact Kähler manifold X admits a finite split covering,
then there exists a unique minimal split covering π. Any other split covering
factors through π.

Proof. Let Y → X be a finite split covering. Every finite cover Z → Y is split,
indeed if Y ⋍ T × S then Z is isomorphic to

U

H
× S with H ≤ π1(T )

where U is the universal cover of T . This is finite if and only if H has finite
index, which implies that U/H is isomorphic to T , as every finite cover of a
torus is isomorphic to a torus.
In particular there exists a finite Galois cover p : T ×S → X. Let K ≤ Deck(p)
be the subgroup consisting of the automorphisms of the form (τ, 1). We have
that K is normal in Deck(p), by the preovious lemma.
Let T̃ be the complex torus which stays over T , i.e. T̃ /K = T . Then the cover
T̃ × S → X is clearly finite and Galois with Galois group Deck(p)/K, hence
minimal.
Let π′ : T ′ × S′ → X be another split cover of X (not necessarily normal), cor-
responding to H ≤ π1(X). We shall prove that it factors through T̃ × S → X.

We will call G̃ and G′ the two subgroups of π1(X) corresponding to π and π′.
We first build a Galois cover (not necessarily finite) π′′ : W → X which corre-

sponds to a normal subgroup G′′ E π1(X), with G′′ ⊆ G̃ ∩G′. Then π′′ factors
through π and π′, which imply that S = S′ and W ⋍ T ′′ × S.
The following diagram depicts the situation.

T ′′ × S

T̃ × S T ′ × S

X
π π′

ρ ρ′

π′′

The two Galois groups Deck(ρ) and Deck(ρ′) are subgroups of Deck(π′′), thus
their elements are all of the form (τ, 1) (a finite cover T → T has always the
translation as the only automorphisms, being unramified).

Since π is minimal, we have that G′ ⊆ G̃, hence π′ factors through π.

In particular if X is a Ricci-flat manifold, there exists a unique finite Galois
cover T×∏

i Vi×
∏
jWj , and the auotomorphisms of this cover never act simply

by a translation on T . This result is clearly very convenient, as Galois covers
are the easiest to deal with.
Some immediate consequences:

• If π : T × S → X is a minimal Galois cover, X ⋍ (T × S)/G. Let φ be an



automorphism of X, then

T × S T × S

X X
φ

π π

φ̂

where the dashed arrow exists by the factorization property. In particular
any φ lifts to a unique automorphism of T ×S. Since φG = Gφ̂, the group
Aut(X) identifies with the normalizer of G ≤ Aut(T )×Aut(S).

• If S =
∏
i S

ni
i where Si are irreducible and pairwise non isomoprhic man-

ifolds (not necessarily Kähler), then Aut(S) ⋍
∏
iAut(Sni

i )

The theorem shall be considered as a classification theorem of Ricci-flat Kähler
manifolds, in low dimension we have:

• Riemann surfaces
All Riemann surfaces are projective, thus in particular they admit a Kähler
metric. The only admissible groups in the decomposition in dimension one
are the trivial group and SU(1) = C∗. Even in the simple case of a Rie-
mann surface X, it is not immediate to determine without the theorem
whether X admits a Ricci-flat Kähler metric, except from some cases. If
g(X) = 0, any such metric would induce the flat connection on the canon-
ical bundle KX ; as X is simply connected, this would imply that KX is
trivial, but by Riemann-Roch theorem H0(X,KX) = 0.
If g(X) = 1 the canonical bundle is trivial, hence a Ricci-flat Kähler met-
ric exists by Calabi-Yau theorem.
For higher genus, one could try to compute c1, but the theorem immedi-
ately tells that g(X) = 1 is the only case, since for any finite cover only
the torus term can appear and Riemann-Hurwitz formula.

• Kähler complex surfaces
In dimension 2, the admissibile groups in the decomposition are the trivial
one and SU(2) = Sp(1) and clearly only one of them can appear.
The situation is still simple: if there is a finite cover of the form T 2 → X,
which can be assumed Galois, then X = T 2/Z4. If the torus is projec-
tive, so is the quotient5 and the resulting manifold is known as bi-elliptic
surface. If not, one has a commutative diagram in the topological category

T 2 T 2
proj

T 2/Z4 (T 2/Z4)proj

⋍

⋍

5In general if f : S1 → S2 is a map between compact surfaces, S1 is projective if and only
if S2 is projective (see 4,6.8 in [Bar+03]).



and as being Kähler is a topological property for complex surfaces, every-
thing in the diagram is Kähler.
It can be proved that in both cases X has torsion canonical bundle (see,
), thus they admit a Ricci-flat Kähler metric.
If the universal cover has the form V → X, then either X is simply con-
nected and V = X (these are indeed the only compact, simply connected,
Ricci-flat Kähler surfaces) or V/π1(X) ⋍ X and π1(X) is necessarily fi-
nite. The theorem does not provide further constraints on π1(X). It is a
difficult problem to determine all the groups which can act on a K3 ad-
dressed from example by (...) and a complete classification has not been
obtained yet.
However if π1(X) acts on V , there is a natural action of π1(X) on all
the Hp(X,C). In particular X is without irregularities as well. By theo-
rem 4.2.3, X Kähler and without irregularities is simply connected if the
canonical bundle is trivial. This clearly happens if and only if X = V .
If not, still cR1 (X) = 0 because X is Ricci-flat and some additional work
shows that it can only be 2-torsion. Thus X is an Enriques surface.
In conclusion the Ricci-flat Kähler compact surfaces are: complex tori,
bi-elliptic surfaces, K3 surfaces (the only simply connected) and Enrique
surfaces.

Thanks to Calabi-Yau theorem it is possible to give a metric-free version of the
decomposition theorem. The statement is based on the cohomological properties
of the special manifolds appearing in the decomposition, which are studied in
the next chapter.

Theorem 2.5.10. Let X be a compact Kähler manifold with cR1 (X) = 0. Then
its universal cover is biholomoprhic to

Ck ×
∏

i

Vi ×
∏

j

Wj

where each Vi is projective, has dimensione at least 3, trivial canonical bundle
and hp,0 = 0 for any 0 < p < dim(Vi) and Xj is irreducible symplectic and ad-
mits a Kähler metric. The decomposition is unique up to reordering the factors.
Moreover there exists a finite cover Y → X with

Y ⋍ T ×
∏

i

Vi ×
∏

j

Wj

Proof. The existence is clear by Calabi-Yau theorem and (...).
To prove the unicity, notice that if Y and Z are compact, simply connected
manifolds which admit a Kähler metric and with vanishing cR1 , then every bi-
holomoprhism

u : Cp × Y → Cq × Z

splits as u = (u1, u2). In particular p = q. Indeed one can write u(z, y) =
(uy(z), uz(y)), since wz is a one-parameter automorphism of Y varying continu-
ously with z and the automorphism group of Y is discrete, uz does not depend



on z, thus u(z, y) = (uy(z), u2(y)). This implies that uy also does not depend
on y.
The result follows if we prove that given Y1, . . . , Yk compact, simply connected,
with vanishing cR1 and X =

∏
i Yi, any Ricci-flat Kähler metric g on X is of the

form
∑

pr∗i (gi), with gi Ricci-flat Kähler metrics on the Yi.
This is easy to prove: let g be as above, with corresponding Kähler form ω. Then
ω =

∑
pr∗i (ωi) by Kunneth formula (all the Yi are simply connected), where

each ωi is a Kähler form for Yi. Let gi the corresponding Ricci-flat Kähler met-
ric on each Yi. Then

∑
i pr

∗
i (gi) coincides with g, by the unicity prescribed by

Calabi-Yau theorem.
To conclude, if X is imply connected fix a Ricci-flat Kähler metric g, then any
biholomoprhism X → ∏

i Vi ×
∏
jWj is also an isometry, with respect to the

induced Kähler metrics on each factor, and the unicity of the biholomoprhism
thus follows by the unicity of the isometry of theorem (...).
If X is not simply connected, the splitting of u given above yields the conclu-
sion.



Chapter 3

Special holonomy manifolds

3.1 K3 surfaces

We have defined K3 surfaces as the compact Kähler surfaces which are simply
connected and have Hol = SU(2). The following definition is metric free and
can also be adapted to arbitrary algebraic varieties.

Definition 3.1.1. A compact and connected complex surface1 X is a K3 sur-
face if KX ⋍ OX and H1(X,OX) = 0.

To check for the equivalence, we need the following non trivial result (see
[Bar+03, p. 144]).

Theorem 3.1.2. A compact complex surface X admits a Kähler metric if and
only if b1(X) is even.

The proof is analyitic and is based on the currents. We remark that analo-
gous results are unknown for dimension greater than 2, it is indeed still an open
problem if the existence of a Kähler metric is a topological property.
The two definitions of K3 surfaces coincide since if X is Kähler, simply con-
nected and has holonomy SU(2), then KX ⋍ OX and h0,1 = 0.
Viceversa if X has no irregularities, the long exact sequence

H0(X,O∗
X) → H1(X,Z) → H1(X,OX) → H1(X,O∗

X)

implies that H1(X,Z) = 0, thus X admits a Kähler metric h by the theorem.
Since KX ⋍ OX , one has that Hol ⊆ SU(2). This leaves as the only possibilities
X = K3 or X = T , the latter is excluded as

H1(T 2,OT 2) = H0(T 2,ΩT 2) = C · dz + C · dw
1In the algebraic setting one replaces compact complex manifolds with complete non-

singular varieties over a field k.
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The first example of K3 surfaces (on an arbitrary field) is provided by a smooth
quartic X ⊂ P3. Indeed, we have a short exact sequence on P3

0 → O(−4) → O → OX → 0

and
H1(P3,O) = H2(P3,O(−4)) = 0

where we use that Hk(Pn,O(m)) ⋍ 0 if 0 < k < n (see for example [Har13,
pp. 225–226]).
Then H1(X,OX) = 0, whereas the triviality of the canonical bundle will be
proved later in more generality.
We now collect some properties of a K3 surface.

Lemma 3.1.3. Let X be a K3 surface. Then:

1. Pic(X) does not contain any non-trivial torsion line bundle.

2. The integral cohomology of X is given by





H0(X,Z) = Z

H1(X,Z) = 0

H2(X,Z) = 22Z

H3(X,Z) = 0

H4(X,Z) = Z

3. The Hodge diamond numbers of X are h0,0 = h2,2 = h2,0 = h0,2 = 1,
h1,1 = 20 and 0 otherwise.

Proof. For the point 1., if L = O(D) ∈ Pic(X) and has torsion, then Riemann-
Roch formula for surfaces2 yields χ(L) = 2, hence either L or L∗ corresponds to
an effective divisor. Without loss of generality, we assume the first case. This
implies that if s ∈ H0(X,L), then Z(s) = Z(s⊗k) for any k > 0, i.e. L is trivial.
For the point 2., the group H1 has been computed before. For H2, the long
exact exponential sequence shows that

Pic(X) = ker
(
H2(X,Z) → H2(X,OX)

)

and since both Pic(X) and H2(X,OX) are torsion-free (as Z-modules), so is
H2(X,Z). This implies immediately that H3(X,Z) = 0, indeed Poincaré dual-
ity ensures that H3(X,Z) = 0 up to torsion and H2(X,Z)tor = H3(X,Z)tor by
universal coefficient theorem.
It remains to compute the rank of H2. We have already seen that

∫
X
c2(X) = 24

and that this number equals the topological Euler characteristic, thus b2(X) =
22.
For the point 3., the first chain of equalities is obvious by definition and Serre
duality, whereas h1,1 = 20 and the vanishing of all the other groups follow by
point 2..

2See for details



Example 3.1.4 (KummerK3 surface). We build an example of a non-projective
K3 surface. It is the only simple example (see).
Let A be an abelian surface, which can be identified with a quotient C2/Γ,
where Γ is a rank 4 lattice. On this manifold there is a natural involution map
ι : x 7→ −x, which has 16 fixed points pi, since A ⋍ (R/Z)4 as a group.
Now we can proceed in two different ways. The first one consists of blowing up
the 16 fixed points by ǫ : Ã→ A, then the involution ι lifts to an involution ι̃ of
Ã: if x is not in the exceptional divisor, then ι̃(x) = ι(ǫ(x)); if x ∈ ǫ−1(pi), fix
(z, w) local coordinates on A around pi, so that ι(z, w) = (−z,−w). Since the
blow-up of C2 in the origin is

Bl0(C
2) = {((z, w), [t : s]) ∈ C2 × P1 : zs = tw}

a neighborhood of x is covered by two open subsets with coordinates (w, t) and
(z, s) respectively. Then one sets

ι̃(w, t) = (−w, t) ι̃(z, s) = (−z, s)

which lifts ι locally and is well defined on the intersection.
Now let π : Ã → X = Ã/ι be the projection. We shall show that X and π are
smooth complex manifold.
For any q ∈ Ã, q /∈ ǫ−1(pi), there exists a neighborhood U = Uπ(q) with
π|π−1(U) : π

−1(U) → U a two sheet covering. If q ∈ ǫ−1(pi), ι̃(α, β) = (−α, β)
shows that (β, α2) are local coordinates for X around π(q). The complex man-
ifold X is called Kummer K3 surface.
An alternative way is to consider first the singular surface A/ι and then to
blow-up the 16 singularities, one has q : X → A/ι. The following commutative
diagram depicts the situation.

Ã X

A A/ι

π

ǫ q

Let us compute KX . On A there is a never vanishing form ω ∈ H0(A,Ω2
A)

and identifying A = C2/Γ, one can assume ω = dz ∧ dw. Then ι∗(ω) = ω

and ι̃∗ǫ∗(ω) = ǫ∗(ω). Indeed a holomorphic atlas for Ã around the exceptional
divisor is given by

{(U0
qi , φ

0
i ), (U

1
qi , φ

1
i )}

with qi ∈ ǫ−1(pi) for any i, U
0
qi ∩ ǫ−1(pj) = ∅ and U1

qi ∩ ǫ−1(pj) = ∅ if i 6= j and

φ0i ((z, w), [t : s]) = (z, s) φ1i ((z, w), [t : s]) = (t, w)

In this charts ǫ reads respectively ǫ(z, s) = (z, zs) and ǫ(t, w) = (tw,w) and
consequently

ǫ∗(dz ∧ dw) = dz ∧ zds ǫ∗(dz ∧ dw) = wdt ∧ dw



which are both invariant under ι̃∗. This implies that ι̃∗ǫ∗(ω) descends to the
quotient A/ι and that H0(A,Ω2

A/ι) is trivial. Since blowing up does not affect

H2, KX is trivial.
It can be proved without much trouble that X is also simply connected, see for
example [Spa56]. Alternatively one observes that

π∗ : H1(X,OX) → H1(Ã,OÃ)

has image contained in H1(Ã,OÃ)
ι, hence H1(X,OX) = 0.

We claim that X is projective if and only if A is.
If A is projective so is A/ι3 and consequently also the blow-up X.

Viceversa, if X is projective then so is the double cover Ã: an alternative
definition for a line bundle L → X to be ample is that for any coherent sheaf
F ∈ Coh(X), there exists a positive integer n such that F ⊗ L⊗m is generated
by global sections as an OX -module, for any m ≥ n (see EGA II, 4.5.5). Now
let f : X → Y a finite morphism (of schemes) and L ample on Y , thus for
F ∈ Coh(X) we have by hypothesis a surjection

O(I)
Y ։ f∗F ⊗OY

L⊗m

for m big enough. Now by the projection formula we have

f∗F ⊗OY
L⊗m

⋍ f∗(F ⊗OX
f∗L⊗m)

and we apply f∗ to the above surjection obtaining by right exactness

f∗O(I)
Y ։ f∗f∗(F ⊗OX

f∗L⊗m)

The term on the left is by definition O(I)
X whereas the natural map

f∗f∗(F ⊗OX
f∗L⊗m) → F ⊗OX

f∗L⊗m

is surjective by the finiteness of f , which yields that Ã is projective.
The projectivity of A follows finally from the Castelnuovo’s contraction criterion
(see [Har13, p. 414]) which states that if Y is a rational curve curve on a algebraic
surface X and Y 2 = −1 in the Chow ring, then there exists a blow-up X → X0,
where X0 is projective and smooth, whose exceptional divisor is Y . The variety
X0 is often called blow-down of X.
It can be proved that Ã → A can be obtained as 16 blow-downs, thus A is
projective.

A peculiar fact is that from a differential point of view, all K3 surfaces are
actually the same. Indeed the following holds.

Theorem 3.1.5 (Kodaira, [Kod64]). Any K3 surface can be realized by choos-
ing some complex structure I on a fixed 4-dimensional differentiable manifold
M .

3In general given a finite map f : S1 → S2 between complex surfaces, S1 is projective if
and only if S2 is (see [Bar+03, p. 162]). One direction of the is proved below.



We have seen that a smooth quartic in P3 is a K3, thus we can take for
example M = V (x4 + y4 + z4 + w4) ⊂ P3 (the Fermat quartic). The question
whether any complex structure I on M gives rise to a K3 is answered by

Theorem 3.1.6 (Friedman, Morgan, 1994, [FM94]). Every complex surface
that is diffeomorphic to a K3 surface is a K3 surface.

To complete the picture we also give

Theorem 3.1.7 ( Kodaira and Michael Freedman). Any complex surface which
has the homotopy type of a K3 is homeomorphic to a K3 surface. There ex-
ist complex surfaces which are homeomorphic but not diffeomorphic to a K3
surface. They are known as homotopy K3 surfaces.

A detailed analysis of these manifolds can be found in [Kod70]. Here for
example the following characterization is given: a simply connected compact
complex surface is a homotopy K3 if and only if pg = 1, c21 = 0 and c1 ≡ 0
mod 2.
All the homotopy K3 surfaces can be obtained via logarithimic transform of an
elliptic K3 and we will now present the construction.

Example 3.1.8 (Homotopy K3 surfaces). We will now show how to obtain
complex surfaces which are homeomorphic but not diffeomorphic to a K3 sur-
face. We will actually build a whole pairwise non diffeomorphic family.
In general an elliptic complex surface is a complex surface X which admits a
fibration whose general fiber is an elliptic curve, i.e. there exists a holomoprhic
map π : X → C, where C is a riemann surface and a finite subset F ⊂ C such
that π|X\π−1(F ) is a submersion and each fiber over F ⊂ C is biholomoprhic to
a smooth cubic in P2.
Homotopy K3 surfaces are all obtained (see [Kod70]) by a surgery operation of
an elliptic K3, known as logarithmic transform.
Let p0, p1 be two cubic homogeneous polynomials in (z0, z1, z2), then define the
hypersurface

E(2) = {t20p0(z0, z1, z2) + t21p1(z0, z1, z2) = 0} ⊂ P1 × P2

For generic p0, p1, E2 is smooth and is a projective K3; the general fiber of the
natural projection on P1 is a smooth cubic.
Since any smooth elliptic curve has genus 1, it is biholomoprhic with C/{m +
nτ ; with m,n ∈ Z and Im(τ) > 0}. Thus one can form a holomoprhic family
of smooth elliptic curves parametrized by X as

Cτ(x) =
C

Λτ(x) = {m+ nτ(x); m,n ∈ Z}

where τ : X → C ∩ Im > 0 is a holomoprhic map from an arbitrary complex
manifold X.
Consider now an elliptic surface π : X → B and a regular value b ∈ B. It is
possible to prove that locally the elliptic fibration π is of form Cτ , i.e. where



exists a holomoprhic chart (∆, w) centered in b, a holomoprhic map τ : ∆ →
C ∩ Im > 0 and a biholomoprhism F : π−1(∆) → Cτ such that the following
diagram commutes

π−1(∆) Cτ

∆ ∆1

π πτ

F

Define Σ ⊂ Cτ × ∆ as the pullback of Cτ → ∆ along the map ∆ → ∆ which
maps ζ 7→ ζm, explicitly

Σ = {(z, ζ) : z ∈ Cτ(ζm), ζ ∈ ∆}

The natural projection Σ → ∆ is an elliptic fibration and Σ has a natural
automorphism

(z, ζ) 7→
((

z +
τ (ζm)

m

)
mod Λτ(ζm), e

2πi/mζ

)

which gives rise to a group Γ =< φ > of order m acting freely on Σ. Define
Σ̃ = Σ/Γ. The map Σ → ∆ which maps (z, ζ) to ζm is invariant with respect
to this action, thus it descends to a map u : Σ̃ → ∆, which induces an elliptic
structure on Σ̃.
In general the fiber over b of an elliptic fibrationM → B is said to have multiplic-
itym if there is a holomoprhic chart (∆, w) centered in b such that π|π−1(∆) = gm

for some g ∈ Hol(π−1(∆),∆) and g has finitely many critical points. We call
the hypersurface g−1(0) the m-th root of the fiber π−1(b) 4 .
In the case of u : Σ̃ → ∆, the fiber over 0 has multiplicity m and its m-th root
is smooth and biholomoprhic to Cτ(0), whereas the fibers over the over points
are smooth with multiplicity one. Consider the biholomoprhism

Lm : Σ̃ \ u−1(0) → Cτ \ Cτ(0)

defined as the descent of the Γ-invariant map Σ \ ζ−1(0) → Cτ \Cτ(0) given by

(z, ζ) 7→
((

z − τ (ζm)

2πi
log ζ

)
mod Λτ(ζm), ζ

m

)

We can finally perform the surgery in this way: fix b ∈ B regular for π, so that
E(2)|b is smooth. Choose a small holomoprhic chart (∆, w) centered in b. Then

• Remove from E(2) the set π−1(∆1/2m).

• Glue the elliptic fibration Σ̃ through the map

Lm : Σ̃|∆\∆̄1/2
→ π−1(∆ \ ∆̄1/2m)

4In the literature this is usually known as the reduction of the fiber π−1(b).



We denote this operation as log(M, b,m) or E(2,m) in the case M = E(2).
This construction, known as m-th logarithmic transform, yields a new fibration
which differs only in a neighborhood of b and that is holomorphically equivalent
over B \ b. The fiber over b contains m elliptic curves, is singular and can be
resolved by taking the m-th square root.
It can be proved that two simply connected surfaces of the form E(2;n1, n2)
and E(2;n′

1, n
′
2) are homeomorphic if and only if

n1 + n2 ≡ n′
1 + n′

2 mod 2

and are diffeomeomorphic if and only if

(n1, n2) = (n′
1, n

′
2)

In particular one can easily build with this method a countable family of complex
surfaces homeomorphic but not diffeomorphic to a K3.

The two classes of manifold that we will analyze in the next two paragraphs
shall be seen as two possible generalizations of K3 to higher dimensions.

3.2 Calabi-Yau manifolds

We begin with a generalization of theorem (...).

Theorem 3.2.1. Let (X, g) be a compact Kähler manifold with Hol = SU(m).
Then hp,0 = 0 for any 0 < p < m and χ(OX) = 1 + (−1)m.

Proof. The metric is Kähler by lemma (...). Let x ∈ X. The induced repre-
sentation on ΩpX,x is isomorphic to Λpρ∗, where ρ : SU(m) → GL(m,C) is the
inclusion. It is irreducible for any p, thus it is non trivial if p 6= 0,m. By lemma
(...), this implies that H0(X,ΩpX) = 0 if p 6= 0,m. The number χ(OX), also
known as Holomorphic Euler characteristic of a topological manifold, is defined
as

χ(OX) =
∑

i

(−1)idim(Hi(X,OX)) =
∑

i

(−1)ih0,i

and the result follows by Hodge duality and by the triviality of the canonical
bundle.

Corollary 3.2.2. If moreover dim(X) ≥ 3, then X is algebraic.

Proof. By Kodaira embedding theorem, X admits a holomoprhic embedding in
some Pn as h2,0 = 0 and by Chow theorem X admits an algebraic structure.

Thanks to Calabi-Yau theorem, we have the two following results.

Theorem 3.2.3. Let X be a complex manifold of dimensione m which admits a
Kähler metric h0. Then X admits a Kähler metric h whose associated holonomy
group is SU(m) if and only if KX ⋍ OX and H0(Y,ΩpY ) for any 0 < p < m,
where Y → X is an arbitrary finite cover. Moreover π1(X) is finite in this case.



Proof. If such a metric h exists, the canonical bundle is trivial by theorem (...)
and H0(X; ΩpX) = 0 for any 0 < p < m by theorem (...). If Y → X is a finite
cover, HolY = Hol(X).
Conversely if KX ⋍ OX then c1(X) = 0 and Calabi-Yau theorem yields a
Ricci-flat Kähler metric h. Let

Y = T k ×
∏

i

Vi ×
∏

j

Wj → X

be its Beauville decomposition. The conditionH0(Y,ΩpY ) = 0 for any 0 < p < m
and dim(Y ) = dim(X) implies that k = j = 0 and i = 1. Indeed all the
manifolds appearing in the decomposition have trivial canonical bundle, hence
for different values of i, k, j there would be a non trivial global section.
Thus Y = V1, which implies SU(m) = Hol0(Y ) = Hol0(X). Since Hol(X) ⊆
SU(m), one has the conclusion.
The group π1(X) is finite and its cardinality clearly coincides with the degree
of the covering.

Corollary 3.2.4. If m is even, X is simply connected.

We conclude the paragraph with some examples in arbitrary dimension. The
following theorem is an important tool which relates the topology of a projective
variety and its hyperplane sections (for a proof, see [Voi03]).

Theorem 3.2.5 (Lefschetz’ hyperplane section). Let X ⊂ PN be a complex
n-dimensional projective variety (not necessarily smooth) and Y a hyperplane
section of X, with U = X \ Y smooth and m-dimensional. Then

Hk(X,Z) ⋍ Hk(Y,Z)

πk(X) ⋍ πk(Y )

for any k < n− 1.

Example 3.2.6. LetX = V (F ) ⊂ Pn be a non necessarily smooth hypersurface
with deg(F ) = d.
If d = 1, then X ⋍ Pn−1. If d ≥ 1 then F ∈ H0(Pn,O(d)) and this line bundle is
very ample. The Veronese embedding φ : Pn → PM maps [z0, . . . , zn] to all the
possible monomials of degree d, thusM = bin(d+1, n+1) and φ∗(O(1)) = O(d)
by computing the cocycles.
In particular F ∈ H0(Pn, φ∗(O(1))), i.e. it is of the form φ∗s = φ ◦ s where s
is a linear form in PM . As Z(s) is a hyperplane in PM , one applies Lefschetz’
theorem to φ(V (F )) = Z(s) ∩ Pn.
Thus for example any projective hypersurface X ⊂ Pn with n ≥ 4 is simply
connected.

Lefschetz’ theorem can be adapted to a hypersurface of a projective variety,
Y ⊂ X ⊂ PN with the condition that OX(Y ) is ample. Indeed such an Y is by
definition Y = Z(s) for some s ∈ H0(X,OX(Y )) and OX(Y ) is ample. Let φ be



the embedding X −֒→ Pm such that φ∗(OPm(1)) = OX(Y ), then Z(s) = Z(φ∗α)
which implies that φ(Z(s)) = Z(α) ∩ φ(X).5

Example 3.2.8. Let X = V (F1, . . . , Fr) ⊂ Pn be a smooth complete intersec-
tion, with Fi ∈ (C[x0, . . . , xn])di and

∑
di = n + 1. The adjunction formula

gives
det(N∗

X,Pn)⊗KX = KPn |X
We shall show that NX,Pn ⋍= (

⊕
iO(di))|X . We have already seen that

NV (Fi),Pn ⋍ O(di), thus if the following holds

NY ∩V (F ),Pn = NY,Pn |Y ∩V (F ) ⊕NV (F ),Pn |Y ∩V (F )

with Y ∩ V (F ) complete instersection, we can conclude by induction.
Foix a local chart φi : Ui → Cn such that

φi(Ui ∩ V (F )) = {(z1, . . . , zn) ∈ φi(Ui) : z1 = 0}
φi(Ui ∩ Y ) = {(z1, . . . , zn) ∈ φi(Ui) : z2 = · · · = zk = 0}

with k − 1 = dim(Y ). Over Ui the cokernel of TV (F )(Ui) → TPn(Ui) can be
identified with sections over Ui of the form z1 = c with constant c, and analo-
gously the cokernel of TY (Ui) → TPn(Ui) with local sections of the form zj = cj
for any j = 2, . . . , k.
Thus NY ∩V (F ),Pn(Ui) is identified with local sections over Ui with constant first
k coordinates.
If φij : φi(Uij) → φj(Uij) is the change of coordinates, cocycles for NV (F ),Pn are
given by (∂x1φ

1
ij) ◦ φj whereas cocycles for NY,Pn by the dim(Y ) square matrix(

∂φl
ij

∂xm
◦ φj

)
l,m

. Since

∂xk
φ1ij = 0 if k 6= 1

∂φlij
∂xm

= 0 if l or m are not in 2, . . . , k

one has the conclusion.
We have thus found that

det(
⊕

i

O(−di))|X ⊗KX = O(−n− 1)|X

5A weaker version of theorem is the following:

Theorem 3.2.7 (Nakano-Lefschetz). Let X be an n-dimensional projecive variety and j :
Y → X a closed embedding of a smooth hypersurface. If OX(Y ) is ample, then Hp,q(X) ⋍

Hp,q(Y ) whenever p+ q < n− 1. In particular

j∗ : Hk(X,C) → Hk(Y,C)

is an isomoprhism for any k < n− 1.

It is strictly weaker as it requires the smoothness of Y and the result only holds for rational
cohomology, but can be proved quickly via Nakano vanishing theorem. See [Voi03] for a proof.



which shows that KX ⋍ OX .
In order to show that X is simply connected, assume n ≥ 4. We have already
shown that for V (F1), thus it suffices to prove that OXi

(V (Fi+1)) is ample,
where Xi = V (F1, . . . , Fi). Let ji : Xi → Xi−1, by definition

OXi
(V (Fi+1)) = j∗i (OXi−1

(V (Fi+1))

thus by induction

OXi(V (Fi+1)) = (j∗i . . . j
∗
1 )(OPN (V (Fi+1))

The latter is ample and one concludes because ampleness is preserved by pull-
backs along embeddings.

Example 3.2.9 (Hypersurfaces of Fano varieties). In this example we modify
our notation to distinguish between the canonical bundle ωX and divisor KX .
Let X be a smooth projective variety with dim(X) ≥ 3 and ample anticanonical
bundle −ωX .
Since X is projective, it is Kähler and one of the formulation of Kodaira theorem
implies that −ωX is positive, i.e. cR1 (−ωX) can be represented by a real positive
(1, 1)-form α. By Calabi-Yau theorem, α = −ρ/2π with ρ the Ricci-form of
some Kähler metric h and as ρ = (iRic)Alt, for Fano varieties Ric(X) > 0 for
any Kähler metric. Then by Myers’ theorem X is simply connected.
We will now show that any smooth divisor V in the linear system | − KX | is
a special unitary manifold. First one has OX(V ) ⋍ OX(−KX) = −ωX , thus
Lefschetz’ theorem implies that V is simply connected as well.
The conormal exact sequence

0 → N∗
V,X → ΩX |V → ΩV → 0

where NV,X ⋍ OX(V )|V yields the adjunction formula

i∗ωX = ωV ⊗OX(−V )|V

which implies ωV ⋍ OV .
It remains to prove that hp,0 = 0 for any 0 < p < dim(V ). By Kodaira vanishing
theorem

Hp(X,OX) = Hp(X,ωX ⊗−ωX) = 0 for any p > 0

hence by Lefschetz’ theorem Hp(X,C) = Hp(V,C) for any 0 < p < dim(V ).
This yields the conclusion, as the isomorphism is an isomoprhism of Hodge
structures.
In particular any smooth divisor in the anticanonical class of a Fano variety is a
projective K3. Conersely, it is interesting to establish which projective K3 can
be obtained in this way. A detailed discussion can be found in [Bea02].



3.3 Irreducible symplectic manifold

In this paragraph we will describe some features of Kähler manifolds with Hol =
Sp(r), usually known in the literature as irreducible symplectic manifold. 6

Their story is quite curious: at the beginning it was erronously suggested by
Bogomolov in [Bog78] that none of them existed in dim > 2. Later on, Fujiki
showed in [Fuj83] that the blow-up of (K3×K3)/Sym2 along its singular locus
is irreducible symplectic, providing the first example. Soonly after, Beuaville in
[Bea83b] generalized Fujiki’s construction.

Theorem 3.3.1. Let X be a compact Kähler metric with dimC(X) = 2r and
Hol = Sp(r). Then X admits a non-degenerate form φ ∈ H0(X,Ω2

X) and

H0(X,ΩpX) =

{
0 if p is odd

C · φ q
2 if p is even

In particular χ(OX) = r + 1 and X is simply connected.

Proof. The existence of φ has been proved in (...). A result from representation
theory (See Bourbaki,....) states that if V is a complex vector space of dimension
2l, φ is a non-degenerate alternating two-forms, then

ΛkV = Ek ⊕X−(Ek−2)⊕X2
−(Ek−4)⊕ . . .

where X− is an endomorphism of ΛV increasing the degree by 2, Ej ⊆ ΛjV
and are stable for the action of Sp(r), for any j.
One can also show that this decomposition induces a decomposition of the form

ΛkV = Pk ⊕ φ(Pk−2)⊕ φ2(Pk−4)⊕ . . .

where still Pj ⊆ ΛjV and are stable for the action of Sp(r), for any j.
As multiplication by φk provides an equivariant isomorphism Λr−kV ⋍ Λr+kV ,
the only invariant elements are φ and its powers.
By taking Λr(V ) = ΩrX(x) and applying lemma (...) one has the conclusion.
The formula for the holomoprhic Euler characteristic is now obvious.
For the last point, if Ỹ → X is the universal cover, then Hol(Ỹ ) = Hol0(X) ⊆
Sp(r), which leaves Hol(Ỹ ) = Sp(r) as the only possibility. As χ(OX) =
χ(OỸ ) = r + 1, X is simply connected.

The form φ defines a holomoprhic symplectic structure on X as it is au-
tomatically closed. It is not difficult to build Kähler manifolds with such a
structure: analogously to the real case (see), the cotangent bundle ΩX of any
complex manifold admits a holomoprhic symplectic form, which in a local coor-
dinate neighborhood reads

∑
i dαi ∧ dzi where zi are the coordinates on X and

αi are the coordinates on the fiber of ΩX → X given by αq(vq) = (αi)qv
i
q for

6Any Kähler manifold is trivially symplectic from the differentiable point of view, as the
Kähler form is always non degenerate and closed.



any v ∈ TX,q.
A manifold X admitting a holomorphic 2-form ω such that ωdim(X) is not the
zero section provides another example. Indeed the restriction of ω to Y \div(ωr)
is non degenerate, as

ωp(u,−) = 0 =⇒ ωrp(u,−, . . . ,−) = 0

We will now show that admitting a holomoprhic symplectic structure, for man-
ifolds admitting a Kähler metric, is equivalent to the existence of a Kähler
metric whose holonomy contained in the symplectic group. If one requires that
Hol = Sp(r) or that X is simply connected, though, the number of examples
drastically drop.

Theorem 3.3.2. Let X be a 2r-dimensional compact complex manifold, ad-
mitting a Kähler metric h0. Then X admits a symplectic structure if and only
if there exists a Kähler metric h such that Hol ⊆ Sp(r), whereas there exists a
Kähler metric h such that Hol = Sp(r) if and only if π1(X) = 0 and X admits
a unique (modulo a constant) symplectic structure.

Proof. If X admits a symplectic structure ω one has that KX ⋍ OX , hence
cR1 (X) = 0 and by Calabi-Yau theorem there exists a Ricci-flat Kähler matric
h. With respect to h, ω is parallel by Bochner principle and by theorem (..)
Hol ⊆ Sp(r). The other implication has been proved in (...).
If X admits a metric h with Hol = Sp(r), then X is simply connected and
admits a symplectic structure ω by the previous theorem, which is unique as
if ω = fω̃ then 0 = ∂̄(fω̃) = ∂̄(f) ∧ ω. Since ω is non degenerate, necessarily
∂̄(f) = 0.
Conversely, if X admits a symplectic form ω then Hol ⊆ Sp(r) for some Kähler
metric h and X is isomorphic to its universal cover, thus

X
Φ−→
⋍

∏

i

Vi ×
∏

j

Wj

with Hol(Vi) = SU(ri) and Hol(Wj) = Sp(rj).
Then ω = Φ∗η =

∑
i Φiηi +

∑
j Φjηj , where η, ηi, ηj are symplectic form (Φi

and Φj are local biholomoprhisms, thus they preserve non degeneracy). Since∑
i λiΦiηi +

∑
j λjΦjηj is symplectic for any λ1, . . . , λk ∈ C∗, k = i + j, the

hypothesis implies that k = 1. Then necessarily the only term appearing in the
decomposition is W1, because SU(2r) is never a proper subgroup of Sp(r).

We now present a very recent alternative characterization of irreducible sim-
plectic manifolds [Sch22]. We present the proof in details as it is an interesting
example of application of Beauville’s decomposition.

Theorem 3.3.3. Let X be a compact Kähler manifold with H0(X; Ω2
X) ⋍ Cω.

Then X is an irreducible symplectic manifold if and only if X has no irregular-
ities.



Proof. One direction is immediate: if X is simply connected then H1(X,C) = 0
by Hurewitz theorem and H1(X,C) = 0 by Poincaré duality and universal
coefficient theorem. The result follows from H1 = H1,0 ⊕H0,1.
Conversely, we shall first prove that if X is holomorphic symplectic and without
irregularities then it is simply connected or it is the quotient of a torus. Let
X ′ = T × V ×W be its decomposition, with V =

∏
i Vi and W =

∏
jWj . By

theorem (...), we can assume that the cover is Galois, thus X ′/G = X with
G ≤ Aut(X’).
We have the following isomorphisms

H0(X,Ω2
X) ⋍ H0(X ′/G,Ω2

X′/G) ⋍ H0(X ′,Ω2
X′)G

thus H0(X ′; Ω2
X′)G = C(π∗ω). Now we have that

H0(X ′,Ω2
X′) = H0(T,Ω2

T )⊕H0(W,Ω2
W )

since h1,0(V ) = h2,0(V ) = h1,0(W ) = 0, thus π∗ω = π∗
T η + π∗

Wµ where πT and
πW are the projections. Moreover π∗ω is non degenerate, as π is unramified,
which implies that the Y factor do not appear and that η and µ are non degen-
erate as well.
If u ∈ Aut(X ′) then it splits as u = (v, w), thus π∗

T η and π∗
Wµ are G-invariant.

But H0(X,Ω2
X) has dimension one, then either T or W does not apper. In the

latter case, we have concluded. Thus assume that X = W/G. We will now
show that every action of G on W has a fixed point, which clearly implies that
G acts trivially as X is smooth.
Let ωi be the pullbacks of π∗ω to each factor Wi. By what we have seen in
lemma (...), each H0(W,Ω2p

W ) is generated by the wedge products of ωi and
Hp,0(W ) = 0 if p is odd. Every automorphism f of W preserves a symplectic
form α and up to rescaling one can assume that α =

∑
i ωi. By what we have

observed in remark (...), f acts by permuting the factor and then on each single
factor by fi. In particular, there is a permutation σ such that f∗ωi = λiωσ(i)
for any i, with λi ∈ C∗. But the collection of ωi has been chosen in a way that
f∗(

∑
i ωi) =

∑
i ωi, then f

∗ is just a permutation and

tr(f∗|Hk,0(W ))





= 0 if k is odd

≥ 0 if k is even

= 1 if k = 0, 2 · dim(X)

Then f has a fixed point by Lefschetz fixed point formula and W = X.
To conclude the proof, we admit the result of [Sch22] 7

Lemma 3.3.4 (Schwald, 2022). Every smooth symplectic torus quotient with
h0(X,Ω2

X) = 1 is a two dimensional torus.

This concludes the proof as for a two dimensional torusX one has h0(X,OX) =
2.

7The whole articol is devoted to analyze smooth quotient of torus, we refer to that for the
details.



As we have anticipated, there known examples of irreducible symplectic man-
ifold (up to deformation) are very few. They are:

• Douady spaces of a K3 surface.

• Generalized Kummer manifolds.

• Six dimensional OG-manifolds

• Ten dimensional OG-manifolds

We will now give the details of the construction of each of them.

3.3.1 Douady spaces

The first example of irreducible symplectic manifold if dimension higher than 2
was K3[2], found by Fujiki in 1982, in [Fuj82]. The following generalization is
first found in Beauville’s paper [Bea83b].
The construction of Douady spaces is analogous to the construction of Hilbert
schemes, which we will now present.
Let X be a smooth projective scheme over C. Let X(r) be the set which corre-
ponds to effective cycles of degree r. A more sophisticated way to parametrize
the zero dimensional8 subschemes Z ⊂ X is by considering also the length of Z

l(Z) = dimC(H
0(Z,OZ))

As a set, Hilbn(X) is defined as the collection of all the zero-dimensional sub-
schemes of length n.
If X is reduced and x ∈ Z is closed, one defines the multiplicity of x in Z as
ex(Z) = dimC(OZ,x). Then there is a map, called Hilbert-Chow map

ρ : Hilbn(X) → X(n)

which maps Z to

|Z| =
∑

x∈X,x closed

ex(Z) · x

Here is an easy example.

Example 3.3.5. Consider the affine scheme V = Spec(C[x, y]). There is a
bijection between all the subschemes of V and the ideals of C[x, y] and Z ⊂ V
has dimension 0 if and only if the corresponding ideal I has height 2, i.e. each
chain p0 ⊂ · · · ⊂ pn, where pi are prime ideals and I ⊆ pn, has length two.
If n = 1 closed subschemes are simple points, as C[x, y]/I has length one if and
only if it is isomorphic to C.
If C[x, y]/I has length two, there is a relation a+bx+cy ∈ I with a, b, c ∈ C and
up to a coordinate change y ∈ I. Then x /∈ I and x2 + I has to be a C-linear

8We recall that the dimension of a scheme V can be defined either as the topological
dimension of the underlying space or as supξ∈V dim(OV,ξ).



combination of 1 and x, thus I = (y, (x − α)(x − β)). The quotient C[x, y]/I
corresponds either to two points or to a 2-fat point, the latter in particular can
be thought as a point with a tangent vector attached. Recalling how blowups
are built, this suggests that

Hilb2(A2) ⋍ Bl∆

(
(A2 × A2)/(z, w) ∽ (w, z)

)

Notice that already in the case n = 2 the set of 0-dimensional subschemes of
length n is richer than the set of effective 0-cycles of degree 2, because the
information on the tangent vector is now included.
If n = 3 there are more possibilities. For a cycle z+w+ t, the ideal has the form
I = (x, y(y − α)(y − β))), for a cycle 2z + w then I = (x, y2) ∩ (x − α, y − β),
i.e. a single point and a different point with a tangent vector attached, for a
cycle 3z then I = (x, y3), which corresponds to a point with a first and second
order vector. The only ideal we have not considered is I = (x, y)2, which still
corresponds to a cycle 3z and can be thought as

lim
δ,ǫ→0

z + (z + ǫe1) + (z + ǫe2)

i.e. a point with two different first order tangent vectors attached, which deter-
mines a cone.
Although it is less evident, one can prove that in general Hilbk(A2) can be
obtained as a sequence of blow-up along the diagonals

Hilbk(A2) ⋍ Bl∆n
(Bl∆n−1

(...)) → · · · → Bl∆2
((A2)(k)) → (A2)(k)

where ∆k contains the cycles of the form k · x1 + x2 + . . . xn+k+1 and all the xi
are distinct.
A detailed construction for the algebraic case can be found in [Hai98], where
a combinatorial approach is used. For the complex analytic case, some adjust-
ments have to be made. We refer to [CM00] for the details.

We would like to show that the Hilbert scheme, in some situations, is an
answer to a moduli problem, i.e. it is an object which parametrizes a family in
a universal way.
We recall that a morphism φ : S → T between schemes is said flat if the induced
maps on stalks is a flat map of rings, whereas φ is said finite if there is an affine
open cover (Vi = Spec(Bi)) for T such that (Ui = φ−1(Vi)) is an affine open
cover for S and φ|Ui is a finite ring morphism. The degree of a flat morphism
is defined as dimk(y) O(φ−1(y)).
We also need the definition of Hilbert polynomial associated to Z ⊂ X, which
is given by

PZ(k) = χ(OZ ⊗OX(kD)

where D is an ample divisor on X.
Consider now the following moduli problem. The functor HilbnX : Schop → Set

sends a scheme T to the set of isomorphism classes of flat morphisms π : Z →
T whose fibers have Hilbert polynomial costantly n, where Z ⊆ T × X is a
subscheme. The following important result holds.



Theorem 3.3.6 (Grothendieck). The functor HilbnX is representable by the
quasi-projective scheme Hilbn(X), which is then a fine moduli space for the
above problem.

If one restricts to X non-singular and connected algebraic surface, the fol-
lowing holds

Theorem 3.3.7 (Fogarty, [Fog68]). The Hilbert scheme Hilbn(X) is indeed a
smooth and connected algebraic variety of dimension 2n.

For higher dimensional varieties, not only in general Hilbn(X) is no longer
smooth, but in general the singular locus is more intricated than in X(n).

Consider now be a compact complex surface X and define the Barlet space
as S(r) = Sr/Sr, where Sr is the symmetric group acting on (x1, . . . , xr) by
permutation. Again as a set S(r) corresponds to the set of effective 0-cycles of
degree r, but it is in general a difficult problem to determine its global topology.
For semplicity, we restrict now to the case r = 2 and show that S(2) \∆ is nat-
urally a complex manifold and that ∆ is singular. The irreducible symplectic
manifold we are looking for is exactly the resolution of S(r).
Let [(x, y)] ∈ S(2) \∆, fix a neighborhood V not intersecting ∆ and onsider U1

and U2 the corresponding neighborhood of respectively (x, y) and (y, x). Up to
shrinking U1 and U2, they do not intersect. Then, in local coordinates

V ⋍
{(x1, x2, x3, x4) ∈W ⊂ C4 : (x1, x2) 6= (x3, x4)}

(x1, x2, x3, x4) ∽ (x3, x4, x1, x2)

which shows that V is biholomorphic with a open subset of C4.
Now fix [(x, x)] and a neighborhood Z. With respect to the induced local coor-
dinates of S, [(x, x)] is a singular point, indeed if with respect to the canonical
basis (x1, x2, x3, x4) 7→ (x3, x4, x1, x2), in the basis (e1+e3, e2+e4, e1−e3, e2−e4)
one has (y1, y2, y3, y4) 7→ (y1, y2,−y3,−y4). To conclude, regular functions on
this space are now

C[y1, y2]⊗ C[y3, y4]
Inv

and {p(y3, y4) = p(−y3,−y4)} ⋍ C[y2, z2, yz] ⋍ C[u, v, z]/(z2 − uv). Hence Z is
biholomorphic to C2 × V (z2 − uv) and in particular is not smooth in [(x, x)].

Definition 3.3.8. Let X be a complex manifold. The r-Douady space X [r]

contains as a set all the 0-dimensional complex submanifolds Z ⊂ X with
length(OZ) = r.

One can still define a moduli problem to which X [r] is the solution, but the
situation is more delicate as Hilbert polynomials are no more defined in this
setting. A detailed discussion can be found in [KS58].
It can be proved that if dim(S) = 2, then X [r] is naturally endowed with a
smooth complex structure. As in the algebraic setting, one can define naturally
the Hilbert-Chow map, which is now holomoprhic ǫ : S[r] → S(r).
If dim(S) ≤ 2, ǫ is bimeromorphic. Thus S[r] → S(r) can be considered a



resolution of singularities and ǫ−1(D) is an irreducible divisor. Consider in D
the subset D∗ = {2x1 + x2 + · · ·+ xr−1 : xi 6= xj} and define

S
(r)
∗ = S(r) \ (D \D∗)

Let S
[r]
∗ = ǫ−1S

(r)
∗ and Sr∗ = π−1S

(r)
∗ , then S[r] \ S[r]

∗ has codimension 2 in S[r],

since S[r] \ S[r]
∗ = ǫ−1(D \D∗) and D is irreducible.

It is now easier to deal with S
[r]
∗ , indeed with the same kind of computation

as above, we find that S
(r)
∗ is locally isomoprhic around its singular points to

C2r−2 × Q, where Q is a cone with vertex v and that under this identification
D∗ corresponds to C2r−2 × {v}. The restricion ǫ|

S
[r]
∗

is now the blow-up of

D∗. In Sr∗ , which is the subset of product containing r-uples with at most two
repetitions, the diagonal is smooth with codimension 2.
If η : Bl∆∗

(Sr∗) → Sr∗ is the blow-up, the action of the symmetric group lifts to

an action on Bl∆∗
(Sr∗) and in conclusion one has that S

[r]
∗ and Bl∆∗

(Sr∗)/S are
biholomorphic. With this one can prove

Lemma 3.3.9. If S has trivial canonical bundle, S[r] admits a holomorphic
symplectic structure.

Proof. The idea is to build such a structure on S
[r]
∗ and then extend it, by

Hartog’s theorem, to the whole S[r]. Let ω be a symplectic form on S and set

ψ = pr∗1ω + · · ·+ pr∗rω

which is symplectic on Sr. It restricts to a holomoprhic 2-form on Sr∗ , which
can be pulled back along η : Bl∆∗

(Sr∗) → Sr∗ to a form ω̃, which is invariant by
the action of the symmetric group as ψ is clearly invariant on Sr.

Thus ω̃ descends to a holomoprhic two form φ on S
[r]
∗ . Indeed, ω̃ = ρ∗φ, as

there is a one to one correspondence between invariant forms on Bl∆∗
(Sr∗) and

forms on S
[r]
∗ .

We shall prove that φ never vanishes. Recall that for an arbitrary ramified cover
f : X → Y between complex varieties

div(f∗KY ) = f∗div(KY ) +Rf

Now the map ρ : Bl∆∗
(Sr∗) → S

[r]
∗ has ramification divisor

∑

i<j

η−1(V (zi − zj))

thus
div(ρ∗φ)r = ρ∗div(φr) +

∑

i<j

η−1(V (zi − zj))

By definition ρ∗φ = ω̃ = η∗(ψ|Sr
∗
) and

div(η∗(ψ|Sr
∗
)r) = Rη



since div(ψ|Sr
∗
) = 0.

To conclude, the exceptional divisor of η is Rη =
∑
i<j η

−1(V (zi − zj)), hence

ρ∗div(φr) = 0

which concludes the proof.

We shall now study the cohomology of the manifolds S[r].

Lemma 3.3.10. If S is a compact complex surface, the manifolds S[r] and S(r)

have the same fundamental group.

Proof. The following picture suggests how to compute π1(S
[r]) starting from

π1(S
r).

Fix ξ = (x1, . . . , xr) outside from the diagonal. Every loop γ based in ξ has to
be identified in the quotient with σ(γ), for any σ ∈ Symr, thus the group can
be presented as

π1(S
(r), ξ) =< α1 . . . αk|αi ∈ π1(S

r, ξ), σ(αi)α
−1
i = 1 > 9

The injection Sr∗ −֒→ Sr induces an isomoprhism on fundamental groups, as the
first space is obtained from the latter by removing a codimension 4 submanifold,
and the quotient of Sr∗ by the subgroup of transpositions equals the quotient

of Sr by the action of Symr. Thus S
(r)
∗ −֒→ S(r) induces an isomorphism of

fundamental groups as well.

To conclude, we notice that both the blow-up S
[r]
∗ → S

(r)
∗ and S

[r]
∗ −֒→ S[r]

induces isomorphisms on the fundamental groups, again by codimension argu-
ment.

In particular if S is simply connected, so is Sr, S(r) and S[r].
To conclude analysis of the manifolds S[r] it remains to investigate the unicity
of the symplectic structure (see theorem ) and whether S[r] admits a Kähler
metric. For the first point, we will use some special property of the space S[r].
We recall that an integer pure Hodge structure on cohomology is the datum of
a direct sum decomposition of complex vector spaces

Hn(X,C) =
⊕

p+q=n

Hp,q(X)

such that Hq,p(X) = Hp,q(X).

Theorem 3.3.11. Let S be a complex compact surface, and r ≥ 2. Then

1. Both H2(S(r),C) and H2(S[r],C) admit pure Hodge structures.

9This surprisingly is isomorphic to the abelianization of π1(S), by

π1(S
(r), (x0, . . . , x0)) → Ab(π1(S, x0))

αi = (a1, . . . , ar) 7→ a1 . . . ar



2. The map π∗ : H2(S(r),C) → H2(Sr,C) is an isomoprhism onto the sub-
space of H2(Sr,C) formed by representatives invariant by Symr.

3. The sequence 0 → H2(S(r),C)
ǫ∗−→ H2(S[r],C) → C[E] → 0 is a split exact

sequence. and ǫ∗ preserves them.

4. If H1(S,C) vanishes, pi∗ induces an isomoprhism of Hodge structures.

Proof. The manifold S(r) can be covered by open holomorphic charts (attenzion,
è singolare! spazio complesso, non manifold). (Ui, φi) such that Ui ⋍ Wi/H
where Wi is an open subset of C2r and H ≤ Gl(2r,C). Complex manifolds
satisfying this properties are known as V -manifolds. (....) They admit pure
Hodge structures on each cohomology group and satisfy Poincaré duality, in
particular

H2(S(r)) H2(Sr)

H2r−2(S
(r)) H2r−2(S

r)

π∗

⋍

π∗

⋍

is commutative.

To prove the second point, we replace S(r) with S
(r)
∗ and S[r] with S

[r]
∗ as

the difference in codimension is higher than the one detected by H2. We have
the following commutative diagram

H2(Bl∆(S
r
∗))

Inv H2(Sr)Inv

H2(S
[r]
∗ ) H2(S

(r)
∗ )

η∗

ρ∗

ǫ∗

π∗

where the resctrictions to the invariant parts of H2(Bl∆(S
r
∗)) and H

2(Sr) is due
the fact that

We have seen that π∗ is bijective and since S
[r]
∗ is isomoprhic to Bl∆(S

r
∗))/Symr,

the map ρ∗ is bijective as well. The map

H2(Bl∆(S
r
∗)) → H2(S

r
∗) = H2(S

r)

is surjective and equivariant with respect to the action of Symr, thus after
dualizing one has that η∗ is injective and commutativity ǫ∗ is injective, too. In
particular

H2(Bl∆(S
r
∗))

Inv = Im(η∗)⊕W



for some complex vector subspace10 W ⊂ H2(Bl∆(S
r
∗))

Inv and

H2(Bl∆(S
r
∗))

Inv

Im(η∗)
= ρ∗

H2(S
[r]
∗ )

Im(ǫ∗)

and the latter quotient is exactly the vector space generated by fundamental
class [E] of the exceptional divisor of S[r] → S(r).

For the last point, if H1(S,C) vasnishes, then

φ : H2(S
r,C)

⋍−→ H2(S)
⊕r

by Kunneth formula and φ respects the Hodge structures.(...). We find the
result by dualizing and from the obvious identity H2(S)

⊕r/Symr = H2(S).

In particular if S is a K3 surface, S[r] is simply connected, there is an
injective homomorphism i : H2(S,C) → H2(S[r],C) which preserves the Hodge
structure and

H2(S[r],C) ⋍ i(H2(S,C))⊕ C[E]

This implies that C[E] ⊂ H1,1(S[r]) and that H2,0 and H0,2 coincide for S[r]

and S.
where i(H2(S,C)) = η∗(H2(Sr)Inv). If α ∈ H2(S,C) we have by commutativity

iα = η∗β = η∗π∗γ = ρ∗ǫ∗γ

Thus we have obtained that if S is a K3 surface, h2,0(S[r]) = h2,0(S) = 1 and
in particular the symplectic structure built in theorem (...) is unique up to a
scalar.
At the time of the publication of Beauville’s article it was not known if S Kähler
would imply S[r], unless S is projective and consequently a quite sophisticated
restriction was necessary (see [Bea83b, p. 768]).
The resolution of the problem was mainly due to Varouchas, who generalized
in [Var84] and [Var89] the notion of Kähler metric to complex analytic spaces11

and studied how certain morphisms preserves it. We first recall some definitions.

Definition 3.3.12. A continuous function f : U ⊂ Rn → R is said subharmonic
(strictly subharmonic) if for any open ball Br(x) contained in U , whenever
φ : Br(x) → R is harmonic and f(y) ≤ φ(y) on the boundary, then f ≤ φ
(f(y) < φ(y)) on the whole Br(x).
A continuous function on a complex space f : X → R is said:

• pluriharmonic if f ◦ φ is harmonic

10Indeed all these vector spaces are finite dimensional
11A complex analytic space, which is the singular generalization of a complex manifold, is a

locally ringed space (X,OX) over C which is locally isomorphic as a ringed space to (U,OU/IZ)
where U ⊂ Cn and IZ is an ideal sheaf generated by (f1, . . . , fk) global holomorphic functions
on Cn. It is in particular inherited with all the Hp,q groups.



• plurisubharmonic if f ◦ φ is subharmonic

• strictly plurisubharmonic if f ◦ φ is strictly subharmonic

for any holomorphic map φ : B1(0) → X.

It can be easily proved that a C2-function is strictly plurisubharmonic if and
only if i∂∂̄f is a positive definite (1, 1)-form. Conversely, the new characteriza-
tion of Kähler metrics is the following

Definition 3.3.13 ([Var84]). A Kähler cocycle (of class 0 ≤ p ≤ ∞) is the
datum of an open cover {Ui} and some strictly plurisubharmonic functions
fi : Ui → R of class Cp such that each fi − fj is pluriharmonic on Uij .

It can be shown (see [Var84] for details) that a continuous Kähler cocycle
gives rise to a smooth Kähler cocycle, through a regularization argument, and
that on a complex manifold there is a one to one correspondence between Kähler
metrics and equivalence classes of smooth Kähler cocycles, where

{(Ui, fi)i∈I} ∽ {(Vj , gj)j∈J}

if and only if (fi−gj)|Ui∩Vj is pluriharmonic for any i ∈ I, j ∈ J . In the singular
case we can still define the Kähler form ω, it lives inH1,1 but in general a singular
Kähler form does not determine uniquely the metric.
These two theorems then follow, both from [Var89].

Theorem 3.3.14 (Varouchas). If X is a Kähler space, then the symmetric
product X(n) is Kähler.

Theorem 3.3.15 (Varouchas). If f : X → Y is a projective morphism and Y
is a Kähler space, then so is X.

The classical notion of a projective complex analytic morphism is a proper12

holomoprhic map f : X → Y which has projective fibers and the embedding of
each fiber has to be uniform, i.e. there is a line bundle L on X whose restriction
to each fiber is ample.
Hence if one proves that the Douady-Barlet morphism ǫ : X [n] → X(n) for a
compact surface X is projective, the result follows.
In [CM00] one can find a very detailed analysis of the properties of ǫ. Its local
projectivity follows from the projectivity of (C2)[n] → (C2)(n), which can be
proved in coordinates or by observing that this diagram commutes

(C2)[n] (P2)[n]

(C2)(n) (P2)(n)

12In the topological sense



Thus one has a finite cover Ui on X [n] with some line bundles Li on Ui such
that their restrictions to the fibers are ample. Since the exceptional divisor E
is irreducible and the fibers outside the exceptional divisor are finite (thus any
line bundle restricted here is ample), it is possible to modify and glue the line
bundles Li in a suitable way, to obtain a global line bundle, whose restrictions
to the fibers are ample. Then we have

Corollary 3.3.16. If X is a complex compact surface, then X [n] admits a
Kähler metric.

For a different approach we refer to [AS06], where an explicit Kähler metric
is built on the Douady space, using some smoothing of currents.

3.3.2 Generalized Kummer manifolds

As we have seen in the previous paragraph, if S is a compact Kähler surface with
a symplectic structure, then S[r] always admits a Kähler metric and a symplectic
structure, whereas the unicity of this structure and the simply connectedness
depend on the topology of S. The new class of manifold is built starting with
A[r], with A a complex torus.
Since A is abelian, Ar is naturally isomorphic as an abelian group to A⊕r and
the geometric action of Symr is compatible with the group structure, i.e. A(r)

is a quotient group. Then define the map

s : A(r+1) → A

[p0] + · · ·+ [pr] 7→ p0 + · · ·+ pr

and by pre-composition
S = s ◦ ǫ : A[r+1] → A

Notice that A[r+1] fails in general to be abelian. Define two actions of A: on
A itself by La(x) = x + (r + 1)a and on A[r+1] by translation. The map S is
isotrivial, i.e. the following diagram commutes

A×Kr A[r+1]

A A

Spr1

(r+1)

We will now show that Kr = S−1(0), called r-th generalized Kummer manifold,
is irreducible symplectic. It is a hypersurface of A[r+1] and for r = 1 one finds
exactly the construction of example (...), hence the name.
The canonical bundle of Kr is trivial, by the adjunction formula, thus the re-
striction of the symplectic form ψ of A[r+1] to φ is a symplectic form for Kr if
and only if it is non degenerate.
Take x ∈ Kr in the fiber of ǫ of a r + 1-tuple of all distinct elements, then
TxA

[r+1] ⋍ (T0A)
⊕r+1 and the pushforward S∗,x : TxA

[r+1] → TS(x)A can be



identified with (T0A)
⊕r+1 → T0A, mapping (v0, . . . , vr) to v0 + · · ·+ vr.

Looking at the proof of (...), one sees that

ψx(vi, vj) = 0 if i 6= j

and ψx|T0A is non degenerate. Then ψx restricted to TxKr = ker(S∗,x) is non
degenerate, indeed any non zero u ∈ TxKr is the sum of at least two u1, u2 non
zero vectors in different T0A, hence

ψx(u1 + u2 + . . . , v) 6= 0

choosing for example v such that ψx(u1, v) 6= 0.
It is also easy to see that Kr is simply connected, indeed from the fibration
S : A[r+1] → A one has the long exact sequence in homotopy

· · · → π2(A) → π1(Kr) → π1(A
[r+1]) → π1(A) → . . .

and π1(A) is abelian, thus the map π1(A
[r+1]) → π1(A) is bijective, and π2(A) =

0. In conclusion π1(Kr) = 0.
We now describe in more details the topology of Kr.

Lemma 3.3.17. For a generalized Kummer manifold Kr there is an injective
homomoprhism j : H2(A,C) → H2(Kr, C) compatible with Hodge structures
and if r ≥ 2

0 → H2(A,C) → H2(Kr,C) → C[F ] → 0

is split exact, where F is the trace13 on Kr of the exceptional divisor of A
[r+1] →

A(r+1).

Proof. Assume that the following sequence is exact

0 → H2(A,C)
S∗

−−→ H2(A[r+1],C)
i∗−→ H2(Kr, C) → 0

where i : Kr −֒→ A[r+1] is the canonical injection.
By theorem (...) we have an Hodge structure preserving isomorphism

ρ : H2(A[r+1],C) → H2(Ar+1,C)Inv ⊕ C[E]

The group H2(Ar+1,C)Inv can be easily computed passing to the dual (we omit
C for brevity)

H2(A
r+1)/Symr+1 ⋍

[
⊕

i0+···+ir=2

Hi0(A)⊗ · · · ⊗Hir (A)

]
/Symr+1

13Given a closed embedding i : Y → X and V a linear system on X, which corresponds
to a vector subspace V ⊆ H0(X,L) for some line bundle L, the trace of V on Y , denoted as
V |Y , is the linear system on Y corresponding to W ⊆ H0(Y, i∗L) such that W is the image
of V under the natural map H0(X,L) → H0(Y, i∗L). The trace of a divisor D is the trace
of the complete linear sistem L(D). The trace of a complete linear system, in general, fails
to be complete. If i∗L has no non-trivial global sections then V |Y = 0 (which corresponds to
negligible interesections (or empty?) between Z(V ) and Y .



and Symr+1 acts in the natural way on the right hand side.
Thus H2(A

r+1)/Symr+1 is generated by

{
∑

i

li∗ω : ω ∈ H2(A)

}

where li is the canonical i-th injection A −֒→ Ar+1 and by the cycle represented
by 



∑

i,j

li∗α ∩ lj∗β : α, β ∈ H1(A)





By Poincaré duality one finds that H2(Ar+1,C)Inv is generated by

{
∑

i

pr∗i [ω] : [ω] ∈ H2(A)

} 


∑

i,j

pr∗i u ∧ pr∗jv : u, v ∈ H1(A)





where we used the fact that cup product (which corresponds to wedge product
for De Rham cohomology) is dual to geometric intersection.
Since

∑
i,j pr

∗
i u ∧ pr∗jv is the same as (ρ ◦ S∗)(u ∧ v), we have

H2(Ar+1,C)Inv = µ(H2(A,C))⊕ Im(ρ ◦ S∗)

where µ is an injective homomoprhism.
This yields the conclusion, as

H2(Kr) ⋍
H2(A[r+1])

Im(S∗)
=
ρ−1(H2(Ar+1)Inv ⊕ C[E])

Im(S∗)

=
(ρ−1 ◦ µ)(H2(A,C)⊕ ρ−1C[E])⊕ Im(S∗)

Im(S∗)

It remains to prove the exactness of the first sequence.
The injectivity of S∗ is clear. For the surjectivity of i∗, we will consider a
reduced map at the place of i. Let N = {(a0, . . . , ar) :

∑
ai = 0} and set

N∗ = N ∩Ar+1
∗ K∗ = Kr ∩A[r+1]

∗ δij = N∗ ∩∆ij

so that ∆ = ∪ijδij is smooth and has codimension 2 in N∗ and the following
diagram commutes

Bl∆(N∗) Bl∆(A
r+1
∗ )

K∗ A
[r+1]
∗

l

i



In particular K∗ is identified with A
[r+1]
∗ /Symr+1. The action of A restricts to

an action on A
[r+1]
∗ , thus the submanifold Kr \K∗ has codimension 2 and the

same holds for N \N∗.
This allows to replace the 2-cohomology groups of all the spaces with the coho-
mology of the reduced ones, thus to prove the surjectivity of i∗ it is enough to
prove the surjectivity of l∗ : H2(Bl∆(A

r+1
∗ )) → H2(Bl∆(N∗)).

A simple Mayer-Vietoris argument is not enough to compute H2(Bl∆(N∗)). If
N∗ is Kähler, though, it is possible to exploit the integral Hodge structure to
get (see [Voi02, p. 180] for details)

H2(Bl∆(N∗)) ⋍ H2(N)⊕H0(∆)

where the isomorphism holds in integral cohomology as well and preserves Hodge
structures.
This yields the surjectivity of l∗, as δij = l∗∆ij and for the summand H2(N)
one can consider

H2(Bl(Ar+1
∗ )) H2(Bl(N∗))

H2(Ar+1) H2(N)

l∗

pr

where the dashed arrow is surjective because N −֒→ Ar+1 admits a retraction
and the diagram clearly commutes.

As we have seen for the Doaudy Spaces, the lemma shows the the symplectic
structure is unique up to a scalar, indeed C[F ] has to be conataned in H1,1 and
h2,0(Kr) = h2,0(A) = 1.

Remark 3.3.18. If r ≥ 2, S[r] and Kr have different homotopy type. Indeed by
lemmas (..) and (...) one has

b2(S
[r]) = b2(S) + 1 = 23 b2(Kr) = b2(A) + 1 = 7

3.3.3 A sketch of the construction of O’Grady’s examples

These two classes of examples are built in a more sophisticated way. We mainly
follow [OGr99; OGr03; OGr04]. We first show that both S[r] and Kr give
actually rise to two uncountable families, both obtained by deformation of one
of them.

Theorem 3.3.19 (Beauville, [Bea83b]). Let X → B be a smooth family of
Kähler manifolds and assume B connected. If Xb0 is irreducible symplectic,
then all the fibers Xb are irreducible symplectic.

It is instead not known whether an arbitrary deformation of an irreducible
symplectic manifold is Kähler, hence irreducible symplectic by the theorem.



Theorem 3.3.20 (Beauville, [Bea83b]). Let Def(S[r]) and Def(Kr)) be the uni-
versal deformation spaces of S[r] and Kr. They both have a complex manifold
structure. In Def(S[r]) the elements of the form S[r] (Kr) form a smooth hy-
persurface, whereas in Def(Kr)) the elements of the form Kr form a countable
union of smooth hypersurface.

Indeed, it is possible to prove that

dim(Def(S[r])) = h1,1(S[r]) = h1,1(S) + 1 = dim(Def(S)) + 1 = 21

dim(Def(Kr)) = h1,1(Kr) = h1,1(A) + 1 = dim(Def(A)) + 1 = 5

where Kr is the generalized Kummer associated to A.
After the publication of Beauville’s two families, Mukai (see [Muk84b; Muk84a;
Muk84a]) showed that they could be seen as a manifestation of a more general
behaviour. They proved that some moduli spaces of sheaves over a projective
K3 surface or over an abelian surface A are irreducible symplectic manifolds.
Let S be a projective K3 and let OS(D) be the ample line bundle defined
by OS(1) ⊗ O(D) for an ample divisor D. Then we consider the torsion-free
sheaves14 on S which are also OS(D)-semistable, i.e. they satisfy

1

rk(G)
χ (G⊗OS(mD)) ≤ 1

rk(F )
χ (F ⊗OS(mD))

whenever we have an injection of sheaves G ⊆ F and G is not zero. A sheaf
F is said stable if the inequality is strict whenever the injection has non trivial
cokernel.
We put an equivalence relation on the family of all the OS(D) semi-stable
sheaves: it can be proved that any such sheaf F admits a filtration

0 = F0 ⊆ F1 ⊆ · · · ⊆ Fk = F

whose graded factors Fi/Fi−1 are stable and

1

rk(Fi/Fi−1)
χ (F ⊗OS(mD)) =

1

rk(F )
χ (F ⊗OS(mD))

for any i. The graded factors of the filtration are uniquely determined, up to
the order, by F .
Then one sets F1 ∽ F2 if and only if they have the same graded factors. The
relation coincides with isomorphism for stable sheaves, but is coarser for semi-
stable ones.
An imporant theorem by Gieseker (see [Gie77]) shows that the set of equivalence
classes of OS(D) semi-stable sheaves, with fixed rank and Chern classes has a
natural projective variety structure.
Consider the subset MS,D(r, c1, s) of the classes of coherent, semi-stable and

14An OX -module F is torsion-free if none of its tensor power is isomoprphic to OX



pure15 sheaves F , with

16rk(F ) = r 17c1(F ) = c1 χ(F ) = r + s

Mukai proved in [Muk84b] that the open subset of stable sheavesM st
S,H(r, c1, s) ⊆

MS,D(r, c1, s) is smooth and if it is non empty, then

dimM st
S,H(r, c1, s) = 2− 2rs+ c21

Now let ω be the symplectic form on S, then at a point [F ] of M st
S,H(r, c1, s),

represented by a locally-free sheaf F one sets

ω̃(α ∧ β) =
∫

S

ω ∧ Tr(α ∧ β)

for any α, β ∈ H0,1(End(F )).18 This induces a symplectic form on the whole
space.
If r, c1, s are chosen in such a way that M st

S,D(r, c1, s) = MS,D(r, c1, s) then the
main result is

Theorem 3.3.21. With the notation used above, MS,D(r, c1, s) is a projective
irreducible symplectic manifold. Moreover it is a deformation of S[n] with n =
2− 2rs+ c21.

If one starts with an abelian surface A in place of a K3 surface and proceed
analogously (now set χ(F ) = s), it is necessary to perform some additional
operations on MA,D(r, c1, s). First consider the map

Φ :MA,D(r, c1, s) → A× Picc1(A)

[F ] 7→
(∑

crat2 (F ), [∧rF ]
)

where Picc1(A) is the component of Pic(A) of line bundles L with c1(L) = c1,
crat2 (F ) is the second Chern class in the Chow group CH2(A) (see [EH16] for
details) and the morphism CH2(A) is induced by the group structure of A.
If dimMA,D(r, c1, s) ≥ 4, it can be proved that Φ is a submersion and the fibers
are pairwise isomorphic. Thus we can consider

MA,D(r, c1, s)
0 = Φ−1(p, [ξ])

for some fixed (p, [ξ]) ∈ A× Picc1(A).
Then we have that MA,D(r, c1, s)

0 ⊂ MA,D(r, c1, s) (still under the hypothesis

15The support of an abelian sheaf F on X is defined as the points of X where Fx 6= 0.
If F is coherent, one say that F has pure dimension d if dim supp(G) = d for any coherent
subsheaf G ⊆ F .

16The rank of an OX -module in a point x ∈ X is the dimension of the fiber.
17For a definition of Chern classes of coherent sheaves see [Gre80]
18It can be proved that the tangent space of MS,H(r, c1, s) at [F ] is isomorphic to

H0,1(End(F ) if [F ] is locally free and to Ext1(F, F ) otherwise.



M st
S,D(r, c1, s) =MS,D(r, c1, s)) is irreducible symplectic and deformation equiv-

alent to Kn, where n = 2− 2rs+ c21.
To get new deformation classes, one may hope to exploit the above construction:
M st
S,D(r, c1, s) has a symplectic form and is smooth. The theorem suggests to

look at moduli spaces for whichM st
S,D(r, c1, s) 6=MS,D(r, c1, s). This is the case,

for example, of MS,D(2, 0,−2).
If S is a K3 and D is chosen generically, then the strictly semistable sheaves in
MS,D(2, 0,−2) are always represented by IZ ⊕ IW where [Z], [W ] ∈ S[2]. The
singular locus of MS,D(2, 0,−2) is swept exactly by these sheaves and the sym-
plectic form on M st

S,D(r, c1, s) extends to the whole MS,D(r, c1, s).
If S is a torus, the same holds but replacing IZ and IW with (Ip⊗L)⊕(Ip′ ⊗L′)
where p, p′ ∈ S and L,L′ are in the Picard variety.
O’Grady in [OGr99; OGr03] built a resolution of singularities

π : M̃S,D(2, 0,−2) →MS,D(2, 0,−2)

for S either a K3 or a torus.
If S is a K3 π pullbacks the symplectic form to a symplectic form and one
has that M̃S,D(2, 0,−2) is projective, non-singular, irreducible symplectic of
dimension 10. He moreover proved that 19

b2(M̃S,D(2, 0,−2)) ≥ 24

which in particular implies that M̃S,D(2, 0,−2) belongs to a new deformation
class, as b2 is clearly invariant by deformation.
If S is a torus, one has that

M̃S,D(2, 0,−2)0 = π−1(MS,D(2, 0,−2)0)

which is still projective, non-singular, irreducible symplectic and has dimension
6. In O’Grady’s papers it was also proved that in this case

b2(M̃S,D(2, 0,−2)0) = 8

thus again it belongs to a new deformation class.
After the publication of the two O’Grady examples, it appeared natural to try
to work in a similar way on other moduli spaces. It seemed promising, until

Theorem 3.3.22 (Kaledin, Lehn, Sorger, 2006 [KLS06]). The only moduli
spaces of semistable sheaves on a projective K3 or on an abelian surface admit-
ting a symplectic resolution are the O’grady’s ones.

Since then, no other deformation classes have been found.

19It was later proved Rapagnetta in [Rap07] that equality holds.
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