UNIVERSITA DEGLI STUDI DI PADOVA

DEPARTMENT OF INFORMATION ENGINEERING

MASTER THESIS IN AUTOMATION ENGINEERING

MACHINE LEARNING APPROACHES FOR SMART

MONITORING OF SINTERING EQUIPMENT

SUPERVISOR MaSTER CANDIDATE
PROFESSOR GIAN ANTONIO SUSTO SAMUELE MECENERO

UNIVERSITA DEGLI STUDI DI PADOVA

CO-SUPERVISOR

Doctor CHIARA MASIERO
STATWOLF

DocToR FEDERICO MILAN
BreTON

ACADEMIC YEAR

2021-2022



ii



To MY LATE GRANDFATHER, TrTo. YOU WERE ALWAYS PRESENT FOR ME. ]| DEDICATE MY
WORK TO YOU.



iv



Sommario

Questa tesi nasce dalla collaborazione tra Statwolf, 'Universita di Padova e Breton, azienda
leader mondiale nella produzione di impianti per la lavorazione della pietra composita. In Bre-
ton, le lastre di pietra composita vengono compattate attraverso la vibrocompressione sotto
vuoto. Questo progetto di tesi si propone di descrivere i passaggi necessari per implementare
un approccio basato sul Machine Learning per monitorare un vibro-compattatore. Il vibro-
compattatore ha come dotazione standard un gruppo di sei accelerometri che forniscono una
serie temporale multivariata per ogni lastra lavorata dal macchinario. Abbiamo adottato un
approccio basato sulla progettazione di feature specifiche poiché per ogni lastra, attraverso il
processo di estrazione delle features, abbiamo tradotto il contenuto informativo delle serie tem-
porali in quantita scalari. Abbiamo validato il processo di estrazione delle features e abbiamo
sviluppato un sistema di rilevamento delle anomalie, che ¢ il primo passo verso la progettazione
di una soluzione di monitoraggio intelligente completa. A causa della mancanza di un set at-
tendibile etichettato di dati anomali, che descrivesse tutti i possibili tipi di comportamento
anormale, abbiamo adottato un approccio di apprendimento non supervisionato. Nello speci-
fico, ci siamo concentrati sull’algoritmo di Isolation Forest per le sue elevate prestazioni di rile-
vamento delle anomalie, la sua efficienza computazionale e la sua adozione diffusa. Per fornire
spiegazioni sulle previsioni dell’algoritmo, abbiamo sfruttato metodi di interpretabilita. In par-
ticolare, abbiamo utilizzato Depth-based Isolation Forest Feature Importance e Accelerated
Model-agnostic Explanations, due metodi di interpretabilita, per fornire spiegazioni a livello
globale e locale, rispettivamente. Infine, abbiamo utilizzato I'interpretabilita locale fornita da
AcME come strumento di analisi delle cause principali per aiutare gli utenti a comprendere
perché lalgoritmo considerava una lastra normale o anormale. I confronti con gli esperti di
dominio di Breton hanno suggerito che 'approccio proposto ¢ promettente.
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Abstract

This work has been carried out thanks to the collaboration between Statwolf, the University
of Padua and Breton, a global leading company manufacturing engineered stone processing
plants. In Breton, vibro-compression under vacuum is used to compact engineered stone slabs.
This thesis project aims to describe the steps necessary to implement a Machine Learning-based
approach to monitor a vibro-compression machine. Vibro-compression machines have as stan-
dard equipment a group of six accelerometers that provide a multivariate time-series for each
slab processed by the machinery. We have adopted a feature-based approach since for each slab,
through the feature extraction process, we have translated the informative content of the time
series into scalar quantities. We validated the feature extraction process, and then we developed
a reliable anomaly detection system, which is the first step towards the design of a complete
smart monitoring solution. We adopted an unsupervised learning approach, motivated by the
lack of a reliable labelled set of anomalous data instances to describe all possible types of abnor-
mal behaviour. Precisely, we focused on the Isolation Forest algorithm for its high detection
performance, its computational efficiency and its widespread adoption. To provide insights on
the predictions the Isolation Forest makes, we exploited interpretability methods. In particu-
lar, we used Depth-based Isolation Forest Feature Importance and Accelerated Model-agnostic
Explanations, two interpretability methods, to provide explanations at a global level and local
level, respectively. Finally, we employed local interpretability provided by AcME as a Root
Cause Analysis tool to help users to figure out why the algorithm deemed a sample as normal
or abnormal. Comparisons with Breton domain experts have suggested that the proposed ap-
proach is promising.
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Introduction

This thesis comes from the collaboration between Statwolf, Breton and the University of Padua.
Statwolf is a knowledge-intensive service provider specialized in the development of Machine
Learning-powered Decision Support Systems. Breton is a global leading company manufactur-
ing machines to process natural stone and metals, as well as engineered stone processing plants.
It is in this last business that this collaboration is born. This thesis project addresses the prob-

lem of smart monitoring in the context of engineered stone processing.

1.1 PROBLEM DESCRIPTION

Natural stones have been used as decorative construction materials due to their aesthetic qual-
ification, accessibility and strength. However, they are often regarded as hard but fragile, so
the combination with other materials to adequately offer more desirable qualities has been ad-
dressed. This new composite material is quoted as engineered stone. Engineered stone is thus
defined as a composite material made from stone particles packed together by polymer resin or
cement to obtain mechanical properties closed or superior to natural stones [1].

Sintering is a thermal process of converting loose fine particles into a solid coherent mass by
heat and/or pressure without fully melting the particles to the point of melting [2].

Breton is the dominant supplier of equipment for making engineered stone. In Breton, vibro-
compression under vacuum is used to compact engineered stone slabs. A schematic represen-

tation of a vibro-compression machine is depicted in figure 1.1.
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Figure 1.1: Vibro-compression machine.

In the operation of the vibro-compression machine, the pestle presses the stone particles
contained in the tank to obtain an engineered stone slab. The incessant pressure can create
some cracks in the base and can even provoke the detachment of the base from the foundations.
Cracks represent a problem for Breton. For manufacturing companies, including Breton, the
costs arising from any replacement or repair of equipment heavily affect the total cost even af-
ter the sale, both for the company and for the same customer. Thus, being able to detect and
establish the cause of an anomaly from the first moment it manifests itself becomes critical to
providing the right customer service and evaluating the type of assistance. From this criticality
comes the main objective of this thesis project: try to establish the health condition of a vibro-
compression machine, i.e. a healthy machine or a machine with cracks, through the study of
vibration levels with Machine Learning (ML) algorithms. This work aims to describe the steps
necessary to implement a ML based approach to monitor the health of a vibro-compression ma-
chine. Machinery health monitoring (MHM) embodies the ability to understand and react to

the changing health of machinery and is well established within manufacturing environments



[3] [4]. A McKinsey study estimated that the appropriate use of MHM techniques by process
manufacturers “typically reduces machine downtime by 30 to so percent and increases ma-
chine life by 20 to 40 percent” [s]. Vibro-compression machines have as standard equipment
agroup of six accelerometers arranged in a symmetrical fashion on the surface of the pestle. Fig-
ure 1.1 shows the arrangement of the accelerometers, they are denoted by Cy, C1, Cs, Cs, Cy
and C5. These accelerometers are used to monitor vibration levels. For Breton and its cus-
tomers, vibration levels provide insights on the distribution of the stone particles contained
in the tank. Exploiting vibration levels to also understand the health of the machinery would
have a major impact, because it would allow Breton to provide customers with an additional
service at no additional cost. Each accelerometer provides a continuous raw data stream v;(t)
witht € R,7 € {0,...,5}, which is turned into a finite-duration signal, z;(¢), through
sampling and windowing. Throughout this thesis, we consider the time-series 2;(t) as a finite-
length sequence of n ordered real values at time instants ¢; 1, . ..,t;,. The time series z;(t)
withi € {0,...,5}, provided by the accelerometers, can be exploited to define the multivari-
ate signal {z(t) : t € [}, where:

and [ is the domain of the signal. The goal is to determine whether a multivariate signal z(t)
has been collected from a healthy machine or a machine with cracks. The objective can be
formulated either as a supervised learning problem or as an unsupervised learning problem.
In supervised learning, the algorithm learns from the data that is provided, along with labels
associated with the data (in the context of MHM, the label may be either healthy or failed). In
unsupervised learning, the algorithm learns from the data, but no labels are provided. Thus,
the unsupervised learner has to uncover useful information in the data without guidance from

the labels.



1.2 MACHINE LEARNING APPROACHES FOR TIME SERIES

It is used the term classification to indicate the following supervised ML task: given a signal x
belonging to some domain X as an input and a finite set Y of different classes (the output), the
problem of classification amounts to finding a rule that associates x tooney € Y [6]. In the
context of manufacturing, we often face classification problems when dealing with Fault Detec-
tion and Isolation (FDI) and Advanced Monitoring (AM). Just to provide an example, in the
case of FDI, one output class can be related to the normal behavior of the vibro-compression
machine, additional classes can be referred to known problems like machine with cracks or res-
onant machine, the input signals are time-series: the task of a FDI algorithm is to interpret
signals coming from accelerometers to discern and understand the state of the overall system

[7]. Time-series classification techniques can be essentially divided into two main branches:

* Feature-based (FB): FB methods perform a feature extraction procedure before the classi-

fication phase. A set x of p features is calculated over the time series. The idea underlying
these methods is to capture signal statistics that identify a certain class of signals [8].
In theory, if a Gaussian process is weakly stationary then a second-order statistic is suf-
ficient to characterize that signal; however, signals obtained from real-world scenarios
are not stationary due to several nuisance factors and many more features may be neces-
sary to summarize the informative content. When dealing with the learning phase in FB
methods, the learning rule is based on the definition of a dataset of N observations and
of a design matrix as:

x40
(2) (2)

D= X, y_ e RVx(+1) (1.2)
X))

* Distance-based (DB): DB methods avoid the feature extraction phase in favor of the def-
inition of suitable distances, among which the most common is dynamic time warping
(DTW) [9]. Then, the classification phase is carried out through metric classifiers: one
simple and often very effective choice is 1-Nearest Neighbor classifier (1-NN) [10].

The labels associated with a data instance denote whether that instance is normal or anoma-
lous. It should be noted that obtaining labeled data that is accurate as well as representative of
all types of behaviors, is often prohibitively expensive. Labeling is often done manually by a
human expert and hence substantial effort is required to obtain the labeled training data set.

Typically, getting a labeled set of anomalous data instances that covers all possible types of



anomalous behavior is more difficult than getting labels for normal behavior. Moreover, the
anomalous behavior is often dynamic in nature, for example, new types of anomalies might
arise, for which there is no labeled training data [11]. Techniques that operate in unsupervised
mode do not require training data, and thus are most widely applicable. The techniques in
this category make the implicit assumption that normal instances are far more frequent than
anomalies in the test data. If this assumption is not true, then such techniques sufter from high
false negative alarm rate. Unsupervised anomaly detection (AD) [12] have emerged in recent
years in the context of smart monitoring of complex systems. In the literature, unsupervised

AD tools adopt two approaches:

* multivariate approaches based on tabular data: these approaches have the advantage of
capturing multivariate anomalous behaviour that typically goes undetected by classic
chart-based monitoring tools. When applied to time-series data, they entail the use of
feature extraction procedures [13].

* univariate approaches working with time-series: these approaches typically work by pre-
dicting residuals, i.e., comparing measured and forecast time-series data, and raising an
alarm as their difference exceeds a threshold [14].

Deep learning techniques are available for both the approaches, they typically need to be
adapted to cope with discrete production data, where time-series are usually split into batches
representing machine cycles [15]. This thesis project addresses the problem of smart monitor-
ing of sintering equipment through an unsupervised learning approach. In particular, given
that six accelerometers are placed in the vibro-compression machine, a multivariate approach

is adopted.

1.3 OUTLINE OF THE THESIS

This section outlines the general structure of the thesis. Chapter 2 presents the operations
necessary for the creation of the dataset. It presents an overview of the data pre-processing
strategy and of the feature extraction phase. Furthermore, in the same chapter, we attempt to
validate the feature extraction process. In Chapter 3 the methodology of the work is described.
Chapter 4 reviews the results of several experiments. Chapter 5 sums up the potentialities and

limitations of the current work and attempts to give some guidelines for future improvements.






Dataset

The data described in this chapter has been provided us by Breton. Specifically, the available
data for the unsupervised AD task consists of a collection of 2 datasets for a total of N = 712
multivariate signals. The first dataset consists of N1 = 386 multivariate signals that correspond
to the processing of [V; slabs on a healthy vibro-compression machine. The second dataset con-
sists of Ny = 326 multivariate signals that correspond to the processing of Ny slabs on a failed
vibro-compression machine. Each multivariate signal consists of 6 signals collected by the pes-
tle’s accelerometers. Raw signals have been turned into finite-duration digital signals through
sampling and windowing. Finite-duration digital signals can be regarded as time series. Exclu-
sively the use of end-to-end deep learning techniques allows machine learning models to be
created without the need for feature engineering [16]. Unsupervised AD techniques adopted
in this work are not straightforwardly applicable to time series. Albeit the time series were
discrete time and of fixed length, the performance of the techniques would be poor if we con-
sidered each measurement sample as a feature, due to two main reasons: first, it is common to
consider long sequences of n > 10% orevenn > 10° samples; in these cases the space spanned
by the time series is too large and sparse incurring in the “curse of dimensionality” problem.
Second, considering the discrete values as independent features would be not reasonable, since
they do not provide any information per se about the characteristics of the signal, since time-
series values are strongly correlated on time and the feature extraction phase is exactly designed
to highlight this correlation. Considering the dataset of N multivariate signals that describe the

AD problem of interest, FB methods focus on finding a compact description x = [z1, . . ., Z,)]



of the multivariate signals z(t) such thatp < n (and typically p < n); all these IV observations

are collected into a matrix X € RV*P_ called feature matrix, defined in equation 2.1.

In order to obtain the feature matrix X three operations were carried out:

1. Sampling and Windowing
2. Preprocessing

3. Feature extraction

In this chapter, these three important operations will be analyzed.

2.1 SAMPLING AND WINDOWING

Signals are defined as functions of an independent variable and represent the evolution of phys-
ical entities that carry information. They can be classified on the basis of their domain D and

codomain C [17]. The possible domains are:

* D = R: continuous time signals

* D =1, withIcountable,I = {...,t_q,to,t1,... }: discrete time signals

The possible codomains are:

* C = R: continuous amplitude signals

* C = [, with [ countable and typically finite, [ = {1, 2, ..., 2 }: discrete amplitude
signals

By combining the possible domains and codomains we obtain the following four signal classes:
* D =R, C = R: analog signals

* D =R, C = I: quantized analog signals

8



* D =1,C = R: sampled signals
* D =1, C = I digital signals

The only class of signals that computer systems can exactly represent and deal with is the class
of digital signals. Breton provided us a set of N' = 712 multivariate digital signals. Each mul-
tivariate signal consists of 6 finite-duration digital signals. These signals have domain D = 1,
where I = Z(T), i.e. t; = kTs. The sampling frequency of the signals were Fig = 1654Hz,
accordingly the sampling period of the signals were Ts = Fs~'. Each signal was collected
manually by a Breton expert that started the collection with a start command and ended it
with a stop command. The manual start and stop did not allow to have time-series with the
same length. This is a problem because it is more difficult to compare time series with different
lengths. Table 2.1 shows descriptive statistics of time series. It is possible to notice that the
standard deviation is high, this indicates that the lengths of the time series are distributed over

a wide range.

Number of time series 712

Average length 65.7s
Standard deviation 13.2s
Minimum length 39.5s
First quartile 56.4s
Median 66.4s
Third quartile 67.4s
Maximum length 97.4s

Table 2.1: Time series’ descriptive statistics.

A possible solution to this problem could be to have an automatic start and stop. A simple idea
to implement could be to start the collection when vibration levels exceed a threshold d and
stop it after a time interval Ty,. 0 must be chosen by domain experts, who, having a thorough
knowledge of the machinery, would be able to choose the value that represents the beginning
of processing. As far as Ty, is concerned, there are two possible choices: choose the maximum
duration of the processing of a slab or rely on domain experts who would be able to suggest the

most suitable value.



2.2  PREPROCESSING

After the sampling and windowing phase, where raw signals have been transformed into finite-
duration digital signals, the preprocessing phase occurred. The goal of this phase was to design
asample rate conversion system to convert from the original sampling frequency F's to another
sampling frequency F. The original sampling frequency Fg = 1654Hz was quite high, ac-
cordingly the number of samples per signal was high too. Reducing the number of samples
per signal would have meant a reduction in computational cost. Our objective was to have a
reduction in computational costs as long as we limited the loss of information due to down-
sampling. A decimator is a system that performs a down-sampling by a factor M of the input

signal by preserving only one every M input samples. Figure 2.1 shows a block diagram of a

decimator.
x(nT) y(nT")
o M —
Fy F{

Figure 2.1: Block diagram of a decimator.
This system performs a time-domain transformation, its input-output equation is:
y(nT") = x(nT") = x(nMT) (2.2)

The input-output equation of the decimator in terms of the Fourier transform is given by:

M—

H

X(f — kFL) (2.3)

k=0

Notice that Y(f) is a periodic function with period F; = +-Fg, which is obtained as the
superimposition of M shifted versions of the Fourier transform X (f), thatis periodic with pe-
riod Fs. In general, the decimation from x(n1") to y(n1") causes a loss of information which
can be explained by the overlapping, in the frequency domain, of the terms in the summation
2.3. In case M = 2, if the input signal x(nT") is bandlimited to the interval [—/ F—} there is
no overlapping of the shifted versions of the Fourier transform X (f), and therefore the infor-
mation contained in input signal can be entirely preserved. The signals available were clearly
FS

F/
not bandlimited, but most of their frequency content was contained in the interval [—, 7}

I0



We got bandlimited signals by applying a low-pass filter with a cutoft frequency of Ffl With
such a filter, the Fourier transform of the signal y(n1"”) at the output of the decimator is equal
to the Fourier transform of the input signal z(n7") in the frequency interval [_TFS, %/9] . The

unavoidable loss of information is limited because most of the frequency content of the signals

. . . —F, F! . .
is contained in the interval [TS, 75} as depicted in figure 2.2.
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(a) Magnitude spectrum of a signal before down-sampling. It is possible to notice that most of the frequency content of the
!
signal is contained in the interval [O, %] , where Fé = 827Hz.

3.0 A

2.5

Magnitude (energy)
= N
5 o

=
o
L

0.5 1

1 el

0.0 4 .

0 100 200 300 400
Frequency

(b) Magnitude spectrum of a signal after down-sampling.

Figure 2.2: Magnitude spectrum of a signal before and after down-sampling.
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2.3 FEATURE EXTRACTION

After applying the decimation to each signal, we moved on to the feature extraction phase. The
feature extraction phase consists of translating the informative content of time-series data into
scalar quantities. This phase may be a time-consuming step that requires the involvement of
process experts to avoid loss of information in the making. Hence, to design proper features,
we have exploited the information provided to us by the Breton experts. Specifically, two in-

formation have been employed:

* In the processing of a slab, a vibro-compression machine go through three different
phases. In the first phase, vibration levels of the machinery increase until a operating
value is reached. In the second phase, vibration levels are maintained at the operating
value. In the third phase, vibration levels decrease to zero.

* When a vibro-compression machine is failed, the six time series related to the processing
of a slab have a heterogeneous behaviour.

The first information led us to decide that each time series should be divided into segments.
The optimal split would have been into three segments, where each segment represented a
phase of the operation of the machinery. However, we did not have enough information to
implement this optimal split. Therefore, we opted for another split. We decided to divide each
time series into four segments of equal length. In this way we knew that the first segment would
capture a part, if not the whole, first phase, the second and third segment would capture a con-
siderable part of the second phase, and the third segment would capture the third phase, which
we knew was the shortest. Figure 2.3 depicts the split in four segments of a multivariate time
series related to an engineered stone slab. In the figure, a slab processed by a healthy machinery

is considered.

The second information led us to understand that we had to consider each of the six time se-
ries related to the processing of a slab. Figure 2.4 shows that when a vibro-compression machine

is failed, the six time series related to the processing of a slab have a heterogeneous behaviour.

I2
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Figure 2.3: Multivariate time series related to a slab processed by a healthy vibro-compression machine.

Acc. 4 Acc. 3 Acc. 2 Acc. 1 Acc. 0

Acc. 5

50

Figure 2.4: Multivariate time series related to a slab processed by a failed vibro-compression machine.
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These two information have allowed us to extract features properly. For each of the /N multi-
variate time-series a set of p = 40 features have been extracted. 36 features have been extracted

from the average time series Z(-), defined as:

5
> z(kTs), Vel (2.4)

1=0

Z(kTs) =

D=

where 2;(kT’s) is the value, at the time instant k7s, of the time series collected by the i-th
accelerometer. The average time series have been split in four segments, for each segment 9
features have been extracted. There were both time-related and frequency-related features. The

time-related features were:
* Mean
* Root Mean Square (RMS)
* Standard deviation
* Skewness
* Kurtosis

e First quartile

Third quartile

The definitions of these statistics can be found in [18]. The frequency-related features were:

* Fundamental frequency

* Variance of the magnitude spectrum in a neighbourhood of the fundamental frequency

We decided to take these two frequency-related features because we observed that failed ma-
chines had a different behaviour in frequency with respect to healthy machines. Finally, 4 fea-
tures have been extracted from the time series z;(t) with i € [0, ..., 5]. Each time series has
been splitinto four segments, and for each segment the sample mean has been computed. Then,
the variance of the six sample means has been calculated, thus obtaining 4 scalar features. An
instance is a vector that contains the features extracted from a multivariate signal. An instance
is a row in the feature matrix X. We got a feature matrix X that has N rows corresponding to
the N multivariate signals and p columns corresponding to the set of p features extracted for

each signal.

14



2.4 FEATURE EXTRACTION VALIDATION

Machine learning is a powerful tool for gleaning knowledge from massive amounts of data.
While a great deal of machine learning research has focused on improving the accuracy and ef-
ficiency of training and inference algorithms, there is less attention on the equally important
problem of monitoring the quality of data fed to machine learning [19]. The importance of
this problem is hard to dispute: poor input data can nullify any benefits on speed and accu-
racy for training and inference. This argument points to a data-centric approach to machine
learning that treats training and serving data as an important production asset, on par with
the algorithms and infrastructure used for learning. The process of extracting relevant features
from the data to train ML algorithms is called feature engineering. Feature engineering is vital
to data science as it produces reliable and accurate data and algorithms are only as good as the
data fed to them [20]. We have exploited some tests made on vibro-compression machine by
Breton to validate the feature extraction process. Breton tested diverse setups of the machinery
on a rubber slab specifically made for testing. The setups tested were 5, some tests have been

repeated several times, some other no. Table 2.2 describes the tests carried out.

Setup tested  Number of tests carried out Name of the tests
Setup 1 2 Test 1A, Test 1B
Setup 2 3 Test 2A,Test 2B, Test 2C
Setup 3 1 Test 3
Setup 4 1 Test 4
Setup s 1 Test 5

Table 2.2: Vibro-compression machine tests.

For each test, a multivariate time-series has been provided by the accelerometers arranged on
the pestle. The tests had different duration, to make it the same a rectangular window was
applied. Lastly, a vector xW of features has been extracted for each test. Given that the duration
of the time-series was equal to 5 seconds, it has been decided not to divide the signals into 4
segments because they would have been too short. Specifically, the feature extraction procedure
described in section 2.3 has been applied considering the whole time-series as a unique segment.
Therefore, a set of p’ = 10 features have been extracted from each test. The features extracted

Were:

¢ Standard deviation referred as s¢zd
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* Skewness referred as skew

* Kurtosis referred as kurt

* Root Mean Square referred as RAMS
¢ Sample mean referred as mean

e First quartile referred as gz 5

* Third quartile referred as g7 5

* Fundamental frequency referred as f

* Variance of the magnitude spectrum in a neighbourhood of the fundamental frequency
referred as Var(f)

* Variance of the 6 sample means referred as Var(mean)

Since a vector x ) of features is a row in the feature matrix X', we got a feature matrix X' that
has N = 8 rows corresponding to the N’ tests and p" = 10 columns corresponding to the set
of p/ features extracted for each test. To validate the process of feature extraction, we wanted to
show that feature vectors related to different setups of the machinery are very different, while
feature vectors related to the same setup of the machinery are very similar. Indeed, features
are considered relevant if they are able to identify different behaviors of the vibro-compression
machine. To show that we have chosen relevant features, we have employed Principal Com-
ponent Analysis (PCA). The goal of PCA is to find the sequence of orthogonal components
that most efficiently explains the variance of the observations. The advantage of PCA is that
it finds a lower-dimensional representation, while preserving the maximum amount of infor-
mation from the original variables. For the feature matrix X', PCA yields an orthogonal de-
composition of X that is optimal for a given number of principal components. The principal
component decomposition provides the minimum mean squared error approximation to X'.
Moreover, the explained variation of the excluded principal components converges to zero as
K increases, where K denotes the retained number of principal components [21]. We have
exploited the PCA to obtain a 3-dimensional representation of the feature vectors. Figure 2.5
depicts the variance explained by each of the principal components. It is possible to note that
the cumulative explained variance for the three components is very close to 100%. In figure 2.6

the weights for each original variable when calculating the principal components are reported.

16



1.0 1 97.88%

1N o o
IS o ©
L L L

Explained variance ratio

o
[N)
N

0.0 -

2
Principal component

Figure 2.5: Cumulative and individual explained variance.

0.6

0.4

-0.2

Features

-0.0

-0.00098

fo

0.29

Var(mean)Var(f0)
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Figure 2.7 shows the first three principal components of these data. The 3-dimensional repre-
sentation of feature vectors provided by PCA supports the feature engineering process. In fact,
from the figure it is possible to notice two clusters composed of tests related to the same ma-

chinery setup. Specifically, the tests related to Setup 1 are very close, similarly, the tests related
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to Setup 2 are very close too. Quite the opposite, tests related to different setups are distant

from each other.

e test 1A
test 1. B

e test2 A

e test2 B

e test2 C
test_3
test_4

e test5 )3

0.2

).4

Figure 2.7: First three principal components of the data.

To further support the feature engineering process, a dissimilarity matrix, which uses as a metric
distance the measure called Euclidean Distance, has been computed. The Euclidean Distance

between two feature vectors x¥) and x is defined by:

dij = (Z ‘m(i)(k) _ q;(j)(k)\2> ’ (2.5)
k=0

The dissimilarity matrix is a N’ x N’ matrix D, where N is the number of tests, and each
element d;; records the dissimilarity between the ith and jth tests. A heatmap representing the

dissimilarity matrix D is reported in figure 2.8.
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Figure 2.8: Heatmap representing the dissimilarity matrix.

The heatmap underlines the presence of two clusters. The first cluster is composed by T'est_1A
and T'est_1B5, whereas the second cluster is composed by T'est_2A, T'est_2B and T'est_2C.
The tests that belong to the first cluster are both related to same machinery setup, the same
thing applies to the second cluster. As observed in PCA, tests related to different setups of the
machinery are considered to be very dissimilar. For example, tests related to Setup 2 and the test
related to Setup s are very dissimilar. The first three principal components of the data and the
heatmap representing the dissimilarity matrix have validated the feature engineering process.
In particular, they have shown that the features extracted are able to identify different setups,

and hence behaviors, of the vibro-compression machine.
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Proposed approach

The growing complexity of industrial processes has generated a constant need for improve-
ments in the safety and reliability of systems. These two properties can be achieved through
preventive actions resulting from process monitoring, system reconfiguration, periodic main-
tenance, and the installation of safe components [22]. In Breton, the production process of
engineered stone slabs is very complex. Vibro-compression under vacuum represents only one
of the phases that make up the process. The presence of faults in vibro-compression machine
may result in degradation of product quality, increased operating costs and production stop-
pages. This is why smart monitoring of the machinery is of paramount importance. Smart
monitoring can be based on knowledge of the exact model or a model with considerable ap-
proximation of the system. Enabling a physical interpretation of the process and consequently
a better understanding of the behavior of the analyzed variables, represents an advantage in
practical applications. However, obtaining these models becomes difficult or almost impossi-
ble when dealing with complex, large-scale systems, and with operations involving a significant
number of variables. A data-driven approach appears as a possible solution because it is based
on available information on the system’s behavior and historical process data. Due to the com-
plexity to obtain an exact physical interpretation of the system, we have adopted a data-driven
approach for the smart monitoring of vibro-compression machine. The very first step towards
the design of a complete smart monitoring solution is the development of a reliable Anomaly

Detection system.
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3.1 ANOMALY DETECTION

Anomaly detection (AD) is the process of finding outliers in a given dataset [23]. Outliers are
the data objects that stand out amongst other data objects and do not conform to the expected
behavior in a dataset. Hence, an outlier is always defined in the context of other objects in the
dataset. If the training dataset has objects with known anomalous outcomes, then any of the
supervised data science algorithms can be used for anomaly detection. In addition to super-
vised algorithms, there are unsupervised algorithms whose whole purpose is to detect outliers
without the use of a labeled training dataset. Motivated by the lack of a reliable labeled set of
anomalous data instances that covers all possible types of anomalous behavior, an unsupervised
learning approach has been adopted. AD methods typically define a so-called Anomaly Score
(AS), a quantitative index associated with the degree of ‘outlierness’ of the observation under

€xam.

3.1.1 ISOLATION FOREST

Isolation Forest (IF) is a popular AD algorithm [24] [25]. IF is an unsupervised AD algorithm
leveraging an isolation procedure to infer a measure of outlierness, the anomaly score, for each
data point: the isolation procedure is based on recursive partitioning and aims at defining a
region in the data domain where only the data point under examination lies. The underlying
mechanism of TF is based on the reasonable hypothesis that the isolation procedure for outliers
requires a limited number of iterations, while the isolation of inliers generally needs a larger
number of recursive partitions. The isolation procedure defines a tree-like model of decisions,
called Isolation Tree. Each node in the tree is linked to a variable, and its children, if present,
are determined based on a splitting value. Many Isolation Trees are computed in an IF selecting
variables and values for splitting at random, making the IF an ensemble method. AS associated
with an observation is computed in IF by evaluating the mean path length of such observation
on the various Isolation Trees. In order to obtain the predicted binary labels a thresholding
operation is performed on the AS associated to all observations. The choice of the threshold
value is based on the expected fraction of outliers in the dataset. The IF model has three main

advantages:

* high detection performance (often even with default hyperparameters values, with no
tuning required)

* computational efficiency
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* possibility to parallelize its computation (thanks to its ensemble structure)

Given these advantages and the widespread adoption of IF in AD tasks [26][27][28], we have
decided to focus on such an algorithm in this work. The AS, provided by IF, can be exploited
in an industrial environment as a sort of health factor of the monitored system and monitor-
ing policies based on thresholds on the AS can be in place: when the AS overcomes a certain
threshold, inspections or other monitoring actions can be triggered. However, the main issue
in relying on such an approach is that Root Cause Analysis is non-trivial. AD methodologies
do not provide a simple way to indicate which are the causes of variations in AS, leaving the
human operator without guidance on how to react after a threshold crossing has happened.
This is a typical case where the need of interpretability is of paramount importance to make de-
cisions based on a ML module. A definition of interpretability is: Interpretability is the degree
to which a human can understand the cause of a decision [29]. The higher the interpretability
of a machine learning model, the easier it is for someone to comprehend why certain decisions
or predictions have been made [30]. To address this need, Explainable Artificial Intelligence
(XAI) proposes to make a shift towards more transparent Artificial Intelligence (AI) [31]. It
aims to create a suite of techniques that produce more explainable models whilst maintaining

high performance levels.

3.2 EXPLAINABLE ARTIFICIAL INTELLIGENCE

Recently, the notion of Explainable Artificial Intelligence has seen a resurgence, after having
slowed since the burst of work on explanation in expert systems over three decades ago. This
resurgence is driven by evidence that many AI applications have limited take-up, or are not ap-
propriated at all, due to ethical concerns [32] [33] and a lack of trust on behalf of their users
[34] [35]. The running hypothesis is that by building more transparent, interpretable, or ex-
plainable systems, users will be better equipped to understand and therefore trust the intelli-
gent agents. It is important to note that the solution to explainable AI is not just 'more AT’
Ultimately, it is a human-agent interaction problem. Human-agent interaction can be defined
as the intersection of artificial intelligence, social science, and human-computer interaction

(HCI). XAlT is just one problem inside human-agent interaction; see figure 3.1.

23



Social Science

Human-Computer

Artificial Intelligence
Interaction

Figure 3.1: Scope of Explainable Artificial Intelligence.

To avoid limiting the effectiveness of the current generation of Al systems [36], XAl proposes

creating a suite of ML techniques that:

* produce more explainable models while maintaining a high level of learning performance
(e.g., prediction accuracy)

* enable humans to understand, appropriately trust, and effectively manage the emerging
generation of artificially intelligent partners

When we talk about an explanation for a decision, we generally mean the need for reasons or
justifications for that particular outcome, rather than a description of the inner workings or the
logic of reasoning behind the decision making process in general. Using XAl systems provides
the required information to justify results, particularly when unexpected decisions are made.
XAI for operations in industry should help the end-user of ML to understand the model and
draw conclusions from the prediction [37]. IF does not provide insights on the predictions
it makes. Hence, in order to help end-users, i.e. Breton technicians, to understand and draw
conclusions from the predictions, we should explain the algorithm predictions. In particular,

we should design an Explainable Anomaly Detection (XAD) system.

3.2.1  DIFFI

The AS, provided by IF, can only rank the objects on how much the algorithm believes the ob-

jects to be outliers. Accordingly, users can find it hard to understand the decisions made by the
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model. From this comes the need to yield insights on the AS provided by IF to the end-users.
To meet this need, ML interpretability methods can be exploited. ML interpretability meth-
ods can be classified into model-specific and model-agnostic ones. The former, also known
as ad hoc methods, are designed for a specific class of models. The latter, also known as post
hoc methods, can be applied on top of every ML model. Depth-based Isolation Forest Feature
Importance (DIFFI) is a model-specific method addressing the need for interpretability for the
IF detector [38]. By providing a quantitative measure of feature importance in the context of
the AD task, DIFFI allows to describe the behavior of IF at global and local scale, providing
insightful information that can be exploited by final users of an IF-based AD solution to get a
better understanding of the underlying process and to enable root cause analysis. Global inter-
pretability methods aim to provide explanations of the model as a whole, local interpretability
methods aim to provide explanations associated with individual predictions. DIFFI method

has two important advantages:

* Itis a completely unsupervised approach

* It does not require any modification in the original IF procedure, but the access to the
structure of resulting Isolation Trees

An unsupervised feature importance evaluation method is pivotal in this scenario. Specifically,
if the estimated feature importance scores aligned well with human prior knowledge, users
would be more prone to lessen the supervision and safely give more autonomy to the machine.
The need for interpretability to foster trust and enable Root Cause Analysis besides signifi-
cantly smaller computational costs with respect to the current state-of-the-art method SHAP

[39] were the reasons that prompted us to use DIFFI.

3.2.2 AcME

Accelerated Model-agnostic Explanations (AcME) is an interpretability approach that quickly
provides feature importance scores both at the global and the local level [40]. It is a model-
agnostic interpretability approach designed with execution speed in mind. This requirement
is of paramount importance in human-in-the-loop applications where users need to take cor-
rective actions quickly. The importance scores provided by AcME rely on perturbations of the
data based on quantiles of the empirical distribution of each feature. These perturbations are
performed with respect to a reference point in the input space. Experimental results suggest

that AcME produces global explanations similar to those provided by SHAP, in a fraction of
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the computation time. As for local interpretability, differently from SHAP, AcME provides
a simple what-if tool that allows users to figure out how changes in feature values may affect
the predictions. AcME is suitable for unsupervised Anomaly Detection, where observations
are assigned an anomaly score to detect the most abnormal behaviours. Exploiting the local
interpretability, we could focus on a sample and use AcME to evaluate how changes in the
input feature values would impact the corresponding anomaly score. Thus, AcME would act
as a Root Cause Analysis tool, in the sense that it may help users to figure out why the algo-
rithm deemed a sample as normal or abnormal. In the scenario of Anomaly Detection, where
prompt corrective actions can translate into a reduced waste of money, time, and materials, the

execution speed of interpretability procedures is even more relevant.
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Experimental results and evaluations

This chapter expands on the experimental phase of the project, providing an account of its de-
sign and a thorough discussion of the results and their implications. The first step of this phase
is data exploration, an essential step to understand the structure of the data and the relation-
ships within the dataset. As the second step of the experimental phase, we have moved into the
AD task. In this step we focused on the IF algorithm, and in particular on its interpretability to
get a better understanding of the underlying process and to enable root cause analysis. Finally,
we have adopted Root Cause Analysis to determine the root causes of two anomalous instances

in order to implement the appropriate improvement action.

4.1 DATA EXPLORATION

Before venturing into any advanced analysis of data using statistical, machine learning, and al-
gorithmic techniques, it is essential to perform preliminary data exploration to study the basic
characteristics of a dataset. Data exploration helps with understanding data better, to prepare
the data in a way that makes advanced analysis possible, and sometimes to get the necessary
insights from the data faster than using advanced analytical techniques. Visualizing data is
one of the most important techniques of data exploration. A visual plot of data points pro-
vides an instant grasp of all data points condensed into one chart. To get a visual plot of the
N = 712 data points we have exploited PCA. In particular, we have employed PCA to get a

3-dimensional representation of the data points. Figure 4.1 depicts the variance explained by
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each of the principal components. Itis possible to note that the cumulative explained variance

for the three components is close to 80%. In figure 4.2 the weights for each original variable
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Figure 4.1: Cumulative and individual explained variance.

when calculating the principal components are reported. We recall that we had a collection of
N data points that correspond to the processing of IV slabs by a vibro-compression machine.
N, = 386 data points were related to a healthy machinery whereas N, = 316 data points were

related to a failed machinery. Of each slab we knew:
* weight
¢ thickness

* material composition

Figures 4.3 and 4.4 depict the three principal components of the data points, where the third in-
formation listed above has been used in the figures to highlight the 7 different material compo-
sitions. We want to underline that the slabs related to material code 4, material code 5, material
code 6 and material code 7 have been processed by a failed machinery. In fact, from figure 4.4 it
is possible to note that data points related to a healthy machinery present a different behavior
with respect to data points related to a failed machinery. Precisely, the data points related to a
failed machinery are more spread. This visual plot of data points was extremely helpful because

it allowed us to understand that the features extracted from each multivariate time series could
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Figure 4.2: Weights for each original variable when calculating the principal components.

identify the slabs according to their composition. Besides, the plot suggested training a sepa-
rate AD model for each different material composition. Indeed, the IF algorithm relies on the
idea that abnormal samples are simpler to isolate than normal ones, which form dense clusters.
Consider the case when we have data belonging to classes corresponding to different material
compositions, where one has significantly fewer, sparser samples. If we had applied the IF al-
gorithm to the whole dataset, most of the samples coming from the minority class (i.e., those
coming from the failed machine) would have been deemed abnormal. These considerations
led us to train specialized AD algorithms for each composition. Moreover, unsupervised AD
assumes that most samples are normal, but this is not true for the available instances coming
from the failed machine. Thus, we have decided to focus only on the instances related to the

most present material composition, namely material code 3.
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Figure 4.3: First three principal components of the data.
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Figure 4.4: First three principal components of the data.
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4.2 UNSUPERVISED ANOMALY DETECTION

Before proceeding with the AD task, we studied the instances related to material code 3. We
employed the thickness and weight of each slab to study its distribution. Precisely, we made

a scatter plot to display values for the thickness and weight; see figure 4.5. From the figure, a
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Figure 4.5: Scatter plots showing clustering of slabs.

bimodal distribution of both the thickness and weight can be observed. These bimodal distri-
butions lead to the formation of two clusters. This visual plot of data points was extremely
helpful, because it allowed us to understand that we had to develop an AD system that did
not depend on the weight and on the thickness of the slabs. If the AD system was weight de-
pendent, some slabs could have been labeled as anomalous only because they had a mass very
dissimilar from the average of the masses. From figure 4.5 it is even possible to note that there
is a data point that has a thickness value of o. This makes us think that either there is a prob-
lem in the data acquisition system or a mistake was made when extrapolating the data from the

database. The zero thickness slab can be regarded as an outlier and then it has been excluded
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in the following analysis. After this analysis, we have applied the IF algorithm. The algorithm
associated an AS with each observation, then via a thresholding operation labeled each obser-
vation as normal or anomalous. To get a visual plot of the algorithm’s predictions we have
exploited PCA. In particular, we have employed PCA to get a 3-dimensional representation of

the observations. Figure 4.6 and 4.7 depicts the predictions of the algorithm. From the figures

Figure 4.6: Predictions of the IF algorithm.

it is possible to notice that the algorithm has labeled as anomalous data points that are located
in less dense regions. This behavior was expected from the IF model because data points lo-
cated in less dense regions require a limited number of iterations to be isolated, hence they are
more prone to be labeled as outliers. In figure 4.8, the 3-dimensional representation provided
by PCA has been employed to show the AS, computed by IF, for each data point. Data points
that have a more intense color are those considered more anomalous by the algorithm. The
5 slabs considered most anomalous with their relative AS are shown in table 4.1. Data points
related to the s slabs considered most anomalous are highlighted in figure 4.9. The 5 slabs
considered less anomalous with their relative AS are shown in table 4.2. Data points related to
the s slabs considered less anomalous are highlighted in figure 4.10.

It is very interesting to note that the most anomalous slabs have a slab code, the unique iden-
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Figure 4.7: Predictions of the IF algorithm.

Anomaly Score Slab code
+0.212 SLAB01000000239464
+0.168 SLAB01000000239417
+0.158 SLAB01000000239485
+0.110 SLAB01000000239407
+0.102 SLAB01000000239463

Table 4.1: 5 slabs considered most anomalous.

Anomaly Score Slab code
—0.121 SLAB01000000239622
—0.119 SLAB01000000239649
—0.118 SLAB01000000239535
—0.118 SLAB01000000239554
—0.116 SLAB01000000239537

Table 4.2: 5 slabs considered less anomalous.

tifier of each slab, very similar to each other. Furthermore, it is possible to note that the most

anomalous slabs have a slab code much lower than the less anomalous slabs. Domain experts
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Figure 4.8: 3-dimensional representation of data points. The color intensity of the dots is proportional to the anomaly score.

had explained to us that a slab with a lower slab code than another was produced in the first.
This led us to think that the first slabs produced, characterized by material composition 74-
terial code 3, could have problems although produced by an undamaged machinery. In the
light of these considerations, we have decided to visualize 4 multivariate time-series related to
4 slabs. Specifically, we have decided to display 2 multivariate time-series related to the two
most anomalous slabs and 2 multivariate time-series related to the two less anomalous slabs.
Figures 4.11 and 4.12 show the time-series related to the two most anomalous slabs. Figures
4.13 and 4.14 show the time-series related to the two most anomalous slabs. Visually compar-
ing the figures, we guess that the algorithm penalizes the time-series that exhibit heterogeneous
behavior. From figure 4.12 it is possible to note that the accelerometers monitor very diverse
vibration levels of the machinery. Whereas from figure 4.13 the accelerometers monitor very
similar vibration levels of the machinery. To get a better understanding of the underlying pro-
cess, we employed DIFFI and AcME. Specifically, we used DIFFI to obtain a ranking of the
features from the most important one to the least important one. Hence, DIFFI has been used
to explain the model’s behavior at a global level. The ranking of the features and their relative

importance scores are reported in figure 4.15. From the figure it is possible to note that the
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Figure 4.9: 5 data points considered most anomalous.

features considered most important by DIFFI were:

1. Fundamental frequency of the average time-series’ first segment
2. Variance of the six sample means in the third segment
3. Variance of the six sample means in the first segment

4. Variance of the magnitude spectrum in a neighbourhood of the fundamental frequency
of the average time-series’ fourth segment

5. Variance of the magnitude spectrum in a neighbourhood of the fundamental frequency
of the average time-series’ second segment

This ranking provided by DIFFI supports our guess on the characteristics of the algorithm-
penalized time-series because the second and third features considered most important by DIFFI
are a sort of measure of the time-series heterogeneity. To further validate our guess, we em-
ployed AcME at alocal level. The importance scores provided by AcME rely on perturbations

of the data based on quantiles of the empirical distribution of each feature. These perturbations
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Figure 4.10: 5 data points considered less anomalous.
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Figure 4.11: Time-series related to S LAB01000000239464, the most anomalous slab.
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Figure 4.12: Time-series related to S LAB01000000239417, the second most anomalous slab.

Acc. 4 Acc. 3 Acc. 2 Acc. 1 Acc. 0

Acc. 5

Figure 4.13: Time-series related to S L. AB01000000239622, the less anomalous slab.
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Figure 4.14: Time-series related to S L. AB01000000239649, the second less anomalous slab.

are performed with respect to a reference point in the input space, which it is called baseline vec-
tor. When the scope of the analysis is the interpretation of individual predictions, the baseline
vector is equal to the specific data point to be explained. We have decided to consider as baseline
vector the feature vector related to the most anomalous slab. AcME provides similar visualiza-
tions to SHAP both for global and local interpretability. In thelocal case, a dashed line is placed
in correspondence of the anomaly score associated with the original feature vector. Each hori-
zontal line (associated with a specific feature) represents the actual predictions associated with
the perturbed data points. AcME visualization for local interpretability makes it possible to
understand how much the value of a specific feature can be reduced or increased, and how the
corresponding prediction will be affected. Such a design choice allows for immediate under-
standing since the underlying what-if approach is well-aligned with human tendency to reason
in counterfactual terms. In Figure 4.16 we show how local interpretability can be used as a what-
¢f analysis tool. The bigger bubble corresponds to the current observation value, while the dots
represent the actual predictions associated with the perturbed data points. We see that the ob-
servation with slab code SLAB01000000239464 has an anomaly score of 0.212, according to
the IF model. Everything else remaining fixed, this score would grow over 0.23 if we increase

the variance of the six sample means in the first segment or in the third segment. Namely, if the
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Figure 4.15: Ranking of the features provided by DIFFI.

heterogeneity of the six time-series in the first segment or in the third segment increases, the slab
would be considered even more anomalous. These results support our guess on the character-
istics of the algorithm-penalized time-series, that is, that the algorithm penalizes the time-series
that exhibit heterogeneous behavior. In the light of these results, we have confronted ourselves
with Breton domain experts that explained us that the heterogeneity of the time-series may be
related to a dosing problem by the machinery that precedes, in the process of working the slabs,
the vibro-compression machine. In essence, the IF model identify as anomalous slabs that have
the stone particles, contained in the tank, arranged in a non-homogeneous way. Breton do-
main experts also explained to us that time-series’ heterogeneity may be related to a mechanical
failure in the machinery, hence they considered promising the proposed approach. Regarding
the consideration that the most anomalous slabs have a slab code very similar to each other, Bre-

ton domain experts told us that there may be a dosing problem at the beginning of processing
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Figure 4.16: AcME local importance scores visualization for S L.AB01000000239464.

slabs with composition material code 3. In figure 4.17 we have superimposed the multivariate
time-series considered most anomalous by the IF model with the multivariate time-series con-
sidered less anomalous. It is possible to note that the most anomalous observation (the one in
gray) has two of the six time-series with much lower energy than the less anomalous observa-
tion. This led us to think that also the average time-series of the less anomalous observation
has lower energy than the average time-series of the most anomalous observation. Therefore,
we made a scatter plot to display values for the ID and energy; see figures 4.18 and 4.19. We
have assigned an ID to each slab, o for the first processed slab, 266 for the last processed slab. In
figure 4.18 we have colored each observation according to the predictions of the IF algorithm,
whereas in figure 4.19 we have colored each observation according to the AS provided by the
IF algorithm. From these figures, it is possible to note that there is a strong correlation between
“outlierness”, energy and ID of each observation. Specifically, the slabs produced first have a
more heterogeneous behavior, therefore low energy, and are consequently labeled as anoma-
lous. These figures further support Breton’s hypothesis that there is a dosing problem at the

beginning of processing slabs with material composition material code 3.
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Figure 4.18: Scatter plot showing correlation between IF predictions, energy and ID.
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4.3 RooT CAUSE ANALYSIS

In this section, we have adopted Root Cause Analysis to determine the root causes of two
anomalous instances. To do Root Cause Analysis we exploited AcME. AcME could act as
a Root Cause Analysis tool, in the sense that it may help users to figure out why the algorithm
deemed a sample as normal or abnormal. In particular, exploiting the local interpretability, we
could focus on an instance and use AcME to evaluate how changes in the input feature values
would impact the corresponding anomaly score. Firstly, we have considered the observation
with slab code SLAB01000000239429 that has an anomaly score of 0.001, according to the
IF model; see figure 4.20. Everything else remaining fixed, this score would become negative
if we decrease the RMS of the average time-series in the first segment. However, a very low
value for the RMS (that corresponds to the light-blue dot on the right) would have resulted
in a bigger anomaly score. When the anomaly score of an observation is negative, that obser-
vation is considered an inlier, conversely if the anomaly score is positive, the observation is
considered an outlier. Hence, if the RMS of the average time-series in the first segment had

been inferior, the observation would have been labeled as inlier. In figure 4.21 a superimpo-
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Figure 4.20: AcME local importance scores visualization for S LA B01000000239429.

sition of the moving RMS of the less anomalous observation (the one with ID=220) and the
moving RMS of the observation considered in Root Cause Analysis is depicted. We consid-
ered a window length of 1s and we considered only the first segment of both signals. From

the figure it is possible to note that the moving RMS of the anomalous observation is for long
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stretches greater than the moving RMS of the less anomalous observation. This figure gave us
turther confirmation of the fact that by decreasing the RMS in the first segment the observa-

tion would have been labeled as inlier. Then, we examined another anomalous instance with
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Figure 4.21: Superimposition of the moving RMS of the less anomalous observation (the one with ID=220) and the moving
RMS of the observation considered in Root Cause Analysis.

slab code SLAB01000000239664 that has an anomaly score of 0. This is an observation with
an AS equal to the IF’s threshold. For this reason it is a very interesting observation. Figure
4.22 depicts AcME local scores visualization. Everything else remaining fixed, the anomaly
score would become positive if we increase the variance of the six sample means in the second
segment, whereas the anomaly score would become negative if we decrease the variance of the
six sample means in the second segment. The bigger bubble that corresponds to the current
observation value has a very intense red color, this coloring corresponds to the quantile 0.98,
the rightmost dot corresponds to quantile 1, i.e. it corresponds to a bigger value, whereas the

dots on the left correspond to lower quantiles, accordingly lower values. Again, it turned out
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that time-series’ heterogeneity plays an important role in the assignment of the anomaly score
by the algorithm. Precisely, if the stone particles, contained in the tank, had been arranged in a
more homogeneous way the engineered stone slab SL.AB01000000239664 would have been

labeled as normal, and not as anomalous.
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Figure 4.22: AcME local importance scores visualization for S L AB01000000239664.
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Conclusions and Future Works

In this final chapter, we present the conclusions of the work, the fulfilled objectives are eval-
uated, and some possible future lines of work, based on the open issues identified during the

project, are presented.

5.1 (CONCLUSIONS

In Breton, the industrial production process of engineered stone slabs is very complex. The
growing complexity of this process has generated a constant need for improvements in the
safety and reliability of machinery. These two properties can be achieved through preventive
actions resulting from process monitoring. Vibro—compression under vacuum represents one
of the phases that make up the production process of engineered stone slabs. This thesis work
presented the steps necessary to implement a Machine Learning-based approach to monitor
a vibro-compression machine. The proposed approach was based on the development of a
feature-based anomaly detection system. Precisely, we developed an unsupervised anomaly de-
tection system, motivated by the lack of a reliable labelled set of anomalous data instances to de-
scribe all possible types of abnormal behaviour. Through experiments we have shown that the
feature engineering process was able to identify the slabs according to their composition. This
suggested us to train a separate anomaly detection model for each different material composi-
tion. We focused on the instances related to the most present material composition, specifically

we trained the Isolation Forest algorithm on these instances. We focused on such an algorithm
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for its high detection performance, its computational efficiency and its widespread adoption.
It results that the algorithm penalizes the time-series, related to the processing of a slab, that
exhibit a heterogeneous behavior. This result has been supported by two interpretability meth-
ods, DIFFI and AcME, employed to provide insights on the predictions the Isolation Forest
makes. Furthermore, by adopting AcME as a Root Cause Analysis tool, we have determined
the root causes of an anomalous instance. The root cause resulted to be the heterogeneity of
the time-series, this further supported our insights. Comparisons on the results obtained with
Breton domain experts allowed us to understand that the heterogeneous behavior penalized by
the algorithm was related to a dosing problem by the machinery that precedes, in the process of
working the slabs, the vibro-compression machine. Accordingly, the developed anomaly detec-
tion system was able to detect slabs that have the stone particles, contained in the tank, arranged
in a non-homogeneous way. For this reason the proposed approach was considered promising
by domain experts. Breton experts have considered it promising also because time-series’ het-
erogeneity could be related to a mechanical failure in the machinery. The presence of failures
in vibro-compression machine may result in degradation of product quality, increased operat-
ing costs, and production stoppages which are all critical issues for manufacturing companies,

including Breton.

5.2 FUTURE WORKS

The work done in this thesis can definitely be extended and improved. A possible improve-
ment of this work can be achieved through an exhaustive data collection. When we talk about
exhaustive data collection we refer to the monitoring of the vibration levels of the machine fora
sufficiently long time to detect anomalies and failures. Through an exhaustive data collection it
would be possible to obtain a reliable labelled set of anomalous data instances to describe most
of the possible types of abnormal behaviour of the vibro-compression machine. A labelled set
would allow to adopt a supervised approach to the anomaly detection problem. This would be
an advantage in terms of performance, as using labeled inputs and outputs, it would be possible

to measure the accuracy of the Isolation Forest model and tune the right hyperparameters.
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