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Abstract

One of the main open questions of star formation is the process of star clusters
aggregation. In my thesis I investigate the kinematical features of embedded star clusters
through hydrodynamical and N-body simulations. In particular I focus on the onset of
rotation. I started from smoothed-particle-hydrodynamics simulations of turbulence-
supported molecular clouds with masses ranging from 10000 M� to 200000 M�. In each
simulated cloud a star cluster forms by hierarchical assembly of several sub-clumps;
during this process torque is exerted on the parent gas and the stellar component
because they accrete on the main cluster structure with non-zero angular momentum.
This angular momentum is transferred to the main cluster, which acquires significant
rotation.
I study the dynamical evolution of the cluster that forms in each cloud using direct
summation N-body codes, to see how rotation and ellipticity evolve through time.
My simulated star clusters start with large ellipticity (ε ∼ 0.7 at t = 3 Myr) and with a
rotational velocity vrot ∼ 5 km s−1. During their evolution they tend to become rounder
(ε ∼ 0.2 at t = 10 Myr) and their rotation signature decreases because of two-body
relaxation. Rotation is still apparent at t = 20 Myr, so it decreases on a surprisingly
long timescale.
This result is a key test to probe the hierarchical formation scenario of star clusters,
and might be useful to interpret the observed rotation signature in young massive star
clusters (R136, Hénault-Brunet et al. 2012) and in old globular clusters (e.g. Bellazzini
et al. 2012).
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Chapter 1

Star Clusters

In this section I describe the general properties of star clusters (SCs) focusing on
their formation, dynamics and the feature of rotation, which are the subjects of study
of my thesis.

1.1 Star Clusters Overview
SCs are self-gravitating collisional systems made up of stars. It is generally assumed

that all the stars of a SC form from the same molecular cloud in a single star-formation
event, so that they have approximately the same age and chemical composition1. They
are excellent laboratories to study stellar dynamics, stellar evolution, intermediate mass
black holes and gravitational wave sources.
In order to better describe the properties of such systems I need to define some typical
size-scales and time-scales.

1.1.1 Size-scales
Star clusters tend to be approximately spherical in space or circular on the sky, so

it is useful to define some different radii to measure their size.
We call Lagrangian radius the distance from the center containing a specific fraction
of the total mass of the cluster. The most frequently used Lagrangian radius is the
half-mass radius rhm, which is the radius containing 50% of the total mass of the cluster.
A similar radius mainly used by observers can be defined using specific fractions of
projected luminosity of the cluster. In this case, the analogue of the half-mass radius is
the half-light radius rhl, sometimes also called effective radius.
The virial radius is defined as:

rvir = GM2

2 |U | (1.1)

where M is the total mass of the cluster and U is the total potential energy. It is a
theoretical definition used to determine sizes of systems without a sharp boundary.
The tidal radius rt is the radius where the gravitational acceleration of the cluster
equals the tidal acceleration of the parent galaxy; it roughly corresponds to the distance
where the density of stars drops to a value comparable to the background.

1Except for the globular clusters which show the feature of multiple populations.
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Star Clusters 1. Star Clusters Overview

Finally, the core radius rc has several definitions. Observers define it as the radius at
which the surface brightness equals half of its central value. Theorists define it in two
different ways. The first is:

rc =
√

3 〈v2〉0
4πGρ0

(1.2)

where ρ0 and 〈v2〉0 are the central density and velocity dispersion. This is roughly the
distance at which the projected density drops by a factor of 2. The second is generally
used for n-body simulations and it is a density-weighted radius:

rc =

√√√√∑i ρ
2
i r

2
i∑

i ρ
2
i

(1.3)

1.1.2 Time scales
There are two fundamental time scales concerning star clusters: the dynamical time

scale tdyn and the relaxation time scale trel.
The dynamical time-scale is the time required for a typical particle to cross the system
and it is the time on which the system estabilishes the dynamical equilibrium. It may
be defined as:

tdyn = GM5/2

(−4E)3/2 , (1.4)

where E is the total energy of the cluster. Another definition for systems in virial
equilibrium is:

tdyn =
(
GM

r3
vir

)−1/2

∼ 2× 104 yr

(
M

106 M�

)−1/2 (
rvir

1 pc

)3/2

. (1.5)

The relaxation time scale is the time over which stars reach equilibrium through mutual
gravitational interactions and lose memory of their initial velocities.
An expression for the local relaxation time is:

trl = N

8 lnN
R

v
. (1.6)

where N is the number of stars of the cluster, R is the size of the cluster and v is the
typical velocity of the stars of the cluster. This process and a derivation of equation 1.6
will be described in Section 1.3.

1.1.3 Properties of cluster systems
In our universe we observe SCs in different environments and with very different

charateristics; we divide them into three main categories. Globular clusters (GCs)
are nearly spherical systems composed of 104 − 106 population II low mass stars
(m . 1 M�). They do not contain gas and dust and their age is comparable to the
age of the Universe (t ∼ 1010 Gyr). GCs are really dense and their core can reach
densities of ∼ 104 M� pc−3. They mainly reside in the halos of galaxies. Some GCs

8



Star Clusters 9

Table 1.1: Comparison of fundamental parameters for star cluster families: open cluster
(OC), globular cluster (GC), and young massive cluster (YMC). The values are intended
to be indicative. The second column gives cluster age, followed by the turn-off mass, the
total cluster mass, the virial radius, the core density, the metallicity, the location where these
clusters are found, and the dynamical and relaxation time scales. Data from Portegies Zwart
et al. (2010).

Cluster Age mto M rvir ρc Z Location tdyn trh
[Gyr] [M�] [M�] [pc] [M�/pc3] [Z�] [Myr] [Myr]

OC . 0.3 . 4 . 103 1 . 103 ∼ 1 disk ∼ 1 . 100
GC & 10 ∼ 0.8 & 105 10 & 103 < 1 halo & 1 & 1000
YMC . 0.1 & 5 & 104 1 & 103 & 1 disk . 1 . 100

show the feature of multi-population: they contain several distinct populations of stars
mainly distinguished by their chemical composition. Many aspects about GCs are
unclear: their formation, the onset of multiple populations and their role in galactic
evolution are still matter of debate. Open Clusters (OCs) are loosely bound systems
made up of 10 − 104 population I stars. They may still contain gas and they are
younger and less dense than GCs (ρ . 103 M� pc−3). They reside in the disk of galaxies.
Some of them are visible to the naked eye (e.g. Hyades in figure 1.1 or the Pleyades).
Young Massive Clusters (YMCs) are very young (t . 100 Myr) systems composed
of 103 − 105 young stars which may still contain gas. They have smaller size than GCs
but their densities are comparable. They reside in the disk of galaxies and being so
young they have a much larger fraction of massive stars than other kinds of SCs; we
know that some YMCs like R136 (figure 1.1) host some stars with masses larger than
150M�.
Some fundamental parameters of these kinds of SCs, their aspect and their location in
the Milky Way are reported in table 1.1 and in figures 1.1 and 1.2 for comparison.

YDSCs are the subject of study of my thesis, and in particular I investigate their
formation and dynamics.

1.2 Formation of SCs
The process of star formation constitutes one of the main problems of modern astro-

physics. No predictive theory of star formation exists: given certain initial conditions,
e.g. the density and temperature distributions inside an interstellar cloud, it is not
possible to predict with certainty the star formation efficiency and the resulting initial
mass function. We rely mostly on observations to answer these important questions.
Stars are often observed to form in clusters and it is therefore important to understand
how such regions are assembled out of the diffuse medium. The regions in which stars
form are called molecular clouds (MCs), and their properties eventually determine the
characteristics of the star clusters they form. MCs are turbulent interstellar clouds
almost entirely made up of hydrogen. Their temperatures and densities allow the
formation of molecular hydrogen H2. Typical molecular clouds have masses of the
order of 105 M�, dimensions of ∼ 10 pc, temperatures of 10 − 100 K and densities of

9



Star Clusters 2. Formation of SCs

Figure 1.1: Left: HST image of the open cluster NGC265 in the Small Magellanic Cloud.
The image is ∼ 25 pc per edge. Center: M4, a globular cluster in the Milky Way. It is one
of the closest GCs to the Solar System, with an estimated age of 12.2 Gyr. Image from the
MPG/ESO 2.2-metre telescope at ESO’s La Silla Observatory. The image is ∼ 20 pc per
edge. Right: an HST image of R136, a YMC near the center of the 30 doradus star forming
region in the LMC. R136 has an estimated age of 1.5 Myr, shows the feature of rotation
(Hénault-Brunet et al. (2012)) and contains many very massive stars. The image is ∼ 50 pc
per edge.

10 − 300 molecules/cm3. A certain fraction, about 1% of the cloud, is in the form of
dust which makes the clouds very opaque to visual wavelengths (Fig. 1.3). Molecular
hydrogen is difficult to detect by infrared and radio observations, so the molecule used
to determine the presence of H2 is carbon monoxide (CO) which is in a ratio of 1 : 10000
with H2.
Locally, molecular clouds are subject to gravitational instabilities for masses larger than
the Jeans mass:

MJeans = 4× 104M�
(

T

100 K

)3/2 ( n

cm−3

)−1/2
(1.7)

where n is the numerical molecular density of the cloud. For typical values of T and n
in MCs, MJeans ∼ 103 − 104 M�.
Gravitational instabilities may be triggered by perturbations (e.g. shockwaves created
by nearby supernovae or collisions with other clouds). When a perturbation disturbs
the hydrostatic equilibrium, part of the cloud begins to collapse under its self-gravity.
The collapse happens over the free-fall timescale tff ∝ 1/

√
Gρ, and since the densities

involved are very low, this timescale is of the order of ∼ 1 Myr. The cloud is transparent
to far-infrared radiation and thus cools efficiently, so that the early stages of the collapse
are isothermal. As the density of the collapsing cloud increases, its Jeans mass decreases
by equation 1.7, so that the cloud starts to fragment into smaller pieces, each of which
continues to fragment and collapse to finally form the stars that will make up the
cluster.
After few Myr, the most massive stars explode as supernovae and inject energy into the
embedded gas which eventually becomes gravitationally unbound from the cluster and
dissolves. Gas loss removes potential energy from the cluster, which loses some stars or
may completely dissolve (infant mortality).

Spectroscopical observations of MCs show that on average, the linewidths displayed
are much greater than expected from thermal motions at temperatures of 10− 20 K.

10



Star Clusters 11

Figure 1.2: Distribution of star clusters in the Milky Way. In the top panels the Galaxy is
seen edge-on, while on the bottom panels is seen face-on. The black dashed circle is the Sun’s
orbit around the Milky Way, the small black circle represents the Sun. Left: distribution of
open clusters and young massive clusters (from the Dias 2012 catalogue). Right: distribution
of globular clusters (from the Harris 1996 Catalogue). It’s clear that GCs are spherically
distributed around the center of the Galaxy while the other clusters are in the disk. The
majority of OCs is near the Sun because of the extinction of dust which doesn’t allow us to
observe them over certain distances (from Portegies Zwart et al. (2010)).
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Star Clusters 3. Dynamics of SCs

In particular the observed linewidth is related to the size of the cloud by the Larson’s
scaling relation (Larson (1981)):

σ = 0.5
(

L

1.0 pc

)0.5

km s−1, (1.8)

where L is the cloud size. These large non-thermal linewidths have been interpreted as
indicating the presence of supersonic turbulence.
Turbulence of MCs plays a fundamental role in the formation of star clusters: on global
scales it provides support preventing global collapse (Bertoldi & McKee (1992)), while
at the same time it can promote local collapse creating an inhomegeneous filamentary
structure which is characterized by large density contrasts (figure 1.4). Some of the
high-density fluctuations exceed the Jeans mass and their collapse leads to the formation
of clumps of stars.

At present, there are two main different scenarios for the formation of young star
clusters from molecular clouds. The monolithic collapse (top-down) dictates the
formation of a compact star cluster in a single star-formation episode. According to
the hierarchical assembly (bottom-up) scenario, the formation happens through
the merging of several less massive clumps of stars and gas which develop along the
filaments. They fall onto each other while star formation is still in action and merge to
form the final cluster near the junction of filments.
We still do not know how real clusters develop; the monolithic scenario is supported by
the simulations of Banerjee & Kroupa (2015), while the simulations of Bonnell et al.
(2003), Mapelli (2017) show formation through the hierarchical assembly.

1.3 Dynamics of SCs
The dynamical evolution of SCs is driven by many different processes acting together.

We can distinguish two main stages in the evolution of a SC:

• The first Myrs in which star formation is still in action and the cluster still
contains gas from its parent MC.

• The phase subsequent to gas evaporation in which purely stellar dynamical
processes dominate.

The first phase is shorter, but is the most complex and less understood since it is a
complex mix of gas dynamics, stellar dynamics, stellar evolution, and radiative transfer.
Simulating both gas and stellar dynamics with high accuracy is difficult, so the majority
of N-body simulations start from the second phase, using idealized initial conditions.
The proper starting configuration for these simulations is largely a matter of conjecture.
After the gas is radiated away, the SC can be seen as a system of point masses (stars)
which interact between each other by means of gravitational force. SCs are collisional
systems, which means that interactions between particles are efficient with respect to
the lifetime of the system. On the contrary, collisionless systems (e.g. galaxies) are
systems where interactions are negligible, so that particles move under the influence
of the gravitational field generated by a smooth mass distribution rather than a

12



Star Clusters 13

Figure 1.3: Optical (top) and Infrared (bottom) images of the RCW 38 region obtained
with the ESO VLT. The infrared observations reveal a rich embedded cluster otherwise
invisible at optical wavelengths. Figure from Lada & Lada (2003)

13



Star Clusters 3. Dynamics of SCs

Figure 1.4: Color column density map of the Rosette molecular cloud obtained from
Herschel data. The filamentary structure traced by white lines is apparent. Blue stars
represent known star-clusters which are located on the junctions of filaments. Figure
from Schneider et al. (2012)
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Star Clusters 15

Figure 1.5: Schematic representa-
tion of one of the many two-body en-
counters to which the test particle is
subjected. The particles experience
a change in velocity due to gravita-
tional forces.

collection of point masses. To distinguish between these two kinds of systems we use
the relaxation timescale trl, defined in equation 1.6. In particular, we say that a system
is collisional/collisionless if its lifetime is lesser/greater than trl. The process which
relaxes these system is called two-body relaxation, which is the main process that drives
the dynamical evolution of SCs.

1.3.1 Two-Body Relaxation
Two-body relaxation is the result of many long range two-body gravitational in-

teractions. On timescales longer than trl these interactions slowly redistribute energy
between particles and make them lose memory of their initial velocity. The two-body
relaxation timescale can be derived following the motion of an individual particle across
the SC, and seeking an estimate of the difference between the initial velocity of this
particle and the velocity that it has after one system crossing. We consider an idealized
system of N particles with mass m, size R and uniform density. The test star passes
close to a field star with relative velocity v and impact parameter b as schematized
in figure 1.5. Each time this happens, its velocity changes by a small amount, so we
assume that δv

v << 1 and that the field star is stationary. δv is perpendicular to v,
since the accelerations parallel to v average to zero. After many of these interactions,
the velocity changes completely, or in other words the variation of velocity becomes of
the same order of magnitude as the initial velocity:

∆v
v
∼ 1. (1.9)

The perpendicular gravitational force between the two particles is:

F⊥ = Gm2

r2 cos θ = Gm2b

(b2 + x2)3/2 = Gm2

b2

[
1 +

(
vt

b

)2]−3/2

. (1.10)

The quantities are defined in figure 1.5. We can infer the change in velocity by integrating
the second Newton’s law:

δv = 1
m

∫ +∞

−∞
F⊥dt = Gm

b2

∫ +∞

−∞

dt

(1 + (vt/b)2)3/2 = 2Gm
bv

. (1.11)

The surface density of stars in our system is N/πr2, so after crossing the system
once the subject star suffers

δn = N

πR2 2πbdb (1.12)
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Star Clusters 3. Dynamics of SCs

encounters with impact parameter between b and b+ db. The resulting mean velocity
change is zero because each encounter produces a randomly oriented perturbation, but
the quadratic mean velocity change is not:

∑
δv2 = δv2δn = 8N

(
Gm

vR

)2 db
b
. (1.13)

Integrating this quantity over all the possible impact parameters2 we obtain:

∆v2 = 8N
(
Gm

vR

)2
ln Λ (1.14)

where ln Λ is called Coulomb logarithm:

ln Λ = bmin

bmax
= ln

(2Gm
v2R

)
(1.15)

and its value for typical SCs is ∼ 10. If we assume that the system is in virial equiibrium,
the typical velocity of a particle can be expressed as:

v2 = GNm

R
. (1.16)

Combining equations 1.14, 1.15, 1.16 and eliminating R, we get the change in velocity
after one system crossing:

∆v2

v2 = 8 lnN
N

. (1.17)

Requiring the condition of equation 1.9 we get the needed number of crossings to relax
the system:

ncross = N

8 lnN . (1.18)

The needed number of crossings is also ncross = trl/tcross, so we can finally derive the
two-body relaxation timescale:

trl = N

8 lnN
R

v
. (1.19)

After one relaxation timescale, the orbit of the particles is considerably different from
the one they would have if the mass was smoothly distributed.
A better formulation with less approximations and based on local parameters rather
than global ones was derived by Spitzer (1987):

trl = 〈v2〉3/2

15.4G2mρ ln Λ , (1.20)

where 〈v2〉 is the local velocity dispersion, m is the local mean mass and ρ is the local
density.
When applied to SCs, the local relaxation time is usually evaluated at the core (core

2i.e. between bmin and bmax, where the former is the minimum distance at which our approximation
of small velocity changes holds (bmin = 2Gm/v2), and the latter is the size R of the system.
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relaxation timescale trc) and at the half-mass radius (half-mass radius relaxation
timescale trh). An expression of trh with handy units is:

trh = 190 Myr
(
rvir

1 pc

)1/2 (
M

106 M�

)1/2 ( 〈m〉
1 M�

)−1 ( ln Λ
10

)−1

. (1.21)

We can see that trl is proportional to the size of the system so that YMCs, which are
usually compact (rvir . 1 pc), have short relaxation timescales and a faster dynamical
evolution. We can evince this also from figure 1.6.

1.3.2 Core Collapse
There are phenomena which happen even faster than two-body relaxation in SCs.

One of these is the core collapse or gravothermal catastrophe, which for a realistic YMC
happens on a time scale of (Portegies Zwart et al. (2010)):

tcc ∼ 0.2 trl. (1.22)

If a SC survives infant mortality, two-body relaxation makes the core contract. The
contraction of the core is a runaway process which leads to a collapse. The physical
process behind this is the gravothermal instability which I describe below.
We assume that the SC is in virial equilibrium, hence:

2K +W = 0 (1.23)

where W < 0 is the gravitational potential energy of the cluster. Two-body relaxation
redistributes energy between the stars in the core and some of them gain enough kinetic
energy to escape from the core to the halo. By escaping, they take away from the core
both their potential and kinetic energy. Since the escaping stars are the fastest they
take away more kinetic energy than potential energy. The most energetic stars escape
the SC, thus the lost kinetic energy cannot be restored by stars flowing from the halo
to the core. The core of the cluster becomes sub-virial (2K +W < 0) and contracts,
increasing the velocity dispersion of its stars and thus the escapers, becoming even
more sub-virial. This leads to a catastrophic collapse.
This process occurs even if all the stars have equal mass. If we consider a multi-mass
system the collapse is even faster; dynamical friction makes massive stars lose energy
and fall towards the center of the cluster, while light stars gain energy and escape. This
produces mass segregation with a timescale tdf ∝ 〈m〉

M
trh, where 〈m〉 is the average stellar

mass and M is the mass of a massive star undergoing dynamical friction. Dynamical
friction is the loss of orbital energy of a body through gravitational interactions with
surrounding bodies. An intuition for this effect can be obtained by thinking that as a
large object moves through a sea of smaller objects, the gravitational effect of the larger
object pulls the smaller objects towards it. This produces a concentration of smaller
objects behind the larger body, as it has already moved past its previous position. This
concentration of small objects behind the larger body exerts a collective gravitational

17



Star Clusters 3. Dynamics of SCs

Figure 1.6: Radius-mass diagram of Milky Way SCs. The dotted lines represent constant
relaxation timescale. It is clear that YMCs have short relaxation timescale. (figure
from Portegies Zwart et al. (2010))

18
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force on the large object, slowing it down.

The collapse should proceed indefinitely, but since we do observe SCs older than the
collapse timescale, there should be something that reverts the collapse. In particular,
there has to be something that injects energy inside the core and helps it to expand.
The energy we are seeking for is stored in binary stars and mass loss by stellar winds
and SNe explosion.
During a three-body encounter between a binary and a single star, there is an exchange
between the internal energy of the binary and the kinetic energy of the stars. If the
binary becomes less bound, the single star transfers part of its kinetic energy to soften
the binary. If the binary becomes more bound, the kinetic energy of the system increases
and the binary hardens.
The majority of the energy needed to reverse the core collapse is usually provided by
the hardening of binaries in the core. Since the core contracts during core collapse, the
core density increases and three-body encounters become more frequent, helping the
reversal. After the core collapse is reverted the core starts to expand and the half-mass
radius of the cluster evolves through the relation (Elson et al. (1987)):

rhm ∝ t2/3 (1.24)

1.3.3 Rotation of SCs
Rotation has been observed in different types of SCs. We know that many GCs

rotate (Pryor et al. (1986), van Leeuwen et al. (2000), Anderson & King (2003), Pancino
et al. (2007), Anderson & van der Marel (2010), Bellazzini et al. (2012), Bianchini
et al. (2013), Fabricius et al. (2014) Kimmig et al. (2015), Lardo et al. (2015), Lee
(2015)), and signatures of rotation have been found also in YMCs (Hénault-Brunet et
al. (2012)) and intermediate age clusters (Davies et al. (2011), Mackey et al. (2013)).
Some molecular clouds show velocity gradients that may be connected with rotation,
and Li et al. (2017) claim that the molecular cloud G052.24+00.74 rotates.
Some works tried to explain the origin of this feature: Vesperini et al. (2014) claim
that rotation in GCs might arise because of violent relaxation in the tidal field of the
host galaxy, while Gavagnin et al. (2016) and Mapelli (2017) show that it may be the
result of the merger between many sub-clusters and it may be the consequence of the
hierarchical assembly scenario. The origin of rotation is still unclear and the fact that
we observe rotating SCs with age t >> trl is surprising, since two-body relaxation
should completely erase this feature. Rotation of SCs and its evolution are subject of
study of this thesis and will be discussed in chapter 4.
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Chapter 2

Aims

Stellar clusters have been long recognized as important environments for astrophysi-
cal research and their study has played an important role in understanding the Universe.
There are several reasons for which I think studying SCs is interesting.
They contain stars belonging to a wide mass spectrum within a small volume of space. In
such dense environments interactions and collisions between stars are frequent, making
SCs great laboratories to study dynamics.
Furthermore, we know that the vast majority of stars form in clustered environments.
For example, if we take into account O-type stars in the Milky Way, we know that only
∼ 4% of them has not formed in clusters (Portegies Zwart et al. (2010)). Thus, we
can say that SCs are the “cradles” of stars and the building blocks of galaxy disks.
Since SCs are made of stars which form more or less simultaneously from the same
progenitor molecular cloud, we can also use them to calibrate stellar evolution models
and to study the stellar Initial Mass Function (IMF).

In this thesis I investigate the dynamics and kinematics of embedded star clusters
during their formation, focusing on their rotation.
I study how SCs form from their progenitor molecular cloud, trying to put some
constrains on their formation scenario. Then, since few studies have been published
to know why SCs rotate, I try to understand how rotation arises and the dynamical
evolution of this feature starting from the work of Mapelli (2017).
Since I perform my N-body simulations starting from the outputs of hydrodynamical
simulations of SC’s formation, this work may also be useful to solve the problems related
to initial conditions for N-body simulations of SCs, which are currently highly idealized.
Finally, I try to compare my results with current observations to check if the rotation
observed in young and old clusters is connected to the one which arises in my simulations.
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Chapter 3

Numerical Simulations

To reach the aims of this thesis I used numerical simulations, and in particular I
used both hydrodynamical and direct N-body codes. Normally these two kinds of codes
are not used together, but I needed the features of both for my purposes.
I required hydrodynamical codes to simulate the gas of the parent molecular clouds,
their collapse and fragmentation, star formation and the development of the main
cluster structures. Then, since hydrodinamical codes have low accuracy on gravitational
forces and my thesis focuses on the dynamics and kinematics of SCs, I needed direct
N-body codes to have a higher accuracy on the interactions between stars, to better
simulate two-body relaxation and the evolution of rotation.

In the following sections I describe the hardware and the charateristics of the codes
I used.

3.1 Hydrodynamical Simulations
Star formation takes place in MCs. The mean free paths of particles in MCs tend

to be small compared with the sizes of the structures which they belong to, thus it is
reasonable to approximate MCs as gas fluids. To model the behaviour of a fluid on
a computer it is necessary to take into account gravity and other physical quantities
related to fluids, such as pressure and viscosities. In a system of N particles, gravity is
governed by Newton’s second law:

r̈i = −G
∑
j 6=i

mj
ri − rj

|ri − rj|3
, (3.1)

where G is the gravitational constant, r̈i is the acceleration, m is the mass and r is the
radius vector. Fluid dynamics is represented by Euler’s equations:

∂ρ

∂t
+∇ · (ρu) = 0, (3.2)

∂ρu

∂t
+∇ · (ρu× u) +∇p = −ρ∇φ, (3.3)

∂ρe

∂t
+∇ · [ρu(e+ p/ρ)] = −ρu · ∇φ, (3.4)

where ρ is mass density, e is the specific energy (i.e. the energy per gas particle), u is
the fluid velocity, p is the thermal pressure and φ is the gravitational potential of gas.
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Since the number of particles is usually very large in hydrodynamical simulations,
gravity is solved using indirect methods to speed up the computation. An indirect
method is a method which does not calculate the gravitational interaction between
all the couples of particles in a system. Instead, it uses a multipole expansion of
gravitational force for distant particles, so that less calculations are required.
There are two main types of hydrodynamical codes which discretise fluids in different
methods:

• Eulerian codes, which break fluids up into a grid of volume elements fixed
in space, and evolve the simulation by computing the variations of physical
parameters in each volume element, moving mass to or from adjoining neighbours.
A popular Eulerian method is called Adaptive Mesh Refinement (AMR), which
can increase the resolution of the grid in critical areas where more precision is
needed.

• Lagrangian codes, which discretise fluids into mass elements with a total mass
equal to that of the whole fluid. The fluid is evolved by calculating the forces
on each particle and moving them. The most used Lagrangian method is called
Smoothed Particle Hydrodynamics (SPH), which represents fluids as particles
whose properties are smoothed over a spherical volume.

Eulerian codes are mostly used in situations where shocks are important, while the
Lagrangian approach is better suited for dynamics. Since my thesis is focused on
dynamics, I chose the SPH code Gasoline (Wadsley et al. (2004)) to perform my
hydrodynamical simulations; its properties are described below.

3.1.1 SPH

The SPH method works by dividing the fluid into a set of discrete elements, referred
to as particles. These particles have a spatial distance known as the smoothing length h
over which their properties are "smoothed" by a kernel function. The smoothing length
is defined as the distance at which a particle has a fixed number N of neighbors. The
physical quantities of any particle can be obtained by summing the relevant properties
of all the particles which lie within the range of the kernel. The contributions of each
particle to a property are weighted by the kernel function W . A general smoothed
estimate for some quantity f of particle i, given N particles j at positions rj, takes the
form:

fi,smoothed =
N∑
j=1

fjWij(ri − rj, hi, hj), (3.5)

where Wij is the kernel function and hJ is a smoothing length indicative of the range
of interaction of particle j. For energy and momentum conservation, a symmetric
Wij = Wji is required. Gasoline uses the kernel average suggested by Hernquist & Katz
(1989):

Wij = 1
2w(|ri − rj| /hi) + 1

2w(|ri − rj| /hj), (3.6)
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where w(r/h) is a cubic spline:

w(q) = 1
πh3


1− 3

2q
2 + 3

4q
3 0 ≤ q ≤ 1;

1
4(2− q)3 1 ≤ q ≤ 2;
0 q ≥ 2

(3.7)

with q = r/h.
Density ρi is calculated from a sum over particle masses mj:

ρI =
N∑
j=1

mjWij. (3.8)

The momentum equation is expressed as:

dvi
dt

= −
N∑
j=1

mj

(
Pi
ρ2
i

+ Pj
ρ2
j

+ Πij

)
∇iWij, (3.9)

where P is pressure, v is velocity and Π is the artificial viscosity term, given by:

Πij =


−α 1

2 (ci+cj)µij+βµ2
ij

1
2 (ρi+ρj) if vij · rij < 0

0 if vij · rij < 0
, (3.10)

where µij = h(vij ·rij)
r2

ij+0.01(hi+hj)2 , rij = ri − rj, vij = vi − vj, and c is the sound speed.
α = 1 and β = 2 are coefficients used to represent shear and Von Neumann-Richtmyer
viscosities respectively.

Gasoline includes recipes to treat gas cooling. There are three main options:

• Adiabatic: gas does not exchange heat with the environment.

• Isothermal: gas temperature is constant.

• Cooling: gas temperature changes according to a cooling function (Sutherland &
Dopita (1993)).

If the cooling option is active, a function is added to gas equations that accounts for
cooling or heating processes:

de

dt
= −P

ρ
∇ · v− Λ(e, ρ)

ρ
, (3.11)

where e is the specific thermal energy, P is gas pressure, ρ is gas density, v is gas velocity
and Λ is the cooling function. The cooling functions of Sutherland & Dopita (1993) are
suited for metal cooling.
MCs have temperatures and densities that make them cool through dust rather than
metals, so in my simulations I have used a different cooling algorithm, which is the same
as that described in Boley (2009) and Boley et al. (2010). According to this algorithm,
the divergence of the flux is ∇ · F = −(36π)1/3 s−1σ(T 4 − T 4

irr)(∆τ + 1/∆τ)−1, where σ
is the Stephan’s constant, Tirr is the incident irradiation, s = (m/ρ)1/3 and ∆τ = sκρ,
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for the local opacity κ, particle mass m and density ρ.
I used D’Alessio et al. (2001) Planck and Rosseland opacities, with a 1µm maximum
grain size. Such opacities are obtained from models of irradiated T Tauri disks and are
appropriate for temperatures in the range of a few Kelvins up to thousands of Kelvins.
In my simulations Tirr = 10 K everywhere.

3.1.2 Gravity

Gasoline is built on the Pkdgrav framework (Stadel (2001)) and thus uses the same
gravity algorithms. Pkdgrav is a tree-code: a kind of code that solves gravity with
an indirect method. It is mostly based on the Barnes-Hut algorithm (Barnes & Hut
(1986)). The name “tree-code” comes from the fact that the simulation box is divided
into sub-boxes, sub-sub-boxes and so on. The big box is the root of the tree, the
sub-boxes are the branches and the smallest sub-boxes are the leaves. The Barnes-Hut
algorithm continues to divide until each cell has a single or no particle inside of it
(Figure 3.1), while in Pkdgrav the depth of the tree is chosen so that there are at most
8 particles in the leaf boxes (buckets).
After creating the tree, the code can compute the gravitational force exerted on each

Figure 3.1: Diagram of a Barnes-Hut tree, showing the division into cells (left) and the
tree structure (right).

particle. If a group of particles is sufficiently far, the code estimates the cumulative
force of the group rather than calculating the force exerted by every single particle.
In Barnes-Hut algorithm, the group is replaced by a single particle with the position
at the center of mass, and the total mass of the group as the mass. Gasoline uses a
hexadecapole multipole expansion of the gravitational potential, which is more accurate
but computationally heavier.
To determine if a particle is sufficiently far to avoid direct calculation, the code assigns
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Figure 3.2: Opening radius for a cell in the tree, intersecting bucket B1 but not B2.
This cell is “opened” while walking the tree for B1, while it is considered too far and
avoids direct calculation for B2.

to each cell of the tree an opening radius about its center of mass. This is defined as:

ropen = 2Bmax√
3θ

(3.12)

where Bmax is the maximum distance from a particle in the cell to the center of mass of
the cell. The opening angle θ is a user defined accuracy parameter.
The opening radii are used as follows: for each bucket Bi, Gasoline starts descending the
tree, opening those cells whose ropen intersect with Bi (Figure 3.2). If a cell is opened,
then Gasoline repeats the intersection test with Bi for the cell’s children. Otherwise, the
cell is considered sufficiently far to avoid direct calculation. When Gasoline reaches the
leaves of the tree and a bucket Bj is opened, all of Bj’s particles are subject to direct
calculation. Once the tree has been traversed in this manner, the code can calculate
the gravitational acceleration for each particle of Bi.

Sometimes particles can approach too much so that the gravitational force (eq. 3.1)
between them can diverge and become unphysical. This happens only if the particles are
treated as point objects with no spatial extension. To overcome this problem, numerical
simulations exploit a technique called softening. Gasoline implements softening by
smoothing the mass of the particles in space using the same spline kernels employed
in the SPH calculation. The distance over which the mass is smoothed is called
gravitational softening ε, and it may vary for each particle. This means that the
gravitational forces between two particles i and j vanish at zero separation and return
to Newtonian 1/r2 at a separation of εi + εj . The value of ε can be taken as the average
distance betwen particles, or can be estimated using the virial radius of the system and
the total number of particles in the simulation N :

ε =
(

4πR3
vir

3

)1/3

N−1/3. (3.13)
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Figure 3.3: Scheme of a leapfrog method using KDK. The kicks are represented by red
lines, the drift by the blue line.

3.1.3 Integration

To integrate the evolution of the systems, Gasoline incorporates the leapfrog scheme
described as Kick-Drift-Kick (KDK) in Quinn et al. (1997). Here is a brief simplified
description of the algorithm for a particle with position r and velocity v, going from
time t to time t+ ∆t (figure 3.3):

1. Kick: the velocity v is kicked to an intermediate timestep.

v(t+ 1
2∆t) = v(t) + 1

2∆ta(t). (3.14)

2. Drift: the position r is drifted.

r(t+ ∆t) = r(t) + v(t+ 1
2∆t)∆t. (3.15)

3. Kick: the velocity is kicked again to its final value.

v(t+ ∆t) = v(t+ 1
2∆t) + 1

2∆ta(t+ ∆t). (3.16)

The final values of position and velocity are:

r(t+ ∆t) = r(t) + v(t)∆t+ 1
2(∆t)2a(t); (3.17)

v(t+ ∆t) = v(t) + 1
2∆ta(t) + 1

2∆ta(t+ ∆t). (3.18)

The real algorithm used by Gasoline is more complex since it also includes thermal
energy. The leapfrog scheme requires only one force evaluation and minimum storage.
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3.1.4 Star Formation
Simulating the hydrodynamical formation of every single star of a SC would be too

complex and would require an incredibly long computation time. To overcome this
problem, simulations of MCs exploit the technique of sink particles. A sink particle
represents a star and it is affected only by gravity, not contributing to pressure and
other gas-related quantities.
If a clump of gas particles meets some specific criteria, the simulation replaces it with
a sink particle. A density threshold is defined and any gas particles exceeding this
threshold, along with their neighbours, are considered for sink formation. Several
criteria must be met:

1. the ratio α of thermal to gravitational potential energy of the group must be
< 0.5.

2. The sum of α and β, the ratio of rotational energy to gravitational potential
energy, must be < 1.

3. The total energy of the group must be negative.

4. The divergence of the acceleration must be negative.

If these tests are passed, a sink is created with the total mass and momentum of the
seed gas particles (Figure 3.4).
Sinks may even accrete gas particles. Accretion onto the sink is achieved by assigning
it an accretion radius and testing particles which pass within it. Particles which are
bound to the sink with a specific angular momentum less than that required to form a
circular orbit at the accretion radius are accreted.

Figure 3.4: Scheme of the creation of a sink particle. If all the criteria are met, the
clump of gas particles is converted to a sink particle with the total mass and momentum
of the clump.

3.1.5 Hardware
To perform my SPH simulations I used the Galileo cluster at the italian supercom-

puting centre CINECA (http://www.hpc.cineca.it/hardware/galileo). Galileo has 8256
cores, with a maximum number of 16 cores per node, and has a RAM of 128GB per
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node.
Hydrodynamical simulations are usually run on Central Processing Units (CPUs).

3.2 Direct N-Body Simulations
As described in section 1.3, the phase subsequent to gas evaporation in SCs is

dominated by purely stellar dynamical processes. This means that at this stage we can
neglect the effects of gas and simulate the systems with a direct summation N-body
code.
A direct summation N-body code calculates the force of gravity for all the couples
of particles in the system. These codes are useful to evolve collisional systems like
SCs where the stellar density is so high that single gravitational interactions between
particles are frequent, strong and affect the overall evolution. These codes do not
include the treatment of gas, but they integrate gravity with much higher acuracy than
hydrodynamical codes since they do not use approximations.
In my thesis I use the direct summation N-body algorithm to simulate the dynamical
evolution of the SCs which form in hydrodynamical simulations.
The code I chose is HiGPUs (Capuzzo-Dolcetta et al. (2012)), which implements an
Hermite’s 6th order time integration scheme with block time steps, allowing both high
precision and speed.

3.2.1 Block Time Steps
When integrating an N-body system, choosing the same timestep for all particles

may be too computationally expensive. Particles which undergo close encounters would
need short timesteps, since they’re experiencing rapid force variations. On the other
hand, other particles subject to weaker interactions can be integrated with longer
timesteps without losing much accuracy. Thus, it is convenient to choose different
timesteps for particles depending on how fast the forces acting on them are changing.
HiGPUs evaluates the timesteps using the generalised Aarseth criterion (Nitadori &
Makino (2008)). For a particle i with acceleration ai the timestep is:

∆ti = η

A(1)
i

A
(4)
i

1/3

, (3.19)

where:
A

(k)
i =

√
|a(k−1)
i ||ak+1

i |+ |a
(k)
i |2. (3.20)

η is a user defined quantity called accuracy parameter and a(k)
i is the k-th time derivative

of acceleration.
Having a different timestep for each particle, however, is computationally expensive
and may create problems with synchronization and parallelization of the code. To solve
this problem, HiGPUs uses the technique of block timesteps: particles are grouped
replacing their individual timesteps ∆ti with a block timestep:

∆ti,b =
(1

2

)n
, (3.21)
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where n is chosen according to:(1
2

)n
≤ ∆ti ≤

(1
2

)n−1
(3.22)

.
This choice imposes that t/∆ti,b ∈ N, which is good for synchronizing the particles. To
avoid bottlenecks, a minimum treshold for ∆ti,b is usually set to ∆tmin = 2−23.

3.2.2 Integration
We consider a system of N stars and we assume that the i-th particle has, at time

tc,0, a position ri,0, a velocity vi,0, an acceleration ai,0, a jerk ȧi,0, a snap äi,0, a crackle...a i,0 and an individual timestep ∆ti,0.
Calling m the number of particles belonging to the same time-block, which have to be
evolved to the same time tc,0 + ∆ti,0, the generic Hermite’s step is composed by three
substeps: a prediction, an evaluation and a correction.

1. Prediction step: positions, velocities and accelerations of all stars are predicted
using their known values:

ri,pred = ri,0+vi,0∆ti,0+1
2ai,0∆t2i,0+1

6 ȧi,0∆t3i,0+ 1
24 äi,0∆t4i,0+ 1

120
...a i,0∆t5i,0, (3.23)

vi,pred = vi,0 + ai,0∆ti,0 + 1
2 ȧi,0∆t2i,0 + 1

6 äi,0∆t3i,0 + 1
24

...a i,0∆t4i,0, (3.24)

ai,pred = ai,0 + ȧi,0∆ti,0 + 1
2 äi,0∆t2i,0 + 1

6
...a i,0∆t3i,0. (3.25)

2. Evaluation step: the accelerations of m ≤ N particles as well as their first and
second time derivatives are evaluated using the above predicted data. The mutual
interaction between the i-th particle and the remaining N − 1 is described by the
following relations:

ai,1 =
N∑

j=1, j 6=i
aij,1 =

N∑
j=1, j 6=i

mj
rij
r3
ij

, (3.26)

ȧi,1 =
N∑

j=1, j 6=i
ȧij,1 =

N∑
j=1, j 6=i

(
mj

vij
r3
ij

− 3αijaij,1
)
, (3.27)

äi,1 =
N∑

j=1, j 6=i
äij,1 =

N∑
j=1, j 6=i

(
mj

aij
r3
ij

− 6αijȧij,1 − 3βijaij,1
)
, (3.28)

where rij = rj,pred − ri,pred, vij = vj,pred − vi,pred, aij = aj,pred − ai,pred,
αijr

2
ij = rij · vij, βijr2

ij = v2
ij + rij · aij + α2

ijr
2
ij.

3. Correction step: positions and velocities of the mentioned m particles are updated
and corrected using the above evaluated accelerations and their time derivatives:

vi,corr = vi,0 + ∆ti,0
2 (ai,1 + ai,0)−

∆t2i,0
10 (ȧi,1 − ȧi,0) +

∆t3i,0
120 (äi,1 + äi,0), (3.29)

ri,corr = ri,0 + ∆ti,0
2 (vi,corr + vi,0)−

∆t2i,0
10 (ai,1 − ai,0) +

∆t3i,0
120 (ȧi,1 + ȧi,0). (3.30)
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HiGPUs implements softening modifying Newton’s equation:

Fij = −Gmimj
ri − rj

(|ri − rj|+ ε2)3/2 . (3.31)

ε is the smoothing gravitational length, which can be chosen by the user for each particle.
This operation corresponds to the replacement of point masses with Plummer spheres
of scale length ε (Plummer (1911)).

3.2.3 Hardware
Even though the operations needed to integrate a gravitational N-body system are

simple, the fact that they should be repeated for each couple of particles makes the
integration time scale as N(N − 1).
Initially, direct N-body simulations were performed using special computers called
GRAPE (http://jun.artcompsci.org/index-e.html), specifically designed for this purpose.
Recently, however, Gaburov et al. (2009) developed the SAPPORO library, which
emulates GRAPE’s features on NVIDIA Graphic Processing Units (GPUs) using the
CUDA environment. This is possible because GPUs are made of many small processors
capable of working in parallel. This way, insted of having few powerful processors
(CPUs), we have many slower ones (GPUs), each of which can perform the many simple
operations needed (Figure 3.5).
GPUs and GRAPE have similar performances (Figure 3.6), but GPUs are much cheaper.

Thanks to the implementation of OpenMP, MPI, CUDA and OpenCL, HiGPUs is a
really versatile code, capable of running simulations on CPUs and both NVIDIA/AMD
GPUs.
I ran all the direct N-body simulation for this thesis on a NVIDIA GeForce Titan Black
of the ForDyS research group (http://web.pd.astro.it/mapelli/group.html).

Figure 3.5: Comparison between a CPU and a GPU. GPUs have many (∼ 103) low-power
processors, while CPUs have 1− 16 powerful cores.
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Figure 3.6: Computation time as function of the number of particles using GPUs (solid
line with bullets) or GRAPE (dotted line with stars). From top to bottom, one, two,
or four GPUs and one, two, four and eight GRAPEs. The dashed-dotted line shows
the expected N2-scaling, offset not to overlap with the measurements. Figure from
Gaburov et al. (2009).
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Chapter 4

Results

In this chapter I present and discuss the data obtained from the simulations. I
mainly used Python and C++ scripts to extrapolate and analyze data.
My results support the idea that rotation is quite common in young massive star clusters
and may survive for a long time (longer than a two-body relaxation timescale).

4.1 Initial Conditions

I start from SPH simulations of three turbulence-supported molecular clouds named
A, B and C1 (Mapelli (2017)). The clouds are initially spherical and have homogeneus
density. They are marginally self-bound, which means that for each cloud the total
kinetic energy is approximately equal to the total gravitational potential:

K

|U |
= 1. (4.1)

Supersonic turbulence in the cloud is generated from a velocity field with an imposed
power spectrum P (k), varying as k−4. The velocity field is created by generating a grid
of velocities using a divergence free Gaussian field randomly distributed using a Monte
Carlo method. This yields a velocity dispersion σ(l), varying as l1/2, chosen to agree
with the Larson’s scaling relation (equation 1.8). Clouds A and B are two different
realizations of the same cloud, with M = 4.3 × 104 M� and R = 8.8pc but different
random seeds for turbulence. Cloud C has M = 104 M� and R = 5.4pc. Each cloud
has approximately the same initial density ρ ∼ 10−21 g/cm3 and temperature T = 10K,
and is composed of 107 equal-mass gas particles.
The density treshold for sink particles creation is set to ρth = 10−17 g/cm3. The sink
accretion radius is racc = 2ε̃, where ε̃ is the softening length (ε̃ = 10−6 − 10−4 pc,
depending on the resolution of the simulation).
The initial conditions of each cloud are summarised in Table 4.1.

1Cloud D, whose properties are reported in Table 4.1, is currently being simulated and will not be
discussed in this thesis.
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Table 4.1: Initial conditions of the simulated MCs. The second column gives the total mass,
followed by cloud radius, number of equal-mass gas particles and temperature.

Cloud M [M�] R [pc] Ngas T [K]
A 4.3× 104 8.8 107 10
B 4.3× 104 8.8 107 10
C 1.0× 104 5.4 107 10

4.2 SC Formation and Transition to Direct N-body
Code

In my simulations, SCs form following the hierarchical clustering scenario. The
initial evolution of the molecular cloud is due to the turbulent motions present in the
gas. The supersonic turbulence leads to the development of shocks in the gas, producing
filamentary structures (Bate et al. (2003)). The most dense regions in the filamentary
structures become self-gravitating and collapse to form stars. Star formation begins
after 1.3 Myr in clouds A and B, and after 1.5 Myr in cloud C. Stars along filaments
and the residual gas are attracted by their mutual gravitational forces and fall towards
each other creating local subclusters. The number of stars in each subcluster increases
as stars continue to form nearby. After the majority of the gas is depleted by star
formation, subclusters sink towards each other to form the final single cluster structure,
which in all my runs has a size of approximately 1 pc.
Some snapshots of cloud A which summarise the formation of the SC are reported in
figure 4.1.
To verify that this formation scenario is connected with large scale supersonic turbulence,
I have performed a test run seeded with small scale turbulence (P (k) ∝ k4). As shown
in Figure 4.2, this cloud collapses monolitically. This could mean that the large scale
turbulence we observe in MCs may support the hierarchical assembly scenario.

For each simulation, at t = 4 Myr (i.e. approximately twice the free-fall time scale
of the cloud), I remove the gas particles and use the positions, velocities and masses of
sink particles as initial conditions for HiGPUs, which will continue to evolve the SC
with better accuracy on dynamical interactions.
Gas removal is mainly justified by two facts:

• The gas fraction within 1 pc from the center of mass of the SCs is less than 0.15
(Figure 4.3). The gas fraction fgas(r) is defined as:

fgas(r) = mgas(r)
mgas(r) +mstar(r)

, (4.2)

where r is the distance from the center of mass, mgas is the gas mass within r and
mstar is the stellar mass within r.

• After 4 Myr, the first SN explosions would start to explode, evaporating the
remaining gas.
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Figure 4.1: Projected density of gas in cloud A at different timesteps. Blue dots repre-
sent stars. The boxes measure 20 × 20pc. From left to right and from top to bottom: t =
0 Myr, 0.2 Myr, 1 Myr, 2 Myr, 3 Myr, 4 Myr. The cloud is initially uniform and spherical (A), then
the filamentary structure begins to develop due to turbulence and self-gravity (B and C). After 2 Myr
stars have formed along the filaments (D). The stars fall towards local potential minima and hence
form subclusters (E). The subclusters sink towards each other and begin to form the main cluster
structure (F).
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Figure 4.2: Projected density of gas in test run with P (k) ∝ k4 at t = 1.8 Myr. Small
blue dots represent stars. The box measures 6× 6pc. Stars form in a unique compact
structure rather than along filaments.

4.3 Mass Profiles
The mass profiles M(r) of the SCs allow us to see how their mass is distributed in

space. After 4 Myr, the main cluster of each simulation has fully assembled. All the
simulated star clusters develop a similar mass profile, as shown in Figure 4.4. Usually,
direct N-body simulations of SCs start from idealized distributions such as Plummer
sphere or King models (King (1966)). The mass profile of a Plummer Sphere with total
mass M is:

M(r) = M
r3

(r2 + a2)3/2 , (4.3)

where a is a scale parameter also known as Plummer radius and r is the distance from
the centre. The mass profiles of my SCs are not idealized, since they come from the
hydrodynamical simulations. A comparison between a Plummer sphere and the mass
profiles of my SCs is shown in figure 4.4.

4.4 Rotation
In my simulations the hierarchical assembly scenario leads to the onset of rotation

in SCs. Rotation arises from the torques exerted by gas filaments and clumps while
they merge with the main proto-cluster structure with non-zero angular momentum.
The SCs inherit the rotation signature from the parent molecular clouds (Mapelli
(2017)). To measure rotation, I project the stars onto the xy plane, defined as the plane
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Figure 4.3: Gas fraction at t = 4 Myr within 3 pc from the center of mass of the cloud.
Few gas particles remain nearby the SCs.
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Figure 4.4: Normalized mass profiles of my SCs at t = 4 Myr. The red, green and blue
lines represent run A, B and C respectively. The black line represents a Plummer sphere
with scale factor a = 5× 10−2 pc.

perpendicular to the total angular momentum vector (which is thus aligned along the z
axis). If the cluster rotates, the stellar projected velocities vx and vy show a red-shifted
and a blue-shifted component. The presence of this feature along vz as well would
indicate that the cluster is undergoing subvirial collapse (Proszkow et al. (2009)). The
main difference between the signature of genuine rotation and that of subvirial collapse
is that the latter has no preferential plane (and ideally zero angular momentum vector),
while the former is maximum in the plane perpendicular to the angular momentum
vector. My simulated SCs are subvirial (K/|U | ∼ 0.25), so I expect to see this effect.
However, as shown by Mapelli (2017), this effect is much weaker than the signature of
rotation.
At t = 6 Myr the SCs clearly rotate, as shown in Figure 4.5.

One of the main aims of this thesis is to study the evolution of rotation to see how
long it lasts in SCs. I expect that several processes would affect and quench rotation.
The expulsion of the residual gas, the galactic tidal field, magnetic braking (Galli et al.
(2006)) and most importantly the dynamics of stars should remove angular momentum
from the cluster, progressively erasing rotation. In particular, two-body relaxation
makes stars lose memory of their initial velocity, so I expect that at t = trh rotation
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Figure 4.5: Simulated star particles (i.e. sink particles) in the xy plane at t = 6 Myr.
The xy plane is defined as the plane perpendicular to the total angular momentum
vector. From left to right: the colour-coded map shows the component of the stellar
velocity along the x, y, and z axis (where the z axis is the direction of the angular
momentum vector), respectively. From top to bottom: run A, B, and C.
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Table 4.2: Column 1: run name; column 2: time elapsed since the beginning of the
simulation (t); column 3: total SC mass (M∗); column 4: average of the absolute
value of the velocity along the x-axis (〈|vx|〉 = ∑

i |vx(i)|/N), where vx(i) is the velocity
along the x-axis of the i-th star and N is the number of stars in the SC; column
5: velocity dispersion along the x-axis (σx =

√
(N − 1)−1∑

i(vx(i)− 〈vx〉)2, where
〈vx〉 = ∑

i vx(i)/N); column 6: average of the absolute value of the velocity along the
x-axis over velocity dispersion along the x-axis (〈|vx|〉 /σx).

Run t M∗ 〈|vx|〉 σx 〈|vx|〉 /σx
[Myr] [M�] [km s−1] [km s−1]

A 2.5 865 5.7 6.9 0.82
A 4.0 7968 6.9 8.9 0.77
A 6.0 5759 4.2 5.9 0.70
A 9.0 5285 3.3 4.8 0.69
A 13.0 4883 3.2 4.7 0.67
B 2.5 1060 5.5 6.5 0.85
B 4.0 11874 8.6 11.8 0.73
B 6.0 9786 9.2 12.9 0.71
B 9.0 8610 9.0 12.9 0.70
B 13.0 7880 8.3 12.1 0.68
B 22.0 5975 8.1 12.2 0.67
C 2.5 202 2.2 2.9 0.77
C 4.0 2057 3.8 5.0 0.76
C 6.0 5684 8.2 11.3 0.72
C 9.0 4670 7.3 10.4 0.70
C 13.0 3911 7.7 11.1 0.69

should be absent. For my systems trh = 3 − 7 Myr. Since I evolved my SCs with a
direct summation N-body code, I can study how dynamical evolution affects rotation.
To do so, I produced many rotation curves at different timesteps, which are compared in
Figure 4.6. Surprisingly, at t = 13 Myr (and even at t = 22 Myr) SCs still show rotation.
Considering that the main cluster assembled between t = 2 Myr and t = 4 Myr, we
can say that rotation persists even if t > trh. Rotation decreases, but on a timescale
which is much longer than expected. The main rotation related properties at different
timesteps are reported in Table 4.2.

This analysis may help us to put some constraints on the formation scenario of
SCs. We still do not know how SCs form, but if they form through the hierarchical
scenario they should rotate. The feature of rotation is thus an observational test for
hierarchical assembly. This may be the case of R136, whose rotation curves are reported
in Figure 4.7. R136 is the youngest massive cluster in which rotation has been observed
(Hénault-Brunet et al. (2012)). It has an age of ∼ 1.5 Myr, it rotates with velocity
vrot ' 3± 1 km s−1 and has a ratio between rotational velocity and velocity dispersion
of vrot/σ ' 0.6± 0.3. These values are consistent with my simulations, even if R136 is
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Figure 4.6: Rotation curves of the simulated SCs at different timesteps (Red: t = 6 Myr;
green: t = 9 Myr; blue: t = 13 Myr; black: t = 22 Myr). Circles (ṽx(y)): average
one-dimensional stellar velocity along the x-axis as a function of the position on the y
axis. The values of ṽx(y) are averaged over stars with position y−∆y/2 ≤ yi ≤ y+∆y/2
(where y and ∆y are the middle point and size of the bin, respectively). Triangles
(σx(y)): one-dimensional stellar velocity dispersion along the x-axis as a function of the
position on the y-axis. The values of σx(y) are calculated as the standard deviation
relative to ṽx(y). From top to bottom: run A, B, and C.
In all runs, rotation decreases on a quite long timescale.
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Figure 4.7: Rotational velocities of the stars in R136 as a function of distance X
from the optimal rotation axis for models with constant rotation rate (left), constant
rotational velocity (centre) and a more realistic rotation curve (right). The best-fit
rotation curves are shown as solid red lines, and ±σ envelopes are represented by dashed
red lines. The rotation curves are similar to those of my simulated SCs. Figure from
Hénault-Brunet et al. (2012).

more massive (M ' 105 M� - Andersen et al. (2009)) and less compact than my SCs.
Moreover, the sample of Hénault-Brunet et al. (2012) consists of only 36 O-type stars,
of which only 16 are within 5 pc. Future integral field spectroscopy (e.g. HARMONI
at E-ELT) and multi-conjugated adaptive optics infrared astrometry (e.g. MAORY
and MICADO at E-ELT) will hopefully give us more detailed data on R136 and spot
rotation signatures in other young clusters.
My results might also be useful to interpret the origin of rotation in the old GCs of the
Milky Way, but it must be kept in mind that my simulated star clusters are extremely
different from GCs, which are more massive and have different star formation history
and age. I have evolved my systems for only ∼ 20 Myr, but the fact that rotation
decreases on such a long timescale might tell us that it may survive for times comparable
to the age of GCs, whose rotation may have the same origin of the one which arises in
my simulations.

The forthcoming analysis of cloud D will help to clear some of these doubts.

4.5 Ellipticity
The ellipticity (ε) allows us to quantify the flattening of SCs. To estimate the

ellipticity, it is necessary to calculate the rotational inertia matrix of sink particles with
respect to their centre of gravity:

Irot =
∑
i

mi

 x
2
i xiyi xizi

xiyi y2
i yizi

xizi yizi z2
i

 , (4.4)

where i is the index of sink particles. The three eigenvalues of this matrix (λ1, λ2, λ3)
give the SC size in three orthogonal directions:

ri = β

√
5λi
M∗

, i = 1, 2, 3, (4.5)
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Table 4.3: Column 1: run name; column 2: time elapsed since the beginning of the
simulation (t); column 3, 4, 5: star cluster size in three orthogonal directions (r1, r2, r3)
obtained through the rotational inertia matrix and using a value of β = 1 in equation
4.5; column 6: star cluster ellipticity (ε). The larger size of the SC of run A at t = 6 Myr
is the consequence of an ongoing accretion of a subcluster.

Run t r1 r2 r3 ε
[Myr] [pc] [pc] [pc]

A 2.5 0.037 0.022 0.009 0.75
A 4.0 0.55 0.39 0.32 0.42
A 6.0 1.83 3.12 2.66 0.41
A 9.0 0.61 0.55 0.45 0.27
A 13.0 0.64 0.73 0.76 0.17
B 2.5 0.024 0.013 0.007 0.71
B 4.0 0.70 0.35 0.33 0.53
B 6.0 0.28 0.26 0.25 0.1
B 9.0 0.30 0.28 0.29 0.06
B 13.0 0.48 0.33 0.33 0.32
B 22.0 0.34 0.29 0.30 0.14
C 2.5 0.018 0.011 0.004 0.75
C 4.0 0.65 0.47 0.40 0.39
C 6.0 0.25 0.21 0.20 0.20
C 9.0 0.29 0.27 0.24 0.15
C 13.0 0.29 0.25 0.24 0.16

where M∗ is the total mass of sinks. The factor 5 comes from the assumption that the
sink mass is uniformly distributed in space, and a correctional factor β ≥ 1 accounts
for the fact that the mass distribution might not be uniform but rather centrally
concentrated (Lee & Hennebelle (2016)).
Ellipticity is defined as ε = 1 −

√
λ3/λ1, where λ1 and λ3 are the maximum and

minimum eigenvalue, respectively. ε = 0 means that the SC is spherical, while ε ∼ 1
means that the SC is a disk. The SCs in my simulations are extremely flattened during
the early stages of their assembly (ε ∼ 0.71 − 0.75 at t = 2.5 Myr). Their ellipticity
diminishes over time, as shown in Figure 4.8 and in Table 4.3. At t = 13 Myr, my
SCs are nearly spherical. The main process that makes ellipticity decrease over time is
two-body relaxation. Two-body encounters change the directions of stellar velocities,
which thus leave their initial preferential plane. Another possible explanation for the loss
of flattening is the accretion of new gas and stellar clumps, with a different orientation
of angular momentum.
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Figure 4.8: Evolution of ellipticity ε of simulated SCs. The red, green and blue lines
represent run A, B and C respectively. All SCs are extremely flattened at the beginning,
but become nearly spherical at the end of my simulations.
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Conclusions

In this thesis I studied the formation and kinematical features of embedded star
clusters, focusing on their rotation.

I started from smoothed-particle hydrodynamics simulations of turbulence-supported
molecular clouds and studied the dynamics of the main cluster that forms in each cloud
using HiGPUs, a direct summation N-body code.
My star clusters form following the hierarchical assembly scenario, by the merger of
several gas and stellar clumps. During this process torque is exerted on the parent
gas and the stellar component, because they accrete on the main cluster structure
with non-zero angular momentum. This angular momentum is transferred to the main
cluster, which acquires significant rotation. In all the simulated star clusters, rotation
decreases on a surprisingly long timescale (〈|vx|〉 /σx = 0.77− 0.82 at t = 2.5 Myr and
〈|vx|〉 /σx = 0.67− 0.69 at t = 13.0 Myr). My star clusters form with large ellipticity
(ε = 0.71 − 0.75 at t = 2.5 Myr), but they become nearly spherical through their
evolution (ε = 0.14 − 0.17 at t = 13.0 Myr). In particular, I found that two-body
relaxation (and stellar dynamics in general) are much less effective than expected
in removing angular momentum from rotating star clusters and in decreasing their
ellipticity. A possible interpretation of this result could be that in a rotating system
two-body encounters should be more likely on the plane of rotation, thus they should
be less efficient in randomizing the directions of stellar velocities.
This work is useful to interpret the observed rotation signature in young massive clusters
and in globular clusters, and it provides a key observational test for the hierarchical
assembly scenario. Furthermore, my results give useful information about the initial
conditions of star clusters for direct N-body simulations.

Since the study of rotation in SCs is a relatively unexplored field from the theoretical
point of view, this work can be improved and further developed in many ways.
A more massive molecular cloud is currently being simulated to match the mass of the
rotating young massive cluster R136. The systems could be evolved for longer times, to
check how long the rotation signature lasts and to address some questions related to
the origin of rotation in globular clusters. Different codes can be used to verify that
the obtained results are not connected with numerical recipes. Using a population
synthesis code in combination with a direct N-body code would allow to investigate how
stellar evolution influences rotation. Li et al. (2017) claim that molecular clouds can

47



Conclusions

also be rotation-supported objects, so it can be useful to investigate the evolution of a
globally rotating molecular cloud. Finally, the effects of a galactic external gravitational
potential and a magnetic field can be studied by adding them in the simulations.
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