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“I SUPPOSE THEREFORE THAT ALL THINGS | SEE ARE ILLUSIONS; | BELIEVE THAT NOTH-
ING HAS EVER EXISTED OF EVERYTHING MY LYING MEMORY TELLS ME. I THINK ] HAVE NO
SENSES. | BELIEVE THAT BODY, SHAPE, EXTENSION, MOTION, LOCATION ARE FUNCTIONS.
WHAT 1S THERE THEN THAT CAN BE TAKEN AS TRUE? PERHAPS ONLY THIS ONE THING,

THAT NOTHING AT ALL IS CERTAIN.”
— RENE DESCARTES
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Abstract

The production of high-quality white base, a crucial component in the paper, textile and cleaning products indus-
tries, is influenced by various parameters, including the concentration of cationic sulfur trioxide (simply Cat SO;)
which is a surfactant in the process. Elevated Cat SO; levels can adversely affect the product’s properties, resulting
in suboptimal quality and increased costs. This study proposes a data-driven approach to predict Cat SO; levels
in white base production using data science and statistical data analysis techniques.

Traditional methods of Cat SO; level prediction often rely on manual monitoring and experience-based ad-
justments, meaning it can only be calculated after the white base production by a laboratory result, leading to
inefficiencies, loss of valuable time and if it is not in the acceptable level, loss of the product . To address this, I
employ advanced data science methodologies to develop an accurate predictive model. The proposed model inte-
grates historical process data including laboratory results, and production parameters to forecast Cat SO; levels.

The methodology encompasses several key steps: data collection and pre-processing, explanatory data analysis
(EDA), feature selection, model training, validation, and performance evaluation. Various machine learning algo-
rithms, including regression techniques, are explored to identify the most suitable model for predicting Cat SO,
levels. Process engineering techniques and engineers support are employed to extract relevant information from
the complex and multivariate dataset.

The model’s effectiveness is evaluated using real production data from Procter and Gamble HDL facility. Per-
formance metrics such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE),Root Avarage Square
Error(RASE) and coefficient of determination (R?) are employed to assess the accuracy of predictions. Addi-
tionally, the model’s robustness and generalization capability are tested against unseen data to ensure its practical
utility. Since laboratory analysis also tests more than one results of other value parameters, future Cat SO3 lab
analysis results will be available for us to compare the results to new production data.

The results indicate that the proposed data-driven approach can replace traditional methods, yielding more ac-
curate and consistent predictions of Cat SO, levels in white base production. This research contributes to the op-
timization of production processes, reducing wastage, and answers the value creation process which facility needs
to complete for savings. The application of data science techniques not only explores Cat SO; level prediction but
also establishes a foundation for further process optimization and automation in the white base manufacturing
industry.
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Introduction

In early times, when the knowledge of nature was small, little attempt was made to divide science into parts, and
men of science did not specialize. Aristotle was a master of all science known in his day, and wrote indifferently
treatises on physics or animals. As increasing knowledge made it impossible for any one man to grasp all scientific
subjects, lines of division were drawn for convenience of study and of teaching. Besides the broad distinction into
physical and biological science, minute subdivisions arose, and, at a certain stage of development, much attention
was, given to methods of classification, and much emphasis laid on the results, which were thought to have a
significance beyond that of the mere convenience of mankind.

But we have reached the stage when the different streams of knowledge, followed by the different sciences, are
coalescing, and the artificial barriers raised by calling those sciences by different names are breaking down. Geology
uses the methods and data of physics, chemistry and biology; no one can say whether the science of radioactivity is
to be classed as chemistry or physics, or whether sociology is properly grouped with biology or economics. Indeed,
it is often just where this coalescence of two subjects occurs, when some connecting channel between them is
opened suddenly, that the most striking advances in knowledge take place. The accumulated experience of one
department of science, and the special methods which have been developed to deal with its problems, become
suddenly available in the domain of another department, and many questions insoluble before may find answers
in the new light cast upon them. Such considerations show us that science is in reality one, though we may agree to
look on it now from one side and now from another as we approach it from the standpoint of physics, physiology
or psychology.[1].

In today’s rapidly changing world, the integration of different scientific disciplines has become vital in un-
locking new insights and solving complex problems. One such collaboration that holds immense potential is the
coalition between Data Science and Chemistry. This partnership brings together the analytical power of data
science and the fundamental knowledge of chemistry, enriching both fields and contributing to groundbreaking
advancements. By highlighting the importance and impact of this combined approach, we can understand how

it is revolutionizing scientific research and opening doors to previously unexplored possibilities.



Data science has proven to be a game-changer in many scientific domains, and chemistry is no exception. With
the ability to extract meaningful insights from vast amounts of data, data science plays a pivotal role in accelerating
chemical research. There are many examples such as drug discovery, development, materials science and catalyst
design which data science has been used to accelerate the researches. For example, researchers used machine learn-
ing algorithms to predict the outcomes of drug combinations for treating complex diseases. Their findings led to
the discovery of a powerful new drug combination that showed extraordinary effectiveness against drug-resistant
strains of the disease ending the “one drug one disease” era[2] Another example is that the researchers used data
science and machine learning to develop an efficient catalyst for carbon dioxide (COz2) reduction. By leverag-
ing computational models and big data analysis, they identified a new catalyst that significantly enhanced CO2
conversion efficiency, paving the way for sustainable energy solutions[3] The coalition between Data Science and
Chemistry is transforming scientific research and pioneering groundbreaking discoveries. The integration of these
two fields brings together the power of data analysis and domain expertise, resulting in advancements across vari-
ous domains, including drug discovery, materials science, and process engineering which will be our main focus
in this paper. By fostering collaborations and nurturing this synergy, we can continue to push the boundaries of

scientific knowledge and address the most pressing challenges of our time.

In this paper our focus will be fixed on liquid white base production in Procter and Gamble HDL (Heavy Duty
Laundry) facility located in Pomezia, Italy. The factory only produces HDL liquid and is considered a small plant.
There the liquid production some of the ingredients are also produced here and some of the raw materials brought
by suppliers. Production, packaging, storage and delivery, all happens in this plant. The coalition of a process en-
gineering and data scientist will be explored and answer to the question of how each field help one another will be
given. A process engineer in a chemical liquid production facility benefits significantly from collaborating with
a data scientist for several reasons: Data-driven decision-making becomes possible, as data scientists possess the
expertise to collect, analyze, and interpret large volumes of data from various sensors and sources. Leveraging ad-
vanced data analysis techniques, they provide actionable insights that allow process engineers to make informed
decisions about process optimization and troubleshooting. Predictive models developed by data scientists can im-
prove efficiency, reduce waste, and enhance product quality by continuously monitoring and adjusting processes.
Early anomaly detection, root cause analysis, quality prediction, and resource optimization are among the many
advantages, helping ensure regulatory compliance, reduce costs, foster innovation, and maintain data security.
This partnership creates a culture of continuous improvement, allowing the facility to operate more efficiently
and effectively in a competitive, ever-evolving industry. As you can guess by reading the title, our focus will be on
the predictive modeling of a key ingredient which is called cationic sulfur trioxide in the white base production
process.

Cationic sulfur trioxide (from here on we will call it CatSO3) is one of the dozen measures required to be
checked in a detergent. The reason itis chosen to be analysed is that the value of it needs to be controlled and after
production, white base’s CatSO3 value measured by laboratory analysis. More than dozen ingredients are used
to create white base. Since chemical reactions tend to have mathematical equation properties, the idea of soft end
result measurement comes to the surface. Production of white base process is a closed process meaning no external
effect can cause a reaction. Vacuumed tubes and mechanised process keeps person interaction impossible. Every
ingredient and each process element is tracked by sensors. When the production process starts the product and
all the ingredients are kept inside of pipes leaving no gap for external interaction until it is poured in to the bottles.

Specifically for producing detergent, white base is just the beginning. After producing white base production



continues to a different stage to produce the detergent. Since we are interested in white base production cycle, we
will keep other elements and production elements out of the scope. For example some ingredients used to produce
white base also processed before reaching their dosing point into the system. To make sure that our point of view
is limited and clear we won’t take into account of previous and after math process of materials. It is important
to mention that before manufacturing phase has no ongoing chemical reactions by the time they reach to the
white base production start. So that there won’t be any extra work to be included in our analysis mentioning the
prologue.

The production of liquid soap is made by mixing, in a blending process, different raw materials. The most
abundant one is the white base (alongside with water), that itself is a mixture of 10/13 materials. To be used for
production scopes, the white base must follow the manufacturing standard requirement. In the process there are
more than one scope needs to be check to be able to abide manufacturing standards. Two of the most important
scopes are CatSO3 value and ph value of the white base. Even though there is a pH probe online, the white base is a
very viscous liquid that does not allow to rely on this measure to assess its quality. Reason why, for each production,
every 30-45 minutes an operator from the control room has to go to the line, take a sample of the produced white
base and send it to the laboratory. Here the sample is diluted to 10 percent of its concentration, making the initial
solution an aqueous solution for which the probe can give a more precise result. The result from the analysis of
the pH and CatSO3 is then sent back to the control room operator that reading the results and knowing the pH
set point of the white base, trims (increases or decreases for a small percentage) the flow set point of one of the
raw materials (in ph case the caustic soda since it is the most impacting on pH). In the process control room we
have the option to change the setpoints. Depending on the formula card in production, the setpoint of each raw
material is dictated by the manufacturing standard. This one gives us the setpoint and the limit within which
the production can continue. The only setpoint that can be changed is the Caustic Soda setpoint. In the panel,
the operator of the control room can change the setpoint of its flowrate (to compensate the flowrate changes, of
course the amount added/subtracted from the Caustic soda flowrate is inversely subtracted/added from the water
flowrate) just inputting the percent of how much they want to increase/decrease.

Current studies in research and development center showed us that ph value can be controlled by soft sensing.
Using the power of data we can control the ph of the product while it is still in production. After this process
integrated to the current work process, the company wants to eliminate laboratory analysis completely. To be able
to do that they need to know the value of CatSO3 as well and that brings us the use case of this paper. What
we want to achieve is to predict CatSO3 level in the whitebase while it is still in production. Doing so will help
company to eliminate the laboratory analysis completely. If we can model the level of CatSO3 by the ingredients
of the process, we will achieve our goal. In the case of CatSO3 there is no controllable variable in the process.
However with enough historical laboratory results and time series data of ingredients we might able to achieve
prediction with low error, so to say enough to be acceptable. By achieving so this project will help the company
have soft gains, meaning the time spent on this work process will be regained and will be directed elsewhere.

To be able to understand the process we will share with you insights from process and chemistry engineers’
perspective. Without the explanation and process knowledge, data is just pile of values. Guidance goes both
ways. While the process engineers help us to understand the process by doing so direct us how to use the data
accordingly, we will help them to identify and shape patterns which are not easy to be seen by naked eyes. As
complexity increases, the cooperation should increase as well to be able to come up with usable answers. As we

continue explaining the process some details which are not crucial for our topic will be generalized, over simplified



o Hydrophilic
| {water-loving)
| head

m—l

Hydrophobic
| (water-hating)
| tall

Figure 1.1: Surfactants

and names will be changed so that process will keep its uniqueness and secrets as the corporate policy dictates non

disclosure. The information that we share here is also publicly available.

Detergent production involves several key steps in the process engineering aspect, from raw material selection
to final product packaging. Raw material selection and production part also includes two aspect. Preparation of
white base then preparation of detergent. White base is the actual cleaning product which is made of surfactants
and builders. Surfactants are often acidic in nature. To make them suitable for use in detergents, they undergo
neutralization with alkaline substances such as sodium hydroxide (caustic soda). This step is crucial for achieving
the desired pH of the detergent. There are other builders to make whitebase stable and ofcourse water is one of the
main ingredients. Other builders include sodium in them. From the process point of view, to better understand

what we are looking for, we should know what is surfactant in the first place.

Surfactants are a primary component of cleaning detergents. The word surfactant means surface active agent.
As the name implies, surfactants stir up activity on the surface you are cleaning to help trap dirt and remove it
from the surface.Figure 1.1 Surfactants have a hydrophobic (water-hating) tail and a hydrophilic (water-loving)
head. The hydrophobic tail of each surfactant surrounds soils. The hydrophilic head is surrounded by water.
When there are a sufficient amount of surfactant molecules present in a solution they combine together to form
structures called micelles. As the micelle forms, the surfactant heads position themselves so they are exposed to
water, while the tails are grouped together in the center of the structure protected from water. The micelles work as
aunit to remove soils. The hydrophobic tails are attracted to soils and surround them, while the hydrophilic heads
pull the surrounded soils off the surface and into the cleaning solution. Then the micelles reform with the tails
suspending the soil in the center of the structure. Figure 1.2 Cationic surfactants have a positive charge on their
hydrophilic end. The positive charge makes them useful in anti-static products, like fabric softeners. Cationic

surfactants can also serve as antimicrobial agents, so they are often used in disinfectants. Figure 1.3 [4]

The process follows precisely placed pipelines and dosing points. While going through the pipes the solution
is continuously mixed. There are filler tanks which the solution mixed again then put through the pipes again
to make sure the solution is homogeneous. Every dosing valve has a flow meter and pressure sensor to check the

stability of the process. Temperature and pressure is constantly checked. After the full composure is reached the
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whitebase is stored in the tanks. Right before tanks the solution passes through a thin pipe which allows operators
to take samples from the final product.This sample is used for recording the detailed laboratory analysis of the final
whitebase.

Laboratory is located next to the production site. The reason is that the product has highly active formula and
time is the essence of the results. That is why sampling and analysis happens simultaneously. Laboratory analysis
consists of multiple results including ph, viscosity and CatSO3 results. There are certain parameters which the
mixture should be in between on the account of multiple variables. Laboratory technicians starts sampling right
after the production reaches a stable condition and through the production in certain time lapses it continues. It
also helps process controllers to adjust ingredients according to results. For quality assurance the lab analysis are
our corner stone of the production. Regular and systematic lab analysis, combined with real-time monitoring
and feedback systems, forms the basis of effective process control in detergent production. It allows for the early
detection of deviations from the desired specifications, enabling prompt corrective actions to maintain product
quality and consistency.

Process engineering and data science knowledge collaboration lead us to believe that through the process some
of the laboratory results could be predicted by using historical dataset of the production ingredients. In this
project the aim is to predict CatSO3 level of the whitebase through historical data (time series data)of ingredients.
Since every lab sample deliver one result and sampling happens certain time lapses the study won’t be a time series
analysis but lab results will be time stamped with the exact time as the samples have been taken. So that later on
time stamps will be matched with the exact times of ingredient’s present values. That means if the sample has
been taken at ten o’clock, we will only take the data of ingredients’ values at ten o’clock.

The process will include data cleaning, regression analysis, dependent variable analysis, explanatory data anal-
ysis and comparison of predictive modelling but there are few points we should be considering before diving into
data science of the process. First of all this is a chemical process happening in real life. Even though people con-
sider chemical processes as two plus two equals four on paper, in real life production there are deviations caused
by natural process itself. What we are considering is that data coming out of the sensors will be our pin point. Due
to high volume of production, viscosity of the fluids, activation levels of ingredients, natural state of production
involvement, lab analyst human error and sensor accountability the delivered results will have a certain deviation
from the exact real supposed values.

In the upcoming data set section the data set will be explained according ingredients and response result. In-
gredients will have code names not to disclose full formulas of the production but there will be small explanations
of each of them. The topics of the thesis are delivered as follows: Ingredient disclosure and description, cleaning,
pre-processing, feature engineering. Later on The Generalized Linear Regressions, Adaptive Lasso and Adap-
tive Elasticnet (GLRL and GLRE), Bootstrap Forest(RF), Support Vector Machine (SVM) and Neural Network
(NN) algorithms are explained in the chapter models and the methods of the models and their evaluation applied
in the research. Finally, chapter 4 will include the performance evaluation of all the models and evaluation criteria

of the models with higher specifications.



Dataset

The production of liquid soap is made by mixing, in a blending process, different raw material. The most abun-
dant one is the white base (alongside with water), that itself is a mixture of 10/13 materials. To be used for pro-
duction scopes, the white base must follow the manufacturing standard requirement. This one gives to the de-
partment the guideline, setpoint and range limits that have to be taken, for example pH, Viscosity, CatSO3 and
appearance. In this Dataset we will focus on CatSO3 levels. We will see and discuss how it has been tried to predict

the CatSO3 of a mixture basing it on historical production data.
In Pomezia plant the production line is represented by Figure 2.1 below.

The pipeline has deflector inside. At specific meters are present the raw material injection point that mix and
reach the storage tank. At the end of the line there are two probes: the first one is a temperature probe and the last
oneisapH probe. Rightbefore temperature probe we have our sampling valve. The sampling happens depending
on the length of the production. These are 4 to 6 hours productions depending on the need. Each production
is called "Run”. Every Run has at least 4 sampling events, the number might increase to 6. Shortest runs have 4
sampling as first sampling happens after production starts and becomes stable. Second happens in the middle of
production, third happens right before finishing the production and last sampling happens for Tank which we
will exclude since it is not taken while the production runs. The Runs are uninterrupted from the start and finish.
Stable state means every ingredient reaches their set points and will be on that point until production stops. So
we can assume that flows are stable but includes variation. According to production values sometimes set points
are changed while production runs. According to temperature, ph and sampling results of the product while it is
running, adjustments are made to keep the product’s CatSO3, ph, apperance and viscocity values in check. that
is why sampling happens in between.

The aim of the project as previously stated, using the historical ingredients data to predict the CatSO3 labora-
tory results, using predictive modelling methods. After the creation of model the plant will be able to reduce the

sampling to 1 which will be taken from the Storage Tank to finalize the process.
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Figure 2.1: Process of Whitebase Production

2.1 DATA SHAPE

Due to nondisclosure agreement the ingredients will have coded shorten names. This information is strictly pro-
tected since it reveals the product combination and could be replicated via out sources. Ingredient table Table 2.1,
shows us that there are many ingredients to this process but it is important to identify which ones are important
for our result. Sampling results are scarce. This data is collected between March 2022 and January 2023. There
are only 526 acceptable sampling results for our continues ingredient data set. So our sample’s N value is 526.
Except Brand (Categorical), all the values are numerical floats. We are receiving ingredients data as time series but
since we are exactly matching them with the time of laboratory results, time is irrelevant for the models.

Brand is a diverse topic for the study. While it might be useful to the model we can not accept it as a variable.
Reason is that brand changes periodically and once a brand decided as terminated by general office, it won’t be re
introduced to the production. In the upcoming model creations brand will be discarded so categorical values will
be eliminated. How ever Brand will help us to create validation samples in the upcoming sections, so that every
validation will be grouped by significant brand. That will help us increase the model accuracy while we validate
and test the model accordingly. There are other component highly correlated to brand which will be included in

the model, so brand will not be included in model creation but it will make validation-test sampling very easy.

2.2 DATA CLEANING AND VARIABLE SELECTION

While the process is going sometimes sensors that reads the dosing values give unacceptable readings. That is

why we would like to clean dataset first and see the outliars. To do this we have created the time series results of



Table 2.1: Ingerdients

Code Name Specification

PHIC401 Line pH

FIC104 Material Flowrate (kg/h)
FIC108 Fatty Acid Flowrate (kg/h)
FIC1ss Material Flowrate (kg/h)
FIC156 Material Flowrate (kg/h)
FIC158 Material Flowrate (kg/h)
FIC181 Material Flowrate (kg/h)
FIC310 Material Flowrate (kg/h)
FIC2-131 Wash Recipe

pHCLP Sample pH

FIC102 Material Flowrate (kg/h)
FIC1os Surfactant 1 Flowrate (kg/h)
FIC107 Material Flowrate (kg/h)
FICr112 Material Flowrate (kg/h)
FIC4o01 Water Flowrate (kg/h)
FIC175F-L  Surfactant 2 Flowrate (kg/h)
FIC8-401 Material Flowrate (kg/h)
FIC1-115 Reblend 1 Flowrate (kg/h)
FIC2-115 Reblend 2 Flowrate (kg/h)
FIC3-115 Reblend 3 Flowrate (kg/h)
Brand Brand of production
CatSO3 CatSO3 level of sample
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Figure 2.2: Outliars 1

each ingredient. Rather than share all of the ingredients results I will simply share the ingredients which shows
obvious outliars. Below 3 figures shows us main graphs that indicate outliars. Figure 2.2 shows the outliars on
the ingredient FIC108, FIC102 and FIC181. The highlighted points in each graph corresponds to the same row
of information in the dataset. Figure 2.3, Figure 2.4 shows the same points being outliars for ingredient FIC156
and FIC10s. We proceed to remove the outliars. Finally we check the ph value time series, both sample and inline
Figure 2.5. Even after looking at the values, from a point of process engineering and a data scientist highlighted
values are showing out of scope values. After identifying all the outliars and removing them our sample size is
reduced to 519.

Also lets see the distribution of our response variable and ph values of the whole dataset Figure 2.6. As you
can see CatSO3 values are grouped between several points while ph seems normally distributed. As we previously
mentioned Brand plays a specific role in the production and brands have different values of CatSo3. Case of

reblends are insignificant since it means reblending the product into same production brand. As you can see
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Distributions
Catso3 pH CLP

2.00
1.50
-1.00
I 0.50
— _IL 0 —
3 4 5 6

Density

8 81 82 83 84 835 86

Quantiles Quantiles

100.0% maximum 6.35 100.0% maximum 8.55
99.5% 6.2673 99,5% 8.5071
97.5% 6.08825 97.5% 8.49
90.0% 5.933 90.0% 845
75.0%  quartile 4.41 75.0%  quartile 841
50.0% median 4.31 50.0% median 8.37
25.0% quartile 3.9675 25.0% quartile 8.33
10.0% 3.24 10.0% 8.28
2.5% 32 2.5% 8.2245
0.5% 3.1427 0.5% 8.1358
0.0%  minimum 3.0 0.0%  minimum 7.95
Summary Statistics Summary Statistics
Mean 4,3546198 Mean 8.3658425
Std Dev 0.8531911 Std Dev 0.0679186
Std Err Mean 0.0372009 Std Err Mean 0.0031771
Upper 95% Mean 4.4277007 Upper 95% Mean  8.372086
Lower 95% Mean 4.2815389 Lower 95% Mean 8.3595089
N 526 N 457
Variance 0.727935 Variance 0.0046129

Figure 2.6: CatSO3 and Ph distribution

in the Figure 2.7 and Figure 2.8 how the CatSO3 levels are grouped. Reblend could be anyvalue which doesnt
show significance. The problem is that we can not use brand categories as an input since they might go out of
production in the future. There are currently four brands in the production: Ambiorix, Tigress, Arctica and
Jupiler. However we have some ingredients where we always use in the production and they resemble similar
difference and does the grouping as brand does. One of them is called surfactant and by chemistry knowledge
that has been shared, they play really important role on describing other surfactants. The Figure 2.9 shows the
graph of hand picked ingredients that resembles the grouping of brand. Also one of them is surfactant which
means it plays big role in prediction of CatSO3.

The data includes many independent variable to be considered in the modelling part. Correlation maps will
help us to further eliminate variables. For significance of their separation and importance the surfactant variables
will be kept for modelling. The rest of the variables chosen be decided by using correlation matrix and fitting Mul-
tivariate Least Square Regression model backward stepwise selection. Figure 2.10 Shows us that between variables

there are a lot of correlations. So decision started with surfactants and eliminating their correlated counterparts.
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Figure 2.9: CatSO3 vs FIC102,FIC105,FIC112,FIC181

Later on most correlated variables have been chosen and their correlated counterparts have been removed. Also at
the same time Multivariate Least Square Regression model backward stepwise selection applied simultaneously
to see variable significance while they have been removed. Figure 2.11 Shows that there are insignificant variables
included in our model. Though model is valid according to predicted results, by backward stepwise selection we
reduced the model variables to 8. Figure 2.12 shows us the same results and with reduced residuals for predicted
values. In the effect test part ph values have been shown in effective to the model via F test. However when we
remove the ph from the model, results worsens as you can see in Figure 2.13. So we decided to keep ph value in the
model. We come to this conclusion vialooking R square and p values of the model and ingredients separately. Also
prediction vs real graph proves our point. Feature selection is primarily focused on removing non-informative or
redundant predictors from the model. Many models, especially those based on regression slopes and intercepts,
will estimate parameters for every term in the model. Because of this, the presence of non-informative variables
can add uncertainty to the predictions and reduce the overall effectiveness of the model.[5]. Certain statistical
literature suggest us to use Principle component analysis to reduce the feature dimension but as process engineer-
ing part we need to consider features individually to control them. Combining features would not work for our

solution.
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Multivariate
Correlations

Catso3
1.0000
-0.1984

Catsol
PHIC401
FIC102
FIC104
FIC105
FIC107
FIC108
FIC112
FIC155
FIC156
FIC158
FiC181
FIC310
FiC401
FIC175F L
FIC8_401
FIc2_131

PHIC401
-0.1964
1.0000

0.0084

-0.0391

FIC102 FIC104 FIC105 FIC107 FIC108
0.7617 0.7921 -0.0057
-0.1541 -0.1735
1.0000 0.6386
-0.2721 04232

The correlations are estimated by Row-wise method.

Figure 2.10: Corraletion matrix

Effect Tests

Source
pH CLP 1
FIC102 1
FIC103 1
FIC107 1
FIC112 1
FIC401 1
FIC175F L 1
FICB_401 1
FIC108 1
1
1
1
1
1
1
1
1

Nparm

FIC155
PHIC401
FIC104
FIC156
FIC158
FIC181
FIC310
FiIC2_121

Response Catso3

Sum of

Squares
0.00805602
0.07389003
0.01294350
0.01566626
0.02844013
0.12927555
0.00347317
0.03679807
0.00004014
0.00002336
0.00143344
0.00004073
0.00011761
0.00000963
0.00177697
0.00174156
0.00221772
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Figure 2.11: Least Squares all variables
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Parameter Estimates
Term Estimate Std Error tRatio Probs[t]
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FIC102  0.0007034 0.000227
FIC105  -0.000932  0.00072
FIC107  -0.000897 0.000629
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Response Catso3 Residual by Predicted Plot
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Figure 2.12: Least Squares reduced variables

17



< Whole Model

4 Actual by Predicted Plot

4 Parameter Estimates

Term Estimate 5td Error tRatio Prob:|t]
Intercept  7.8000127 5.143684 152 0.1363
= FIC105 0.0009374 0.001176 0.80 0.4261
g FIC401 -0.000491 0.000124 -3.95 <0001
::‘ FIC102 0.0003477  0.00103 053 0.5934
g FIC107 0.0010795 0.001129 0.96 0.3398
J FIC112 -0.000953 0.001079 -0.88 0.3779
FICI75FL -0.000128 0.000365 -0.35 0.7267
FICB 401 -0.002143 0.002134 -1.00 0.3200
3 4 5 6
Catso3 Predicted RMSE=0.3294 R5g=0.85
PValue=<.0001
4 Effect Summary
Source  Logworth  PValue 4 Analysis of Variance
FIC401 4.031 0.00009 Sum of
FICE_401 0.495 [ 0.32004 Source DF Squares Mean Square  F Ratio
FIC107 0.469 7] 0.33982 Maodel 7 220.95648 31.5652 290.8915
FIC112 0.423 7] 0.37786 Error 356 38.63027 0.1085 Prob> F
FIC105 0.370 [ 0.42611 C. Total 363 259.58674
FIC102 {J.EES] 0.59535
FIC175F L 0.139] | | 0.72674
Remove Add Edit Unde [ ] FDR
4 Residual by Predicted Plot £ Summary of Fit
2 7 RSquare 0.851186
T 9 ooy . RSquare Adj 0.848250
o | Root Mean Square Emmor 0.329412
ﬁ 0 :_*?t_“-m . & Mean of Response 4,341703
o 1 1 b4 Observations (or Sum Wagts) 364
] e .
J .
-24
3 4 6

Figure 2.13: Least Squares reduced variables without ph
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Models

The main focus of the project is to create a predictive modelling for CatSO3. One step ahead was the remove
certain features from the prediction. For example brand, reblend and other features that has correlation and noise
were removed from our list of features. Now that we have left with core data set with 8 features and a response
variable. These features are FIC102, FIC105, FIC107, FIC112, FIC401, FIC175F-L, FIC8-401 and ph. Now we
choose our models to fit and later on continue to compare them. In the upcoming subsections, in each section
we will present a model explanation and later on our application on that model.

Predictive modeling is the process of taking known results and developing a model that can predict values for
new occurrences. It uses historical data to predict future events. There are many different types of predictive
modeling techniques including ANOVA, linear regression (ordinary least squares), logistic regression, ridge re-
gression, time series, decision trees, neural networks, and many more. Selecting the correct predictive modeling
technique at the start of your project can save a lot of time. Choosing the incorrect modeling technique can result
in inaccurate predictions and residual plots that experience non-constant variance and/or mean. [6] In our case
since both response and features are continuous variables, we will look into regression techniques, decision trees,
machine learning and deep learning techniques. In this project we will specifically focus on 4 models, which are:
Generalized Linear Model (GLR), Neural Network model (NN), Bootstrap Forest model (BF), Support Vector
Machines (SVM).

For Generalized Linear Model we will use two different variable selection techniques, including shrinkage tech-
niques, that specifically address modeling correlated and high-dimensional data. Two of these techniques, the
Lasso and the Elastic Net, perform variable selection as part of the modeling procedure. Even for small data sets
with little or no correlation, including designed experiments, the Lasso and Elastic Net are useful. They can be
used to build predictive models or to select variables for model reduction or for future study. Modeling techniques
such as the Elastic Net and the Lasso are particularly useful for large data sets, where collinearity is typically a prob-
lem. In addition, modern data sets often include more variables than observations. This situation is sometimes

referred to as the p > n problem, where n is the number of observations and p is the number of predictors. Such
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Figure 3.1: Randomly chosen Validation data

data sets require variable selection if traditional modeling techniques are to be used. The Elastic Net and Lasso
are relatively recent techniques [7]. Both techniques does penalize the size of the model coefficients, and contin-
uous to a shrinkage in the end. The shrinkage is determined by an adjustable variable. An optimal shrinkage is
decided by one of the several validation methods but in our case we have separated data into Training, Validation
and Tests sets while using predictive modelling. Also we took special precautions while creating Validation data
set. Randomization of validation data set is a good option but after completing GLR model we decided to create a
special case of Validation data set to see if the models improve. In the model section section we tested two different
validation data sets to see the changes. First validation data setis randomly selected between all the rows Figure 3.1.
The second validation data set has been created and grouped by brand and also as we take one brand as our sample,
first 15 percent become our validation group following 70 percent become training and last 15 percent become

our test group per brand Figure 3.2.

3.1 GENERALIZED LINEAR MODELLING - LASSO AND ELAS-

TICNET

A generalized linear model (GLM) generalizes linear regression by allowing the linear model to be related to the
response variable via a link function and by allowing the magnitude of the variance of each measurement to be a
function of its predicted value. We believe that error distribution of responses behave normal distribution, so it
is a good choice to select GLM. How ever we also would like to show variable reduction via Lasso penalization.

In the previous part we presented that variables are reduced to 8 predictor. By using GLM-Lasso we will also
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Figure 3.2: Validation data created by brand categorization

prove that we can indeed reduce the dimentionality of the variables into exact same number with same features.
There are few aspects of Lasso we should consider while we do the modelling. When several variables are highly
correlated, Lasso tends to select only one variable from that group. When the number of variables, p, exceeds the
number of observations, n, the Lasso selects at most n predictors. This is in fact our case that features have highly
correlated.

Regularization is a method for solving ill-posed problems or problems of models overfitting data. The method
involves introducing additional information to a model in the form of a penalty. In terms of Elasticnetand LASSO,
the penalty imposes a shrinkage on the coefficient estimates of ordinary least squares. This penalty controls the
instability found in the least squares model with nonorthogonal matrices. Generally, for the Z, regularization term

wehave L, = (3 ||&,II” )117 . Elasticnet and LASSO deal with the L, and L; penalties respectively. Regularization is

used in preference over other common methods of determining the best linear model, such as best subset selection
and stepwise subset selection. Elastic net is the same as lasso when o = 1. For other values of , the penalty term Z,
interpolates between the L1 norm of B and the squared L2 norm of p. As ashrinks toward o, elastic netapproaches

ridge regression.[8]

?
L, = > (Y528 +alg). 8]

/=1

For a nonnegative value of A, algorithm solves the problem:

min(By, 8)(SSE(By, 8) + AL,)[8]
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1 = Generalized Regression for Catso3
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Figure 3.3: GLR Lasso all variables
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Minimizing the A-penalized deviance is equivalent to maximizing the A-penalized loglikelihood. N is the num-
ber of observations.) is a nonnegative regularization parameter corresponding to one value of Lambda.The pa-
rameters 3o and {3 are a scalar and a vector of length p, respectively. [9]

After looking at the Figure 3.3 and Figure 3.4 we can see that for GLR Lasso, it reduces the all variable into the
version of selected variables as per-se.

Let’s analyse the results of Normal adaptive lasso’s two options we have, one with the all features and the
other is selected features. As we compare selected versus all variables Figure 3.3 and Figure 3.4, we will see that all
feature solution has lower R square value for validation and test sets. It reduced the feature size to 12 including 3
more extra features including FIC155,FIC3 10 but it still looks like overfitting comparing to the selected features
solution. AIC and BIC scores are low but comparing to the selected variable not so low. The little difference
between R squares, AIC, BIC and R ASE values suggests that we should go with the selected feature model, even
though statistically both models are valid.

By following above argument, you will see the same results of all features versus selected features results of
generalized Linear Regression with adaptive elasticnet penalization between Figure 3.8 and Figure 3.10. Same
argument and same weaknesses for both penalizations method. That will suggests us that feature selection for
creating a model, even with penalization, sometimes makes difference, even it is a small difference. That is why
process knowledge helps us to create a better model by removing unnecessary noises from the model that we want
to create.

There is also the comparison between random validation set versus selected variables including adjusted vali-
dation data set. To make it easy to compare we should compare the same used models, meaning for example if it
is generalized linear regression with lasso penalization, we should take two model made by same selected features
but compare the parts where the validation data set is different. Firstlets look into Figure 3.4 and Figure 3.6. Only
difference between these models are the validation data sets. In this case their R square looks very close to each
other but we can also compare them via AIC and BIC squares. In our case the lower the score is the better for
our analysis. In this case the model which uses adapted validation set by brand has lower AIC and BIC value. By
that means we would like to take into the consideration, the one model that uses adapted (by brand) validation
data set.For the models that uses Elastic net penalization method Figure 3.10 and Figure 3.12 you can see from the
AIC and BIC values same result applies. That is why validation data set created by brand adaptation is important
in our analysis.

For the models that uses Elastic net penalization method Figure 3.10 and Figure 3.12 you can see from the
AIC and BIC values, same result applies. In our analysis we would like to take the ones with lower AIC and BIC
valued models, even though F test suggest that both model is valid. That is why validation data set created by
brand adaptation is important in our analysis.

Both models of Generalized Linear Regression with Lasso and Adaptive Elastic net penalization with selected
feature gives us good results. now we are considering both model which uses adapted validation sets. R square
values are close to %99 with a small differences between test set R square values. We can also compare them visually
by looking at the predicted versus real responses graphs in Figure 3.7 and Figure 3.13. Further more JMP allows
us to use prediction profilers interactively. These profilers help us to see how much change will occur in the other
predictor if the values of one predictor changes. This feature also useful to compare the slopes of the features as
well. The more slope one predictor have meaning more effect on the response variable. This could be extrapolated

via "Bvalues magnitude as well but visually seeing it and interacting with it gives us the decision choice of the
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4 =|Normal Adaptive Lasso with Validation Column
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Mumber of Parameters L] 9 9
BIC -542.2578  -211.7417 -36.96399
AlCc -574.7103  -234.5406 -49.06796
RSquare 09902919 0.9903445 0.9785875
RASE 00876024 0.0774315 0.1085734
Lambda Penalty 0
4 Solution Path
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4 Parameter Estimates for Original Predictors

Wald Prob >
Term Estimate  StdError  ChiSquare  ChiSquare Lower 95%  Upper 95%
Intercept  8.6002222 10016255 18.685834 <0001 4.705708 12.512736

pHCLP -0.060936 0.0664939  0.5398138 0.3395 -0.191262 0.0693898
FIC102 0.0006022 0.0002767  4.7363468 5.9866e5 0.0011445
FIC105 -0.000626 0.0003938  2.5250280 -0.001398 0.0001461
FIC107 -0.001032 0.0002802  13.5354756 -0.001581 -0.000482
FICi12 0.000917 0.0003562  6.6289172 0.0002189 0.0016151
FiC401 -0.000154 3.9911e5  14.805991 0 -0.000232 -7.535e5
FICI75FL -0.000148 0.0001273  1.3523941 0.2449 -0.000397 0.0001015

Normal Distribution Wald Prob >
Parameters Estimate Std Error ChiSquare ChiSquare Lower95% Upper93%
Scale 0.0876024 0.0053433 217.11573 0007 007395  0.0992549

Figure 3.4: GLR Lasso selected variables 1
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4 Parameter Estimates for Original Predictors

Wald Prob >
Term Estimate  StdError ChiSquare ChiSquare Lower95% Upper95%
Intercept  8.6092222 19916255 18.685834 <,0001* 4705708 12.512736
pH CLP -0.060936 0.0664939  0.85398138 0.3595 -0.191262 0.0693898
FIC102 0.0006022 0.0002767  4.7363468 0.0205* 5.086625 0.0011445
FIC105 -0.000626  0.0003938  2.5250280 -0.001398 0.0001451
FIC107 -0.001032 0.0002802  13.554756 -0.001581 -0.000482
FIC112 0.000917 0.0003562  6.6280172 0.0002182 0.0016131
FIC401 -0.000154  3.9911e5  14.805091 -0.000232 -7.535e5
FIC175FL -0.000143 0.0001273  1.3523041 -0.000397 0.0001015
Normal Distribution Wald Prob >
Parameters Estimate Std Error ChiSquare ChiSquare Lower95% Upper93%
Scale 0.0876024 0.0059453 217.11573 <.0001* 007595 0.0092540
[ Effect Tests
4 Active Parameter Estimates
Wald Prob >

Term Estimate StdError ChiSquare ChiSquare Lower93%  Upper 95%
Intercept  8.6092222 1.9916255  18.685834 ; , 4705708 12.51273¢
pH CLP -0.060036 0.0664930  0.8308138 0.3595 -0.191262 0.069380¢
FIC102 0.0000022 0.0002767  4.7363468 0.0205* 5.0866e5 0.001144¢

FIC105 -0.000626 0.0003938  2.5250289 -0.001298 0.0001461
FIC107 -0.001032 0.0002802  13.554756 -0.001581 -0.00045:
FIC112 0.000017 0.0003562  6.6289172 0.0002189 0.0016151
FIC401 -0.000154 3.9911e5  14.805991 -0.000232 =7.535e-f
FICI75FL -0.000143 0.0001273  1.3523941 0.2449 -0.000397 0.0001012
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Figure 3.5: GLR Lasso selected variables 2
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4|=|Normal Adaptive Lasso with Validation Column

4 Model Summary
Response Catso3
Distribution MNormal

Estimation Method Adaptive Lassc
Walidation Method Validation Column

< Estimation Details

Number of Grid Points 150
Minimum Penalty Fraction 0
Grid Scale Square Root

Mean Model Link  Identity

Scale Model Link  Identity

Measure Training Validation Test
Mumber of rows 316 66 71
Sum of Frequencies 316 66 71
-Loglikelihood -326.6015  -34.3963 -76.79386
Mumber of Parameters 5 5 5
BIC -644.4243  -47.64433 -132.2783
AlCc -663.0095  -37.7926 -142.6687
RSquare 0.9902068 0.9793788 0.9911805
RASE 00833978 0.1205113 0.0820155
Lambda Penalty 0.0494211 i 5

4 Solution Path
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4 Parameter Estimates for Original Predictors
Wald Prob >
Term Estimate StdError ChiSquare ChiSquare lower95% Upper95%
Intercept  6.5397235 0.1303920 25154218 <0001 6.284138 6.7952889
FIC102 0 0 0 0 0
FIC103 0 0 ] 0 Q
FIC107 -0.000384 0.0000185  431.91039 -0.000421 -0.000348
FIC112 0.000467 1.7017e5  753.11363 0.0004336 0.0005003
FICA01 -0.000168 6.84e6  603.40333 -0.000181 -0.000155
FIC175F L 0 0 0 1.0000 L] Q
pHCLP 0 0 0 1.0000 0 0
Normal Distribution Wald Prob >
Parameters Estimate Std Error ChiSquare ChiSquare Lower95% Upper95%
Scale 00823078 0.0047951 3202.48764 0.0730995  0.0927961

10 20 30
Magnitude of Scaled Parameter Estimates

Figure 3.6: GLR Lasso selected variables with grouped brands validation data set 1
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Figure 3.7: GLR Lasso selected variables with grouped brands validation data set 2
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4 = Generalized Regression for Catso3
< [=|Normal Adaptive Elastic Net with Validation Column

< Model Su

Response
Distribution

mmary

Catso3
Mormal
Estimation Method Adaptive Elastic Met
Validation Method Validation Column

Mean Model Link  Identity

Scale Model Link  Identity

Measure Training
Number of rows 282
Sum of Frequencies 282
-Loglikelihood -296.6698
Number of Parameters 12
BIC -525.2186
AlCc -568.2214
RSquare 09902916
RASE 0.0876038
Lambda Penalty 0.0353068

4 Solution Path

20
20
104

Validation
113

113
-125.2058
12
-193683
-223.2916
0.9899208
0.0791326

< Estimation Details
Elastic Net Alpha 05
Number of Grid Points 150
Minimum Penalty Fraction 0

Test

48

48
-35.04693
12
-23.63945
-37.17958
0.9780903
0.1098265

Grid Scale

0k
-104

Parameter Estimates

_204
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Magnitude of Scaled Parameter Estimates

[ Effect Tests
< Active Parameter Estimates

Term
Intercept
FIC102
FIC155
FIC158
FIC310
FIC105
FIC107
FIC112
FIC401
FIC175F L
FIC8_401

Estimate
5.9842250
0.0002028
-0.000011
1.004e-7
-0.002808
-2.376e6
-0.000415
0.0004766
-0.000151
1.5943e5
-0.000114

Std Error
2.4726501
0.0002887

1.968e-5
1.8552e5
0.0401239
0.0003527
0.0005137
0.0003872
3.9528e5
0.0002338
0.0007491

Wald

ChiSquare
5.8572077
0.4933024
0.3122223
2.9287e5
0,0048967
0.0000185
0.6523616
0.6586214
14.596634
0,0043697
0.0233539

Figure 3.8: GLR Elastic all variables 1

Prob >
ChiSquare
0
04825
0.5763
09957
0.9442
09966
04193
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0.8785

Scaled -Loglikelihood

Lower 95%
11379207
-0.000363
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4 [~ Prediction Profiler

6
54 y.
o S R AR RSN A A A AR A NN AN
- B2 8388 RT92BEBR RS3EPF2E8 88 8
R R e SIRYRE8 8 % 8
38 42976 7186 258.7 148686
10 FIC105 FiIC107 FIC112 FIC401
= 4.357848
£ [4.347976,
Y 4367719]
4 Actual by Predicted Plot
Training Validation Test
.. . .
6 6 6| p
@3 w3 - 5
6] . 6] 3 5
: .
4- 4] 4
3 . 34 34
T T T T T T T T T T
3 4 ) & 3 5 & 3 5 &
Catso3 Predicted Catso3 Predicted Catso3 Predicted
Figure 3.9: GLR Elastic all variables 2
4 = Normal Adaptive Elastic Net with Validation Column
< Model Summary 4 Estimation Details
Response Catsold Elastic Net Alpha
Distribution Normal Number of Grid Points
Estimation Method Adaptive Elastic Net Minimum Penalty Fraction
Validation Method Validation Column Grid Scale Square Root
Mean Medel Link  Identity
Scale Model Link  Identity
Measure Training Validation Test
MNumber of rows 292 113 48
Sum of Frequencies 202 113 48
-Loglikelihood -205.3487 -125.9717 -34.56942
Number of Parameters 8 8 8
BIC -545.2834  -214.1242 -38.16923
AlCc -574.1886 -234.5587 -49.44653
RSquare 0.9902033 0.9901109 0.9777386
RASE 0.088001 0.0783827 0.1107046
Lambda Penalty 0.0249567
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Figure 3.10: GLR Elastic selected variables 1
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4 Active Parameter Estimates
Wald Prob >
Term Estimate  StdError  ChiSquare ChiSquare Lower95%  Upper 95%
Intercept 61292832 1.9332519  10.051768 0.0015 2.340179 9.918387:
FiC102 0.0003292 0.0002772  1.4106351 0.2350 -0.000214 0.0008722

FIC105 -4.232e5 0.0004049  0.0109212 0.9168 -0.000836 0.000751
FIC107 -0.000543 0.0002834  3.6694400 0.0554 -0.001098 1.2578e%
FIC112 0.0004552 0.0003662 1.545661 0.2138 -0.000262 0.001172¢
Fic401 -0.000161 0.00004  16.247367 <.000 -0.00024 -8.285e2

FIC175FL 7.1758e6 0.000131 0.0030025 0.9563 -0.000249 0.000263¢
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Figure 3.11: GLR Elastic selected variables 2

production parameters which we should keep an eye on. These profilers will help production to create confidence
intervals for how much they can deviate on one feature movement. This is a really useful tool for process engineers
and will be put to use once the model is active on the line. According to flow rates of features it might be possible
to exchange ingredients for economic reasons. Although there are other quality checks that is out of this project

scope, it might be used by research and development departments to come up with new ideas.

3.2 SUPPORT VECTOR MACHINES

A support vector machine (SVM) model is a supervised learning algorithm that is used to predict or classify new
observations. A model is fit on a set of training data where the responses are known. Then, the model is used to
predict the responses of new observations. When the response is continuous, the models that are fit are known as
support vector regression (SVR) models. In a typical regression problem, the goal is to fit a model that minimizes
the error between a predicted response and the actual response. In an SVR problem, the goal is to fita model such
that the error between a predicted response and the actual response falls within a range of -¢ to . This provides
a more flexible fit. In our model, ¢ is equal to o.1. The SVR algorithm doubles the data by creating two classes,
Y +¢and Y - &. Then the same algorithm that is used for the classification problem is also used for the prediction
(SVR) problem. A linear kernel is a simple dot product between two input vectors.

SVM (e-SVM) regression, which is also known as L1 loss. In &-SVM regression, the set of training data includes
predictor variables and observed response values. The goal is to find a function f(x) that deviates from y, by value

¢ for each training point x. Data where x,, is a multivariate set of N observations with observed response values y,,.
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4 (~|Generalized Regression for Catso3

4 Model Comparison

[ Model Launch

4 ~|Normal Adaptive Elastic Net with Validation Column

4 Model Summary 4 Estimation Details

Response Catso3 Elastic Net Alpha 05
Distribution Normal Mumber of Grid Peints 150
Estimation Method Adaptive Elastic Net Minimum Penalty Fraction 0
Validation Method Validation Column Grid Scale Square Root

Mean Model Link  Identity
Scale Model Link  Identity

Measure

Number of rows

Sum of Frequencies
-Loglikelihood
Number of Parameters
BIC

AlCc

RSquare

RASE

Lambda Penalty

4 Solution Path

15

10

Training
316
316

Validation
66
66

Test
Tl
71

-336.6423  -34.61755
7 7

-632.9944 -39,90753
-638.9200 -53.30407
09902093 0.9794477
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0.0988422

-76.25511
7

-122.6715
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09910415
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4 Active Parameter Estimates

Term Estimate

Intercept  6.0624378
FIC102 8.6522e7
FIC107 -0.000404
FIC112 0.0005128
FIC401 -0.000143

FICI75FL 2.6324e3

Figure 3.12: GLR Elastic with selected variables including adjusted validation data set 1
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4 = Prediction Profiler
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Figure 3.13: GLR Elastic with selected variables including adjusted validation data set 2
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flx)=x"B+Db

and ensure that it is as flat as possible, find f{(x) with the minimal norm value (‘). This is formulated as a

convex optimization problem to minimize.

JB) = ;BB

subject to all residuals having a value less than ¢ ; The (b parameter can be completely described as a linear

combination of the training observations using the equation.

Constructing a Lagrangian function from the primal function by introducing nonnegative multipliers 2,, and

a;, for each observation x,,. This leads to the formula, where we minimize

LN N N
La) = 3 2 2.(a = i) 4 = a)eiy + e 3 (ar - a7) + 2o yila} — i)

subject to the constraint:

N
Zl(an —a) =0[10]

As in the previous section, we run the model for SVM with selected features and all features separately. If we
look at the Figure 3.14 and Figure 3.15 there is a few difference between two model. And again we can visually see
that the predictions of selected features are showing better results. Also with the high R square statistics results
from SVR model, we know that linear kernel function was the best choice to predict our process response variables.
Model also lets us use profiler again, by GLR comparison we can also print the vector parameters to predict which
features are more important to our prediction. Profiler in this case will be a summary of our vector. The RASE
value is a special statistics value which has a close meaning to mean square error statistics. It represents the square
root of the mean squared prediction error. In the results section it will help us to identify which model is better

according to real life error reduction.
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41~ Support Vector Machine

4 Model Comparison

Training ~ Validation Validation
Show Method  Kernel Function Cost Gamma  #SV RASE RASE TestRASE Generalized RSquare Best
Model 1 Radial Basis Function 1 005882 106  0.09229 0.13999 0.23778 0.96845 Smallest RASE La
Validaticn Column: Validation
[> Model Launch
4~ Support Vector Machine Model 1
A Model Summary 4 Estimation Details
Response Catso3 Cost 1
Validation Method Validation Column Gamma 0.05882
Kernel Function  Radial Basis Function
Measure Training Validation Test
Number of rows 202 113 a8
Sum of Frequencies 292 13 a8
RASE 0.0922034 0.1399934 0.2377753
R-Square 09892244  0.968455 0.8973037
Number of Support Vectors 106 106 106
4 Actual by Predicted Plot
Training Validation Test
6 6 6
ey P o
2 2 a
" k| k]
o o o
4 4 4
3 3 3
3 4 5 6 3 4 5 6 3 4 5 6
Catso3 Predicted Catso3 Predicted Catso3 Predicted
Figure 3.14: SVM with all data
A ~|Support Vector Machine
4 Model Comparison
Kernel Validation Validation
Show Method Function  Cost Gamma  #SV RASE RASE TestRASE Generalized RSquare  Best
Model 1 Linear 1 82  0.08176 0.11951 0.07904 0.97972 Smallest RASE Lar
Validation Column: _Validation_
I Model Launch
4 = Support Vector Machine Model 1
4 Model Summary 4 Estimation Details
Response Catso3 Cost 1
Validation Method Validation Column
Kernel Function  Linear
Measure Training  Validation Test
Number of rows 316 n
Sum of Frequencies 316 66 k!
RASE 0.0817575  0.1195105 0.0790398
R-Square 0.9906843 0.9797198 0.9918089
Mumber of Support Vectors. 82 82 82
4 Actual by Predicted Plot
Training Validation Test
6
L
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Figure 3.15: SVM with selected features and adjusted validation data set
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3.3 BOOTSTRAP FOREST

”To be able to explain Bootstrap Forest modelling. First we need to understand how decision trees work. Decision
tree is a model that predicts the target value by learning simple decision rules which are inferred from the data
features. The Decision Trees consist of a root node, internal also referred to as test nodes, and leaf nodes also
called terminal or decision nodes. These nodes together assemble a directed rooted tree where the root node has
no incoming edge. On the contrary, internal and leaf nodes have exactly one incoming edge. The crucial difference
between internal and leaf nodes is that internal nodes also have outgoing edges. Another characteristic is that each
test node split the instance space into two or more sub-spaces according to a discrete function of the input features.
Deeper trees produce models that are fitted better and implement more complex rules. Generally, less complex
decision trees are considered to be more comprehensible; moreover, the complexity of the tree has an essential
effect on the model accuracy.” [11] In our model (continuous response value y), the Sum of Squares are reported.

This change happens in the error sum-of-squares because of the split. A chosen candidate SS is:

SStest = SSparent - (SSyight + SSyer) where SS in a node is just (n—1).

Bootstrapping is a statistical re-sampling technique that involves random sampling of a dataset with replace-
ment. Itis often used for quantifying the uncertainty related to model that is created. Random forest also called
decision trees, is an assembly technique which separates the variables and gathers them in the same pools by tree
like structures where every branch has rules for separation. In the regression trees, they start from the root of the
tree and follow splits based on variable outcomes until a leaf node is reached and the result is given. The rules are
basically asks the variables whether they are less,equal or greater than a certain number then through the yes-no
answer gives the direction to the tree where the splitting happens.

The bootstrapping Random Forest algorithm combines ensemble learning method with the decision tree
framework (in our case continues responses) to create multiple randomly drawn decision trees from the data,
averaging the results to output a new result that often leads to strong prediction.

Bootstrap forest method usually works good with categorization data. Although we are dealing with contin-
uous responses by fine tuning the decision trees we can have acceptable R square values. Adjusting the model
parameters for the algorithm is a process itself. According to adjustment, meaning selecting tree depths, criterion
and minimum sample splits, model could give really good responses. In this process we have decided to go with
the suggested parameters of the model package. If we compare the model on the basis of all features vs selected
features in Figure 3.16 and Figure 3.18 we say it is clear that model with selected features are predicted better then
model with all features. Now the question is: What caused this improvement? Is it that the standard tree dept
number and maximum tree size maybe more adjusted to the selected variable data set since it has less features? I be-
lieve that is not the case since decision trees are immune to number of feature sizes, meaning in their leaves they are
already doing the splits and by that way choosing the right features and reducing the size of the features in its core
automatically. Our Forest mainly focused on approximately four variables, meaning even our selected featured
data set mainly too much for our model. However the difference between predicted value approximation mainly
caused because of the validation data set. When we created the validation data set for selected featured model,
what we included in the validation protocol is actually the category variable itself. We literally blended the cate-

gorical variable inside the data set, so when decision trees started to run training, validation and test sets separately
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- Bootstrap Forest for Catso3

4 Overall Statistics
Individual
Trees RASE
InBag 0.2356223

Outof Bag 0.3509972

RSquare RASE N
Training 0.908 02639866 335
Validation 0.840 03315286 132
Test 0.928 0.1917461 52

4 Specifications
Target Catso3
Validation Column: Validation
Number of Trees in the Forest: 100
Number of Terms Sampled per Split: 12

Training Rows:
Vialidation Rows:

Test Rows:

Number of Terms:
Bootstrap Samples:
Minimurn Splits per Tree:
Minimurn Size Split:
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4 Column Contributions
Number
Term of Splits 55
FIC105 81 37.5012356
Fic401 70 243230512
FIC181 45 20.789306
FICt12 32 122160881
FIC175F L 23 878071604
FIC156 17 4.25562824
FIC107 10 1.71674167
FIC104 21 1.31745111
pHCLP 49 1.2121479%6
FIC310 6 1.00109266
= 5
FIC155 12 0.16425338
PHICAD1 10 0.07074093
Fic2_131 6 0.03160402
Fic102 5 0.01454:37
Fic108 1 00117451
FIC158 2

W

0.00743046

Figure 3.16: Bootstrap Forest with all features 1
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Figure 3.17: Bootstrap Forest with all features 2
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4 [~ Bootstrap Forest for Catso3

4 Specifications

Target Catso3 Training Rows: 364
Validation Column: _Validation_ Validation Rows: i
Test Rows: 78
Nurmber of Trees in the Forest: 100 Number of Terms: g
Number of Terms Sampled per Split: ] Bootstrap Samples: 364
Minimum Splits per Tree: 10
Minimum Size Split: 5

4 Overall Statistics

Individual
Trees RASE
In Bag 0.1704078
OutofBag 0.3803387

RSquare RASE N
Training 0.027 0.2287669 364
Validation 093 02198148 77
Test 0931 02267954 78

> Cumulative Validation
4 Per-Tree Summaries
Tree  Splits Rank OOBloss OOB Loss/N RSquare IBSSE 1B SSE/N OOBN OOBSSE OO0BSSE/N

1113 3 22644274 01594667 0.0443 84597847 0.0232412 142 15411044  0.1085285
2 17 4 25275534  0.1858495  0.9180 12768274 0.0350777 136 17.096207  0.1323251
3113 1 94554173 0.0652008 00208 12.08886 0.0332112 145 02550522 0.0638279
4 121 7 25362325 0.1981432 00562 7.2580033 0.01942 128 1864500  0.1456718
5 119 6 25401085  0.1960076  0.0310 12.623667 0.0346804 129 20026350 0.1552431
6 111 5 23.648043 016760 (0.0036 14.880434 0.0408803 126 23325302 0.1851214
7113 8 45252039  0.3232288  0.0484 7.6698483 0.021071 140 42732773 03052341
8 115 2 19.883581  0.1420256 00376 881122 0.0242066 140 16341485 01167249
4 Actual by Predicted Plot
Jzzicing ot f Validation Set
{ Test Set
6
_s
5 7]
2
<

3 4 5 6
Predicted

Figure 3.18: Bootstrap Forest with selected features and adjusted validation data set
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with bootstrap method, the R squares become much much more acceptable. In the side note that improvement
proves that decision trees work much better with classification problems with categorical data sets.

In the results section we will provide the comparison of the model with more detail but with statistical point
of view the model is acceptable and valid. Inclusion of the random forest in this study is to mainly show about
the importance of validation data set adjustment, how it affected the results. That is also proves that even though
we are reducing our features, according to our data set, we can blend some of the features into the consideration

of the model while it does the validation.

3.4 INEURAL NETWORK

Our last model is Neural Network. First I would like to start with summarizing of the model, and how it works.
”Neural networks are computing systems with interconnected nodes that work much like neurons in the human
brain. Using algorithms, they can recognize hidden patterns and correlations in raw data, cluster and classify it,
and - over time — continuously learn and improve. A simple neural network includes an input layer, an output
(or target) layer and, in between, a hidden layer. The layers are connected via nodes, and these connections form
a “network” — the neural network — of interconnected nodes. As the number of hidden layers within a neural
network increases, deep neural networks are formed. Data is fed into a neural network through the input layer,
which communicates to hidden layers. Processing takes place in the hidden layers through a system of weighted
connections. Nodes in the hidden layer then combine data from the input layer with a set of coefficients and
assigns appropriate weights to inputs. These input-weight products are then summed up. The sum is passed
through a node’s activation function, which determines the extent that a signal must progress further through
the network to affect the final output. Finally, the hidden layers link to the output layer — where the outputs are
retrieved.” [12]

In our model we decided to not go into deep learning part since it becomes more complex and hard to explain
as process vise. However we will use boosted neural networks. Boosting is the process of building a large additive
neural network model by fitting a sequence of smaller models. Each of the smaller models is fit on the scaled
residuals of the previous model. The models are combined to form the larger final model. The process uses
validation to assess how many component models to fit, not exceeding the specified number of models. Boosting
is often faster than fitting a single large model. However, the base model should be a 1 to 2 node single-layer model.
The benefit of faster fitting can be lost if a large number of models is specified [13]. The model that we made has
1 node meaning one layer neural network. It decreased the time of training by ten fold. Also for the activation we

have chosen Tanh:

—x

TanH = fx) = e Figure 3.19

ete"

Also we believe that all the features are contributing to prediction. That is why we used Squared penalization

method and see all the predictors are contributing to the predictive ability of the model.
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Figure 3.19: Neural Network with selected features

Learning (over simplified): 7p(w;) = 7 Y w?

The learning is yp(w;), where 7 is the learning parameter, and p( ) is a function of the parameter estimates,
called the learning function. Validation is used to find the optimal value of the learning parameter.For the model

the equation of such a single-layer neural network in terms of the individual components:

d
Ve = D Wik
=0

We can summarise the terminology we have just introduced:

* Input vector x = (xg, %1, ..., %4) "
* Output vector y = (y1, ..., i)’

* Weight matrix W: wy; is the weight from input x; to output y

Now we have to train the network. The network is trained using a training set that contains N input/output
pairs (x,, ;) : 1<n<N, wheretz = (4,1, ..., £,k ) is the target output vector for input vector x,,. The error function
should measure the distance of the output vectors y, from the corresponding target vectors z, for all n. A natural
way to do this is by taking the (squared) Euclidean distance, and we define the sum-of-squares error function
which computes the sum of squared Euclidean distances between £, and y, for all members of the training set

1<n<N. In matrix form we can write:

E7) = 155 5 O — 11)?

n=1 k=1
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Now we have to include the gradient descent to our algorithm. Gradient descent is an important optimisation
technique, that may be used whenever it is possible to compute the derivatives of the error function with respect
to the parameter to be optimised. For single layer neural networks, this means taking the derivative of the error
function E(W) with respect to the weight matrix W. The idea of gradient descent is that to minimise an error
function with respect to the parameters, we want to take small steps in a downhill direction. We take small steps
because the gradient is not uniform, and if we take too big a step we may end up going uphill again! When
considering this form of optimisation, we are considering another multidimensional space, weight space. This is
a K(d + 1) dimension space, and a specific weight matrix W corresponds to a point in weight space. The error
function evaluates the error value for a point in weight space (given the training set). Descending in weight space
means adjusting the weight matrix W by moving a small direction down the gradient, which is the direction along
which E decreases most rapidly. This means adjusting the weight factor in the direction of =VWE, or adjusting
each weight wy,; by adding a factor E/wy;, where 7 is a small constant called the learning rate. If we write the value

of 'a weight at iteration 7 as w}, then its updated value is given by:

+1 _ 7 _
Wep =Wy =7

aawEk{ [14]

In the end our model will sum up to below, where the g() function will include our boosting and activation.

o) = (3 )

As previous cases we also did two neural network models Figure 3.20 Figure 3.21 for selected features and one
with the adjusted validation data set with selected features Figure 3.22. The diagrams that are presented all the
figures in this section looks complicated since that is the part boosting applied. For all features model Figure 3.20
the number of boosting is 58. For the selected features model Figure 3.21 number of boosting is reduced to 53
and finally for the adjusted validation data set with selected features model that number reduced to 49. Every
time we move forward to adjust the parameters in our favors the required number of boosting decreases. That
is another way of saying that we are going into right direction. The network diagram for selected features and
adjusted validation data set model is Figure 3.23.

It is important to notice that the profiler section graph’s slopes easily tells us which features play the active role
in our model. If we look at the slopes of the profilers in all the models the surfactants are playing big role in the
prediction of response values. One other topic that we see on the results are residuals and prediction graphs. The
prediction graphs are showing really close results to actual responses and residuals can be counted between +0.3
to -0.2 which is considerably good even for process engineering perspective.

For neural network session, we just would like to compare our neural networks between each other. If we look
at the R square results and all the statistical parameters that the models represent, all of them are significantly valid.
What we can do is to separate them by little differences they have and choose one of them to consider in results
section. There are literally in third degree decimal differences between them. For consideration it is obvious that
test and validation data sets will be effective to do the comparison. What it is important for us as process point
of view is the test set. Because the test set is the values which are separated completely from the adjustment and

creation of the models. Taking into consideration of test sets performance of R square and Root average Square

39
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Validation Column: Validation

Model NTanH (3)NBoost(58)

Training Validation Test
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Figure 3.20: Neural Network with all the features
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Neural

Validation Column: Validation

Model NTanH(3) NBoost(53)
Training Validation Test
Catso3 Catso3 Catso3
Measures Value Measures Value Measures Value
RSquare 0.9905077 RSquare 0.990054 RSquare 0.9782317
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Figure 3.21: Neural Network with selected features
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Neural

Validation Column: _Validation_

Model NTanH(3) NBoost(49)

Training Validation
Catso3 Catso3
Measures Value Measures
RSquare 0,991011 RSquare
RASE 0.0803112 RASE

Mean Abs Dev 0.0607036
~Loglikelihood  -348.519
SSE 20361631
Sum Freq 316
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Figure 3.22: Neural Network with selected features and adjusted validation data set
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MNeural

Validation Column: _Walidation_

Model NTanH (3)NBoost(49)

Training Validation Test
Catso3 Catso3 Catso3
Measures Value Measures Value Measures Value
RSquare 0.991011 RSquare 0.950736 RSquare 0.9911185
RASE 0.0803112 RASE 0.1164781 RASE 0.0823033
Mean Abs Dev  0.0607036 Mean Abs Dev  0.0764602 Mean Abs Dev  0.0605552
-Leglikelihood  -348519 -Leglikelihcod -45.25340 -LoglLikelihood -76.56675
S5E 2.0381631 S5E 0.8954316 S5E 0.4800427
Sum Freq 316 Sum Freq 66 Sum Freq 71
Diagram

Figure 3.23: Neural Network Diagram
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Error (RASE), we can easily say that the model with selected features and adjusted validation data set came first in
our list. It should be noted that all the models are exceptionally good but we just want to reduce to comparison to
models based results by eliminating same models that behave less good. We will also explain why we are looking

at RASE values more than R Square values in the results section.
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Results

The main focus of this study is to come up with a model which can predict a response variable, in our case is
the CatSO3 values, with a minimum error in a continuous liquid process manufacturing. Our liquid is called
whitebase and all the features that we use to predict the response variable are given by process engineers. Itis a
complete closed process leaving little to no error. That is why it is expected to deliver such model that can predict
CatSO3 values with little to no error.

In the research that we have completed, we have applied many statistical techniques to:

* Reduce error of prediction
* Reduce feature size of the data set
* Reduce the data transformation

* increase the interpretability

With the techniques we have used, we were able to reduce the feature size to 9 instead of 21. To reduce the
feature size first we plotted the correlation matrix of features. As we have seen in the previous section, we have
removed the correlated features. To do this we have considered the correlation of features between each others
and their correlation to the response variable. We have picked the ones which has high correlation with response
variable and eliminated the others who are still correlated to this variable but less correlated to response variables.
In any case to make sure that we have chosen the correct features, we also did modelling 2 times ones with the
selected features and ones with the all features. In every model we run, selected features gave us better results. So
in the result part we only included the selected featured models of each type.

Before going to the results section we also looked into our validation data set. There was a feature called brand
in our data sets and we were not able to use it as a feature to create the model, since they tend to change by produc-
tion decision. However while creating our validation data set we blend in the the brand feature into separation of

the data via validation, training and test. Data set we created proportionally divided into sets by considering the
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4 Measures of Fit for Catso3
_Validation_ Predictor Creator 2.4.6.8 RSquare RASE AAE Freqg
Test SVM selected V1 Support Vector Machines [ 1 09918 00790 0.0592 71
Test Bootstrap forest selected V1 Bootstrap Forest 1| 08300 0.2263 0.1292 8
Test GLR Elastic selected V1 Fit Generalized Adaptive Elastic Met | || 09305 0.2275 0.103& 74
Test GLR Lasso selected V1 Fit Generalized Adaptive Lasso | 09271 0.2330 0.1095 78
Test NN selected V1 Meural 7 08911 00823 0.0606 71
Training SWM selected W1 Support Vector Machines |7 049907 00818 00828 316
Training Bootstrap forest selected V1 Bootstrap Forest 1| 009266 02238 01056 @ 364
Training GLR Elastic selected V1 Fit Generalized Adaptive Elastic Net || 0.8379 03400 0.1333 364
Training GLR Lasso selected V1 Fit Generalized Adaptive Lasso ] 08360 03420 01394 364
Training NN selected V1 Meural | 09910 0.0803 0.0607 316
Validation SWM selected V1 Support Vector Machines 0 09797 01195 0.0801 66
Validation  Bootstrap forest selected V1 Bootstrap Forest | 0932 02198 01395 77
Validation  GLR Elastic selected V1 Fit Generalized Adaptive Elastic Net | | 0.9597 0.1747 0.0956 77
Walidaticn GLR Lasso selected V1 Fit Generalized Adaptive Lasso [ 09577 04790 0.0981 77
Validation MM selected W1 Meural T 09807 01165 0.0765 66

Figure 4.1: Model Comparison

brand. So in that case we eliminated the possibility of bias through brand. Each brand production run now has
a proportionally equal saying into decision of the model parameters. We also proved that by running the model
into two different validation data sets, one with the adjusted validation data set and one without. The results were
always in favour of the one with the adjusted validation data set.

After receiving the result, we also used statistical techniques to evaluate and compare each model individually
and cross comparatively. In the models section of this study, first we compared the models of each type separately
between their own types. Now in this section we will compare them between types via selected models from each
category. To do this we will look into their prediction graphs and their statistical results. The statistical results will
include RASE and R square values.

Figure 4.1 is our summarizing table of each model divided by Test, Training and Validation dataset results.
Figure 4.2,Figure 4.3 and Figure 4.4 shows us the distribution maps of the predicted values via models versus the
real response values.

All the statistics that is presented by comparison tables and prediction plots for each model has really close
values. The R squares for all of the model are above %97 and R ASE values are below 0.4. All the AAE values
are below o.14. These are all good results according to a data scientist without the knowledge of the process.
But before including the process point of view lets look into results in detail. Now I will compare the models
in the category of validation data set separation. The validation data set is divided into %7 for training %15 for
validation and %15 for test.

Firstlets look at the training data set results. For every aspect of statistics NN and SVM is taking the lead. They
bot h have the highest R square, and lowest RASE and AAE results which is good. We started with the training
data set because it includes the most number of observations. So in the overall comparison, from the trainig point
of view we would select NN and SVM to be our model.

Second lets look at the validation part of the data set. For GLR and BT R square values are considerably
increased with the addition RASE and AAE values decreased. Decrease might have caused by reduction of obser-
vation size but in any case SVM and NN is still taking the lead part. SVM and NN is competing in degree three
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Figure 4.3: Model Comparison Validation results

47

Model Comparison
Measures of Fit for Catso3
_Validation_ Predictor Creator 2468 RSquare RASE AAE Freq
Validation NN selected V1 Neural | 0.9807 0.1165 0.0765 66
Validation ~ SWM selected V1 Support Vector Machines 0.9797 0.1195 0.0801 66
Validation ~ GLR Elastic selected V1 Fit Generalized Adaptive Elastic Net 09597 0.1747 0.0956 77
Validation ~ GLR Lasso selected V1 Fit Generalized Adaptive Lasso 0.9577 01790 0.0981 77
Validation ~ Bootstrap forest selected V1 Bootstrap Forest 0.9362 0.2198 0.1395 77
Actual by Predicted Plot
Actual by Predicted Plot for Catso3
| Predictor
6 © SVM selected W1
| + Bootstrap forest selected V1
<> GLR Elastic selected V1
* GLR Lasso selected V1
J £ NN selected V1
@ 5
9
k1
v
4
L
3 - 7 T
3 4 5
Predicted
Residual by Row Plot
Residual by Row Plot for Catso3
3
=
5
z
he
T T T
200 300 400 500
Row Mumber
Profiler

% GLR Lasso selected V1
£ NN selected V1

Predictor

© SVM selected V1

+ Bootstrap forest selected V1
< GLR Elastic selected V1

< GLR Lasso selected V1

/5 NN selected V1



Local Data Filter Model Comparison
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Figure 4.4: Model Comparison Test results

decimals. Again in the statistical point of view all of them are decisive but to choose which one to be selected,
SVM and NN will take the lead. In the third decimal after zero NN is better than SVM according to R square
and lower according to RASE and AAE values.

Now lets look at the test part of the validation data set. Again for starters all the models look like they are
performing great. GLR and BF is reduced in the third decimals for every statistical figure. GLR R square results
decreased more than BF compared to validation part. Since it is the testing part, it is important that the changes
that we see here actually express if there was overfitting in the previous sections. So we might come to and under-
standing by looking GLR model, there was a little overfitting to the model. Again NN and SVM takes the lead
according to R square, RASE and AAE results. To sum up NN and SVM would be our primary choice if it comes
to the selection between these s models. Now the important question rises since we would like to choose the best
one. Which model is better for our need: NN or SWM?

To be able to decide which model is better between NN or SWM, we have exhausted our statistical parameters
point of view. Now we would like to look at the selection from a process engineer point of view. Even though
both models are near perfect situation we want to minimize our error. Prediction margins are a huge topic for
continuous liquid production processes. The processes are considered effect proof and all the slight changes of
measurements gives the process engineers an idea about how the process is going. There is little to no tolerance
between measurements. That is being said, if we have a super model which predicts 99 values perfectly over oo
values and 1 value really terrible that model could not be used in the process. That 1 value would actually create
an alarm and has to be investigated by process owners. It will gives us the information about either there is a

measurement reader malfunction or there is an unidentified material which should not be in the closed circle in
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Dataset Model Rsquare RASE AAE
Test  SVMselected Vi 0.9918  0.0790 0.0592
Test NN selected Vi 0.9911  0.0823 0.0606

Table 4.1: Closer look into NN and SVM model

the first place. Both of them will create a problem. First one will tell us that validation protocol of the measurement
reader has to be changed or the reader itself has to be changed. The second one is a quality problem which has
no toleration. The product has to be eliminated and reproduced. In both scenarios since the model will be okay
with the results, it will omit that one terrible predicted value.

To avoid a single terrible observation prediction, in the results we have to look into the RASE and AAE results.
Also we have to do it in the test validation set. Test values are the ones that have no effect on the model what so
ever and that is why it is important to consider the test set overall. While the test set has a certain job in our model,
it also has a side job to test the processes integrity. Lets look at the Table 4.1.

Our goal in this situation will be to reduce the error as much as possible according to a new data set which has
no effect on model’s creation. So in that case RASE and AAE play a really important role for our selection. By
looking at Table 4.1, because of the reasoning of a process engineer and a data scientist we would choose SVM
over NN even though error reduction is in the third decimal point of RASE value. So it is fair to say that our
SVM model is the winner.

In the overall process, eventually there will be a discussion about how to improve our model. By the look
of the results it seems like no improvements are needed but this is a continuous production process. Eventually
the brands will change and so the level of ingredients. Instead of levelling between third decimal point, what
could be done is to increase our sample size by ten fold. Increasing our sample size would increase the space
between statistical values. Also including brand category we would increase the quality of statistical results. Both
of these solutions look like feasible in the data scientist point of view but they are really expensive in the process
engineer point of view. Every laboratory analysis, every retraining of the model costs capital. Introduction of
a new brand will create a retraining cost to our model and these 529 observations in real life is already a years
of work. That is why the study is limited to this data set. What could be done is to connect this model into data
pipeline and continue to updating the model in the coming years. There could be two model which would predict
only with this golden data set and the other would update itself with incoming data. After the results of updating
model surpasses the eventual used stable model, we could put the better model into the production line and create
another model which would continue with updating data set while the model which is put on the production stop
updating.

Overall our selection from the model comparison would be Support Vector Regressor in terms of data scientist
perspective and process engineer perspective. All the improvement could be done to better the model is out of

scope of this research.
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Conclusion

Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of
statistical algorithms that can effectively generalize and thus perform tasks without explicit instructions [15]. Data
science is a "concept to unify statistics, data analysis, informatics, and their related methods” to “understand and
analyze actual phenomena” with data. It uses techniques and theories drawn from many fields within the context
of mathematics, statistics, computer science, information science, and domain knowledge [16]. In this research
we have combined data science knowledge and process engineering knowledge to come up with a machine learning
method which will help the process improve its foundation. The start of the research initialized by the idea of cost
reduction. The cost of laboratory analysis would be reduced by simply replacement of the manual analysis with a
predictive machine learning system. So that laboratory would focus on different matters at hand.

The research topic was to predict a certain surfactant value (in our case is the CatSO3) inside the whitebase
(which is the product) without needing the actual laboratory analysis. The data which has been used for the
research are gathered via sensors of the product line and the laboratory analysis results. Our response variable was
the laboratory results, but all the other values are gathered via sensors inside the production line. The production
line is a closed circuit with a lot of sensors leaving no error to the process flow. The plant is located in Pomezia,
Italy and owned by Procter&Gamble company. It is a plant that produces high density liquid and information
share about the plant specifics, ingredients that have been used and process itself are strictly restricted. Due to non
disclosure agreement the variable names have been coded into letters and numbers. All the overall information
shared by this research is also available to public.

In the process side the importance of the ingredients have been explained and the rest of the research included
data science project. In the data science part of the research different machine learning methods have been tested
via given data sets. The data set have been cleaned and shaped with the help of explanatory data analysis techniques.
Even before continuing the model creation, the data set also adjusted on the accordance of validation. With the
help of production process knowledge the data have been separated to training, validation and test data sets. After

that model creation of part of the research has been initiated. Machine learning models that have been created are

ST



focused on predictive regression analysis. These models were GLR-L, GLR-E, Rf, NN and SWM. All the models
that have been used are summarized in the models section. In the same section it is also decided that which model
of the same type will be used according to data set which has been used to create them.

In the results section firstly the models are compared via the statistical information they provide. In the statisti-
cal knowledge point of view all type of the model were valid and all them gave us a significant results. Among the
model SWM and NN take the lead to be chosen into detailed consideration. These two models are very effective
of predicting CatSO3 levels in the whitebase production. However we continued to compare them via process
engineering criteria which was the reduce the error as much as possible, by doing so we take into account the test
set of the validation process. The reason to choose the test set comparison is because test set have not been con-
sidered in the creation of the model and is a great stand point even for process point of view. Also to take into
account every R square statistics of each model were racing in the third decimal point of the result. By accepting
process knowledge, we went for the model with the lowest error of prediction. The lowest error for the models are
decided by RASE and AAE statistics. After the comparison we have decided that SVM model is our best option
to use for prediction of CatSO3 level in whitebase production.

To be able to improve the model what we could do is stated previously in the results section. The choices of
increasing sampling and including brand category were suggested but these actions will cost money money to do
so. With all the information and capital supply we have SVM model is the best option to replace the manual labo-
ratory analysis by predicting CatSO3 levels in the whitebase production and it could be used by Procter&Gamble

Company, Pomezai plant.
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