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Abstract

This paper gives the reader an overview on the physics behind quan-

tum computing, introducing basic concepts like qubit and gates. Then

it shows two of the most prevalent implementation: Ion Trap Quantum

Computer and Superconducting Quantum Computer.
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Chapter 1

The theory behind quantum

computing

1.1 The Qubit

The elementary unit of quantum information is the qubit. A single qubit can be

envisaged as a 2-state system described by a two-dimensional complex Hilbert

space. A quantum system is said to have n qubits if it has a Hilbert space of 2n

dimensions and so has available 2n mutually orthogonal quantum states (recall

that n classical bits can represent up to 2n different things). We will write two

orthogonal states of a single qubit as

{|0〉, |1〉}. (1.1)

More generally, 2n mutually orthogonal states of n qubits can be written

{|i〉}, (1.2)

where i is an n bit binary number. For example, for three qubits we have

{|000〉 , |001〉 , |010〉 , |011〉 , |100〉 , |101〉 , |110〉 , |111〉}. (1.3)

The superposition principle shows that the state of a qubit can be written as

|ψ〉 = α|0〉+ β|1〉, (1.4)

1



2 Chapter 1. The theory behind quantum computing

where α and β are complex numbers that respect the normaliziation condition

|α|2 + |β|2 = 1, (1.5)

The generic state of a qubit may be written as

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 (1.6)

=

[

cos θ
2

eiφ sin θ
2

]

(1.7)

Therefore, unlike the classical bit, which can only be set equal to 0 or 1, the qubit

resides in a vector space, parametrized by the continuous variables α and β (or θ

and φ). Thus, a continuum of states is allowed.

A two-level quantum system can be used in practice as a qubit if it is possible

to manipulate it as follows:

(i) it can be prepared in some well-defined state, for example the state |0〉,
which we call the fiducial state of the qubit;

(ii) any state of the qubit can be transformed into any other state. Such trans-

formations are carried out by means of unitary transformations;

(iii) the qubit state can be measured in the computational basis |0〉, |1〉. This

means that we can measure the qubit polarization along the z-axis. the

Hermitian operator associated with this measurement is the Pauli operator

σz, which has eigenstates |0〉 and |1〉. Now, if the state of the qubit is

described by Eq. (1.7), as a result of the measurement one obtains 0 or 1

with probabilities

p0 = |〈0|ψ〉|2 = cos
θ

2

2

, p1 = |〈1|ψ〉|2 = sin
θ

2

2

(1.8)

which have been computed using Postulate II of quantum mechanics

1.2 The Bloch Shere

The Bloch sphere is a simple way to provide a geometric rapresentation of a

qubit. The north and south poles of the Bloch sphere are typically chosen to

correspond to the standard basis vectors |0〉 and |1〉, respectively. This choice

is arbitrary, however. The points on the surface of the sphere correspond to the
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pure states of the system, whereas the interior points correspond to the mixed

states. The Bloch sphere may be generalized to an n-level quantum system, but

then the visualization is less useful. Given an orthonormal basis, any pure state

of a two-level quantum system can be written as a superposition of the basis

vectors and, where the coefficient of (or contribution from) each of the two basis

vectors is a complex number. This means that the state is described by four real

numbers. However only the relative phase between the coefficients of the two

basis vectors has any physical meaning (the phase of the quantum system is not

directly measurable), so that there is redundancy in this description. We can

take the coefficient of |0〉 to be real and non-negative. This allows the state to be

described by only three real numbers, giving rise to the three dimensions of the

Bloch sphere. Owing to the notrmalization condition

〈ψ|ψ〉 = ‖ψ‖2 = 1 (1.9)

Given this constraint, we can write |ψ〉 using the following representation:

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉, (1.10)

where 0 ≤ θ ≤ π and 0 ≤ φ < 2π.

The parameters θ and φ can be interpreted in spherical coordinates as the colat-

itude with respect to the z-axis and the longitude with respect to the x-axis, this

way they specify a point

~a = (sin θ cosφ, sin θ sinφ, cos θ) = (u, v, w) (1.11)

on the unit sphere in R
3. Now the Eq.1.7 can be written as

|ψ〉 =





√

1+z
2

x+iy√
2(1+z)

.



 (1.12)
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Anotheru usefull rapresentation of the state 1.7 is obtained using a projector

P = |ψ〉〈ψ|. The matrix of P in the basis |0〉, |1〉 is given by

P =

[

cos2 θ
2

e−iφ sin θ
2
cos θ

2

eiφ sin θ
2
cos θ

2
sin2 θ

2

]

(1.13)

=
1

2

[

1 + z x− iy

x+ iy 1− z

]

(1.14)

where the matrix element Pij(i, j = 0, 1) is defined as 〈i|P |j〉.

Figure 1.1: Bloch-sphere representation of a qubit (left) and sinusoidal projection of the Bloch sphere
(right). The points corresponding to the following states are shown: A = (α = 1, β = 0),B = (0, l),
C = E = ( 1√

2
,− 1√

2
), D = ( 1√

2
, 1√

2
), F = ( 1√

2
,− 1√

2
),and G = ( 1√

2
, 1√

2
). Note that the points A

(north pole of the Bloch sphere) and B (south pole) correspond to the states |0〉and|1〉, respectively.

1.3 Measuring the State of a Qubit

The state ψ〉 = α|0〉 + β|1〉 of a qubit can be measured in principle, provided

we measure a sufficiently large number of identically prepared qubits. With the

Bloch-sphere rapresentation as a framework we shall show that the coordinates

x, y and z of a qubit on the Bloch sphere can be measured. Using the Pauli

operators, written in the computational basis as

σx =

[

0 1

1 0

]

, σy =

[

0 −i
i 0

]

, σz =

[

1 0

0 −1

]

, (1.15)
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one has, for the state |ψ〉 given by Eq.1.7

σx|ψ〉 = eiφ sin θ
2
|0〉+ cos θ

2
|1〉

σy|ψ〉 = −ieiφ sin θ
2
|0〉+ cos θ

2
|1〉 (1.16)

σz|ψ〉 = sin θ
2
|0〉 − eiφ cos θ

2
|1〉

Consequently, the following expectation values for the state1.7 are obtained:

〈ψ|σx|ψ〉 = 〈ψ|
[

0 1

1 0

]

|ψ〉 = sin θ cosφ = x

〈ψ|σy|ψ〉 = 〈ψ|
[

0 −i
i 0

]

|ψ〉 = sin θ sinφ = y (1.17)

〈ψ|σz|ψ〉 = 〈ψ|
[

1 0

0 −1

]

|ψ〉 = cos θ = z

The coordinates (x, y, z) can be obtained with arbitrary accuracy by projection

on the computational basis, that is, measuring σz. Indeed, from Eq.(1.8) we

obtain

p0 − p1 = cos2 θ
2
− sin2 θ

2
= cos θ = z (1.18)

In this way the coordinate z is given by the difference of the probabilities to

obtain outcomes 0 or 1 from a measurement of σz.

If we have at our disposal a large number N of systems identically prepared in the

state (1.7), we can estimate z asN0/N−Ni/N , whereN0 andNi count the number

of outcomes 0 and 1. Therefore, z can be measured to any required accuracy,

provided we measure a sufficiently large number of states. The coordinates x and

y can be obtained by operating a unitary transformation on the qubit. If the

unitary transformation described by the matrix

U1 =
1√
2

[

1 1

−1 1

]

(1.19)

is applied to the state 1.7, we obtain the state |ψ(1)〉 = U1|ψ〉. A projection on the

computational basis then gives outcome 0 or 1 with probabilities p
(1)
0 = |〈0|ψ(1)〉|2

and p
(1)
1 = |〈1|ψ(1)〉|2, respectively. Therefore, we obtain

p
(1)
0 − p

(1)
1 = cosφ sin θ = x (1.20)
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In the same way, if the state (1.7) is transformed by means of the matrix

U2 =
1√
2

[

1 −i
−i 1

]

(1.21)

we obtain the state |ψ(2)〉 = U2|ψ〉. Therefore,

p
(2)
0 − p

(2)
1 = sinφ sin θ = y (1.22)

where p
(2)
0 = |〈0|ψ(2)〉|2 and p

(2)
1 = |〈1|ψ(2)〉|2 give the probabilities to obtain

outcome 0 or 1 from the measurement of the qubit polarization along z.

1.4 Circuit Model of quantum computing

A classical computer can be described in simple terms as a finite register of n

bits. A combination of elementary operation, such as NOT or AND, can pro-

duce any given logic function. The circuit model can be transferred to quantum

computation. The quantum computer can be thought of as a finite collection of

n qubits. While the state of a classical computer is described by a binary integer

i ∈ [0, 2n − 1],

i = in−12
n−1 + · · ·+ i12 + i0, (1.23)

with i0,i1,. . .,in−1 ∈ [0, 1] binary digits, the state of a quantum computer is

|ψ〉 =
2n−1
∑

i=0

ci|i〉

=
1
∑

in−1=0

· · ·
1
∑

i1=0

1
∑

i0=0

cin−1,...,i1,i0 |in−1〉 ⊗ · · · ⊗ |i1〉 ⊗ |i0〉, (1.24)

with the complex numbers ci constrained by the normalization condition

2n−1

∑

i=0

|ci|2 = 1. (1.25)

Therefore the state of a quantum computer is a wave function residing in a 2n

dimensional Hilbert space constructed as the tensor product of n 2-dimensional

Hilbert spaces, one for each qubit. For example, considering a quantum computer
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with n = 2 qubit, we can write its generic state as

|ψ〉 = c0|0〉+ c1|1〉+ c2|2〉+ c3|3〉
= c0,0|0〉 ⊗ |0〉+ c0,1|0〉 ⊗ |1〉+ c1,0|1〉 ⊗ |0〉+ c1,1|1〉 ⊗ |1〉
= c00|00〉+ c01|01〉+ c10|10〉+ c11|11〉, (1.26)

where in (1.26) we have used the shorthand notation |i0i1〉 = |i1〉⊗|i0〉. The same

can be done for (1.24) which can be written as

|ψ〉 =
1
∑

in−1,...,i1,i0=0

cin1
...i1i0 |in−1 . . . i1i0〉. (1.27)

The superposition principle is visible in Eq. (1.24): while n classical bits can store

only a single integer i, the n-qubit quantum register can be prepared in the cor-

responding state |i〉 of the computational basis, but also in a superposition. The

superposition allows to store as many as 2n different states of the computational

basis, a number which grows exponentially with the number of qubits. In a clas-

sical computer different inputs require separate run to yield a result, in contrast,

a quantum computer can perform a computation for exponentially many inputs

on a single run. This parallelism is the basis of the power of quantum computing.

There are 3 requirements in order to perform a quantum computation:

(i) prepare the quantum computer in a well-defined initial state |ψi〉, which we

call the fiducial state of the computer, for example |00〉;

(ii) manipulate the quantum-computer wave function, this can be done by exe-

cuting a unitary transformation U on a single qubit to change its state, for

instance moving |ψ〉 to a new state |ψf〉 = U |ψi〉

(iii) perform a standard measurement in the computational basis on the result

of the computation, that is, measure the polarization σz of each qubit.

1.5 Single-qubit gates

The operations on a qubit must preserve the normalization condition and are

thus described by 2× 2 unitary matrices [2].

The Hadamard gate
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Figure 1.2: Hadamard gate

The Hadamard gate acts on a sigle qubit. It maps the

basis state |0〉 7→ |0〉+|1〉√
2

and |1〉 7→ |0〉−|1〉√
2

. The two states

are sometimes written as |+〉 and |−〉 respectively. The

Hadamard gate performs a rotation of π about the axis

(x̂ + ẑ)/
√
2 at the Bloch sphere. It is rapresented by the

Hadamard matrix:

H =
1√
2

[

1 1

1 −1

]

(1.28)

The Hadamard gate is hermitian, meaning H† = H−1 = H. This gate is used to

perform a change of basis, it flips x̂ and ẑ. For example, HZH = X.

The Phase Shift gate

The phase shift is a single-qubit gate that maps the basis states |0〉 7→ |0〉 and
|1〉 7→ eiϕ|1〉. The probability of measuring a |0〉 or |1〉 is unchanged after applying

this gate, however it modifies the phase of the quantum state. This is equivalent

to tracing a horizontal circle (a line of latitude), or a rotation along the z-axis on

the Bloch sphere by ϕ radians. The phase shift gate is represented by the matrix:

P (ϕ) =

[

1 0

0 eiϕ

]

(1.29)

where ϕ is the phase shift with the period 2π. Some common examples are the

T gate where ϕ = π
4
, the phase gate (also known as the S gate) where ϕ = π

2

and the Pauli-Z gate where ϕ = π. The action of a phase-shift gate on a generic

single-qubit state |ψ〉, gives

Rz(ϕ)|ψ〉 =
[

1 0

0 eiϕ

][

cos θ
2

eiφ sin θ
2

]

=

[

cos θ
2

ei(φ+ϕ) sin θ
2
.

]

(1.30)

it is easy to recognize that this gate performs a counterclockwise rotation through

an angle delta about the z axis of the Bloch Sphere

Using this two gates one can perform any unitary operation on a single qubit.

For example we can move from a state 1 parametrized on the bloch sphere by the

angles (θ1, φ1) into the state (θ2, φ2) using the unitary operator

Rz(
π

2
+ φ2)HRz(θ2 − θ1)HRz(−

π

2
− φ1). (1.31)
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1.6 Controlled gates and entanglement generation

Entanglement, which is the most intriguing characteristic of quantum mechanics,

appears already with two qubits. Actually, a generic two-qubit state can be

written in the computational basis as

|ψ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉, (1.32)

with α, β, γ and δ complex coefficients. Taking into account the normalization

condition, α|2 + |β|2 + |γ|2 + |δ|2 = 1 and the fact that the state is only defined

up to an overall phase factor, there remain 6 real degrees of freedom. Therefore

the state (1.32) is not separable and can be classified as such only if written

as the tensor product of n qubits with defined state. For example a 2-qubit

state |ψ〉 is separable if written as |ψ〉 = |ψ1〉 ⊗ |ψ2〉. Only in this case the

resulting 2-qubit state has just 4 degrees of freedom since we can take for each

qubit the two parameters of its Bloch Sphere. The complexity of entanglement

grows exponentially with the number of qubits: while a separable state of n

qubits depends only on 2n real parameters, the most general entangled state

has 2(2n|1) degrees of freedom. It is clear that single-qubit gates are unable to

generate entanglement in an n-qubit system. Since they operate on every qubit

individually, the resulting n-qubit state is still separable. To create an entangled

state one needs inner-qubit operations witch can be obtained using a two-qubit

gate.

The controlled-NOT gate

Figure 1.3:

controlled-NOT gate

A useful example of two-qubit gate is the controlled-

NOT gate or CNOT. It performs the NOT operation on

the second qubit only when the first qubit is |1〉, and oth-

erwise leaves it unchanged. Using the basis |00〉, |01〉, |10〉,
|11〉, it can be represented by the Hermitian unitary ma-

trix:

CNOT =













1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0













(1.33)
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where the components (CNOT )ij of this matrix are given by (CNOT )ij =

〈i|CNOT |j〉. The CNOT gate can be described as the gate that maps the basis

states |a, b〉 7→ |a, a ⊗ b〉, where ⊗ is the XOR logic operator. Note that the

CNOT gate is self-inverse, since (CNOT )2 = I. It is easy to show that CNOT

can generate entanglement. For exampele,

CNOT (α|0〉+ β|1〉)|0〉 = α|00〉+ β|11〉, (1.34)

which is non-separable insofar as α, β 6= 0.

The SWAP gate

Figure 1.4: SWAP gate

The SWAP gate swaps two qubits. Using the basis

|00〉,|01〉,|10〉,|11〉, it can be represented by the matrix:

SWAP =













1 0 0 0

0 0 1 0

0 0 1 0

0 0 0 1













. (1.35)

The swap gate can be decomposed into summation form:

SWAP =
I ⊗ I +X ⊗X + Y ⊗ Y + Z ⊗ Z

2
(1.36)

The Toffoli gate

Figure 1.5: Toffoli gate

The Toffoli gate also colled CCNOT gate or Deutsch

gate D(π/2), is a 3-qubit gate which is universal for clas-

sical computation but not for quantum computation. The

Toffoli gate is similar to controlled-NOT gate except for

the number of input qubits. Accepting input qubits that

are either |0〉 or |1〉, it executes the NOT operation on the

third qubit if the first two bits are in the state |1〉, else it

does nothing. The Toffoli gate is related to the classical

AND and XOR operations as it performs the mapping |a, b, c〉 7→ |a, b, c⊕(a∧b) on
states in the computational basis. Finally the Toffoli gate can be part a universal

set of gates when combined with the single qubit Hadamand gate.
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1.7 The bell basis

A common application of the CNOT gate is to maximally entangle two qubits

into the Bell state; this forms part of the setup of the superdense coding, quantum

teleportation, and entangled quantum cryptography algorithms. The bell basis

is defined by [2]

|Ψ+〉 = 1√
2
(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) (1.37)

|Ψ−〉 = 1√
2
(|0〉A ⊗ |0〉B − |1〉A ⊗ |1〉B) (1.38)

|Ψ+〉 = 1√
2
(|0〉A ⊗ |1〉B + |1〉A ⊗ |0〉B) (1.39)

|Ψ−〉 = 1√
2
(|0〉A ⊗ |1〉B − |1〉A ⊗ |0〉B) (1.40)

Figure 1.6: Quantum
circuit to create the Bell

state |Ψ〉+.

Although there are many possible ways to create en-

tangled Bell states through quantum circuits, the simplest

takes a computational basis as the input and contain a

Hadamard gate and a CNOT gate (1.6). The quantum

circuit in picture takes the two qubit input |00〉 and trans-

forms it into the first Bell state, Fig.1.37.

1.8 Universal Quantum Gates

A set of universal quantum gates is a set of gates that can be used as building

blocks to create any operation possible on a quantum computer, with this set any

unitary operation can be expressed as a finite sequence of gates. The rotation

operators Rx(θ), Ry(θ), Rz(θ), the phase shift gate P (φ) and CNOT form a

widely used universal set of quantum gates. CNOT , H, S and T make another

common univerasal gate set referred as the Clofford + T gate set. The Toffoli

gate forms a set of universal gates for reversible boolean algebraic logic circuits

witch can be expanded to a two-gate set of universal quantum gates by adding

the Hadamard gate to the set. The three-qubit Deutsch gate D(θ) can be used

as a single-gate set of universal quantum gates. The Toffoli gate, a universal

logic gate for reversible classical computing, can be reduced to a Deutsch gate

D(π/2), showing that all reversible classical logic operations can be performed

on a universal quantum computer.
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1.9 Circuit composition

Series gates

With two gates A and B, that both act on n qubits if B is put after A in a series

circuit, then the effect of the two gates can be described as a single gate C.

A = B · C (1.41)

where · is matrix multiplication.

Figure 1.7: Two gates Y and X in series. The order in which they appear on the wire is reversed
when multiplying them together.

Parallel gates

The tensor product of two quantum gates is the gate that is equal to the two

gates in parallel. If we, as in the picture, combine the Pauli-Y gate with the

Figure 1.8: Two gates Y and X in parallel is equivalent to the gate Y ⊗X

Pauli-X gate in parallel, then this can be written as:

C = Y ⊗X

=

[

0 −i
i 0

]

⊗
[

0 1

1 0

]

=













0

[

0 1

1 0

]

−i
[

0 1

1 0

]

i

[

0 1

1 0

]

0

[

0 1

1 0

]













=













0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0













(1.42)

Both the Pauli-X and the Pauli-Y gate act on a single qubit. The resulting gate

acts on two qubits.

Hadamard transform
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The gate H2 = H ⊗H is the Hadamard gate (H) applied in parallel on 2 qubits.

It can be written as:

H2 = H ⊗H =
1√
2

[

1 1

1 −1

]

⊗ 1√
2

[

1 1

1 −1

]

=
1

2













1 1 1 1

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1













(1.43)

This ”two-qubit parallel Hadamard gate” will when applied to, for example, the

two-qubit zero-vector (|00〉), create a quantum state that have equal probability

of being observed in any of its four possible outcomes: |00〉, |01〉, |10〉, |11〉.

H2|00〉 =
1

2













1 1 1 1

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

























1

0

0

0













=
1

2













1

1

1

1






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=
|00〉+ |01〉+ |10〉+ |11〉

2

(1.44)

When applied to a register of n qubits all initialized to |0〉, the Hadamard trans-

form puts the quantum register into a superposition with equal probability of

being measured in any of its 2n possible states. This state is a uniform superpo-

sition and it is generated as the first step in some search algorithms, for example

in amplitude amplification and phase estimation.
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Chapter 2

Ion Trap Quantum Computer

Electron and nuclear spins provide potentially good representations for qubits.

Spin is a strange (but very real) concept, but since the energy difference between

different spin states is typically very small compared with other energy scales

(such as the kinetic energy of typical atoms at room temperature), the spin

states of an atom are usually difficult to observe, and even more difficult to

control. In carefully crafted environments, however, exquisite control is possible.

Such circumstances are provided by isolating and trapping small numbers of

charged atoms in electromagnetic traps, then cooling the atoms until their kinetic

energy is much lower than the spin energy contribution. After doing this, incident

monochromatic light can be tuned to selectively cause transitions which change

certain spin states depending on other spin states. This is the essence of how

trapped ions can be made to perform quantum computation. [2]

2.1 Physical Apparatus

The experimental apparatus is an electromagnetic trap constructed from four

cylindrical electrodes (Fig.2.1). The end segments of the electrodes are biased at

a different voltage U0 than the middle, so that the ions are axially confined by a

static potential Φdc = κU0[z
2 − (x2 + y2)]/2 along the ẑ axis (κ is a geometrical

factor). However, a result known as Earnshaw’s theorem states that a charge

cannot be confined in three dimensions by static potentials. Thus, to provide

confinement, two of the electrodes are grounded, while the other two are driven

by a fast oscillating voltage which creates a radiofrequency (RF) potential Φrf =

(V0 cosΘT t + Ur)(1 + (x2 − y2)/R2)/2, where R is a geometrical factor. The

segments of the electrodes are capacitively coupled such that the RF potential is

15
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constant across them. The combination of Φdc and Φrf creates, on average (over

ΩT ), a harmonic potential in x, y, and z. Together with the Coulomb repulsion

of the ions, this gives a Hamiltonian governing the motion of the N ions in the

trap,

H =
N
∑

i=1

M

2
(ω2

xx
2
i + ω2

yy
2
i + ω2

zz
2
i +

|~pi|2
M2

) +
N
∑

i=1

∑

j>i

e2

4πǫ0|~ri − ~rj|
(2.1)

where M is the mass of each ion. Typically, ωx, ωy ≫ ωz by design, so that

the ions all lie generally along the ẑ axis. As the number of ions becomes large,

the geometrical configuration of the ions can become quite complicated, forming

zig-zag and other patterns, but we shall focus on the simple case where just a few

ions are trapped, in a string-like configuration.

Just as a mass on a spring can behave as a quantum system when the coupling

Figure 2.1: Schematic drawing (not to scale) of an ion trap quantum computer, depicting four ions
trapped in the center of a potential created by four cylindrical electrodes. The apparatus is typically
contained in a high vacuum (≈ 10-8 Pa), and the ions are loaded from a nearby oven. Modulated
laser light incident on the ions through windows in vacuum chamber perform operations on and are
used to readout the atomic states.

to the external world becomes sufficiently small, the motion of the electromagnet-

ically confined ion becomes quantized when it is sufficiently well isolated. Let us

first understand what the quantization means, then consider the isolation criteria.

The energy levels of a harmonic oscillator are equally spaced, in units of ωz. In

the ion trap, in the regime which concerns us, these energy eigenstates represent

different vibrational modes of the entire linear chain of ions moving together as

one body, with mass NM. These are called the center of mass modes. Each ωz
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quantum of vibrational energy is called a phonon, and can be thought of as a

particle, just as a quantum of electromagnetic radiation in a cavity is a photon.

For the above phonon description to hold, certain criteria must hold. First, the

coupling to the environment must be sufficiently small such that thermalization

does not randomize the state of the system (and thus cause it to behave clas-

sically). Physically, what can happen is that nearby fluctuating electric and

magnetic fields push on the ions, causing their motional state to randomly tran-

sition between energy eigenstates. Such noise sources are nearly inevitable, in a

technical sense, since, for example, one cannot drive the confining electrodes from

a perfect voltage source; the source will always have a finite resistance, and this

resistance gives rise to Johnson noise, which has fluctuations on time scales the

ions are sensitive to. The electric field on local patches of the electrodes can also

fluctuate, randomly driving the ions’ motion. As the randomness increases, the

quantum properties of the ions’ state is lost, and their behavior becomes well de-

scribed by classical statistical averages. For example, both their momentum and

position become well defined, which cannot be simultaneously true for a quan-

tum system. Nevertheless, in practice, most technical noise sources can indeed be

controlled quite well, to the extent that they do not heat or dephase the trapped

ions too much on the time scale of most experiments. In part, one important

reason this is possible is that as long as the harmonic approximation holds, the

trapped ions are very selective about the frequency of the noise they are sensitive

to; just as transitions between atomic levels can be selected by radiation tuned

only to the correct frequency, only fluctuations which have high spectral power

density around ωz will affect the ions.

It is also quite important for the ions to be sufficiently cool so as to make the one-

dimensional harmonic approximation valid. The true potential is non-quadratic

for large displacements along any direction away from the trap center. And higher

order vibrational modes in which the ions move relative to each other (instead of

moving together) must have energies much higher than the center of mass mode.

When this holds, and the ions are cooled to their motional ground state, their

transition to the next higher energy state is through absorption of a center of

mass phonon; this process is related to the Mossbaüer effect, in which a photon

is absorbed by atoms in a crystal without generating local phonons because the

entire crystal recoils together.

How are the ions cooled to their motional ground state? The goal is to satisfy

kBT ≪ ωz, where T is the temperature reflecting the kinetic energy of the ions.
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Essentially, this can be done by using the fact that photons carry not only energy,

but also momentum p = h/λ, where λ is the wavelength of the light. Just as the

whistle of an approaching train has a higher pitch than a departing train, an

atom moving toward a laser beam has transition frequencies which are slightly

higher in energy than an atom moving away. If the laser is tuned such that it

is absorbed only by approaching atoms, then the atoms slow down because the

photons kick them in the opposite direction. This method is known as Doppler

cooling. Shining a properly tuned laser (which has momentum vector compo-

nents along each axis) at trapped atoms thus can cool the atoms down to the

limit kBT ≈ Γ/2, where Γ is the radiative width of the transition used for the

cooling. To cool beyond this limit, another method, known as sideband cooling,

is then applied, as illustrated in Fig2.2. This allows one to reach the kBT ≪ ωz

limit.

Another criterion which must be satisfied is that the width of the ion oscillation

in the trap potential should be small compared to the wavelength of the incident

light. This Lamb–Dicke criterion is conveniently expressed in terms of the Lamb-

Dicke parameter η = 2πz0/δ, where δ is the wavelength, and z0 =
√

~/2NMω is

the characteristic length scale of the spacing between ions in the trap.

Figure 2.2: Sideband cooling method, showing transitions between |0, n〉 and |1,m〉, where 0 and 1
are two electronic levels, and n and m are phonon levels representing motional states of the ion. Laser
light is tuned to have energy one phonon less than the electronic transition, such that, for example,
the |0, 3〉 state transitions to the |1, 2〉 state, as shown. The atom then spontaneously decays into
the lower energy 0 state (wiggly lines), randomly going to either |0, 1〉, |0, 2〉, or |0, 3〉 (with nearly
equal probabilities). Note that the laser light actually causes all possible transitions between |0, n〉
and |1, n − 1〉, since these all have the same energy. However, this process does not touch the |0, 0〉
state, and eventually that is the state in which the atom will be left.
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The Lamb–Dicke criterion requires that η ≈ 1; this does not strictly have

to be met in order for ion traps to be useful for quantum computation, but it

is desired to have that η ≈ 1 at least, in order that the individual ions can be

resolved by different laser beams, but without making their motional state too

difficult to optically excite in order to perform logic operations.

Atomic structure

The purpose of the trap apparatus described above is to allow ions to be cooled to

the extent that their vibrational state is sufficiently close to having zero phonons

(|0〉), an appropriate initial state for computation. Similarly, the internal states of

the ions must be initialized appropriately, so they may be used to store quantum

information. Let us now consider what these internal states are, and understand

why they are good qubit representations by estimating their coherent lifetime.

The internal atomic states relevant to the trapped ion we shall consider result

from the combination F of electron spin S and nuclear spin I, giving F = S

+ I. The formal piece of theory which describes this – known as the addition of

angular momenta - not only describes important physics for understanding atomic

structure, but also is an interesting mechanism for quantum information. A single

photon interacting with an atom can provide or carry away one unit of angular

momentum. But there are numerous possible sources of angular momenta in an

atom: orbital, electron spin, and nuclear spin. Where it comes from is partly

determined by the energy levels selected by the energy of the photon, but beyond

that, the photon cannot distinguish between different sources, and to describe

what happens we must select a basis in which total angular momentum becomes

a uniquely defined property of the state.

Consider, for example, two spin-1/2 spins. The ‘computational’ basis for this two

qubit space is |00〉, |01〉, |10〉, |11〉, but to span the state space we could equally

well choose the basis

|0, 0〉J =
|01〉 − |10〉√

2
(2.2)

|1,−1〉J = |00〉 (2.3)

|1, 0〉J =
|01〉 − |10〉√

2
(2.4)

|1, 1〉J = |11〉 (2.5)

(2.6)

These basis states are special, because they are eigenstates of the total momentum
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operator, defined by jx = (X1 +X2)/2, jy = (Y1 + Y2)/2, jz = (Z1 + Z2)/2, and

J2 = j2x + j2y + j2z (2.7)

The states |j,mj〉J are eigenstates of J2 with eigenvalue j(j + 1), and simulta-

neously eigenstates of jz, with eigenvalue mj . These states are the natural ones

selected by many physical interactions; for example, in a ẑ oriented magnetic

field the magnetic moment µ in the Hamiltonian µBz is proportional to mj, the

component of the total angular momentum in the ẑ direction. The theory of ad-

dition of angular momenta is sophisticated and well developed, and we have but

scratched its surface. Nevertheless, some interesting observations which concern

quantum information can already be drawn from the above examples. Normally,

we think of entangled states such as the Bell states as being unnatural states

of matter, because they have strange, non-local properties. However, the state

|0, 0〉J is a Bell state! Why does Nature prefer this state here? It is because of a

symmetry under which the interaction involving the magnetic moment is invari-

ant under interchange of the two spins. Such symmetries actually occur widely in

Nature, and are potentially quite useful for performing entangling measurements

and operations.

How long can a superposition of different spin states exist? The limiting

process, known as spontaneous emission, occurs when an atom transitions from

its excited state to its ground state by emitting a photon. This happens at some

random time, at a rate which we shall estimate. It might seem that spontaneously

emitting a photon is a strange thing for an atom to do, if it is simply sitting in

free space with nothing apparently disturbing it. But this process is actually a

very natural consequence of the coupling of the atom to electromagnetic fields,

described simply by the Jaynes–Cummings interaction

HI = g(a†σ− + aσ+), (2.8)

Previously, we used this model to describe how a laser interacts with an atom,

but the model also describes what happens to an atom even when no optical

field is present! Consider an atom in its excited state coupled to a single mode

which contains no photon, the state |01〉 (using |field, atom〉). This is not an

eigenstate of HI , and thus it cannot remain stationary as time evolves. What

happens is described by the unitary operator U, by which we find that there is a

probability pdecay = |〈10|U |01〉|2 for the atom to decay into its ground state and
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emit a photon, where

pdecay = g2
4 sin 1

2
(ω − ω0)

2t
2

(ω − ω0)2
(2.9)

to lowest order in g, the atom–field coupling, ω is the frequency of the photon,

and ~ω0 the energy difference between the two levels of the atom. An atom sitting

in free space interacts with many different optical modes; inserting the coupling

g2 =
ω2
0

2~ωǫ0c2
|〈0|~µ|1〉|2 (2.10)

here ~µ is the atomic dipole operator, integrating over all the optical modes and

taking a time derivative gives the probability per second of decay,

γrad =
ω3
0|〈0|~µ|1〉|2
3π~ǫ0c5

(2.11)

If we make the approximation that |〈0|~µ|1〉| ≈ µB ≈ 910−24J/T , the Bohr mag-

neton, and assume that ω0/2π ≈ 10GHz, then yrad ≈ 10−15sec−1 , a spontaneous

emission rate of less than one decay every 3 000 000 years. This calculation is

representative of those done to estimate lifetimes of atomic states; as you can see,

the hyperfine states can have remarkably long coherence times in theory, and this

is generally consistent with experiments, in which lifetimes of tens of seconds to

tens of hours have been observed.

2.2 The Hamiltonian

Combining the simplified models given in the previous section for the harmonic

electromagnetic trap and the atomic structure provides us with the following sim-

plified toy model for an ion trap quantum information processor. Imagine a single

two-level spin interacting via the usual magnetic dipole interaction HI = −~µ · ~B
with an electromagnetic field, where the dipole moment ~µ = µm

~S is proportional

to the spin operator S, and the magnetic field is ~B = B1x̂ cos(kz−ωt+φ), and B1

is the field strength, k its momentum in the ẑ direction, ω its frequency, and φ its

phase. Note that in this section, we shall use Sx = X/2, Sy = Y/2, and Sz = Z/2

as the spin operators; they are related to the Pauli operators by a factor of two.

In addition to the usual electromagnetic interaction, there are interactions with

the vibrational modes. The spin is physically confined within a harmonic poten-
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tial of energy scale ~ωz (Fig. 2.3), such that its position becomes quantized and

we must describe it by an operator z = z0(a
† + a), where a†, a are raising and

lowering operators for the vibrational modes of the particle, representing creation

and annihilation of phonons.

Figure 2.3: Toy model of a trapped ion: a single particle in a harmonic potential with two internal
states, interacting with electromagnetic radiation.

Let us assume that the particle is cooled to near its lowest vibrational mode,

such that the width of its oscillation in the well is small compared to the wave-

length of the incident light, that is, the Lamb–Dicke parameter η ≡ kz0 is small.

Defining the Rabi frequency of the spin as ω = µmB1/2, and recalling that

Sx = (S+ + S−)/2, we find that the interaction Hamiltonian simplifies in the

small η limit to become

HI = −~µ · ~B (2.12)

≈ [
~Ω

2
(S+e

i(φ−ωt) + S−e
−i(φ−ωt))] (2.13)

+ [i
η~Ω

2
{S+a+ S−a

† + S+a
† + Sa}(ei(φ−ωt) + e−i(φ−ωt))] (2.14)

The first term in brackets results from the usual Jaynes–Cummings Hamiltonian

which occurs when the location z of the spin is a constant. However, it is sim-

plified and does not contain photon operators because it turns out that as long

as B1 is a strong coherent state, we can neglect its quantum properties and leave

ourselves with a Hamiltonian which describes just the evolution of the internal

atomic state. It is in fact quite remarkable that a coherent state of the field does

not become entangled with an atom after interacting with it. The second term in

brackets describes the coupling of the motional state of the ion to its spin state,

through the fact that the magnetic field it sees is dependent on its position. The
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four terms in braces correspond to four transitions (two up and two down) which

are known as the red and blue motional sidebands, illustrated in Fig. 2.4.

Figure 2.4: Energy levels of the toy model trapped ion showing the red and blue motional sideband
transitions, which correspond to creation or annihilation of a single phonon. There is an infinite
ladder of additional motional states, which are usually not involved. The states are labeled as |n,m|
where n represents the spin state, and m the number of phonons.

Why these sideband transitions have frequencies ω0±ωz is easy to see, by includ-

ing the free particle Hamiltonian

H0 = ~ω0Sz + ~ωza
†a (2.15)

which causes the spin and phonon operators to evolve as

S+(t) = S+e
iω0t

a†(t) = a†eiωzt

S−(t) = S−e
−iω0t

a(t) = ae−iωzt.
(2.16)

Thus, in the frame of reference ofH0, the dominant terms ofH
′

I = eiH0t/~HIe
−iH0t/~

are found to be

H
′

I =







iη~Ω
2
(S+a

†eiϕ − S−ae
−iϕ) ω = ω0 + ωz

iη~Ω
2
(S+ae

iϕ − S−a
†e−iϕ) ω = ω0 − ωz

(2.17)

where the frequency of the electromagnetic field, ω, is as shown on the right.

Extending the above model from one spin to N spins confined within the same

harmonic potential is simple if we assume that they share a single center of mass

vibrational mode, whose energy is much lower than any other vibrational mode

of the system. A straightforward extension of the theory shows that the only

required modification is replacement of Ω by Ω/
√
N , since all N particles move

together collectively.
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2.3 Quantum Computation

Quantum computation with trapped ions requires one to be able to construct ar-

bitrary unitary transforms on the internal states of the atoms. We now show how

this is done, in three steps: we describe (1) how arbitrary single qubit operations

are performed on the internal atomic (spin) state, (2) a method for performing a

controlled two qubit gate between the spin and the phonon state, and (3) a way to

swap quantum information between the spin and the phonon. Given these build-

ing blocks, we then describe an experiment which was performed to demonstrate

a controlled- gate, complete with state preparation and readout.

Single qubit operations

Applying an electromagnetic field tuned to frequency ω0 turns on the internal

Hamiltonian term

H internal
I =

~Ω

2
(S+e

iϕ + S−e
−iϕ) (2.18)

By choosing φ and the duration of the interaction appropriately, this allows us

to perform rotation operations Rx(θ) = exp(−iθSx) and Ry(θ) = exp(−iθSy),

which, by the Theorem of Z-Y decomposition for a single qubit, thereby allow us

to perform any single qubit operation on the spin state. We shall denote rotations

on the jth ion by a subscript, for example, Rxj(θ).

Controlled phase-flip gate

Suppose, now, that one qubit is stored in the atom’s internal spin state, and

another qubit is stored using the |0〉 and |1〉 phonon states. If this is the case, we

can perform a controlled phase-flip gate, with the unitary transform













1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1













(2.19)

It is easiest to explain how to do this with an atom that has a third energy

level, as shown in Figure 7.11 (the extra level is not fundamentally necessary; see

Problem 7.4). A laser is tuned to the frequency ωaux + ωz, to cause transitions

between the |20〉 and |11〉 states; this turns on a Hamiltonian of the form

Haux = i
η~Ω

′

2
(S

′

+e
iϕ + S

′

−e
−iϕ) (2.20)
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where S
′

+ and S
′

− denote transitions between |20〉 and |11〉, and we assume that

higher order motional states are unoccupied. Note that because of the unique-

ness of this frequency, no other transitions are excited. We apply the laser with

phase and duration to perform a 2π pulse, that is, the rotation Rx(2π) on the

space spanned by |11〉 and |20〉, which is just the unitary transform |11〉 −→ −|11〉.
All the other states remain unchanged, assuming that undesired states such as

|1, 2〉 have no probability amplitude. We shall write this gate as Cj(Z) (denoting

a controlled-Z operation), where j indicates which ion the gate is applied to.

Note that the same phonon is shared by all the ions, since it is a center-of-mass

phonon; because of this, adopting engineering terminology, this has been called

the phonon ‘bus’ qubit in the literature.

Figure 2.5: Energy levels of a three-level atom in an ion trap, with two phonon states each. The
labels |n,m〉 indicate the atom’s state n and the phonon state m. The |20〉 −→ |11〉 transition is used
to perform a controlled phase-flip gate.

Swap gate

Finally, we need some way to swap qubits between the atom’s internal spin state

and the phonon state. This can be done by tuning a laser to the frequency ω0−ωz,

and arranging for the phase to be such that we perform the rotation Ry(π) on

the subspace spanned by |01〉 and |10〉, which is just the unitary transform













1 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 1













(2.21)

on the |00〉, |01〉, |10〉, |11〉 space. If the initial state is a|00〉 + b|10〉 (that is,

the phonon is initially |0〉), then the state after the swap is a|00〉+ b|01〉, so this
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accomplishes the desired swap operation. We shall write this as j when acting

on ion j; the inverse operation SWAP j corresponds to Ry(−π). Technically, be-
cause of the minus sign in the |10〉〈01| entry of Ry(π), this is not a perfect swap

operation, but it is equivalent to one up relative phases. Thus, this is sometimes

referred to as being a ‘mapping operation’ instead of a swap.

Controlled-NOT gate

Putting these gates together allows us to construct a gate acting on ions j (con-

trol) and k (target) using the sequence of operations

CNOTjk = Hk SWAP k Cj(Z) SWAPk Hk (2.22)

(time going from right to left, as usual for matrices) where Hk is a Hadamard

gate (constructed from Ry and Rx rotations on ion k).

2.4 Experiment

A controlled-NOT gate using a single trapped ion has been demonstrated [5]. In

the experiment, a single ion of 9Be+ is trapped in a coaxial resonator RF ion

trap, different in geometry from the linear ion trap of Fig2.1. Beryllium was cho-

sen for its convenient hyperfine and electronic level structure, shown in Fig2.6.

The 2S1/2(1, 1) and
2S1/2(2, 2) energy levels are used as the atom’s internal qubit

state, and the |0〉 and |1〉 phonon states as another qubit

in the figure as n = 0 and n = 1). The ≈ 313nm transition between the 2S1/2(1, 1)

and 2S1/2(2, 2) levels is accomplished not by tuning a single laser to the transition

frequency, but rather two lasers whose difference frequency is that of the transi-

tion. This Raman transition method simplifies requirements for laser phase stabil-

ity. The 2S1/2(2, 0) state is used as the auxiliary level; the 2S1/2 states have differ-

ent energies by virtue of a 0.18 millitesla magnetic field applied to the system. The

trapped ion has vibrational frequencies (ωx, ωy, ωz)/2π = (11.2, 18.2, 29.8)MHz

in the trap, and a ground state nx = 0 wavefunction spread of about 7nm,

giving a Lamb–Dicke parameter of about ηx = 0.2. The Rabi frequency of

the on-resonance transition is Ω/2π = 140kHz, the two motional sidebands,

ηxΩ/2π = 30kHz, and the auxiliary transition ηxΩ
′
/2π = 12kHz. The state of

the ion is initialized using Doppler and sideband cooling to obtain, with approx-

imately 95% probability, the state |00〉 = |2S1/2(2, 2)〉|nx = 0〉. The internal and
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Figure 2.6: Energy levels of 9Be+ used in the ion trap experiment.

motional states of the ion are then prepared in one of the four basis states |00〉,
|01〉, |10〉, or |11〉 using single qubit operations, then a controlled- gate is per-

formed using three pulses, which implement a Ry(π/2) rotation on the internal

state qubit, a controlled-Z operation between the two qubits, then a Ry(−π/2)
rotation on the internal state qubit. It is simple to show (Exercise 7.32) that this

circuit, drawn in Figure 7.14, realizes a controlled- gate. Readout of the compu-

tational output is performed with two measurements. The first is to collect the

fluorescence from the ion which occurs when + circularly polarized light tuned

to the 2S1/2(2, 2)–
2P3/2(3, 3) ‘cycling’ transition is applied. The light does not

couple appreciably to the 2S1/2(1, 1) state, and thus the intensity of the observed

fluorescence is proportional to the probability of the internal state qubit being

in the |0〉 state; it is a projective measurement. This measurement technique is

powerful because the transition cycles many times - the ion absorbs a photon,

jumping to the 2P3/2(3, 3) state, then emits a photon, decaying back into the
2S1/2(2, 2) state where it started. Thousands or more cycles are possible, allow-

ing good statistics to be accumulated. The second measurement is similar to

the first, but a swap pulse is applied first to exchange the motional and internal

state qubits; this projectively measures the motional state qubit The experiment

as performed verifies the classical truth table of the controlled operation and, in

principle, by preparing superposition input states and measuring output density

matrices, the unitary transform could be completely characterized using process

tomography (Chapter 8). The controlled-gate requires about 50 microseconds to

perform with the optical power used in the experiment. On the other hand, the
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coherence time was measured to be somewhere around hundreds to thousands

of microseconds. The dominant decoherence mechanisms included instabilities in

the laser beam power and the RF ion trap drive frequency and voltage amplitude,

and fluctuating external magnetic fields. Moreover, the experiment involved only

a single ion, and only two qubits, and thus was not useful for computation; to

be useful, a controlled- gate should generally be applied between different ions,

and not just between a single ion and the motional state. However, the technical

limitations can probably be overcome, and lifetimes can be extended by using the

short-lived motional state only intermittently, capitalizing on the much longer co-

herence times of the internal atomic states. And scaling to larger numbers of ions

is conceptually viable. Shown in Figure 7.15 is a string of 40 mercury ions which

have been trapped. There are many hurdles to making such systems behave as

useful quantum information processing machines, but technological surprises are

a neverending saga. Someday, perhaps, trapped ions such as these could be reg-

isters of qubits in a quantum computer.

Figure 2.7: Image of fluorescence from about 40 trapped mercury (199Hg+) atomic ions. The ions
are spaced by approximately 15 micrometers, and the two apparent gaps are different isotopes of
mercury which do not respond to the probe laser. Reprinted courtesy of D. Wineland, at NIST.

2.5 Ion Trap Quantum Computer

• Qubit representation: Hyperfine (nuclear spin) state of an atom, and lowest

level vibrational modes (phonons) of trapped atoms.

• Unitary evolution: Arbitrary transforms are constructed from application of

laser pulses which externally manipulate the atomic state, via the Jaynes–Cummings

interaction. Qubits interact via a shared phonon state.

• Initial state preparation: Cool the atoms (by trapping and using optical

pumping) into their motional ground state, and hyperfine ground state.
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• Readout: Measure population of hyperfine states.

• Drawbacks: Phonon lifetimes are short, and ions are difficult to prepare in

their motional ground states
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Chapter 3

Superconducting Quantum

Computer

3.1 Superconducting qubits

These qubits are created by reducing the temperature of a material to make it

become a better conductor, in some materials the resistance drops to near 0 after

reaching a really low temperature, such materials are known as superconductors.

With the proper conditions electronic circuits made with these superconductors

show quantum properties which allows them to be used for quantum computing.

To maintain these low temperatures, a dilution refrigerator is needed. Further-

more, to interact with the qubits, microwave equipment is used. The combination

of these two devices allows to operate the qubits and keep them cold. The main

benefit of this type of qubit is that it comes on a chip, just like classical CPUs.

Additionally, superconducting qubits are compatible with existing fabrication in-

frastructure and have high fidelity gates and readout. However, these qubits do

have their drawbacks, including the need to cool the material at microkelvin,

which will require bigger dilution fridges with more qubits.

The advantage of quantum superconducting circuits (QSC) as implementa-

tion of qubits is, first and foremost, due to the macroscopically quantum coherent

ground state of super-conductors, which (a) supports non-dissipative flow of elec-

trical current and (b) suppresses or outright eliminates low-energy elementary

excitations. The latter property counterweighs the dangerous effects of a huge

number degrees of freedom, which exist in the solid state and which would oth-

erwise severely limit or totally destroy the quantum coherence necessary for the

operation of a quantum computer In this way the primary advantage of QSC
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allows the realization of the secondary one: as a solid state based device, a su-

perconducting qubit and a more complex QSC can be more easily scaled up, can

have significant density, and can be produced using a well developed set of design

and fabrication methods. Moreover, since these circuits are macroscopic, it can

be simpler to manipulate and read their state. The necessity to operate at low

temperatures is not a disadvantage of QSC, since almost all the quantum infor-

mation processing requires low temperatures in order to suppress the effects of

noise.

DiVincenzo criteria

According to DiVincenzo’s criteria, constructing a quantum computer capable of

quantum computation requires that the experimental setup meet five conditions:

• A scalable physical system with well-characterized qubit

• The ability to initialize the state of the qubits to a simple fiducial state

• Long relevant decoherence times

• A “universal” set of quantum gates

• A qubit-specific measurement capability

The DiVincenzo criteria reflect the contradictory requirements to a quantum com-

puter implementing the quantum circuits approach: on the one hand, the qubits

must be maximally protected from the external influences to preserve quantum

coherence; on the other hand, the need to do precise time-domain manipulations

on them leads to complex control-and-readout circuitry, which will introduce de-

coherence into the system. The major success of quantum information theory

has been to show that quantum error correction is possible and that therefore

the computation time is not limited by the coherence time. As long as the error

probability per gate is below a certain threshold, one is able to do arbitrary long

quantum computations.

Josephson effect

We have seen that a qubit must have two well defined levels that are used as

logical states |0〉 and |1〉. However, in practice, very few systems in nature are

defined by only two levels. To get around this, we can take two states in a

nonlinear system and treat them as an effective localized spin1/2 (qubit). Due to
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nonlinearity, the transitions to other states can be made practically negligible. In

electrical circuits, the natural solution is a superconducting Josephson junction:

the only known nonlinear and nondissipative electrical element.

Josephson junctions

Figure 3.1: The electrical
symbol for a Josephson junction

Josephson junctions are formed by two supercon-

ductors separated by a weak link. “Weak” means

that the probability amplitude for an electron to pass

through the link must be small enough to be consid-

ered as a perturbation. The coherent nondissipative

current is carried by the Bose-condensate of Cooper

pairs of electrons with (in most superconductors) opposite spins. A bulk su-

perconductor is characterized by a position-dependent complex superconducting

order parameter ∆ which up to a factor can be written as
√
ns exp(iφ), where ns

is the average density of electrons in the condensate, and φ is related to the veloc-

ity of supercurrent. The supercurrent density is given by ~js = nse~vs. Following

the approach due to Feynman we neglect the variation of the order parameter

within each superconductor and describe the system by a two-component “wave

function”, Ψ = (
√
ns,1 exp(iφ1),

√
ns,2 exp(iφ2))

T . Now, assume that there is a

voltage diffence V between the superconductors, which means that the energy

difference between them is 2eV (since the Cooper pair has charge 2e). Then the

Schrödinger equation for Ψ can be written as

i~
∂

∂t

(√
ns,1e

iφ1

√
ns,1e

iφ1

)

=

(

eV K

K −eV

)(√
ns,1e

iφ1

√
ns,1e

iφ1

)

(3.1)

After a simple calculation we find that dns,1/dt = (2Kns,1/~)sin(φ2−φ1); d(φ2−
φ1)/dt = 2eV/~ that is, the celebrated formulae for the DC and AC Josephson

effect:

IJ = Ic sinφ; φ̇ = 2eV/~. (3.2)

The first equation in (3.2) describes the non-dissipative, equilibrium, coherent

flow of electric current through the barrier, determined only by the phase differ-

ence between the superconductors and the properties of the junction. The second

equation (3.2) tells that if the phase difference is not constant, the current flow

will be accompanied by a finite voltage drop across the junction, and vice versa.

The equilibrium current can be obtained from the appropriate thermodynamical

potential of the system: IJ = ∂E/∂Φ, where Φ = Φ0φ/2π has the dimensional-
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ity of the magnetic flux, and Φ0 = h/2e is the superconducting flux quantum.

Therefore we add to the energy of the system its Josephson energy,

EJ(φ) =

∫

dΦIJ(φ) = −
IcΦ0

2π
cosφ ≡ −EJ cosφ. (3.3)

From the AC Josephson effect and according to the relation V = Lİ, we see that

the Josephson junction can be considered as a nonlinear inductance LJ :

LJ =
~

2eIc cosφ
(3.4)

As an example of this quantum inductance, consider the rf-SQUID: a supercon-

ducting loop of inductance L interrupted by a single Josephson junction.

Figure 3.2:

Schema elettrico
di un rf-SQUID

In this configuration the total energy of a Josephson junction

also includes its electrostatic energy:

E = Q2/2C + EJ(φ) = Ec(Nc −Ng)
2 + EJ(φ) (3.5)

Here Q is the electric charge on the junction’s capacitance, C, and

EC = 4e2/2C the charging energy (the Coulomb energy of one

Cooper pair). The charge Q is expressed through NC and Ng. The

former is the number of Cooper pairs having tunneled through the junction while

the latter depends on the system’s configuration and its electrostatic interaction

with its surroundings. While NC is a discrete number, Ng can take arbitrary

values. To certain extent, NC and φ can be considered as conjugate variables,

like momentum and position, therefore we can quantize Eq.3.5:

H = EC(−i∂φ −Ng)
2 − EJ cosφ. (3.6)

TakingNg = 0 and expanding the cosine around φ = 0, we obtain the Hamiltonian

of a linear oscillator with the eigenfrequency ω0 : −ω2
0φ = (i~)−2, that is ~ω0 =√

2ECEJ . In practice, this plasma frequency is in the range of tens of GHz.

3.2 Types of Superconductive Qubits

Three main classes of superconducting qubits, all based on Josephson junctions,

have been theoretically studied and tested experimentally. These are phase, flux

and charge qubits. The relation between the parameters ~ω0, EC and EJ and the
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way these qubits are biased distinguishes between the different types.

The Phase Qubit

Phase qubits operate in the phase regime, which is defined by EJ ≫ EC . In this

situation, the Josephson term dominates the Hamiltonian (3.6)

H = −Ec∂
2
φ − EJ cosφ−

IbΦ0

2π
φ ≡ −Ec∂

2
φ − EJ(cosφ+

Ib
Ic
φ), (3.7)

Figure 3.3: Basic
Josephson-junction Phase

qubit circuit and its
potential-energy chart,

with the two lowest energy
levels marked in red.

where the last term describes the effect of the exter-

nal bias current Ib. This is the Hamiltonian of a quantum

particle in a tilted washboard potential. Since EJ ≫ EC ,

in the absence of bias (Ib = 0), each energy well contains

many almost equidistant quantized levels and the tunnel-

ing bethween different minima is negligible. On the other

hand, the Josephson junction cannot support a nondissi-

pative current exceeding Ic, in which case te potential in

(3.7) no longer has local minima. In the subcritical regime,

when Ib is between 0.95Ic and 0.98Ic, there remain only a

few quantized level in every local minumum. The tunnel-

ing out of the first two levels in a given potential through

the barrier is still small enough, and these can be taken as

qubit states |0〉 and |1〉. When Ib ≈ Ic the phase φ ≈ π/2;

expanding the Josephson potential in (3.7) to the third or-

der in ϕ ≡ φ− π/2, we find

UJ(ϕ) = EJ [(1− Ic/Ib)ϕ− ϕ3/6] (3.8)

The plasma frequency of the resulting cubic oscillator is ωp(Ib) = ω0(1 −
(Ib/Ic)

2)1/4. The transition frequency between the two qubit states is ω01 ≈
0.95ωp and depends on the bias current. Now the Hamiltonian (3.7) can be writ-

ten simply as H = −~ω01

2
σ2, corresponding to a spin-1/2 in a field along the z

direction. The x- and y- components, necessary for unitary rotations of the qubit,

can be implemented by adding an oscillating component to the bias current at

the qubit transition frequency ω01: Ib = Ib,dc + Icb,ac cosω01t + Isb,ac sinω01t. The

effective Hamiltonian becomes

H = −~ω01

2
σZ +

√

~

2ω01C

Isb,ac
2
σx +

√

~

2ω01C

Icb,ac
2
σy. (3.9)
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The DC component of the bias current sets ω01, while the cosine and sine quadra-

tures produce the rotations around the x and the y axis, respectively. The nonlin-

earity of the potential (3.8) is crucial, otherwise the AC current pulses would also

excite transitions between higher levels, and out of the Hilbert space spanned by

|0〉 and |1〉. In other words, the system would no longer be a qubit. Advantages

of phase qubits include the simplicity of design, good control over the parameters

in the Hamiltonian, simple readout, weak sensitivity to charge and flux noise in

the system, and scalability. One of the disadvantages is the sensitivity to low-

frequency noise of critical and bias current. Another is the absence of the optimal

point (degeneracy point where symmetry would protect the qubit from certain

kinds of noise leading to an increese in coherance times). One other disadvantage

would be requiring complex high-frequency low-noise circuitry down to the very

low operating temperatures (∼ 10mK). On the other hand, using AC rather

than DC pulses allows for protection by low-pass filtration of the qubit from the

low frequency (1/f) noise coming from the bias lines that can be significant.

The Flux Qubit

Figure 3.4: Basic
Josephson-junction Flux

qubit circuit and its
potential-energy chart,

with the two lowest energy
levels marked in red.

Another possibility to realize a qubit in the phase limit

EJ ≫ EC is by using a degeneracy between two current-

carrying states of an RF-SQUID. In writing the Hamilto-

nian of the system, the only difference with respect to the

Hamiltonian of Eq.(3.6) is that we now must take into ac-

count of the magnetic energy, but can neglect the effect of

off-set charges Ng:

H = −EC∂
2
φ − EJ cosφ+ EL(φ− φx)

2/2 (3.10)

Here φx = 2πΦ/Φ0 is the reduced flux through the loop,

and the inductive energy scale is given by EL = Φ2
0/4πL.

The situation differs from the previous case because now, if

φx ≈ π, the potential energy formed by the last two terms

of (3.10) has two almost degenerate minima. These states

correspond to persistent current in the loop circulating in opposite directions,

and are conveniently used as the |0〉 and |1〉 states of a qubit. Tunneling between

the two potential wells is enabled by the charge term in (3.10). As a result, in
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the subspace |0〉, |1〉 the effective qubit Hamiltonian is

H = − ǫ
2
σz +

∆

2
σx, (3.11)

where ǫ is the energy bias between the two states, which is tuned by the exter-

nal flux; δ is the tunneling amplitude. When ǫ ≫ ∆, the eigenstates of (3.12)

coincide with |0〉 and |1〉. At the degeneracy point, ǫ = 0(φx = π), these erigen-

states are “bonding/antibonding” states |±〉 = (|0〉 ± |1〉)/
√
2. The expectation

value of the current circulating in the SQUID loop is the same. As a result, the

states cannot be distinguished by observing the current or the magnetic field it

produces. Therefore no external degrees of freedom that couple to magnetic field

can interface with the qubit when it is operated at this optimal point; e coherence

time of the qubit can thus be significantly enhanced. Therefore it is convenient

to always work at this special operating point and use the corresponding eigen-

states as effective logical states of the qubit: |0L〉 = |+〉, |1L〉 = |−〉. While the

Hamiltonian (3.12) enables all qubit rotations with DC pulses only, transitions

between these states can also be realized by applying RF flux pulses at the tran-

sition frequency, same as in a phase qubit. Advantages of flux qubits are their

weak sensitivity to charge noise, comparatively easy readout, the ability to work

at or near the degeneracy point (optimal point). Their main disadvantage is a

very strong dependence on the junction parameters. The tunneling splitting ∆ is

proportional to
√
EJECe

[−
√

EJ/EC ], while EJ itself depends exponentially on the

barrier thickness. Such fluctuations as 1/f noise in the critical current will thus

have a big effect on the qubit.

The Charge Qubit

The charge qubit operates in the opposite regime from the previous two types

of qubits, the charge limit EC ≫ EJ . Now the states with definite charge, dif-

fering by a single Cooper pair, are the working states of the qubit, and the

Josephson term is the perturbation. In order for a single Cooper pair to make a

difference, two conditions must be met. The charging energy EC ∼ e2/C must

far exceed both the thermal energy, kBT , and the linewidth of the charge states,

∆E ∼ ~/RC, due to their finite lifetime determined by the effective resistance

and capacitance of the system. Otherwise, the charge states are smeared out

and cannot form a good basis for a qubit. The second condition leads to the

requirement R > ~/e2 ∼ 6kΩ. This becomes a problem, because at GHz frequen-

cies dictated by small capacitances C, the tunneling resistance will be effectively



38 Chapter 3. Superconducting Quantum Computer

shunted by small impedance ∼ 50 − 100Ω of the connecting lead. This way the

charge states would be washed out by the quantum particle number fluctuations.

Figure 3.5: Basic
Josephson-junction
Charge qubit circuit

and its
potential-energy

chart, with the two
lowest energy levels

marked in red.

The Hamiltonian for a charge qubit can be written as the

sum of the electrostatic energy and of the Josephson energy:

H = EC(NC −Ng)
2 − EJ cosφ (3.12)

In the absence of Josephson energy, the states |NC = 0〉 and
|NC = 1〉 are degenerate when Ng = CgVg/2e = 1/2. Higher-

energy states can be neglected; then on the Hilbert subspace

spanned by these two states, the operator NC takes the form

NC = 1
2
(1− σz). The Josephson term lifts the charge degener-

acy; in this basis it can be written as EJσ
x/2. The Hamiltonian

again takes the pseudospin form

H = −1

2
EC(1− 2Ng)σ

z − EJ

2
σx, (3.13)

allowing all unitary rotations with DC pulses only. t the charge degeneracy

point, Ng = 1/2, the eigenstates of this Hamiltonian are coherent superpositions

of states (|0〉 ± |1〉)/
√
2 differing by a single Cooper pair. Like in the flux case, it

is best to operate at this optimal point, and it is convenient to make a transfor-

mation to the basis of logical qubit states (|0〉± |1〉)/
√
2 : σx ← −σzandσz ← σx.

Then denoting Ng = 1/2 +Ng,ac cos(ωt), we have

H =
EJ

2
σz + ECNg,ac cos(ωt)σ

x. (3.14)

Now the Josephson energy plays the role of transition frequency for the qubit

and AC voltage Ng,ac can be used to induce transitions between these states.

The advantages of the charge qubit operating at the optimal point are similar

to those of the flux qubit. The former however does not have the exponential

dependance on parameters that the flux qubit has. One of its main disadvantages

is very strong sensitivity to charge noise. This can be mitigated to some extent

by working in the intermediate regime, EJ . EC , which was realized in the

“transmon” qubit.
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3.3 Further Josephson-Junction Qubits

The Transmon Qubit

The transmon qubit [7] is formed by adding another capacitance CB, in parallel

with the Josephson junction, to the charge-qubit circuit in Fig.3.5. Adding the

extra capacitance decreases the charging energy EC in the circuit. By changing

the EJ/EC ratio from EJ/EC ≈ 10−1 to EJ/EC ≈ 102, the charge-qubit circuit

goes from having a well-defined n to having a well-defined φ. However, the

resulting energy levels are largely insensitive to fluctuations in ng, as shown in

Fig.

Figure 3.6: Energy levels of a CPB for different EJ/EC ratios. a This is the charge-qubit regime,
where a good qubit is formed when ng ≈ ±0.5. At these points, ω01 is nowhere close to ω12 and
the transition frequencies are not so sensitive to fluctuations in ng . b EJ/EC = 20. This is the
transmon-qubit regime, where the energy levels are insensitive to fluctuations in ng no matter what
the value of ng is.

The price one pays for this protection from charge noise is a decrease in the

anharmonicity of the circuit. In the limit EJ ≫ EC , perturbation theory in

the small variable EC/EJgives that the energy levels Em of the circuit are well

approximated by

Em = −EJ +
√

8EJEC(m+
1

2
)− EC

12
(6m2 + 6m+ 3). (3.15)

From this, we obtain the qubit transition frequency

ω01 = (
√

8EJEC − EC)/~ (3.16)

and the anharmonicity

ω12 − ω01 = −EC/~. (3.17)
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However, the trade is a favorable one. A detailed analysis using perturbation

theory shows that the decrease in sensitivity to charge noise is exponential in
√

EJ/EC , while the anharmonicity only decreases linearly in
√

EJ/EC when

scaled by ω01. Recall that EJ/EC can be tuned by an external magnetic flux if

the Josephson junction is replaced by a SQUID.

3.4 Summary

One of the advantages of working with superconducting qubits is that we can

design the electrical circuits to carry out the kind of dynamics we want. This is

possible due to the fact that we can mass-produce circuit elements allowing us

to test different designs to see what works best. This process is one of the key

drivers of the steady advancements made in the circuits’ quality and design. In

fact, we might currently be relatively close to the point where the design itself

is sufficient, allowing us to expand to a larger number of qubits. This advan-

tage, though, doesn’t come without a flip side. When mass-producing, no one

circuit is similar at the atomic scale, which causes differences in the behavior of

circuits and decoherence in the qubits. Furthermore, the usage of bulk materi-

als carries some faults as these materials can contain impurities that then cause

more decoherence in the qubits. Currently, this is just the price to pay for being

able to test with different designs and compositions. There are many ways to

face this problem, though, the most simple of them being better materials and

enhancing the manufacturing processes. Likewise, new designs can also do their

part in minimizing decoherence, and this is where modeling and simulations are

key. Decoherence will, however, always be prevalent. Therefore the realistic goal

is not to eliminate the decoherence but to instead minimize it so that it doesn’t

restrict the qubits performance excessively.



Chapter 4

Final Thoughts

4.1 Advantages over classical camputation

Used correctly, quantum computers are incredibly fast and effective. They can

perform calculations in a few seconds for which today’s supercomputers would

need decades or even millennia. This fact is also referred to by experts as quantum

superiority. For a long time, this was just a theory. In 2019, however, Google’s

quantum computer prototype was able to perform such a calculation and verify

quantum superiority in practice. Calculations with quantum computers are par-

ticularly promising wherever incredibly complex processes with huge amounts of

data are to be analyzed or simulated. In addition to digital marketing, the natu-

ral science disciplines in particular see great potential here. Quantum computers

could contribute to a better and more detailed understanding of the interaction

of individual particles, elements and the processes in living cells. But there are

also potential applications in medicine. Quantum computing has many applica-

tions like cryptography, machine-learning, chemistry, optimisation, communica-

tion and many more. Most of all, researchers hope that quantum computers will

take artificial intelligence (AI) a big step forward. These could then safely and

reliably take over tasks such as data evaluation or forecasting in the future. With

more engineering and scientific work to be done for necessary computation, the

applications of Quantum Computing seem endless.
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