
UNIVERSITY OF PADUA

Department of Information Engineering

Master Degree in Computer Engineering

Study and Implementation of Blockchain
Compression

Matteo Maso student number: 1156281

Supervisor:
Prof. Mauro Conti, University of Padua

Co-Supervisors:

Dr. Ghassan Karame, NEC lab Europe
Alessandro Sforzin, NEC lab Europe

9th December, 2019

Abstract

Blockchain technology is being recognized as the technology innovation that is going to
change how society and people interact. After the invention of the Internet, which allows
people to break down the barrier of communication among countries, the blockchain has
moved the concept of trust from a third party to the protocol. The blockchain technology
enable the creation of a decentralized ecosystem, in which transaction can be exchanged
and characteristics like persistence, anonimity and auditability are achieved by protocol
design.

Despite the excitement, two of the major blockchains, Bitcoin and Ethereum have
reached respectively 250 Gb and almost 1 Tb of data, which needs to be replicated among
all the users, aiming to participate in the network. Nowadays there is no technology able
to reduce the amount of disk space that a blockchain application needs, but also no
lean protocol allowing users to participate to the network in a secure and private way.
In a future filled with resource-constrained smartphones and IoT devices, the ability to
reduce the disk space required by a blockchain is a key factor in enabling the deployment
of this powerful technology.

Our study presents two main goals: first, the research of a way to compress an
entire blockchain through the use of both legacy compression libraries and a custom
compression algorithm, designed accordingly with the Bitcoin structure and data. Our
solution enable the long term storage for the blockchain data, useful to maintain the
blockchain history for security reason and for data archive.
Furthermore, we do the quantification of the minimum amount of disk space required, in
order to guarantee to the user both a good level of privacy and security, throughout any
interaction. The result demonstrated the ability to implement a provably secure thin
protocol that will allow IoT devices to enter the blockchain ecosystem.

Contents

1 Introduction 3
1.1 Research Goal & Scope . 4
1.2 Thesis Structure . 4

2 Background 6
2.1 Blockchain . 6

2.1.1 What is a Blockchain? . 6
2.1.2 Transactions . 7
2.1.3 Timestamp server . 10
2.1.4 Consensus Algorithm . 14

2.2 Bitcoin . 18
2.2.1 Transactions . 18
2.2.2 Block . 21
2.2.3 Protocol . 23
2.2.4 Data Storage . 26

2.3 Data compression . 28
2.3.1 Run-length-Encoding . 30
2.3.2 Entropy encoding . 30
2.3.3 Dictionary based . 31
2.3.4 Modern compression library . 33

3 Related Work 34
3.1 Bitcoin core software . 34

3.1.1 The pruning mode . 34
3.1.2 Light clients . 35
3.1.3 Segregated Witness . 36

3.2 Attempted solution or strategy . 37
3.2.1 UTXOs analysis . 37
3.2.2 Streaming compression . 37
3.2.3 The Mini-Blockchain Scheme . 38
3.2.4 The MimbleWimble blockchain 38
3.2.5 Smart contract recycling . 39
3.2.6 Inputs Reduction in Bitcoin Blocks 39

4 Methodology 41
4.1 Transactions outputs . 42
4.2 First compression attempt . 42
4.3 Custom compression approach . 43

4.3.1 Transaction header fields . 44

1

Analysis of Primitives for Blockchain Security CONTENTS

4.3.2 Transaction input fields . 45
4.3.3 Transaction output fields . 45

4.4 Full node optimization . 45

5 Evaluation 47
5.1 Transactions’ output analysis . 47

5.1.1 UTXOs Distribution . 47
5.1.2 Spent Transactions’ output life span 50

5.2 Traditional Compression . 56
5.2.1 Compression library Comparison 56
5.2.2 Optimizing Compression parameter 60

5.3 Data analysis for efficient Compression 62
5.3.1 Blockchain Data Distribution . 63
5.3.2 Scripts Distribution . 66
5.3.3 Smart Compression . 68

5.4 Space optimization for full node . 73

6 Results Evaluation 76
6.1 Transactions’ output . 76
6.2 Data compression . 77
6.3 Secure light client and auditor node . 79

7 Conclusion 80

A How to manage blk files 81
A.0.1 Samples with Ordered blocks . 82
A.0.2 Samples with unorderd blocks . 83

B Structure of Bitcoin blocks and transactions 84

C Alecalve blockchain Python Parser 86
C.1 Install . 86
C.2 Structure and modification . 86

2

Chapter 1

Introduction

Nowadays, stirring up worldwide people’s interest, “blockchain” has become a buzzword
in both Industry and Academia. The origin of the term blockchain is related to Bitcoin;
it is a revolutionary software that builds a peer-to-peer network, in which mutually
untrusted parties can safely exchange digital currency. Bitcoin comes from an idea,
designed and implemented by “Satoshi Nakamoto” in 2008 [1]. Bitcoin, not only arises
the researcher’s interest but also, has enjoyed a huge financial success thanks to its capital
market that reached 237 billion U.S. dollars by the end of 2017 [2].

Blockchain is the underlying technology of Bitcoin - thanks to a new design and
protocol - it allows Bitcoin to revolutionise the concept of trust for the entire digital
financial sector. The technology lets people exchange transactions, just relying upon
mathematical proof, bypassing the expensive trusted third party always used by legacy
systems. Blockchain could be regarded as a public ledger, indeed it is a distributed
database of all transactions or digital events that the network participants have made and
shared. Each record, before the insertion, is verified by a consensus of majority algorithm
which runs among participants. Thanks to consensus algorithms and cryptographic
techniques, once the information, it can never be erased; Blockchain contains a tamper-
proof and verifiable record about every transaction ever made.

Although the most famous blockchain application is Bitcoin, the potential of this
technology extends beyond cryptocurrency. The key characteristics of Blockchain that
could benefit multiple industries are:

– decentralization that is a key characteristic required by nowadays industries, which
are increasingly being distributed. Also, a decentralized structure avoid the single
point of failure, useful for increasing the level of security;

– persistence is almost a precondition for a ledger which aims to provide a historical
sense to users’ data and transactions;

– auditability makes the blockchain’s data trustable. It is a tamper-proof strategy,
data is correct as long as the system follows the protocol and the majority of users
are honest. As soon as data has tampered users is aware of it and the system is
not trusted anymore;

– anonimity is a key property necessary in a data-driven economy, to benefit from
them without the damaging of the human rights.

As described in [3], since Blockchain allows payments’ exchange without Banks and third
intermediary, it can be used in various financial services such as digital assets and online

3

Analysis of Primitives for Blockchain Security CHAPTER 1. INTRODUCTION

payments. Additionally, multiple different areas, like: supply chain [4], Internet of Thing
- IoT [5], and Healthcare [6] can take advantages from the adoption of blockchain.

Blockchain is in different studies depicted as a key ingredient for the future’s internet
systems [7], [8]. It is seen as a powerful way to store and transmit data or value in a
fast and secure way. However, Blockchain is facing a challenging technical issue that
currently sets a strict upper bound for its adoption and usability - its space requirement.
Nowadays, devices that build a blockchain network need to have at least a few hundred
gigabytes of space. Furthermore, the challenge scenario is even worst considering the
massive amount of data produced by people, that future’s internet system needs to cope
with. Every day, people worldwide produce 2.5 quintillions of bytes [9]; managing this
amount of data with a system based on Blockchain means that each user’s device and
IoT product needs to be equipped with expensive hardware and that is unreasonable.

Our research aims to broke the space requirement barrier, enabling resource-poor
devices to participate and benefit from Blockchain’s systems.

1.1 Research Goal & Scope

As mentioned above, we aim to solve the blockchain’s space requirement issue. The
technology needs to face this challenge before seeing widespread adoption and become a
real disruptive technology for the new Internet era.

The size of the entire data storage of two of the most known Blockchain’s instances,
Bitcoin and Ethereum, by the end of 2019 reached respectively 250 Gb and 2 Tb. These
amount of disk space imposes a high initial barrier, especially for the IoT devices, limiting
the adoption of the blockchain and yet lower its benefit that comes from the blockchain
network’s size.

Initially, we conducted a detailed analysis of the protocol and architecture adopted
by Bitcoin and Ethereum. Then, we examined the functionality offered by Blockchain
and categorized functions used by users. Based on the last part of the study, considering
the services that network’s participants require, we divided users within different roles.

Based on new roles’ division, maintaining the functionality, we have proposed an
innovative way to reduce the space requirement reaching a theoretical lower bound.
The new approach allows, the most demanding user, who want to maintain an archive
version of the data, to cut their space requirement by 40%. Moreover, our solution allows
a normal user, to exchange transaction in a blockchain system using a device equipped
with a few gigabytes memory.

1.2 Thesis Structure

The thesis is organized as follows:

• Chapter 2 discusses the fundamental concepts behind the blockchain, Bitcoin’s
protocol, and Data compression algorithms;

• Chapter 3 shows related works;

• Chapter 4 introduces the research path carried out in the thesis;

• Chapter 5 presents the experiments together with a thorough explanation;

4

Analysis of Primitives for Blockchain Security CHAPTER 1. INTRODUCTION

• Chapter 6 analyses the experiments’ findings;

• Chapter 7 concludes the thesis.

5

Chapter 2

Background

This chapter begins with an overview of the blockchain technology, follows a deep and
detailed explanation about the Bitcoin protocol. In the end the reader will be introduced
to the data compression techniques and the modern compression libraries used in the
thesis’ experiments.

2.1 Blockchain

The following section contains a technical explanation of Blockchain with few examples
and motivations to have a better understanding of the topic. Three of the main concepts
are explained: Transactions, timestamp server, and consensus algorithms. Also, the
section contains a brief explanation about hashing functions and digital signature, two
basic concepts for the realization of a blockchain.

2.1.1 What is a Blockchain?

The blockchain is a distributed system, eventually consistent, where multiple untrusted
parties can exchange, without a trusted third party, transactions in a secure way.

This section explains how the Blockchain can be realized from a technical perspective,
firstly introducing a model to better visualize the concept and later covering all the
fundamental steps to implement the system’s properties.

According to the founder of Ethereum, a blockchain can be seen as a specialised
version of a cryptographically secure, transaction-based state machine [10]. So, basically
this distributed system can be modeled as an infinite state automaton. The blockchain
system provides developers and system’s architect with a new paradigm. Now it is pos-
sible to implement specific models of distributed systems where security and consistency
are achieved by system design. The economic system, supply chain management, and
distributed software are just a few examples where this statement can be applied.

Once we talk about state machine we should specify what a state is in the context of
the blockchain. To start with an example, within the economic system environment is
necessary to agree over the members’ accounts balance. A state of the system, can be the
list of all the members’ account values in a specific moment of the history. Proceeding
with the example, once user’s account value changes, the system’s state changes too and
the automaton moves its state S from Si to Si+1. Trusting the system’s state means that
everyone agrees above all the steps done which imply agree over the final states.

6

Analysis of Primitives for Blockchain Security CHAPTER 2. BACKGROUND

To make the concept more general, where the blockchain is a distributed database, the
state is a snapshot of the database’s values.

With the term accepting state, we refer to the last state of the machine. Also, to
make the system evolve from one state to a new one, a state transition need to be made.
In the following section it is explained what a transaction is.

2.1.2 Transactions

In the blockchain model of state machine, to make a blockchain transaction means to
apply a function to the state of the system. The set of valid functions, combined with
their input, represent a set of rules that characterize the system’s properties. These
rules are part of the protocol and different Blockchains have different protocols, rules,
and properties.

A transaction is a single event, allowed by protocol’s rules. Transactions, generated
within a fixed amount of time, can be grouped forming a bigger transaction. More-
over, viewing the blockchain as a database, transactions are single records plus specific
constraints due to their Blockchain’s protocol.

Each transaction modifies a specific value of the system’s state. However, each type of
state field comes with a specific set of functions and an order for the functions’ execution.
An example is package delivery. Pick the item, package it and send it are functions which
cannot be used in a different order.

Now, we can introduce the concept of sequence related to the transactions; each
new transaction is allowed by the previous one and it unlocks the creation of the next
one. In the blockchain ecosystem, to ensure that this sequence is respected, every new
transaction generates a key that is necessary to unlock and use the created transaction.
In this way, only the key’s owner can execute it.

Blockchain, to enable this function, uses a cryptographic technique known as Digital
Signature, which is made using a special class of functions called: Cryptographic hash
function. Both of the concept are explained below.

Cryptographic hashing function

A hash function is any function that can be used to map data of arbitrary size to fixed-
size values. Given X and Y respectively, the input and output message space, ∀x ∈ X,
y = h(x) s.t. y ∈ Y and |y| = ly where ly is fixed and depends on the chosen function.
The output is called, hash value or digest message.

Properties:

• efficiency - the function needs to be easy to compute y = h(x);

• uniformity - given px (the statistical distribution of our input), y ∼ U(Y) where Y
is a fixed lenght message space.

A cryptographic hash function is a hash function that also requires:

• preimage resistance - given y ∈ Y it must be hard to find x such that h(x) = y;

• weak collision resistance - given x ∈ X it must to be hard to find x′ 6= x s.t.
h(x′) = h(x);

7

Analysis of Primitives for Blockchain Security CHAPTER 2. BACKGROUND

• strong collision resistance - it mast be hard to find x1, x2 ∈ X, with x1 6= x2, s.t.
h(x1) = h(x2).

These functions are useful to verify the
integrity of exchanged data. Once you have
downloaded a large file, it is useful to also
retrieve the digest to compare it with the
digest produced by the file to verify its
correctness. A digest is very small so it is
less likely to be corrupted by transmission
noise and easier to be securely sent.

In the blockchain system, these func-
tions are used to produce a unique identifier
and to verify the integrity of data exchanged
within the system. Figure 2.1: Example of an Hash

function.

Digital Signature

The term Digital Signature comes from the similarity that exists with the handwritten
signature however, a digital signature is the signature that an entity makes to a digital
message.

A digital signature is a security mechanism that allows to obtain data integrity and
accountability. Thanks to the use of the asymmetric keys it also offers Non-repudiation.

Properties:

• Data Integrity allows everyone to verify the message’s integrity just using the cre-
ator’s public key.

• Accountability user’s is able to be sure about the creator’s identity of all the data.

• Non-repudiation connect directly a user’s identity with its messages. The creator
cannot lying about the creation of the message. This property is essential for
money transactions or any trusted system.

The protocol for the creation and verification of a digital signature is made by two
steps. Both the signer and verifier user needs to agree over a specific cryptographic
hash function and a couple of signature and verification function. The sender user needs
also to create a pair of public/private keys and share the public key with the intended
receiver. Then, as we can see in the Figure 2.2 during the signature phase it is used the
cryptho-hash and signature functions with the private key. Later, the verifier can uses
the same cryptho-hash function and the verify function with the public key.

8

Analysis of Primitives for Blockchain Security CHAPTER 2. BACKGROUND

Figure 2.2: Signature and Verification schemes to use digital signature for data integrity.

• Cryptographic hashing function which allows to convert an arbitrary length mes-
sage into a fixed length digest.

• Signature function allows to create a one way tag t from the u digest x and prive
key k.

• Verification function allows to retrieve x from a tag t and the public key k’ asso-
ciated with k.

The Digital signature in the blockchain environment implies that each user owns a pair
of a public/private keys. When a user wants to send a transaction she needs to sign it
and spreads the transaction combined with the signature into the network. Then, each
user that belongs to the network is able to verify the transaction received by using the
public key of the sender [11]. The process is shown in the Figure 2.3.

Figure 2.3: Digital Signature used in the blockchain [11]. Two users, Alice and Bob,
exchange a message. Alice send a message to Bob who checks the integrity of the message.

Using the digital signature applied to a transaction is possible to exchange transactions
in a safe and secure way. However, with this instrument only, Blockchain is not able to
guarantee the sequential constraint of transactions’ execution.

9

Analysis of Primitives for Blockchain Security CHAPTER 2. BACKGROUND

2.1.3 Timestamp server

As long as we use the technique introduced before, we are able to identify which user
has made a specific transaction and if the transaction was created using the correct key.
However, the method suffers to the “Double spending attack”, which means that there
is no way to prevent a user to create a new valid transaction, sending its spent money
to another user. It is possible to see that the money is spent twice, see Section 2.4, yet
no one can know which is the first transaction created, and which is dishonest.

Figure 2.4: The double spending problem, the Case A is correct, instead Case B is wrong
since it is ambiguous. In the case B, the user X sends the same money to two different
users. This scenario does not exist with a physical currency since it is not possible to
give the same banknote to two different people in the same money.

The Double spending problem, before the adoption of the Blockchain, was solved
relying on a trusted third party, that checks everything and guarantees that a user had
spent its money only once. To solve it, is necessary to provide transactions with a time
meaning, in this way the first transaction is the valid one. The solution that Bitcoin
proposed is to distributed transaction inside chunk called Blocks. The timestamp server
works in this way: each new block is hashed within the old hash to form a new hash, as
we can see in the figure below 2.5. In this way, each transaction assumes a time meaning,
provided by its block’s height. A transaction inserted into the block Bi is younger than
a transaction inside block Bi+3.

The block is created incrementally, thereby once a user creates a transaction and
puts it inside a block, it cannot create a new transaction and claimed it to be the newest
because the created transaction can only be inserted in the front of the chain. Besides if
the user try to tamper the old block, inserting the crafted transaction, the block’s hash
changes, breaking the entire blockchain’s validity.
Before to explain the structure of the blocks is necessary the introduction of a special
tree structure, mostly used in the blockchain ecosystem.

Merkle tree

In cryptography and computer science, a Merkle tree or hash tree is a data structure
where all leaves are labeled with the hash of desired data and each internal node is
labeled with the cryptography hash of its children’s label combined. It is a complete
binary tree, thereby the deep is log2 n where n is the number of leaves.

10

Analysis of Primitives for Blockchain Security CHAPTER 2. BACKGROUND

Figure 2.5: Hashing Timestamp [1]. The hash of every block is linked with the hash of
theirs predecessors.

The Merkle tree is useful for both checking out the correctness of an entire list of
data and verifying efficiently a single part of a data store.

The hash value of the Merkle tree root node is a cryptographic fingerprint about all
the leave’s label, which means to be a unique shadow of all the data hashed in the leave.
Also, the root node does not contain information about the depth of the tree, making
the tree difficult to falsify.

Figure 2.6: The figure describes a standard Merkle tree, build from 4 items which are
labeled Li.

The Figure 2.6 contains an example of a Merkle tree, which is built from four data
blocks. The next paragraph describes the Merkle branch.

11

Analysis of Primitives for Blockchain Security CHAPTER 2. BACKGROUND

The Merkle branch is one important
concept in the Merkle tree. Given a
leaf x, a branch called bx that started
from x to the root, the Merkle branch
related to x, is composed by all the
sibling nodes of bx’s nodes.
As we can see in the Figure 2.7, on the
right side, the red leaf depict a ran-
dom x, the green color underline the
bx and the blue nodes are the Merkle
tree related to x.

Figure 2.7: Merkle tree branch.

Given the root hash and the data to verify if the root hash corresponds to the data’s
is necessary to rebuild all the Merkle tree and verify if the new root hash corresponds
with the old one. However, to verify if a particular data block belongs to the given root
hash, it is necessary to retrieve the Merkle branch associated with the data blocks and
to compute as many hashes as the depth of the tree. Normally, looking for the presence
of an element inside a set of elements is necessary a linear number of operation using an
hash table. However, we can lower the number of operation using a tree structure, so
the number of operations is just log2(leaves).

Blocks

As we can see in the Figure 2.8, a block is organized in two sections: the header and
the body.

The body contains:

– the number of transactions;

– a list which contains all the transactions.

The header contains:

– block version, to specify which protocol the block structure respects;

– timestamp, current time in seconds in the universal time since January 1, 1970;

– parent block-hash, used to link a block to its previous one;

– Merkle tree root hash, is the label of the Merkle tree build from the transaction
list, which is contained in the block. It is useful to include a fingerprint about all
the transaction saving lots of space in the block header;

– nonce, a special number used in the consensus process; a detailed explanation is
available in the section: 2.1.4.

In the following Figure 2.9, is represented as a common blockchain’s block sequence. All
the blocks are linked together, differently from the first one that is called Genesis block ;

12

Analysis of Primitives for Blockchain Security CHAPTER 2. BACKGROUND

Figure 2.8: The high level block’s structure which shows its main components.

Figure 2.9: An high level blockchain architectural view. Every block’s header contains
the hash of its ancestor.

13

Analysis of Primitives for Blockchain Security CHAPTER 2. BACKGROUND

it is created only once, during the initialization of the system and from then all the chain
has to be rooted there.
The blockchain is a distributed system that aims to reach a majority consensus. More-
over, reaching a majority consensus in a distributed system is a revision of the Byzantine
general problem which is introduced in the following section. In the section are also
described the more important consensus algorithms that are used in the blockchain.

2.1.4 Consensus Algorithm

A consensus algorithm may refer one of several protocols for solving the consensus prob-
lem. In the field of computer science the consensus problem aims to achieve an agreement
on the current state of a distributed system.

The first consensus protocol suggested in the literature aimed to solve the Byzantine
General Problem. The Byzantine General Problem describes a group of generals of the
Byzantine army camped with their troops around an enemy city. Communicating only
by messengers, the generals must agree upon a common battle plan. However, one or
more of them may be traitors who will try to confuse the others. The problem was
generalized as follows [12].
A commanding general must send an order to his n-1 lieutenant generals such that:

– all the loyal lieutenants obey the same order;

– if the commanding general is loyal, then every loyal lieutenant obeys the order he
sends.

Figure 2.10: On the left side we can see how a coordinate attack succeed, on the other
side the defeat caused by an uncoordinated attack.

A consensus algorithm aims to provide a way to agree above a common data value or
system’s state in a distributed and untrusted system. Finding an agreement between
different entities, with conflicting information, in order to maintain the integrity, the
operativity and the consistency of a system is the purpose of the consensus algorithm and
what the blockchain needs as a distributed, decentralised system used among untrusted
entities.

14

Analysis of Primitives for Blockchain Security CHAPTER 2. BACKGROUND

Below, it is introduced and explained the most used consensus algorithm among blockchains:
the Proof of Work.

Proof of work

With the term Proof-of-Work - PoW we refer to the consent at the base of the blockchain
network. The blockchain uses this algorithm to validate transactions and to create new
blocks. The PoW encourages the miners to compete in the execution of this algorithm
in exchange for a reward. The users who participate in the PoW are called Miners and
the entire process is called Mining.

The PoW forces participant to solve difficult mathematical problems, which on the
contrary are design in a way such that the solution is easy to be verified. The mathe-
matical problems usually are based over hash functions, starting from a given input, like
a block, is necessary to modify the input accordingly until a digest that satisfies required
properties is found. To solve this problem is required a huge amount of CPU power,
brute force technique are used because there is not an efficient algorithm known to solve
these type of problems.

The growing velocity of a blockchain depends on the difficulty of the problem. The
problem should not be too complicated otherwise the chain does not grow, on the con-
trary, cannot be too easy otherwise the blockchain became vulnerable to external attacks.
Also, since every node needs to be able to verify the solution and not all of them has a
large CPU power, the solution needs to be easy to verify, even from the poor devices. It
is likely that the blockchain growing velocity needs to remain constant, so the difficulty
of the problem is chosen accordingly and could change over time; the difficulty increase
with the size increasing of the network since more CPU power is involved.

How it works is shown in the Figure 2.11. Miners collect new transactions from the
network, fill them into an empty block and start mining it until a desired digest is found.
Then, the winner spread the block mined to the others and everyone starts mining a new
block again. The hash of the father block is included in the header of the soon, and so
on so far, building the chain structure.

Figure 2.11: The Figure shows: first, the process of block’s creation on the right side,
then the mining process on the left side.

In the Figure below 2.12 it is represented how the blocks are linked together forming
a chain, each block contains the hash of its predecessor. This structure guarantees
that each block contains a cryptographic fingerprint of all its predecessors. So, once a

15

Analysis of Primitives for Blockchain Security CHAPTER 2. BACKGROUND

malicious user intends to modify a mined block, it has to mine all the subsequent blocks
again. In this way, the cost of modification increases with the aging of the blocks.

Figure 2.12: Proof of work in blockchain [11].

PoW is a good defense against the Denial of Service attack - DoS. The PoW forces the
use of a huge amount of CPU power and time, making an attack very expensive. When
a user spends a huge amount of CPU power to conduct a successful attack, the network
participants are able to detect it and is likely none use the system anymore since it is
compromised. The participants leave the network causing the value of the coin gained
by the attacker to collapse.

In the PoW as long as most of the CPU power is held by honest nodes, the whole
process is honest [1].

The PoW suffers from the Fork problem. The longest chain is considered the
correct one and all the Miners keep working to extend it. It can happen that two miners,
broadcast in almost the same moment, two different valid blocks. What happens is that
a so-called branch in the blockchain occurs and each Miner keeps working on the block
which they had first received. It is likely that does not occur the same situation for the
next block and so the next block is linked only to one of the branches that become the
longest one [1].

Figure 2.13: The Figure depicts a branch scenario, at block bi+2 there is a fork which
proceed for the length of two blocks. At block height i+3 only one block is mined and
from that point only one branch will proceed and the network discards the shortest
branch.

Despite the Proof-of-Work performance the process is a waste of energy, thereby al-
ternatives have been proposed to deal with it and the most relevant solution is the
Proof-of-Stake, explained below.

16

Analysis of Primitives for Blockchain Security CHAPTER 2. BACKGROUND

Proof of Stake (PoS)

The Proof-of-Stake - PoS, is an energy-saving alternative of Proof-of-Work, it does not
require users to invest their energy power in the process. The idea behind PoS is that
the more money a user has, the less she wants to be fraudulent. Therefore, users need to
prove the ownership of money and their vote’s weights are proportional to their amount
of money.

However, this method suffers from unfairness and centralization of power, the richest
users control the entire validation process; to cope with the issue various solutions are
proposed [11].
Some solutions introduce randomization in the selection of voters. Peercoin is one of
the first Blockchain based on a PoS algorithm, it designs a solution that supports coin
age-based selection. Owners of older and larger sets of Coin have a greater probability
to be chosen as validator of the next node, King and Nadal on 2012. Sometimes the
Stack could be something else, in “BurstCoin”, 2014, miners are forced to allocate a
huge amount of memory to mine a block [11].

Also, exists a variation of PoS called Delegated Proof-of-Stack - DPoS, which changes
the role of the Stake-holders, from mining the next block to delegate the miners of
the next block [13]. The purpose is to avoid the centralization of decision power. An
example of this algorithm is Bitshares, which is a Decentralised Autonomous Cooperation
launched in 2015.

17

Analysis of Primitives for Blockchain Security CHAPTER 2. BACKGROUND

2.2 Bitcoin

Bitcoin, designed by Satoshi Nakamoto in 2008, is a decentralized peer-to-peer payment
system [1]. It defines an electronic coin as a chain of digital signature; transactions
are assets’ ownership transfer [1]. The Bitcoin network solved the Double Spending
Problem using two techniques: it ensures, to all the users, an historical knowledge of every
transaction ever made and the chain provides transactions with a temporal meaning by
hashing them into an on-going chain of record.

The chain is forged by an hash-based proof-of-work, see section 2.1.4 for more details.
The topology of the chain is a rooted tree where the longest branch is approved by the
majority of the network’s participants. Also, the weight of a single user’s vote depends
on its CPU power, so as long as the majority of the network’s CPU power belong to
honest users, the chain is safe [1].

Participants are referred with a virtual address, called Bitcoin addresses; to guarantee
privacy, every user owns different addresses, which has a pair of public and private keys
attached. The pair of keys is used each time a user aims to spend her money.

2.2.1 Transactions

Bitcoin transactions let users spend Satoshis1, it is an ownership transfer of a certain
amount of Bitcoin assets from a sender address to a receiver [15].

The Bitcoin protocol has two categories of transactions:

– The Coinbase transactions are used in the Consensus Process and as a way to
generate and distribute new Bitcoin assets. Every block has 1 Coinbase transaction
at the beginning of its list.

– The Standard transactions are all the other transactions, which represent the
majority.

Structure

A transaction is actually a structured sequence of bytes. In the Figure 2.14 are depicted
all the fields in the correct order.
The next list contains an explanation of all the main fields. Also, a technical structure
with implementation details is available in Appendix B.

– Version number is used to choose the correct set of rules that needs to be used to
validate the transaction.

– Witness Flag indicates whether or not the transaction contains Witness data.

– Input and Output list, as described above, every transaction has two lists with
at least one input and one output; both the lists have also a field containing their
length.

– Witness Data is an optional field, its presence is announced by the flag Witness

flag and it contains additional data for the transaction’s validation.

1Satoshi : denominations of Bitcoin value, usually measured in fractions of a Bitcoin; 1 Bitcoin
corresponds to 100 M Satoshis [14].

18

Analysis of Primitives for Blockchain Security CHAPTER 2. BACKGROUND

Figure 2.14: Bitcoin transaction’s data structure; blue part is the main structure, yellow
and green part are subsections, referred as Inputs and Outputs.

– Lock Time allows the transaction’s creator to insert a lock-time before that the
transaction cannot be inserted into the blockchain. This method allows a sender
to rethink about the transaction by submitting a new transaction with the same
input but a no-lock-time.

Input and Output

So far we have depicted Bitcoin transactions as a transfer of ownership of Bitcoin assets,
however, the way they do it is more complicated and it requires a detailed explanation.

Each transaction moves sets of assets, specified within the input, to a set of addresses,
specified within the output. The sender also specifies a list of receivers, which are at least
one, as outputs. Each Input points to a unique source of assets, which is represented
by a transaction’s output. Also, every Output is referred to as an Unspent Transaction
Output(UTXO) until a later Input spends it [14].

The Figure 2.15 shows, focusing on Inputs and Outputs, how a Bitcoin transaction
looks like.
Structures of the Inputs and Outputs are important for the authentication mechanism
and for the security of the entire blockchain. Both Input and Output structures are
represented in the Figure 2.14.

Input

– Previous transaction’s hash, reference uniquely an existing transaction
of the blockchain.

– Previous tx index, point a specific transaction output in the transaction’s
output list.

– Script length, contains the length of the next field.

– Script, contains information that demonstrate sender ownership of this as-
sets.

– Sequence number is a number intended to allow unconfirmed time-locked
transactions to be updated before being finalized; not currently used except
to disable locktime in a transaction.

19

Analysis of Primitives for Blockchain Security CHAPTER 2. BACKGROUND

Figure 2.15: The figure shows how the Bitcoins’ assets are transferred within transac-
tions; the focus is on the inputs and outputs of each transaction.

Output

– Value, amount of asset’s value.

– Script length, length of follow field.

– Script, provides information necessary for the receiver to demonstrate hers
ownership. Necessary to spend this assets.

The next section explains the security mechanism of transactions and how they are
validated.

Script and Transaction Validation

Bitcoin uses a scripting system2 to validate transactions. The Script is simple, stackbased
and has to be interpreted left to right. A Bitcoin Script is a list of instructions, recorded in
each transaction, describing how its owner can have access to the transaction’s value [16].

As we can see in the picture 2.16, an Input points to a specific Output. To check if
an input can be used, you need to combine the Pubkey Script of the required output
with the Signature Script of the Input. Once, the script is executed, the transaction
is valid if the script output if True, False otherwise.

Bitcoin protocol supports different types of scripts [18]; the Bitcoin community is
still developing new types.
The following list contains all the possible script that we can encounter in the blockchain;
the majority of them have a standard structure but a customized part is also present.

• Pay to Public Key Hash (p2pkh) is the most common output script. It allows
to send a payment to a Bitcoin address3. Also, allows users to hide the public key
until the Output is spent.

2A scripting language or script language is a programming language that supports script. A script
is a program designed for a machine to execute a list of actions.

3A Bitcoin address is a public key hash encoded in base58check (add cite)

20

Analysis of Primitives for Blockchain Security CHAPTER 2. BACKGROUND

Figure 2.16: Overview of Transaction script works in a Bitcoin transaction [17].

• Pay to Public Key (p2pk) is a simplified version of the p2pkh script, which is
more powerful and secure. This script is not used anymore.

• Pay to Multisig (p2ms) allows sending Bitcoin to a group of people, sharing
the control of the asset. During the creation phase, a set of public keys and a
minimum threshold is required; users can spend the asset fulfilling at least the
threshold numbers of constraints. An output with N public keys where M are
necessary to spend is called an m-of-n output.

• Pay to Script Hash (p2sh) contains the hash of another script, called redeemScript

that needs to be used with additional data to fulfill the Output script.

• Data is not a script but just data; since the script field has just a length constraint
a user can use it to fit random data inside the blockchain. The procedure is not
recommended since it causes Bitcoin assets unspendable.

• Custom script, the name to point the unconventional scripts. Bitcoin protocol
provides a set of rules, it is up to the user to combine them to create a secure
script. The use of standard scripts is recommended but is not binding.

2.2.2 Block

Bitcoin blocks, as explained in the background section, is a transaction wrapper, used to
provide a time-meaning to Bitcoin transactions, ensuring them with security function.
The block’s maximum size is 1 MB, limited by Bitcoin protocol.

The picture 2.17 shows the Bitcoin blocks structure; formed by a header with a set
of multiple sub-fields and a list of transactions. Other fields are also present and they
are explained in the list below. The header contains all the field necessary to provide
the blockchain structure and deploy the desired Bitcoin protocol.

– version: aim to make the peers aware about which set of block validation rules
follow to validate the block; until February 2019 there are 4 different versions and
the last one: version 4 was introduced in November 2015.

21

Analysis of Primitives for Blockchain Security CHAPTER 2. BACKGROUND

Figure 2.17: The figure shows the structure of a Bitcoin Block; the red part is a zoom
over the sub-field Header.

– previous block header hash: this field is necessary to link this block to its
predecessor according to the Bitcoin algorithm.

– merkle tree root node hash: contains the hash of the Merkle tree root node,
see 2.1.3.

– time: it is a Unix epoch time when a miner starts to mine those block.

– nBits: it is related to the difficulty that the proof of work function should achieve.

– nonce: an arbitrary number, changed over time to modify the header and solve
the desired Proof of Work puzzle, see 2.1.4.

The block and chain structures are designed to provide proof that a given transaction
was produced and accepted by the majority of the network during a specific moment in
the past.

Bitcoin block’s structure is made up of header and body in order to minimize data
used in chain security. Each block is connected together however, the hash of the block
is just the hash of the header of the block, this way allows to delete transactions without
breaking the blockchain [1]. Header contains the Merkle tree root node hash as a
unique fingerprint of the transactions’ list contained in the block, using just a small
field.

Segregated Witness

Witness is the name of a new data structure proposed as an upgrade of the Bitcoin
protocol. This structure is committed to a block separately and does not bellow to
the transactions Merkle tree. The data contained within the structure is necessary to
check the transaction validity but is not required to determine the transaction effects.
In particular, scripts and signature are moved into this structure [19]. Transactions aim
to provide ownership transfer of assets, script and signature are only a way to ensure
them. This structure allows to keep just important information into the chain and
discard validation info after checking them. The transmission of signature data becomes

22

Analysis of Primitives for Blockchain Security CHAPTER 2. BACKGROUND

optional and are transmitted only if a peer is trying to validate a transaction instead of
just checking its existence [19].

The adoption of this structure requires a fork of the chain and it needs the consensus
of the network. The validity of it started since the 1st August 2017 ∼ Block height 478500
when the majority of the network accepted the SegregatedWitness transactions [20].
To achieve the goal was also introduced a new type of transaction index; from now on
transactions have 2 IDs.

– The legacy txid, which is a double SHA256 of the traditional serialization format:

[nVersion][txins][txouts][nLockTime]

– The new wtxid which is defined as the double SHA256 of the new serialization
plus the witness data:

[nVersion][marker][flag][txins][txouts][witness][nLockTime]

2.2.3 Protocol

The life cycle of a transaction in Bitcoin is important and it is represented in the Figure
below 2.18.

Figure 2.18: This schema shows a Bitcoin transaction lifecycle.

The following bullet point resume which are the main steps of the Bitcoin network and
allows new insights. The steps to run the network could be resumed as follow [1]:

1. New transactions are broadcast to all nodes.

2. Each Miner collects new transactions into a new block and it works on finding a
difficult proof-of-work for the new block.

23

Analysis of Primitives for Blockchain Security CHAPTER 2. BACKGROUND

3. When a Miner Node solves a proof-of-work challenge, it broadcast the block to all
nodes that accept the block after a validation check.

4. The block is accepted when Miners moves to the next block and use the hash of
the accepted block as an ancestor.

Mining

Bitcoin uses PoW as consensus algorithm, see 2.1.4. The mathematical problem used
consists of building a new block such that the digest produced by hashing the block, is
prefixed by at least n zeros. The higher the n, the harder the problem is. The parameter
n is estimated in real-time, based on the network’s computational power, which must be
able to mine a new block every 10 minutes.

When a miner finds the solution she spreads the block with the correct nonce into
the network where all the peers can verify the validity of it, by just hashing the block
and look at the digest produced. A user accepts a block when she uses it as the ancestor
for the next block, also, a block is accepted once 50% + 1 of the network’s participants
accept the block [21].

How the Incentive mechanism works?
The blockchain network security relies on a large number of peers involved in the mining
process, to encourage them the first transaction of a block starts a new coin owned by the
creator of the block. This mechanism is also used to initially distribute coin and once a
certain amount of money is created the entire network can relay only above transactions
fees [1].

Full node

According to the Bitcoin official guide, a user can participate in the network protocol in
different ways. However, the Full node is the official type of node, it verifies every block
and transaction prior to relaying them to other nodes [22].

The full node is the only type of node which can be a Miner since a miner needs to
verify everything before to make the mining functions otherwise, it can happen that it
wastes its work if other users verify that she missed something.

The role of Full node is also a key when a new Full node needs to enter in the network
since it will provide all the history of the blockchain such that the new node can verify
by himself the entire correctness of the blockchain. The role is important also for the
maintenance of the decentralization of the blockchain [23].

For a full node client to be fooled, an adversary would need to give a completely new
chain with greater difficulty as the local one. However, by definition is not possible as
the more difficult chain is by definition the “True” chain.

Another problem is the initial block download - IBD cost, the Full node needs to
download the entire blockchain from the beginning and verify every transactions and
block. The process can require lots of time, even days and it cannot be used as a wallet
until the end of the process [23].

This node as bone of the Bitcoin’s network is also the main target for malicious users
who want to bring down the Bitcoin system.

Two subcategories are also suggested:

24

Analysis of Primitives for Blockchain Security CHAPTER 2. BACKGROUND

• Archival nodes, which are full nodes that store the entire blockchain and can
serve historical blocks to other nodes. Their existence is important to allow the
creation of new full nodes, which require to re-verify the entire blockchain since
the beginning.

• Pruned nodes, which still are full nodes but they do not store the entire blockchain.

Since the Bitcoin white paper was disclosed, a “light” way to verify the payment was
suggested by Satoshi Nakamoto. The next section describes the Simplified payment
verification method [1].

Simplified payment verification

The Simplified payment verification - SPV, was introduced to provide a way to verify
the validity of a transaction without the necessity of running a full node. The user needs
to keep in memory all the blocks’ header of the longest chain, which it can retrieve by
querying all the network node until it assumes that is the correct one. Once, it receives
the transaction to verify, it needs to query the network again to retrieve the Merkle tree’s
branch, to verify if the transaction belongs to a block in the longest chain.

The method has some assumption to be secure, it relies upon the fact that the
majority of the network is trusted and that it can reach the longest chain querying the
network, also it assumes that once it asks for the branching tree the user will provide
him with that branch. In the end, the verification is only partial and the assumption is
that the network accepted the transaction it is true.

This method arises some problem and web is plenty of possible attacks described for
this type of client.

Figure 2.19: The figure shows the chain of the blocks header that a users needs and how
a transaction can be verified to be attached to a specific block. The Merkle tree branch
is necessary [1].

25

Analysis of Primitives for Blockchain Security CHAPTER 2. BACKGROUND

Figure 2.20: The Merkle tree inserted into a Bitcoin block. It shows how just the internal
node is necessary to verify if the tx3 is present or not.

2.2.4 Data Storage

This section describes how Bitcoin data storage works. A Bitcoin core client stores, per-
sonal configuration data, wallet4 data, whether a wallet is required, and Blockchain data.
An additional data structure is sometimes required too, to increase software performance.

The blockchain data are stored into a single folder called Blocks chunked in multiple
files; an index structure for this data is stored in another folder named blocks/index. A
structure called Chainstate, is stored inside a folder named chainstate.

These structures are explained in more detail with the next three sections.

Blocks’ Directory

This folder contains all of Bitcoin’s blockchain data. Several files, named sequentially
blk00***.dat, contains Blocks in a blob format; the 2.21 represent the structure used.
Blocks are not ordered inside the files, also contiguous block can be stored in different
files. A structure called Block’s index, which is a noSQL database, is basically an indexing
system of these files.

Also, every blk00***.dat file has a “shadow file” that contains information necessary
to revert the blockchain effect caused by the blocks contained in the file. Shadow files
are called rev00***.dat, they are structured as a blk file but since they contain less
information, are shorter.

The structure of both, blk and rev files, as it is described in the Figure 2.21 is a vector
of block’s record. Bitcoin blocks have not a standard length so each record is prefixed
by 4 bytes of Network magic number and 4 bytes integer to indicate the size of the block
in bytes.

4A Bitcoin wallet, contains all the information regarding user’s address, private and public keys.
Also, could store its amount of Bitcoin.

26

Analysis of Primitives for Blockchain Security CHAPTER 2. BACKGROUND

Figure 2.21: The figure shows the so called blk*.dat files in which Bitcoin blocks’ data
is stored.

Without an indexing structure, every time a user needs to retrieve a block it should
be scroll through all files. When a Miner needs to validate a transaction, if blocks are not
indexed, retrieve all the transaction’s output within different blocks causes an immense
waste of time. The following sections introduce the indexing structure.

block/index

The index directory is a block directory subfolder, it contains a key-value database, which
is a LevelDB5.

This database aims as an index for blk files. It is maintained by the Bitcoin client
software and it can be rebuilt, providing the following command -reindex at the Bitcoin
software.

The keys follow specific rules, which are specified in the source code of the bitcoin
core: bitcoin/src/txbd.cpp. Follow a list with all the information written in the
structure:

‘f ’ + 4-byte file number contains metadata about a specific blk*.dat file:

• number of blocks contained

• file size expressed in bytes

• Undo file size

• height of the first block stored

• height of the last block stored

• Timestamp of the first block contained

• Timestamp of the last block contained

5LevelDB is a simple key-value store built by Google. It’s used in Google Chrome and many other
products. LevelDB supports arbitrary byte arrays as both keys and values, singular get, put and delete
operations, batched put and delete, bi-directional iterators.

27

Analysis of Primitives for Blockchain Security CHAPTER 2. BACKGROUND

‘b’ + 32-bytes block hash contains metadata about specific blocks:

• the hash of the block’s ancestor

• the block’s height

• number of blk*.dat file that contains this block

• Offset inside blk*.dat

• Offset inside raw*.dat

• version, Hash Merkle Tree Root, Timestamp, size, Nonce, Status and number
of transactions.

‘B’ contains the 32-bytes block hash of the latest known block.

‘H’ contains the hash of the last block which the database is consistent too.

‘R’ a flag that indicates whether the software is doing a reindexing process.

‘I’ is a 4-bytes file number that points to the last used blk*.dat file. It is used to maintain
a pointer to the last, not empty file chunk.

‘F’ a flag to indicate whether the Database is free or need to be stable.

Chainstate

The Chainstate is another additional structure, build for efficiency reason by Bitcoin
software. It is a LevelDB, like the block’s index, which contains in a compact format all
the Unspent transactions Outputs called UTXOs. This database is updated on real-time
and it could be rebuilt from scratch, by scan all the chain, however, it requires a lot of
time [1]. Every UTXO corresponds to a single transaction output not already spent and
it contains a pointer where the related transaction can be found in memory plus few
metadata.

The reason for the structure is to facilitate miner users, which needs to check the
script contained in the UTXO to verify the upcoming transaction.

2.3 Data compression

During the information age, an increasingly larger amount of data is produced, since
the network resource and the space storage were limited, multiple techniques had been
studied to reduce the space required by data storage.

Compression techniques and algorithms refer to a technique developed to reduce the
space used by storing digital content. These techniques consist of pairs of algorithms:
the compression algorithm which taking an input X, generates its representation Xc,
and the decompression algorithm which taking Xc as input, generates Y . There are
two categories of compression algorithms: lossy techniques which allow Y to be slightly
different from the original X, and lossless techniques that require Y to be equal to X [24].

– Lossy compression involves some loss of information, therefore when a data is
compressed with a lossy compression technique cannot be reconstructed exactly.
For a lot of application, such as voice, image and video compression, some details
are lost; despite that, it is very useful and used along with voice or video streaming
as a pre-processing technique.

28

Analysis of Primitives for Blockchain Security CHAPTER 2. BACKGROUND

– Lossless compression allows to reconstruct exactly the compressed files. It is very
useful to store and send text contents, documents, and code.

The compression ratio is the most widely used method for measuring the performance
of compression algorithms. In particular, it expresses the reduction in the amount of data
required as a percentage of the size of the original data [24]; if the original data is 10 GB
and the compressed size is 2 GB we are going to say that the Compression Ratio is 20%.
Also, different formulas can be used to express the same concept:

CompressionRatio =
UncompressedSize

CompressedSize

SpaceSavings = 1− CompressedSize

UncompressedSize

To understand both the model and the benefit of different compression algorithms, a
brief introduction about Information Theory is essential.
Defining A as an event that is an outcome of some random experiment and P (A) as the
probability that the event A occurs, then the information associated with A is given by:

i(A) = logb
1

P (a)
= −logbP (A)

The general idea is that the rarer an event is, the more information it has. However,
to calculate the information in bits, base 2 logarithm is necessary. In this way, the
information produced by an event with a P (A) = 50% is i(A) = log2(

1
2
)−1 = 1 bits, in

the same way an event with a P (A) = 12.5% is i(A) = log2(
1
8
)−1 = 3 bits.

Coding symbolic data

To compress some data, is necessary to make certain assumptions; for example, we need
that data is composed by symbols that belong to an alphabet, moreover, a probability
distribution is related with this alphabet. Also, any compression algorithm involves two
phases: modelling and coding. During the modelling part, the algorithm needs, given
the symbol table, to build the probability distribution and model about each symbol.
The coding part, based over the model plus some additional calculations, encode the data
symbols with new symbols, to hopefully reduce the space used by the compressed file;
also, a coder called encoder can be independent of the model [25]. A similar structure
is also used for the decoder, which used the same model used by the encoder to replace
the encoded symbol to the original one, to rebuild the original content.

The model can be updated during the compression process; this brings two different
compression types, namely, static or adaptive, based on whether the models may be
updated during the compression process. Also, the system can be Static if the model
used for compression and decompression are identical or Asymmetric when it is not.

Based over the length of the codewords, used before and after compression, algorithms
can be classified the next way:

– Fixed-to-fixed: each symbol has the same length before and after compression.
Ex. A=00, B=01, C=10, D=11.

29

Analysis of Primitives for Blockchain Security CHAPTER 2. BACKGROUND

Figure 2.22: The Figure depicts the model of a compression algorithm; Model-C is used to
represent the model that compression technique uses and Model-D for the decompression
phase. ABC ... is the source message, and 010001100 ... is the compressed message.

– Fized-to-Variable: before compression each symbol has the same length, but
different length after compression; the number of bits after compression is based
over compression strategy.
Ex. A=0, B=10, C=101, D=0101.

– Variable-to-fixed: symbols can be grouped together before compression, and
fixed length has the symbol after compression.
Ex. ABCD=00, ABCDE=01, BC=11.

– Variable-to-variable: symbols are grouped with different length, after compres-
sion symbols have also variable length.
ABCD=0, ABCDE=01, BC=1, BBB=0001.

In the following sections, we explain types of lossless techniques.

2.3.1 Run-length-Encoding

Run-length-Encoding (RLE) is one of the first compression technique used for fax and tv
streaming compression. The idea of RLE is to find long sequences of repeated characters
and replace them with their shortest repeated subsequence followed by the number of
its occurrence.

The technique is also very useful in structured data compression, which is often char-
acterised by long sequences of zeros used for padding. It can be used also for streaming
bitmap images, but it is applicable over generals sequences of bits, as we can see in
Figure 2.23.

2.3.2 Entropy encoding

One of the most used entropy encodings creates and assigns a code to each unique
symbol of the source code which needs to be compressed. The length of the code words
is inversely proportional to the amount of information carried by the replaced symbol.
The more a symbol is frequent, the shorter the symbol, used to replace it, should be.

30

Analysis of Primitives for Blockchain Security CHAPTER 2. BACKGROUND

Figure 2.23: Example of bits compression using Run-length-encoding.

According to the Source coding theorem of Shannon, the best fit of the code length
for a symbol is:

−logbP (x)

where b is the number of symbols used to form the output code (2 in a binary
encoding) and P(x) is the probability of the input symbol.

Two of the most widely used technique for entropy encoding are “Huffman Encoding”
and “Arithmetic Encoding”. However, if the entropy model of a stream of data is known
before, other technique can be used.

Huffman coding

Developed in 1952, by David A. Huffman, the Huffman Encoding is an encoding algo-
rithm used for data compression. The idea is based on the information theory, it aims
to find the optimal encoding based on the relative frequency of the original symbols.
The technique chooses the best way to represent each symbol, producing an encoding
without prefixes - no codeword is a prefix to another code word.

The power of the technique is how it assigns the code word for each symbol. It is a
Fixed-to-variable technique so it takes each alphabet’s symbol of the initial data source
with the same length, let suppose to be an ASCII alphabet, orders according to their
occurrence in the source data. Then, it produces a tree, as we can see in the figure and
the conversion table comes free from the branching label of the tree 2.24.

2.3.3 Dictionary based

The dictionary encoding represents a class of algorithm which has a list with lots of
symbols, and it replaces the source file with references to the table whenever a match
occurs. The most relevant part of the algorithms is the building of the dictionary. It can
be a Static dictionary, to compress English texts, based over a unique English dictionary
for example. Or, it can be updated dynamically to compress streaming content.

LZ77 and LZ78 are the most important algorithms that implement this technique.
Both names come from their inventors, Abraham Lempel and Jacob Ziv and were re-
spectively created in 1977 and 1978. These two algorithms enabled the creation of many
future algorithms like DEFLATE, LZMA, and LZO.
From a technical point of view, LZ77 and LZ78 are both dictionary-based however, LZ77
uses a sliding window to compress and update the dictionary that enabled the possibility
to compress and decompress the data from a chosen starting point. LZ78 instead rely
on a two step process, it builds the dictionary first and compresses the data later. This
force the compression and decompression from always from the beginning of the data.

31

Analysis of Primitives for Blockchain Security CHAPTER 2. BACKGROUND

Figure 2.24: The Figure depicts the tree that comes from the example sequence of
character using the Huffman technique.

For a streaming environment, both the algorithm can be used and the starting point
requirement of the LZ78 is not a limitation since the stream of data can be chucked in
multiple chunks and compress them independently or based over a pre-build dictionary.

The algorithm Lempel-Ziv-Markov chain known as LZMA is a variation of the
LZ77 algorithm with a variable dictionary size. It is also used for the 7z format and in
the related software 7-zip.

DEFLATE is another lossless compression algorithm which is a combination of LZ77,
LZ88 and Huffman coding algorithms. On the first stage of compression both LZXXs are
used to eliminate the string duplication. During the second stage, it is applied the Huff-
man coding compression which builds an unprefixed tree of non-overlapping intervals,
where the length of each codeword is inversely proportional of its frequency.

The following section explains some of the modern Python libraries used to compress
generic data. Generic data is data with an unknown frequency model. Voice or video
data have a known data model which can be used for compress file with specific software.
Compressing blockchain which is structured data with a high level of entropy is necessary
a compression library which can build its data model and then compress it.

32

Analysis of Primitives for Blockchain Security CHAPTER 2. BACKGROUND

2.3.4 Modern compression library

The following library is the best one for the generic data compression, which has a Python
version. We are going to present their usage, parameter configuration and limitations.
The use of python is not a limitation since most of the existing modern algorithm has
its Python implementation version.

LZMA

This python library implements the LZMA algorithm compression. The compression
function is configurable with many parameters:

• compression level : which can be from 1 to 9, with an extra option extreme.

• dictionary size: dictionary size in bytes and it can be a number bigger than 4 KB
and lower than 1.5 GB.

• match finder specify different ways to build the dictionary during the data model
creation of the algorithm. The following parameters are available: MF HC3,
MF HC4, MF BT2, MF BT3, or MF BT4.

The function is able to compress binary data with a size of no more than 2.5 GB,
which is a con in the blockchain compression since data are hundred of Gigabytes. During
the data model creation, the bigger amount of data a function can analyse, the better
would be the compression.

LZO

The Lempel-Ziv-Oberhumer (LZO) algorithm is another lossless compression library op-
timized for decompression speed.

It allows only a compression level parameter, that can be in the range 1-9.

LZ4

LZ4 is an LZ77-type compressor with a fixed, byte-oriented encoding. It is optimized for
compression and decompression speed. This library produced an output compressed file
which is a sequence of little compressed chunks. The size of the chunks is configurable.

It allows the setting of two parameters:

• compression level an integer in the range 0-16, where the level 16 aims to provide
the best compression level.

• block size: where the block is a single chunk of data which is compressed together.
This parameter can be from 16 KB up to 4 MB.

33

Chapter 3

Related Work

The Bitcoin white paper has a section named “Reclaiming Disk Space”, the space re-
quirement issue has been considered by Satoshi Nakamoto during the Bitcoin design [1].
However, the space required to run a Bitcoin node is still an entrance barrier for many
users which aims to use common devices like smartphones. The whole Bitcoin chain has
reached 240 GB in the end of 2019 [26]. The chapter is divided into two sections:

– Bitcoin core software describes all the solutions already implemented which cope
with the space requirement.

– Test and Tries is a list of all the researches done and tools provided in the literature
which are related to space reduction in Blockchain applications.

3.1 Bitcoin core software

According to the Bitcoin documentation, the most important Bitcoin node is the Full
network node, the code was initially provided by Satoshi Nakamoto and an even big-
ger developers community started working on it since, adding new functionality and
optimizing the code.

Firstly it is analysed the Pruning mode which aims to limit the general space usage by
a Bitcoin node through the elimination of blocks from local storage.
Then it is analysed the Light client, which implement the Simplified Payment Verifica-
tion, from a privacy and security perspective.
In the end it is also discussed the Segregated Witness which is a new transaction’s datas-
tructure to separate the Script’s information from the security data.

3.1.1 The pruning mode

The Pruning mode is a mode in which a Bitcoin software can be executed, introduced
in the Bitcoin software in August 2015 with the released version 0.11 [27].
This option allows the usage of a fully validating node without the necessity to maintain
a copy of the raw blocks (blk XXX.dat) and Undo data (raw XXX.dat) in local. The
block index and UTXO database remain unchanged, build from raw data as a normal
full node. The block index still maintains blocks’ metadata which are used to retrieve
necessary data, like specific blocks or transactions from other nodes.

34

Analysis of Primitives for Blockchain Security CHAPTER 3. RELATED WORK

The option does not implement any type of automatism for the choice of the space
that needs to be allocated. The user specifies how much space to allot for blocks’ data,
with a minimum of 550 MB as the only constraint.
This mode is enabled by adding the option -prune x before the execution of a Bitcoin
node. The parameter x can be selected as follow:

• x = 0 means no pruning mode;

• x ≥ 550 is the maximum number of Megabyte that the software can uses to store
the blockchain.

One limitation of this option is that the -reindex command, which checks again the
entire chain to retrieve metadata and address’s state, is disabled.
Also, any time a memory corruption occurs the software deletes the local copy of blk??
and raw?? data to re-download and verify the entire blockchain, since the last chain
version cannot be trusted anymore.

Since Bitcoin version 0.12 is also possible to run a wallet while is using a full node in
pruning mode.
However, old information cannot be retrieved from their local chain copy and they cannot
provide the older blocks to others node.

Version 0.14 enables the manual pruning, which needs to be activated by setting
the parameter -prune=1. Once it is active, the sentence “command: pruneblockchain

[height/timestamp]” written in the user interface of the Bitcoin software starts the
pruning until the chain height or timestamp specified.

This method allows a lot of advantages in term of space reduction, however it is not
for free and a lot of related disadvantage. The massive adoption of this running option
decrease the health and security of the Bitcoin network, since less and less network’s
nodes has the ability to verify themselves the correctness of blocks and transaction.
Also, new full nodes and users who are looking to retrieve old information had to rely
on others which store the complete version of the blockchain.
However, even if the Bitcoin community still promotes the maintenance of the entire
blockchain, without the technology that enable this choice for all the users, it will still
remain an utopia.
If there are not beneficial to maintain a local copy of the chain, with the increasing of
the resource demanding users will be discouraged and the number of complete chains
will decrease, putting the entire Bitcoin network in danger.

Another issue regards the way in which a user can choose the pruning mode. The
security of a blockchain increases with its aging, however none of the method implemented
allows a user to prune automatically blocks older than a chosen age, based over a fixed
security level chosen or suggested.
Also, there are not studies about which should be the correct number of blocks to keep
in memory.

3.1.2 Light clients

A Light client is a type of Bitcoin node that uses the Simplified Payment Verification
already introduced in the Bitcoin White Paper, see section 2.2.3 for more details. This
node provides a light way to participate in the Bitcoin ecosystem, users can send and
check transactions with a software that uses just a few gigabytes of disk space.

35

Analysis of Primitives for Blockchain Security CHAPTER 3. RELATED WORK

Despite the benefit, the Light client is not a Full node, it does not validates any
blocks or transactions by himself and it relies its trust on other Full Nodes, to whom it
requests data to fulfill its lack of a local copy of data.
Every Light clients enroll in the Bitcoin’s network with a fast initial blocks synchro-
nization which means to download only blocks’ header and to check their validity just
comparing the hash with their local copy of header’s chain.

This client is discouraged from the community since the information cannot be trusted
at all, they rely on a third party full node and they have no way to understand if the
information received is correct or not.
Also, this method suffers by the lack of privacy and it was proven that if a user owns
less then 20 address, asking its related information to the full node, it discloses almost
all its information [28].

Thanks to the Simplified Payment Verification 2.2.3 this client are able to verify if
a transaction was included or not into a specific block. They have a local copy of all
the blocks’ header plus the transaction they aims to verify. Firstly they need to send a
request to the network in order to retrieve the entire Merkle branch associated with the
transaction that they wants to verify. Then, using the Merkle branch and the hash of the
transaction they can compute the Root hash of the Merkle tree, by comparing its value
with the hash contained in a specific block’s header they can verify if the transaction is
or not contained in that block.
However, all the local blocks’ header are not fully validated and even if they are correct,
the retrieved Merkle branch could still be fake, or even worst other nodes can provide a
fake one just to convince the user that the transaction is not correct.

3.1.3 Segregated Witness

The Segregated Witness transaction is a type of transaction adopted from the majority
of the network on the 1st August 2017. This is one of the biggest modification of the
Bitcoin structure done to save space in the Bitcoin blockchain [29].
The key idea is to separate the validation data contained in the transaction from the
effect caused by the transaction himself.
It moves the security from the Script contained in the transaction to the age of a trans-
action. Before the introduction of the Segregated Witness a transaction was trusted
thanks to the Script chain which connect its Input and the fact that the transaction is
mined into the blockchain.
However, the script into a transaction is useful for the miner which has to verify the
correctness of a transaction and for the other user which has to verify if the information
contained in a mined block are correct.
Once, a transaction is accepted and mined within a certain amount of block, its secu-
rity information are not used anymore. The novelty is to move the security data in a
separated section in the transaction which is not considered in the block Merkle tree
computation. This allows the possibility to delete them without compromising the cor-
rectness of a block Merkle tree, which means the invalidation of a block and all the
consecutive blocks.

On the contrary the meaning of the transaction, data exchange using a blockchain
technology is worthy to be maintained in the memory. The design of this new type of
transaction called Segwit allows to include only the effect brought by a transaction once
it is hashed. The validation script and signature can be omitted by the data without

36

Analysis of Primitives for Blockchain Security CHAPTER 3. RELATED WORK

compromise the hash chain.
Users should delete the validating data once the transaction aged enough to be

claimed secured, then just the effect of it is necessary and the security is provided by its
attachment into an old mined block.

However, a Full node which aims to fully validate the entire blockchain still needs to
verify the chain from blocks zero, which implies to have the possibility to retrieve the
security information from other nodes.
Other option would be to introduce some security breakpoint along the chain from which
a node can start from there, assuming the previous chain correct and secure. However,
the Bitcoin blockchain does not implemented it in the protocol.
Also, the implementation of this transaction type is quite new, since it was available in
August 2017 and as far as we know, any option is available to delete the Segwit data
from a local copy of the chain.

3.2 Attempted solution or strategy

Follows four different solutions which aims to reduce blockchain space requirement or to
limit the data growth of the blockchain data.

3.2.1 UTXOs analysis

In the paper “Analysis of the Bitcoin UTXO set” [30] is introduced and describe a tool
used to analyse the UTXOs dataset. This tool provides a static analysis about the
UTXOs dataset and few results obtainable are shown in the paper. The paper contains
analysis done with a snapshot of the Bitcoin’s blockchain state at block 491,868 which
corresponds to the 26th of October 2017.
The analysis provides some insights, which are:

• the dust problem that concern all the UTXOs which require a fee too big to make
the UTXOs expendable. A fee bigger than 1/3 of the transaction’s value means
that the transaction’s output is not-spendable alone and they can be never spent.

• the oldest UTXOs, in which whose keys can be both lost or simply not used recently.
However the situation are indistinguishable and a Full-node which aims to verify,
in the fastest possible way, all the incoming blocks and transactions needs to keep
in memory all the UTXOs, even if some UTXOs would not be spent.

An analysis over the average time in which a UTXOs is likely to be spent would be
useful for the Full-node which aims to save space, loading only the most likely expendable
UTXOs and retrieving the others with a few more time. However, since the tool consider
only the data in the UTXOs dataset this type of analysis cannot be done.

3.2.2 Streaming compression

During late November 2015, Peter Tschipper wrote a message in the Bitcoin community
[31] with the title: Test Results for : Data-stream Compression of Blocks and Tx’s.
The author tries to compress the data stream of Blockchain to reduce the bandwidth
requirement for a Bitcoin node.

37

Analysis of Primitives for Blockchain Security CHAPTER 3. RELATED WORK

He published a few experiments which aims to compress stream of blockchain data
using two different compression libraries - zlib and LZO. The method used achieves a
space savings up to 29%. Also, he shows that increasing the data size, the compression
is better. Among other findings he shows that aggregating blocks, the compression ratio
is better.

However, the maximum size of data that he tries to compress is up to 1-2 MB, also he
did not consider that the content of data may influence the result. Indeed the initial part
of the blockchain contains more headers data than transactions. Headers data are more
structured and contain a lots of common value which are filled by default. The analysis
done does not consider this problem, on the contrary our study aims to compress the
entire blockchain data.

As a reply for this message, Emin Gün Sirer, on [32], why Bitcoin data seems to
does not compress well. He explained why the choice of a dictionary-based compression
algorithm like, zLib and LZO is not a good choice, as soon as they perform better with
English text or data with patterns. A custom compression algorithm that considers the
Bitcoin structure would perform better. To confirm the thesis, two comments are written
by Vitalik Buterin, the designer of Ethereum, he shows how the Bitcoin structure is made
and how it can be used to compress it. He also, underline how much zeros bit are wasted
and how they can be replaced.

Moreover, they also introduce the idea of replacing the Block index field with a
pointer. Another idea is to maintain a temporary structure to avoid the memory waste
to broadcast a transaction and later to receive the mined block with that transaction.

No-one talks about long term storage and as far as I know, the idea was never tested.
But for our research, it throws useful seeds.

3.2.3 The Mini-Blockchain Scheme

In the paper called “The Mini-Blockchain Scheme” [33], which gives life to a new cryp-
tocurrency called “Cryptonite”, the authors claim to provide a new way to reduce the
size required by a blockchain.

Despite the introduction where the paper talks about Bitcoin, the solution suggested
is not even close to be an upgrade of Bitcoin. The idea is composed by the introduction
of a Account Balance tree, which contains all the actual amount for each non-empthy
user and all the transactions is a modification of user’s balance. Old transactions can be
deleted after a certain amount of time, which can be decided.

However, the proposed solution is based on a completely different technique from
Bitcoin’s and is therefore not compatible with it. We can’t talk about a reduction of the
space on Bitcoin blockchain but rather about a new model of Blockchain, the security
therefore tshould not be inherited from that of Bitcoin but rather requires an ad-hoc
study.

3.2.4 The MimbleWimble blockchain

MimbleWimble is the name of a new blockchain model suggested in an article published
in 2016 by a person with the pseudonym Tom Elvis Jedusor [34]. The blockchain model
aims to solve the lack of privacy that the Bitcoin protocol suffer, in specific cases such
as in the case of Light Clients.
After the publication of this white paper, thanks to a project called Grim, the implemen-

38

Analysis of Primitives for Blockchain Security CHAPTER 3. RELATED WORK

tation of the MimbleWimble idea started. In its model there is neither the concept of
value nor the concept of address, so the traceability of a user or a transaction is excluded
from the protocol.

The main innovation introduced is the possibility to aggregate all inputs with outputs
in order to verify the validity of the system.
A Bitcoin transaction is made using several inputs and one or more output, its correctness
is based on the validity of each element. In MimbleWimble the keys of all Outputs are
added together using a homomorphic function, the function output is subtracted from
the result of the homomorphic sum of all inputs. The state of the system is valid when
the result of the mathematical operation described is null.
Every inputs and outputs does not contain a value field, but the value is represented by
a key that is updated each time so that it cannot be tracked. Moreover, once an output
is spent, the data can be deleted from the system state, because the homomorphic sum
operation done on the inputs and outputs is done in such a way that the result does not
change with the presence of a pair of related transactions. So as soon as the sum of the
inputs and outputs is zero all the steps in the middle can be cancelled. The status of
the blockchain must only consider the outputs not yet spent.

The benefits of this protocol are that when a user enters for the first time to be part
of the ecosystem he only needs to download the final status of the system without the
entire history.
Moreover, it is not possible to create unspendable money as it can be done in Bitcoin,
because the MimbleWimble protocol requires that every output created must be valid
otherwise the status is invalid.

The disadvantage is that most of the mathematics used in this environment has not
been proven from a mathematical point of view. A system where many information are
discarder by design is more difficult ti be tested and verified.
Also, additional information needs to be added as witness data in the transaction to
make this protocol compatible with the Bitcoin protocol. This also makes the protocol
much slower than Bitcoin’s.

3.2.5 Smart contract recycling

The paper called “Recycling Smart Contracts: Compression of the Ethereum Blockchain”
investigate a way to compress Smart contract by the reuse of frequent code pattern [35].
This study provide a saving space up to 75% in a Ethereum smart contract database.

The technique used and insight can be used also for the Bitcoin environment since
the Smart contract in Ethereum have the same structure of Bitcoin Script sequences.
Script language can be viewed as standard contract and pattern are present 2.2.1.
However, this technique was never tested in the Bitcoin blockchain data.

3.2.6 Inputs Reduction in Bitcoin Blocks

Michal Zima, the author of the paper named: “Inputs reduction for more space in
Bitcoin Blocks” focus its attention on the space wasting by non-cryptographic use of
hashes and uncompressed numbers within transaction input [36]. The main insight of
the paper shows that transactions can made approximately 16% smaller, depending on
their complexity.

39

Analysis of Primitives for Blockchain Security CHAPTER 3. RELATED WORK

The idea is based on Output reference in inputs, which is formed by two fields of
fixed length:

Script input: transaction hash output index
bytes 32 - bytes 4 - bytes

The transaction hash field in the input structure aims to identify uniquely the trans-
action which the output aims to be spent. The Output index identify the specific trans-
action output inside the transaction. The paper say that only 160 or 128 bits, instead
of 256 are necessary for the first field. For the second field they suggest to use a vari-
able length field since the majority of transaction contains just few transaction output,
99.97% of the transaction contains less than 252 outputs so only 1 byte is necessary to
represent this information.

The result obtained by the application of the discussed solution is a savings of 14.5%
by the reduction of bits in the transaction hash field and up to 16% compressing also
the transaction output index field.
However, despite the result the solution adopted has few collision as side consequence,
which is solved by the re-design of few Bitcoin protocol functions.
For these reason the solution can be implemented only as a form of soft fork of the
Bitcoin blockchain.

40

Chapter 4

Methodology

This research aims to lower the entrance barrier, caused by the space requirement, for
devices that want to participate in the Blockchain ecosystem, while also reducing the
waste of resources and maintaining the security standard.
The problem of space requirements was firstly mentioned in the Bitcoin white paper,
since then the space requirement is still a problem for many devices like smartphones
and IoT devices.

The initial phase of the research aims to analyse the solutions already available and
identify similarity among different Blockchain models to find a common strategy. How-
ever, we have soon decided to focus over the Bitcoin blockchain-based since an optimiza-
tion strategy would be related to the data structure and protocol which are both specific.
Ethereum blockchain uses a completely different way to store data and information within
the chain so a common strategy would be useless.

Once, the protocol and the data structure were analysed from a theoretical perspec-
tive we moved to the real data analysis. Firstly, we have studied the transactions’ output,
considering the work done by the community, see Section 3.2.1, we have analysed both
the ./chainstate folder and the behaviour of the transactions’ output. The Section 4.1
will explain the strategies adopted.

Later, looking at the entire data from a high level we tried a black-box approach to
compress it using existing compression libraries. The Section 4.2 shows the experiment
conducted and the strategy.
To achieve a better result, analysing the insight retrieved by the community and ex-
plained in section 3.2.2 and 3.2.6 we have studied a custom compression approach, which
is explained detailed in the Section 4.3.

Moreover, since not all the users care about the entire blockchain history but just to
participate in the netowork to receive or send transactions, we have analysed the existing
solutions. We have identified the Light Client, a Bitcoin client which aims to provide a
fast way to send and receive Bitcoin transaction using a poor resources devices, relying
on other full Node. However, different attacks were demonstrated to compromise Light
client security and privacy [28]. These nodes are not secure and also they lack privacy
relying on others to retrieve the information they need.
The last part of the research done aims to quantify in terms of space requirement the
methods which provide a solution for these users. The Section 4.4 will explain the existing
solution, the method and experiment done to quantify the data requirement.

41

Analysis of Primitives for Blockchain Security CHAPTER 4. METHODOLOGY

4.1 Transactions outputs

To figure it out a good strategy we started by analysing the behaviour of Transactions’
output, which is stored in the Chainstate folder until their expenditure.
Bitcoin stores the unspent transaction outputs - UTXO - in the Chainstate folder, a
separate structure. These data are used frequently by the Verification process, made by
nodes, which aims to verify the validity of incoming transactions and blocks.

In the first analysis, we aim to characterize the amount of data involved in this
structure, how the UTXOs are stored and if there is the possibility to optimize the used
strategy.
A study named Analysis of the Bitcoin UTXO set analyses all the UTXOs which remain
inside the chainstate folder for a long time and clarify the problem of UTXOs dust, see
Section 3.2.1.
The Experiment 5.1.1 answers to these questions and to update the data shown in the
mentioned paper. Moreover, the idea is to replicate the same experiment in the Litecoin
blockchain data since it is another Bitcoin-based chain and it could be helpful into
identifying pattern related to chain implementation or chain users behaviour.

However, analysing only the Chainstate folder we have a limited view and compre-
hension about UTXOs behaviour since the structure represent just a snapshot, we aim
to characterize it in time.
With a second experiment we aim to verify the behaviour of transaction output along
with the entire life of blockchain, we need to characterize their lifespan.
We have designed the Experiment 5.1.2 which is something never done before and it aims
to retrieve this information necessary to characterize the lifespan of transactions output.

4.2 First compression attempt

After the analysis of UTXOs and transactions’ output, we move to the characterization
of the entire blockchain data using a black-box approach.
The official Bitcoin core node stores data using a LevelDB which produces multiple
blkxxx.dat files.
In this phase, we aim to understand if the blockchain data can be compressed with a
lossless technique.

In order to compress all the blockchain data, we have first studied the types of public
libraries and algorithms which provides a lossless compression, see Section 2.3. For those
who are looking for a better explanation about the compression library and technique,
see Section 5.2.
Lossless compression libraries are divide according to the type of data they have to
compress, lots of compression technique was developed for voice or music transmission,
image or video. Therefore the choice of a library depends on the type of data needs to
be compressed however, our case requires a general-purpose library since none of them
is designed to compress Blockchain data.
Blockchain data are different from Video and Music content, due to security function,
blockchain data are characterized by a high entropy caused by the randomness of the
transactions’ id and Bitcoin addresses. Dictionary-based libraries are the most promising
however, we do not choose those designed to compress specific data type like English
poem or Latin literature but those which can build the dictionary from scratch to address
blockchain data structure, see Section 2.3.3.

42

Analysis of Primitives for Blockchain Security CHAPTER 4. METHODOLOGY

We have identified 3 different library to test: the LZMA [37], LZO [38] and LZ4 [39].
All of them are dictionary-based compression library, the first one is the most promising
since it is optimized for deep optimization, the others are designed to achieve the best
compression and decompression speed.
In order to analyse the performance of these libraries, we have designed and implemented
two different experiments which are explained in the Section 2.2.4.
The goal of this phase is to understand which is the best compression ratio achievable
with traditional compression libraries.

• Initially we need to identify the factor of the data which influence the compression
performance. The Experiment 5.2.1 aims to understand if ordered or un-ordered
blocks or different blk size may influence the compression library.

• Secondly we aim to optimize the compression libraries parameters to obtain the
best performance. Every library offers different parameters that can be changed
and it is necessary to find the best combination to compress our specific data, the
Experiment 5.2.2 achieves this goal.

Standard compression libraries achieve a good result however, we aim to a better one.
So, we moved to a custom-designed compression algorithm using a white-box approach
to Bitcoin data.

4.3 Custom compression approach

In order to design a custom approach, we need to analyse Bitcoin data more in detail.
Bitcoin data are structured in blocks and transactions, which are composed of many
fields, some with predefined value and the others with high entropy data, like the Bitcoin
address or the transactions’ id. Also, lots of fields are empty or set by default values.

To build a new strategy, we started with the characterization of the Blockchain data
type. We aim to identify data distribution according to the fields’ types. Then it is
analysed the structure of each fields, depending on the amount of data which has that
format different strategies are designed.
In the Experiment 5.3.1 we analyse the entire blockchain, reading every transaction in
every block in order to count the number of bytes used by every value. The number of
bytes used for flags fields, for transaction index, for block header and all the other fields
needs to be measured.
As a background the structure is analysed on a high level in the Section B, the Appendix
B describes the structure from a technical point of view and all the fields are described.

The experiment done over data characterization, see Section 5.3.1, shows that more
than 70% of Blockchain data are Scripts’ fields, see Section 5.3.1, and the article “Re-
cycling Smart Contracts: Compression of the Ethereum Blockchain”, which is explained
in the Section 3.2.5, shows how the Ethereum smart contract presents few redundant
structures that can be recycled. Also, the Bitcoin protocol allows only 5-6 type of script
with a predefined structure.
In order to replicate the Ethereum experiment on Bitcoin, we aim to analyse the redun-
dancy which characterises the Bitcoin script sequences. We analysed entirely sequences
of scripts, we did not split the sequence into instructions. The amount of opcode into a

43

Analysis of Primitives for Blockchain Security CHAPTER 4. METHODOLOGY

script sequence are very limited since the majority of the script sequences are occupied
by hash field and public key fields which represent the majority of the length.

We design the Experiment 5.3.2 which enumerate the number of transaction, trans-
actions’ output and input. It also provides a characterization of the number of scripts
which are present more than twice in the blockchain and a study over the average length
of these elements.
The characterization would be very useful to try a strategy that aims to replace the
script with a pointer to another structure which stores separately the script sequences
and replaces them with a shorter pointer into the structure.

Literature contains also a forum topic and an article which aim to optimize field
structure: Test Results for : Data-stream Compression of Blocks and Tx’s [31] and In-
puts reduction for more space in Bitcoin Blocks [36].
In the forum Data-stream Compression Vitalik buterin, the founder of Ethereum, sug-
gested different optimization in the structure which can be used to optimize the structure.
However, as far as we know no one tested this solution but it claims to save the 50% of
the space.
Thanks to both the ideas we decided to make an analysis which aims to optimize fields
to save space throw the elimination of padding zeros, useless fields and bad encoding.

According to the Experiment 5.3.1 the data with a higher impact over blockchain size
are transactions, in particular, transactions’ input with 75% and transactions’ output
20%. Transactions’ headers are only 2% that anyway with 2 hundred of data corresponds
of 4 GB.
Therefore we focus on the optimization of the following fields: transactions header, trans-
actions input and transactions output.

4.3.1 Transaction header fields

We have optimized the transaction header in the following way:

• version: the Bitcoin protocol implements only two versions of transactions. Cur-
rently the version field is composed of 4 bytes, which means that it can distinguish
up to 4 million different transaction versions.. The actual field is 4 bytes.

• flag: this flag if present represents the presence of segwit data, it is a flag so only
1 bit is necessary, the actual field is optional and uses if present 2 bytes.

• lock time: this field is most of the time not used [40] and replaced with a default
value.

In our solution we have introduced a new 1-byte field that replaces the three fields:
version, flag and lock time. An additional 4-byte field is inserted to represent the value
of the lock time field, if the latter is different from the default value.
The first field is broken down as follows: 2 bits [0:1] are reserved to indicate the trans-
action’s version, 1 bit [2] replaces the segwit flag field, and an additional bit [3] is used
to indicate whether the lock time field contains a default value or not.
Where the lock time field contains a value other than the default value, the value is
inserted in the 4 bytes following the initial field.
In this solution, 4 bits are left for future implementations. Every Bitcoin fields has the
size of n bytes so the minimum size of a field is 1 byte.

44

Analysis of Primitives for Blockchain Security CHAPTER 4. METHODOLOGY

4.3.2 Transaction input fields

Regarding the transaction input data we have designed the following solution:

• previous output: this field has 32 bytes that represent the tx hash + 4 bytes for
the output spent, the hash can be substituted with the block height (fixed 4 bytes)
plus the transaction position into the list for this reason also, the output number
field can be replaced with the varint field instead of a fixed 4 bytes field.

• sequence: this field is represented using 4 bytes but it is most of the time set by
default.

The solution that we have implemented is to add a flag at the beginning of each input
where: flag[0] indicates where the previous output is substitute with the block and
transaction position or not, bit[1] indicates where the script is replaced with a pointer
or not, bit[2] indicates if the sequence is default.

4.3.3 Transaction output fields

Regarding the output data we have designed the following solution:

• value: this field represent the amount of Satoshi and it has a fixed size which is 8
bytes. The structure of this field is substituted with a variable integer structure
which allows more flexibility in terms of size required.

• script length and script: these fields contain the script and its length respectively.
In our solution the script is replaced with a pointer to the field of a data structure
in which it is contained the script sequence where the latter is frequent in the
blockchain. If the script is replaced with a pointer, the length field will represent
the length of the pointer.

In addition, another flag must be added at the beginning of the transaction’s output
structure. As we said before, the minimum size of a field in the Bitcoin protocol is one
byte. The flag we are going to add at the beginning is a flag of 1 byte and represents if
the script is replaced or not.

The previous analyses aim to find the best way to compress the entire blockchain data.
The solution can be very useful for Archival node and those users who want to maintain
a copy of all the data in their local storage.
However, other users may be interested in participating in the ecosystem without the
requirement to download the entire chain and also without the cons to lose part of the
security.

4.4 Full node optimization

Currently, to participate in the mining process you need a Full node that must download
the entire blockchain.
Instead, you can send and receive transactions using a Light client that provides a lean
way to participate in the blockchain ecosystem. Unfortunately, the Light client has to
rely on other nodes, losing his privacy and delegating security to third parties.

45

Analysis of Primitives for Blockchain Security CHAPTER 4. METHODOLOGY

There is also another way to join the ecosystem safely without the necessity to down-
load the entire blockchain. This solution has never been implemented or studied. Our
study aims to understand how much memory is required to each user which aims to
adopt this method. The description of the solution follows.

The blockchain protocol requires you to verify the validity of each new block and
each new transaction. A block is valid when all its fields are well-formatted, the block
header includes the hash of the previous block and all transactions contained are valid.
To verify if the hash of the previous block is correct, the user must keep the header of
the previous block. In addition, a transaction is valid when all values used as input are
correct. To check the transaction input you need to check if the sender has the right to
spend that UTXO. The structure of UTXOs does not implement a mechanism to verify
if it has been manipulated by a malignant entity, so the user must verify the validity of
each UTXO by checking if the relevant transaction has been extracted in a valid block.
To verify if a transaction belongs to a specific block it is necessary to recalculate the
root hash of the Merkle branch and verify if it is equal to the hash written in the block
hash. The standard method requires you to store a copy of all transactions, with this
method the user can simply store the path of the brother for each UTXOs, so you can
easily check if a UTXOs belongs to a block or not.

A client can stay up to date with the blockchain by receiving and verifying each new
block and transaction. He just needs to keep a local copy of the header of all blocks, the
./chainstate folder and additional information about the sibling path.
The amount of space required by this solution has never been studied and our experiment
aims to provide an accurate evaluation. In the Experiment 5.4 we aim to count the space
needed to store additional information about the siblings’ path.

46

Chapter 5

Evaluation

This chapter contains an explanation of the evaluation that we have conducted through
numerous experiments, all of which are explained below. The analysis mainly cover three
topics, an analysis of the UTXOs distribution, the optimization of available compression
library and a customized way to optimize the space based on specific role’s needs.

All the experiments and analyses are made using the same Machine setup, which is
a machine with an Intel(R) Xeon(R) CPU E3-1240 v5 @ 3.50GHz and 32GB DDR4
RAM. For the amount of data used the persistent storage is relevant, therefore a Solid-
state disk with 3 TB of capacity is used.
Concerning the software, all the analyses are done using libraries and custom scripts
written in Python 2.7 or Python 3.7, specific requirement are listed in every experiment.
The results come from analyses made over the Blockchain’s data. Functionality and data
provided by external parser or external blockchain information services with their own
API, do not provide enough information for our need.

5.1 Transactions’ output analysis

In this section we have analysed two aspects of the transactions’ output: the UTXOs
distribution along the Blockchain and the average time within a transactions output is
likely to be spend.

In this analysis both the blockchain of Bitcoin and Litecoin are analysed. The Bitcoin
data is related to the official Bitcoin’s blockchain mined until 10-10-2018 which contains
545 K blocks. Data are divided in two folder, the “chainstate” folder and blocks folder,
which require respectively 2.8 GB and 199 GB.
The Litecoin blockchain as the Bitcoin date back to 10-10-2018 however the entire
Blockchain file size is 16 GB.

5.1.1 UTXOs Distribution

Description

This experiment is an analysis of the Bitcoin and Litecoin UTXOs. The goal is to count
how many UTXOs are left along the blockchain and how are they spread along the block.
Few blocks contains a lot of UTXOs or UTXOs are spread in different blocks, the analysis
aims to answer to this question.

47

Analysis of Primitives for Blockchain Security CHAPTER 5. EVALUATION

As it is specified in the Section 2.2.4 all the UTXOs are stored in a database structure
that is client-software dependent. The official Bitcoin node stores by default the UTXOs
inside a folder called “chainstate” using a levelDB [15]. The entire experiment analyse
this structure for the both of Blockchains.

Setup

• download the chainstate folders for both Bitcoin and Litecoin;

• install python2.7 which is necessary to run the Python code developed;

• retrieve the bitcoin tools that is an external python library able to parse part
of the blockchain data easily. The library is available here:
https://github.com/sr-gi/bitcoin tools. Also, after the download, the li-
brary needs to be configured following the instructions contained in the repository
folder. It simply requires to setup the folder path of our chain folder and chain-
state folder. Also the type of Blockchain needs to be specified to, it can be either
Bitcoin and Litecoin.

Strategy

The goal of the experiment is to obtain the exact number of the UTXOs in the blockchain
snapshot we have and also to characterize the UTXOs distribution along the blockchain’s
block.

The chainstate folder contains a levelDB that contains the entire list of UTXOs to-
gether with other chain state data, like the number of blocks. Every UTXOs is encoded
and to read it is necessary a parser. The bitcoin tools contains a method that given
the chainstate path, it parses all the levelDB, looking for UTXOs and it produces as
outcome a list of UTXOs decoded and expressed using the JSON file format.
Once a UTXOs is decoded it contains different information, however we only look for
the block age, which is the number of the block where the transactions related to the
UTXOs was mined.
We have developed a python script, which parse the JSON file produced by the bitcoin tools

and produces a chart with the number of UTXOs remained in each block.

Follow the pseudocode of the python script:

Algorithm 1 Parse the chainstate database

1: utxos = parsed chainstate with the bitcoin tools library
2: // create a list where each value represents the number of utxos in the specific block
3: block index = [0, 0, 0, ..., 0]
4: for all UTXO ∈ utxos do
5: block index[UTXO.height] += 1
6: end for
7: # plot chart
8: create new chart

9: for i = 0; i++; i < chain len do
10: chart.insert(x=i, y=block index[i])
11: end for

48

Analysis of Primitives for Blockchain Security CHAPTER 5. EVALUATION

Legend:

chain len is the number of blocks in the blockchain, 545 000 for Bitcoin and 1.507 M
for Litecoin.

Result

The execution time for this experiment is 10 minutes for each run. The result are plotted
in the chart 5.1 for Bitcoin and in the chart 5.2 for Litecoin. In those charts each blue
dot represents a specific block; the x-coordinate represent the block’s index and the
y-coordinate represents the number of UTXOs contained in that block.

Bitcoin

Figure 5.1: The chart shows the age of all the Bitcoin’s UTXOs, until block’s index: 545
000. The blue point at block index 225 000 shows that the Bitcoin block at that index
still contains about 9 500 unspent transactions’ output.

The total number of UTXOs are 50 349 323 and they are not concentrated only whithin
the recent blocks but they are spread along the entire blockchain. Only the 19.2% of all
the blocks contains only spent transactions’ output, the other 80.8% contains UTXOs.
What we can see from the chart is that after the first 100 K blocks, the majority of the
blocks contains UTXOs. However, some specific range of blocks contains a huge amount
of UTXOs, compared with the average.

49

Analysis of Primitives for Blockchain Security CHAPTER 5. EVALUATION

Litecoin

The same analysis is done for the Litecode blockchain and the result is shown in the
Figure 5.2. From the analysis, we know that there are 22 364 371 UTXOs distributed
within 520 106 blocks that represent the 34.49% of the entire amount of blocks.

Figure 5.2: The chart shows the age of all the Litecoin’s UTXOs, until block’s index: 1
507 816. The blue point at block index 480 000 shows that the Litecoin block at that
index still contains about 7000 unspent transactions’ output.

For both the charts, there cannot be two dot aligned vertically and dot structures which
seems to be aligned are just dots that represent near blocks. Due to the high horizontal
density these dots seems aligned, however they are not.

5.1.2 Spent Transactions’ output life span

Description

The goal of this experiment is to characterize the life span of the transactions’ output,
which is the time that passes between the transaction creation and the transaction’s
output expenditure. The experiment aims to analyse both UTXOs and transactions’
output already spent. The time is expressed using the number of blocks.
The value changes also along the blockchain with the increasing of transactions’ output
considered in the analysis. Also, we are looking for the blocks number which guarantees
that a transaction is likely to be spend with the probability of 90% and 95%.
Certainly the value will be updated along with the advance of the analysis, which starts
from the block zero to the end at the last block, so the results needs to show also this
behavior.

Then, we plot in another chart the lifespan behavior of all the transactions’ output
using a Cumulative Distribution Function.

50

Analysis of Primitives for Blockchain Security CHAPTER 5. EVALUATION

Setup

• ./blocks, the entire block’s folder is necessary since we need to parse all the data
inside the blockchain to retrieve the age of each spent and unspent transactions’
outputs;

• Python v3.7 is necessary to run the python script developed and the library we
have used;

• download and install the bitcoin chain parser [41], this is a python3 blockchain
parser necessary in order to parse the blockchain’s data in the right sequence. The
parser is retrievable at the following link:
https://github.com/alecalve/python-bitcoin-blockchain-parser.

Strategy

For this experiment we need to characterize the age behavior of the transactions’ outputs
inside the entire Bitcoin blockchain.

We can define the life span of a specific transaction’s output as the difference:

lifespan = bhj − bhi

where bhj is the block height where the tx output is spent and the bhi is the block height
where its related transaction was created.
Now, the main difficult here is to retrieve the age of a transaction’s which creates a specific
transaction’s output from the transaction which spends that transaction’s output.
In other words there is not reference to the life span of the transaction’s output at its
expenditure time. Therefore the life span of a specific transaction’s output is written
neither in the blockchain data nor in the chainstate folder and it needs to be retrieved
indirectly.

The theoretical approach would suggest to parse the entire blockchain from the be-
ginning. Using python we need to create a dictionary with elements formed in this
way: {key = tx id, value = [block heigth creation, [x1, ..., xk]] } where xi is the
block height spent of the i-th output and k is the number of outputs of that transaction.
Then every time the script encounters a new transaction it has to update the age of each
transaction’s outputs used.

However, this way is not feasible from a memory requirement point of view since it
requires to maintain billions of key-value pairs in a structure which has to provide a fast
random access to its stored data. Moreover, data are growing up during the parsing
analysis.

The solution designed aimed to reduce the information that needs to be maintained
simultaneously in the machine memory, with the cost of few more calculus and the
maintenance of two separated structures.
One structure maintains the result we are looking for, transaction’s outputs and the
time which is passed between their creation and their expenditure. This data structure
is updated on real-time during the analysis, since once a transaction’s output is spend,
it is inserted in the first structure and it can be deleted from the second structure which
contains only the not yet spend transactions.
The structure which collect the result is named A and has the following structure: A
= [x0, x1, ..., xh, ..., xn] where n is the maximum age that a tx output can has, which is

51

Analysis of Primitives for Blockchain Security CHAPTER 5. EVALUATION

equal to the maximum length of the chain. Then each value at position xh represent the
number of tx outputs spend within h blocks from its creation time.

The second structure named T aims to maintain the temporary information, which
is the time of a transaction and the number of its unspent outputs, everything keyed
with the transaction’s id. The structure is made in the following way: T = {tx id1 :
[h, o] , tx id2 : [h, o] , ..., tx idn : [h, o]}

• tx id is the transaction’s index;

• h is the height of the transaction creation;

• o is the number of outputs that the transaction has.

The analysis parses the entire blockchain, sequentially and analysing all the transactions
contained in each block. Every time that a new transaction is created the script adds
an entry related to this transaction in T with its height creation block and number of
output. Then the script calculates the age of every output and uploads the information in
A. Moreover in order to limit the amount of memory necessary, every time a transaction’s
output is spent, the counter o of the transaction is decreased and once it become zero
the entire transaction entry is deleted from T, it means all its output were spent. The
algorithm used is shown in the pseudocode 2.

Algorithm 2 Parse the transactions outputs life span

1: import Blockchain from python blockchain parser
2: blockchain = new Blockchain($blocks path)
3: T = {}
4: A = [01, ..., 0n]
5: sample counter = 0
6: for all block ∈ blockchain do
7: h = block.height
8: for all transaction ∈ block do
9: T.addtransaction.id, [h, transaction.number of outputs
10: for all tx in ∈ tx.inputs do
11: age = h - T[transaction.id].height
12: A[age] += 1
13: T[transaction.id].outputs number -= 1
14: end for
15: end for
16: if h == sample counter + 10 000 then
17: sample counter = h
18: save(A) # save the counter in the memory
19: end if
20: end for

Legend:

T dictionary with the format: tx.id, [block height, number of tx.outputs]

A array where the position represent the number of blocks and value represent transaci-
ton’s output spent after index blocks.

52

Analysis of Primitives for Blockchain Security CHAPTER 5. EVALUATION

Then in order to see the trend of the parameter calculated, the script needs to provide
a time meaning to the analysis. Therefore the script takes a sample of the data structure
A every G blocks analysed. Trivially the smaller G is the more precise the analysis is.
At the end of the analysis different samples is saved and each samplei is an array where
each element xh is the number of tx output spent after h blocks from the beginning of
the chain until the block: G ∗ (i + 1).
The plot we want to obtain aims to show the trend of 3 different data:

• the avg life span line shows the average amount of block after that a transaction
is going to be spent. This value is a cumulative representation and every dot
represents the value estimated from the beginning of the chain until the block aged
like the x-coordinate of the dot.

• the 95% and 90% CDF lines represent the number of blocks after which a trans-
action is likely to be spent with a probability of respectively 95% and 90%.

Algorithm 3 shows how to produce the plot 5.4.

Algorithm 3 90% and 95% confidence interval

last block = 540 000
for i = 0; i++; i < last block do

xi = i
#transactions = sum(sample i)
weighted sum avg = 0
for j = 0; j++; j < i do

weighted sum avg = weighted sum avg + sample i[j] * j
end for
y avgi = weighted sum avg / #transactions
weighted sum 90 = 0, partial counter = 0
for j = 0; j++; j < i do

weighted sum 90 = weighted sum 90 + sample i[j] * j
if partial counter ≥ 90% of #transactions then

y 90i = weighted sum 90 / partial counter
else

partial counter += sample i[j]
end if

end for
weighted sum 95 = 0, partial counter = 0
for j = 0; j++; j < i do

weighted sum 95 = weighted sum 95 + sample i[j] * j
if partial counter ≥ 95% of #transactions then

y 95i = weighted sum 95 / partial counter
else

partial counter += sample i[j]
end if

end for
plot(X, Y)

end for

53

Analysis of Primitives for Blockchain Security CHAPTER 5. EVALUATION

In order to provide another useful type of data another script is designed to pro-
duce the cumulative distribution function regarding the transactions probability within
a certain amount of blocks. The pseudocode is available in the algorithm 4.

Algorithm 4 Cumulative distribution function of the transactions’ output along the
entire Bitcoin blockchain.

retrieve the result structure A produced with the algorithm 2
max block age = 540 000 #age of the BTC blockchain analysed
#transactions number = sum(A) # somma tutti gli elementi nell’array A
partial sum = 0
for i = 0; i++; i < max block age do
xi = i
partial sum = partial sum + A[i]
yi = (100 ∗ partial sum)/#transactions number

end for
plot(X, Y)

Result

The first figure 5.3 represent the life span analysis over the entire Bitcoin blockchain.
The plot is created using the algorithm 2 for the preliminary result and the algorithm 3
for the last analysis and plot.
The second chart 5.4 represents the cumulative distribution function of the transaction’s
output life span. The chart is generated using both the algorithms 2 and 4.
Another important consideration is that in both these experiments UTXOs are not con-
sidered since it is difficult to predict their spent age expectation, which is by the way
the goal of this experiment.

54

Analysis of Primitives for Blockchain Security CHAPTER 5. EVALUATION

Figure 5.3: tx output Life span analysis over transactions’ outputs. The blue point at
block index 100000 shows that transaction outputs, created from block 0 to block at
that height, are on average, spent after about 2500 blocks. The red point at block index
100000 shows that the 90% of all the transaction outputs, created from block 0 to block
at index 100 000, are on average, spent after 5000 blocks. The green points have the same
meaning of the red points, however they represent 95% of all the transaction outputs.

Figure 5.4: CDF of Bitcoin transactions’ outputs. The index point 100 shows that 60%
of all transactions created are spent within 100 blocks from their creation. Also, the
point at index zero shows that 10% of the transactions’ output are created and spent
within the same block.

55

Analysis of Primitives for Blockchain Security CHAPTER 5. EVALUATION

5.2 Traditional Compression

This sections aims to identify the best way to compress blockchain data, which is viewed
as a black-box, using standard compression library.
In the initial part different compression libraries, available in the network are compared
together to identify which is the best one regarding blockchain data.
Secondly, different compression libraries parameters are tried to push the upper limit of
the available technology.

5.2.1 Compression library Comparison

Description

This experiment aims to identify which are the best compression libraries technology to
compress blockchain data. The blockchain data are viewed as a block-box, however the
structure in which data are stored can be customized for the purpose.
The reason why we need to modify the storage structure is due its structure and the way
in which blockchain’s blocks are stored. An explanation of the structure is available in
the Section 2.2.4.

As described in the Section 4.2 section, dictionary based compression library have
the right characteristics to perform well in the blockchain data compression. Here, the
test aims to compare the performance of three different compression libraries, which are:

• LZMA is designed to achieve the best savings ratio result.

• LZ4, LZO using different compression strategies they are designed to be fast during
both compression and decompression phases.

The dictionary based compression library needs to make the preliminary analysis on the
data, with the most widely view available over the dataset, see Section 2.3.3.
However, due to the blockchain size and the maximum size of the input accepted by the
library available, the test needs to chunk the blockchain data in different pieces. The
input file size in the library cannot be more than 2 GB compressed in a single round. For
this reason and in order to provide a way which is able to compress the entire blockchain
data, we need to understand also the variation produced in the libraries’ performance
giving different chunk of data.

So, the experiment will test the compression performance of different libraries, over
different formatted chunk of blockchain files. Blockchain’s blocks are usually stored in
blk files non ordered, see Section 2.2.4.
Therefore, it is tested the variation of performance using ordered and non ordered block.
Also, the same test is done in three different blockchain type: Bitcoin, Litecoin and
Dogecoin, which are both are fork of the same project.

Setup

Firstly it is necessary to import and configure the blk creator python script created
before and explained in the Appendix A. The strategy section will explain how it is used
to produced the chunk of file used for the test.

The entire blockchain data is also necessary, in particular Bitcoin, Litecoin and Do-
gecoin in order to repeat the same test for all of them.

56

Analysis of Primitives for Blockchain Security CHAPTER 5. EVALUATION

It is necessary to download and install the compression library written in Python.
The follow instruction will achieve it:

LZMA user$ pip install backports.lzma [37]

LZO user$ pip install python-lzo [38]

LZ4 user$ pip install lz4 [39]

Strategy

For this experiment is necessary to produce different tester file and we have produced
them maintaining the Blockchain Bitcoin structure since it is more efficient and easier
to be integrated in future implementations. The structure is the same of blk00XXX.dat
files used to store the entire blockchain, as explained in the Section 2.2.4. The size of
the original files are 128 MB and block are stored inside un-orderly.

In the first phase it is necessary to create the sample files that are going to be used
as input for the compression tests. Therefore, a Python script able to build the blk file
using blokcchain data was created and its implementation is explained in the appendix:
A.
Basic inputs and outputs of the code is respectively a bunch of blocks from a specific
blockchain data, which can be Bitcoin, Dogecoin or Litecoin. It does not matter if blocks
are ordered or not and the outcome would be a blk file of a requested size, that would
be the sum of the size of all the single blocks provided.

In order to test all the possibilities discussed, the following criteria are used to create
the sample files. Sample size cannot be greater than 2.5 GB since the used python
libraries do not allow input files bigger than that. The following size are chosen: [100
MB, 200 MB, 500 MB, 1.0 GB, 1.5 GB, 2.0 GB].
Also, only for the Bitcoin samples we have created different samples to distinguish ordered
blocks from the un-ordered. For Dogecoin and Litecoin it would not be possible since
their blockchain is not so big, sample of 2 GB are greater enough to represent 20 to 25%
of their entire blockchain size.
Another important things we have considered is that the distribution of the blocks we
have inserted inside the blk file should represent the real Bitcoin blocks entropy in order
to avoid a not reliably result the blk creator uses randomness to pik the blocks that
needs be inserted. Also, it is not allowed the repetition of same blocks, once a block is
inserted it cannot be inserted anymore otherwise the compression ratio will benefit from
this and it is not a realistic.
Every experiment are also repeated multiple times for each configuration, 10 for Bitcoin
data and 5 times for Litecoin and Dogecoin data. Different file sample are also produced
accordingly.

The parameter we have measured in the experiment are the following: the compres-
sion ratio and the time necessary to do it.

57

Analysis of Primitives for Blockchain Security CHAPTER 5. EVALUATION

The algorithm 5 contains the pseudocode used for the experiment.

Algorithm 5 Compression test

1: import blk manager as blk manager
2: size = [100 MB, 200 MB, 500 MB, 1 GB, 1.5 GB, 2 GB]
3: c lib = [LZMA, LZ4, LZO]
4: for all s ∈ size do
5: # Ordered blocks
6: files [] = blk manager.get orderedFiles(size=s, sample=10)
7: for all lib ∈ c lib do
8: lib avg time = 0, lib avg space = 0;
9: for all f ∈ files do

10: ti = time.now
11: file compressed = lib.compress(f)
12: avg time += time.now - ti
13: avg space += 100 * (size(file compressed) - size(f)) / size(f)
14: end for
15: print(avg time / 10, avg space saved / 10)
16: end for
17: # Unorder blocks
18: files [] = blk manager.get unorderedFiles(size=s, sample=10)
19: for all lib ∈ c lib do
20: lib avg time = 0, lib avg space = 0;
21: for all f ∈ files do
22: ti = time.now
23: file compressed = lib.compress(f)
24: avg time += time.now - ti
25: avg space += 100 * (size(file compressed) - size(f)) / size(f)
26: end for
27: print(avg time / 10, avg space saved / 10)
28: end for
29: end for

Result

A single run of this experiment takes 1 day, this amount of time is due to the LZMA li-
brary which is very slow and which takes 30 minutes to compress a single sample of 2 GB.
The following three figures represent the experiment done for the three different blockchains’
data.
The first plot, Figure 5.5, shows the result of both ordered and un-ordered blk files.
The following two charts represent the achievements for Dogecoin in the Figure 5.6 and
Litecoin in the Figure 5.7.

The first chart 5.5 shows that for Bitcoin the ordered blocks are compressed better
then un-ordered blocks, independently from the library chosen. The best result achieved
for the un-ordered blocks is reached with the LZMA library which is able to achieve a
saving percentage of 22.5%, clearly it is worst than the 30% savings achieved with the
same library but using the ordered blocks.

58

Analysis of Primitives for Blockchain Security CHAPTER 5. EVALUATION

Figure 5.5: Compression test over Bitcoin blk files. In the upper part of the chart, the
blue bar at index 200 MB shows that with the LZMA compression library the experiment
achieve a compression ration of about 29.5%, done over file with size 200 MB made by
a list of ordered blocks. On the right side of that bar you can see the compression ratio
achieved by the LZO compression library, and also the performance achieved by the LZ4
library on the left side.

Figure 5.6: Compression test over Dogecoin blk files.

All the charts also show that the LZMA library works clearly better, with a factor of
two, over the compression ration.

Also, the performance obtained in the compression of Btc ordered blocks is not clearly
distinguishable in the difference of file size. The 100 MB size seems to have 1% point

59

Analysis of Primitives for Blockchain Security CHAPTER 5. EVALUATION

Figure 5.7: Compression test over Litecoin blk files.

less then 2 GB samples, however with the increasing of the file size it is increased also
the variance.

5.2.2 Optimizing Compression parameter

Description

The compression libraries we have used in the previous experiment 5.2.1 have different
configuration parameters, this experiment aims to characterize the compression perfor-
mance varying the parameters.

For this experiment we have evaluated the parameters only with the Bitcoin data
sample. Also, since LZMA library has a lot of parameter, trying all the combination
would takes weeks due to the amount of time required by a single file compression with
this library. We have chosen to optimize the compression only for the most promising
sample, which are the ordered Bitcoin blocks of 2 GB.
The parameters we have chosen to be evaluated for every library during the test, are
listed below:

• LZ4 has two parameters: dictionary size and compression level:

– compression level ∈ [0, 5, 9, 16;

– dictionary size ∈ [64 KB, 1 MB, 4 MB].

• LZO has only the level parameter so we used the values ∈ [1, 5, 9].

• LZMA we have decided to modify the compression level, the dictionary size and
the match finder. Following specific pattern.

– compression level ∈ [1, 5, 9], dictionary size 64 KB and match finder =
MF BT2

– compression level ∈ [1, 5, 9], dictionary size 16 KB and match finder =
MF BT3

– compression level extreme ∈ [1, 5, 9], dictionary size 1.5 GB and match finder
= MF BT4

60

Analysis of Primitives for Blockchain Security CHAPTER 5. EVALUATION

Setup

Ten sample Bitcoin files are necessary, it can be token from free from the previous
experiment or they can be created using the blk creator, which is a software explained
in the Appendix A. The samples needs to contain 2 GB of ordered Bitcoin blocks.

Then as the previous experiment the following instruction need to be followed in
order to install the required compression library:

LZMA user$ pip install backports.lzma [37]

LZO user$ pip install python-lzo [38]

LZ4 user$ pip install lz4 [39]

Strategy

The test aims to test different library configuration parameters.
Analysis mainly consist of setting up every different possible configuration and for each
one it is necessary to repeated it 10 times changing the input file. The file needs to have
the same structure characteristics, but different content in order to avoid performance
behavior due to sample size or content instead of specific parameters itself.

We have build a dictionary with all the configuration parameters that needs to be
tested. Then for each configuration the compression analysis is done over ten different
file and the average of the time and compression time results is done.
The algorithm 6 contains the pseudocode of the experiment.

Algorithm 6 Compression customization

1: ConfigList = [LZ4 lve:9 extreme, LZMA lve:3 extreme dictionarySize:1Mb, ...]
2: Tester Files = [blk01.dat, blk02.dat, ..., blk09.dat]
3: for all conf ∈ ConfigList do
4: time = 0
5: space saved = 0
6: for all file ∈ Tester Files do
7: ti = time.now
8: file compressed = conf.library.compress(file, conf, conf.parameters)
9: time += time.now - ti

10: space saved += [100 * (size(file compressed) - size(file))] / size(file)
11: end for
12: avg time = time / number of files
13: avg space saved = space saved / number of files
14: print(configuration: conf, time: avg time, space saved: avg space saved)
15: end for

Result

The charts in the Figure 5.8 shows the compression ration achieved by different config-
uration with red bars in the figure above and its related time with the blue bars in the
figure below.
Also the chart is divided vertically in two sections, the Figure on the right below has a

61

Analysis of Primitives for Blockchain Security CHAPTER 5. EVALUATION

different time axis values. The reason is that all the analyses done with parameters on
the left side require not more than 400 seconds to be done, instead the other analyses
require 100 times more time, so using the same scale it would completely hide all the
initial tests done.
However, the compression ration achieved between the configuration on the right side is
comparable with the analyses displayed in the left side figure.

Figure 5.8: Parameters optimization of traditional compression libraries. The fourth
red bar shows that the LZ4 compression library, with a level compression of 16 and a
dictionary size of 256 KB, reaches 20% as compression ratio, taking about 100 seconds,
which is displayed in the blue bar below.

The main finding is that the best result in terms of compression ratio is achieved by the
LZMA library with the following setup: the extreme parameter, a dictionary of 1.5 GB
and the MF BT4 match finder, reaching a 38% of savings space percentage.
However, the best compression requires the most demanding method in term of time
consumption, which require more then 4 hours in order to compress a single file.

5.3 Data analysis for efficient Compression

Until now with the previous experiment the legacy compression library was studied. A
different approach in this section is applied, the blockchain structure is not viewed as a
black-box and the structure is analysed to retrieve a possible optimization.

In the following experiment it is made a characterization of the space used in the
blockchain dividing different value type. Also, a specific analysis is done to estimate

62

Analysis of Primitives for Blockchain Security CHAPTER 5. EVALUATION

the entropy of the script. Both these analysis will lead us to the motivation for the last
experiment which is able to combine the findings to achieve a better compression result.

5.3.1 Blockchain Data Distribution

Description

Blockchain’s data are strongly structured, the data are stored within customized fields
with value that are limited within specific range. The goal of this experiment is charac-
terizing the amount of data saved in the blockchain divided by field’s type.
Also, we want to study the values distribution of specific fields to estimate if a different
field’s structure can benefits the amount of memory used.
As it is explained in the Section 2.2.3 Bitcoin data structure can be divided in the
following section:

• block header : magic number, block-size, block’s header, number of transactions;

• block content which is a list of transactions, where every transaction has the fol-
lowing structure:

– transaction’s header : version number, witness flag, input number, output

number, witness data and lock time.

– transaction’s body

∗ transaction’s input

∗ Input script

∗ transaction’s output

∗ Output script

Setup

- Download the entire blockchain of the Blockchain you want to analyze. In this case
the Bitcoin blockchain.

- The complete blockchain is necessary since the parser will iterate sequentially over
all the data measuring the size of each field we aims to analyse.
The data can be retrieved in the data folder of a Bitcoin client with the entire
blockchain downloaded.

- Download the Alecalve python blockchain parser, used also in the experiments 5.2.1
and 5.2.2.

- Modify the library accordingly to the Appendix C, since it is necessary to insert
some additional method to retrieve some some specific data which is otherwise
omitted in the standard library.

Strategy

Since we want to count the amount of space used by the data of the blockchain divided by
the fields type, it is necessary to parse the entire blockchain. For each block encountered
we need to retrieve the block header, and the size of each field in its body section.

63

Analysis of Primitives for Blockchain Security CHAPTER 5. EVALUATION

The script maintains different counters which are going to be updated during the
scanning process of the blockchain.
A Python script is designed, it will create and update all the counters mentioned before
and to parse the entire blockchain it uses the modified version of the Alecalve parser, see
Appendix C.
The pseudocode of this script is available in the algorithm 7.

Algorithm 7 Space field counter

1: tx size, tx input, tx output = 0, 0, 0
2: block header, transaction header = 0, 0
3: script in, script out = 0, 0
4: for all block ∈ blockchain do
5: block header += block.header() #return the size of the block’s header in bytes
6: for all tx ∈ block do
7: tx size += tx.size()
8: for all input ∈ tx.inputs do
9: tx input += input.size() - script.size()

10: script in += script.size()
11: end for
12: for all output ∈ tx.outputs do
13: tx output += output.size() - script.size()
14: script out += output.size()
15: end for
16: end for
17: end for
18: plot a pie chart with the following data: tx input, tx output block header,

transaction header script in, script out

Result

Results are showed using a pie chart, where the whole circle represent the entire size of
the blockchain analysed and every slice represent the space used by a specific type or
group types of data.

Two different chart is displayed since they represent respectively two different range
of blocks in the blockchain. The choice comes from two factors, the first one is that the
first part of the chain is characterized by a very large amount of blocks that encapsulated
a only few transactions, which brings to have a number of block header comparable with
the number of transactions, which does not represent the right blockchain distribution
of data but just the initial phase of the chain. We have identified this range from block
zero to block 200 000. The second factor is that in the block 478 000 it was introduced
the segwit type of data.
Therefore, the first chart represent the range of blocks from the first stable point until
the introduction of the segwit data and the second chart represent the data from the
segwit introduction until the end of the blockchain.
To have a better understanding of the following pie chart we are going to make a list of
the label of the pie charts and the related fields taken in consideration for that specific
field. All the name used represent the original Bitcoin’s name used in the Bitcoin protocol
and expanded in the Appendix B.

64

Analysis of Primitives for Blockchain Security CHAPTER 5. EVALUATION

Figure 5.9: Bitcoin’s Fields size distribution in the first part of the chain, from
block 200 000 to block 478 000.

Figure 5.10: Bitcoin’s Fields size distribution in the last part of the chain, from
block 478 000 to the end.

• Block header: version, prev block, merkle root, timestamp, bits, nonce,

transactions count;

• Tx header: transaction version, flag, tx in count, tx out count,
tx witnesses, lock time;

65

Analysis of Primitives for Blockchain Security CHAPTER 5. EVALUATION

• Tx input: previous output, script length, sequence;

• Script In: script;

• Tx output: value, pk script length;

• Script Out: pk script.

As we can see, the majority of the blockchain data is represented by transactions,
which are mainly formed by Input Script for 60.7% and by Output Script for 13.0%.
Transactions’ header and blocks’ header are almost irrelevant since together represent
the 2% of data.
From the introduction of the Segwit data, a 10% of data are transferred from the Input
script to this new form of script field. So, the field distribution almost maintain the
same distribution along the first and the second part of the blockchain.

5.3.2 Scripts Distribution

Description

The goal of this experiment is to evaluate the entropy of the most space relevant data
type in the blockchain. Based over the previous experiment 5.3.1 the fourth most bigger
sections are the script both input and output, the segwit data and the transactions’ input
header.
The transactions’ input header is mainly composed by flags or version fields, therefore
their entropy are going to be evaluated separately from the entropy of the script’s fields.
Input scripts, Output scripts and segwit data contain the same types of data, which are
Bitcoin’s opcode. This experiment aims to characterize the frequency of scripts, that
means to figure out the number of occurrence of every single script.
In other words it is going to measure how many different script are written in the Bitcoin
blockchain, an equivalent analysis is done during the preliminary phase of a dictionary
compression algorithm. The most common script are later replaced with shorter pointers.

To see which is the structure of a Bitcoin script read the Section 2.2.1.
According to Bitcoin white paper every new payment should create and use a new Bitcoin
Address [1] for privacy reason. Therefore we do not expect high redundancy in the script
fields since every script should contains a new address, which cause a different script.
However, we want to measure it, since the length of the script can make the process of
replacing them with pointer, worthy.

Setup

- download the entire blockchain data, not both the blk and the chainstate folder
but just the blk data folder. The data can be retrieved in the data folder of a
Bitcoin client with the entire blockchain downloaded.

- download the Alecalve blockchain parser [41].

- modify the Alecalve blockchain parser introducing the function explained in the
section: C. This is necessary to retrieve specific data during the parsing of the
data, which are not allowed by the offered parser.

66

Analysis of Primitives for Blockchain Security CHAPTER 5. EVALUATION

Strategy

The strategy aims to parse sequentially the entire blockchain, starting from the bottom.
During the process it needs to count the number of occurrences of every specific script.
The structure used for the goal is a key-value database, where the key are the script’s
and the value are the occurrence of every, which are updated during the parsing process.

Script are millions and represent the majority of data in the Bitcoin blockchain we
need to analyse. Therefore, it is not feasible to insert all of the script in a standard
key-value structure and different strategies were applied to achieve it.
The structure used is a LevelDB [42], developed by Google and used also by the Bitcoin
client to store the blockchain data.
First of all, the code creates two structures, the first structure, called db in stores the
Input script and Segwit data, since they are two different type fields to represent the
same information, so scripts used can be equal.
The second structure, named db out, is used to store the Output scripts.

In the worst case each script is unique and used only once, which means that our
database structure must maintain 100 GB of unique keys. If this is the case, even in a
slightly better scenario, the structure will be too slow.
In order to further reduce the keys in the database, we have developed a pruning strategy
that aims to remove unnecessary keys. We have made the hypothesis that it is more likely
to find similar data and scripts nearby. So we assume that the older a script is, the less
likely it is to find another occurrence of the same script.

So, first we changed the structure used to store also the time the script was created,
within the value fields. Then, every time the structure used becomes slow, we did a
flushing operation. We flush the old keys of the database that have a value greater than
2 in another structure containing only the keys, and delete the older keys that have no
more than 1 occurrence.
The reason is that we are interested in characterizing the occurrence of the script, to
estimate whether a strategy based on compression by replacing the value with a pointer
will be noteworthy.

So, in the end, are used two Python dictionary to maintain the first newest informa-
tion and the other two LevelDB, db in and db out to maintain the frequent scripts.

Algorithm 8 Script occurrence analysis

1: from python-bitcoin-parser import Blockchain
2: InScript = # Dictionary
3: OutScript = # Dictionary
4: chain = Blockchain(blockPath)
5: for all block ∈ chain do
6: t in = 0, t out = 0
7: for all transaction ∈ block do
8: for all input ∈ transaction.inputs() do
9: t0 = time.now
10: InScript[input.Script()] += 1;
11: t in = time.now - t0
12: end for

67

Analysis of Primitives for Blockchain Security CHAPTER 5. EVALUATION

13: for all output ∈ transaction.outputs() do
14: t0 = time.now
15: OutScript[output.Script()] += 1;
16: t out = time.now - t0e
17: end for
18: end for
19: if t in > threashold then
20: flush frequent scripts from InScript into db in
21: delete old scripts from InScript
22: end if
23: if t out > threashold then
24: flush frequent scripts from OutScript into db out
25: delete old scripts from OutScript
26: end if
27: end for

Result

The results shows the size of the two LevelDB, the db in which contains the Script input
and segwit sequences that has more then 1 occurrences in the blockchain and the db out
which contains the same information but for the Output script
We have count the number of blocks, transactions and both input, outputs scripts in
order to estimate the average frequency of each elements.

number of blocks 545 000
number of transactions 347 389 259
transactions’ inputs 888 049 876
transactions’ output 945 016 460

The following table contains the size of each database we have obtained, which contains
only scripts that occur at least two times, the number of unique keys in the database
and the average size of each elements.

database content size database unique keys average element length
script in + segwit 177 M 4.1 M 37.6 bytes

script out 1.3 GB 40.5 M 24.8 bytes

The entire analysis of the Bitcoin blockchain takes 3 days using the described setup.
During the entire analysis only the frequent scripts are identified however, in order

to limit the computational time of the algorithm, it is not saved the exact amount of
frequency for every script. A possible upgrade would be to design a way which is able to
store the exact number of occurrence of every script, which can be very useful once this
script needs to be replaced with pointer and the more frequent script can be substituted
with shorter pointer.

5.3.3 Smart Compression

Description

This experiment aims to test a customized compression strategy, designed using the
result obtained in the last two experiments: 5.3.2 and 5.3.1. The new approach is to

68

Analysis of Primitives for Blockchain Security CHAPTER 5. EVALUATION

optimize the fields of the blocks data structure, to replace the redundant scripts with
pointer and to further compress the obtained data using the best compression library,
which was identified in the experiment 5.2.2.

This customized compression is made by three phases, which regards different aspects
of blockchain’s data that can be compressed.

1. Fields optimization which aims to redefine the structure or the way in which
specific fields are stored in the memory looking for a space reduction. As we have
seen in the section 4.3 there are different fields that can be optimized. With a
sequential parsing of the chain, this phase will read the data written in the legacy
structure and providing the same data using the optimized structure. The encoding
used needs to be loss-less to perform a reversible process.

2. Elimination of data redundancy aims to reduce as much as possible the redun-
dancy within Bitcoin data. As seen in the previous experiment, the Scripts fields
are the most space demanded and also lots of scrips are redundant. Replacing the
redundant scripts with a pointer to a structure that contains the real value will
reduce the necessary space.

3. Legacy compression is applied at the end to produced the final version of the
data, which aims to compress fields not already compress by our strategy. The
library used to compress the data is the same that the Experiment 5.2.2 has eval-
uated to be optimum, we expect the data perform in the same way for optimized
and not Bitcoin.

Setup

In order to made the customized compression the following things needs to be done:

- The entire Bitcoin blockchain data needs to be stored using the official format, the
“blk00XXX.dat” files. On the contrary the UTXOs folder is not necessary, since
the goal of this experiment is just compressing the Bitcoin data and the UTXOs
structure is used only to increase the speed and usability of Bitcoin software.

- install the Python LevelDB library which is able to manage a LevelDB structure
that is used by the code to take advantage by an external data-structure to store
data that cannot fit into a in-memory structure.

- download and install the python bitcoin blockchain parser which is retrievable using
the following link [41].

- modify the bitcoin blockchain parser code following the instruction available in the
Appendix C.

Strategy

The entire smart compression is made by 3 sequential steps.

In the field optimization phase the code needs to compute the frequency analysis over
the Scripts. In particular the python code parses sequentially the blockchain data and

69

Analysis of Primitives for Blockchain Security CHAPTER 5. EVALUATION

builds in real-time a structure that contains only Scripts which occurs at least two times
in the blockchain. The data analysed are Input script, Segwit data and Output script.
The first two are stored together in a LevelDB named db in and the Output script are
stored in a database named db out.

Then, during the compression step the script that are recognized as frequent are
replaced by the key value that is related to the same script in the db in or db out
structure. According with the Huffman coding, see Section 2.3.2, the length of the key
should be choosen accordingly with the frequency of the value. The higher the frequency
of a value, the shorter its key should be. However, the frequency analysis, see Section
5.3.2, is capable to just recognize a redundant script from a unique one. Therefore, this
experiment uses keys with the same length which is decided accordingly with the numbers
of Scripts that needs to be indexed. Script outputs which has at least 2 occurrences are
more then 40 M, so the length of the keys is 4 bytes allowing to index 4 billion elements.

Also, the code implement an intermediate in memory structure to achieve the data re-
currence analysis. The speed of a LevelDB cannot be compared by an in-memory Python
dictionary. With our configuration the code takes 5-6 days to run, other implementations
take longer. The analysis is done using this intermediate structure, a dictionary where
key are data and tuple which contains the number of occurrences and the number of the
last block where this data is found. However, since the structure cannot be too big, after
a certain amount of blockchain blocks analysed the older data are deleted if there are
not enough occurrence, or inserted in the database and then deleted.
The operation of flushing the data in the database increases considerably the amount of
time, also the control of the presence of the data, the recovery of its possible value and
the updating with the correct occurrence takes more time.

For the first part of the analysis it can be used the same code of the experiment 5.3.2
replacing the pointer value according with the explanation.

The Second step consist of parsing the entire blockchain from the beginning until a
decided point and replacing recurrent data by pointer of 4 bytes and redesigning the non
optimized fields.
Data are analysed splitting data in blocks, retrieved sequentially using the Bitcoin
blockchain parser. Once a blocks is provided all its part are analysed and written se-
quentially, according with the new encoding in the data block.

Also, it is inserted a 1 byte flag in every transaction’s header, transaction’s input and
output. The meaning of the flag is different according to its position and it is composed
by 8 flags, one for every bit. The specific meaning of these flags are explained below.
According to the Section 4.3 there are multiple fields optimized. The list of all the
modifications follows:

• transactions’ header:

– version: Bitcoin has only two transactions’ header version B, so only 1 bit of
information is necessary. This field has currently 4 bytes.

– flag: this flag represents the presence of Segwit data section, since it is a flag
it is a binary information however the field is optional and currently occupies
2 bytes.

– lock time: this field is not used most of the time and it is replaced by default
value.

70

Analysis of Primitives for Blockchain Security CHAPTER 5. EVALUATION

The designed solution aims to use only 1 byte flag placed in the beginning of the
transaction, bit[0:1] is used to indicate the transaction version number, bit[2] is a
bit flag to replace the segwit flag, bit[3] is a flag to indicate whether the lock time

has the default value and if not the field lock time is copied after the bit flag.

• transactions’ input data:

– previous output: this field has 32 bytes that represent the tx hash + 4 bytes
for the output spent, the hash can be substitute with the block height (4
bytes) plus the transaction position into the list. So, the output number field
can be replaced with the varint field to replace the fixed 4 bytes field.

– script len and script: if the script is frequent, these value are replaced by the
key which represent the script in the db in structure and the length of the
key. Otherwise these fields are left invariant.

– script: this field is represented using 4 bytes but it is most of the time set by
default.

The solution that we have implemented is to add a flag at the beginning of each
input where: flag[0] indicates where the previous output is substitute with the
block and tx position or not, bit[1] indicates where the script is replaced with a
pointer or not, bit[2] indicates if the script is default.

• transactions’ output data:

– value: this field is substituted by a variable integer field.

– script len and script: are maintained if the script is unique, othersiwe are
replaced according with the same procedure of the input script field. In this
case if the script is frequent the key is an index of the db out structure.

A flag needs to be added at the beginning of each transaction’s output.

• transaction’s body: In the transaction’s body, we can found transactions’ input,
transactions’ output and in the last version also the Segwit data. We compressed
also them, with the following rules.
The original segwit data is sequences of fields with var int leng and the related
scripts. We added a 1-byte flag to each script at the beginning to indicate where
we replaced the script with a pointer or not. Then the var int leng could be remain
the same as before if the script is not substituted otherwise it will be replaced by
the length of the pointer and the script is replaced by a pointer.

The Third step is a standard compression applied over the data we have produced.
The Python code applies the LZMA compression library.

Result

The result achieved is based over the partial blockchain compression, it is not compressed
the whole blockchain but blocks from block zero to the last block minus 20 K blocks.
We have estimated that this is the part of the blockchain that can be compressed in a
common situation where users aims to maintain a fast access to the most likely useful

71

Analysis of Primitives for Blockchain Security CHAPTER 5. EVALUATION

data and compress the other part.
As we can see in the Figure 5.11 the size of the compressed section of the blockchain is
167 GB, in the end of the process we reduce the data up to 92.98 GB which correspond
to a reduction of 44.3%. This result is better than what traditional compression has
achieved, which has been tested in the Experiment 5.2.2 and has led to a compression
of 38%.

Figure 5.11: The chart shows the difference from the initial blockchain size, represented
by the red blocks and the compressed blockchain represented by the green blocks, which
are the file compressed plus the two additional database: db in and db out.

In the Figure 5.12 trends of file compressed during the entire process are plotted. It
is possible to visualize how the file size grow with the number of blocks, how the field
redesign and pointer substitution reduce the size and also how the other compression
phase performs with the LZMA compression library.

72

Analysis of Primitives for Blockchain Security CHAPTER 5. EVALUATION

Figure 5.12: Compression result along the process with the 3 different stage of compres-
sion, no compress, field optimization, legacy compression. The green red point at block
index 400 K shows that the raw blockchain size from block 0 to the given block index is
about 6.250 GB, at the same block index the size of the optimized chain is about 4 GB
and the green dot shows that the compressed file is just 3.5 GB.

5.4 Space optimization for full node

Description

The experiment aims to estimate the space requirement to maintain enough data to allow
a full-node to be able to verify new blocks and transactions without the entire blockchain
downloaded.

Currently a Bitcoin node which aims to verify a new transaction or a new block
must have a trusted version of the previous block in the chain and a way to verify if
all the contained transactions are valid. Also, to verify a transaction’s validity all the
transactions’ input needs to be verified. Therefore it is necessary to maintain a trusted
version of the ./chainstate plus a way to verify if a UTXOs actually belong to a trusted
blocks.
The last action is done thanks to the Merkle Tree’s root hash which is saved in every
block, however the sibling path is necessary, and usually it is retrieved from the stored
data but we aim to store it separately to avoid the constraint of maintaining the entire
blockchain.

This experiment aims to verify the precise amount of space required by the strategy
above, which has to stores all the blocks’ header, UTXOs and all the Sibling Path related
to the UTXOs.

73

Analysis of Primitives for Blockchain Security CHAPTER 5. EVALUATION

Setup

The following actions are necessary:

- Download the ./chainstate folder of a Bitcoin node.

- Then, download also the ./blocks/index folder.

Strategy

The experiment calculates the space requirement as follow:

• ./chainstate: the UTXOs’ folder, it can be just query the size of the folder;

• blocks’ headers: the size of the block’s header is fixed so the size is = headers Size
* number of blocks;

• sibling path: can be calculated multiplying the Merkle tree node’s size by the deep
of the specific transaction’s Merkel tree minus one.

In order to retrieve the last information, we need to know the sibling path associated to
every UTXOs. Each UTXOs is associated to a transaction, which is mined in a block and
the number of transaction mined in the same block determine the deep of the associated
Merkle tree.
So, firstly we parse all the UTXOs and for each UTXO we can decode the block’s height.
Then, we parse the ./blocks/index folder and for each blocks we can read the number
of contained transactions.

Algorithm 9 Full-node space requirement

1: cs = open(./chainstate)
2: idx = open(./blocks/index)
3: blocks = [0...0]
4: for all UTXO ∈ cs do
5: blocks[UTXO.block height] += 1
6: end for
7: blkTx = []
8: for all block ∈ idx do
9: blkTx[block.height] = block.transactions

10: end for
11: tot size = 0
12: for all i ∈ range(0, blockchain-len) do
13: tot size += hash256-len * cs[i] * (log2(idx[i]) -1)
14: end for

Legend:

blocks is a list where the index is the block’s height and the value is the number of
UTXOs for that blocks;

blkTx is a list where the index is the block’s height and the number of transactions
contained in the block;

74

Analysis of Primitives for Blockchain Security CHAPTER 5. EVALUATION

Result

In the Figure 5.13 is shown the result of the experiment.
The chart shows the cumulative distribution function of the space used by the sibling
path of all UTXOs.

Figure 5.13: The chart shows the amount of space required to save the sibling path for
every UTXOs. The point at index 400 K shows that it is necessary 5 GB to store the
Sibling path of the UTXOs from the beginning of the chain until the block at that height.

In the x-axis we have the blockchain block height, the function represent the space
necessary to store the Sibling path of every the UTXOs.

As we can see from the chart most of the data is produced from the latest part of
the chain, where the blocks contains more transactions and so each sibling path requires
more space.

We can also take in consideration the data that comes from the second experiment
that show that with 95% of probability a UTXO is likely to be spend within 25 K blocks,
so if a miner decides to maintain in the memory only the data related to the last 25 K
blocks the amount of memory is only ∼ 3.735 GB over the entire amount of data which
is 17.011 GB. The entire ./chainstate folder, which contains the information related to
the whole chain is 2.8 GB, differently the ./chainstate folder which contains only the last
UTXOs is: 811 MB.

75

Chapter 6

Results Evaluation

This project analyses different aspects of blockchain data, focusing on space optimization.
In particular, the experiment aims to lower the space required by the Archival, Full and
Auditor nodes. Despite the majority of the experiments are done over Bitcoin data, the
insight concern all the coins developed on the Bitcoin blockchain structure.

6.1 Transactions’ output

Transactions’ outputs are one of the most critical section of the blockchain protocol and
structure. They are the value that can be exchanged and the client nodes need to main-
tain them securely in a fast and secure structure until their expenditure.
The first part of our analysis aims to study their behaviour, while the goal of the first
experiment aims to characterize the UTXOs lifespan. All the nodes which aim to par-
ticipate actively in the network store UTXOs in a folder named chainstate, which allows
a fast access method to verify all the incoming new blocks and transactions. However,
as described in the Section 3.2.1 and our experiment confirm that the chainstate folder
contains many transactions’ output that will probably never be spent. The Bitcoin
blockchain presents some transactions’ outputs, dating back to the creation of the coins,
which were never spent and are still loaded in the chainstate folder.
These UTXOs are produced by the transactions’ output whose owner has lost the key,
or the one whose script stores just data and would never be spent. UTXOs can also be
produced by the one with a too low value to be spent, which causes the “Dust” problem.
However, there is no way to distinguish them from UTXOs managed as assets and main-
tained voluntarily for a long time.

Our analysis has quantified the amount of UTXOs on Bitcoin and Litecoin blockchain.

• Bitcoin: analyzing a chain long 545 K blocks, we have figured it out that 80.81% of
the blocks contain at least 1 UTXO. The initial part of the chain is almost UTXOs
free however, the remained part is characterized by UTXOs uniformly distributed.

• Litecoin: the chain is made by 520 K blocks and 34.49% of them contains at least
1 UTXOs.

Both the blockchains analysed presents an incremental increase of unspent transactions’
output in the last part of the chain. This behaviour is normal since recently transactions’
output has a standard physiological period.
However, chains contain also particular sections characterized by a huge amount of

76

Analysis of Primitives for Blockchain Security CHAPTER 6. RESULTS EVALUATION

UTXOs. This behaviour can be produced by a software bug that causes the loss of
users’ key or by protocol bug that creates not spendable transactions’ output. Both the
cases are indistinguishable from a user perspective therefore, users cannot just remove
them from the chainstate.

The second experiment is focused on transactions’ output lifespan characterization.
During the initial stable phase of the blockchain, the average lifespan of a UTXOs is
just 1400 blocks, with the ageing of the chain, the lifespan grows linearly reaching 5000
blocks in the newest chain’s part.
The 90% of the UTXOs follows the behaviour of the average measurement, at least at the
beginning. However, it reaches an age of 7500 blocks, 2500 more than the average. Also,
the lifespan trend which represents the 95% of all the UTXOs is far from the average,
starting with a lifespan of 6000 blocks it reaches 25 K blocks. This behaviour shows that
a little part of UTXOs is spent a lot of time later than the majority of the UTXOs.
To have a preciser view over this data in the chart 5.4 we have plotted the cumulative
distribution function of the age of the UTXOs contained in the most recent snapshot of
chain we have analysed, which is at block 545 K.

6.2 Data compression

This section analyses all the result obtained from the study done over blockchain data
compression. Using a black-box approach, in the experiment 5.2.1 we have initially tried
to compress the entire blockchain data.
We have used different dictionary-based compression libraries, which are the only general-
purpose library that can fit the blockchain data structure. In particular, we have tested
3 different libraries which are LZMA, LZO, and LZ4.
The experiment, using all the libraries mentioned, has tested the compression over dif-
ferent formats of files indeed the size of files vary from 100 MB to 2000 MB also, the
blockchain blocks’ which compose the file can be ordered or unordered.

Initially, we have used the default libraries configurations for all the tests and the
result shows that the LZMA library performs better overall tests.
Also, comparing the different blockchains, the Dogecoin achieves the best performance
in terms of compression. Indeed the best result for the Bitcoin blockchain is a savings
of 30% instead, it is possible to achieve a compression of 35% in Dogecoin and only 28%
for Litecoin.
Furthermore, comparing the organization of the block inside files we have figured it out
that ordered blocks perform better according to the test made over Bitcoin blockchain.
However the compression performance is constant, independently from the file dimension
considered, and it is 30% with the LZMA, 16% for LZ4 and 14% for LZO.
All the test results are also affected by a variation which is, in the Bitcoin ordered files,
around ±5%.

After the preliminary tests, we decided to improve the performance focusing on the
most promising result. Therefore we analysed files with a size of 2 GB made with ordered
Bitcoin blocks. Each experiment is repeated over 10 different samples, which are made
with the mentioned characteristics but differ in the content, indeed each sample is filled
taking blocks from a different section of the blockchain.

77

Analysis of Primitives for Blockchain Security CHAPTER 6. RESULTS EVALUATION

Different libraries configuration are tested and the result shows that in a few seconds
it is possible to achieve a saving space of 17% using the LZ4 started with the lowest
compression level available.
The best space compression is achieved thanks to the LZMA library, that reaches a
saving space of 38.5% and a variation of ±3.5.
From the parameter point of view, it achieves the best performance setting the MF BT4
as tree parameter and the maximum dictionary size which is up to 1.5 GB however, the
compression level is not relevant once the other two parameters are already chosen.
As a side effect of the use of the LZMA, we have the time usage indeed it requires 3.5
hours for each 2 GB sample file.
Others libraries are not comparable in terms of compression however, LZO and LZ4 are
optimized for time-saving and they use less than 5 minutes to compress the data on the
worst case.

To achieve better compression performance, we moved to a white-box approach.
Firstly we have done an analysis to characterize the composition of the data, which are
the nature of different data and how are they distributed. The experiment 5.3.1 shows
that in the Bitcoin blockchain transactions’ takes the majority of the space, in particular
in the last part of the chain transactions’ inputs produce the 82.1% of all the amount of
data also, the transactions’ outputs produce the 16%. Moreover, the script data both in
input and output represent the 74.4% of all the chain data, see Section ??.
We figure it out that with the optimization of filed in the script input or output we can
save gigabytes of data for each byte reduced in one of these fields, see Section 5.3.1.
Transactions’ input and output are almost a Billion in the Bitcoin blockchain and the
efficiency in terms of storage is crucial.

Thanks to the experiment 5.3.2 we have also verify the entropy of the scripts.
Even if a precise analysis is very difficult to do since the data that needs to be enumerated
are very scattered along the entire chain, the experiment provides a quantitative idea.
The experiment shows that the Bitcoin chain has 888 Million of transaction input script
and 4.1 Million of them are at least duplicated. The 4.1 Million of Script are not unique
and they represent the 0.005% of the entire amount of scripts, the average length of these
elements is 37.6 bytes.
On the other hand, the chain has 945 Million of transactions’ output and 40.5 Million of
them are duplicated at least 1 times. The average length of these elements is 24.8 Bytes.

After this analysis we have built a complete fully customized compressor which aims
to compress all the blockchain data using:

• fields optimization;

• store the redundant script in another designed structure and replacing frequent
scripts with the pointer to the new structure;

• another compression is done by a legacy method. In particular, we have used the
optimized LZMA compression library.

Since the future application of this compression is to compress the chain part which is
not likely to be used sooner the experiment was tested only over this fraction of the
chain. In particular, we left the last 25 K blocks for faster access.
The compressed chain has a size of 167 GB and the compressor obtained a savings of
44.3 % which is the best result reached. The final size of the chain is 91.3 GB but it
needs to be used in conjunction with two databases of size 187 MB and 1495 MB.

78

Analysis of Primitives for Blockchain Security CHAPTER 6. RESULTS EVALUATION

The chart 5.12 shows how each step of the compression affects the final result. Start-
ing with a raw file of size 167 GB thanks to fields optimization and pointer replacement
we can reduce the space to 125 GB then, thanks to the legacy compression we can save
other 34 GB achieving 93 GB of file size.

6.3 Secure light client and auditor node

Thanks to the last improvement and data design we provide a secure and light way to
participate in the blockchain ecosystem.
The temper-proof and safety are achieved without relying on an entire local copy of the
blockchain. The user needs to maintain a chain made only by the header of the blocks,
the chainstate folder plus a few additional information to achieve the goal.

In order to participate in the ecosystem of the blockchain is necessary to be able to
verify the incoming blocks and transactions. The blocks verification reflects over multiple
transactions verification.
To verify a transaction is necessary to prove the validity of its input which needs to be
mined inside a valid block. A light client in order to make this operation relies on trusted
nodes without the ability to check the correctness of the information received. However,
it is possible to store the Sibling path of every UTXOs and relying on them during the
verification process.

Storing the Sibling path of every UTXOs allows the user to verify wherever an in-
coming transaction uses only valid input. She can verify the claimed UTXOs relying on
her trusted headers chain which is also updated on real-time.

The experiment 5.4 in the chart 5.13 shows the amount of memory needed to store
all the UTXOs sibling path. It results in just 17 GB to store the UTXOs for the entire
blockchain. However, in the initial part of the analysis we have seen that 95% of the
transaction spend UTXOs not older than 25 K blocks, which means that if a user decides
to store the information related only to the most likely spendable UTXOs, discarding
the others, it just needs 2.8 GB of memory plus the mandatory chainstate which is only
811 MB.

79

Chapter 7

Conclusion

The last 30 years have seen some of the most rapid technological advancements in human
history and the blockchain has the potential to be the next major disruption technol-
ogy. The blockchain has two main abilities: it introduces the concept of security in all
information and transactions, while entrusting it to a reliable and secure protocol.

The blockchain was introduced in 2009 with Bitcoin, and it is the technology behind
all of today’s cryptocurrencies. Financial institutions were the first to notice it, still
as a new payment system. However, since 2009 the blockchain has captured the inter-
est of other markets as well, and it is now improving many industries such as supply
chain, health care and IoT, because of its decentralization, persistence, auditability and
anonymity [1].

However, the blockchain still has two main issues, which limit its adoption and us-
ability. Our work improved the state of the art, in order to solve both of them.

The first issue is linked to the huge amount of data that a blockchain application
produces. These data need to be replicated in all the devices involved in the ecosystem,
producing an enormous waste of resource. As a matter of fact, we have presented a
methodical analysis over the Bitcoin protocol and a statistical analysis over its data
value. The search for patterns aimed to figure out a possibility of optimization. The
goal was to find the best lossless compression method. After a first attempt, conducted
with the available compression libraries, we decided to design a custom method, which
led to the reduction of the space used by the Bitcoin blockchain almost to half, specifically
up to 44.3%.

The second issue regards the absence of a provably secure thin protocol, capable of
guaranteeing security and privacy. The only existing way to participate in the network
is through the download of the entire blockchain. Consequently, this issue creates an
initial barrier for smartphones and IoT devices. Our study has shown that it is possible
to break it down, by lowering the disk space requirements to 4 Gigabytes.

What we know for sure about the future is that it is going to be filled with smart-
phones and IoT devices. Taking this fact for granted, both solutions found through
this project, not only bring true and effective improvements to the topics of light secure
protocol and blockchain compression but also pave the way for future efficient imple-
mentations.

80

Appendix A

How to manage blk files

This Appendix describes how to produce different samples from Bitcoin blockchain data,
or from any blockchain that saves its data maintaining the block structure. All Bitcoin
data is stored in structured blocks as described in the Section 2.2.4. However, in order
to do compression experiments, we need samples.
The following text explains how to produce samples from Bitcoin data and what is the
main constraint to consider. The explanation is not limited to Bitcoin data but applies
to all blockchains based on the Bitcoin structure, including Litecoin and Dogecoin. Some
of the techniques described may also be useful for other types of blockchains that have
the block structure representation.

The algorithm we have created is intended to produce several samples of blockchain
data. Once you need to do an experiment you need to replicate the result and to do so
you need several samples. The algorithms describe how to extract a blk file from the
blockchain structure of Bitcoin.
One of the main features that can relate to the production of the sample is the fact that
the blocks inside it can be ordered or not, for reasons of compression this choice may
affect the analysis and therefore we have chosen to create two ways to create this sample
to check if there are differences in the use of it.

All blocks, needed to produce samples, can be retrieved by analyzing Bitcoin blk files
or by using the bitcoin database structure to retrieve a specific part of the blockchain
data.
Both ways are interesting, we should look at the Bitcoin structure which is made as
follows: as we described in the Section 2.2.4, we know that a blk file is a sequence of
Magic number, Byte length and Raw data block.
Another important thing that needs to be considered is that it is necessary to avoid data
replication within the same sample since the experiment for compression performance
can be affected.

Both algorithms will use the open-source library called Blockchain python parser which
is available at the following link https://github.com/alecalve/python-bitcoin-blockchain-
parser ; we refer to the version of 15 March 2018.
The following two sections explain how to produce ordered and unordered samples of
different sizes. Each type of sample must have 10 different versions, which has the same
characteristics but has different contents.

81

Analysis of Primitives for Blockchain Security APPENDIX A. HOW TO MANAGE BLK FILES

A.0.1 Samples with Ordered blocks

The main problem is that the blocks are not organized inside blk files and to retrieve the
correct order it is necessary to read the metadata structure which Bitcoin uses to store
the actual position of each block starting from the block’s index. However, there is an
open-source project which provides a function to return an iterator on ordered blocks.
This tool provides a method called def get ordered blocks(self, index, start=0,

end=None, cache=None) which is able to provide an ordered sequence of blocks, it takes
the first and the last index as parameters.
However, the iterator return block as python object but we need the binary content of it
so it is necessary to modify the code as follows: inside each Block object it is stored the
hex content, we add the method get raw data() inside the block class as it is shown in
the code below. The following Python code shows the block object of the class and the
method added.

class Block (object) :
”””
Represent a Bi t co in b lock , con ta ins i t s header
”””

def i n i t (s e l f , raw hex , he ight = None) :
s e l f . hex = raw hex
s e l f . hash = None
s e l f . t r a n s a c t i o n s = None
s e l f . header = None
s e l f . n t r a n s a c t i o n s = None
s e l f . s i z e = len (raw hex)
s e l f . he ight = he ight

def get raw data (s e l f) :
return s e l f . hex

. . .

The following algorithm explains how to create 10 different samples of 5 different size,
filled by ordered blocks.

Algorithm 10 blk ordered creator

1: blockchain = new Blockchain($blocks path) # from blockchain parser
2: i : start blocks index
3: s : size desired
4: buffer = []
5: for block ∈ blockchain.get ordered blocks($index path, s, ∞) do
6: buffer += magic number
7: buffer += len(block) # in a specific format
8: buffer += block.get raw data()

82

Analysis of Primitives for Blockchain Security APPENDIX A. HOW TO MANAGE BLK FILES

9: if len(buffer >= size desired) then
10: break
11: end if
12: end for
13: save(buffer) as blk0000.dat

A.0.2 Samples with unorderd blocks

This section describes the procedure that can be used to create, as the previous method
10 different samples with 5 sizes, filled by unordered blocks. Here the process is simpler
because the code uses the method get blocks(blk file name) of the Bitcoin python
parser specifying a blk file name and it will return an iterator over contained blocks,
which are not ordered.

The raw-data return by the method used does not contain the magic number and the
length of the block so the algorithm adds them in order to create a blk file that is fully
compatible with standard Bitcoin blk files.

Algorithm 11 blk unordered creator

1: #from blockchain import get blocks

2: blk name : blk name start
3: s : size desired
4: buffer = []
5: while true do
6: blk name = new name
7: for all block ∈ get blocks(blk name) do
8: buffer += magic number
9: buffer += len(block) # in a specific format

10: buffer += block.get raw data()
11: if len(buffer >= size desired) then
12: save(buffer) as blk0000.dat
13: end
14: end if
15: end for
16: end while

In order to use this algorithm for other blockchains is necessary to change the magic
number inserted accordingly.

83

Appendix B

Structure of Bitcoin blocks and
transactions

This appendix aims to show the technical structure of Bitcoin’s blocks and transactions.

Transaction

The table B.1 shows the general format of a Bitcoin transaction. The same format is
used to store a transaction within a block.
Other formats are used to broadcast and transmit transactions inside the network since
additional information were added [43].

Field
Name

Description
Field
Size

Data
Type

version Version number 4 int32 t

flag
If present always 0001,
indicates the presence of witness data

0 or 2
optional
uint8-t[2]

tx in count Number of transaction inputs (never zero) 1+ var int
tx in A list of at list 1 transaction’s inputsB.2 or source for coins generations 41+ tx in[]
tx out count Number of transaction’s outputs 1+ var int
tx out A list of transaction’s outputs B.3 9+ tx out[]

tx witnesses A list of witnesses, one for each transaction input 0+
optional
tx witness[]

lock time
The block number or timestamp at which this
transaction is unlocked. 0 means not locked, <500M
means block number and >= 500M means timestamp.

4 uint32 t

Table B.1: Bitcoin transaction structure.

The following two tables represent the transactions’ Inputs fields structure B.2 and the
transactions’ Outputs fields structure in the table: B.3.

84

Analysis of Primitives for Blockchain SecurityAPPENDIX B. STRUCTURE OF BITCOIN BLOCKS AND TRANSACTIONS

Field
Name

Description
Field
Size

Data
Type

previous output
32 bytes of the hash of the referred transaction
+ 4 bytes for the index of the specific output referred.

36 char[32]+uint32 t

script len The length of the script 1+ var int
script Computational Script for confirming transaction authorization 1+ uchar[]
sequence todo 4 uint32 t

Table B.2: Bitcoin transaction input structure.

Field
Name

Description
Field
Size

Data
Type

value Transaction value, expressed in value of Satoshi. 8 int64 t
pk script length Length of the pk script 1+ var int

pk script
Contains necessary information that a Bitcoin
Script use to claim the ownership of this output

? uchar[]

Table B.3: Bitcoin transaction output structure.

Block

In the table B.4 it is shown the structure of a Bitcoin block used to store it in the
memory.
It is made by a fixed size section which represent the firsts fields, that contribute for
80 bytes plus the last two fields which are variable. They are a variable integer field
necessary to represent the number of transaction plus the entire list of transaction which
is up to 128 MB according to the Bitcoin protocol.

Field
Name

Description
Field
Size

Data
Type

version Block version information 4 int32 t
prev block The hash value of the predecessor of this specific block 32 char[32]

merkle root
The hash of the root node of the merkle tree that caontaind
all the hash of the transactions contained in this block

32 char[32]

timestamp A unix timestamp recording the creation of this block 4 uint32 t
bits The calculated difficulty target being used for this block 4 uint32 t
nonce The nonce used to generate this block 4 uint32 t
txn count Number of transaction entries 1+ var int
transactions List of transactions ? tx[]

Table B.4: Bitcoin block structure [15]

85

Appendix C

Alecalve blockchain Python Parser

This is the project of an open-source library created by the author called Alecalve for
the analysis of raw data stored by Bitcoind, which is the most used Bitcoin client.

The data stored by Bitcoind uses a specific encoding and structure that is not part
of the Bitcoin protocol, this library offers an easy way to iterate on the contents at the
block level, transaction and values in it.

However, despite the many features offered, this library does not provide the ability
to analyze raw data and does not provide a suitable reading for script type fields.
The most complex thing to do when analyzing Bitcoin data is to recover the correct
order of the blocks, they are in fact stored in a random way. The correct order can be
found by reading the database called ./chainstate where for each block index is stored
the exact location in memory of the beginning of the bytes of that block. This library
offers this functionality in the form of an iterator of ordered blocks.

Below are described some ways to use the library in a simple way and to modify it
appropriately so that you can read the data that are not normally made available.

C.1 Install

The project can be downloaded from the GitHub repository at the link: https://github.co-
m/alecalve/piton-bitcoin-blockchain-parser. The version we are referring to is in Commits
of 10 February 2018. However, future versions have not altered the validity of what we
find described below.

The library requires Python 3 to work, in addition to the plyvel library which allows
interfacing with the LevelDB database used by Bitcoind.
However, all the instructions to install the library are contained in the Readme.md file
of the repository. Once installed, it can be freely modified without any problems.

C.2 Structure and modification

We will briefly describe the structure of the code and then show how we can modify it
according to our needs.

As we can see from Figure C.1 the blockchain parser path contains lots of Python
file and the name are meaningful.

86

Analysis of Primitives for Blockchain Security APPENDIX C. ALECALVE BLOCKCHAIN PYTHON PARSER

Figure C.1: The figure shows the Bitcoin blockchain python parser path organization.

The first class that needs to be used is blockchain written inside the blockchain.py

file. The class needs to be initialized with the Bitcoind data path. Then it provides two
useful methods:

• get unordered blocks : which return an iterator of blocks object unordered;

• get ordered blocks : this method provides an iterator as the previous one, but it
accepts two indexes as a parameter which is the starting index and the last index
of the blocks we need.

Both methods return an object of type block, which is a python object described in the
block.py file.
This object contains the raw bytes for its representation, so when you need to parse the
raw data add a method within the block class.

The object also contains a list of transactions, transactions are represented as a
python object which is described in the file transaction.py. Here, unlike in the block,
the raw data is not saved, in fact they are used during the initialization of the transaction
object but then they are discarded.
To retrieve specific information that is not saved by default, such as the length of a
certain variable field in terms of bytes, it is possible to intervene on the method of object
initialization. In the method init () the raw data are processed and the various
fields are initialized, here just introduce the variables we want to read and initialize
them during this process. The python code sequentially iterates on the bytes and is very
easy to understand and modify.

87

Bibliography

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system.” https://bitcoin.

org/bitcoin.pdf, 2009.

[2] Statista, “Market capitalization of bitcoin from 1st quarter 2012 to 4th quarter
2018 (in billion u.s. dollars).” https://www.statista.com/statistics/377382/

bitcoin-market-capitalization/, October 2019.

[3] “Trends in cryptocurrencies and blockchain technologies: a monetary theory and
regulation perspective.”

[4] P. De Filippi and B. Loveluck, “The invisible politics of bitcoin: governance crisis
of a decentralized infrastructure,” 2016.

[5] “Can blockchain strengthen the internet of things.”

[6] “Medrec: Using blockchain for medical data access and permission management.”

[7] S. C. for Enterpreneurship and Technology, “Air applied innovation review, issue
no.2 june 2016,” 2016.

[8] K. Wüst and A. Gervais, “Do you need a blockchain?,” in 2018 Crypto Valley
Conference on Blockchain Technology (CVCBT), pp. 45–54, IEEE, 2018.

[9] “How much data do we create every day the mind blowing stats everyone
should read - forbes.” https://www.forbes.com/how-much-data-do-we-create-every-
day-the-mind-blowing-stats-everyone-should-read/6a057dd260ba, May 21, 2018.

[10] M. Dameron, “Beigepaper: An ethereum technical specification.” https://github.

com/chronaeon/beigepaper/blob/master/beigepaper.pdf.

[11] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain challenges and
opportunities: A survey,” International Journal of Web and Grid Services, vol. 14,
no. 4, pp. 352–375, 2018.

[12] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,” ACM
Trans. Program. Lang. Syst., vol. 4, pp. 382–401, July 1982.

[13] “Bitshares blockchain.” https://github.com/bitshares-foundation/

bitshares.foundation/blob/master/download/articles/

BitSharesBlockchain.pdf, Nov 29, 2018.

[14] “Bitcoin is an innovative payment network and a new kind of money.” https:

//bitcoin.org/en/.

88

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.statista.com/statistics/377382/bitcoin-market-capitalization/
https://www.statista.com/statistics/377382/bitcoin-market-capitalization/
https://github.com/chronaeon/beigepaper/blob/master/beigepaper.pdf
https://github.com/chronaeon/beigepaper/blob/master/beigepaper.pdf
https://github.com/bitshares-foundation/bitshares.foundation/blob/master/download/articles/BitSharesBlockchain.pdf
https://github.com/bitshares-foundation/bitshares.foundation/blob/master/download/articles/BitSharesBlockchain.pdf
https://github.com/bitshares-foundation/bitshares.foundation/blob/master/download/articles/BitSharesBlockchain.pdf
https://bitcoin.org/en/
https://bitcoin.org/en/

Analysis of Primitives for Blockchain Security BIBLIOGRAPHY

[15] “Bitcoin wiki.” https://en.bitcoin.it/wiki/, 19 November 2017, at 20:12.

[16] “Bitcoin - wikipedia script.” https://en.bitcoin.it/wiki/Script, 26 May 2018,
at 12:56.

[17] “Bitcoin developer: Transactions.” https://bitcoin.org/en/

transactions-guide#introduction, May 2019.

[18] “Bitcoin developer: Scripts api.” https://bitcore.io/api/lib/script, May
2019.

[19] “Bitcoin - segregated witness (consensus layer).” https://github.com/bitcoin/

bips/blob/master/bip-0141.mediawiki, 2015-12-21.

[20] “The long road to segwit: How bitcoin’s biggest protocol up-
grade became reality.” https://bitcoinmagazine.com/articles/

long-road-segwit-how-bitcoins-biggest-protocol-upgrade-became-reality/,
Aug 23, 2017.

[21] “Bitcoin - mining.” https://en.bitcoin.it/wiki/Mining, 25 June 2018, at 21:48.

[22] “Operating modes in bitcoin.” https://bitcoin.org/en/

operating-modes-guide.

[23] “Bitcoin fullnode.” https://bitcoin.org/en/full-node.

[24] K. Sayood, Introduction to Data Compression. Elsevier, 2006.

[25] “Fundamental data compression,” Oxford: Butterworth-Heinemann, 2006.

[26] S. Liu, “Bitcoin statistics.” https://www.statista.com/statistics/647523/

worldwide-bitcoin-blockchain-size/, October 2019.

[27] “Bitcoin release note 0.11.0.” https://github.com/bitcoin/bitcoin/blob/

master/doc/release-notes/release-notes-0.11.0.md, Aug, 2015.

[28] A. Gervais, S. Capkun, G. O. Karame, and D. Gruber, “On the privacy provisions
of bloom filters in lightweight bitcoin clients,” in Proceedings of the 30th Annual
Computer Security Applications Conference, ACSAC ’14, (New York, NY, USA),
pp. 326–335, ACM, 2014.

[29] E. L. ¡elombrozo@gmail.com¿ Johnson Lau ¡jl2012@xbt.hk¿ Pieter
Wuille ¡pieter.wuille@gmail.com¿, “Segregated witness (consensus layer).”

[30] S. Delgado-Segura, C. Pérez-Sola, G. Navarro-Arribas, and J. Herrera-Joancomart́ı,
“Analysis of the bitcoin utxo set,” in International Conference on Financial Cryp-
tography and Data Security, pp. 78–91, Springer, 2018.

[31] P. Tschipper, “[bitcoin-dev] test results for : Datasstream compression of blocks
and tx’s.”

[32] E. G. Sirer, “How to compress bitcoin.”

[33] J. Bruce, “The mini-blockchain scheme,” White paper, 2014.

89

https://en.bitcoin.it/wiki/
https://en.bitcoin.it/wiki/Script
https://bitcoin.org/en/transactions-guide#introduction
https://bitcoin.org/en/transactions-guide#introduction
https://bitcore.io/api/lib/script
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://bitcoinmagazine.com/articles/long-road-segwit-how-bitcoins-biggest-protocol-upgrade-became-reality/
https://bitcoinmagazine.com/articles/long-road-segwit-how-bitcoins-biggest-protocol-upgrade-became-reality/
https://en.bitcoin.it/wiki/Mining
https://bitcoin.org/en/operating-modes-guide
https://bitcoin.org/en/operating-modes-guide
https://bitcoin.org/en/full-node
https://www.statista.com/statistics/647523/worldwide-bitcoin-blockchain-size/
https://www.statista.com/statistics/647523/worldwide-bitcoin-blockchain-size/
https://github.com/bitcoin/bitcoin/blob/master/doc/release-notes/release-notes-0.11.0.md
https://github.com/bitcoin/bitcoin/blob/master/doc/release-notes/release-notes-0.11.0.md

Analysis of Primitives for Blockchain Security BIBLIOGRAPHY

[34] “Mimblewimble white paper.”

[35] B. B. F. Pontiveros, R. Norvill, and R. State, “Recycling smart contracts: Com-
pression of the ethereum blockchain,” in 2018 9th IFIP International Conference on
New Technologies, Mobility and Security (NTMS), pp. 1–5, IEEE, 2018.

[36] M. Zima, “Inputs reduction for more space in bitcoin blocks,” 2018.

[37] “Lzma compression library.” https://github.com/peterjc/backports.lzma,
2019. version: todo.

[38] “Lzo compression library.” https://github.com/jd-boyd/python-lzo, 2019. ver-
sion: todo.

[39] “Lz4 compression library.” https://pypi.org/project/lz4/, 2019. version: 2.1.5.

[40] G. Walker, “Learn me a bitcoin - locktime.” https://learnmeabitcoin.com/

guide/locktime, Aug, 2019.

[41] A. L. Calvez, “Bitcoin python parser.” https://github.com/alecalve/

python-bitcoin-blockchain-parser, 15 March 2018. Accessed: 2018-06-06.

[42] “Leveldb - non relational database developed by google.” https://github.com/

google/leveldb, Aug, 2019.

[43] “Bitcoin - wikipedia transaction.” https://en.bitcoin.it/wiki/Transaction, 5
January 2019, at 02:16.

90

https://github.com/peterjc/backports.lzma
https://github.com/jd-boyd/python-lzo
https://pypi.org/project/lz4/
https://learnmeabitcoin.com/guide/locktime
https://learnmeabitcoin.com/guide/locktime
https://github.com/alecalve/python-bitcoin-blockchain-parser
https://github.com/alecalve/python-bitcoin-blockchain-parser
https://github.com/google/leveldb
https://github.com/google/leveldb
https://en.bitcoin.it/wiki/Transaction

	Introduction
	Research Goal & Scope
	Thesis Structure

	Background
	Blockchain
	What is a Blockchain?
	Transactions
	Timestamp server
	Consensus Algorithm

	Bitcoin
	Transactions
	Block
	Protocol
	Data Storage

	Data compression
	Run-length-Encoding
	Entropy encoding
	Dictionary based
	Modern compression library

	Related Work
	Bitcoin core software
	The pruning mode
	Light clients
	Segregated Witness

	Attempted solution or strategy
	UTXOs analysis
	Streaming compression
	The Mini-Blockchain Scheme
	The MimbleWimble blockchain
	Smart contract recycling
	Inputs Reduction in Bitcoin Blocks

	Methodology
	Transactions outputs
	First compression attempt
	Custom compression approach
	Transaction header fields
	Transaction input fields
	Transaction output fields

	Full node optimization

	Evaluation
	Transactions' output analysis
	UTXOs Distribution
	Spent Transactions' output life span

	Traditional Compression
	Compression library Comparison
	Optimizing Compression parameter

	Data analysis for efficient Compression
	Blockchain Data Distribution
	Scripts Distribution
	Smart Compression

	Space optimization for full node

	Results Evaluation
	Transactions' output
	Data compression
	Secure light client and auditor node

	Conclusion
	How to manage blk files
	Samples with Ordered blocks
	Samples with unorderd blocks

	Structure of Bitcoin blocks and transactions
	Alecalve blockchain Python Parser
	Install
	Structure and modification

