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Introduction

Given a graph it is possible to extract a subgraph without cycles, that is a tree,
from it. Iterating this procedure we obtain a forest spanning the graph. How can
we sample uniform or, more generally, weighted spanning forests? The answer
follows from the works of D. Wilson [14] who provided in the 1990’s an algorithm
based on loop-erased random walks. This method turned out to be amazingly easy
to perform, but at the same time extremely powerful, since it brings out the links
between the study of random spanning forests and the theory of Markov chains.
In this thesis, we collect the basic results of this approach to the random spanning
forests and we focus on some interesting consequences in terms of network analysis.

Graphs are one of the most used mathematical structures, both for theoretical
studies and applications. They are the basis of models of systems and processes
studied in computer science, engineering, chemistry, molecular biology, social sci-
ences, and many other applied fields. Indeed graphs are useful to highlight the
inter connections between data and to get a very precise description of interacting
systems. In our world, the amount of data available is growing enormously day
by day, therefore in this context it is increasingly necessary to be able to process
a huge amount of information with new, more efficient and more effective tech-
niques. Hence the strong research interest in probabilistic approaches to Network
theory, in particular in Markov process theory, that is a fundamental support to
this application.
From a probabilistic point of view, the most immediate way to analyze a graph is
to explore it by means of random walks with transition probabilities proportional
to the weights assigned. The primary object of our study is Wilson’s algorithm,
which has precisely this idea behind it. Considering a finite connected weighted
graph G, the algorithm can be summarized briefly as follows:

- Fix a vertex inside the graph, denoted by ∆. This vertex will be interpreted
as an absorption point.

- Choose arbitrarily a starting vertex x1 and perform a loop-erased random
walk until hitting ∆. This is obtained by erasing the loops from the random
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walk as soon as they appear. Denote by γ1 this self-avoiding path.

- For any n ≥ 2, choose arbitrarily a starting vertex xn and perform a new
loop-erased random walk until we hit the set {∆, γ1, ..., γn−1}. Denote by γn
this self-avoiding path.

- Iterate this procedure until the entire graph is covered by the paths.

We call W the random variable associated with the random realization of this
algorithm. Thus, W takes values in the set of all possible spanning trees rooted
at ∆. The crucial point is that this procedure remains unbiased, no matter which
method we use to arbitrarily choose the starting vertices of the random walks.
Among other things, the latter property makes the Wilson’s algorithm a prototype
for bias-free maze generation.
Clearly, such a tool is of great interest in computational mathematics and computer
science. However, it also plays a fundamental role in highlighting the features of
spanning trees and framing them into the Markov theory. Quoting R. Lyons and
Y. Peres [15], if “electrical networks and random walks are two faces of the same
underlying object”, studying spanning trees “we discover an appealing third face
which appears at first to be completely unrelated”. Therefore, in the thesis we aim
to show the connections between these apparently different objects, approaching
the study of spanning trees and of spanning forests by means of the Wilson’s
algorithm.
As the title suggests, our work mainly concerns with random spanning forests. A
random spanning forest is a random variable Φ, taking values on the set of all
possible rooted spanning forests, with law ν called “forest probability measure”.
Note that there exists a natural and intuitive way to switch from spanning trees to
spanning forests: indeed it is sufficient to consider G, which is the graph obtained
removing from G the point ∆; then any rooted spanning tree on G is associated to
a rooted spanning forest on G. This simple remark gives space to new interesting
characteristics of the problem, which are analyzable by applying the algorithmic
approach.
On one side, it is possible to identify the set of roots of any given forest. Indeed,
as we will see, one can prove that the set of roots of a random spanning forest Φ,
denoted by ρ(Φ), is a determinantal process. That is, for any subset A of vertices
of the graph,

P(A ⊂ ρ(Φ)) = detA(K)

where K is called kernel matrix. Moreover, introducing a random-walk-based
notion of “well distributed points”, L. Avena and A. Gaudillière showed in [10]
that the set ρ(Φ) is well distributed inside the graph.
On the other side, one can look at the connected components of a spanning forest
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(i.e. the trees) forming a partition of the graph. As observed in [11] by L. Avena,
F. Castell, A. Gaudillière, C. Mélot, if we denote by Π the partition given by the
random spanning forest, then Π has the tendency to cluster together points that
with high probability belong to the same trajectory of the random walk. This
open the possibility to analyze the correlation structure of the graph, through this
spanning forest exploration. In particular one can look to the following two-points
correlation: if x, y is any pair of vertices in the graph the we set

U(x, y) = P(x and y are in different blocks of Π)

In the case of simple geometries, we are able to compute the value U , using an
operative characterization and exploiting the symmetries.
There exists a flourishing literature concerning random spanning forests. As a mat-
ter of fact, interesting results have recently been achieved, for example on coarse
graining schemes for networks, multi-resolution analysis on graphs, smoothing of
graph signals [16, 17, 18]. This, once again, demonstrates the great importance of
this topic within the research on network analysis.

The thesis is divided in four chapters. The first part is devoted to collect and
outline the basic results regarding Markov processes. We make use, contextually,
of both discrete-time and continuous-time Markov chains, therefore it is necessary
to point out the relations between them. In particular it has to be clear how to
switch from the discrete case to the continuous one, and vice versa, depending on
the needs.
In the second chapter we focus on probabilistic techniques derived from poten-
tial theory. As we are interested in finite state spaces, first we need to provide a
discretization of the Laplace equation. Then, introducing the notion of electrical
networks, we understand how the study of harmonic functions is intimately linked
to the Markov theory. We also show that electrical networks and random walks
are indeed two sides of the same coin. Therefore we define the Green’s function,
an object of fundamental importance in the continuation of the rest of thesis.
Then, we go deeply inside the core of our work, and we start defining the forest
probability measure ν on a weighted graph. Then, we introduce the notion of
loop-erased trajectory and describe its law, using a famous and important result
of P. Marchal [19]. In particular, we show that this result links our problem to
the study of the Laplacian graph, via linear algebra techniques. At this point we
are able to give a rigorous definition of Wilson’s algorithm and to show that it
is a sampling algorithm for the measure ν. Hence we review some results about
the number of roots |ρ(Φ)| of a random spanning forest (that corresponds to the
number of trees of the forest), and in particular we characterize its distribution
and prove that the root process is determinantal.
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Lastly we focus on a direct analysis of the loop-erased partitioning deriving from
the Wilson’s algorithm, by the study of the pairwise interaction potential U . In
particular we compute the two-points correlation, provided by U , under two spe-
cific geometries.
First we analyze the mean-field model, which corresponds to a complete graph
with constant weights on edges, that represents a single-community model. In this
geometry the interaction potential is uniform, as it is invariant for any choice of
pairs of points x, y in the graph. Also we prove that, after rescaling the parameters
of the problem, the interaction potential U tends to the Gaussian distribution.
We then move to a more involved structure, which describes a multi-communities
model. In this case, we consider the partition of the vertices of a complete graph
into two disjoint sets, which correspond to two distinct communities. Then we
set weight w1 to edges connecting points inside the same community, and instead
weight w2 to edges connecting points in different communities. In this geometry,
the interaction potential just depends on whether the points x, y are in the same
community or not, thus there exists only two possible scenarios for U : if x and y
are in the same community, we denote the interaction potential by U(in); on the
contrary, if x and y belong to different communities, we denote it by U(out).
We conclude our work by showing the underlying similarities between the two
models taken into consideration.
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Chapter 1

Markov chains

Let E be a countable set. Consider a discrete-time (or continuous-time) stochas-
tic process on the state space E, namely a sequence {Xk}, with k ∈ N (or R

+)
denoting the time, of random variables with values in E. The set E is assumed to
be countable, but most of the time we will work in finite state spaces.
If Xk = i the process is said to be in state i at time k. The generic time for the
process is denoted by n in the discrete case or by t in the continuous case.
We denote with P the law of the process on the set of trajectories and with E the
related expected value. If we assume that the initial state X0 of the stochastic
process has law µ, called initial distribution, then we denote by Pµ the law of its
trajectories so that Pµ(X0 = x) = µ(x), and with Eµ the expectation. In particular
if µ = 1x, the indicator function, then with a slight abuse of notation we write Px

and Ex instead of P1x and E1x .

In this section we closely follow the discussion on Markov chains as given in the
book of P. Brémaud [1], in particular sections 2, 3, 4 and 9 where a more detailed
explanation of many of the results can be found. However regarding continuous
time Markov chain we refer to the notes of S. F. Nielsen [2].

1.1 Discrete-time Markov chains

Definition 1.1. Let {Xn} be a discrete-time stochastic process on the state space
E. If ∀n ≥ 1 and ∀x0, x1..., xn+1 ∈ E

P(Xn+1 = xn+1|Xn = xn, ...X1 = x1, X0 = x0) = P(Xn+1 = xn+1|Xn = xn) (1.1)

the process {Xn} is called Markov chain (MC). The condition (1.1) is called
Markov property and has the following interpretation: given the present, the fu-
ture evolution of the process is indipendent from the past.
If the right-hand side of (1.1) is indipendent of the temporal index n, the Markov
chain is called homogeneous (HMC). In this case the stochastic matrix P =
{pyx}y,x∈E where

pyx = P(Xn+1 = x|Xn = y) (1.2)
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is called transition matrix.
For any n ≥ 0 we call distribution at time n of the MC the row vector νn with
coordinates

νn(x) = P(Xn = x). (1.3)

Assume {Xn} is a HMC. Note that from Bayes’ rule P(Xn = xn, ..., X0 = x0) =
P(X0 = x)P(X1 = x1|X0 = x0) · · ·P(Xn = xn|Xn−1 = xn−1, ..., X0 = x0); if ν0 is
the law of X0, in view of the Markov property (1.1) we obtain

Pν0(Xn+1 = xn+1, ..., X0 = x0) = ν0(x0)px0x1 · · · pxn−1xn
. (1.4)

By observing that νn+1(x) =
∑

y∈E νn(y)pyx we also get the recursive formula
νn+1 = νnP from which

νn = ν0P
n. (1.5)

Thus, the initial distribution and the transition matrix of a Markov chain are
sufficient to determine the law of the process (1.4) and the distribution at time n
(1.3).
In fact, by writing P n = {pyx(n)}y,x∈E we have

pyx(n) = P(Xn = x|X0 = y) = Py(Xn = x). (1.6)

Stationary measure

We give a few definitions in order to classify the states of a Markov chain and
introduce the concept of stationarity.
Let x, y ∈ E. The state y is said to be accessible from state x if there exists M ≥ 0
such that pxy(M) > 0, i.e. there exists at least one finite path between x and y of
positive measure. The two states x and y are said to communicate if x is accessible
from y and y is accessible from x.
It is trivial to verify that the communication relation between states is an equiva-
lence relation, so it produces a partition of E into disjoint communication classes.

Definition 1.2. A HMC is said irreducible if there exists only one communication
class, that is all states communicate with each other.

Definition 1.3. Let P be the transition matrix associated to a HMC. A proba-
bility distribution π is called stationary distribution if it satisfies

π = πP. (1.7)

Iterating (1.7) gives π = πP n for all n ≥ 0 if π is a stationary distribution.
Then from (1.5) we deduce that if the initial distribution of the Markov chain is π
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then vn = π for all n ≥ 0, i.e. if the chain starts with some stationary distribution,
it keeps it forever. Therefore the term stationary comes by the observation that

Pπ(Xn = x0, ..., Xn+k = xk) = π(x0)px0x1 · · · pxk−1xk
(1.8)

is indipendent from n.
It is important to observe that the stationary distribution may not be unique. In
order to achieve uniqueness some more additional assumptions need to be satisfied,
e.g. irreducibility and recurrence. The reader can find in [1] (Chapter 3) more
details.

Definition 1.4. A HMC with an initial stationary distribution π (nonnull) is
called reversible if for all x, y ∈ E

π(x)pxy = π(y)pyx. (1.9)

The interpretation of the latter definition is the following. Consider a HMC
with transition matrix P . Take π as stationary initial distribution so that P(Xn =
x) = π(x) for all n. Then by Bayes formula

P(Xn = x|Xn+1 = y) =
P(Xn+1 = y|Xn = x)P(Xn = x)

P(Xn+1 = y)
=

π(x)pxy
π(y)

= pyx. (1.10)

That is P is also the transition matrix of the Markov chain when the time is re-
versed.
The equation system in (1.9) is called detailed balance equations.

By definition a Markov chain is a stochastic process that satisfies the Markov
property. The following stronger result, involving stopping times, holds for a HMC.

Theorem 1.1. Let (Xn)n≥0 be an HMC on the state space E with transition matrix
P that defines the law P of the process. Let τ be a stopping time with respect to
the chain. Then for any state x ∈ E, given that Xτ = x, the following hold:

(a) the process after τ is indipendent from the process before τ ;

(b) the process after τ is a HMC with law Px, i.e. it has transition matrix P .

For the proof see [1] Chapter 2, Theorem 7.1.

This theorem is called Strong Markov property. Indeed it generalizes the
Markov property to the case when we use some stopping time τ as temporal index
of the process instead of a deterministic time n.
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1.2 Continuous-time Markov chains

In this section we will provide all the necessary instruments to define in all gen-
erality a continuous-time Markov chain. In the next chapters we will use only a
very special class of MC (homogeneous MC with regular jumps) but nevertheless
very large and important for applications.
In order to get a precise definition first we need to introduce a class of continuous-
time processes called Poisson processes.

Recall that a continuous-time stochastic process on the state space E is a family
{Xt} with t ∈ R

+ of random variables with values in E. With E countable the
distribution of any stochastic process is determined by the probabilities

P (Xt0 = i0, Xt1 = i1, ..., Xtn = in) (1.11)

for any n ∈ N, for 0 ≤ t0 < t1 < ... < tn and i0, i1, ..., in ∈ E.

Poisson processes

Definition 1.5. Let λ > 0 and S1, S2, ... be a sequence of i.i.d. random variables
with exponential distribution of rate λ > 0, i.e. Sn ∼ Exp(λ). Consider the
random variables Tn :=

∑n

k=1 Sk, n ∈ N. Then the process {N(t)} given by

N(t) =
∞∑

n=1

1{Tn≤t} (1.12)

is called homogeneous Poisson process with intensity λ (HPP(λ)).

In the definition {Tn} has to be interpreted as a sequence of increasing times
at which the process rings. The random variables {Sn} are also called inter-event
times.

Proposition 1.2. Let {N(t)} be HPP(λ). Then for any t > 0, N(t) is a random
variable with Poisson distribution of parameter λt, i.e. N(t) ∼ Poisson(λt).

Proof. Note that Tn is the sum of n indipendent exponential random variables, thus
it is a Gamma distributed random variable of parameters n, λ, i.e. Tn ∼ Γ(n, λ).
Its probability distribution function is

pTn
(x) =

λnxn−1e−λx

Γ(n)
1{x≥0}.
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We aim to compute directly the cumulative distribution function for N(t).
Now clearly n = 0 trivially implies by definition P (N(t) < 0) = 0 which gives us
no information, hence suppose n ≥ 1. Note that

F (n) = P (N(t) < n) = P (Tn > t) =

∫ ∞

t

λn

Γ(n)
sn−1e−λs ds (1.13)

In the case n = 1 (1.9) gives:

F (1) =

∫ ∞

t

λe−λs ds =
[

− e−λs
]∞

t
= e−λt. (1.14)

Whereas in the case n > 1 integrating by parts we get the recursive formula

F (n) =
[

− λn−1

(n− 1)!
sn−1e−λs

]∞

t
+

∫ ∞

t

λn−1

Γ(n− 1)
sn−2e−λs ds

=
(λt)n−1

(n− 1)!
e−λt + F (n− 1). (1.15)

Finally combining (1.10) and (1.11) we have

P (N(t) < n) = F (n) =
n−1∑

k=0

(λt)k

k!
e−λt (1.16)

that corresponds to the cumulative distribution function of a Poisson(λt).

Consider now two (or more) indipendent HPPs. We could imagine that the
different HPPs are competing with each other and we would like to know which
one will prevail over the others. We can manage to get an answer to this problem
by merging the processes together and retrieving some properties about it.

Let {N1(t)} and {N2(t)} be the two HPP with intensities λ1 and λ2. Consider
the sequences {T 1

n}, {T 2
n} obtained from definition 1.3 as the sum of i.i.d. expo-

nential random variables with rate λ1, λ2.
We are then able to construct the superposition {Tn} of the two sequences of times
joining and sorting them in increasing order:

1. starting from t = T0(= 0) we choose T1 := min{T 1
1 , T

2
1 };

2. consider for example min{T 1
1 , T

2
1 } = T 1

1 (the other case is analogous). Then
define a new sequence by T̂ 1

n := T 1
n+1, i.e. the new sequence is obtained by

removing from the original sequence the first event time reached;

3. starting from the time t = T1 we choose T2 := min{T̂ 1
1 , T

2
1 };
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4. we iterate this process.

Simply by defining N1(t) +N2(t) = N(t) :=
∑∞

n1 1{Tn≤t} we obtain a new Poisson
process with intensity λ1 + λ2, due to the fact that the minimum between two
exponential random variables with rate λ1, λ2 is an exponential with rate λ1 + λ2.

This result can be generalized to the countable case, i.e.: if {Ni(t)}i∈I with I
at most countable are Poisson process with intensities λi and if

∑

i∈I λ = λ < ∞
then N(t) :=

∑

i∈I Ni(t) is HPP(λ).

Theorem 1.3. Competition Theorem. Let {Ni(t)}i∈I be indipendent Poisson
processes, with I finite or countable and

∑

i∈I λi = λ < ∞. Denote by Z the first
event time of N =

∑

i∈I Ni and by K the index of the HPP responsible for such
event (in particular T1 is also the first event time for NK). Then

P (K = i, T1 ≥ a) = P (K = i)P (Z ≥ a) =
λi

λ
e−λa. (1.17)

Proof. a) First we prove the theorem for |I| = n finite. By definition of N we have
that Z = inf{T 1

1 , ..., T
n
1 }. Thus in particular

P (Z ≥ a) = P (T 1
1 ≥ a, ..., T n

1 ≥ a) =
n∏

j=1

P (T j
1 ≥ a) =

n∏

j=1

e−λja = e−λa (1.18)

because the first event times have exponential distribution with rate λj. Now fix

i ∈ {1, ..., n} and define U = inf{T 1
1 , ..., T̂

i
1, ..., T

n
1 } (where T̂ i

1 means that we are
removing the element with index i from that sequence). Then we have

P (K = i, Z ≥ a) = P (a ≤ T i
1 < U) (1.19)

that is the probability that the first event time is the one on position i and it
occurs after a. By some computation we have

P (a ≤ T i
1 < U) =

∫ ∞

a

P (U > x)λie
−λix dx =

∫ ∞

a

e−(λ1+...+λ̂i+...+λn)xλie
−λix dx

=

∫ ∞

a

λie
−λx dx =

λi

λ
e−λa. (1.20)

Also by letting a = 0 we have P (K = i) = P (K = i, Z ≥ a) = λi

λ
. From which we

get the indipendence between K and Z.
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b) Now consider the case |I| = ∞. Denote by {Kn = i, Zn ≥ a} the events
with Zn = inf{T 1

1 , ..., T
n
1 } and Kn the index between 1 and n of the first event

occured. This events are decreasing as n → ∞ because the number of competing
processes is increasing. Thus we have

P (K = i, Z ≥ a) = lim
n→∞

P (Kn = i, Zn ≥ a) = lim
n→∞

λi
∑n

j=1 λj

e−
∑n

j=1 λja =
λi

λ
e−λa.

Continuous-time homogeneous Markov Chains

Definition 1.6. Let {Xt} be a continuous-time stochastic process on the state
space E. If for all i, j, i1, ..., ik ∈ E, all t, s ≥ 0 and all 0 ≤ s1 < s2 < ... < sk < s
it holds

P (Xt+s = j|Xs = i, Xsk = ik, ..., Xs1 = i1) = P (Xt+s = j|Xs = i) (1.21)

the process {Xt} is aMarkov chain. If in addition the right hand side is indipendent
of s the Markov chain is called homogeneous. In this case, for fixed t ≥ 0, we define

P (t) := {pij(t)}i,j∈E (1.22)

where
pij(t) := P (Xt+s = j|Xs = i) = Pi(Xt = j). (1.23)

{P (t)}t≥0 is called transition semigroup of the continuous-time HMC.

Proposition 1.4. {P (t)}t≥0 is a semigroup.

Proof. For t = 0 it holds pij(0) = Pi(X0 = j) = 1{j=i}. Thus P (0) = I.
For t, s ≥ 0 it holds

pij(t+ s) = Pi(X(t+ s) = j) =
∑

k∈E
Pi(X(t+ s) = j,X(t) = k)

=
∑

k∈E
Pi(X(t+ s) = j|X(t) = k)Pi(X(t) = k) =

∑

k∈E
pkj(t)pik(s)

from which we deduce P (t+ s) = P (t)P (s) = P (s)P (t).

The distribution at time t is the row vector µt with µt(i) = P (X(t) = i). Set
µ the distribution of X0, then using the Markov property of the process at time 0
it holds

µt = µP (t). (1.24)
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Also the probability distribution of a continuous-time HMC is completely de-
termined by its initial distribution and its transition semigroup because for all
0 ≤ t1 ≤ ... ≤ tk and for all i1, ..., ik ∈ E it holds

P (X(t1) = i1, ..., X(tk) = ik) =
∑

i0∈E
µ(i0)

k∏

j=1

pij−1,ij(tj − tj−1). (1.25)

Definition 1.7. A stochastic processX = {X(t)}t≥0 is called regular jump process
if

• for all t ≥ 0 there exists ε > 0 such that

X(t+ s) = X(t) a.s. for all s ∈ [t, t+ ε); (1.26)

• denoting by A the set of discontinuities of the function t 7→ X(t), then for
all c ≥ 0

|A ∩ [0, c]| < ∞. (1.27)

In particular condition (1.26) means that, at any time t the process remains
stable for at least a short time (so we can notice the jumps). So it is possible to
define the sequence of times {τn}n≥0, with

0 = τ0 < τ1 < ... < τn < ... ,

and a sequence {X̂n}n≥0 in E such that

X(t) = X̂n if τn ≤ t < τn+1.

The random variables {τn}n≥0 are called transition times. Besides, condition (1.27)
means that the set of discontinuity points for X is σ-discrete, and it implies that

τ∞ = lim
n→∞

τn = ∞.

The request for a HMC to be a regular jump process seems reasonable, but
there exist examples of HMC that are not: in such case the states are unstable!
Anyway we will not work with them.

Finally the Strong Markov property holds also for continuous regular jump
HMC.

Theorem 1.5. Let X = {X(t)}t≥0 be a regular jump HMC on E with transition
semigroup {P (t)}t≥0. Let τ be a stopping time with respect to X and k an arbitrary
state of E. Then, given X(τ) = k,

(a) the chain after τ and the chain before τ are indipendent;

(b) the chain after τ is a regular jump HMC with transition semigroup {P (t)}t≥0.

Proof. See page 346 of [1].
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Uniform Markov chains

Starting from a discrete-time HMC it is possible to construct a continuous-time
HMC that moves exactly in the same way as the discrete one does.

Definition 1.8. Let X̂ = {X̂n}n≥0 be a discrete-time HMC on the state space E

and denote with P̂ its transition matrix. Let N be an HPP on R
+ with intensity

λ > 0. Assume N and X̂ are indipendent. The process X = {Xt} defined by

Xt := X̂N(t) (1.28)

is called uniform Markov chain. The discrete-time HMC X̂ is called subordinated
chain.

In other words, each time an event Ti of the Poisson process occurs the discrete
Markov chain moves one step; at time Tn we have that XTn

= X̂n, i.e. the Markov
chain has moved n steps forward.
Observe that for some step the Markov chain can remain in the same position,
since it may be p̂ii > 0 for some i ∈ E, that is P(X̂n+1 = X̂n) > 0.

A uniform Markov chain X = {Xt} is in fact a continuous-time HMC due
to the memoryless property of the exponential distribution that characterizes the
inter-event times of the Poisson process. The transition semigroup of X is given
by

P (t) =
∞∑

n=0

e−λt (λt)
n

n!
P̂ n (1.29)

because

pij(t) = Pi(Xt = j) = Pi(X̂N(t) = j) =
∞∑

n=0

Pi(N(t) = n, X̂n = j)

=
∞∑

n=0

P (N(t) = n)Pi(X̂n = j) =
∞∑

n=0

e−λt (λt)
n

n!
(P̂ n)ij

Given a discrete HMC X̂ with transition matrix P̂ = (p̂ij)i,j∈E there is another
way to define the uniform Markov chain: we associate to each jump i → j in E
an HPP(λp̂ij) that rules the time of the jump, provided the chain is in i.
Observe that starting from i there could be many different competing Poisson
processes. Nevertheless, for any fixed i ∈ E, we have

∑

j∈E
λp̂ij = λ,

and from the Competition Theorem 1.3 it holds that:
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1. at any point i ∈ E there is an HPP(λ) that rules the time at which the next
jump is performed;

2. the probability that the next jump will be i → j is p̂ij.

In conclusion the two different constructions are equivalent.

Infinitesimal generator

Let {P (t)}t≥0 be a transition semigroup, i.e. for any t, s the matrix P (t) is stochas-
tic, P (0) = I and P (t+ s) = P (t)P (s).
Suppose moreover the continuity of the transition semigroup, that is

lim
h→0

pij(t+ h) = pij(t) (1.30)

for any t ≥ 0, i, j ∈ E. In fact the continuity at the origin (limh→0 P (h) = I)
suffices to guarantee the continuity for the whole semigroup.

Theorem 1.6. Given a continuous transition semigroup {P (t)}t≥0 on a countable
state space E, for any i, j ∈ E, there exist

α(i) := lim
h→0

1− pii(h)

h
∈ [0,∞], (1.31)

α(i, j) := lim
h→0

pij(h)

h
∈ [0,∞). (1.32)

Definition 1.9. For each state i ∈ E define α(i, i) = −α(i). The quantities α(i, j)
for i, j ∈ E are the local characteristics of the semigroup. Moreover the matrix

L = {α(i, j)}i,j∈E (1.33)

is the infinitesimal generator of the semigroup and from the previous theorem it
holds

L = lim
h→0

P (h)− P (0)

h
(1.34)

Consider for example the Uniform HMC Xt = X̂N(t) where N is an HPP(λ)

and X̂ is a discrete-time Markov chain with transition matrix P̂ . Fix i ∈ E. Then
the transition semigroup is given in (1.29) and the infinitesimal generator is

L = lim
h→0

P (h)− I

h
= lim

h→0

∑∞
n=0 e

−λh (λh)n

n!
P̂ n − I

h
. (1.35)
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We can interchange the limit and the sum and what we get is

α(i, j) = lim
h→0

(1− λh)(λh)p̂ij + o(h)

h
= λp̂ij if i 6= j (1.36)

α(i) = lim
h→0

1− (1− λh)(1 + λhp̂ij) + o(h)

h
= λ(1− p̂ii) (1.37)

that in compact notation is
L = λ(P̂ − I). (1.38)

Definition 1.10. Let X̂ be a discrete Markov chain with transition matrix P
and X the uniform Markov chain associated to it, with rate λ = 1. L = P − I
is the infinitesimal generator of X. Then we define with L also the infinitesimal
generator of the discrete time process X̂.

From (1.35), the infinitesimal generator can be interpreted as the derivative in
0 of the function t 7→ P (t). Also, in view of the semigroup properties, for any
t ≥ 0, h ≥ 0

P (t+ h)− P (t)

h
= P (t)

P (h)− I

h
=

P (h)− I

h
P (t). (1.39)

If the passage to the limit is allowed (e.g. when the state space E is finite) we
obtain the differential equations

d

dt
P (t) = P (t)L,

d

dt
P (t) = LP (t). (1.40)

Thus the dynamic of P (t) is obtained by solving the so-called Kolmogorov’s back-
ward or forward differential systems in (1.40) with the initial condition P (0) = I.
If E is countable infinite, the passage to the limit in (1.34) is allowed under suit-
able conditions (see [1]).

Moreover, if E is finite, the unique solution to the Kolmogorov’s backward/forward
equation with initial condition P (0) = I is

P (t) = etL. (1.41)

Definition 1.11. A stationary distribution of the HMC X with transition semi-
group {P (t)}t≥0 is a probability measure π on E such that for any t ≥ 0

π = πP (t) (1.42)
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As in the discrete case, from (1.24) we have that if X(0) has law π, then also
X(t) is distributed according to π. Hence the chain is said to be in a stationary
regime (or equilibrium), because for any 0 ≤ t1 ≤ ... ≤ tk and any states i1, ..., ik

Pπ(X(t1 + s) = i1, ..., X(tk + s) = ik) = Pπ(X(t1) = i1, ..., X(tk) = ik) (1.43)

for any s ≥ 0. In fact the quantity in (1.43) is equal to π(i1)pi1i2(t2−t1) · · · pik−1ik(tk−
tk−1) and is indipendent from s.
The stationary distribution may not exists and need not to be unique. Anyway
for continuous time HMC on a finite state space E, where (1.34) is satisfied, there
is an easy characterization of the stationary distribution, that is

πL = 0 (1.44)

where L is the infinitesimal generator of the HMC. In expanded form

π(i)α(i) =
∑

j 6=i

π(j)α(j, i). (1.45)

Embedded process

We have seen how to define the (continuous) uniform Markov chain from a discrete
time HMC. For regular jump HMCs there exists a canonical way to reverse the
procedure, in order to get a discretization of the dynamics at continuous time.

Definition 1.12. Let 0 = τ0 < τ1 < ... < τn < ... be the increasing sequence
of transition times (which are stopping times) for a regular jump process X =
{X(t)}t≥0. By convention we say that X(∞) = ∆ where ∆ is an arbitrary element
that is not contained in E. Consider the extended state space E∆ = E ∪ {∆}.
The process X̃ = {X̃n}n≥0 with values in E∆ defined by

X̃n := X(τn) (1.46)

is called embedded process of the HMC.

Notice that if X is a regular jump HMC then from the Strong Markov property
it follows that, given X(τn) = k ∈ E then {X(τn + t)}t≥0 and {X(τn ∧ t)}t≥0 are
indipendent. Therefore, given X̃n = k, we have that {X̃n+1, X̃n+2, ...} are inde-
pendent from {X̃1, ..., X̃n−1}, that is X̃ is a discrete Markov chain and, again by
the Strong Markov property, it is homogeneous.

Moreover the following result, that is called Regenerative Structure of the em-
bedded process, holds.
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Theorem 1.7. Let X = {X(t)}t≥0 be a regular jump HMC with infinitesimal
generator L = {α(i, j)}i,j∈E, transition times {τn}n≥0 and embedded process X̃ =
{X̃n}n≥0.

(a) X̃ is a discrete-time HMC with state space E∆ and transition matrix P̃ =
{p̃ij}i,j∈E∆

given by

P̃ =







P̃ |E ∗

0 · · · 0 1







(1.47)

where p̃ij =
α(i,j)
α(i)

if i, j ∈ E and α(i) > 0, p̃ij = 0 if i, j ∈ E and α(i) = 0,

whereas in ∗ there are the elements p̃i∆ = 0 if α(i) > 0, p̃i∆ = 1 if α(i) = 0.

(b) Given X̃ the sequence random variables {τn+1 − τn}n≥0 are indipendent and
for any s > 0

P (τn+1 − τn > s | X̃) = e−s·α(X̃n). (1.48)

The proof for the regenerative structure for the embedded process of a HMC
can be found in [1] (Chapter 8, Theorem 4.2).

In conclusion from a regular jump HMC it is possible to retrieve the skeleton
structure of the Markov chain, that is the discrete time HMC given by the embed-
ded process.
The embedded process of a continuous HMC only partially reverse the building
procedure of the uniform Markov chain from a discrete HMC. In fact: take any
irreducible discrete HMC X̂ with transition matrix P̂ on the state space E and
build from it the uniform Markov chain X (which has regular jumps) with param-
eter λ. Then the embedded process of X (restricted to E) may have different law
respect to X̂, and they have the same law if and only if p̂ii = 0 for all i ∈ E.

An immediate corollary of Theorem 1.7 is the following.

Theorem 1.8. Two regular jump HMCs with the same infinitesimal generator and
the same initial distribution are probabilistically equivalent, that is the infinitesimal
generator characterizes the semigroup.

1.3 Linear operators on Markov chains

Let X be a finite or countable space. Consider the set

D = {f : X → R} (1.49)
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which is a vector space over R.

Consider now a linear operator K : D → D. We can think to K as an operator
acting on the left or on the right, in the following way: if f, φ ∈ D

(Kf)(x) :=
∑

y∈X
K(x, y)f(y) (1.50)

(φK)(x) :=
∑

y∈X
φ(y)K(y, x) (1.51)

That is, K is a |X | × |X | real matrix with components Kxy = K(x, y) and the
equation (1.37)-(1.38) are the classical matricial product using f as column vector
and φ as row vector. The matrix

K = (K(x, y))x,y∈X (1.52)

is called kernel of the operator.
Given a linear operator we can always describe its kernel matrix; but also, vicev-
ersa, given a matrix we can always think it to be the kernel of a linear operator
(on right or on left).
Thus, if the context is clear, without any specification we’ll call K both the linear
operator and the matrix (1.39) of the linear operator.

Actually to associate K to a matrix we should have introduced before an ap-
propriate basis for D: in the finite case this can be done in a very obvious way,
but in the infinite (countable) case it’s slightly more difficult and we would need
some additional assumption on D. Thus for the moment we assume X is finite.

Let X be a discrete Markov chain on the state space X with transition matrix
P = (pxy)x,y∈X . Then P can be seen as the linear operator P : D → D

(Pf)(x) =
∑

y∈X
pxyf(y) = Ex[f(X1)] (1.53)

thus Pf is the mean value of f after one step. Similarly P n = (pxy(n))x,y∈X is also
the linear operator P n : D → D

(P nf)(x) =
∑

y∈X
pxy(n)f(y) = Ex[f(Xn)] (1.54)

that is P nf is the mean value of f after n steps.
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Now let X be a continuous Markov chain on X with transition semigroup
(P (t))t≥0 where, for any t ≥ 0, P (t) = (P t(x, y))x,y∈X and infinitesimal generator
L = (α(x, y))x,y∈X . Then P t : D → D

(P tf)(x) =
∑

y∈X
P t(x, y)f(y) = Ex[f(Xt)] (1.55)

and P tf is the mean value of f after time t. At last, recalling that by definition of
infinitesimal generator we have α(x, x) = −α(x) = −∑y 6=x α(x, y), then L : D →
D with

(Lf)(x) =
∑

y∈X
α(x, y)f(y) =

∑

y 6=x

α(x, y)[f(y)− f(x)]. (1.56)

In the examples above all the matrices are associated to left operators. But we
can also think to those matrices as right operators. In particular if we consider

M : {µ : X → [0, 1] | µ is a probability measure} (1.57)

we can think to any stochastic matrix as an operator M → M. In the discrete-
time case P n : M → M with

(νP n)(x) =
∑

y∈X
ν(y)pyx(n) = Pν(Xn = x) (1.58)

and in the continuous-time case P t : M → M with

(µP t)(x) =
∑

y∈X
ν(y)pyx(t) = Pµ(Xt = x) (1.59)

are coherent with (1.5) and (1.20) thinking to ν and µ as initial distributions.
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Chapter 2

Elements of potential theory

2.1 Discrete Laplace equation

The study of steady state phenomena is often related to the Laplace equation
∆f = 0, a second order partial differential equation. The potential theory is the
study of the solutions to this problem.

Let U ⊂ R
d be an open connected set.

Definition 2.1. A function f ∈ C(U ,R) is called harmonic is ∆f(x) = 0 for all
x ∈ U where

∆f(x) :=
d∑

i=1

∂2

∂x2
i

f(x) (2.1)

Definition 2.2. Let U ⊂ R be an open subset and g ∈ C(∂U ,R). Then
{

∆f(x) = 0 if x ∈ U ,
f(x) = g(x) if x ∈ ∂U (2.2)

is called Dirichlet problem.

Proving well-posedness for the Dirichlet problem can be a difficult task, but
still many important results are obtained by an analytical approach. These results
can be found in various books, for example in [4] (Chapter 3).

Theorem 2.1. Let Br(x) := {y ∈ R
d : |x−y| < r}, the ball of radius r and center

x, such that Br(x) ⊂⊂ U . If f is harmonic in U then the following mean value
formulas hold:

f(x) =
1

|Br(x)|

∫

Br(x)

f(y) dy (2.3)

f(x) =
1

|∂Br(x)|

∫

∂Br(x)

f(y) dσ(y) (2.4)
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It is easy to observe that (2.3) and (2.4) are equivalent, since for any integrable
function u it holds:

∫

Br(x)

u(y) dy =

∫ r

0

ds

∫

∂Bs(x)

u(y) dσ(y).

A continuous function for which (2.3) or (2.4) holds is said to satisfy the mean
value property and the reason is deduced directly from the two expressions.

This property actually characterizes the harmonic functions since the reverse
is also true.

Theorem 2.2. Let f ∈ C(U). If f satisfies the mean value property, then f ∈ C∞

and it is harmonic in U .
Theorem 2.3. If f has the mean value property and attains its maximum or
minimum at p ∈ U , then f is constant. In particular, if U is bounded and f ∈ C(U)
is not constant, then, for every x ∈ U

f(x) < max
∂U

f and f(x) > min
∂U

f. (2.5)

The last result is usually called maximum principle. Two immediate conse-
quences of this principle are the uniqueness and the stability for the solution to
the Dirichlet problem. However it is not trivial to prove existence for the solution
working from an analytical point of view.

On the other hand, the strength of the probabilistic method lies in being able
to write immediately a solution to the problem. Kakutani [6] in 1944 provided the
following candidate solution to the problem (2.2):

h(x) := Ex[g(Wτ∂U )] (2.6)

where Px is the law of a d-dimensional Brownian motion starting from x and τA
is the hitting time defined by

τA := inf{t ≥ 0 : Wt ∈ A}. (2.7)

Indeed by definition of τ∂U we have h(x) = g(x) if x ∈ ∂U . Moreover if we consider
Br(x) such that Br(x) ⊂ U using the strong Markov property for W at time τ∂Br(x)

we obtain:

h(x) = Ex [g(Wτ∂U )]

= Ex

[

Ex

[

g(Wτ∂U )|Wτ∂Br(x)

]]

=

∫

∂Br(x)

Ey [g(Wτ∂U )] dPx(Wτ∂Br(x)
= y)

=
1

|∂Br(x)|

∫

∂Br(x)

h(y) dσ(y)

(2.8)
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that is the mean value property. Thus, as a consequence of Theorem 2.2, the last
thing to check in order to prove that h defined in (2.6) is harmonic is the continu-
ity. We refer to [5], section 4.2, for a deeper discussion on regularity.

More in general one could consider the larger class of semi-elliptic partial dif-
ferential equations, i.e. second order operators of the form:

L =
n∑

i=1

bi(x)
∂

∂xi

+
n∑

i,j=1

aij(x)
∂2

∂xi∂xj

(2.9)

where bi and aij = aji are continuous and all the eigenvalues of the symmetric
matrix a = (aij)i,j are non negative. The corresponding Dirichlet problem is

{

Lf(x) = 0 if x ∈ U
f(x) = g(x) if x ∈ ∂U (2.10)

and it can be solved similarly to the Laplacian case, by constructing an Itô dif-
fusion process whose generator coincides with L. In [7], chapter 9, B. Øksendal
deals with the problem of finding the correct solution.

Our interests now will focus on the study of solutions for the Dirichlet problem
in the discrete case. The first step is to define a discretized version of the Laplacian
or, more generally, of a second order semi-elliptic operator.

Let h > 0 and hZd be the lattice of points x = (x1, ..., xd) whose coordinates
are integer multiples oh h. Consider the simple random walk in dimension d over
the lattice, whose transition matrix is defined by

Pxy :=

{
1
2d

if |x− y| = h

0 if |x− y| 6= h
(2.11)

As noticed in [4] if f is a twice continuously differentiable function then for any x
it holds

lim
h→0




1

2d

∑

|x−y|=h

f(y)− f(x)




1

h2
=

1

2d
∆f(x). (2.12)

The part inside square parenthesis in the latter limit can be rewritten as Lf(x),
coherently with the notation introduced in chapter 1, where L = P − Id is the
infinitesimal generator of the uniform Markov chain with rate λ = 1 associated to
the simple random walk. This suggests to define the discrete Laplace operator as

∆∗
h :=

2d

h2
L (2.13)
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so that the discrete Laplace equation is ∆∗
hf = 0 or, equivalently, Lf = 0.

In order to generalize the discretization procedure to any other semi-elliptic
differential operator L the idea is to construct inside the lattice hZd a random
walk whose infinitesimal generator is L and such that 2d

h2L → L for h → 0.

We may also extend this reasoning to more complicated discrete structures.
Consider a generic irreducible discrete Markov chain X with transition matrix P
on the state space E. The process induces a graph structure on E, in which the
point of E are the nodes and edges (x, y) are identified whenever pxy > 0.

Definition 2.3. Let X be a discrete irreducible Markov process on E with gen-
erator L and U any subset of E. Then, for the boundary condition g : E → R, we
define the discrete Dirichlet problem associated to X as

{

Lf(x) = 0 if x ∈ U
f(x) = g(x) if x ∈ U c.

(2.14)

If Lh(x) = 0 for all x ∈ U then h is called harmonic for X in U .

In the discrete case the harmonicity of a function is equivalent to a mean value
property because:

Lf(x) = 0 ⇐⇒
∑

y∈E
p(x, y)[f(y)− f(x)] = 0

⇐⇒
∑

y∈E
p(x, y)f(y)− f(x) = 0 ⇐⇒ f(x) =

∑

y∈E
p(x, y)f(y)

(2.15)

that means f in x is equal to its average (through P ) on the other vertices.

Observe that in compact notation (2.15) could be rewritten as Pf = f , that is
f is harmonic if and only if it is eigenvector or P with eigenvalue 1.

The Kakutani’s probabilistic form of the solution to the Dirichlet problem is
very simple to state and prove, as done in [8], section 9.2, by D. Levin, Y. Peres
and E. Wilmer.

Theorem 2.4. The unique solution to the Dirichlet problem (2.14) is

h(x) := Ex[g(XτUc )] (2.16)

Proof. Clearly h(x) = g(x) for all x ∈ U c by definition of τUc . Thus, thanks to
observation in (2.15), it is sufficient to prove that the function h defined above
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satisfies the mean value property in U .
If x ∈ U then Px(τUc ≥ 1) = 1. Hence using the Markov property for X it holds:

h(x) = Ex[g(XτUc )] =
∑

y∈E
p(x, y)Ex [g(XτUc )|X1 = y]

=
∑

y∈E
p(x, y)Ey[g(XτUc )] =

∑

y∈E
p(x, y)h(y) (2.17)

that is h has the mean value property in x.

In order to get uniqueness we first prove the maximum principle, i.e. if h is
harmonic for X in U then h reaches its maximum and minimum values on U c.

Define the set of maximum points for h in E

A := {u ∈ E : h(u) = max
x∈E

h(x)}. (2.18)

Assume there exists x ∈ U ∩ A, otherwise there is nothing to prove, and choose
y ∈ E with x 6= y such that p(x, y) > 0. Note that irreducibility allows to find
such a point y. By harmonicity

h(x) =
∑

z∈E
p(x, z)h(z) = p(x, y)h(y) +

∑

z 6=y

p(x, z)h(z) (2.19)

Now h(z) ≤ h(x) because x ∈ A, hence if h(y) < h(x) we have from (2.19) h(x) <
∑

z∈E p(x, z)h(x) = h(x) that is a contradiction. This means that h(y) = h(x),
i.e. y ∈ A. To conclude notice that by irreducibility for any x, y there exists a
path of positive probability, hence choosing x ∈ U ∩ A and y ∈ U c and iterating
the procedure above we discover that y ∈ A, that is the maximum value of h is
reached in U c. Proof for the minimum is analogous.

Therefore, if h1 and h2 are two solutions of (2.14) then by linearity the difference
h1 − h2 is solution to the problem Lf = 0 in U with boundary condition f = 0 in
U c. Using maximum/minimum principle we observe that:

max
x∈E

(h1 − h2)(x) = max
x∈Uc

(h1 − h2)(x) = 0 =⇒ h1 − h2 ≤ 0 (2.20)

min
x∈E

(h1 − h2)(x) = min
x∈Uc

(h1 − h2)(x) = 0 =⇒ h1 − h2 ≥ 0 (2.21)

hence h1 = h2.
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As noticed in [8], without using the maximum/minimum principle, an alterna-
tive way to prove uniqueness of the solution is to observe that condition Lf(x) = 0
in (2.14), rewritten as the mean value formula f(x) =

∑

y∈E p(x, y)f(y), is a system
of |U| linear equations in |U| unknowns. Thus existence of the solution automati-
cally implies uniqueness.

2.2 Electrical networks

Definition 2.4. Let X be a countable set and c : X × X → [0,+∞) a real non-
negative symmetric function. The pair (X , c) is called electrical network if:

(i) for any x ∈ X
µ(x) :=

∑

y∈X
c(x, y) < +∞ (2.22)

(ii) for all distinct x, y ∈ X there exist x = z1, z2, ..., zn = y such that c(zi, zi+1) >
0 for any i = 1, ..., n− 1.

An electrical network can be interpreted as a weighted graph with positive
weights. The elements of X are called nodes: Two nodes x, y ∈ X are connected
if c(x, y) > 0. An edge is an element of E , the set containing all the ordered pairs
of connected nodes

E = {(x, y) ∈ X × X : x 6= y, c(x, y) > 0}. (2.23)

Often can be useful to refer to an edge by calling it e ∈ E . If e = (x, y) then we
use the notation e− = x, e+ = y, so that it is clear what is the direction of the
edge; obviously by symmetry if e = (x, y) ∈ E then also −e = (y, x) ∈ E .

The term electrical comes from the representation of such object in a physical
point of view. For x, y different nodes c(x, y) is called conductance, whereas

r(x, y) =
1

c(x, y)
(2.24)

is called resistance.
In the case (x, y) 6∈ E then c(x, y) = 0, thus we set r(x, y) = +∞.

Given any electrical network (X , c) it is possible to construct a discrete Markov
chain X on the state space X with transition matrix P = (p(x, y))x,y∈X such that

p(x, y) :=
c(x, y)

µ(x)
(2.25)
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X is ergodic and reversible with respect to the measure µ.
Conversely, any ergodic reversible discrete Markov chain is associated to some

electrical network. Indeed, if µ is a reversible measure for X, using the transition
matrix P we recover the weights c(x, y) := µ(x)p(x, y).
As the reversible measure is defined up to a multiplicative constant, there exist an
infinite number of networks associated to X. Anyway, if the reversible measure
is finite, the canonical choice is to take the network for which µ is a probability
distribution.

We call potential any real function on the network X .

Definition 2.5. Let (X , c) be an electrical network, U ⊂ X and g : X → R a
potential. The function V : X → R is an equilibrium potential with respect to the
constraint V (x) = g(x) for any x ∈ U c if it satisfies:

• Ohm’s law: the current i : E → R on the network associated to V is

i(x, y) =
V (x)− V (y)

r(x, y)
(2.26)

• Kirchoff’s law: for all x ∈ U
∑

{y:(x,y)∈E}
i(x, y) = 0. (2.27)

Equivalently the equilibrium potential is solution of the problem:






∑

y∈X
c(x, y)[V (x)− V (y)] = 0 for x ∈ U

V (x) = g(x) for x ∈ U c

(2.28)

Now let X be the discrete Markov chain associated with the network (X , c). If L
is the infinitesimal generator of a uniform Markov chain over X with rate λ = 1
it holds

Lf(x) :=
∑

y∈X
p(x, y)[f(y)− f(x)] =

∑

y∈X

c(x, y)

µ(x)
[f(y)− f(x)] (2.29)

Observe that (2.7) is equivalent to the following Dirichlet problem:
{

−LV (x) = 0 for x ∈ U
V (x) = g(x) for x ∈ U c (2.30)

That is the equilibrium potential V is an harmonic function on U for the associated
discrete Markov chain.

27



Proposition 2.5. Let (X , c) be an electrical network and X its associated random
walk with transition probabilities p(x, y) = c(x, y)/µ(x). Let U ⊂ X and g : U c →
R a fixed potential on U c. Then the function V : X → R defined by

V (x) := Ex[g(XτUc )] (2.31)

is the unique equilibrium potential.

Proof. As we have observed above the equilibrium potential is an harmonic func-
tion that solves the Dirichlet problem (2.9). Then applying theorem (...) of the
previous section the unique solution is the one defined in (2.10).

As observed by A. Gaudillière in [3], if (X , c) is an electrical network then for
each U ⊂ X there is a unique set HU of harmonic functions on the associated
random walk. But the functions in HU are harmonic for an infinite number of
networks, since from different networks is possible to obtain the same random
walk.
Actually the set of harmonic functions HU is associated to many more networks.
Indeed the diagonal values c(x, x) are irrelevant from an electrical point of view,
but self-loops are possible according to the definition. Thus two networks that
differ only in the diagonal values have the same set of harmonic potentials HU ,
despite having associated different random walks.

2.3 Flows

We proceed by introducing the notion of flow, following the discussion in [3]. As
we will see the flows are linked to the physical quantity previously defined not only
by a physical point of view but also by the mathematical one.
Most of the results are quite simple in the case of finite state space, but without
an effort under suitable assumptions it is possible to generalize them in the infinite
case.

Definition 2.6. Any anti-symmetric real function on E is called flow, that is
φ : E → R such that φ(x, y) = −φ(y, x).

For example given a potential f on X the current i that is constructed using
Omh’s law i(x, y) = c(x, y)[f(x)− f(y)] is a flow and it is called current flow.
So any current associated to a potential is a flow, but viceversa a flow could not
be the current associated to some potential.

Similarly to the lattice case of X = Z
d the divergence of a flow is the function

div(φ) : X → R defined by

div(φ)(x) =
∑

e−=x

φ(e) (2.32)
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that is the sum of the flows from x towards its nearest neighbours.
If the network is finite, i.e. |X | < ∞, then by the anti-symmetry of the flow we
have that the total divergence of any flow φ on the network is

∑

x∈X
div(φ)(x) =

∑

x,y
(x,y)∈E

φ(x, y) = 0 (2.33)

since in the second sum both (x, y) and (y, x) are present.
The divergence of a current flow can also be rewritten by means of the infinites-

imal generator L of random walk on the network

div(i)(x) =
∑

y:(x,y)∈E
c(x, y)[f(x)− f(y)] = −µ(x)Lf(x). (2.34)

This gives an equivalent characterization of the harmonic potentials on U ⊂ E , that
is a function V : X → R such that the current flow associated to it φ := −c∇V
satisfies

div(φ)(x) = 0 ∀x ∈ U . (2.35)

Intuitively this means that for each x ∈ U the total incoming flux is equal to the
total outgoing flux. A more explicit representation of the physical meaning comes
from the application of the Stokes’ Lemma.

Lemma 2.6 (Discrete Stokes’ Lemma). For any flow φ and for any finite K ⊂ X
it holds ∑

e∈∂K
φ(e) =

∑

x∈K
div(φ)(x), (2.36)

where the border of K is ∂K := {e ∈ E : e− ∈ K, e+ 6∈ K}

Proof. We have

∑

x∈K
div(φ)(x) =

∑

x∈K

∑

e−=x

φ(e) =
∑

e∈∂K
e−∈K

φ(e) +
∑

e 6∈∂K
e−∈K

φ(e) (2.37)

Now if e 6∈ ∂K but e− ∈ K, then both e− and e+ are in K. Then by symmetry also
−e 6∈ ∂K and −e− = e+ ∈ K. Thus e appears in the last summation if and only
if −e does. Hence by anti-symmetry of the flow φ(e) = −φ(−e) and the second
summation on the right hand side of (2.16) is 0.

Corollary 2.7. V : X → R is an harmonic potential on U if and only if its
corresponding current flow φ := −c∇V has 0 flux through any finite cut-set ∂K,
with K ⊂ U .
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Given a flow φ for each x ∈ X the quantity div(φ)(x) must be either =, < or
> 0. Thus we can divide the space into disjoint sets A,B,X \ (A ∪ B), such that

div(φ)(a) > 0 ∀a ∈ A,

div(φ)(b) < 0 ∀b ∈ B,

div(φ)(x) = 0 ∀x 6∈ A ∪ B

(2.38)

Definition 2.7. A flow φ is called flow from A to B if (2.17) holds. The elements
of A are called sources whereas the element of B are called sinks. The strength of
the flow is

|φ| := max

{
∑

a∈A
div(φ)(a);−

∑

b∈B
div(φ)(b)

}

(2.39)

The flow is said to be unitary if |φ| = 1; if the set B is empty we say φ is a flow
from A to infinity.

By immediate application of Stokes’ lemma we also see that if X is finite then
∑

a∈A div(φ)(a) +
∑

b∈B div(φ)(b), i.e. the two quantities in (2.18) are equal.
Now we go back to the problem of identifying the equilibrium potentials on

networks. Let A,B ⊂ X be disjoint subset such that

Px(τA∪B < ∞) = 1 ∀x ∈ X , (2.40)

where P stands for the law of the random walk X associated to the network.
Condition (2.19) is clearly satisfied in the case |X | < ∞ or more generally |U| < ∞,
where U = X \ (A ∪ B); also if we are considering an electrical network such
condition holds, since the associated random walk X is ergodic.

Now we fix some constant values VA and VB on the sets A and B and we look
for the solution to the Dirichlet problem







LV (x) = 0 for x ∈ U
V (x) = VA for x ∈ A

V (x) = VB for x ∈ B

(2.41)

If we call g the function such that g(x) = VA for x ∈ A, g(x) = VB for x ∈ B, then
from Proposition (2.1) we know that the Kakutani’s solution to the problem is

V (x) = Ex[g(XτA∪B
)] = VAPx(τA < τB) + VBPx(τB < τA) (2.42)

that can be rewritten in a more compact way as

V (x) = VB + (VA − VB)Px(τA < τB) (2.43)
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For VA = 1 and VB = 0 we obtain a very special solution that is denoted by VA,B

whose value is
VA,B(x) = Px(τA < τB) (2.44)

The latter special case turns to be very useful. If i is the current flow

i = −c∇V (2.45)

associated to the equilibrium potential which is solution of (2.20), then we have

i(x, y) = −c(x, y)[V (y)− V (x)]

= −c(x, y)[VB + (VA − VB)Py(τA < τB)− VB − (VA − VB)Px(τA < τB)]

= −(VA − VB)c(x, y)[VA,B(y)− VA,B(x)]

(2.46)

Thus changing the boundary values VA and VB the current flow does change only
by a multiplicative factor.

The current flow in (2.24) coherently with our definition is a flow from A to
B when VA > VB or from B to A when VB > VA. Indeed if x ∈ U it holds
div(i)(x) = 0 and using the latter equation for any a ∈ A

div(i)(a) =
∑

e−=a

i(e)

= −
∑

y∈X
(VA − VB)c(a, y)[VA,B(y)− VA,B(a)]

= (VA − VB)µ(a)
∑

y∈X
p(a, y)[Pa(τA < τB)

︸ ︷︷ ︸
=1

−Py(τA < τB)]

= (VA − VB)µ(a)
∑

y∈X
p(a, y)[Py(τA > τB)]

= (VA − VB)µ(a)Pa(τ
+
A > τ+B )

(2.47)

where τ+K := min{n ≥ 1 : Xn ∈ K} and in the latter equation we have used the
Markov property. And analogously for b ∈ B we get

div(i)(b) = (VB − VA)µ(b)Pb(τ
+
B > τ+A ) (2.48)

(Note: the divergence in A and in B is different from zero only on ∂A and on ∂B).

In order to compute the strength of the current notice that by the reversibility
of X with respect to µ two paths, one the inverse of the other, starting with the
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stationary measure have the same probability to occur. Thus we obtain

∑

a∈A
µ(a)Pa(τ

+
A > τ+B ) =

∑

a∈A

∑

n>0

∑

b∈B
µ(a)Pa(τ

+
A > τ+B = n,Xn = b)

=
∑

b∈B

∑

n>0

∑

a∈A
µ(b)Pb(τ

+
B > τ+A = n,Xn = a)

=
∑

b∈B
µ(b)Pb(τ

+
B > τ+A )

(2.49)

Definition 2.8. The capacity CA,B is the strength of the current flow associated
to VA,B, that is

CA,B :=
∑

a∈A
µ(a)Pa(τ

+
A > τ+B ) =

∑

b∈B
µ(b)Pb(τ

+
B > τ+A ) (2.50)

Thus using (2.26) or (2.27) we see that

|i| = |VA − VB|CA,B. (2.51)

Furthermore if CA,B is finite (e.g. when X is finite) it is possible to define the flow

iA,B :=
−c∇VA,B

CA,B

(2.52)

which is a unitary flow from A to B.
In chapter 4 of [3] Gaudillière provides a nice link between the condenser physics

in the continuum and the electrical networks introduced above.
Following those considerations, if V is a potential and i the associated current
flow, it is natural to define the charge in any x ∈ X as

q(x) := div(i)(x) (2.53)

Hence, from the previous considerations, if V is a potential such that i is a flow
from A to B it holds

q(x) =







0 if x 6∈ A ∪ B

(VA − VB)µ(x)Px(τ
+
A > τ+B ) if x ∈ A

(VB − VA)µ(x)Px(τ
+
B > τ+A ) if x ∈ B

(2.54)

and more generally if V is an harmonic function in U then each point of U has
zero charge.
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2.4 Green’s function

Consider the electrical network (X , c) with the associated Markov chain X.

Definition 2.9. For any B ⊂ X and x, y ∈ X the Green’s function is

GB(x, y) := Ex

[
τB−1∑

n=0

1{X(n)=y}

]

, (2.55)

where τB is the hitting time for the set B. Therefore the Green’s function is the
expected number of visits in y, starting from x, before hitting B.

Remark 1. Consider the case x = y. Let NB(y) :=

τB−1∑

n=0

1{X(n)=y} be the random

variable counting the number of visits in y before hitting B. If we call τ+y =
inf{n ≥ 1 : X(n) = y}, the first return time in y, then, using the strong Markov
property, we are able to write the probability distribution of NB(y) with respect
to Py as follows:

Py(NB(y) = k) =
(
Py(τ

+
y < τB)

)k−1
Py(τ

+
y > τB) (2.56)

that is a geometric distribution with success probability p = Py(τ
+
y > τB). In par-

ticular, in the case x = y, the Green’s function is the mean value of the geometric
random variable NB(y) and is equal to 1

p
.

Note that the sum in (2.55) is almost surely finite. Then, exchanging the mean
value with the sum, one gets

GB(x, y) =
∑

n≥0

Px(X(n) = y and n < τB) (2.57)

Then, from the reversibility of X, it holds the following symmetry condition:

µ(x)GB(x, y) = GB(y, x)µ(y). (2.58)

If A,B ⊂ X satisfy (2.40) then the Green’s function is linked to the equilibrium
potential VA,B. We define

LA,B := sup{n ≥ 0 : X(n) ∈ A and n < τB} (2.59)

with the convention sup{∅} = −∞. Using the last-exit decomposition we have

VA,B(x) = Px(τA < τB) = Px(LA,B ≥ 0)

=
∑

n≥0

Px(LA,B = n)

=
∑

n≥0

∑

a∈A
Px(X(n) = a, n < τB)Pa(τ

+
A > τ+B )

=
∑

a∈A
GB(x, a)Pa(τ

+
A > τ+B ).

(2.60)
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And using (2.58) we obtain

VA,B(x) =
∑

a∈A

GB(a, x)

µ(x)
µ(a)Pa(τ

+
A > τ+B ) (2.61)

where the factor µ(a)Pa(τ
+
A > τ+B ) is exactly the charge in a under the potential

VA,B.

We conclude this section with a simple technique, that will be useful in the
next chapter, to calculate the Green’s function.
Let P , defined in (2.25), be the transition matrix of X. Observe that

∑

n≥0

Px(X(n) = y and n < τB) =
∑

n≥0

([P ]Bc)n (x, y) (2.62)

where [P ]Bc is the restriction of the transition matrix to the set X \B. The latter
is a matrix with all row summing to values strictly lower then 1. In particular
([P ]Bc)n tends to the zero matrix as n goes to infinity and it is possible to apply
the formula for the geometric series:

∑

n≥0

([P ]Bc)n (x, y) = ([I − P ]Bc)−1 (x, y). (2.63)

Hence, from (2.57), we obtain

GB(x, y) = ([I − P ]Bc)−1 (x, y). (2.64)
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Chapter 3

Random spanning forests

3.1 Forest measure

The aim of this section is to introduce an appropriate measure for the set of all
the forests spanning a graph.

Let X be a finite space with |X | = n, and w : X × X → [0,∞) a fixed weight
function.
The weights {w(x, y) ∈ [0,∞) : (x, y) ∈ X × X} induce the structure of oriented
weighted graph on X , by taking as oriented edges of the graph all the possible
jumps within X, namely

E = {(x, y) ∈ X × X : x 6= y, w(x, y) > 0}. (3.1)

Definition 3.1. Let X be a finite space, w : X × X → [0,∞) a weight function,
and E set of edges accordingly to (3.3). Then G = (X , E , w) is called weighted
oriented graph.

A weighted oriented graph can be thought of as the graph associated to a
Markov chain on the state space X , with generator L defined as the linear operator

(Lf)(x) =
∑

y∈X
w(x, y)[f(y)− f(x)], (3.2)

for arbitrary f : X → R.

Now we would like to identify all the possible spanning forests in G.
First we can construct an X -spanning unrooted forest, that is any simple undi-
rected graph without cycles obtained by the nodes in X . Clearly each connected
component of these forests are trees.
Next we can choose a node in each tree that is called root, so that we are able to
direct all the edges in a tree towards its root. The structure obtained is thus an
oriented graph φ.
If φ is a subgraph of G, i.e. each oriented edge of φ belongs to E , we will say φ is
a spanning rooted forest of G. From now on φ will be identify with the set of its
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edges, i.e. as a subset of E .
Finally we denote by F the set of all the spanning rooted forests of G. Note that
∅ ∈ F is the trivial forest for which each node of X is a root of a trivial tree.

Given φ ∈ F we can define the total weight w(φ) of the forest as the product
of the weights of its edges

w(φ) :=
∏

e∈φ
w(e) (3.3)

The set F is finite because |X | < ∞. Thus we can introduce the forest probability
measure on F .

Definition 3.2. Let φ ∈ F be a forest and denote by ρ(φ) the set of its roots.
Fix q > 0 Then the measure wq(φ) : F → [0,∞)

wq(φ) := q|ρ(φ)|
∏

e∈φ
w(e) = q|ρ(φ)|w(φ) (3.4)

is called standard measure of φ.
This measure is finite and, normalizing it with the partition function Z(q) :=
∑

φ∈F wq(φ), we get

νq(φ) :=
wq(φ)

Z(q)
, (3.5)

the standard probability measure of φ.

This notion can be generalized introducing a family of rates

{q(x) ∈ [0,+∞] : x ∈ X}, (3.6)

one for each state in X . We denote Q(x, y) = q(x)1{x=y} the diagonal matrix with
entries given by q and define the set S = {x ∈ X : q = ∞}.
Definition 3.3. Let φ ∈ F be a forest and ρ(φ) the set of its root. Given the set
of killing rates {q(x) ∈ [0,∞] : x ∈ X} the measure wQ(φ) : F → [0,∞)

wQ(φ) :=
∏

x∈ρ(φ)\S
q(x)

∏

e∈φ
w(e) 1{S⊂ρ(φ)} (3.7)

is the generalized measure of φ.
After introducing the partition function Z(Q) :=

∑

φ∈F wQ(φ), we get

νQ :=
wQ(φ)

Z(Q)
(3.8)

the generalized probability measure of φ.
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Observe that in the first product of (3.8) we are excluding the roots in S, i.e.
such that q(x) = ∞. This implies that wQ(φ) < ∞. and means that the roots in
S do not count for the forest weight.

We call random spanning forest a random variable Φq (or ΦQ, in the generalized
version) associated to the probability measure νq (or νQ) on X .

3.2 Loop-erased trajectory

In this paragraph we would like to introduce the notion of loop-erased trajectory,
giving a general construction and recovering the probability for one of this tra-
jectories to be chosen among the others. Concretely we need to track a Markov
process that starts from an arbitrary point in Y and stops when arrives into a
subset B ∈ Y , but deleting all the loops generated along the path.

Let Y be a finite space and Y a continuous time Markov chain on it, with
transition rates {α(y, z) ∈ [0,+∞] : y, z ∈ Y}. Then the infinitesimal generator L
of Y is given by

(Lf)(y) =
∑

z∈Y
α(y, z)[f(z)− f(y)] (3.9)

for any arbitrary f : Y → R. We assume that for each y ∈ Y there is at most one
z ∈ Y such that α(y, z) = +∞, so that it cannot exist two different attractors for
the same point.
Let

α(y) :=
∑

z∈Y\{y}
α(y, z). (3.10)

For any point y ∈ Y there are two cases:

• α(y) = +∞: in this case there exists an attractor (because Y is finite), i.e.
a node z ∈ Y such that α(y, z) = +∞. If the Markov process Y arrives in y
then it is immediately forced to jump in z;

• α(y) < +∞: then if the Markov process Y is in y, it is free to move to the
other nodes according to the weights α(y, ·).

Thus there is an important difference in terms of dynamics, a forced behaviour in
the first case, a free behaviour in the second one. Then we are able to choose a
subset B ⊂ Y such that

{y : α(y) = +∞} ⊂ B. (3.11)
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so that α(y) < ∞ for any y ∈ Bc = Y \B. We assume that

Py(TB < ∞) = 1 ∀y ∈ Y (3.12)

where Py is the the law of the process Y starting in y and TB = inf{t ≥ 0 : Yt ∈ B}
is the hitting time of B. This means that B is accessible for the process Y from
any starting point.
From now on B will play the role of absorption subset for the Markov chain Y .

Take y0, ..., yn ∈ Y a list of ordered points (possibly repeated). We denote
with ξ = (y0, ..., yn) the oriented trajectory from y0 to yn passing neatly through
the points yi. Moreover if ξ = (y0, ..., yn) is a trajectory we denote with V (ξ) =
{y0, ..., yn} the set of nodes it contains.
If some point is repeated in the trajectory we call loop the ordered list of points in
between the point and its repetition, the latter included. For example if we have

ξ = (y0, ..., yi, ..., yj, ..., yl) (3.13)

with yi = yj then η = (yi+1, ..., yj) is a loop. Note that if ξ has a loop then it’s
possible to ”loop-erase” the trajectory, simply deleting from ξ the elements of its
loop.

Definition 3.4. Let y0, ..., yl ∈ Y be different points, i.e. yi 6= yj for any i 6= j ∈
{0, ..., l}, such that y0, ..., yl−1 ∈ Bc and yl ∈ B. The trajectory of l+1 points and
length l γB = (y0, ..., yl) is called self-avoiding path towards B.

By definition a self-avoiding path has not loops.

We are interested in defining a procedure to sample self-avoiding paths toward
B starting from the Markov chain Y on Y .

Definition 3.5. For y0 ∈ Y let Py0 be the law of the process Y starting from
y0. Let B ⊆ Y be any subset with assumptions (3.12), (3.13). Define a random
loop-erased trajectory ΓB obtained from Y under Py0 in the following way:

1. start the process Y at the point y0 and let it be the first term of the trajectory;

2. each time the process jumps to a new point yi add it to the trajectory;

3. if after adding a point a loop has been created, delete this loop;

4. iterate until the process reaches B, and let YTB
be the last point of the

trajectory.
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From this procedure we have that ΓB is a self-avoiding path. Note that if the
starting point y0 ∈ B then ΓB = (y0) is the trivial trajectory containing only one
point.

In order to compute the probability that the above procedure realizes a given
trajectory γB we need to use a discretization of the continuous-time Markov process
Y absorbed in B.
Consider the n× n stochastic matrix P̂ , with n = |Y|, defined by imposing

P̂ (y, z) =







α(y, z)

α
if y ∈ Bc and y 6= z,

1−
∑

x∈Y\{y}
P̂ (y, x) if y = z ∈ Bc,

δ{y=z} if y ∈ B,

(3.14)

where we recall that α(y, z) for y, z ∈ Y are the transition rates for Y , whereas

α := max
y∈Bc

α(y) (3.15)

with α(y) defined as in (3.11). Notice that α < ∞ because the maximum is taken
on the set Bc, that is such that α(y) < +∞ for any y ∈ Bc. Also α 6= 0 because
α(y) > 0 for all y ∈ Bc (otherwise the existance of such point y would be in
contraddiction with the assumption (3.13)).

By construction, we can look at the Markov process Y absorbed in B as the
uniform Markov process ŶN(t), where Ŷ is the discrete-time HMC on the state

space Y associated to the transition matrix P̂ and {N(t)} is an HPP(α). Namely,
after an exponential time with rate α, the process will move according to the
transition probabilities in (3.15).
Thus, for any arbitrary f : Y → R we have

(Lf)(y) = (α(P̂ − 1)f)(y) for y ∈ Bc (3.16)

and in particular

[L]Bc =
[

α(P̂ − 1)
]

Bc
(3.17)

where L is the infinitesimal generator of Y in (3.10) and [ · ]A denotes the restric-
tion of a matrix to a subset A ⊂ Y .

Finally, with these instruments and following the argument used by L. Avena
and A. Gaudillière in [10], we are able to state and prove our goal proposition:
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Proposition 3.1. Let Y be a continuous-time Markov chain on the state space Y
with infinitesimal generator L given by

(Lf)(y) =
∑

z∈Y
α(y, z)[f(z)− f(y)]. (3.18)

Let γB = (y0, ..., yl) be a self-avoiding path from y0 to B, with y0, ..., yl−1 ∈ Bc

distinct points, and yl ∈ B. Then

Py0(ΓB = γB) =
l−1∏

i=0

α(yi, yi+1)
detBc\{y0,...,yl−1}(−L)

detBc(−L) (3.19)

where detA( · ) = det([ · ]A) denotes the determinant of the matrix restricted to
A ⊂ Y.

Proof. We make use of Ŷ , the discretization of the Markov process Y absorbed in
B constructed above. Consider the stopping times

T̂+
y0

:= inf{k ≥ 1 : Ŷk = y0} first return time in y0 (3.20)

T̂B := inf{k ≥ 0 : Ŷk ∈ B} hitting time of B (3.21)

Since we are looking for the probability Py0(ΓB = γB), we can exploit the loop-
erasing property of ΓB appropriately.
Assume that T̂+

y0
< T̂B, i.e. the process Ŷ returns in y0 before hitting B: then, as

soon the process returns in y0, the loop in ΓB (which consists of the entire trajectory
except the initial point) is erased. Hence, thanks to the strong Markov property
of Ŷ , the process starts anew with the same law Py0 , and also the trajectory ΓB

restarts from the point y0.
In other words, the fact that T̂+

y0
< T̂B does not affect the Py0 probability that

ΓB = γB:
Py0(ΓB = γB|T̂+

y0
< T̂B) = Py0(ΓB = γB). (3.22)

From this identity, and noting that Py0(T̂
+
y0

= T̂B) = 0, we get

Py0(ΓB = γB) = Py0(ΓB = γB, T̂
+
y0

< T̂B) + Py0(ΓB = γB, T̂
+
y0

> T̂B)

= Py0(ΓB = γB|T̂+
y0

< T̂B)Py0(T̂
+
y0

< T̂B) + Py0(ΓB = γB, T̂
+
y0

> T̂B)

= Py0(ΓB = γB)Py0(T̂
+
y0

< T̂B) + Py0(ΓB = γB, T̂
+
y0

> T̂B),

and it follows

Py0(ΓB = γB) =
Py0(ΓB = γB, T̂

+
y0

> T̂B)

1− Py0(T̂
+
y0

< T̂B)
=

Py0(ΓB = γB, T̂
+
y0

> T̂B)

Py0(T̂
+
y0

> T̂B)
. (3.23)
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Consider now the random variable

Ny0 =
∞∑

k=0

1{Ŷk=y0} (3.24)

counting the number of returns in y0 for the random walk Ŷ . If the process starts
in Ŷ0 = y0 ∈ Bc, by construction the probability that Ŷ returns (for the first time)
in y0 is Py0(T̂

+
y0

< T̂B). By the strong Markov property for Ŷ , we also know that

this probability is the same at each return, because Py0( · ) and Py0( · |T̂+
y0
) have

the same law. Thus

Py0(Ny0 = n) =
(

Py0(T̂
+
y0

< T̂B)
)n−1

Py0(T̂
+
y0

> T̂B)

=
(

1− Py0(T̂
+
y0

> T̂B)
)n−1

Py0(T̂
+
y0

> T̂B) (3.25)

i.e. it is the probability to return n−1 times in y0 and then to reach the subset B:
indeed once Ŷ reaches B the process cannot come back to y0. From (3.26) we get
that under Py0 the random variable Ny0 has geometric distribution with success

probability p = Py0(T̂
+
y0

> T̂B).
Hence, we can express the mean number of returns in y0 as the mean of a geometric
distribution, that is

Ey0 [Ny0 ] =
1

p
=

1

Py0(T̂
+
y0

> T̂B)
(3.26)

where the latter is the denominator of the r.h.s. of (3.24). Moreover we see that

Ey0 [Ny0 ] = Ey0

[ ∞∑

k=0

1{Ŷk=y0}

]

=
∞∑

k=0

Ey0

[

1{Ŷk=y0}

]

=
∞∑

k=0

Py0(Ŷk = y0) (3.27)

hence

Ey0 [Ny0 ] =
∞∑

k=0

[P̂ ]kBc(y0, y0) =
(

[1− P̂ ]Bc

)−1

(y0, y0) =
detBc\{y0}(1− P̂ )

detBc(1− P̂ )
(3.28)

where we used the formula for the geometric series of a matrix and the Cramer’s
rule for the inverse of a matrix.

Furthermore, by the Markov property, the numerator in equation (3.24) can
be written as

Py0(ΓB = (y0, ..., yl), T̂
+
y0

> T̂B) = P̂ (y0, y1)Py1(ΓB = (y1, ..., yl), T̂
+
y0

> T̂B)

= P̂ (y0, y1)Py1(ΓB∪{y0} = (y1, ..., yl)), (3.29)
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where the latter equality is justified by the fact that if ΓB = (y1, ..., yl), and at the
same time T̂+

y0
> T̂B, then ΓB cannot make any (erased) loop containing y0.

Finally from (3.24), summing up the results in (3.27), (3.29) and (3.30), we
obtain a recursive formula for the probability in the statement of the proposition:

Py0(ΓB = (y0, ..., yl)) = P̂ (y0, y1)
detBc\{y0}(1− P̂ )

detBc(1− P̂ )
Py1(ΓB∪{y0} = (y1, ..., yl)).

(3.30)
Iterating this equation we notice that the last term is Pyl(ΓB∪{y0,...,yl−1} = (yl)) = 1
because the starting point yl is contained in B. In conclusion, by iteration and
with the notational convention {y0, ..., yj} = ∅ for j < 0, we get

Py0(ΓB = γB) =
l−1∏

i=0

P̂ (yi, yi+1)
detBc\{y0,...,yi}(1− P̂ )

detBc\{y0,...,yi−1}(1− P̂ )

=
detBc\{y0,...,yl−1}(1− P̂ )

detBc(1− P̂ )

l−1∏

i=0

P̂ (yi, yi+1)

(∗) =
detBc\{y0,...,yl−1}(−L/α)

detBc(−L/α)
l−1∏

i=0

α(yi, yi+1)

α

= αl
detBc\{y0,...,yl−1}(−L)

detBc(−L)
1

αl

l−1∏

i=0

α(yi, yi+1)

=
detBc\{y0,...,yl−1}(−L)

detBc(−L)
l−1∏

i=0

α(yi, yi+1),

where in (∗) we used the identity (3.18) and the transition probabilities of the
Markov matrix in (3.15).

3.3 Wilson’s algorithm

It looks difficult to sample the standard and generalized probability measures in
(3.6) and (3.9) and to explicitly compute their partition function. The purpose of
this section is to introduce an algorithm, due to D. Wilson and J. Propp [9], that
allows us to achieve this goal.

Recall, from section 3.1, that X is an irreducible Markov process on X defined
by its generator L in (3.2).
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We now consider an extended process X on X = X ∪ {∆} where ∆ 6∈ X is an
absorbing state: this can be obtained by leaving unchanged the dynamics inside X
and by adding some killing rates {q(x) ∈ [0,+∞] : x ∈ X}, each one corresponding
to a Poisson process with rate q(x) associated to the transition from x ∈ X to ∆.

The infinitesimal generator of X is given by the linear operator

Lf(x) =
{

Lf(x) + q(x)[f(∆)− f(x)] if x 6= ∆

0 if x = ∆
(3.31)

or, equivalently, in matrix form, by

L = (α(x, y))x,y∈X =








q(x1)

L−Q
...

q(xn)
0 · · · 0 0








(3.32)

where we recall that Q(x, y) = q(x)1{x=y}. In particular we notice that

α(x, y) =

{

w(x, y) if x ∈ X , y ∈ X , x 6= y

q(x) if x ∈ X , y = ∆
(3.33)

Moreover

[−L]X = Q− L and [−L]A = [Q− L]A ∀A ⊂ X . (3.34)

Definition 3.6. We define the Wilson’s Algorithm as follows:

1. start the process X from any x1 ∈ X until it reaches ∆, i.e. perform a
random loop-erased trajectory Γ∆ starting from x1 under L. Call γ1 this
self-avoiding path;

2. if V (γ1) = X stop; otherwise choose any point x2 ∈ X \ V (γ1) and perform
a loop-erased trajectory ΓV (γ1) starting from x2. Call γ2 this self-avoiding
path;

3. if ∪i=1,2V (γi) = X stop; otherwise choose any point x3 ∈ X \∪i=1,2V (γi) and
perform a loop-erased trajectory Γ∪i=1,2V (γi) starting from x3. Call γ3 this
self-avoiding path;

4. iterate this procedure until X is completely covered.
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Let TX be the set of the spanning oriented (towards the root) trees on X
rooted at ∆. By construction, the Wilson’s algorithm produces an element τ ∈
TX in finite time, because the irreducibility of X ensures that, for any B ⊂ X ,
inf{t ≥ 0 : X t ∈ B} < ∞ almost surely.
Let W denote the random element of TX obtained from the Wilson’s algorithm.
Then it holds the following.

Proposition 3.2. Fix τ ∈ TX , a spanning tree rooted at ∆. Then

P(W = τ) =

∏

x∈∂−ρ(τ)\S
q(x)

∏

e∈τ\∂ρ(τ)
w(e)

detX\S(−L) 1{S⊂∂−ρ(τ)}. (3.35)

where ∂ρ(τ) = {e ∈ τ : e+ = ∆} is the set of edges in τ pointing to the root and
∂−ρ(τ) = ∪e∈∂ρ(τ){e−}.

Proof. The proof follows as a corollary of Proposition 3.1 from the following ob-
servations.

First notice that the Wilson algorithm can only produce trees τ in TX such that
S ⊂ ∂−ρ(τ). Indeed, whenever the process X reaches a node s ∈ S it immediately
jumps to ∆ because q(s) = +∞: thus s ∈ ∂−ρ(τ). In particular (s,∆) ∈ τ for any
s ∈ S.
From now on we thus consider τ such that S ⊂ ∂−ρ(τ).

Pick any arbitrary x1 ∈ X \B1 with B1 = {∆}∪S. By definition of tree, there
exists a unique oriented path of minimum length from x1 to some element in B1

for the fixed tree τ ; we call it

γ1 = (x
(0)
1 , x

(1)
1 , ..., x

(l1)
1 ), (3.36)

with x
(0)
1 = x1. Notice that it could be either x

(l1)
1 = ∆ or x

(l1)
1 ∈ S, but in both

cases the knowledge of γ1 is sufficient to completely determine the path from x1

to the root ∆, thanks to the observation above.
Thus, following the Wilson algorithm, the probability to be generate γ1 is equal

to Px1(ΓB1 = γ1), where Γ denotes the random loop-erased trajectory obtained
from X.
From (3.20) we can compute this probability using the generator of X defined in
(3.33):

Px1(ΓB1 = γ1) =
detBc

1\V (γ1)(−L)
detBc

1
(−L)

l1−1∏

i=0

α(x
(i)
1 , x

(i+1)
1 ) (3.37)
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Now let B2 = B1 ∪ V (γ1). If B2 = X the algorithm stops, otherwise pick any
x2 ∈ X \ B2. Again, following Wilson algorithm, the unique oriented path of

minimum length from x2 to some element in B2 is denoted by γ2 = (x
(0)
2 , ..., x

(l2)
2 ),

with x
(0)
2 = x2. γ2 has a probability to occur given by Px2(ΓB2 = γ2). Notice that

as before the knowledge of γ2 is sufficient to determine the entire path from x2 to
∆, because if x

(l2)
2 6= ∆ then the portion of path from x

(l2)
2 to ∆ has been detected

yet in the previous step of the algorithm.
From (3.20) we have

Px2(ΓB2 = γ2) =
detBc

2\V (γ2)(−L)
detBc

2
(−L)

l2−1∏

i=0

α(x
(i)
2 , x

(i+1)
2 ). (3.38)

We may iterate this procedure until we find some point xn ∈ X \ Bn such that
Bn ∪V (γn) = X . Since Bc

n \V (γn) = ∅, as consequence of Proposition 3.1 it holds

Pxn
(ΓBn

= γn) =
detBc

n\V (γn)(−L)
detBc

n
(−L)

ln−1∏

i=0

α(x(i)
n , x(i+1)

n )

=
1

detBc
n
(−L)

ln−1∏

i=0

α(x(i)
n , x(i+1)

n ).

(3.39)

Finally, we have P (W = τ) =
∏n

k=1 Pxk
(ΓBk

= γk) because the loop-erased
trajectories are independent and their union forms the entire tree τ . Moreover,
since by definition Bc

k \ V (γk) = Bc
k+1 for any k = 1, ..., n− 1, it follows

P (W = τ) =
n∏

k=1

Pxk
(ΓBk

= γk)

=
n∏

k=1

[

detBc
k
\V (γk)(−L)

detBc
k
(−L)

lk−1∏

i=0

α(x
(i)
k , x

(i+1)
k )

]

=
1

detBc
1
(−L)

n∏

k=1

lk−1∏

i=0

α(x
(i)
k , x

(i+1)
k )

(3.40)

By construction the terms in the double product are distinct and each one is biu-
nivocally associated to an edge in τ (except for the edges connecting the elements
in S with ∆ which are not counted). In particular using the expression of α(x, y)
in (3.34) we can split the product over the two sets {e ∈ ∂ρ(τ) : e− 6∈ S} and
{e ∈ τ \ ∂ρ(τ)}:

P(W = τ) =

∏

e∈∂ρ(τ):e− 6∈S
q(x)

∏

e∈τ\∂ρ(τ)
w(e)

detBc
1
(−L) (3.41)
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which is equal to the claim of the theorem, as Bc
1 = X \ S.

Note that the random choice of the points x1, ..., xn used by the Wilson’s algo-
rithm is irrelevant, since the result is independent from them.

Remark 2. In the construction of the Wilson’s algorithm we have introduced the
absorbing state ∆, and this let us define the extended process X.
Anyway, in the case of uniform killing rate q > 0, the dynamics can also be
described in a different way: indeed consider the loop-erased random walk (LERW)
obtained from X in the sense of Definition 3.5, that is erasing loops as soon as
they appear, with target subset B = ∅. Thus the Wilson’s algorithm is obtained
by running sequentially the LERW and stopping it at independent times Tq, which
are exponential random variables of parameter q. For more details see [11].

3.4 Partition function

The set F of spanning rooted forests in X and the set TX of spanning trees rooted
at ∆ are in natural bijection.
Indeed, if φ ∈ F , then we may uniquely define τ(φ) ∈ TX by adding to φ all the
edges connecting the roots of φ to ∆, that is the set of edges {(e−, e+) : e− ∈
ρ(φ), e+ = ∆}.
Conversely, if τ ∈ TX , we obtain an unique element φ(τ) ∈ F by removing from τ
all the edges containing the root ∆.

Thanks to the latter observation we are able to sample the measure (3.9) via
Wilson’s algorithm.

Theorem 3.3. Let {q(x) ∈ [0,+∞] : x ∈ X} be a collection of killing rates and
wQ, Z(Q), νQ the associated forest measure, partition function, forest probability
measure on F as in definition 3.3. For any φ ∈ F , with ρ(φ) denoting the set of
the roots, let τ(φ) ∈ TX be the oriented spanning tree inside X rooted at ∆ and
such that τ(φ) = φ ∪ {(e−, e+) : e− ∈ ρ(φ), e+ = ∆}. Then

Z(Q) = detX\S(Q− L) (3.42)

and
νQ(φ) = P (W = τ(φ)) (3.43)

Proof. We recall that by definition

wQ(φ) :=
∏

x∈ρ(φ)\S
q(x)

∏

e∈φ
w(e) 1{S⊂ρ(φ)}. (3.44)
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Note that we can rewrite the two sets indexing the products as

{x ∈ ρ(φ) \ S} = {x ∈ ∂−ρ(τ(φ)) \ S}

so we obtain that

P(W = τ) =

∏

x∈∂−ρ(τ)\S
q(x)

∏

e∈τ\∂ρ(τ)
w(e)

detX\S(−L) 1{S⊂∂−ρ(τ)} =
wQ(φ)

detX\S(−L) . (3.45)

Now the denominator in the latter equation is independent from φ, thus in order
to obtain Z(Q) we just need to sum over φ ∈ F and use the fact that the Wilson’s
algorithm may only produce trees τ(φ) ∈ TX for some φ ∈ F . Then

Z(Q) =
∑

φ∈F
wQ(φ) = detX\S(−L)∑φ∈F P(W = τ(φ)) = detX\S(−L) (3.46)

and to conclude, using observation (3.35), detX\S(−L) = detX\S(Q− L).

Finally from (3.46)

νQ(φ) =
wQ(φ)

Z(Q)
= P(W = τ(φ)). (3.47)

Corollary 3.4. If q > 0 is an uniform killing rate the partition function for the
standard forest measure is

Z(q) = q
n−1∏

i=1

(q + λi) (3.48)

where λi’s, for i = 0, ..., n−1, are the eigenvalues of −L ordered by non-decreasing
real part and λ0 = 0.

Proof. Applying Theorem 3.3 to the case q(x) ≡ q > 0, we have S = ∅ and Q = qI.
Then

Z(q) = detX (Q− L) = det(q1− L) = χL(q) (3.49)

where χL(q) is the characteristic polynomial of L. Hence, factorizing it, we have
Z(q) =

∏n−1
i=0 (q + λi).

At last λ0 = 0 because the infinitesimal generator matrix L is singular.
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The latter result leads to another important corollary for the standard case
with killing rates q(x) ≡ q > 0, because it allows to describe the probability
distribution of the root number of Φq. Recall that Φq is a random variable taking
values in F such that P(Φq = φ) = νq(φ).

Corollary 3.5. Let q > 0 be an uniform killing rate and assume −L has real
spectrum Sp(−L) = {λ0, ..., λn−1}. Let |ρ(Φq)| be the random variable counting
the number of roots of Φq. Then

|ρ(Φq)| ∼
n−1∑

i=0

B

(
q

q + λi

)

(3.50)

the sum of n independent Bernoulli random variables with parameters q

q+λi
.

Proof. For fixed k ≥ 0, we aim to evaluate P(|ρ(Φq)| = k), that can be expressed
as a fraction as follows

P(|ρ(Φq)| = k) =
1

Z(q)

∑

φ:|ρ(φ)|=k

wq(φ) =
Zk(q)

Z(q)
, (3.51)

where the numerator corresponds to the total weight of the forests in F having k
roots.

Observe that, by definition, Z(q) =
∑

φ∈F q|ρ(φ)|w(φ). If we consider the par-
tition function as a polynomial of q, we deduce that Zk(q) is equal to the term of
degree k in Z(q).

Besides, from Corollary 3.4, the partition function is Z(q) =
∏n−1

i=0 (q + λi),
product of monomials. Hence the coefficient of degree k of such polynomial is
simply given by the sum of the products of all the possible combinations of n− k
elements in the set {λ0, ..., λn−1}:

Zk(q) = qk
∑

I∈P[n−k]

∏

i∈I
λi (3.52)

where P [m] denotes the set of all possible choices of m elements in {0, 1, ..., n−1}.
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Summing up and rearranging the terms, we obtain

P(|ρ(Φq)| = k) =
Zk(q)

Z(q)
=

qk
∑

I∈P[n−k]

∏

i∈I
λi

∏

i∈{0,...,n−1}
(q + λi)

=
∑

I∈P[n−k]

[
∏

i∈I

(
λi

q + λi

)][
∏

j 6∈I

(
q

q + λj

)]

=
∑

J∈P[k]

[
∏

j∈J

(
q

q + λj

)][
∏

i 6∈J

(

1− q

q + λi

)]

(3.53)

that is equivalent to the claim.

Remark 3. Observe that any forest φ ∈ F must contain at least one and at most
n = |X | trees (or roots). This is consistent with Corollary 3.6 because, as we
know, λ0 = 0 is an eigenvalue of −L and then the first Bernoulli random variable

is B
(

q

q+λ0

)

= B(1) = 1 almost surely. So the statement (3.51) can be rewritten

more explicitly as

|ρ(Φq)| ∼ 1 +
n−1∑

i=1

B

(
q

q + λi

)

(3.54)

Remark 4. In Corollary 3.6 we used the hypothesis that the eigenvalues of −L
are real. In fact it is possible to remove such condition and obtain the same exact
result of equation (3.54). However the outcome is not the sum of Bernoulli random
variables, as λi may be complex numbers.
A clever way to deal with this problem is provided by L. Avena and A. Gaudillière
in [12] introducing new random variables with complex Bernoulli law. Since L
is a real matrix, also its characteristic polynomial is real, and consequently the
eigenvalues must be real or complex conjugate. Then if we denote pi :=

q

q+λi
we

observe that

pi =

(
q

q + λi

)

=
q

q + λi

. (3.55)

Now, for simplicity, we define the partition of I = {1, 2, ..., n−1} into three disjoint
sets, I = I0 ∪ I+ ∪ I−, where

I0 = {i ∈ I : Im(λi) = 0}, I+ = {i ∈ I : Im(λi) > 0}, I− = {i ∈ I : Im(λi) < 0}.
(3.56)

The terms in the sum of (3.54) with index is in I0 are still contributing as Bernoulli
with parameter pi. The remaining terms can be coupled pairwise in a single random
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variable C(pi), with i ∈ I+, having the following distribution:

P(C(pi) = 2) = pipi,

P(C(pi) = 1) = pi(1− pi) + pi(1− pi),

P(C(pi) = 0) = (1− pi)(1− pi)

(3.57)

(and the right terms are all real values between 0 and 1, thanks to the fact that
the eigenvalues have non-negative real part). In conclusion the statement of the
latter corollary, without the hypothesis of real spectrum, is

|ρ(Φq)| = 1 +
∑

i∈I0

B

(
q

q + λi

)

+
∑

i∈I+

C

(
q

q + λi

)

. (3.58)

Moreover, it is possible to compute the mean value and the variance of the
random variable |ρ(Φq)|. The straightforward way is using the explicit formula
(3.55) (or (3.59) in the complex case) and observing that the random variables in
the sum are independent. But there is also another more interesting way that only
involves the knowledge of the partition function.

Proposition 3.6. Let q > 0. Then

E[|ρ(Φq)|] =
n−1∑

i=0

q

q + λi

, (3.59)

Var(|ρ(Φq)|) =
n−1∑

i=0

q

q + λi

−
(

q

q + λi

)2

. (3.60)

Proof. Recall that Φq is a random variable taking values in F and with law νq
defined in (3.6). Thus if O(Φq) is an observable its mean value is given by

E(O(Φq)) =
∑

φ∈F
O(φ)νq(φ) =

∑

φ∈F O(φ)q|ρ(φ)|w(φ)
∑

φ∈F
q|ρ(φ)|w(φ)

(3.61)

where the denominator is the partition function Z(q). In particular if we differen-
tiate the logarithm of Z(q) with respect to q we obtain

∂

∂q
log(Z(q)) =

1

Z(q)

∂

∂q
Z(q) =

1

Z(q)

∑

φ∈F

∂

∂q

(
q|ρ(φ)|w(φ)

)
=

1

Z(q)

∑

φ∈F
|ρ(φ)|q|ρ(φ)|−1w(φ) =

1

q
E[|ρ(Φq)|]. (3.62)
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Then, using the result of Corollary 3.5 we have

E[|ρ(Φq)|] = q
∂

∂q
log(Z(q)) = q

∂

∂q
log

(
n−1∏

i=0

(q + λi)

)

= q

n−1∑

i=0

1

q + λi

. (3.63)

For what concerns the variance, observe that

(

q
∂

∂q

)2

log(Z(q)) = q
∂

∂q

[

1

Z(q)

∑

φ∈F
|ρ(φ)|q|ρ(φ)|w(φ)

]

=

∑

φ∈F |ρ(φ)|2q|ρ(φ)|w(φ)
Z(q)

−
(∑

φ∈F |ρ(φ)|q|ρ(φ)|w(φ)
Z(q)

)2

= E[|ρ(Φq)|2]− E[|ρ(Φq)|]2 = Var(|ρ(Φq)|)
(3.64)

so the claim follows easily differentiating the right hand side of (3.64) and multi-
plying by q.

As we have seen, Markov chains and weighted graphs are two side of the same
coin. Moreover the results of this section show how the study of random spanning
forests is strictly related to the spectral analysis of the infinitesimal generator of
the random walk associated to the graph.

Example. Consider a finite homogeneous complete graph KN , where N ≥ 1 is
the number of vertices, with constant edge weights w > 0. The Laplacian assumes
the following form:

L =








∗ w · · · w

w
. . . . . .

...
...

. . . . . . w
w · · · w ∗








(3.65)

where the element on the diagonal is ∗ = −(N − 1)w. Our aim is to find the
eigenvalues for L.

First we notice that γ1 = 0 is an eigenvalue, since the matrix L is singular.
Indeed the relative eigenspace has dimension 1 and it is

V1 = 〈 v1 〉, with v1 = e1 + e2 + ...+ en (3.66)

(here E = {e1, ..., en} denotes the canonical basis).
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In order to find the other eigenvalues, we just need to exploit the symmetry of
the problem, and observe that subtracting the value λ2 = −Nw on the diagonal
we obtain:

L− λ2I =






w · · · w
...

. . .
...

w · · · w




 . (3.67)

This matrix has obviously rank 1, since all its columns (or rows) are identical. The
eigenspace relative to λ2 then is:

V2 = 〈 v2, v3, ..., vn 〉, with vk = e1 − ek for k ≥ 2. (3.68)

Hence the matrix L has the eigenvalue λ1 with multiplicity 1, and the eigenvalue
λ2 with multiplicity n− 1. The characteristic polynomial for L is:

χL(q) = q(q +Nw)n−1 (3.69)

As a consequence of Corollary 3.5, the root number distribution for a random
spanning forest over KN , with killing rate q > 0, is

|ρ(Φq)| ∼ 1 +
n−1∑

i=1

B

(
q

q +Nw

)

(3.70)

which is the sum of independent and identically distributed Bernoulli random
variables.

In general it is a hard task to compute explicitly the eigenvalues of the in-
finitesimal generator for a specific Markov processes.

3.5 Root process

The aim of this section is to prove that the random set ρ(ΦQ) is a determinantal
process. We begin with some definition.

Definition 3.7. Let Λ be a locally compact Polish space, i.e. a separable and
completely metrizable topological space. A point process ξ is a random integer-
valued positive Radon measure on Λ. When ξ almost surely assigns at most value
1 to the singletons the point process is said to be simple.

In other words, a point process can be interpreted as a random counting mea-
sure; moreover a simple point process can be identified with a random discrete
subset of Λ, and ξ(D) represents the number of points of this random set that fall
in D ⊂ Λ.
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Definition 3.8. The joint intensities of a point process ξ with respect to the
measure µ are functions (if any exist) ρk : Λk → [0,∞), for k ≥ 1, such that for
any family of mutually disjoint subsets D1, ..., Dk of Λ

E

[
k∏

i=1

ξ(Di)

]

=

∫

∏
i Di

ρk(x1, ..., xk) dµ(x1) · · · dµ(xk). (3.71)

Definition 3.9. A point process ξ on Λ is said to be a determinantal process with
kernel K if it is simple and its joint intensities satisfy

ρk(x1, ..., xk) = detI(K) (3.72)

with I = {x1, ..., xk} for every k ≥ 1 and x1, ..., xk ∈ Λ.

In [13] can be found more details about point processes and some important
examples of determinantal processes.

We state now the important result claimed in the beginning of this section.
Consider the extended Markov process X defined on X = X ∪∆ defined in (3.32)
by its infinitesimal generator L. Up to time T∆ = inf{t ≥ 0 : Xt = ∆}, the process
X can be coupled with the Markov process X in X , with infinitesimal generator
L given in (3.2), stopped at rate q(x) in each x ∈ X . We denote with TQ this
stopping time. In the uniform case, q(x) ≡ q > 0, the time TQ (denoted simply
Tq) has exponential distribution of parameter q.
By construction, the point XTQ

is the last node of X visited by X before going
directly in ∆.

Theorem 3.7. The random set ρ(ΦQ) is a determinantal process with kernel KQ

defined by
KQ(x, y) = Px(XTQ

= y), x, y ∈ X . (3.73)

That is, for any A ⊂ X

P(A ⊂ ρ(Φq)) = detA(KQ). (3.74)

In order to prove the theorem, it is useful to introduce the trace process. As-
sume that Y is a generic Markov chain on Y with generator

(Lf)(y) =
∑

z∈Y
α(y, z)[f(z)− f(y)]. (3.75)

As usual let α = maxy α(y) (assuming it is finite) and construct the discrete process

Ŷ on Y with transition matrix P̂ and such that

L = α(P̂ − 1Y). (3.76)
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Vice versa, Y is obtained from Ŷ updating the position of the process after inde-
pendent times distributed as exponential of parameter α.

If we fix A ⊂ Y we can build a new Markov process Ŷ A, with state space A,
which is the trace of the process Ŷ on A, i.e. it captures the trajectory of Ŷ only
inside A ignoring what happens in Ac. More precisely the transition matrix of the
process Ŷ A is P̂A defined by

P̂A(x, y) = Px

(

ŶT̂+
A
= y
)

, x, y ∈ A (3.77)

with T̂+
A = inf{n ≥ 1 : Ŷn ∈ A} is the first return time of Ŷ in A.

Finally, going back to continuous time, we may define the continuous process
Y A whose dynamics is given by Ŷ A but whose jumps are performed after inde-
pendent exponential times of parameter α. In other words it is a process with
infinitesimal generator

LA = α(P̂A − 1A). (3.78)

Notation: if B,C ⊂ Y , [L]B is the restriction of the matrix L on the set B whereas
[L]B,C is the operator containing only the transition rates from B to C of the
matrix L.
With this notation it holds:

Proposition 3.8. Let Y be a Markov process on Y with infinitesimal generator L.
Fix A ⊂ Y and let Y A be the trace process of Y on A with infinitesimal generator
LA. Then LA is the Schur complement of [L]Ac in L:

LA = [L]A − [L]A,Ac [L]−1
Ac [L]Ac,A. (3.79)

Proof. We start computing P̂A. From (3.72), if Ŷ0 = x, then the contribution to
P̂A(x, y) comes from two different possible cases:

- the next jump of Ŷ is performed towards y with some positive probability;

- in the next jump Ŷ leaves A, it continues moving outside A for some time
and finally it jumps from Ac to y with positive probability.

Due to this observation it holds

P̂A(x, y) = P̂ (x, y) +
∑

z,z′

P̂ (x, z)

(
∑

k≥0

[P̂ ]kAc(z, z′)

)

P̂ (z′, y). (3.80)

The term inside the parenthesis is a geometric series, thus

P̂A(x, y) = [P̂ ]A(x, y) +
∑

z,z′

P̂ (x, z)
(

1Ac − [P̂ ]Ac

)−1

(z, z′)P̂ (z′, y) (3.81)
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From (3.76), subtracting 1A on both sides and multiplying by α, we get

α(P̂A − 1A) = α[P̂ − 1]A − α[P̂ − 1]A,Ac

(

α[P̂ − 1]Ac

)−1

α[P̂ − 1]Ac,A (3.82)

that is the claim.

If B ⊂ Y is an absorbing set, with A ⊂ Bc, the same computations holds using
the sub-Markovian generator [L]Bc .

For x, y ∈ A the Green’s function of Y and Y A coincide

GB(x, y) = GA
B(x, y) (3.83)

because the mean local time in y starting from x before hitting B is the same for
Y and for Y A.

Before proving Theorem 3.10 we show a lemma that let us express the kernel
KQ in (3.68) in terms of the Green’s function.

Lemma 3.9. It holds

KQ(x, y) =







GQ(x, y)q(y) if x, y 6∈ S

Px(XTQ
= XTS

= y) if y ∈ S, x 6∈ S

1{x=y} if x ∈ S

(3.84)

where S = {x ∈ X : q(x) = ∞} and, for x, y 6∈ S, the Green’s function is

GQ(x, y) = Ex[ly(TQ)] = [Q− L]−1
X\S(x, y) (3.85)

the mean local time spent in y by the process X starting in x up to the stopping
time TQ.

Proof. The only non-trivial case is when x, y 6∈ S, otherwise the restatement comes
directly from the definition of KQ. Set Y = X and Y = X the extended process,

and consider the discrete process Ŷ associated to it in the usual way, such that
the generator of Y and the transition matrix of Ŷ are linked by equation (3.71).
Let T̂∆ be the discrete hitting time of the absorbing state ∆. Describing KQ in
terms of the discrete dynamics, it holds

KQ(x, y) = Px(XTQ
= y) =

∑

k≥1

Px(Ŷk−1 = y, T̂∆ = k)

=
∑

k≥1

Px(Ŷk−1 = y, T̂∆ ≥ k)P̂ (y,∆).
(3.86)
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The second factor in the last term is independent of k and its value is q(y)
α
. The

remaining term in the sum is exactly Ex[ly(T̂∆)], the mean local discrete time spent

by Ŷ in y, i.e. the number of visits in y before the process gets absorbed.

Note that Ex[ly(TQ)] =
Ex[ly(T̂∆)]

α
because the jumps of Y occur after independent

exponential times with parameter α, thus, each time Y visits y, on average it
remains there for an exponential time of mean value 1

α
.

Then

KQ(x, y) = Ex[ly(T̂∆)]
q(y)

α
= Ex[ly(TQ)]q(y). (3.87)

Lastly, observe that

Ex[ly(T̂∆)] =
∑

k≥0

[P̂ ]kX\S(x, y) = ([1− P̂ ]X\S)
−1(x, y). (3.88)

Hence dividing both terms by α and recalling that [−L]X = Q − L, we obtain
equation (3.81).

Proof of Theorem 3.10. We follow the probabilistic proof provided in [10]. The
key idea is to construct two different absorbing states for the Wilson’s algorithm.
Indeed the algorithm works also in the case of more than one absorbing state,
producing a spanning oriented forest instead of a spanning oriented tree.

For simplicity assume S = ∅.
Fix A ⊂ X and let ∆A, ∆Ac be different absorbing states accessible respectively
only from A or Ac. More precisely, if q(x) are the killing rates for the process X,
we set Y = X ∪ {∆A,∆Ac} and define the Markov process Y via its generator

(Lf)(x) =
{

(Lf)(x) + q(x)[f(∆A)1{x∈A} + f(∆Ac)1{x∈Ac} − f(x)], x ∈ X
0, x ∈ {∆A,∆Ac}

(3.89)
similarly to what we did in (3.32), with L being the infinitesimal generator of X.
Also set A∗ = A∪{∆A,∆Ac} and consider the process Y A∗

that traces Y inside A∗.

It is possible to run the Wilson’s algorithm on the two different spaces:

- X = X ∪∆, with absorbing state ∆ and generator as in (3.32). In this case
we denote the random outcome of the algorithm with W ;

- A∗, with absorbing states ∆A,∆Ac and generator LA∗

(that is the generator
of the trace process). In this case we denote the random outcome of the
algorithm with W∗.
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Now define

D = {y ∈ X : (x, y) ∈ W , x ∈ A} (3.90)

D∗ = {y ∈ A∗ : (x, y) ∈ W∗, x ∈ A} (3.91)

that are the set of ending points of the edges starting from A after running the
Wilson’s algorithm. Observe that by construction

P(A ⊂ ρ(ΦQ)) = P(D = {∆}) = P(D∗ = {∆A}), (3.92)

because if the elements of A are roots of the random spanning forest, then all the
edges starting from A need to end inside the absorbing state ∆, in the first case,
or ∆A in the second one.

Now, the last term of (3.88) is easy to compute using Proposition 3.2. Indeed
the probability of the event D∗ = {∆A} is the probability that for the trace process
all the paths of length 1 from A to ∆A occur (and all these events are independent
from each other). Then

P(D∗ = {∆A}) =
∏

a∈A q(a)

detA(−LA∗)
=

detA(Q)

detA(−LA∗)
= detA(Q) det

(([
−LA∗

]

A

)−1
)

(3.93)
where the last equality follows recalling that detA(M) = det([M ]A), and from the
rule for the determinant of the inverse matrix.

Now denote by GA∗

{∆A,∆Ac} the Greeen’s function of the process Y A∗

stopped in

the absorbing states ∆A and ∆Ac . Recall that GA∗

{∆A,∆Ac}(x, y), for x, y ∈ A, is the

local time spent in y by Y A∗

, starting from x and before being absorbed. Then

GA∗

{∆A,∆Ac} =
([
−LA∗

]

A

)−1
, the matrix appearing in the latter equation above.

Moreover observe that by construction, for any x, y ∈ A,

GA∗

{∆A,∆Ac}(x, y) = GY
{∆A,∆Ac}(x, y) = GX

{∆}(x, y) (3.94)

and note that GX
{∆}(x, y) = (Q − L)−1(x, y) for x, y ∈ X . Hence, summing up

equations (3.88), (3.89) and using (3.81), we obtain

P(A ⊂ ρ(ΦQ)) = detA((Q− L)−1) detA(Q). (3.95)

Finally, since Q is a diagonal matrix, it holds

detA((Q− L)−1) detA(Q) = detA((Q− L)−1Q)

and by the application of Proposition 3.11 we obtain P(A ⊂ ρ(ΦQ)) = detA(KQ).
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Chapter 4

Analysis of loop-erased partitions

4.1 Interaction potential

Given a graph G = (X , E , w) any spanning forest φ ∈ F induces a partition of
X into disjoint sets, each one containing the vertices of the different trees in the
forest. We call this partition Π(φ).
As seen in section 3.4, it is possible to sample a random spanning forest using the
Wilson’s Algorithm. This fact suggests the following definition.

Definition 4.1. Let q > 0. A loop-erased partition of X is a random variable Πq

with law

P(Πq = Πm) = µq(Πm) =
qm
∑

φ:Π(φ)=Πm
w(φ)

Z(q)
(4.1)

where Πm is a partition of X , w(φ) and Z(q) are defined in section 3.1.

Remark 5. Comparing (3.6) and (4.1) we observe that

µq(Πm) =
∑

φ:Π(φ)=Πm

νq(φ), (4.2)

that is the probability to choose the partition Πm is equal to the probability that
the Wilson’s algorithm produces a forest φ which induces such partition.

From the latter observation it is clear that the measure µq can be sampled using
the Wilson’s Algorithm. According to definition 3.6, in order to use the algorithm
it should be necessary to introduce the absorbed process X with infinitesimal gen-
erator (3.32) on the extended state space X = X ∪ {∆}.
However in the case of uniform killing rate q > 0, recalling remark 3.3, the ab-
sorption time of the process occurs after a time τq distributed as an exponential
random variable of parameter q. Then, if we consider the loop-erased random walk
(LERW) obtained running the process X on X and erasing the loops as soon as
they appear, it is possible to describe the algorithm in the following way:

1. run a LERW starting from any vertex in X up to a time τq; call γ1 this
self-avoiding path
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2. run a LERW starting from any vertex in X \ γ1 until min{τq, τγ1}, where τγ1
is the hitting time for γ1; call γ2 the union of γ1 with the new self-avoiding
path

3. iterate step 2 with γi+1 in place of γi until all vertex of X are contained in
γi+1.

As observed in [11] by L. Avena, P. Milanesi, M. Quattropani, the algorithm
shows the tendency of the partition to cluster in the same tree the points that
with high probability can be visited by the random walk X on the time scale τq:
this makes the study of metastable-like regions interesting.

The clustering analysis can be performed by studying two-points correlations
associated to µq.

Definition 4.2. Let q > 0 and G = (X , E , w) a weighted graph. Fix x, y ∈ X .
We call pairwise interaction potential the probability

Uq(x, y) := P(x and y are in different blocks of Πq). (4.3)

Since the starting points of the algorithm can be chosen arbitrarily, we may
describe explicitly the quantity in (4.3)

Uq(x, y) =
∑

γ

Px(Γ∆ = γ)Py(τγ\{∆} > τ{∆}) (4.4)

where τ{∆} = inf{t ≥ 0 : X t = ∆}, τγ\{∆} = inf{t ≥ 0 : X t ∈ γ \ {∆}} and the
sum runs over all possible loop-erased paths γ starting at x.

Recall from the previous chapter that Px is the law of the random walk Y on
Y starting from x. If ΓB denotes a random loop-erased trajectory obtained from
Y and stopped at B ⊂ Y , we saw in proposition 3.1 how to compute the proba-
bility Px(ΓB = γ). In order to apply this result to the Wilson’s algorithm it was
sufficient to apply it using Y = X, Y = X and appropriately changing the target
set B at each iteration of the algorithm.

The pairwise interaction potential strongly depends on the geometry of the
graph and thus it is difficult to characterize. In the next sections, we present some
results achieved in [11] in simple geometries.

4.2 Mean-field model

The easiest geometry for a graph is the mean-field model. This model involves a
complete graph denoted by KN , N ≥ 1 being the number of vertices. The set of
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vertices of KN is [N ] = {1, 2, ..., N} and E , the set of edges, contains all possible
pairs of elements in [N ]. The term mean field indicates that each edge is associated
to a constant weight w > 0.

Theorem 4.1. Fix N ≥ 1 and q > 0. Consider the graph KN with constant edge
weight w > 0. Then for any x 6= y ∈ [N ]

U (N)
q (x, y) ≡ U (N)

q =
∑

n≥1

q

q +Nw

(
Nw

q +Nw

)n−1 n∏

k=2

(

1− k

N

)

. (4.5)

Proof. Consider the absorbed process X on the state space X = [N ] ∪ {∆} as-
sociated to the weighted graph. In particular the infinitesimal generator of X
is

L = (α(x, y))x,y∈X =








q

L− qI
...
q

0 · · · 0 0








, where L =








∗ w · · · w

w
. . . . . .

...
...

. . . . . . w
w · · · w ∗








(4.6)
is an N ×N matrix with diagonal entries ∗ = −(N − 1)w.

We use the representation of the interaction potential given in (4.4). Fix a loop-
erased trajectory γ = {x0, x1, ..., xl−1, xl} of length 1 ≤ l ≤ N , with x0 = x, xl = ∆.
Applying proposition 3.1 one gets

Px(Γ{∆} = γ) =
l−1∏

i=0

α(xi, xi+1)
detX\{x0,...,xl−1,∆}(−L)

detX\{∆}(−L) = qwl−1detA(qI − L)

det(qI − L)
(4.7)

where A := [N ] \ {x0, ..., xl−1}. The terms in the fraction are equal to the char-
acteristic polynomials of the matrices [L]A and L respectively. Applying the same
reasoning of the last example of section 3.4, the eigenvalues of [L]A and L are

Spec([L]A) = {−lw,−Nw, ...,−Nw
︸ ︷︷ ︸

N−l−1

}, Spec(L) = {0,−Nw, ...,−Nw
︸ ︷︷ ︸

N−1

}. (4.8)

Then

Px(Γ{∆} = γ) = qwl−1 (q + lw)(q +Nw)N−l−1

q(q +Nw)N−1
= wl−1 q + lw

(q +Nw)l
. (4.9)

Next consider the stopping times τγ\{∆} and τ{∆} for the random walk with law
given by Py. The transition rates for the process X are time-independent until it
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reaches the absorbing state: this means that, starting from y, there are l Poisson
processes with rate w (one for each element in γ \{∆}) and a Poisson process with
rate q competing with each other.
Then

Py(τ{∆} < τγ\{∆}) =

{
q

q+lw
if y 6∈ γ

0 if y ∈ γ
(4.10)

Since the terms in (4.9) and in (4.10) only depend on the length l of the loop-erased
path, to conclude the proof it remains to count how many paths of length l do not
contain y.
The case l = 1 is trivial, since γ is the path that contains just x and ∆.
Also l = N is trivial, because in that case all the elements of [N ] must be in γ, so
y ∈ γ.
If 2 ≤ l ≤ N − 1, the paths such that y 6∈ γ are obtained by choosing neatly the
points x1, x2, ..., xl−1 other than y. In other words, it is necessary to select neatly
l − 1 elements from N − 2 different possible choices: then the number of paths is
(N−2)!

(N−l−1)!
= (N − 2)(N − 3) · · · (N − l).

Summing up we obtain

U (N)
q (x, y) =

∑

γ

Px(Γ∆ = γ)Py(τγ\{∆} > τ{∆})

=
N−1∑

l=1

wl−1 q + lw

(q +Nw)l
q

q + lw

l∏

i=2

(N − i)

=
N−1∑

l=1

q

q +Nw

(
w

q +Nw

)l−1

N l−1

l∏

i=2

(

1− i

N

)

=
N−1∑

l=1

q

q +Nw

(
Nw

q +Nw

)l−1 l∏

i=2

(

1− i

N

)

(4.11)

with the convention that the product term when l = 1 is equal to 1.

Note that result (4.5) has an interesting interpretation. Consider a random
variable Tq with geometric distribution of parameter q̃ = q

q+Nw
so that

P(Tq = k) = q̃(1− q̃)k−1 (4.12)

If we set

f(k,N) :=
k∏

i=2

(

1− i

N

)

(4.13)
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then the interaction potential can be rewritten as

U (N)
q =

N−1∑

k=1

q

q +Nw

(
Nw

q +Nw

)k−1 k∏

i=2

(

1− i

N

)

=
N−1∑

k=1

q̃(1− q̃)k−1f(k,N)

= E [f(Tq, N)] ,

(4.14)

where the last equality follows by observing that f(k,N) = 0 for all k ≥ N .

Remark 6. In the mean-field hypothesis, U
(N)
q (x, y) does not depend on the choice

of the pair (x, y). This is a consequence of the total symmetry of the system.

In the large N limit, for the mean-field model, it is also possible to determine
the law for the interaction potential, when the parameter q scales with the square
root of N .

Proposition 4.2. In the hypothesis of Theorem 1, if q = z
√
Nw, for fixed z > 0,

then

Uq := lim
N→∞

U (N)
q =

√
2πze

z2

2 P(Z > z) (4.15)

where Z is a standard Gaussian random variable.

Proof. Following the observation above, we consider the interaction potential U
(N)
q

as the mean value of f(Tq, N) where Tq is a geometric random variable of parameter
q̃ = q

q+Nw
.

We start approximating f(k,N). Using the Taylor series for the logarithm we get

ln f(k,N) = ln
k∏

i=2

(

1− i

N

)

=
k∑

i=2

ln

(

1− i

N

)

= −
k∑

i=2

i

N
+O

(
i2

N2

)

= − 1

N

[
k(k + 1)

2
− 1

]

+ kO

(
k2

N2

)

= − 1

N

k2 + k − 2

2
+O

(
k3

N2

)

= − k2

2N
+O

(
k

N
+

k3

N2

)

=: − k2

2N
+ cN(k).

(4.16)

Then

U (N)
q = E [f(Tq, N)] = E

[

e−
T2
q

2N
+cN (Tq)

]

(4.17)
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By hypothesis q = z
√
Nw. Since Tq ∼ Geo(q̃) with q̃ = z

√
Nw

z
√
Nw+Nw

−−−→
N→∞

z√
N
,

then Tq√
N

converges in distribution to Y ∼ Exp(z), an exponential random variable
of parameter z. In particular it holds

lim
N→∞

∣
∣
∣
∣
E

[

e−
T2
q

2N

]

− E

[

e−
Y 2

2

]
∣
∣
∣
∣
= 0 (4.18)

Moreover set Z ∼ N (0, 1) a random variable distributed as a standard Gaussian.
Using a simple substitution inside the integral, we have

E

[

e−
Y 2

2

]

=

∫ ∞

0

e−
y2

2 ze−zy dy

= ze
z2

2

∫ ∞

0

e−
1
2
(y+z)2 dy

= ze
z2

2

∫ ∞

z

e−
t2

2 dt

=
√
2πze

z2

2 P(Z > z).

(4.19)

Summing up we obtain

∣
∣
∣U (N)

q −
√
2πze

z2

2 P(Z > z)
∣
∣
∣ =

∣
∣
∣
∣
E

[

e−
T2
q

2N
+cN (Tq)

]

− E

[

e−
Y 2

2

]
∣
∣
∣
∣

≤
∣
∣
∣
∣
E

[

e−
T2
q

2N
+cN (Tq)

]

− E

[

e−
T2
q

2N

]
∣
∣
∣
∣
+ o(1)

≤
∣
∣
∣
∣
∣
E

[

e−
T2
q

2N
+cN (Tq)

]

−
M∑

k=0

P(Tq = k)e−
k2

2N
+cN (k)

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

M∑

k=0

P(Tq = k)e−
k2

2N
+cN (k) − E

[

e−
T2
q

2N

]
∣
∣
∣
∣
∣
+ o(1)

≤
∞∑

k=M+1

P(Tq = k) +
M∑

k=0

P(Tq = k)
[

e−
k2

2N
+cN (k) − e−

k2

2N

]

+ o(1)

with arbitrary M ∈ N. In particular, by choosing M = ⌊N δ⌋ with δ ∈ (1
2
, 2
3
), both

sums are o(1), thus the proof is complete.

4.3 Mean-field-community model

Next we consider a slightly more complicated geometry with non-homogeneous
edge weights. Let K2N be a complete graph, where the set of vertices is [2N ] =
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{1, 2, ..., 2N} and E is the set of edges. Consider the weight function w : E →
[0,+∞) defined as

w(e) =

{

w1 if e−, e+ ∈ [N ] or e−, e+ ∈ [2N ] \ [N ]

w2 otherwise
(4.20)

where w1, w2 are positive real numbers. This weight function produces a commu-
nity structure (of the two communities [N ] and [2N ] \ [N ]).

We aim to compute the interaction potential U
(N)
q (x, y), but thanks to the

symmetry of the system, such value will turn out to be invariant for any choice of
elements x, y belonging to the same community and for any choice of elements x, y
that are in different communities. Therefore we introduce the following notation.

- We call ”out” the case in which x and y belong to different communities. In
such situation we denote the interaction potential as U

(N)
q (out).

- Instead we call ”in” the case in which x and y are inside the same community.
In this circumstance we denote the interaction potential as U

(N)
q (in).

Theorem 4.3. Fix N ≥ 1 and q > 0. Consider the graph K2N with edge weight
as in (4.21). Let Tq be a geometric random variable with success parameter

α :=
q

q +N(w1 + w2)
. (4.21)

Let X̃ be a discrete Markov chain with state space {1, 2} and transition matrix

P̃ =

(
p 1− p

1− p p

)

, p =
w1

w1 + w2

; (4.22)

denote by ℓ(t) :=
∑

s<t 1{X̃s=1} the local time in state 1 spent by X̃ up to time t,

and by P̃1 the path measure of X̃ starting from state 1.
Fix x, y ∈ [2N ]. Then

U (N)
q (out) =

∑

n≥1

P(Tq = n)
n∑

k=1

P̃1(ℓ(n) = k) βout(n, k)
k−1∏

i=1

(

1− i

N

) n−k∏

j=1

(

1− j

N

)

,

(4.23)

U (N)
q (in) =

∑

n≥1

P(Tq = n)
n∑

k=1

P̃1(ℓ(n) = k) βin(n, k)
k∏

i=1

(

1− i

N

) n−k−1∏

j=1

(

1− j

N

)

(4.24)
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where

β⋆(n, k) :=







q+2Nw2+(w1−w2)k
q+2Nw2

if ⋆ = out,

q+2Nw2+(w1−w2)(n−k)
q+2Nw2

if ⋆ = in
(4.25)

Proof. For simplicity we denote the communities

V1 = [N ], , V2 = [2N ] \ [N ], V = V1 ∪ V2,

with |V1| = |V2| = N . We split the proof in three parts.

1. The loop-erased trajectory starting from x.
Consider the absorbed process X on X = V ∪ {∆} associated to the weighted
graph, i.e. with infinitesimal generator

L = (α(x, y))x,y∈X =








q

L− qI
...
q

0 · · · 0 0








(4.26)

where the matrix

L =












d · · · w1 w2 · · · w2
...

. . .
...

...
. . .

...
w1 · · · d w2 · · · w2

w2 · · · w2 d · · · w1
...

. . .
...

...
. . .

...
w2 · · · w2 w1 · · · d












, (4.27)

with d = −(N − 1)w1 −Nw2, is such that each block has size N ×N .

Now fix a self-avoiding trajectory γ of length k in X , starting from x and ending
in ∆. Without loss of generality, thanks to the symmetry of the problem, we may
assume x ∈ V1. We set

γ1 = γ ∪ V1, γ2 = γ ∪ V2, (4.28)

and clearly γ = γ1 ∪ γ2 ∪ {∆}. Applying proposition 3.1 one gets

Px(Γ{∆} = γ) =
l−1∏

i=0

α(xi, xi+1)
detX\γ(−L)
detV (−L) =

l−1∏

i=0

α(xi, xi+1)
detV \γ(qI − L)

det(qI − L)

(4.29)
The nodes in the trajectory γ can be picked both in V1 and in V2. To determine
exactly what are the coefficients α(xi, xi+1), it is necessary to exploit the symmetry
of the problem. Indeed we need to know:
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• the number of nodes in the trajectory that are inside V1 and inside V2, i.e.
the numbers k1 = |λ1| and k2 = |λ2|;

• the number of transition from V1 to V2, namely j1, and from V2 to V1, namely
j2 performed by the trajectory γ.

Notice that j1 and j2 must be less or equal to min{k1, k2}, because the number
of jumps from one community to the other cannot be larger than the number of
nodes contained by each community. Moreover j1 and j2 must differ, at most, by
1, since there cannot be two consecutive jumps from V1 to V2, or viceversa. Also
the hypothesis x ∈ V1 ensures that j1 ≥ j2: thus j2 = j1 − 1 or j2 = j1.
Then:

• j1 + j2 of the α’s in (4.25) have value w2 (they are jumps between different
communities);

• k1 + k2 − (j1 + j2) − 1 of the α’s have value w1 (they are jumps inside the
same community);

• 1 of the α’s has value q (the last jump to the absorption node).

Hence

Px(Γ{∆} = γ) = wk1+k2−j1−j2−1
1 wj1+j2

2 q
detV \γ(qI − L)

det(qI − L)
(4.30)

Observe that

detV \γ(qI − L) = detV \{1,...,k1,N+1,...,N+k2}(qI − L)

thanks to the structure of the matrix L.
Both term in numerator and denominator are the characteristic polynomials of the
matrix L̂ := [L]V \γ and L.

The matrix L̂ is

L̂ =












d · · · w1 w2 · · · w2
...

. . .
...

...
. . .

...
w1 · · · d w2 · · · w2

w2 · · · w2 d · · · w1
...

. . .
...

...
. . .

...
w2 · · · w2 w1 · · · d












=

(
D1 B
BT D2

)

(4.31)

where d = −(N − 1)w1 − Nw2, D1 is a square block of size N − k1 and D2 is a
square block of size N − k2.
Now notice that:
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- adding a diagonal matrix of value N(w1 + w2) to L we obtain a matrix of
rank 2. Thus λ0 = −N(w1+w2) is eigenvalue of L with multiplicity 2N − 2;

- similarly, adding a diagonal matrix of value N(w1 + w2) to L̂ we obtain a
matrix of rank 2. Thus λ̂0 = −N(w1+w2) is eigenvalue of L̂ with multiplicity
2N − k1 − k2 − 2.

The remaining two eigenvalues, for both L and L̂, can be computed in the following
way. Assume that L has eigenvectors of the form v = (x1, ..., x1, x2, ..., x2)

T , where
the upper component and the lower one have length N .
Analogously assume that L̂ has eigenvectors of the form v̂ = (x1, ..., x1, x2, ..., x2)

T ,
where the upper component has length N−k1 and the lower one has length N−k2.
Then the problems Lv = λv and L̂v̂ = λ̂v̂ become:

Lv = λv −→
(
d+ (N − 1)w1 Nw2

Nw2 d+ (N − 1)w1

)(
x1

x2

)

= λ

(
x1

x2

)

(4.32)

L̂v̂ = λ̂v̂ −→
(
d+ (N − k1 − 1)w1 (N − k2)w2

(N − k1)w2 d+ (N − k2 − 1)w1

)(
x1

x2

)

= λ̂

(
x1

x2

)

(4.33)
By direct computations the eigenvalues of the problem (4.33) are λ1 = 0 and
λ2 = −Nw2, whereas the eigenvalues of the problem (4.34) (which depends on the
values k1 and k2) are

λ̂i(k1, k2) = −1

2

[

w1(k1 + k2) + 2Nw2 + (−1)i
√

w2
1(k1 − k2)2 + 4(N − k1)(N − k2)w2

2

]

(4.34)
with i = 1, 2.

Hence

detV \γ(qI − L) = (q − λ̂0)
2N−k1−k2−2(q − λ̂1(k1, k2))(q − λ̂2(k1, k2)) (4.35)

and
det(qI − L) = (q − λ0)

2N−2(q − λ1)(q − λ2). (4.36)

Therefore we obtain

Px(Γ{∆} = γ) = wk1+k2−j1−j2−1
1 wj1+j2

2 q θ(k1, k2) (4.37)

with

θ(k1, k2) :=
(q − λ̂1(k1, k2))(q − λ̂2(k1, k2))

q(q + 2Nw2)(q +N(w1 + w2))k1+k1
(4.38)
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We conclude this first part of the proof by observing again that the quantity
Px(Γ{∆} = γ) only depends on the variables k1, k2, j1, j2.

2. The absorbed trajectory starting from y.

Let γ be a self-avoiding trajectory starting from x and ending in ∆ and fix y either
in V1 or in V2. Now we want to characterize the quantity Py(τ{∆} < τγ\{∆}).

First observe that we can reduce the problem in the following way. Instead of
using the Markov processX we define a new Markov process Y , with values in the
state space {1, 2, 3, 4} corresponding to the sets {V1 \ γ1, V2 \ γ2, γ1∪ γ2,∆}, whose
transition matrix is given by

P =

(
Q R
0 I

)

(4.39)

where

Q :=
1

d∗

(
(N − k1 − 1)w1 (N − k2)w2

(N − k1)w2 (N − k2 − 1)w1

)

, R :=
1

d∗

(
k1w1 + k2w2 q
k2w1 + k1w2 q

)

,

with d∗ = (N − 1)w1 +Nw2 + q the normalization constant for the first two rows
of P . In this new setting, calling Tabs the hitting time of the absorbing set {3, 4},
we have that

Py(τ{∆} < τγ\{∆}) =

{

P1(Y (Tabs) = 4) if y ∈ V1

P2(Y (Tabs) = 4) if y ∈ V2

(4.40)

The quantities on the right side of (4.35) can be computed directly:

P1(Y (Tabs) = 4) =
∞∑

k=0

P
k
(1, 1)

q

d∗
+

∞∑

k=0

P
k
(1, 2)

q

d∗

=
1

d∗

( ∞∑

k=0

Qk

)(
q
q

)

(1)

=
1

d∗
(I −Q)−1

(
q
q

)

(1)

(4.41)

and analogously for the other case. In particular, defining the vector

v∗ :=
1

d∗
(I −Q)−1

(
q
q

)

(4.42)

we have that

P1(Y (Tabs) = 4) = v∗(1), P2(Y (Tabs) = 4) = v∗(2). (4.43)
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By direct computation the vector v∗ is

v∗ =
q

c

(
q + k2(w1 − w2) + 2w2N
q + k1(w1 − w2) + 2w2N

)

(4.44)

with

c := (q + k1w1)(q + k2w1) +Nw2(2q + kw1) + w2
2(Nk − k1k2). (4.45)

Lastly observe that, assuming as done before x ∈ V1, the case y ∈ V1 corresponds
to the intra-community case, whereas y ∈ V2 is the inter-community case. This let
us distinguish two possible scenarios for the interaction potential: U

(N)
q (in) if x, y

are in the same community, or U
(N)
q (out) if x, y belong to different communities.

3. Counting the number of paths γ.
As we have seen, for γ fixed, the quantities Px(Γ{∆} = γ) and Py(τ{∆} < τγ\{∆})
only depend on the variables k1, k2, j1, j2. The question now is: how many paths
share the same k’s and j’s values?

Fix the 4 parameters k1, k2, j1, j2. Again, assume x ∈ V1 and let us distinguish
the case y ∈ V1 or y ∈ V2.
We focus on the case y ∈ V2. In order to select a path with such parameters we
have to:

• Choose a neat sequence of length k1 (without repetitions) of elements inside
V1, corresponding to the nodes in γ1. Being x fixed, we can choose this
sequence in (N − 1)k1−1 different ways.

• Choose a neat sequence of length k2 (without repetitions) of elements inside
V2, corresponding to the nodes in γ2. Being y ∈ V2, if we exclude the trivial
case y ∈ γ, we can choose such sequence in (N − 1)k2 different ways;

• Choose when the jumps j1 and j2 occur. Remind that the if path starts in
x ∈ V1, we only have the two possibilities j2 = j1 or j2 = j1 − 1:

– if j2 = j1, the last node of γ1 must jump to the absorbing state ∆,
whereas from the last node of γ2 there must be a jump to γ1;

– if j2 = j1 − 1, it is the opposite;

hence the possible choices are
(

k1−1
f1(j1,j2)

)(
k2−1

f2(j1,j2)

)
where f1(j1, j2) := j1−1j1 6=j2

and f2(j1, j2) := j1 − 1j1=j2 .
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With a similar reasoning we can count the possible choices in the case y ∈ V1.

Conclusion

Summing up, distinguishing the two cases y ∈ V2 (inter-community) or y ∈ V1

(intra-community), we have

U (N)
q (out) =

N∑

k1=1

N−1∑

k2=0

(N − 1)k1−1(N − 1)k2 θ(k1, k2) v
∗(2) q ·

·
min(k1,k2)∑

j1=0

j1∑

j2=j1−1

(
k1 − 1

f1(j1, j2)

)(
k2 − 1

f2(j1, j2)

)

wk1+k2−1−j1−j2
1 wj1+j2

2 , (4.46)

U (N)
q (in) =

N−1∑

k1=1

N∑

k2=0

(N − 2)k1−1(N)k2 θ(k1, k2) v
∗(1) q ·

·
min(k1,k2)∑

j1=0

j1∑

j2=j1−1

(
k1 − 1

f1(j1, j2)

)(
k2 − 1

f2(j1, j2)

)

wk1+k2−1−j1−j2
1 wj1+j2

2 . (4.47)

We conclude the proof simplifying the quantities U
(N)
q (out) and U

(N)
q (in).

Consider a Markov chain X̃ on the state space {1, 2} with transition matrix

P̃ =

(
p 1− p

1− p p

)

, p =
w1

w1 + w2

. (4.48)

Denoting by ℓ(t) :=
∑

s<t 1{X̃s=1} the local time in state 1 spent by X̃ up to time

t and by P̃1 the path measure of X̃ starting at 1, it is easy to observe that

P̃1(ℓ(k1 + k2) = k1) =

min(k1,k2)∑

j1=0

j1∑

j2=j1−1

(
k1 − 1

f1(j1, j2)

)(
k2 − 1

f2(j1, j2)

)

·

·
(

w1

w1 + w2

)k1+k2−1−j1−j2
(

w2

w1 + w2

)j1+j2

, (4.49)

as the right side of equation (4.49) is exactly the total weight of all the possible
trajectories of X̃ such that ℓ(k1 + k2) = k1.
Hence, in (4.46) and in (4.46) we can replace the j’s summation terms with the
quantity: (w1 + w2)

k1+k2−1
P̃1(ℓ(k1 + k2) = k1).
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Notice that the terms θ(k1, k2) and v∗ can be simplified: indeed, after explicit
computations, it results that the second degree polynomial (q − λ̂1(k1, k2))(q −
λ̂2(k1, k2)) in the numerator of θ(k1, k2) coincides with the factor c contained in
v∗.

Hence, reassembling wisely the pieces and multiplying and dividing byNk1+k2−1,
the interaction potentials assume the following forms:

U (N)
q (out) =

N∑

k1=1

N−1∑

k2=0

qNk1+k2−1

(q +N(w1 + w2))k1+k2
(w1+w2)

k1+k2−1
P̃1(ℓ(k1+k2) = k1) ·

· q + k1(w1 − w2) + 2Nw2

q + 2Nw2

N−(k1+k2−1)(N − 1)k1−1(N − 1)k2 (4.50)

U (N)
q (in) =

N−1∑

k1=1

N∑

k2=0

qNk1+k2−1

(q +N(w1 + w2))k1+k2
(w1+w2)

k1+k2−1
P̃1(ℓ(k1+k2) = k1) ·

· q + k2(w1 − w2) + 2Nw2

q + 2Nw2

N−(k1+k2−1)(N − 2)k1−1(N)k2 (4.51)

Now we recognize inside (4.50) and (4.51) the geometric term

qNk1+k2−1

(q +N(w1 + w2))k1+k2
(w1 + w2)

k1+k2−1 =
q

q +N(w1 + w2)

(
N(w1 + w2)

q +N(w1 + w2)

)k1+k2−1

= P(Tq = k1 + k2),

(4.52)

where Tq is a geometric random variable with success probability α := q

q+N(w1+w2)
.

Lastly, we can rewrite as follows

N−(k1+k2−1)(N − 1)k1−1(N − 1)k2 =
1

Nk1+k2−1

k1−1∏

i=1

(N − i)

k2∏

j=1

(N − j)

=

k1−1∏

i=1

(

1− i

N

) k2∏

j=1

(

1− j

N

)

N−(k1+k2−1)(N − 2)k1−1(N)k2 =
1

Nk1+k2−1

k1∏

i=2

(N − i)

k2−1∏

j=0

(N − j)

=

k1∏

i=2

(

1− i

N

) k2−1∏

j=0

(

1− j

N

)

(4.53)
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Finally, using the rewrites in (4.52) and (4.53), we obtain

U (N)
q (out) =

N∑

k1=1

N−1∑

k2=0

P(Tq = k1 + k2)P̃1(ℓ(k1 + k2) = k1) ·

· k1(w1 − w2) + q + 2Nw2

q + 2Nw2

k1−1∏

i=1

(

1− i

N

) k2∏

j=1

(

1− j

N

)

, (4.54)

and

U (N)
q (in) =

N−1∑

k1=1

N∑

k2=0

P(Tq = k1 + k2)P̃1(ℓ(k1 + k2) = k1) ·

· k2(w1 − w2) + q + 2Nw2

q + 2Nw2

k1∏

i=2

(

1− i

N

) k2−1∏

j=0

(

1− j

N

)

, (4.55)

which is equivalent to the statement of the theorem.

We conclude pointing out the similarities and the differences between the mean-
field model (MF) and the mean-field-community model (MFC).

(I) Both in MF and MFC, inside the interaction potential appears a geometric
term

P(Tq = n), (4.56)

where Tq is a geometric random variable with success parameter

α(MF ) =
q

q +Nw
, or α(MFC) =

q

q +N(w1 + w2)
. (4.57)

(II) Unlike the first model, in the MFC the pairwise potential contains the sum-
mation over k of the term

P̃1(ℓ(n) = k)βout(n, k)gout(n, k), or P̃1(ℓ(n) = k)βin(n, k)gin(n, k),

where βout, βin are defined in the statement of Theorem 4.3, whereas

gout(n, k) :=
k−1∏

i=1

(

1− i

N

) n−k∏

j=1

(

1− j

N

)

,

gin(n, k) :=
k∏

i=1

(

1− i

N

) n−k−1∏

j=1

(

1− j

N

)

.

(4.58)
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The factors gout(n, k) and gin(n, k) can be considered entropic terms, relative
to the total number of possible configurations. Note that in MF was present
the factor g(n) :=

∏n

i=2

(
1− i

N

)
.

The values βout and βin can be interpreted as weights, and they disappear in
the specific case w1 = w2.
Lastly, notice that, summing over k, we are taking the expectation of the
function βoutgout(n, k) or βingin(n, k) with respect to the local time spent in
state 1 of the coarse-grained random walk X̃.
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