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ABSTRACT 

The ability to remember to perform intentions at a specific time (time-based) or after the 

appearance of a cue (event-based) is defined as Prospective Memory (PM). It allows to 

flexibly manage everyday tasks by executing them at the most appropriate moment, 

making PM a crucial part of our daily life. The PM field has grown considerably in recent 

years, but despite the scientific community recognizing its importance, different aspects 

of PM research need further investigation. Many studies have been focusing on the 

processes underlying event-based tasks, while only a few investigated the underpinnings 

of time-based PM. The experimental design of studies has sometimes lacked ecological 

validity, creating situations that are far off real-life PM. Finally, many studies have 

employed Electroencephalography (EEG) to study PM because of the centrality of 

temporal dimension in PM and the excellent temporal resolution of EEG, but none of them 

used this technique to investigate functional connectivity during PM processes. To fill 

these gaps, the present study aims to explore the functional connectivity of time-based and 

event-based PM tasks by implementing a pseudo-naturalistic design while recording EEG. 

Capturing the functional connectivity patterns intrinsic to the EEG signal requires a 

method sensible to the dynamic states encompassed by neural activity. A promising novel 

method called Hidden Markov Modelling (HMM) was adopted, because of its ability to 

identify stable patterns of whole-brain activity without any prior knowledge over the data. 

HMM was employed to obtain six recurrent brain states, with significant differences in 

the time spent in those states between conditions. Results confirmed the key role of Dorsal 

Attention Network in time-based PM as proposed by the AtoDI model of Cona and 

colleagues (2015), as well as the allocation of attentional resources towards internal 

processes in PM conditions. Additionally, a configuration resembling posterior Default 

Mode Network supported the retrieval of intention in PM tasks.        
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1. Chapter 1 

Prospective Memory 

 

1.1 Introduction 

Time can be defined as the continuous sequence of events that occurs from the past, 

through the present, and into the future. The distinction between these three concepts 

appears relatively consistent, but our daily perception has past and future intertwined in 

the present, making it hard to draw a clear line between them. The main reason for that is 

our ability to remember. Memory allows events that have occurred and will occur to have 

an important role in the present, constantly influencing our current activities. While the 

concept of memory is usually associated with the past, we make use of it more than we 

realize to fulfill our future behaviors. In fact, there are things we remember without a clear 

purpose (e.g. remembering the first time we drove a bike), and things we are supposed to 

remember (e.g. remembering to return a borrowed object when we meet its owner). The 

former situation refers specifically to the past and can be categorized as Retrospective 

Memory (RM), whereas the latter is referred to as Prospective Memory (PM). PM can be 

defined as the ability to remember to carry out future intentions when we are supposed to 

or when a specific event occurs (McDaniel and Einstein, 2007).  

Many examples of PM can be taken from everyday life, such as remembering to take 

laundry out of the washing machine or take the prescribed medications every Tuesday 

morning. While forgetting about the first one would not create a problem, not taking 

medicine at the right time could have harmful consequences. In fact, PM effectiveness has 

a meaningful impact over different domains of our life, ranging from work, through social 

life to personal health. Therefore, the crucial role that PM plays in everyday life makes 

this field fundamental to study and research. By characterizing the neural and behavioral 
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underpinnings of PM, we can gain a deeper understanding of a key ability unique to the 

human mind, while also developing tools to treat and support individuals who have lost 

their capacity for prospective remembering. The mundane nature of PM intentions obliges 

researchers to pay much attention to the experimental design and laboratory setting in 

which PM is studied. Ecological validity plays a pivotal role in studying PM, as the 

generalizability of studies greatly rely on it (Kvavilashvili & Ellis, 2004). Following the 

experimental paradigm proposed by McDaniel & Einstein in 1990 (which later became 

the standard procedure), most studies proposed lab-based settings to allow control over 

experimental factors and to manipulate different PM processes. Nevertheless, lab-settings 

were not always able to correctly represent real-life PM, resulting in controversial 

phenomena such as the Age PM paradox (Rendell & Thomson, 1999), for which older 

adults perform worse than young adults in labs, but the opposite happens in real-life. 

Recently, a growing number of studies designed their PM paradigms to increase the 

ecological validity of their lab settings, using artificial settings that mimic daily 

environments (Altgassen et al., 2015), virtual reality (Trawley et al., 2017), and more life-

like tasks (Mioni et al., 2014). “Naturalness” has indeed emerged as a key topic to address 

in PM research. 

According to the Phase Model (Kliegel et al., 2011; Kvavilashvili & Ellis, 1996), PM can 

be divided into three stages: first, an intention must be created by encoding information 

about future actions to be performed later (Intention-formation phase); then, after a 

memory trace and a motor plan have been developed, there is a delay between encoding 

and the actual execution of the intention, in which the environment is scanned for salient 

stimuli and the intention rehearsed (Intention-retention phase); finally, PM intention has 

to be triggered, either voluntarily or spontaneously, and executed (Intention-retrieval 

phase). The standard experimental paradigm used to study these processes usually 
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involves two different tasks, the ongoing and the PM task (McDaniel & Einstein, 1990). 

The ongoing task is usually a binary-choice reaction task, e.g., a lexical decision task 

(Rummel & McDaniel, 2019). Ongoing tasks must be simple (so that the cognitive 

demands do not deplenish participant’s resources from PM processes) but also engaging 

enough to distract participants from the intention they are maintaining. After instructions 

about the ongoing tasks are given, participants receive information about a PM intention 

to encode and later perform on top of the ongoing task. PM tasks differ mostly on the 

stimulus associated with intention retrieval (called “PM cue”). In fact, depending on the 

PM cue, PM tasks can be distinguished in event-based or time-based. In event-based tasks, 

the PM intention must be performed whenever a particular stimulus is found in the 

environment, such as a target appearing on the monitor. For instance, an event-based 

experiment would have the participant distinguishing words from non-words as the 

ongoing task, pressing a key each time a word written in all caps appears. PM cues in 

event-based tasks can vary depending on how easily these events can be distinguished 

from ongoing task targets. PM targets are defined as “salient” if they are very 

distinguishable independently from the PM intention (e.g. spotting a face among squares 

and triangles), while they are defined “focal” if they are associated with the encoded 

intention (e.g. pressing the spacebar three times when the number 3 appears). In time-

based tasks, the PM cue is associated to a specific time or to the expiration of a certain 

amount of time. For example, participants may be asked to perform the ongoing task while 

monitoring the passing of time, pressing a key every two minutes. A clock is usually 

present in these instances, being available either in the periphery of the monitor or as a 

hidden clock made available by pressing a key.  
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1.2 Multiprocess Framework 

The Multiprocess Framework View (MPV) is a model proposed by McDaniel & Einstein 

in the first international conference on PM, which later resulted in the special issue of 

Applied Cognitive Psychology (2000). Introducing their model, the authors focused on 

what was different in the modalities by which RM and PM were studied in research. 

Specifically, they pointed out that investigations over RM involve an explicit request to 

retrieve the memory trace, while this happens rarely in PM studies. Therefore, the aim of 

the model was to address how the retrieval mode in PM is activated without any specific 

external demand, to better understand which processes mediate the attentional switch from 

the ongoing task to the PM retrieval and execution. 

According to the MPV model, PM retrieval can be mediated by multiple processes. This 

assumption is supported by the fact that PM is ubiquitous in our daily activities and is 

intimately connected to planning and future-oriented behaviors. Thus, to support the 

flexibility necessary for the wide variety of contexts in which PM occurs, multiple 

cognitive functions may be employed. Different situations may require different strategies, 

depending on the context in which the intention is remembered and on its characteristics. 

Specifically, the authors state that prospective remembering can depend on either strategic, 

top-down processes or spontaneous, bottom-up processes. Top-down processes are 

internally induced phenomena in which the environment is actively explored for 

information depending on chosen factors (Katsuki et al., 2014). Main top-down processes 

used in PM are rehearsal (the intention is repeated in one’s memory until fulfillment) and 

monitoring (each new situation/task’s trial is analysed in search of PM cues). While 

providing a strategy to maintain and retrieve the PM intention, top-down processes take a 

toll on working memory resources, slowing down or costing the performance of the 

ongoing task (Shelton et al., 2017). Bottom-up mechanisms, on the other hand, operate by 
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involuntarily shifting attention to objects that may carry important information for us 

(Connor et al., 2004). In the context of PM, a typical bottom-up process is spontaneous 

intention retrieval modulated by stimuli’s saliency, or by the association between 

environmental cues and intention (focality). 

A significant role in modulating the two processes is attributed to target characteristics, 

which can trigger the PM intention. Particularly, target’s distinctiveness and associativity 

are reported as crucial in re-orienting attention to the intention (Shelton et al., 2019).  

In summary, the MPV assumes that PM strategic/top-down processes are engaged 

whenever spontaneous retrieval is not possible, due to the ongoing and PM task 

characteristics and due to individual differences. In a recent work by Rummel and 

Kvavilashvili (2023), the main theoretical models of PM were reviewed to put different 

approaches into a common framework. This review will be used as the main reference to 

point out advantages and limits in the MPV and other models that will be introduced next. 

The authors highlighted how the MPV can account for most of the benchmark PM effects. 

Specifically, bottom processes involved in PM can explain intention importance, target list 

length, encoding strength, target focality, target saliency and lure interference effects on 

performance. By ensuring that the connection between the PM and the target is efficiently 

established in the encoding phase and correctly elicited in the retrieval phase, spontaneous 

processes can occur more automatically, requiring less resources and contributing to a 

better performance. On the other hand, the involvement of high-order, strategic processes 

is confirmed by other effects: the prospective memory costs effect, for which the same 

ongoing task is performed worse if there is a PM task, due to the allocation of cognitive 

resources to the maintenance of the intention; the intention context, for which a target is 

looked for only in a context where one may find some. Nevertheless, the MPV has been 

criticised because it cannot account for the ongoing task load effect in the presence of 
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focal targets. According to the model, if targets are salient/focal to the tasks, the PM should 

be elicited spontaneously and not require strategic processes. Still, it has been reported 

that increasing the difficulty of the ongoing task hampers PM task performance and results 

in a frontoparietal activation, which is typical of top-down processes (Shelton et al., 2019). 

While the model can explain most benchmark effects, it is difficult to reconcile the MPV 

framework with the notion of ongoing task impacting spontaneous retrieval. An effort in 

this direction was made by revising the MPV into the Dynamic Multi-Process framework 

View (DMPV) (Scullin et al., 2013; Shelton & Scullin, 2017). 

The rationale behind this change was to account for the dynamicity that characterizes 

human behaviour, including prospective remembering. Posing as a dual process theory 

(McDaniels et al., 2015), it assumes the process A is active in task A and process B is 

active in task B. However, the interval between the encoding and the execution of an 

intention is realistically too long and filled with many different situations to require just 

one of the two processes. Therefore, the main change in DMPV is that bottom-up and top-

down processes dynamically interact depending on the context of the PM intention. For 

example, one individual could go out to work, creating the intention of buying milk after 

work because it was finished at breakfast. Then, there would be a retention-phase without 

spontaneous or strategic processes involved, in which the individual apparently forgot 

about the milk. Going back home from work, he/she notices a billboard on the road with 

a milk’s company advertisement. After the spontaneous retrieval, strategic monitoring for 

supermarkets would be employed, leading to the fulfillment of the intention. A bi-

directional talk between the two processes would allow for flexibility and for the most 

suited process to be engaged during the life of an intention. Another change proposed in 

the DMPV was the involvement of bottom-up and top-down processes in each phase of 

PM. The MPV focus was on how spontaneous and strategic processes played a pivotal 
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role in the retention phase, while in the DMPV it is pointed out how a range of processes, 

from top-down to bottom-up ones, can deeply impact intention formation, retention, 

retrieval and deactivation. 

  

1.3 Preparatory attentional and memory processes theory 

 The preparatory attentional and memory processes (PAM) theory (Smith et al., 2003) is 

an alternative model of PM that originated after MPV theory. As the model of McDaniel 

and Einstein, PAM focuses on event-based PM, and there is a considerable degree of 

similarity in how the two models describe a top-down/non-automatic process supporting 

PM. Nevertheless, the main difference relies on the fact that PAM assumes that we enter 

a preparatory attentional mode each time we create an intention, allowing the retrieval of 

the intention once a target is detected. Compared to MPV, automatic processes are not 

considered plausible in eliciting the retrieval of the PM, stating that a conscious, non-

automatic process is always engaged. The rationale behind PAM theory is that this 

preparatory attentional process draws cognitive resources from a common, limited 

capacity, which is Working Memory. Working Memory (WM), sometimes also 

acknowledged as Short-Term memory, can be defined as a system for the temporary 

storage and manipulation of information (Baddeley 1998; 2012). This system serves as a 

relé for information that will be encoded in Long-Term memory, but also supports the 

maintenance (and potential manipulation) of the information for the current task. 

Considering the limited capacity of this system, a preparatory attentional process would 

ask for its share of WM, not granting the entirety of available resources to the ongoing 

task. Consequently, the PM retention-phase will hamper the ongoing task performance 

(admitting that the two tasks combined are exceeding the WM capacity). Additionally, 

PAM highlights the importance of RM for PM success, as RM processes are considered 
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necessary for the discrimination of PM targets from non-targets, resulting in further usage 

of cognitive resources. 

According to Rummel and colleagues’ review (2023), both Prospective memory costs and 

ongoing task load are direct evidence in support of PAM’s theory. Critically, it is important 

to point out that the presence of ongoing task load with focal/salient targets fits perfectly 

in the theoretical framework of PAM, while also being the principal limit found in MPV 

framework. 

However, the review shed light on some benchmark effects that were difficult to conciliate 

with the model. Particularly, the prospective memory lure effects appear troublesome to 

explain within the PAM. The lure interference is a post-retrieval effect in which the 

performance of the ongoing task is affected whenever stimuli that resemble PM targets 

appear after the PM retrieval. The behavioural cost triggered by stimuli like PM cues 

cannot be explained by PAM theory because a preparatory mode would not be compatible 

in a post-retrieval phase, but it is found empirically (Scullin et al. 2012). More generally, 

the main criticism towards the PAM model is that preparatory attentional processes that 

are engaged for each new intention are hard to fit with the several PM intentions we create 

and maintain every day, which can often span from hours to days. The PM toll on WM 

would be constant, and the cognitive system would be slowed down every time we are 

maintaining PM intentions (which is almost always). 

In a similar fashion to MPV’s answer to criticism, PAM addressed the plausibility issue in 

the 2017 paper of Smith and colleagues, where it was stated that withdrawing capacity 

from the ongoing task would have no benefit if the possibility to satisfy the delayed 

intention is not imminent (Smith et al., 2017). This acknowledgement was furtherly 

supported by reports of studies in which there were no PM cost to ongoing task 
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performance in blocks of trial which explicitly did not contain PM cues (Cook et al., 2005; 

Marsh et al., 2006). Therefore, even though PM intention was formed, PM cues were not 

expected resulting in no capacity withdrawal. Altogether, these results point to a critical 

role for context in the allocation of attentional resources (Smith et al., 2017). While the 

studies reporting differences on PM cost depending on the instructions had significant 

results, they were limited to different blocks within the same task. In the study of Smith et 

al. (2017), three different experiments were carried out to test the hypothesis that familiar 

context could be used to decide whether to engage preparatory attentional processes. They 

found that spatial contextual information could be effectively used to dynamically allocate 

attentional resources, with different impacts on the ongoing task and stable high levels of 

PM performance. These results were integrated into an evolved version of PAM theory, in 

which decisions about the need for preparatory attentional processes is made at point of 

transitions. Within these transition points, information from the environment captures 

attention and trigger the preparatory mode, almost spontaneously. Arguably, context-

dependent PAM theory included a reactive, automatic component in their framework, 

assuming a dual-process status (Rummel et al., 2023) and moving closer to DMPV’s 

formulation. 

  

1.4 Prospective Memory Decision Control Theory 

The Prospective Memory Decision Control theory (PMCD) (Strickland et al., 2018) 

represents a third model which focuses on different aspects to explain PM compared to 

previous models, while also explicitly accounting for the theoretical assumptions made in 

MPV and PAM. The goal behind this theory was to quantitively model PM and ongoing 

tasks, as this has been attempted previously, but either the data could not fit the theoretical 

models (Arnal, 2008; Gilbert et al., 2013) or models were applied only on non-PM tasks 
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(Ratcliff et al., 2004; Brown et al., 2008). The model was therefore based on a Linear 

Ballistic Accumulator (LBA; Brown & Heathcote, 2008), which was applied to PM data 

so that three decisions (two binary choices of the ongoing task, and the “PM choice”) 

corresponded to three accumulators, that gather evidence until a threshold is reached and 

a decision is made. Specific stimuli could be excitatory for one accumulator while also 

inhibiting the other two. Consequently, PM is here conceptualized as a parallel 

independent race with feedforward excitation and inhibition and linear updating, having 

three main parameters modulating the model: start-point variability, thresholds, and 

evidence accumulation rates. Since start-point variability is assumed not to vary between 

conditions, the last two classes of parameters play the most important role in determining 

the decision within a task. Specifically, thresholds can vary the amount of evidence 

necessary for the accumulator to reach the decision-status, while accumulation rates 

depend on the provided stimuli. Using these measures, the authors criticized the notion of 

capacity sharing in PM, which was fundamental in PAM framework, as they deemed it 

not responsible for PM cost. In fact, they argued that withdrawing capacity from the 

ongoing task in favour of PM task would result in slower speed processing, and therefore 

in differences in evidence accumulation rates. Nevertheless, they revealed through two 

different experiments that PM costs was largely due to changes in response threshold 

rather than changes in accumulation rates, excluding a role for capacity sharing in PM cost 

(Strickland et al., 2018). 

To account for PM cost and other PM phenomena, PMCD postulates two forms of 

cognitive control, which is high-level ability that allows one to act in a goal-directed and 

flexible way (Miller, 2000; Botvinick et al., 2001). Namely, proactive and reactive control 

are hypothesised as the two main mechanisms regulating PM within the standard PM 

experiment (Einstein and McDaniels, 1990). Proactive control is described as a process 
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which is initiated before the cognitively demanding effect, resembling preparatory 

processes in PAM (but still taking distances from capacity sharing notion for reasons 

reported above). This form of control should work by either lowering the decision 

threshold of the PM, or by increasing the threshold of the ongoing task. Both would result 

in a facilitated PM decision. The other form is defined as Reactive Control, which would 

increase the evidence accumulation rates rather than thresholds, in a “just-in-time” 

manner. A specific stimulus could reactively trigger this mechanism, which both increase 

the accumulation rate for the PM and actively inhibits the ongoing task accumulators. The 

fact that focal tasks are more likely to elicit such a reactive response posits this process 

close to spontaneous retrieval conceptualized in MPV theory. 

According to Rummel and Kvavilashvili (2023), PM cost, PM-importance and target-list-

length effect can all be explained within PMCD by proactive control: the fact that a block 

of trials will contain PM cues will  increase the threshold of the ongoing task in favour of 

the PM task; therefore, the ongoing task will be hampered, especially with long target lists, 

and especially of the importance of the PM was stressed. Additionally, the fact that 

proactive control is initiated only in situations where it makes sense to prepare for PM 

cues can explain Intention Context effect. On the other hand, reactive control can explain 

the changes in performance elicited by target-focality and target-saliency. What is difficult 

to reconcile with PMCD is lure interference effect, since the authors did not postulate 

bottom-up processes, but rather a reactive top-down process which is cognitive control. 

  

1.5 Neural Basis of Prospective Memory 

Over the last 25 years, many efforts were spent to determine how the behavioural 

phenomena concerning prospective remembering can be understood at the neural level. A 

different number of studies have used positron emission tomography (PET) and functional 
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magnetic resonance imaging (fMRI) to explore which regions are active during different 

PM processes and phases. Both neuroimaging techniques detect regions whose blood level 

has risen significantly during a task compared to a resting condition or between two 

different tasks, indicating their involvement in the processes underlying the task. To 

measure how cognitive processes are differently supported in the brain, PET monitors the 

accumulation of a radiolabelled isotope during a task (Buckner et al., 1995). Then, the 

degree of accumulation is interpreted as an increase of the metabolic demand from a 

specific region and is computed as regional cerebral blood flow (rCBF), indicating the 

region’s involvement in the task. FMRI is a technique focused on brain’s blood 

fluctuations, relying on changes in blood-oxygen-level-dependent (BOLD) during the 

execution of specific tasks (Heeger et al., 2002). Representing a less invasive and more 

accurate alternative to PET, it has been largely used to investigate PM’s neural substrates, 

returning significant data to the literature. The combination of different PET and fMRI 

studies altogether revealed a broad set of neural regions involved in PM, including the 

anterior prefrontal cortex (aPFC), frontoparietal networks, cingulate and insular regions, 

temporal regions, thalamus, putamen, caudate nucleus, and cerebellar regions (Burgess, et 

al., 2001; McDaniel et al., 2013; Cona et al., 2015). 

 In the first studies investigating the neural underpinnings of PM, PET was used to explore 

which regions support event-based PM tasks (Okuda et al., 1998; Burgess et al., 2001). 

Initial investigations pointed to a key role for the anterior Prefrontal Cortex (aPFC), as 

both studies reported a change in rCBF during event-based PM task. Particularly, Okuda 

et al. (1998) found a significant activation of aPFC in the left hemisphere. The aPFC 

(Brodmann’s area 10) is involved in a wide variety of tasks and high-level processes, 

coordinating information processing and transfer to permit selection between multiple 

cognitive operations (Ramnani & Owen, 2004; Gilbert et al., 2005). In fact, the 
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contribution of this region has been reported in many subsequent studies using different 

PM tasks (time-based and event-based), materials, responses, and using PET and fMRI 

(Burgess et al., 2001, 2003; den Ouden et al., 2005; Gilbert et al., 2009; Oksanen et al., 

2014; Okuda et al., 2007). 

Subsequent studies have delineated two distinct roles for the medial and the lateral 

sections of the aPFC (Burgess et al., 2005; 2007; Gilbert et al., 2005; 2006). The medial 

aPFC is specifically involved in stimulus-oriented situations, where participants had to 

attend to external stimuli, compared to stimulus-independent situations, where no sensory 

input was given. On the other hand, the lateral aPFC seems significantly involved during 

situations where the focus of attention is internally generated (i.e. stimulus-independent). 

A theoretical account of the role of these sub-regions of aPFC was given within the 

Gateway Hypothesis (Burgess et al., 2007). According to the Gateway Hypothesis, the 

medial and lateral aPFC comprise a mechanism underlying the balance between externally 

and internally oriented attention. In the context of PM, the maintenance of PM intention 

would be coupled with an increase in the activation of lateral aPFC and a decrease in the 

medial aPFC. The contribution of different sections of aPFC to PM, as suggested by the 

Gateway Hypothesis, found further support from a meta-analysis conducted by Cona and 

collaborators (2015). The study suggested that these regions allow individuals both to 

maintain intentions actively in mind by activating lateral aPFC, while also monitoring for 

the presence of the PM cue in the environment by dynamically increasing and decreasing 

the activation of medial PFC. Moreover, the authors proposed a role for aPFC beyond the 

maintenance of the PM intention, suggesting that aPFC could play an important part in the 

encoding and the retrieval of the intentions. APFC would then be, more broadly, 

responsible for the representation of the intention and, as other authors reported, for the 

association between the PM cue and action (McDaniel and Einstein, 2000; Moscovitch, 
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1994; Cona et al., 2015). The contribution of aPFC and other brain regions across the 

different phases of PM will be discussed below, as part of the model proposed by Cona et 

al. (2015), the Attention to Delayed Intention model (AtoDI).  

Finally, other studies investigated if the activation of aPFC during the maintenance phase 

of PM could contribute to the representation of the content of intentions (Haynes et al., 

2007; Momennejad and Haynes, 2013; Gilbert, 2011). Particularly, Gilbert et al. (2011) 

found that the anterior medial PFC seems to be more specifically involved with the 

representations of the content of delayed intentions compared to lateral aPFC, which may 

play a “content-free” role in PM. In the study of Momennejad and Haynes (2013), the 

results indicated that medial aPFC could serve a role for representing the “what” 

component of the intention, while the lateral section would be more specialized for the 

“when” component.  

Following the MPV framework, many studies focused on exploring how the theoretical 

pillars of this theory, which are strategic monitoring and spontaneous retrieval, can be 

supported differently in the brain. Particularly, a key role for frontoparietal networks was 

suggested (Reynolds et al., 2008; Beck et al., 2014; McDaniel et al., 2013). Frontoparietal 

networks comprise two different networks: the Dorsal Frontoparietal/Dorsal Attention 

Network (DAN), which is responsible for top-down control and goal-directed attention, 

and is composed by Dorsolateral Prefrontal Cortex (DLPFC), frontal eye fields (FEF), 

premotor regions, precuneus and superior parietal lobule; and the Ventral 

Frontoparietal/Ventral Attention Network, which is specifically involved in bottom-up 

attentional phenomena, composed by Temporal Parietal Junction (TPJ) and the ventral 

Prefrontal Cortex (vPFC) (Corbetta and Shulman, 2002; Vossel et al., 2014). A 

dissociation between the functional role of these two networks has been reported (Beck et 

al., 2014; Kalpouzos et al., 2010; McDaniel et al., 2013), as the DAN seems to be more 
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involved in maintenance and the VAN in the retrieval of the PM intention. It is important 

to mention that while not explicitly declared as part of the DAN in the original model, 

lateral aPFC is sometimes considered a part of the network or at least a strong connection 

from it. Converging evidence from the functional role of DAN and VAN in the human 

brain and their implications in prospective remembering led to the Dual Pathways 

hypothesis (McDaniel et al., 2015), which suggests that DAN might be responsible for 

top-down attentive allocation necessary to maintain the PM intention and to monitor for 

cues in the environment (i.e. strategic monitoring), while VAN would support the 

automatic allocation of attention to the detected PM cue, allowing the retrieval of the 

intention (i.e. spontaneous retrieval). 

An attempt to put together the pieces of the PM puzzle, which is putting into a common 

framework the role of regions and networks within different PM phases and processes, 

was offered by Cona et al. (2015) with the Attention to Delayed Intention model (AtoDI). 

This model explores different brain regions’ role in prospective remembering, from the 

encoding to the retrieval phases. According to the AtoDI model, once the to-be-encoded 

PM cue reaches sensory areas in Occipital Cortex, attention allocation to the external cue 

and representation in a memory is mediated by the ventral Parietal Cortex (vPC). 

Afterwards, attention is shifted to the internal representation via the Posterior Cingulate 

Cortex (PCC), and content is represented in the left anterior Prefrontal Cortex (aPFC) 

while actions for later executions are coded in the Somatosensory Areas (S1). 

After the encoding phase, the intention is maintained through the mediation of the aPFC, 

by deactivation of its medial section and activation of its lateral section. The balance 

between the fulfilment of the ongoing task and intention maintenance is obtained thanks 

to aPFC’s connections to the DAN, actively maintaining the intention while monitoring 

for cues. 
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Finally, either the intention is maintained until fulfilment, or a salient cue evokes the 

intention: when the PM cue occurs, the Insula detects the relevant stimulus and transfers 

the information to the anterior (ACC) and posterior Cingulate Cortex. The ACC might 

detect the conflict between the ongoing task and the necessity for intention execution, 

signalling to the aPFC the necessity to switch from the ongoing to the PM task. The PCC 

would instead activate the VAN, which is responsible for bottom-up mechanisms. 

Together, these regions support both the attentional allocation to the external cue and the 

shift to the internal representation of the intention, which ultimately results in the 

activation of the Supplementary Motor Area and S1, translating the intention on an action-

level. 

Critically, most studies on the neural bases of PM focused on event-based PM tasks, while 

only a few studies explored the substrates of time-based PM. This was accomplished by 

two studies that explicitly addressed the difference in the modalities using PET (Okuda et 

al., 2007) and fMRI (Gonneaud et al., 2014). In the study of Okuda et al. (2007), time-

based tasks showed activation in a larger set of frontal regions compared to event-based 

tasks. This result has pointed to the presence of a “future-mentalizing” component 

necessary to time-based tasks, since insights into one's own future behaviour are required 

in the absence of external cues (Okuda et al., 2007). In the study of Gonneaud et al. (2014), 

event-based PM tasks were specifically linked to the activity of occipital lobes, related to 

the constant target-checking which requires visual attention to correctly spot PM cues 

amid ongoing task’s stimuli. On the other hand, time-based PM tasks showed activations 

in the middle and superior frontal gyri, the precuneus, the dorsolateral frontal cortex and 

in the DAN. Nevertheless, there was a large overlap between the two conditions across 

different PM phases. The authors proposed that this pattern resulted from the fact that the 

conditions may differ in the maintaining phase (target-checking versus time-estimation) 
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but are not so distant in the retrieval and encoding phase, as other studies have suggested 

(Gonneaud et al., 2014; Cona et al., 2012; Guynn et al., 2003). Therefore, event-based PM 

would primarily employ visual areas, in addition to frontal and prefrontal areas, to check 

for the visual cues associated with PM intention, while the network linked to time-based 

PM tasks would serve mentalizing and time-estimation. 

Before discussing the neurophysiological correlates of PM in the next chapter, it is worth 

mentioning how non-invasive brain stimulation has contributed to the PM literature, 

particularly through Transcranial Magnetic Stimulation (TMS). The exclusive advantage 

of TMS is to enhance or inhibit brain regions’ activity directly, so that it is possible to 

make hypotheses about the causal role of those regions in influencing cognition (Miniussi 

et al., 2010). The technique comprises a powerful and rapidly changing current passing 

through a wire positioned over the scalp; the electric field creates a magnetic field, which 

penetrates the cranium and induce a new electrical field that depolarizes neurons of the 

interested area (Terao et al., 2002). Only a handful of studies investigated the neural 

underpinnings of PM using TMS. Nevertheless, this technique posits as a powerful tool to 

study causal relations between brain and cognitive processes, adding informative data to 

a literature composed mainly by study of correlational nature. For instance, the study of 

Basso et al. (2010) inspected whether stimulation over bilateral DLPFC affected PM 

and/or WM. They found that PM performance was hampered by stimulation on both 

experimental sites, while the effect was only marginal for WM performance. 

Consequently, the authors suggested that PM and WM might not be supported by the same 

memory system, not excluding the possibility PM may draw on WM resources at high 

demand (Basso et al., 2010). To further explore the role of this prefrontal area in PM, 

Bisiacchi et al. (2011) applied 10 Hz repetitive TMS (rTMS) over DLPFC and inferior 

parietal lobule to gather evidence over their differential function. A significant association 
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with PM performance was found for right DLPFC stimulation at 150-300 ms after the 

stimulus onset, and for inferior parietal lobule at 400-600 ms. These results suggest that 

right DLPFC might be involved in the early phases of PM, such as target-checking, while 

parietal areas may be employed primarily in later stages, such as intention retrieval 

(Bisiacchi et al., 2011). The contribution of parietal lobes to PM was also the focus of the 

study by Cona et al. (2017), where they applied 1 Hz rTMS to bilateral superior parietal 

cortex. An improvement in PM performance was found for stimulation over the left 

superior parietal cortex, while stimulation over both sites resulted in worse ongoing task 

performance in the condition where participants had to allocate attention internally. This 

suggested that superior parietal cortex might play a causal role in the attentive allocation 

towards external environment versus internal environments (Cona et al., 2017). Other 

studies focused on the asymmetrical pattern shown by aPFC, which was already reported 

by the neuroimaging literature (Cona et al., 2016; Okuda et al., 2007). Specifically, a 

causal role for left aPFC in prospective remembering was confirmed, as an inhibitory TMS 

protocol resulted in worse performance, while an excitatory protocol returned an 

improvement (Costa et al., 2011; Debarnot et al., 2015) 
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2. Chapter 2 

Neurophysiological correlates of prospective memory 

 

2.1 Introduction 

Investigating the neural correlates of human cognition has benefitted largely from the 

implementation of fMRI and PET neuroimaging techniques, since their spatial resolution 

(in the order of millimetres) is extremely accurate and has no equivalents between non-

invasive techniques. Nevertheless, such techniques present a low temporal resolution. 

Neural activity tends to occur at very fast rate, in the order of milliseconds and even 

microseconds, whereas the metabolic and hemodynamic modulations collected by 

neuroimaging techniques happen at the level of seconds, hampering PET and fMRI ability 

to correctly address the temporal dynamics of brain communication. 

Electroencephalography (EEG) and Magnetoencephalography (MEG) represent an 

alternative solution to overcome this issue. Relying on electrical and electro-magnetic 

phenomena rather than hemodynamic processes, they present a temporal resolution in the 

order of milliseconds, which can be efficiently employed to capture neural oscillations and 

transient phenomena. Additionally, even if the spatial resolution of M/EEG techniques is 

not always excellent per se, a great number of sensors and the possibility to co-registrate 

M/EEG data with structural MRI has provided the possibility to perform accurate source 

localization (Hedrich et al., 2017). Considering that only two studies used MEG to 

investigate PM (see Martin et al., 2007; Cona et al., 2020), we will focus on the 

contribution that EEG has made in the PM literature, after briefly describing its principles 

and characteristics. 

EEG measures neuronal oscillations that are generated by the postsynaptic potentials in 

cortical pyramidal neurons (Speckmann et al., 1993). These neurons are assumed to be 
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responsible for the scalp-recorded signal because their dendritic trunks are positioned 

parallel to each other and perpendicular to the scalp, so the excitatory and inhibitory 

potential are summated to create a measurable signal (Pizzagalli, 2007). To capture this 

activity, EEG employs a cap which can usually comprise from 32 to 256 electrodes, and 

the EEG signal always represents the difference between an active electrode and a 

reference.  

Different analyses can be carried out starting from the same EEG signal. In this context, 

two types of analyses will be considered: Event-related potentials (ERPs), which are 

voltage deflection time-locked to a relevant event; and Time-frequency analyses, which 

divide the EEG signal into different band of frequency. Furthermore, the last section will 

focus on the source-imaging approach to EEG analyses. 

 

2.2 Event-related potential 

Event related Potentials (ERP) are small variations in the EEG signal time-locked to a 

specific event, which have been largely used to study the psychophysiological correlates 

of cognition (Sur & Sinha, 2009; Blackwood and Muir, 1990). Considering the difference 

between ERP and EEG amplitude (a few microvolts vs 50 microvolts), this method 

requires increasing the so-called “Signal-to-Noise ratio” (SNR). SNR compares the 

amount of data we are interested in, to noise we do not want to consider. In this context, 

ERP is the signal and the remaining EEG data is noise. To increase SNR, the most common 

approach is averaging a sample of the EEG signal that is time-locked to the repeated 

occurrence of an event. Assuming that signal should be constant because it is time-locked 

to the stimulus/event and that noise is randomly distributed, averaging cancels out noises 

and returns a set of negative and positive signal deflections, which underlie cognitive 

processes elicited by the event and its processing. ERPs waveforms are usually referred to 
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as components, and they typically start with either P or N, indicating the polarity (Positive 

versus Negative), and a number indicating the latency (e.g P300 is an ERP component 

with a positive polarity, which occurs approximately around 300 ms). ERPs have been 

abundantly employed to investigate the neural dynamics underlying PM processes. 

Specifically, ERPs paradigms in PM studies can be categorized into three main classes: 

ERPs underlying the encoding of PM delayed intentions; ERPs focusing on the 

maintenance phase of PM; ERPs elicited by the appearance of the PM cue (Cona & 

Rothen, 2019; West, 2011). 

The standard paradigm used to study PM encoding through ERPs has PM encoding trials 

sorted into “hits” or “misses” depending on the accuracy of the later retrieval, following 

RM literature (West et al., 2011). Then, ERPs are used to distinguish PM trials from 

ongoing trials, while also assessing how the components are correlated to the proportion 

of hits and misses. In the study of West and Ross-Munroe (2002), three components were 

significant in telling PM encoding trials apart from ongoing task trials, namely the N200, 

the P300 and frontal slow wave potential. However, the only component that had a 

significant memory effect in the study was the latter, frontal slow wave, emerging as a 

correlate of elaborative encoding strategies and recollection at retrieval. Interestingly, the 

pattern for the two types of retrospective and prospective memory was opposite, as better 

performance was associated with a positive frontal increase in episodic memory but with 

a negative frontal increase in PM.  

Further support to the crucial role of frontal activity for PM fulfilment was found in studies 

exploring the neural correlates of PM maintenance and of strategic monitoring, a concept 

from the PM Multi Process View (MPV) (Cona and Rothen, 2019). In fact, in the study of 

Cona et al. (2012), ERPs were analysed for two subcategories of strategic monitoring: 

retrieval mode (in which the intention is actively maintained until execution) and target-
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checking mode. Their results confirmed the importance of slow wave frontal activity, 

which was prominent in retrieval mode, suggesting that the component probably reflects 

the intentions iteratively represented into one’s memory.  

Some studies investigated how different factors could affect PM peculiar modulations. For 

example, in the study of Cona et al. (2014), they showed how the focality of the PM cue 

over strategic monitoring was mirrored by frontal and parietal modulations: focal tasks 

showed a smaller amplitude in ERP modulations, while non-focal tasks, requiring more 

effortful top-down strategies, returned a greater amplitude. A similar result was obtained 

in the study of Hering and colleagues (2018), in which different extent of emotional 

valence of the PM cue modulated ERPs so that the amplitude was smallest with negative 

cues, intermediate with neutral and largest with pleasant cues.  

Finally, many studies focused on ERPs that were time-locked to the appearance of the PM 

cue in PM trials, with the aim of unveiling the neurocognitive processes of PM’s intention 

fulfilment. Three components/modulations emerged as significant in differentiating PM 

cues from ongoing task stimuli: N300, frontal positivity (FN400) and parietal positivity. 

(West et al., 2001; West & Krompinger, 2006; West & Ross-Munroe, 2002). Furthermore, 

the increase in the amplitude of parietal sites is expressed three further components, which 

are P3b, parietal old-new effect and prospective positivity (see Fig 2.1 for a showcase of 

PM-related ERP components).    

The N300 component is elicited over the occipital and parietal lobes, starting at 200ms, 

and peaking between 300ms and 500ms. FN400 is a positive component which originates 

in the frontal midline; it starts around the same moment as the N300, but its duration can 

exceed the N300. The coupling between these two components appears to be consistently 

elicited by PM cues (West et al.,2003; West and Wymbs, 2004). While an important role 



29 
 

for N300 and FN400 in PM was established, their functional meaning still had to be 

accounted for. A solution was proposed by the study of West et al. (2007), in which N300 

and FN400 were hypothesized to represent the neural correlate of the detection of the PM 

cue. To support this, they investigated how the components related to correct retrieval 

(“PM hits”) compared to “PM misses” and ongoing tasks. 

 

  

Figure 2.1 In this figure it can be observed how ERPs components are differently expressed over time and space upon 

the presentation of a PM word compared to the presentation of an ongoing task word. At the top of the figure, three 

electrodes from frontal regions (F7, Fz, F8) show a positive signal variation corresponding to P3b. It is also possible to 

notice how PM words (solid lines) contribute to FN400 in FZ and a gradual increase in the signal (frontal slow wave) 

in F7 and F8. Similarly, at the bottom of the figure, PM words elicit a negative variation corresponding to N300 at 300-

400 ms in P7 and the prospective positivity component in PZ. Finally, in the medial part of the figure, the old-new effect 

can be appreciated in Cz (Cona et al., 2014). 
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As shown in Fig 2.2, both components’ amplitude was greater when the PM elicited a 

response (hits), relative to other conditions. Furthermore, a specific role for FN400 within 

the process of detection has been suggested: the component may underlie RM processes 

necessary to retrieve the memory trace of the PM cue, so that the intention can be fulfilled 

(West et al. 2006). Such a role for FN400 would be consistent with the functional meaning 

proposed by episodic memory literature (West & Krompinger 2005). 

As mentioned above, another ERP modulation that is distinctive of PM processes is 

parietal positivity, which has been further divided into P3b, prospective positivity and the 

parietal old-new effect (West et al., 2011). This distinction is supported by temporal and 

functional differences between these components, as P3b is associated with the detection 

of low probability targets (peaking at 400-600ms), the parietal old-new effect with  

 

Figure 2.2 In the figure, PM hits (solid lines) can be differentiated from other conditions by the presence of FN400 over 

FZ (top of the figure) and N300 (bottom of the figure) at PO10 (West et al., 2007).                            
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recognizing PM cues (peaking at 600ms), and the prospective positivity with the 

configuration of the PM task set (peaking at 700ms) (McNerney, 2006). It is not 

straightforward to assume that differences between these components are caused by 

differences in paradigms, as they share the same polarity, and they are all generated within 

the parietal lobes. In the review of West et al. (2011), the authors suggested that 

prospective positivity may be separable from P3b and old-new effect, being peculiarly 

associated to PM. Two studies (West & Bowry, 2005; West et al., 2003) tried to explore 

the functional distinction between the P3b and prospective positivity by manipulating the 

working memory load and focality associated with PM cues, as these features are reported 

to influence the expression of P3b (Donchin & Fabiani, 1991). They found that increasing 

the number of items to encode decreased significantly the P3b but did not affect 

prospective positivity, and changes in focality of PM cue only influenced the amplitude of 

P3b and not the other component. Furthermore, a distinction between prospective 

positivity and parietal old-new effect was established through a study that compared PM 

retrieval through recognition and cued-recall paradigms (West and Krompinger, 2005). 

The results indicated that while old-new effect was elicited in both PM and 

recognition/cued recall conditions, prospective positivity was only evoked in the presence 

of PM cues.  

 

2.3 Time-frequency analyses 

The abundant literature focusing on ERP and PM allowed the exploration of the temporal 

dynamics of prospective remembering. However, ERPs represent only one way to 

approach EEG data. A popular alternative adopted for EEG data analysis is the time-

frequency method, which employs the whole EEG signal to provide information over 

magnitude, phase and frequency (Roach & Mathalon, 2008; Laera et al., 2021). The most 
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common approach is to divide the EEG frequency spectrum into five bands, which 

traditionally are delta (0.5–2 Hz), theta (3–7 Hz), alpha (8–12 Hz), beta (13–30 Hz), 

gamma (30–100 Hz) (Pletzer et al., 2010). The amount of power for each band is then 

confronted between different conditions, as these bands have been correlated to different 

cognitive states and degrees of alertness (Sugumar & Vanathi, 2017). In particular, the 

theta and alpha bands have been reportedly linked to memory and attentional processes 

(Kilimesch, 1999; Herweg et al., 2020). Therefore, time-frequency studies on prospective 

remembering have focused over these two bands (Martin et al., 2007; Cona et al., 2020; 

Cruz et al., 2017; Vicentin et al., 2024). 

The first study to implement the time-frequency approach in PM was carried by Martin 

and colleagues (2007), in which theta, lower and upper alpha (8-10 Hz and 10.5-12 Hz 

respectively) were analysed to assess parietal, hippocampal and frontal contributions in 

PM, RM and oddball tasks. A prominent upper alpha activity emerged over posterior 

parietal areas during oddball tasks and PM tasks compared to RM tasks, while an increase 

in the theta band was observed specifically in RM compared to PM and oddball tasks. 

Altogether, these results were interpreted as a sign of the distinctive role of posterior 

parietal areas in PM compared to RM. While being the first study to apply time-frequency 

analyses for the investigation of PM, the work of Martin and colleagues presented some 

limitations, such as the sample size (only five participants). Furthermore, the study 

included only a focal event-based PM condition, not exploring patterns of alpha and theta 

power associated with time-based PM or strategic monitoring. 

To partially overcome these issues, further evidence was given by the study of Cona et al. 

(2020), which focused on how theta and alpha oscillations could characterize strategic 

monitoring. In fact, the authors investigated the functional role of the two frequency bands 

over distinct conditions, namely a retrospective-load condition, in which cues were highly 
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salient and there were multiple intentions to maintain, versus a monitoring-load condition, 

where there was only one intention to maintain, associated with a covert PM cue. The first 

condition required an internally oriented focus of attention to maintain and retrieve 

multiple intentions from memory, while the second condition required external attentional 

allocation to spot lowly-salient cues. An increase in theta band power was observed over 

medial temporal and frontal regions in the retrospective-load condition, pointing towards 

a role for theta band in the RM processes involved in PM. Conversely, the monitoring-

load condition resulted in a decrease in the alpha band over occipital, occipito-parietal and 

fronto-temporal regions. Importantly, these results fit with both the Dual Hypothesis and 

the AtoDi Model, as theta increases resulting from cues-evoked retrieval were mostly 

elicited over the regions within the Ventral Attention Network (VAN) network, whereas 

alpha decreases in the monitoring-load condition over Dorsal Attention Network (DAN) 

regions. The AtoDI model is also compatible with the results obtained by the study of Cruz 

and colleagues (2017), in which the time-frequency method was used to investigate time-

based PM. Participants had to reset a clock every 4 minutes, with the possibility to check 

clocks in that time span. Alpha band was strongly suppressed within the ACC after clock-

checks, and this is coherent with the AtoDi’s role for ACC, whose activity should be 

associated with retrieval of the PM intention. 

Finally, in a recent study by Vicentin and colleagues (2024), the contributions of alpha and 

theta bands were also observed in different sensory modalities, employing and comparing 

auditory and visual PM tasks. The authors found that, while alpha and theta oscillations 

played pivotal roles in PM processing in both conditions, alpha decrease showed a similar 

pattern across modalities, posing as a supra-modal/ stimulus-independent mechanism 

(strategic monitoring), whereas theta activity was more significantly affected by sensory 
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modality, as the onset and latency of the neurophysiological oscillation differentiated 

between the two modalities. 

 In summary, alpha and theta oscillations seem to play a pivotal role in PM, mediating the 

dynamic balance between internal and external focuses of attention. Particularly, theta 

increases seem to support internal monitoring and maintenance, while alpha suppression 

seems associated with the external allocation of attention for the detection of PM cues. 

 

2.4 Source localization and brain network analysis 

As it was mentioned in the previous paragraphs, M/EEG techniques provide excellent 

temporal resolution that brought exclusive knowledge to the literature, but PET and fMRI 

techniques have often been preferred due to their spatial resolution. Since postsynaptic 

potentials measured by EEG flow through the head volume, a “natural” spatial filter is 

applied over the EEG signal, distributing it over the scalp. While the dipolar activation of 

a single area would be relatively easy to localize even considering the head volume, the 

simultaneous activation of several brain regions creates a complex pattern of potentials 

that is not straightforward to address, originating the “EEG source localization problem” 

(Michel & He, 2019). Furthermore, the problem has been divided into two distinct 

challenges: the “forward” problem, which refers to modelling the signal distribution over 

the scalp given a set of neural generators, and the “inverse” problem, which consists in the 

localization of the underlying sources given a signal collected over the scalp. 

Different solutions to the forward problem correspond to different models used to 

calculate head conductivity. Two popular solutions are the spherical model (Michel and 

Murray, 2012) and the Boundary Elements Method (BEM) (He et al., 1987). A spherical 

model conceptualizes the head model as a set of distinct, homogenous shells with different 

conductivity, usually using three different layers: scalp, skull, and brain. While posing a 
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relatively simple solution, considering shells as homogenous ignores tissue’s peculiar 

properties such as thickness, shape and convolutions, which are fundamental to properly 

model the propagations of potentials. Conversely, the BEM implements information from 

magnetic resonance imaging (MRI) to incorporate anatomical properties into a forward 

model. The BEM computes the forward model by calculating the interface between each 

tissue and segmenting them using MRI information, which can come from either a 

template or an individual MRI. EEG-MRI co-registration grants access to more realistic 

and complete forward models, making use of the exclusive information of each technique. 

The inverse problem is defined by determining which intracranial sources contribute to 

the signal that arises over the scalp. Considering all possible solutions, a key aspect in 

inverse models is the presence of a priori constraints over sources, which reduce 

dimensions to be considered so that a mathematical estimation is possible. Therefore, 

models differ depending on which constraints are incorporated, with neurophysiological, 

biophysical, anatomical and mathematical knowledge contributing to these a priori 

constraints (Michel & He, 2019).  Making use of this information, dipoles are computed 

in the source space accordingly. One popular inverse solution is LORETA (low resolution 

electromagnetic tomography) (Pascual-Marqui et al., 1994), which employs a minimum 

norm constraint to assume that current distribution has minimum energy, and that forward 

solution optimally explains that distribution. Additionally, LORETA considers the 

Laplacian of the sources rather than the sources directly, reducing the dimensionality of 

the data while maintaining spatial information. This feature results in a smoothed 

reconstruction with low resolution, occasionally creating blurring or over-smoothing 

reconstructions if neighbouring voxels have distinct activities. A similar approach is found 

in the Beamforming method (Vrba & Robinson, 2001), in which the signal from the scalp 

is refocused over all possible locations in the source space, adjusting weights so that the 
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variance of the current dipole is minimal. While sharing part of the smoothing issue with 

LORETA, beamformers are becoming more and more popular because of their ability to 

capture deeper sources while suppressing external noise (Westner et al., 2022). Finally, an 

alternative solution to the inverse problem is offered by the Independent Component 

Analysis (ICA). ICA is a statistical method that transforms a multidimensional vector into 

a set of separate, independent subcomponents (Painsky et al., 2014). ICA can be applied 

to EEG source imaging by computing the sources of ICA components and then back-

projecting components coefficients into the source space. Main advantages of the ICA 

method are its ability to efficiently separate source from a mixed signal, and to correctly 

identify artifacts as components to be later removed. 

Different forward and inverse solution methods have been applied to localize which brain 

regions were mostly responsible for the observed EEG scalp signal. However, imaging 

studies in cognitive neuroscience have been focused on understanding brain functions 

through its communication and interaction rather than on the role of specific and isolated 

regions. Functional connectivity, defined as the statistical correlation of activity between 

functionally connected brain regions (Passamonti al., 2019), has indeed emerged as a main 

topic in neuroscientific research, as this approach has changed how we conceptualize both 

brain and mind. Considering brain regions as nodes and hubs of networks allows us to 

recognize the importance of interactions between regions belonging to the same (or 

distinct) functional networks that are found in both resting and task conditions. An 

example of the importance of brain networks in PM research can be found in the AToDi 

model: the contributions of the Dorsal and Ventral Attention Networks are fundamental 

for the regulations of bottom-up and top-down attentive mechanisms necessary for 

intention maintenance and execution, and the integration of functional connectivity in this 

framework enriches and integrates this model with exclusive information. While many 
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methods have been devised to compute functional connectivity for EEG, none was applied 

to PM to date. By characterizing functional connectivity with EEG in PM, it would be 

possible to assess how functional networks contribute to PM processes while also 

implementing the exclusive temporal information over networks dynamic interaction. One 

promising method to measure transient oscillations of cortical networks is Hidden Markov 

Modelling (HMM), an unsupervised machine learning technique that can capture recurrent 

patterns of brain spontaneous activity (Toffoli et al., 2024). HMM can be used to describe 

a time-series as a set of states, each of which has its own model of the described data 

(Vidaurre et al., 2016). As it can be understood from Figure 2.3, a K-number of states (x1, 

x2, x3) are decided a priori so that they can effectively describe the observable data we 

already have (y1, y1, y3, y4). 

Considering brain activity as the observable data, HMM can produce a set of neural 

networks as hidden states to explain the measured signal. HMMs have been used to infer 

dynamic properties from a range of different neuroimaging techniques, such as fMRI  

 

 

Figure 2.3 A graphical illustration of Hidden Markov Model, where the observable data (y1, y2, y3, y3, y4) at the bottom 

of the network are used to infer and build the hidden states (x1, x2, x3) that generated the observed data.  
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 (Dang et al., 2017; Hussain et al., 2023), MEG (Baker et al., 2014; Hawkins et al., 2020) 

and EEG (Obermaier et al., 2001; Williams et al., 2018; Dash et al., 2020; Marzetti, 2023). 

Implementing EEG data for HMM could provide fundamental information regarding PM 

processes, as the temporal characterisation offered by this model could grant insights into 

fine-grained dynamics underlying different aspects of PM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 
 

3. Chapter 3 

Functional connectivity patterns of Time-based and Event-based 

prospective memory 

 

3.1 Introduction 

The ability to remember to perform intentions after a delay of time (time-based) or after a 

cue is presented (event-based) is defined as Prospective Memory (PM) (McDaniel & 

Einstein, 2007). PM constitutes one of the most important and peculiar functions of the 

mind, allowing us to exceed the limits of the hic et nunc, as allocating an intention in the 

future permits us to operate outside the limit of what we can keep in our working memory. 

Delaying the execution of an intention, even of hours, days or weeks, increases our range 

of actions and flexibility consistently, resulting in PM having a profound impact on our 

daily life. The importance of PM has been acknowledged by the scientific community and 

it is reflected by an average of 1,600 articles per year in the last ten years according to 

PubMed. The focus of research has varied greatly in the PM field, focusing on the 

underpinnings of event-based and time-based PM tasks and processes involved in PM 

such as strategic monitoring and spontaneous retrieval (Cohen & Hicks, 2017; Rummel & 

McDaniel, 2019) or focusing on how PM is characterized in neurological conditions, 

mood disorders and across the lifespan (Tse et al., 2023; Kliegel et al., 2016; Zhou et al., 

2018; McFarland et al., 2016). 

Notwithstanding the rising importance gained by PM in the scientific literature, not all 

aspects of PM have been consistently described and investigated, leaving room to 

complete and better PM research. Obtaining a deeper understanding of PM could give us 

a better insight into an ability that greatly affects our daily living, along with better tools 

to help individuals that lost their ability to prospective remembering. 
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The scarcity of studies and models including time-based tasks can make a good example 

of a needed improvement. In fact, while theoretical models conceptualize PM tasks as 

divided into event-based and time-based, most studies focused on investigating the 

processes and the correlates underlying the former but not the latter (Einstein et al., 2005; 

Guynn, 2003; McDaniels & Einstein, 2000). Even if they subserve the same goal, which 

is the fulfilment of the PM intention, time-based and event-based tasks require different 

resources and processes. In time-based tasks, the fulfilment of the intention depends on 

our ability to monitor the passing of time, so that the execution of the intended action 

happens at the appropriate moment. Since external cues signalling the necessity to retrieve 

the intention may not be available, time-based tasks are considered self-initiated and 

relying on internal cues. Conversely, event-based tasks are dictated by the appearance of 

an external cue acting as a reminder of the PM intentions. The difference between the 

allocation of cues (internal vs external) and the necessity for time-based PM to rely on 

executive functions such as shifting and controlled monitoring result in time-based tasks 

usually having a higher cost compared to event-based tasks, even though few time-based 

studies exist to support this (Henry et al., 2004; Matos et al., 2020). Additionally, a clear 

dominance of time-based PM tasks was reported by two studies set in a naturalistic 

environment (Holbrook & Dismukes, 2009; Schnitzspahn et al., 2020). The results 

obtained in ecological settings indicated a preference for time-based tasks and a 

remarkable absence of event-based tasks, in contrast to what is usually reported in lab-

based studies. 

As these two naturalistic studies demonstrated, a gap between lab-based and real-life PM 

can sometimes exist and PM research must acknowledge it to get the best out of the two 

approaches. In fact, PM posits as a theoretical construct with a marked “ecological” 

component, since it manifests in a wide variety of daily tasks, from taking medicines at 
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the right time to changing diapers when it is needed. Importantly, translating real-life PM 

into experimental paradigms set in laboratories is not always straightforward and can 

sometimes create contrasting results. The most famous example is offered by the age-PM 

paradox (Rendell & Thomson, 1999), which consists in older adults performing worse 

than younger adults in lab-based PM tasks but performing better in naturalistic contexts. 

Apart from the already-mentioned absence of time-based PM studies, other factors in PM 

research contribute to this gap between real-life and lab-based PM. Firstly, PM intentions 

are usually maintained for hours to even days to make our plans work out properly, while 

lab settings require multiple intentions to be formed and executed in a limited amount of 

time, so that intention maintenance usually lasts seconds. Secondly, the ongoing tasks on 

top of which PM tasks are engaged can be far from realistic. For instance, a standard 

ongoing task is a Lexical Decision task (Rummel & McDaniel, 2019), which bears plenty 

of advantages as an experiment, but is rarely experienced outside of a lab. Experimental 

stimuli are crucial in creating a context that resembles real life, and attention to their 

ecological validity must be utmost. 

However, studying PM in laboratories has undoubtedly its perks. It allows researchers to 

investigate PM efficiently and robustly, as a multitude of PM responses can be observed 

in a single session. Moreover, it permits to study a wide range of factors relevant to PM, 

which can be easily manipulated (e.g., type of PM task, focality/saliency of targets, 

ongoing-task complexity, etc.), while still reproducing the most critical features of real-

life PM tasks (e.g., delayed intention-execution, self-initiated retrieval requirements) 

(Rummel & Kvavilashvili, 2019). Finally, laboratories often include facilities such as 

neuroimaging and neurophysiological techniques that can be used in naturalistic settings 

only to a limited extent (see Soto et al., 2018 for an example). Neural dynamics are a 

fundamental piece of information to understand PM processes and phenomena, as they 
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can offer new insights into PM and its association with other cognitive functions. 

Furthermore, observing brain activity permits to link theoretical models to biological 

constraints, so that complete and realistic models of PM can be achieved. 

Considering the importance of ecological validity in PM and the advantages offered by 

experimental settings, the solution may consist in the design of lab-based experiments that 

maintain a high degree of “naturalness” (Kvavilashvili & Ellis, 2004). Therefore, in the 

present study we propose a novel pseudo-naturalistic PM paradigm featuring time-based 

and event-based tasks, with the aim of filling the gap between lab-based and real-life PM. 

Specifically, the ongoing task involves watching movie excerpts, asking participants to 

pretend they are in their home watching TV. Instead, the PM task consists in “Virtual 

cooking”, which is cooking different dishes with an imaginary oven by means of a smart 

TV. In time-based tasks, participants are told that potatoes are cooking in the virtual oven, 

and they have to press a key of the “smart TV” every two-minutes in order to turn them 

and prevent them from burning. In event-based tasks, participants are told to regulate the 

temperature of the virtual oven to correctly cook a cake, by pressing a key every time a 

red circle appears (the red circle is similar to the light that regulates temperature in ovens). 

This paradigm sought to create a familiar environment, proposing a situation that 

participants could have experienced before, while still being in a laboratory. Importantly, 

movie excerpts also allow the collection of PM responses within blocks of approximately 

10 minutes, which is considerably longer than classical paradigms. 

This pseudo-naturalistic paradigm is also compatible with the application of EEG 

technique, which was chosen for its excellent temporal resolution, in the order of 

milliseconds, and its ability to capture transient and dynamic information while remaining 

relatively comfortable for participants. Additionally, to increase spatial resolution, a High-

Density (256 channels) EEG system was chosen, and individual structural MRI (sMRI) 
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were collected for each participant for subsequent co-registration. To analyse EEG data 

while also addressing the relatively long experimental blocks featured in this paradigm, it 

was necessary to find a method that could capture fine-grained transitions intrinsic to the 

EEG signal embedded in a continuous segment of time.  A promising novel approach that 

was used to satisfy these demands is Hidden Markov Modelling (HMM), an unsupervised 

machine learning method that can identify mutually exclusive patterns of whole-brain 

activity without any prior knowledge over the data (Vidaurre et al., 2018).  HMM allows 

segmenting observed data into a set of discrete patterns of activity that are recurrent over 

a time-series. For instance, if a song (observed data) was given to HMM as input, one of 

the main outputs would most likely be the chorus (hidden state), because it would occur 

repeatedly over the song, even if HMM has no information about the concepts of chorus 

or verses. In this context, HMM can be used to obtain functional states that are recurrent 

over the EEG time series, so that task-related dynamic activity can be inferred if it is 

sufficiently stable and coordinated (Quinn et al, 2019; Toffoli et al., 2024). The main 

advantage of the HMM method is that the resulting functional brain states are not biased 

by any a-priori knowledge, because they are simply a configuration of regions that 

produced coordinated activity a consistent number of times. In addition, by obtaining 

functional states of coordinated whole-brain spontaneous activity, this study would 

constitute the first functional connectivity PM study using EEG. 

In summary, the aim of this study consists in investigating time-based and event-based 

PM tasks with a pseudo-naturalistic design while recording EEG for the implementation 

of Hidden Markov Modelling. We hypothesize that some of the functional networks 

inferred from HMM will show the activation of regions significantly involved in PM 

processes, such as the anterior prefrontal cortex, the parietal cortex, and that states 

resembling frontoparietal networks may manifest (Cona et al., 2015; McDaniels et al., 
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2015). Specifically, we expect that time-based PM activity may show a stronger 

involvement of a network close to the Dorsal Attention Network, while event-based PM 

activity may result in the engagement of regions of the Ventral Attention Network, as 

suggested by the AtoDI model (Cona et al., 2015; see Chapter 1.5). 

 

3.2 Materials and methods 

3.2.1 Participants 

A total of 31 healthy young adults voluntarily took part in the study. All participants had 

normal or corrected-to-normal vision and expressed their informed consent before the 

beginning of the study. The experiment was approved by the Ethics Committee of the 

IRCCS San Camillo Hospital and followed the guidelines of the Helsinki Declaration. The 

EEG data of 3 participants presented an excessive number of electrical/biological artifacts 

and were thus excluded from the analyses. Furthermore, in the final steps of pre-

processing, 6 participants were excluded because the quality-check parameters necessary 

for the HMM analyses were not satisfied. In summary, the pre-processing led to the 

exclusion of 9 participants and to a final sample of 22 participants (9 males; mean age = 

30.56, SD = 5.33). 

  

3.2.2 Procedure 

The experiment was conducted in a silent room in the Neurophysiology lab at the IRCCS 

San Camillo Hospital. A session lasted approximately one hour. Participants were first 

introduced to laboratory settings and were then seated in a comfortable chair 

approximately 60 cm from a 15-inch display in which tasks were presented. Before the 

beginning of the experiment, participants read and voluntarily compiled the informed 
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consent. Afterwards, the EEG cap was positioned on the head of the participants while the 

structure of the experiment was explained. 

The experimental paradigm was composed of four distinct blocks. The first block 

consisted of a resting state condition: participants were instructed to stare at a cross at the 

center of the screen for 5 minutes, without moving and trying not to let their mind wander. 

In the meantime, the recording of their brain activity at rest was collected. 

In the other three blocks, a 10-minute movie excerpt from The Simpsons Movie was 

presented, during which participants were asked to relax and to act as if they were at home 

watching TV. These constituted the only instructions for the wing condition, since the 

interest was in the activity associated with the passive vision of a video clip and 

participants just had to watch the clip while trying to stay still. Conversely, the two other 

blocks were associated with an event-based or a time-based PM task. 

The PM instructions for both event-based and time-based tasks were involved with 

everyday life activities to mimic a realistic situation. Namely, participants were asked to 

engage in a ‘virtual cooking’ activity, where they had to pretend to have food cooking in 

the oven. Then, they would monitor it by noticing a red light appearing on the computer 

(event-based PM task) or every 2 minutes (time-based PM task). The choice was justified 

by the fact that watching TV while a dish is cooking in the oven is a common activity that 

most people have experienced. Specifically, in the event-based PM condition, the ongoing 

task was represented by watching the TV, while the PM tasks involved remembering to 

raise or lower the temperature of the oven, depending on the position of a stimulus 

occurring on the screen, to cook the food properly or to prevent a cake from burning. The 

appearing stimulus was a pale red circle resembling the light that signals the temperature 

in the oven. Participants were asked to pay attention to the appearance of the stimulus 
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below or above the center of the screen, while watching the movie excerpt, and to virtually 

change the temperature by pressing the corresponding key (either the up or down arrow) 

as soon as they noticed the red circle. The position of two subsequent PM cues (up, down) 

and the intervals between them (1.5, 2, and 2.5 minute) were counterbalanced across 

participants. In the time-based PM condition, in addition to the ongoing task, participants 

were asked to turn the potatoes in the oven every two minutes, by pressing either the up 

or bottom arrow key. When the key was pressed, a red digital clock was displayed for two 

seconds, reporting the time at which they “turned the potatoes” (the time would always 

reset after a 2-minute interval). Furthermore, participants were allowed to monitor the 

passage of the time by pressing either the up or bottom arrow key (the opposite arrow key 

to the one used for turning the potatoes). Doing so, a white digital clock would appear for 

two seconds at the center of the screen. Participants could check the clock for a maximum 

of three times within each 2-minute interval, to limit movement artifacts in the EEG signal. 

The PM and the monitoring keys were counterbalanced across participants. 

Before the beginning of the time-based PM task, a 1-minute practice version was presented 

to participants to make them familiarize with the task and with the appearance of the 

timers. 

 

Figure 3.2.1 An illustration of the experimental design. 
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The PM tasks involved a total of 5 PM cues for each condition. Participants were not 

aware of the duration of the clips. The three movie excerpts used in the Passive Viewing, 

event-based, and time-based conditions were counterbalanced between participants. While 

the Passive Viewing condition was always presented right after the resting state condition, 

the order of presentation of the event-based and the time-based PM blocks was 

counterbalanced between the third and the fourth positions. 

 

3.2.3 EEG data pre-processing 

Neurophysiological data were acquired using a High-Density (256 channels) EEG system 

(EGI, Electrical Geodesic Inc). Data were sampled continuously during each experimental 

condition with a sampling rate of 1000 Hz. Additionally, neuroimaging data were collected 

using MRI Philips Achieva (1.5 Tesla). Specifically, a T1-weighted whole-head 

anatomical image was collected for each participant to obtain data necessary for the 

realization of an individual structural MRI. 

 The pre-processing of the EEG signal was conducted using a semi-automatic pipeline in 

MATLAB created in the Padua Neuroscience Center. First, recordings were down sampled 

to 250 Hz and filtered in the 1-30 Hz band. Secondly, EEG recordings were visually 

inspected to identify and remove bad segments. Additionally, channels whose activity was 

considered too different from the neighbouring sensors or presenting evident electrical 

artifacts were manually removed. Afterwards, MARA Independent Component Analysis 

(ICA) approach was used to identify components corresponding to biological or electrical 

noise. The pipeline returned a list of 60 components labelled with a suggested source, 

although the final decision over the removal of components was always corroborated by 

visual inspection. Finally, two variations of Artifact Subspace Reconstruction (ASR) were 

used to smooth and adjust the quality of the signal.     
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3.2.4 Co-registration 

Co-registration was performed in SPM12 (Henson et al., 2019). Firstly, the pre-processed 

EEG file was uploaded, along with a file containing the electrodes coordinates in the same 

coordinate system as the individual sMRI. These two files were used to create a sensor 

space composed by the electrodes of the EEG cap. Secondly, a head model was 

constructed by uploading the individual sMRI. Thereafter, the nasion and the two auricular 

points were chosen as fiducial points, and co-registration was performed. Finally, a 

Boundary Element Method (BEM) forward-model was implemented. 

 

3.2.5 Hidden markov modelling 

The OHBA Software Library (OSL v2.0.3; OHBA Analysis Group, 2017) and OHBA’s 

Hidden Markov Model Library (HMM-MAR; Vidaurre et al., 2016) were used to perform 

the final steps of pre-processing. Firstly, a covariance matrix was computed across the 

whole-time course for each participant and the obtained matrix was regularized using PCA 

rank reduction. A minimum variance beamformer was then applied to compute a whole-

brain source-space activity in an 8mm grid. Afterwards, a 38-node cortical parcellation 

was used to reduce the EEG data following the approach used by Toffoli et al. (2024). 

Finally, the parcellation was 13inarized to estimate a single time-course per node from the 

first principal components across voxels. 

Prior to the Hidden Markov Model initialisation, detrending, signal standardization and 

corrections for signal leakage were applied. First, detrending removed linear trends in the 

data for each channel separately; second, participants’ concatenated time-courses were 

standardized. Next, signal leakage introduced by source reconstruction with zero temporal 

lag was corrected using multivariate orthogonalization (Colclough et al., 2015). Then, the 
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Hilbert transform was applied to estimate the absolute signal amplitude estimation for 

each source at each time point. 

After the final steps of pre-processing, the HMM-MAR toolbox was used to compute a 

set of functional brain states that were recurrent in the EEG time series, considering all 

three conditions as one concatenated dataset. Then, an index of fractional occupancy (i.e., 

the fraction of the total time spent in a specific state) was computed for each state and for 

each participant.   

 

3.2.6 Statistical analyses 

Statistical analyses have been performed using JASP, an open-source software for 

statistical analysis (Version 0.19; 2024). 

Behavioral analyses 

The accuracy of the participants was collected in both event-based and time-based PM 

tasks. For the event-based PM task, a response was considered correct if participants were 

able to successfully detect the PM cue and press the key corresponding to the stimulus’ 

position (i.e., the up arrow if the stimulus was above the center of the screen; the down 

arrow when it was below the center of the screen). In the time-based PM condition, a 

response was considered correct if they pressed the correct key within a range of ± 6 

seconds from the target time (2 minutes). It corresponds to the 10% of the total target 

time’s interval, in accordance with the methods of Laera et al. (2021). The accuracy 

between the two tasks was confronted with a repeated measure ANOVA (rm-ANOVA), 

and an effect size was calculated using partial η². 
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Fractional Occupancy analyses 

For each state, descriptive statistics over fractional occupancy (i.e., the fraction of the total 

time spent in a specific state) were computed for all conditions and for the 3 different 

block conditions separately (Passive Viewing, Event, Time). Then, the presence of effects 

for block conditions was investigated using rm-ANOVA for each state, so that each rm-

ANOVA presented a 1 (FO) x 3 (Condition: PV, Event, Time) within-subjects design. An 

effect size estimate for each rm-ANOVA was calculated using partial η². Finally, post-hoc 

analyses were conducted to investigate the effect of each factor separately, with the 

Bonferroni correction applied to compensate for multiple comparisons. 

 

3.3 Results 

3.3.1 Hidden markov modelling 

The whole EEG time-course, with all three conditions concatenated into a single dataset, 

was decomposed into six separate states, similarly to the method used in Toffoli et al. 

(2024). The decision over the number of states was based on the fact that, for M/EEG data, 

this number is usually between 2 and 10 (Baker et al., 2014; Quinn et al., 2018), and 

because it allowed the identification of distinct spatiotemporal patterns while limiting a 

redundancy effect caused by higher number of states. 

The resulting six states can be observed in Figure 3.3.1. States represent the EEG signal 

of all participants (with the three conditions considered as one concatenated dataset) 

divided into stable, recurrent patterns of activity that can effectively explain the original 

data. Each state presents a heatmap with the average activation of the 38 parcels the brain 

cortex was divided in. Activations are plotted on a red-to-yellow color scale. State 1 

showed activations primarily in occipital areas, involving bilateral Middle Occipital Gyrus 

(MOG), Superior Occipital Gyrus (SOG) and fusiform gyrus, with activations over the 
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Supramarginal Gyri (SMG). These areas are all significantly involved with the visual 

system, suggesting that State 1 may be representing a “visual network”. Additionally, 

weaker activity over temporal and frontal regions was present. State 2 showed activations 

over frontal areas, involving Anterior Cingulate Cortex (ACC) and prefrontal cortex, along 

with activations over the superior temporal gyrus and over parietal areas. State 3 and 4 

showed strong activations in the precuneus, the cuneus and the Posterior Cingulate Cortex 

(PCC), which constitutes a pattern overlapping the posterior components of the Default 

Mode Network (DMN), a network deeply involved in memory-processes and internal 

processing. State 5 showed activations of the PCC and the precuneus as well, along with 

activity over the right angular gyrus, indicating an even greater similarity with the DMN 

configuration. State 6 showed activations in occipital, parietal areas and dorsal frontal 

areas, involving areas of the Dorsal Attention Network (DAN) such as bilateral 

intraparietal sulcus, bilateral premotor areas, left frontal eye fields (FEF), and left 

Dorsolateral Prefrontal Cortex (DLPFC). 
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Figure 3.3.1 The heatmaps of the six Hidden States obtained with HCP workbench GUI. As evident in the colorbar, the 

strength of the activations in each state is plotted in a scale ranging from red (weakest reported activations) to yellow 

(strongest activations). 
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3.3.2 Behavioral analyses 

The difference in the accuracy rates between the Event and Time condition was confronted 

with a repeated-measure ANOVA. It revealed a significant difference between the 

accuracy rates (p = 0.004; η²p = 0.240). Participants were more accurate in detecting the 

PM cues in the Event condition (M = 93.55; SD = 11.98) condition than in targeting the 

2-minute interval in the Time condition (M = 74.84; SD = 33.05). 

 

3.3.3 Fractional occupancy analyses 

Descriptive statistics of Fractional Occupancy are summarized in Table 1. 

In the concatenated dataset, participants spent the most time in state 6 (i.e., the state with 

parietal and dorsal frontal activations, with a pattern similar to the DAN network), with a 

mean FO of 0.318 (0.1), indicating that, on average, participants spent 32% of the total 

time in this state. Conversely, participants spent the least time in State 5 (i.e., the state that 

resembled DMN) with a mean FO of 0.032 (0.012), indicating that, on average, 3% of the 

total time spent in the state. State 1, 3 and 4 all showed a mean FO of approximately 0.17/ 

17%, meaning they were visited a similar proportion of time across conditions, while State 

2 showed a mean FO of 0.136 (0.021). 

Considering data divided into 3 subsets depending on condition, State 6 and State 5 

remained the most and less visited states, respectively. Interestingly, in the Passive 

Viewing condition, the mean FO in states 1, 3 and 4 was higher than in the Event and Time 

condition. Conversely, the pattern was the opposite for State 5 and 6, in which both PM 

conditions had a higher mean FO, with the Time condition showing the highest mean FO 

for both states.   
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Table 1 The table presents the descriptive statistics for fractional occupancy, including mean FO, standard deviation, 

minimum and maximum FO value for each of the six states considering all conditions. The last three rows report the 

mean FO for each state considering the three conditions separately.  

 

The six repeated-measure ANOVAs showed significant effects for State 1, State 5 and 

State 6, while they did not reach a significant value for State 2, 3 and 4 (p> 0.05) (see 

Figure 3.3.2). Specifically, a robust effect was found for the FO of State 1 (p =0.001; η²p 

= 0.280), with participants in the Passive Viewing condition spending on average 2% more 

time in State 1 compared to the Event condition and 2.8% more compared to the Time 

condition. A significant effect was also found for State 5 (p =0.006; η²p = 0.217), as well 

as for State 6 (p =0.006; η²p = 0.216), with participants in the Time condition spending on 

average 0.5% more of their total time in State 5 compared to the Event condition and 0.8% 

more compared to the Passive Viewing condition, and participants in the Time condition 

spending on average 2.5% more of the total time in State 6 compared to the Event 

condition and 7% more compared to the Passive Viewing condition. 

Fractional occupancy  

  
 

     State 1 State 2 State 3 State4 State 5 State 6 

Mean 0.171 0.136 0.173 0.170 0.032 0.318 

Std. Deviation 0.038 0.021 0.041 0.039 0.012 0.100 

Minimum 0.081 0.094 0.087 0.090 0.011 0.142 

Maximum 0.242 0.190 0.251 0.262 0.057 0.547 

Passive Viewing 

Mean 
0.187 0.138 0.183 0.181 0.028 0.283 

Event Mean 0.167 0.140 0.168 0.167 0.031 0.327 

Time Mean 0.160 0.131 0.167 0.161 0.036 0.345 
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Post-Hoc analyses revealed that for State 1, both the Time and Event conditions differed 

significantly from the Passive Viewing condition in terms of FO (pbonf = 0.006 and 

pbonf= 0.009, respectively), but no significant difference was found between the two 

conditions. For State 5, FO in the Time condition and in the Passive Viewing condition 

resulted significantly different (pbonf = 0.014), with other conditions not reaching a 

significant value. Finally, for State 6, FO was significantly different for Time condition 

and Passive Viewing condition (pbonf = 0.014), and for the Event condition and Passive 

Viewing condition (pbonf = 0.011). 

 

Fig 3.3.2 This figure shows the mean FO of different block conditions for all the six states, with FO value on the Y axis 

and the Passive Viewing, Event and Time conditions on the X axis. An asterisk is present next to State 1, 5 and 6, 

indicating that the three conditions showed a statistically significant difference after a rm-ANOVA for those states. 

Additionally, an asterisk was also used to signal statistically significant differences between two conditions after post -

hoc analyses with Bonferroni correction for multiple comparisons. 
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3.4 Discussion 

In the present study, we implemented a pseudo-naturalistic design with the aim of 

investigating connectivity patterns associated with time-based and event-based 

prospective memory, establishing, to our knowledge, the first study to use EEG and HMM 

to investigate functional connectivity in the context of Prospective Memory (PM). Results 

from Hidden Markov Modelling (HMM) and from the repeated measures-ANOVA (rm-

ANOVA) analyses led to interesting findings. Namely, the six brain states, which 

correspond to recurrent pattern of activity intrinsic to the collected EEG data, showed 

prominent activations from some key areas of PM processing, including regions of the 

Dorsal Attentional Network (DAN) and the Default Mode Network (DMN). Additionally, 

the proportion of time spent in 3 out of 6 states was significantly different among 

conditions, with the states that presented the largest number of regions associated with PM 

being visited the most when participants were in PM conditions. 

After performing rm-ANOVA on the fractional occupancy (FO) between the Passive 

Viewing, Event and Time conditions, it was found that the FO of State 1, 5 and 6 were 

significantly different between these three conditions. State 1’s prominent activations were 

mostly localized in the occipital gyri, especially in the bilateral middle occipital gyrus 

(MOG) and superior occipital gyrus (SOG). These regions are part of the occipital 

complex, which is deeply involved in the visual processing of objects (Naidich et al., 

2013). Therefore, these activations may signal a state of engagement towards the visual 

content proposed by the movie excerpts. Additionally, activations in this state were found 

in the fusiform and supramarginal gyrus, regions that are well-known for their 

involvement in face processing and empathy (Kawasaki et al., 2020; Silani et al., 2013), 

further suggesting the association between State 1 and engagement to the movie clip. 

Generally, State 1 may represent a state of visual attentional engagement with the ongoing 
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activity, as many areas of the visual pathway were strongly involved. The rm-ANOVA 

showed this state to be significantly different among conditions, and post-hoc analyses 

revealed that participants visited State 1 considerably more during the Passive Viewing 

condition compared to the PM conditions. This difference may be interpreted as a greater 

engagement with the ongoing activity in the Passive Viewing compared to the Event and 

Time conditions, because the cognitive resources directed towards intention maintenance 

in the PM conditions may have limited full engagement with the ongoing activity. 

State 5 involved strong activations in posterior and medial portions of the parietal lobe. 

Particularly, it showed a significant contribution from Posterior Cingulate Cortex (PCC), 

the precuneus and the right angular gyrus, which are key regions of the Default Mode 

Network (DMN). The DMN plays a fundamental role in human cognition, as it activates 

when we are not engaged in other activities (hence Default), and it has been reported to 

mediate internal processing, mind-wandering, social cognition, semantic, episodic and 

autobiographical memory. (Fox et al., 2015; Menod, 2023; Buckner et al., 2004). In a 

recent study by Hsu and colleagues (2022), the DMN has been shown to play an important 

role in PM, as the functional connectivity of the precuneus/PCC with frontal and parietal 

regions significantly correlated with PM performance in both normal and pathological 

aging. Furthermore, in the AtoDI model proposed by Cona and colleagues (2015), PCC 

would support bottom-up mechanisms necessary for switching from the external cue to 

the internal representation of the PM cue and the intention stored in memory. Then, it is 

important to note that State 5 was the least visited state, as participants spent an average 

of 3% of total time in it. This could indicate that the state may be providing a configuration 

that supports an isolated phenomenon, which may occur rarely but with a significant 

impact. Taken together, the spatial and temporal characteristics of State 5 may suggest a 

role in intention retrieval, perhaps supporting the moment we realize the link between the 
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external/internal cue and the intention we previously encoded. Hypothetically, the strong 

activations of the PCC and DMN regions in State 5 could indicate an association with 

memory processes and specifically with memory retrieval, while the rare occurrence of 

the state may reflect the limited frequency of intention retrieval. This interpretation is 

supported by the statistical analyses of FO, in which the three conditions were found to be 

significantly different in terms of time spent in State 5. In fact, post-hoc analysis revealed 

that participants in the Time condition visited this state significantly more than those in 

the Passive Viewing condition. A greater use of State 5 by participants in the Time 

condition would fit well with a “Retrieval-State” interpretation, because the absence of 

explicit external cues may require additional resources to retrieve the intention internally 

and thus a greater occurrence of the activation pattern displayed in State 5. 

State 6 involved primarily activations in frontal and parietal areas, specifically in regions 

that are part of the Dorsal Frontoparietal/Attentional Network (DAN). The DAN network 

is responsible for top-down control and goal-directed attention and is composed of the 

Dorsolateral Prefrontal Cortex (DLPFC), frontal eye fields (FEF), premotor regions, 

precuneus, and intraparietal sulcus (Corbetta and Shulman, 2002).  Given the activations 

of bilateral intraparietal sulci, premotor areas, and left DLPFC and FEF, it is possible to 

assume an overlap between the DAN and State 6. The importance of DAN in PM has been 

widely discussed in the scientific literature, with a crucial role for the network proposed 

both in the Dual Pathways theory and in the AtoDI model (McDaniels et al., 2013; Cona 

et al., 2015; see Chapter 1.5 for further details over the two models). According to these 

two theoretical models, DAN primarily supports the maintenance of PM intention, as well 

as the monitoring of the passage of time or the monitoring of potential cues in the 

environment (i.e., Strategic monitoring). During strategic monitoring, a state of readiness 

is maintained by keeping the representation of the intention active in working memory. 
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By allocating cognitive resources to maintain this “retrieval-mode” through the activation 

of the DAN, it is possible to effectively monitor time or the occurrence of external cues, 

to retrieve the associated intention and to appropriately execute it. The role of the DAN in 

PM is confirmed by the results of our investigation, which revealed a recurrent dorsal 

frontoparietal configuration within State 6. Additionally, the importance of the DAN and 

strategic monitoring is highlighted by the fact that State 6 was the most visited state, with 

participants spending a third of their total time in it. A significant difference was observed 

in the FO of the three conditions from the rm-ANOVA, and post-hoc analyses showed a 

significant preference for State 6 during the Time condition. Finally, participants in the 

Event condition spent significantly more time in State 6 compared to the Passive Viewing 

condition. The association between time-based PM and State 6 confirms our initial 

hypothesis and supports the proposal of Cona and colleagues (2015), which suggests that 

time-based PM is more significantly supported by strategic monitoring and the DAN 

compared to event-based PM. This study presents the first EEG functional connectivity 

evidence of the DAN's involvement in PM. 

 

3.5 Conclusions 

The current study investigated EEG functional connectivity patterns of prospective 

memory with a Hidden Markov Modelling approach, using a lab-based experimental 

paradigm characterized by a pseudo-naturalistic design. Our initial hypothesis regarding 

the functional involvement of the Dorsal Frontoparietal/Attention Network in PM was 

confirmed, as one of the six hidden states, State 6, presented a large overlap with the 

network while being the most visited state. Furthermore, a “retrieval-state” reflecting a 

configuration supporting the retrieval of the PM intention was also found in State 5, 

indicating a functional importance for the Default Mode Network in PM. Additionally, the 
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re-allocation of attentional resources from an external to internal focus during PM tasks 

was confirmed by participants spending less time in the “visual engagement-state” (i.e., 

State 1) during PM conditions. The results did not confirm our initial hypothesis over the 

involvement of the Ventral Attention Network in the retrieval phase and in event-based 

tasks. The absence of this association, which was present in other studies, could result 

from the fact that this study proposed a novel, pseudo-naturalistic design to provide the 

most realistic conditions to study PM in a lab setting. Moreover, it has been the first EEG 

functional connectivity study in PM research to date, therefore many factors distance this 

project from previous literature and empirical differences could be caused by the novelty 

of the method. Indeed, future studies implementing ecological design and functional 

connectivity are needed to confirm or confute the results we obtained. Finally, the hidden 

states that were more visited during PM conditions always had participants in the Time 

condition visiting them the most, indicating the importance of time-based processes and 

the necessity of more studies featuring both time-based and event-based tasks. 
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