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Abstract

A n-dimension commutative formal group over a commutative ring R can be described in a general
context, with very restrictive results. However if we restrict ourselves to the one-dimensional case over
a p-adic integer ring, we get much more precised and accurate results, from their construction to their
classification. The classification gives us a very important invariant of the class, which is the height.
In addition to that there is a second invariant for a class, that is the Tate module attached to it. The
latter invariant is a key tool for constructing algebraic and arithmetic structures attached to a formal
group (the class). In this project we will discuss the p-adic period which at some extend is an invariant
for the class of a commutative one-dimensional formal group over a p-adic ring.
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1. Introduction

Formal groups over a commutative ring R are basically finite tuples of power series with coefficients in
R, subject to conditions closed enough to the axioms defining a structure of a group. But to define
an abstract group from it, we need to construct a landscape, and make clear what the law is. The
theory of formal groups as many applications in number theory, algebraic geometry and the theory of
Lie groups. They have been developed and used in the theory of Lie groups by Salomon Bochner [1] in
1946, and also by M. Lazard [11]. As for the number theory part, Jean A. Dieudonné studied formal
groups over fields of positive characteristic; the special case of interest in the one-dimensional one, over
a p-adic integer ring and was carried by Lubin. Together with J. Tate he was able to find interesting
results yet in the one-dimensional case. When the landscape attached to a formal group is set, we can
consider a bunch of additional algebraic constructions, such as p-adic periods. In 1970, the japanese
mathematician Taira Honda wrote an article in which he gave a construction for a certain general family
of commutative formal groups of arbitrary dimension over a p-adic integer ring. In this project, the aim
is to adapt the work of Honda to the one-dimensional case over a p-adic ring integer of a local field
which is unramified over Qp (where p is a prime number), and then to use this machinery to understand
p-adic periods of one-dimensional formal groups [7]. The general plan is as follow :

1. In chapter 2 we study the special case of one-dimensional commutative formal groups.

We will first of all give a general method in full details for their construction : Take an element
u of the form p+

∑
ν≥0

cνT
ν called a special element, where cν are integer over our local field, and

put pu−1 =
∑
ν≥0

bνT
ν , write f(x) =

∑
ν≥0

bνx
pν , finally put F (x, y) = f−1(f(x) + f(y)). Then F

has integer coefficients, and it is a formal group (over the integers), and any formal group over
the integers is isomorphic to one obtained in this fashion. Now let v be another special element
v = p +

∑
ν≥0

c′νT
ν and G be the formal group defined by G(x, y) = g−1(g(x) + g(y)) where

g(x) =
∑
ν≥0

b′νx
pν for pv−1 =

∑
ν≥0

b′νT
ν , then an homomorphism from F to G over the integers is

of the form g−1(cf) where c is an integer.

Then after, we bijectively identify the strong isomorphism classes of formal groups with the left
associate classes of special elements. And this leads to an invariant for the strong isomorphism
class of a formal group, the height.

Last of all we end by the classification for one-dimensional commutative formal groups over the
integers.

2. In chapter 3 we construct p-adic periods for one-dimensional commutative formal groups.

First of all we start by considering our very first landscape, the Tate module Tp(F ) attached to a
formal group F . We can exploit the definition of F to build an abelian group law in the set of none
invertible integers of an algebraic closure of our local field. If we denote by F [pn] the subgroup
of pn-torsion elements, then the multiplication by p map raises an inverse system (F [pn])n of
abelian groups, as for elliptic curves, Tp(F ) is simply the projective limit of the system (F [pn])n.
This is a free Zp-module of rank h, where h denotes the height of the formal group F . Since
the height is an invariant of the strong isomorphism class, then if two formal groups F ang G are
strongly isomorphic, their respective Tate module are ismorphic. Thanks to the finiteness of the
subgroups F [pn]), Tp(F ) is a profinite group; we have even more, Tp(F ) is a pro-p-group. If ψ
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is a morphism of formal groups from F to G over the integers, then for all n ≥ 0, it induces a
morphism

ψn : F [pn] −→ G[pn],

Then by the universal property of projective limit, this induces a canonical morphism

Tp(ψ) : Tp(F ) −→ Tp(G).

Tp(−) defines a functor from the category of commutative one-dimensional formal groups to the
restrictive category of profinite groups.

And then we briefly recall general results on the ring of Witt vectors over a perfect DVR, in order
to mention facts about the rings BdR and Bcris (see [8]).

Last of all we try to understand p-adic periods of one-dimensional formal groups [7].



2. Commutative formal groups of dimension 1
over a p-adic ring

In this chapter, we investigate the theory of commutative formal groups. We firstly deal with the general
context, and later on we restrict to the 1-dimensional case, that is of interest for this project. The main
references used for this part are [3], [10] and [13].

2.1 Generalities on commutative formal groups

If not otherwise specified, R will denote a commutative ring with a unit. x is a single indeterminate.We
begin by looking at single-variable formal power series with coefficients in R, and after we study multi-
variate formal power series, and we focus on those that are invertible with respect to formal composition
operation.

2.1.1 Definition. A formal power series with coefficients in R is a formal symbol of the form
∞∑
n=0

anx
n.

R[[x]] stands for the set of formal power series with coefficients in R.

We define addition and R-scalar multiplication in R[[x]] to be degree-wise. We define multiplication in
R[[x]] by the folowing rule:

( ∞∑

n=0

anx
n

)
.

( ∞∑

n=0

bnx
n

)
=
∞∑

n=0

cnx
n with cn =

n∑

k=0

akbn−k

Endowed with these operations, R[[x]] becomes a commutative R-algebra.

We recall that if f(x) ∈ R[[x]] the order ω(f(x)) of f(x) is the index of the first nonzero coefficient of
f(x) if f(x) is not zero, and is defined to be infinity otherwise.

Let f(x) =
∞∑
n=0

anx
n, g(x) =

∞∑
n=0

bnx
n be elements of R[[x]] such that ω(g(x)) ≥ 1(which means that

the constant term of g(x) vanishes), we define the composition f ◦ g to be the power series :

(f ◦ g) (x) = f(g(x))

=

∞∑

n=0

ang(x)n

=
∞∑

n=0

cnx
n

Where
cn =

∑

k∈N,i1+...+ik=n,i1,...,ik≥0
akbi1 ...bik .

The composition f ◦g is well defined due to the condition ω(g(x)) ≥ 1, and it is associative, with identity
the power series defined by i(x) = x. In few lines bellow, we are going to show a more general result that
will in particular say that any power series with order equals to 1, and such that the degree 1 coefficient
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is invertible in R, should be invertible in R[[x]] with respect to the formal power series composition.
Therefore the set of formal power series with order 1 and with degree 1 coefficient invertible in R is a
(noncommutative)group with respect to the formal power series composition.

2.1.2 Definition. Let x = (x1, ..., xn) be n indeterminates, R[[x1, ..., xn]] is the set of formal power
series with coefficients in R on the indeterminates x1, ..., xn, that is any formal symbol of the form

f(x1, ..., xn) =
∑

(i1,...,in)∈Nn
ai1...inx

i1
1 ...x

in
n ,

where each of the ai1...in belongs to R.

We want to generalize the composition of formal power series from the case of a single indeterminate to
the case of n indeterminates. For the sake of convinience, we write f(x) in the place of f(x1, ..., xn),
we also state that from now on, if not otherwise specified, formal power series have zero constant term.

If we consider two formal power series in n indeterminates, it is unclear how one might go about
composing them. Instead we look, not at individual formal power series, but at n-tuples of formal power
series in n indeterminates

2.1.3 Definition. Let f(x) = (f1(x), ..., fn(x)) and g(x) = (g1(x), ..., gn(x)) ∈ R[[x1, ..., xn]]n, we
define the composition f ◦ g to be the n-tuples of formal power series

(f ◦ g) (x) = (f1(g1(x), ..., gn(x)), ..., fn(g1(x), ..., gn(x)))

It is just a consequence of the single indeterminate case that it still holds here that the composition is
associative with identity the formal power series i(x) = (x1, ..., xn)

2.1.4 Definition. Let f(x) = (f1(x), ..., fn(x)) ∈ R[[x1, ..., xn]]n, for any i = 1, ..., n, write

fi = ai1x1 + ...+ ainxn + (terms of total degree at least 2).

Then the matrix Mf = (aij)1≤i,j≤n is called the degree 1 matrix of f

2.1.5 Proposition. An element f(x) = (f1(x), ..., fn(x)) ∈ R[[x1, ..., xn]]n is invertible with respect to
the composition of formal power series if and only if the degree 1 matrix Mf is invertible in the usual
ring of square matrices with coefficients in R.

The proof which is pretty much a bit of R-linear algebra can be found in [4].

A particular case of interest will be when n = 1, in this case thanks to proposition 2.1.5 we see that a
formal power series in a single indeterminate with zero constant term is invertible with respect to the
composition of formal power series if and only if the coefficient of the degree 1 monomial in invertible
in R. x = (x1, ..., xn) and y = (y1, ..., yn) are n-tuples of indeterminates. From now on, we will write
R[[x]]0 for power series with zero constant term. For f(x), g(x) ∈ R[[x]], we write f(x) ≡ g(x)mod degr
if ω(f(x)− g(x)) ≥ r

2.1.6 Definition. An n-dimensional formal group over R is an element F (x, y) ∈ R[[x, y]]n0 satisfying :

i) F (x, y) = x+ ymod deg2

ii) F (F (x, y), z) = F (x, F (y, z))
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If in addition F (x, y) = F (y, x), we say that the formal group F is commutative.

Thanks to proposition 2.1.5, and from the point (i), we can see that any formal group is invertible. Now
from (ii), and the fact that F (0, 0) = 0 we have F (F (x, 0), 0) = F (x, F (0, 0)) = F (x, 0), therefore
F (x, 0) = F (0, x) = x.

2.1.7 Definition. Let F and G be formal groups over R of dimensions n and m respectively, a morphism
from F to G is any element ϕ ∈ R[[x]]m0 satisfying ϕ(F (x, y)) = G(ϕ(x), ϕ(y)).

We point out that in the case n = m, if ϕ is invertible, then its inverse ϕ−1 is a morphism from G to
F , we say in this case that F and G are weakly isomorphic over R. If in addition ϕ(x) ≡ xmod deg2,
then we say that F and G are strongly isomorphic over R.

2.1.8 Example. n = 1, R = Q then F (x, y) = x + y and G(x, y) = x + y + xy are 1-dimensional
commutative formal groups over the rationals, and ϕ(x) = −1+exp(x) =

∑
n≥1

1
n!x

n is a morphism from

F to G over the rationals, which is a strong isomorphism.

From now on, all the formal groups considered are assumed to be commutative. Let F be a n-dimensional
formal group over R. Put [0]Fx = 0 and [m + 1]Fx = F (x, [m]Fx) for all m ≥ 0. When there is no
risk of confusion we just write [m] in the place of [m]F .

2.1.9 Remark. We then have the following facts:

1. For all m,m′ in N, [m+m′]x = F ([m]x, [m′]x). To show this, we fix m′ and we show the result
by induction on m, the result then follows thanks to the associativity property of F .

2. For all m,m′ in N, [mm′]x = [m]([m′]x). Once again to show this, we fix m′ and we show the
result by induction on m. By what follows

[(m+ 1)m′]x = [mm′ +m′]x = F ([mm′]x, [m′]x),

now by induction hypothesis

F ([mm′]x, [m′]x) = F ([m][m′]x, [m′]x) = F ([m′]x, [m][m′]x),

the latter equality is the commutativity of F . By definition, F ([m′]x, [m][m′]x) = [m+1]([m′]x),
and this ends the proof.

3. Since F (x, y) ≡ x+ y mod deg 2, then;

[m]x = F (x, [m− 1]x)

≡ x+ [m− 1]x mod deg 2

≡ x+ x+ [m− 2]x mod deg 2, using the same argument

Then we keep applying this argument and we arrive at [m]x ≡ mx mod deg 2



Section 2.1. Generalities on commutative formal groups Page 6

4. For all n ∈ N, we have F ([m]x, [m]y) = [m]F (x, y). We show it by induction on m.

F ([m+ 1]x, [m+ 1]y) = F (F (x, [m]x), F (y, [m]y)), by definition

= F (x, F ([m]x, F (y, [m]y))), by associativity of F

= F (x, F (F ([m]x, y), [m]y)), by associativity of F

= F (x, F (F (y, [m]x), [m]y)), by commutativity of F

= F (x, F (y, F ([m]x, [m]y))), by associativity of F

= F (F (x, y), F ([m]x, [m]y)), by associativity of F

= F (F (x, y), [m]F (x, y)), by induction hypothesis

= [m+ 1]F (x, y)

Let F be a one-dimensional formal group over R, assume now that R is a field of characteristic p > 0,
assume that [p]x is not zero. Then set q to be the greatest integer such that [p]x ≡ 0 mod deg q.
Since char(R) = p then from the third point of the previous remark we see that q must be at least 2.
By the maximality of q, there is r ∈ R nonzero such that [p]x ≡ rxq mod deg (q + 1). The fact that
F (x, y) ≡ x+ y mod deg 2, implies the following two congruences :

[p](F (x, y)) ≡ r(x+ y)q mod deg (q + 1)

and
F ([p]x, [p]y) ≡ r(xq + yq) mod deg (q + 1).

Therefore by the fourth point of the previous remark we have

r (xq + yq − (x+ y)q) ≡ 0 mod deg (q + 1).

But for the sake of degrees, the polynomial r (xq + yq − (x+ y)q) must be zero, and since r is nonzero
then xq + yq − (x + y)q = 0, but this implies that p|q, then q = pq′, and the equation becomes
(xp)q

′
+ (yp)q

′ − (xp + yp)q
′

= 0. Then with the same argument p|q′. We iterate this, and conclude
that q is a power of p. Put q = ph. This justifies the following definition from [11].

2.1.10 Definition. Let F be a one-dimensional formal group over a field of characteristic p > 0.

1. If [p]x is not zero, we say that the height of F is h

2. If [p]x = 0, we say that the height of F is infinite.

Intuitively, the second point of the definition actually makes perfect sense, because the integer q can
get as big as it wants, the congruence is still satisfied.

2.1.11 Example. We try to compute the height in the following two cases, where R = Fp.

1. F (x, y) = x+y, let m ≥ 1 then [m]x = F (x, [m−1]x) = x+[m−1]x, then by keeping iterating
we find [m]x = mx. In particular [p]x = 0, then height(F )=∞.

2. F(x,y)=x+y+xy, let m ≥ 1 then

[m]x = F (x, [m− 1]x) = x+ [m− 1]x+ x([m− 1]x) = (1 + x)([m− 1]x) + x,
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by successive iteration downwards we find that for all k ≤ m,

[m]x = (1 + x)k([m− k]x) + x
(

1 + (1 + x) + (1 + x)2 + ...+ (1 + x)k−1
)
.

After computation,

x
(

1 + (1 + x) + (1 + x)2 + ...+ (1 + x)k−1
)

= (1 + x)k − 1.

Then for all k ≤ m, [m]x = (1 + x)k([m− k]x) + (1 + x)k − 1. In particular for k = m we have

[m]x = (1 + x)m([0]x) + (1 + x)m − 1 = (1 + x)m − 1.

In particular for m = p we have [p]x = 1 + xp − 1 = xp, then height(F )=1.

Put A = R[[x]], we recall that the space of derivations of A over R is a free left A-module that we

denote by D(A,R) with basis ( ∂
∂xi

)1≤i≤n, actually for any D ∈ D(A,R), D =
n∑
i=1
D(xi)

∂
∂xi

. We will

denote by D∗(A,R) the dual A-module of D(A,R), which is the space of differentials of A over R. For
a fixed element f ∈ A, we can define a particular differential df , by

df(D) =

n∑

i=1

D(xi)
∂f

∂xi
(x).

Therefore we see that (dxi)1≤i≤n is an A-basis of D∗(A,R), and for all f ∈ A,

df =
n∑

i=1

∂f

∂xi
(x)dxi.

Now consider x′ = (x′1, ..., x
′
m) another set of indeterminates, and put B = R[[x′]], for any ϕ(x) ∈

R[[x]]m0 , we define the R-homomorphism ϕ∗ from D∗(B,R) to D∗(A,R) by

ϕ∗




m∑

j=1

ψj(x
′)dx′j


 =

m∑

j=1

ψj(ϕ(x))d(ϕj(x)).

2.1.12 Definition. Let F be a n-dimensional formal group over R. Consider another set of indetermi-
nates t = (t1, ..., tn)

• The element Tt ∈ Rt[[x]]n defined by Tt(x) = F (x, t) is called the right translation on F , where
Rt = R[[t]].

• A differential ω ∈ D∗(A,R) is said to be right invariant on F if T ∗t (ω) = ω

We will denote by D∗(F,R) the space consisting of all right invariant differentials on F .

2.1.13 Proposition. [10] F is an n-dimensional formal group over R, denote by (ψij(x))1≤i,j≤n the

inverse matrix of
(
∂Fi
∂xj

(0, x)
)
1≤i,j≤n

, then ψij(0) = δij for all i, j, and a R-basis of D∗(F,R) is given

by the ωi’s, where

ωi =
n∑

j=1

ψij(x)dxj ,

we call it the canonical basis. In particular,D∗(F,R) is a free R-module of rank n.
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The following theorem is of a crucial importance for this project, as it will be the main bridge for us to
get to the algebraic study and classification of formal groups in a p-adic ring.

2.1.14 Theorem. [10] Let F be a formal group over a ring R of characteristic zero, and let ω =
(ω1, ..., ωn), where the ωi’s are elements of the canonical basis of D∗(F,R), then there exists a unique
element f(x) ∈ R[[x]]n0 such that ω = df . Moreover we have

f(x) ≡ xmod deg2 and F (x, y) = f−1(f(x) + f(y)).

For the rest of this paragraph we assume that R is an integral domain of characteristic zero, and K its
fraction field.

2.1.15 Lemma. If ψ(x) ∈ K[[x]]m0 satisfies ψ(x+ y) = ψ(x) + ψ(y), then ψ must be K-linear.

Proof. Assume by contradiction that ψ(x) has a nonzero term with total degree at least 2, then consider
the smallest integer greater than 2 such that ψ(x) has a nonzero term of total degree r, we can then
write

ψ(x) =

n∑

i=1

aixi + ai1...inx
i1
1 ...x

in
n + (terms of total degree at least r),

where ai1...in 6= 0 and i1 + ...+ in = r, then

ψ(x+ y) =
n∑

i=1

ai(xi + yi) + ai1...in(x1 + y1)
i1 ...(xn + yn)in + (terms of total degree at least r),

put u = ai1...in(x1 + y1)
i1 ...(xn + yn)in . We have two cases :

• there is j ∈ {1, ..., n} such that ij = r, say i1 = r, then i2 = ... = in = 0, but then by splitting
u we find ai1...in(xr1 + yr1 + T ) where T is made of terms that do not appear in ψ(x) + ψ(y), we
must then have ai1...in = 0.

• Without lost of generality we can assume here that i1 and i2 are not zero, then ai1...iny
i1
1 x

i2
2 ...x

in
n

does not appear in ψ(x) + ψ(y), and therefore we must have ai1...in = 0.

We have shown that in any case ai1...in = 0, but this is a contradiction by definition of ai1...in .

Let F be a n-dimensional formal group over R, by theorem 2.1.14, there is f(x) ∈ K[[x]]n0 such that

f(x) ≡ xmod deg2 and F (x, y) = f−1(f(x) + f(y)),

we can say more about f(x) in the following proposition.

2.1.16 Proposition. The element f(x) ∈ K[[x]]n0 satisfying

f(x) ≡ xmod deg2 and F (x, y) = f−1(f(x) + f(y)),

is unique having this property.



Section 2.1. Generalities on commutative formal groups Page 9

Proof. Let h(x) ∈ K[[x]]n0 such that h(x) ≡ xmod deg2 and F (x, y) = h−1(h(x) + h(y)), then
(f ◦ h−1)(x) ∈ K[[x]]n0 . Because h is invertible, write x = h(x′) and y = h(y′).

(f ◦ h−1)(x+ y) = f
(
h−1(h(x′) + h(y′))

)

= f ◦ F (x′, y′)

= f(x′) + f(y′)

= f ◦ h−1(x) + f ◦ h−1(y).

We can then apply lemma 2.1 to f ◦ h−1 to deduce that it is K-linear, but we also have that

(f ◦ h−1)(x) ≡ xmod deg2,

therefore f ◦ h−1 = i, which means that f = h

Proposition 2.1.16 leads us to consider the element f , and we call it the transformer of F .

2.1.17 Proposition. Let F be a n-dimensional formal group over R with transformer f(x) ∈ K[[x]]n0 ,
and let G be a m-dimensional formal group over R with transformer g(x) ∈ K[[x]]m0 , then :

• Every morphism ϕ(x) from F to G over R has the form g−1 ◦ (Cf), where C in an nxm matrix
with coefficients in R.

• If C is an nxm matrix with coefficients in R, then g−1 ◦ (Cf) is a morphism from F to G over
R if and only if it has coefficients in R

Proof. Let ϕ(x) be a morphism from F to G over R, then by definition we have

ϕ
(
f−1 (f(x) + f(y))

)
= g−1 (g(ϕ(x)) + g(ϕ(y))) .

Substituting x, y by f−1(x), f−1(y) respectively and composing by g we get

(
g ◦ ϕ ◦ f−1

)
(x+ y) =

(
g ◦ ϕ ◦ f−1

)
(x) +

(
g ◦ ϕ ◦ f−1

)
(y).

Hence by the previous lemma we deduce that
(
g ◦ ϕ ◦ f−1

)
is K-linear, therefore there is a nxm matrix

C with coefficients in K such that
(
g ◦ ϕ ◦ f−1

)
(x) = Cx. Replacing x by f(x) and composing by

g−1 we get
ϕ(x) = g−1 ◦ (Cf)(x).

Since
f(x) ≡ xmod deg2 and g(x) ≡ xmod deg2,

then ϕ(x) ≡ Cxmod deg2, but by definition ϕ(x) has cofficients in R, then so has C.

Conversely assume that C is an nxm matrix with coefficients in R. If g−1 ◦ (Cf)(x) is a morphism
from F to G over R, then by definition it has coefficients in R. Now if g−1 ◦ (Cf)(x) has coefficient
in R, it amounts just to show that it verify the other condition of being a morphism from F to G over
R, which is

g−1 ◦ (Cf)(F (x, y)) = G(g−1 ◦ (Cf)(x), g−1 ◦ (Cf)(y)).
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2.2 The p-adic case

In this paragraph we restrict to the case where the ring R is the ring of integers of a p-adic field. Our
main reference for this is [10], and we try to adapt his work in the p-adic context. From now on to the
rest of this chapter, if without further notice, we fix the following notations :

(K, v) is a complete discrete valuation field which is unramified and such that its residue class field
κ = OK/mK is perfect of characteristic p, we can therefore fix p as a uniformizer, then mK = pOK .
σ : K → K is an endomorphism such that:

σ(α)− αp ∈ pOK for anyα ∈ OK .

Let α ∈ OK , there is x ∈ pOK such that σ(α) = αp + x, therefore σ(α) ∈ OK , which means that
σ(OK) ⊂ OK , hence σ induces a ring homomorphism σ : OK → OK . If in addition α is invertible,
then σ being a homomorphism, σ(α) is invertible as well, this then means that σ(O∗K) ⊂ O∗K .

Take again α ∈ OK , there are n ∈ N and u ∈ O∗K such that α = upn, since σ(O∗K) ⊂ O∗K , then,

v(σ(α)) = v(pn) = n = v(α).

Then v(σ(α)) = v(α) for allα ∈ OK .

In particular for all x ∈ mK , v(σ(x)) = v(x) ≥ 1, this means that σ(mK) ⊂ mK . Therefore σ induces
a morphism of fields

σ̃ : OK/mK → OK/mK defined by σ̃(α+ mK) = σ(α) + mK

Since σ(α)− αp ∈ mK , then σ̃(α+ mK) = αp + mK = (α+ mK)p. Therefore σ̃ is just the Frobenius
endomorphism of the residue class field OK/mK , which is perfect, then σ̃ is an isomorphism. Thus for
all α ∈ OK there is β ∈ OK such that α− σ(β) ∈ mK .

T denotes an undeterminate, for all k ∈ N, σk denotes the endomorphism obtained by repeatedly
composing k times with σ, and starting with the identity map. In particular σ0 = id. We put

Kσ[[T ]] = (K[[T ]],+, .)

Here the addition is the usual addition of formal power series, whereas the multiplication is given by the
following rule : Tα = σ(α)T for all α ∈ K. More explicitely :

For all f =
∑

i≥0
αiT

i and g =
∑

i≥0
βiT

i ∈ Kσ[[T ]],

the coefficient of T i in the expression of fg is

(fg)i =
i∑

k=0

αkσ
k(βi−k).

Kσ[[T ]] satisfies all the axioms to be a (noncommutative) ring, we are going to check the associativity
of the product which is the less straight forward.

Let f =
∑

i≥0
αiT

i, g =
∑

i≥0
βiT

i and h =
∑

i≥0
γiT i ∈ Kσ[[T ]]
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We need to check that (fg)h = f(gh), which amounts to check that they have the same coefficients
for every T i.

(f(gh))i =
i∑

k=0

fkσ
k((gh)i−k)

=
i∑

k=0

αkσ
k



i−k∑

j=0

βjσ
j(γi−k−j)




=

i∑

k=0

i−k∑

j=0

αkσ
k(βj)σ

k+j(γi−k−j)

((fg)h)i =
i∑

k=0

(fg)kσ
k(hi−k)

=
i∑

k=0

k∑

l=0

αlσ
l(βk−l)σ

k(γi−k)

=
i∑

l=0

i∑

k=l

αlσ
l(βk−l)σ

k(γi−k)

=

i∑

k=0

i∑

l=k

αkσ
k(βk−l)σ

l(γi−k) we have switched the variables k, l

=

i∑

k=0

i−k∑

j=0

αkσ
k(βj)σ

k+j(γi−k−j) we have set j = l − k

Then (f(gh))i = ((fg)h)i for all i ∈ N.

An important notice is that the multiplication on Kσ[[T ]] is an extension of the usual multiplication on
K, therefore K is a subring of Kσ[[T ]]. We denotee by Bm,n the K-vector space consisting of elements

of the form
∞∑
ν=0

CνT
ν , where the Cν are mxn matrices with coefficients in K. In the same way we

denote by Am,n the OK-module consisting of elements of the form
∞∑
ν=0

CνT
ν , where the Cν are mxn

matrices with coefficients in OK .

If u =
∞∑
ν=0

CνT
ν ∈ Bl,m and v =

∞∑
ν=0

DνT
ν ∈ Bk,l, then we define the product vu by

vu =

∞∑

ν=0

EνT
ν ∈ Bk,m where Eν =

ν∑

i=0

Diσ
i(Cν−i)

We recall that x = (x1, ..., xn) is a n-tuples of indeterminates, take f(x) ∈ K[[x]]n0 , and u =
∞∑
ν=0

CνT
ν ∈

Bl,m, we define the element u ∗ f ∈ K[[x]]n0 by

(u ∗ f)(x) =
∞∑

ν=0

Cνf
σν (xp

ν
)
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Where fσ
ν

stands for the power series obtained from f by applying the endomorphism σν to all its
coefficients; and xp

ν
stands for the n-tuples (xp

ν

1 , ..., x
pν
n ). We mention that u ∗ f is actually a well-

defined power series as f has zero constant term.

Consider again u, v as above, then

(v ∗ (u ∗ f)) (x) =
∞∑

ν=0

Dν(u ∗ f)σ
ν
(xp

ν
)

=
∞∑

ν=0

Dν



∞∑

µ=0

Cµf
σµ
((
xp

ν)pµ)


σν

=
∞∑

ν=0

Dν



∞∑

µ=0

Cµf
σµ
(
xp

ν+µ
)


σν

=
∞∑

ν=0

Dν

∞∑

µ=0

Cσ
ν

µ fσ
ν+µ
(
xp

ν+µ
)

=
∞∑

λ=0


 ∑

ν+µ=λ

DνC
σν

µ


 fσ

λ
(
xp

λ
)

=

∞∑

λ=0

Eλf
σλ
(
xp

λ
)

= ((vu) ∗ f) (x)

Let I be any ideal ofOK , for f(x), g(x) ∈ K[[x]]n, we write f(x) ≡ g(x) mod I, to say that fi(x)−gi(x)
has coefficients in I, for all i ∈ {1, ..., n}. The same notation can therefore be restricted to polynomials
with coefficients in OK .

2.2.1 Lemma. Let f(x), g(x) ∈ OK [x], such that f(x) ≡ g(x) mod mK , then for all i ∈ N,

f(x)p
i ≡ g(x)p

i
mod mi+1

K

Proof. We prove the result by induction on i. For i = 0 the result is just the hypothesis. Now assume
that i ≥ 0 and that the result is true for i, then there is h(x) ∈ OK [x] such that

f(x)p
i

= g(x)p
i

+ pi+1h(x).

Now raising this to p, applying the binomial formula and using the fact that for all k ∈ {1, ..., p− 1}, p
divides the binomial coefficient

(
p
k

)
, we deduce that there is h′(x) ∈ OK [x] such that

f(x)p
i+1

= g(x)p
i+1

+ pi+2h′(x).

Which just means that f(x)p
i+1 ≡ g(x)p

i+1
mod mi+2

K

2.2.2 Corollary. For any rational integers ν ≥ 0, a ≥ 1 and m ≥ 1 we have the following congruence

p−1(x+ py)mp
aν ≡ p−1xmpaν mod mK
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Proof. As a varible here we have z = (x1, ..., xn, y1, ..., yn), set f(z) = x + py and g(z) = x. Then
f(x), g(x) ∈ OK [z], are such that f(z) ≡ g(z) mod mK . Therefore f(z)m ≡ g(z)m mod mK , we
apply lemma 2.2.1 in the latter congruence and deduce that

(x+ py)mp
aν ≡ xmpaν mod maν+1

K .

But aν + 1 ≥ ν + 1, therefore (x+ py)mp
aν ≡ xmpaν mod mν+1

K . Which finally means that

p−1(x+ py)mp
aν ≡ p−1xmpaν mod mK .

In the sequel we write Bn for Bn,n, same for An.

2.2.3 Remark. Let u =
∑
ν≥0

CνT
ν ∈ An such that the matrix C0 is invertible in the ring of matrices with

coefficients in OK , we wonder if we can construct an element v =
∑
ν≥0

DνT
ν ∈ An such that uv = In,

the identity matrix. This means that we have to find a family of matrices (Dν)ν≥0 with coefficients in
OK such that

ν∑

k=0

Ckσ
k(Dν−k) = δ0,ν for all ν ≥ 0 (∗).

We set D0 = C−10 . Let ν ≥ 1, assume by induction that D0, ..., Dν−1 have been constructed and

with coefficients in OK , then from relation (∗) applied to ν, we have that C0Dν = −
ν∑
k=1

Ckσ
k(Dν−k),

therefore Dν = −C−10

ν∑
k=1

Ckσ
k(Dν−k) has coefficient in OK .

Now since D0 is invertible, the same argument applied to v shows that there is v′ ∈ An such that
vv′ = In. Then vu = vuIn = vuvv′ = v(uv)v′ = vInv

′ = vv′ = In. Hence uv = vu = In which means
that v = u−1. Conversely, if u is invertible in An, ten obviously C0 is invertible in the ring of matrices
with coefficients in OK . We notice that the same result holds replacing OK by K, and An by Bn.

2.2.4 Definition. We call an element u ∈ An special if u ≡ pIn mod deg 1. If P is an invertible matrix
in Mn(OK) and u ∈ An a special element, then we say that an element f(x) ∈ K[[x]]n0 is of type (P, u)
if the following are satisfied :

• f(x) ≡ Px mod deg 2

• (u ∗ f)(x) ≡ 0 mod mK

In the sequel, if f(x) is of type (In, u) we just say that f(x) is of type u.

If u ∈ An is a special element, then by definition, u = pIn +
∑
ν≥1

CνT
ν , then from the previous remark,

since C0 = pIn is invertible in Kn,n, then u is invertible in Bn. Set w = u−1p, then w = pu−1 because
σ(p) = p, then uw = pIn. We recall that i(x) ∈ K[[x]]n0 is defined by i(x) = x.

Set w =
∑

ν≥0
BνT

ν ,
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necessarily B0 = In, then :

(w ∗ i)(x) =
∑

ν≥0
Bνi

σν (xp
ν
)

=
∑

ν≥0
Bνx

pν

= Inx+
∑

ν≥1
Bνx

pν

≡ Inx mod deg 2

combined with

(u ∗ (w ∗ i)) (x) = ((uw) ∗ i)(x) = ((pIn) ∗ i)(x) = px ≡ 0 mod mK ,

enable us to say that w ∗ i is of type u.

2.2.5 Lemma. Let u ∈ An be a special element and put w = pu−1 =
∑
ν≥0

BνT
ν , then :

pνBν has coefficients in OK for all ν ≥ 0

Proof. Write u = pIn +
∑
ν≥1

CνT
ν , set C0 = pIn and uw =

∑
ν≥0

DνT
ν then since uw = pIn, we deduce

that

Dν =
ν∑

i=0

Ciσ
i(Bν−i) for all ν ≥ 0 (∗).

But u ∈ An, then Cν has coefficients in OK for all ν ≥ 0. We are going to show our result by induction.
B0 = In has coefficients in OK . Let ν ≥ 1, assume pjBj has coefficients in OK for all 0 ≤ j ≤ ν − 1.
Then from (*) we have

C0Bν = −
ν∑

i=1

Ciσ
i(Bν−i).

Multiplying both sides of the equality by pν−1 we get

pνBν = −
ν∑

i=1

Ciσ
i(pν−1Bν−i).

But each of the pν−1Bν−i has coefficients in OK by induction hypothesis.

If f(x) and g(x) are elements of K[[x]]n, then we write

f(x) ≡ g(x) mod deg r, mod mK

if there are ϕ(x) and ψ(x) ∈ K[[x]]n such that

f(x)− g(x) = ϕ(x) + ψ(x)

where
ϕ(x) ≡ 0 mod deg r, and ψ(x) ≡ 0 mod mK .

From now on, except otherwise specified, u ∈ An is a special element, we write w = pu−1 and
h(x) = (w ∗ i)(x) which has been shown to be of type u.
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2.2.6 Lemma. Let v ∈ Am,n and ψ(x′) ∈ K[[x′]]n0 where x′ is a finite tuple of indeterminates, if the
coefficients of components of ψ, of terms of total degree ≤ r− 1 belong to OK for some r ≥ 2, then :

v ∗ (h ◦ ψ) ≡ (v ∗ h) ◦ ψ mod deg (r + 1), mod mK

Proof. Write w =
∑
ν≥0

BνT
ν , of course B0 = In, write v =

∑
ν≥0

AνT
ν , then

vw =
∑

λ≥0
CλT

λ where Cλ =
∑

0≤ν, µ, ν+µ=λ
Aνσ

ν(Bµ).

therefore

((v ∗ h) ◦ ψ)(x′) = (((vw) ∗ i)((ψ)(x′))

=
∑

λ≥0
Cλi

σλ(ψ(x′))p
λ

=
∑

λ≥0


 ∑

0≤ν, µ, ν+µ=λ
Aνσ

ν(Bµ)(ψ(x′))p
λ




=
∑

0≤ν, µ
Aνσ

ν(Bµ)(ψ(x′))p
ν+µ

(1)

h ◦ ψ(x′) = (w ∗ i)(ψ(x′)) =
∑

µ≥0
Bµi

σµ
(
(ψ(x′))p

µ)
=
∑

µ≥0
Bµ(ψ(x′))p

µ
,

then :

(v ∗ (h ◦ ψ))(x′) =
∑

ν≥0
Aν(h ◦ ψ)σ

ν
(ψ(x′))p

ν
=
∑

ν, µ≥0
Aνσ

ν(Bµ)
(
ψσ

ν
(x′p

ν
)
)pµ

(2)

From (1) and (2) it is enough to just show that for all ν µ ≥ 0,

Aνσ
ν(Bµ)(ψ(x′))p

ν+µ ≡ Aνσν(Bµ)
(
ψσ

ν
(x′p

ν
)
)pµ

mod deg (r + 1), mod mK (3)

Combining the fact that for all ν ≥ 0, Aν has coefficients in OK , and the fact that from lemma 2.2.5
pµBµ has coefficients in OK for all µ ≥ 0, we deduce that to prove (3) it is enough to prove that :

p−µ(ψ(x′))p
ν+µ ≡ p−µ

(
ψσ

ν
(x′p

ν
)
)pµ

mod deg (r + 1), mod mK (4).

(4) is obviously true if ν = µ = 0. As terms of degree ≥ r do not affect the congruence, we may behave
like ψ(x′) is an element of OK [x′] of degree ≤ r − 1, in this case we just show the congruence mod
mK . Since σ acts on OK/mK as the Frobenius endomorphism, then

ψ(x′)p ≡ ψp(x′p) ≡ ψσ(x′p) mod mK

where ψp stands for the polynomial obtained by taking all the coefficients of ψ to power p. And by
induction on ν one deduces that

ψ(x′)p
ν ≡ ψσν (x′p

ν
) mod mK .

Then from lemma 2.2.1 we have,

(ψ(x′))p
ν+µ ≡

(
ψσ

ν
(x′p

ν
)
)pµ

mod mµ+1
K .

Therefore
p−µ(ψ(x′))p

ν+µ ≡ p−µ
(
ψσ

ν
(x′p

ν
)
)pµ

mod mK .

Which ends our proof.
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2.2.7 Corollary. Let f(x) and g(x) ∈ K[[x]]n0 , P,Q be invertible matrices in Mn(OK) and u ∈ An
such that f(x) is of type (P, u), while g(x) is of type (Q, u), then g−1 ◦ f ∈ OK [[x]]n0 .

Proof. Since g(x) is of type (Q, u) and Q is invertible, then form proposition 2.1.5, g(x) is invertible,
then same argument holds for h(x) and f(x). Define ϕ = h−1 ◦ f , we need to show by induction
that all the coefficients of ϕ(x) belong to OK . The constant term of ϕ(x) is zero, then it belongs to
OK . we recall that h is of type u, then h−1 ◦ f(x) ≡ Px mod deg 2, this combined with the fact that
P ∈ Mn(OK) means that the first-degree coefficients of ϕ(x) are in OK . Let r ≥ 2, assume that the
coefficients of ϕ(x) of total degree ≤ r − 1 are in OK , then we have

pϕ = (u ∗ h) ◦ ϕ, by definition

≡ u ∗ (h ◦ ϕ) mod deg (r + 1), mod mK , from lemma 2.2.6

= u ∗ f ≡ 0 mod mK

This precisely means that the r-th degree coefficients of ϕ(x) belong to OK . Using a similar reasoning
we show that h−1 ◦ g also belongs to OK [[x]]n0 . Therefore, from the formula

g−1 ◦ f = (g−1 ◦ h) ◦ (h−1 ◦ f) = (h−1 ◦ g)−1 ◦ (h−1 ◦ f)

we deduce the result.

In the next corollary we generalize the result of lemma 2.2.6

2.2.8 Corollary. Let v ∈ Am,n and ψ(x′) ∈ K[[x′]]n0 where x′ is a finite tuple of indeterminates, if all
the coefficients of components of ψ, of terms of total degree ≤ r − 1 belong to OK for some r ≥ 2,
and if f(x) ∈ K[[x]]n0 is of type (P, u) then :

v ∗ (f ◦ ψ) ≡ (v ∗ f) ◦ ψ mod deg (r + 1), mod mK .

We first note that since h is of type u, then corollary 2.2.8 is a generalization of lemma 2.2.6.

Proof. Again we keep ϕ = h−1 ◦ f , put v =
∑
ν≥0

AνT
ν , since ϕ(x) ≡ Px mod deg 2, then by definition

we have
((v ∗ h) ◦ ϕ)(x) ≡ A0Px ≡ (v ∗ (h ◦ ϕ))(x) mod deg 2.

Then define

s1(x) = ((v ∗ h) ◦ ϕ)(x)−A0Px and s2(x) = (v ∗ (h ◦ ϕ))(x)−A0Px.

From corollary 2.2.7 ϕ(x) has all coefficients in OK , then from lemma 2.2.6 we have

s1(x) ≡ s2(x) mod deg (r + 1), mod mK .

Now since all the coefficients of ψ, of terms of total degree ≤ r − 1 belong to OK , and combined to
the fact that the constant term of ψ(x) is zero, we deduce that

s1 ◦ ψ(x) ≡ s2 ◦ ψ(x) mod deg (r + 1), mod mK . (∗)
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we then have

v ∗ (f ◦ ψ) = v ∗ (h ◦ (ϕ ◦ ψ))

≡ ((v ∗ h) ◦ ϕ ◦ ψ) mod deg (r + 1), mod mK , by lemma 2.2.6

= A0Pψ + s1 ◦ ψ mod deg (r + 1), mod mK , by definition of s1

≡ A0Pψ + s2 ◦ ψ mod deg (r + 1), mod mK , from the congruence (∗)
= (v ∗ (h ◦ ϕ)) ◦ ψ) mod deg (r + 1), mod mK , by definition of s2

= (v ∗ f) ◦ ψ mod deg (r + 1), mod mK .

Corollary 2.2.8 will be mostly used in the following particular case of interest.

2.2.9 Corollary. Under notations and hypothesis of corollary 2.2.8, if we ask in addition that ψ(x′) has
all coefficients in OK , then

v ∗ (f ◦ ψ) ≡ (v ∗ f) ◦ ψ mod mK .

Proof. Assume that the congruence does not hold. From lemma 2.2.8 there are

r ≥ 2, ψr+1 and ϕ ∈ K[[x′]]n0

such that
w(ψr+1) ≥ r + 1, ϕ ≡ 0 mod mK

and
v ∗ (f ◦ ψ)− (v ∗ f) ◦ ψ = ψr+1 + ϕ.

Then necessarily, ψr+1 has a coefficient of total degree say s ≥ r+ 1 that does not belong to mK . We
apply lemma 2.2.8 again, then there are

ψs+1 and ϕ′ ∈ K[[x′]]n0

such that
w(ψs+1) ≥ s+ 1, ϕ′ ≡ 0 mod mK

and
v ∗ (f ◦ ψ)− (v ∗ f) ◦ ψ = ψs+1 + ϕ′.

But then ψr+1−ψs+1 = ϕ′−ϕ ≡ 0 mod mK , and since w(ψs+1) ≥ s+1 ≥ r+1, then ψr+1−ψs+1 has a
coefficient of total degree s that does not belong to mK , but this contradicts the latter congruence.

We now use the above constructed machinery to construct some formal groups over OK .

2.2.10 Theorem. Let P, Q and u be defined as usual, f(x) be of type (P, u), and g(x) be of type
(Q, u), then :

1. F (x, y) = f−1(f(x) + f(y)) is a (commutative)formal group over OK .

2. Let G(x, y) = g−1(g(x) + g(y)), then the formal groups F and G are isomorphic over OK .

3. If in addition P = Q, then the formal groups F and G are strongly isomorphic over OK .
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Proof. Define H(x, y) = h−1(h(x) + h(y)), We first show that H(x, y) is a formal group over OK ,
for this we first show that it has coefficients in OK , which we do by induction. The constant term of
H(x, y) is zero, then it belongs to OK . We recall that h(x) is of type u, then from proposition 2.1.5
we have

H(x, y) = h−1(h(x) + h(y))

≡ In(h(x) + h(y)) mod deg 2

≡ x+ y mod deg 2

Then the first-degree coefficients of H(x, y) belong to OK . Now let r ≥ 2 and assume that the
coefficients of H(x, y) of terms of degree ≤ r − 1 belong to OK , then

pH(x, y) = ((u ∗ h) ◦H)(x, y), by definition

≡ (u ∗ (h ◦H))(x, y) mod deg (r + 1), mod mK , by corollary 2.2.8

= (u ∗ h)(x) + (u ∗ h)(y) mod deg (r + 1), mod mK

= px+ py mod deg (r + 1), mod mK

≡ 0 mod mK .

Therefore the r-th degree coefficients of H(x, y) belong to OK . Thus H(x, y) has coefficients in OK .
Moreover

H(H(x, y), z) = h−1(h(H(x, y)) + h(z))

= h−1(h(x) + h(y) + h(z))

= h−1(h(x) + h ◦ h−1(h(y) + h(z)))

= h−1(h(x) + h(H(y, z)))

= H(x,H(y, z)).

Then H(x, y) is a formal group over OK . we are now ready to prove the points of our theorem.

1. From proposition 2.1.5 we have

F (x, y) = f−1(f(x) + f(y)) ≡ P−1(Px+ Py) mod deg 2 = x+ y mod deg 2.

In the same way than we did for H(x, y), we can also show that F (F (x, y), z) = F (x, F (y, z)).
Therefore it is only left to prove that F (x, y) has coefficients in OK . for this we just remark that
F (x, y) =

(
ϕ−1 ◦H ◦ ϕ

)
(x, y), where as usual ϕ = h−1 ◦ f . But as we have shown above H has

coefficients in OK , so have ϕ and ϕ−1, thus F has coefficients in OK .

2. From the first point we deduce that G(x, y) is also a formal group over OK . Put ψ = h−1 ◦ g.
Then as for F , G = ψ−1 ◦H ◦ ψ. Define

φ = ψ−1 ◦ ϕ ∈ OK [[x]]n0 because of corollary 2.2.7.

Moreover we have

φ ◦ F = φ ◦ ϕ−1 ◦H ◦ ϕ = ψ−1 ◦ ϕ ◦ ϕ−1 ◦H ◦ ψ ◦ φ = ψ−1 ◦H ◦ ψ ◦ φ = G ◦ φ

Then φ is a morphism of formal groups from F to G over OK , but φ is invertible by definition,
then F and G are isomorphic.
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3. We have the following congruences : ψ(x) ≡ Qx mod deg 2, and ϕ(x) ≡ Px mod deg 2, there-
fore

φ(x) ≡ Q−1Px mod deg 2.

Whence if P = Q we deduce that φ(x) ≡ x mod deg 2, which means that F and G are strongly
isomorphic.

2.2.11 Remark. Take P and u as above, take any element f ∈ K[[x]]n0 , and put ϕ = h−1 ◦ f .

i) If we assume that f is of type (P, u), then as we already know ϕ(x) has coefficients in OK and
ϕ(x) ≡ Px mod deg 2.

ii) Conversely if we assume that ϕ(x) has coefficients in OK and that ϕ(x) ≡ Px mod deg 2, then :

f(x) = h ◦ ϕ(x)

≡ Inϕ(x) mod deg 2, because h is of type u

≡ InPx mod deg 2

≡ Px mod deg 2

We also have;

u ∗ f = u ∗ (h ◦ ϕ)

≡ (u ∗ h) ◦ ϕ mod mK , because of corollary 2.2.9

= pϕ mod mK

= 0 mod mK .

Then f is of type (P, u).

The following proposition will enable us to consider a very important coset of equivalence class of special
elements over OK .

2.2.12 Proposition. Take P and u as usual, and assume f ∈ K[[x]]n0 is of type (P, u), and v ∈ Am,n,
then :

v ∗ f ≡ 0 mod mK if and only if there exists t ∈ Am,n such that v = tu.

Proof. First assume that v = tu, with t ∈ Am,n, then simple calculation give

v ∗ f = t ∗ (u ∗ f) ≡ 0 mod mK .

Conversely assume v ∗ f ≡ 0 mod mK . Since v = (vu−1)u it is enough to show that vu−1 ∈ Am,n,
which means that pvu−1 must have coefficients in mK . Then write

pvu−1 =
∑

ν≥0
AνT

ν ,

we are going to show that each of the Aν belongs to mK . We set ϕ = h−1 ◦f , recall that ϕ is invertible
and has coefficients in OK . From one hand we have

v ∗ h = v ∗ ((pu−1) ∗ i) = (pvu−1) ∗ i =
∑

ν≥0
Aνx

pν (∗)
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On the other hand we have

(v ∗ h) ◦ ϕ ≡ v ∗ (h ◦ ϕ) mod mK , because of corollary 2.2.9

≡ v ∗ f mod mK

≡ 0 mod mK (∗∗)

Then :

∑

ν≥0
Aνx

pν = v ∗ h, because of (∗)

= ((v ∗ h) ◦ ϕ) ◦ ϕ−1
≡ 0 mod mK , because of (∗∗)

Then every Aν belongs to mK

The following theorem enables us to study homomorphisms of formal groups built in theorem 2.2.10.

2.2.13 Theorem. Let u ∈ An and v ∈ Am be special elements; f ∈ K[[x]]n0 and g ∈ K[[x]]m0 be of
type u and v respectively. Take C a matrix of type (m,n) with coefficients in OK , consider the formal
groups

F (x, y) = f−1(f(x) + f(y)) and G(x, y) = g−1(g(x) + g(y)).

Then g−1 ◦ (Cf) is a morphism from F to G over OK if and only if there exists t ∈ Am,n such that
vC = tu

Proof. From proposition 2.1.17, g−1 ◦ (Cf) is a morphism from F to G over OK if and only if it has
coefficients in OK . Therefore we will show that g−1 ◦ (Cf) has coefficients in OK if and only if there
exists t ∈ Am,n such that vC = tu.

1. Assume that g−1 ◦ (Cf) has coefficients in OK . Write h2 = (pv−1) ∗ i and put ϕ2 = h−12 ◦ g,
then v ∗ h = (pIn) ∗ i = px, we also recall that from corollary 2.2.7, ϕ2 has coefficients in OK ,
then

(vC) ∗ f = v ∗ (Cf)

= v ∗ (g ◦ g−1 ◦ (Cf))

≡ (v ∗ g) ◦ g−1 ◦ (Cf)) mod mK , from corollary 2.2.9

≡ (v ∗ (h2 ◦ ϕ2)) ◦ g−1 ◦ (Cf) mod mK

≡ (v ∗ h2) ◦ ϕ2 ◦ g−1 ◦ (Cf) mod mK , from corollary 2.2.9

≡ pϕ2 ◦ g−1 ◦ (Cf)) mod mK

= 0 mod mK , because ϕ2 ◦ g−1 ◦ (Cf))has coefficients in OK .

Therefore from proposition 2.2.12 there exists t ∈ Am,n such that vC = tu.

2. Conversely assume that there exists t ∈ Am,n such that vC = tu. We need to show by induction
on the degree of terms of g−1 ◦ (Cf) that it has coefficients in OK . We have

g−1 ◦ (Cf)(x) ≡ Cx mod deg 2,
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and since C has coefficients in OK , then the constant term and the first-degree of g−1 ◦ (Cf)
belong to OK . Let r ≥ 2, assume all coefficients of g−1 ◦ (Cf) of terms of degree ≤ r− 1 belong
to OK , then

pϕ2 ◦ g−1 ◦ (Cf) = (v ∗ g) ◦ g−1 ◦ (Cf)

≡ v ∗ (g ◦ g−1 ◦ (Cf)) mod deg (r + 1), mod mK , because of corollary 2.2.8

= v ∗ (Cf) mod mK

= (vC) ∗ f mod mK

= (tu) ∗ f mod mK

= t ∗ (u ∗ f) mod mK

= 0 mod mK , because f is of type u

This just means that the r-th degree coefficients of ϕ2 ◦ g−1 ◦ (Cf) belong to OK , but ϕ2 also
has coefficients in OK , therefore we deduce that g−1 ◦ (Cf) has coefficients in OK .

Since K is of characteristic 0, so is OK , therefore p is not zero in OK , therefore we can divide by
p if we consider the expression to belong to Frac(OK) = K. This being said, let r ≥ 2 define
Λr(x, y) ∈ OK [x, y] as follow :

• If r is not a power of p, set Λr(x, y) = (x+ y)r − xr − yr

• If r is a power of p, set Λr(x, y) = p−1[(x+ y)r − xr − yr]

The following lemma gives the most important property of r that is going to be of interest in the sequel
of this chapter.

2.2.14 Lemma. Λr(x, y) is a primitive polynomial in OK [x, y] for all r

Proof. The proof is divided into the two parts that correspond each to the definition of Λr(x, y).

1. r is not a power of p, then r = pns, where (p, s) = 1 and s 6= 1.

(x+ y)r =
(
(x+ y)p

n)s

≡ (xp
n

+ yp
n
)s mod mK

= xr + yr + sX(s−1)pnyp
n

+ ... mod mK .

Then
Λr(x, y) ≡ sX(s−1)pnyp

n
+ ... mod mK .

But (p, s) = 1, then Λr(x, y) 6≡ mod mK , which means that Λr(x, y) has a coefficient not
belonging to mK , this coefficient must then be invertible, whence Λr(x, y) is primitive.
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2. r = pn for some n ≥ 1. Then (x+ y)p
n−1 ≡ xpn−1

+ yp
n−1

mod mK , then from lemma 2.2.1 we
have

(x+ y)p
n ≡ (xp

n−1
+ yp

n−1
)p mod m2

K

= xp
n

+ yp
n

+ pP (x, y) mod m2
K

Where xp
n−1(p−1)yp

n−1
is a monomial of P (x, y) ∈ OK [x, y] with coefficient 1. Then

Λr(x, y) ≡ P (x, y) mod mK

and
P (x, y) 6≡ 0 mod mK

Therefore Λr(x, y) 6≡ 0 mod mK , which means again that Λr(x, y) is primitive.

In the sequel x = (x1, ..., xn) is as usual a n-tuples of indeterminates, and for α = (α1, ..., αn) ∈ Nn,
xα stands for xα1

1 ...xαnn , we also write |α| for α1 + ...+ αn.

2.2.15 Lemma. Let r ∈ N, consider λ(x) =
∑
|α|=r

aαx
α a homogeneous polynomial of degree r, where

aα ∈ K. Assume in addition that

λ(x+ y) ≡ λ(x) + λ(y) mod mK .

Then aα ∈ OK . In addition we have what follows :

1. aα ∈ mK whenever α is not one of the rεi, where εi is the vector of Nn with zeroes everywhere
but 1 at the i-th component.

2. aα ∈ mK whenever r is not a power of p.

Proof. We start by proving the first statement.

1. Let α = (α1, ..., αn) be such that |α| = r and such that it is not one of the rεi, which means
that α has at least two nonzero components, say α1 and α2 for the sake of convenience. Then
writing λ(x+ y) we have

λ(x+ y) =
∑

|α|=r
aα(x+ y)α =

∑

|α|=r
aα(x1 + y1)

α1 ...(xn + yn)αn .

Therefore the coefficient of xα1
1 yα2

2 ...yαnn in λ(x + y) is aα, but as α1 and α2 are nonzero the
term xα1

1 yα2
2 ...yαnn does not appear in λ(x) + λ(y). Whence the congruence

λ(x+ y) ≡ λ(x) + λ(y) mod mK

implies that aα ∈ mK
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2. Assume r is not a power of p, and let α be such that |α| = r, we need to show that aα ∈ mK .
From the previous point we may assume that α = rεi for some fixed i. Then aα is the coefficient of
the monomial xri in λ(x), it is also the coefficient of the monomial yri in λ(y). But the monomial
(xi + yi)

r is free with any other monomial of λ(x + y) coming from another α, therefore the
congruence

λ(x+ y) ≡ λ(x) + λ(y) mod mK

implies the congruence
aα[(xi + yi)

r − xri − yri ] ≡ 0 mod mK .

But since r is not a power of p, then the latter congruence is just

aαΛr(x, y) ≡ 0 mod mK .

Consider (bj)j the coefficients of Λr(x, y), we recall that each of the bj belongs to OK . Our latter
congruence says that aαbj ∈ mK for all j. From lemma 2.2.14 the bj ’s are coprime, then there
exists (uj)j elements of OK such that

∑
j
ujbj = 1. Then aα =

∑
j
uj(aαbj) ∈ mK .

To complete our proof we have to prove that without any condition aα ∈ OK . Then Let α be such
that |α| = r. From the first two points we can assume without lost of generality that r is a power of
p, and that α = rεi for some fixed i, becauce otherwise we will have aα ∈ mK which a fortiori implies
that aα ∈ OK . As above we then have

paαΛr(x, y) ≡ 0 mod mK .

Since Λr(x, y) is primitive, then again we deduce that paα ∈ mK , hence aα ∈ OK .

Lemma 3.3.1 is crutial in the proof of the following proposition which is the starting point of our
classification theory of formal groups of dimension 1 over OK .

2.2.16 Proposition. F is an n-dimensional formal group over OK and f its transformer. There is
u ∈ An a special element such that f is of type u.

Proof. We first prove by induction that we can construct a family of matrices Cµ ∈Mn(OK) such that
for all µ ≥ 0,

pf(x) +

µ∑

ν=1

Cνf
σν (xp

ν
) ≡ 0 mod deg (pµ + 1), mod mK .

Since f has zero constant term, set C0 = pIn. By definition of f , f(x) ≡ x mod deg 2 therefore
we have pf(x) ≡ 0 mod deg 2, mod mK . Hence the result holds for µ = 0. Now let µ ≥ 0, assume
C0, ..., Cµ have been constructed and that

pf(x) +

µ∑

ν=1

Cνf
σν (xp

ν
) ≡ 0 mod deg (pµ + 1), mod mK (1).

We write f(x) = (f1(x), ..., fn(x)), and for all i, we put

fi(x) =
∑

α∈Nn
aα,ix

α, with aα,i ∈ K.
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From proposition 2.1.13, the OK-basis {ω1, ..., ωn} of D∗(F,OK) is such that any ωi has coefficients
in OK . As dfi(x) ∈ D∗(F,OK) it then has coefficients in OK , hence ∂fi

∂xj
(x) has coefficients in OK for

all i and for all j. Wich says in particular that αjaα,i ∈ OK for all i and for all j. Let α be an index of
fi(x), then

aα,i(x+ py)α = aα,i(x1 + py1)
α1

n∏

j=2

(xj + pyj)
αj

≡ aα,ix
α1
1

n∏

j=2

(xj + pyj)
αj mod mK , because of lemma 2.2.1

Repeating the same argument leads us to

aα,i(x+ py)α ≡ aα,ixα mod mK (2)

The congruence in (1) says that modulo mK we can assume that pf(x)+
µ∑
ν=1

Cνf
σν (xp

ν
) has only terms

with total degree at least pµ + 1. Then write

pf(x) +

µ∑

ν=1

Cνf
σν (xp

ν
) =

∑

|β|≥pµ+1

bβx
β mod mK (3),

bβ being n-tuples of Kn. Now if in (3) we substitute x by F (x, y) we get

pf(F (x, y)) +

µ∑

ν=1

Cνf
σν (F (x, y)p

ν
) =

∑

|β|≥pµ+1

bβF (x, y)β mod mK (4).

From (2) we deduce that fi(x+ py) ≡ fi(x) mod mK , this impliies that

fσ
ν

i (x+ py) ≡ fσνi (x) mod mK .

Then
fσ

ν
(x+ py) ≡ fσν (x) mod mK .

With this we can therefore conclude that if two arguments of fσ
ν

are congruent modulo mK , then so
are their images under fσ

ν
. We know that F (x, y)p

ν ≡ F σ
ν
(xp

ν
, yp

ν
) mod mK . Now using the latter

congruence as arguments of fσ
ν

we deduce that

fσ
ν (
F (x, y)p

ν) ≡ fσν
(
F σ

ν
(xp

ν
, yp

ν
)
)

mod mK .

It is also a straight remark that (g ◦ f)σ = gσ ◦ fσ, as well as (fσ)−1 = (f−1)σ and F σ(x, y) =
(f−1)σ(fσ(x) + fσ(y)). We then have

pf(F (x, y)) +

µ∑

ν=1

Cνf
σν (F (x, y)p

ν
) ≡ pf(F (x, y)) +

µ∑

ν=1

Cνf
σν (F σ

ν
(xp

ν
, yp

ν
)) mod mK

= pf
(
f−1(f(x) + f(y))

)
+

µ∑

ν=1

Cνf
σν
(
(f−1)σ

ν
(fσ

ν
(xp

ν
) + fσ

ν
(yp

ν
))
)

= pf(x) + pf(y) +

µ∑

ν=1

Cνf
σν (xp

ν
) +

µ∑

ν=1

Cνf
σν (yp

ν
)

≡
∑

|β|≥pµ+1

bβ(xβ + yβ) mod mK , from (3)
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Therefore equation (4) implies that

∑

|β|≥pµ+1

bβF (x, y)β ≡
∑

|β|≥pµ+1

bβ(xβ + yβ) mod mK .

For all i ≤ n we denote by bβ,i the i-th component of bβ, then

∑

|β|≥pµ+1

bβ,i[F (x, y)β − xβ − yβ] ≡ 0 mod mK (5).

If bβ,i ∈ mK for all β and for all i, then from (3) we deduce a construction of a special element such
that u ∗ f ≡ 0 mod mK . We can therefore assume for the rest of the proof that there is some β such
that there is some i for which bβ,i 6∈ mK . We put r to be the minimum of |β| for all such β. Since
F (x, y) ≡ x + y mod deg 2, then in (5) the only terms of F (x, y)β that might add to −xβ − yβ are
exclusively terms coming from the monomial (x+ y)β of F (x, y)β, therefore from (5) we deduce that

∑

|β|≥pµ+1

bβ,i[(x+ y)β − xβ − yβ] ≡ 0 mod mK .

For the sake of degrees we deduce from this that

∑

|β|=r
bβ,i[(x+ y)β − xβ − yβ] ≡ 0 mod mK (6).

In (6) if we replace r by any degree level, we obtain the same congruence.

Define λ(x) =
∑
|β|=r

bβ,ix
β, (6) shows that λ(x) satisfies the congruence

λ(x+ y) ≡ λ(x) + λ(y) mod mK ,

then by lemma 3.3.1 r should be a power of p, because otherwise we would have bβ,i ∈ mK for all
i and for all β such that |β| = r, but this would contradict the above made assumption on such
bβ,i. Since r ≥ pµ + 1, hence r ≥ pµ+1. Therefore by the minimality of r, for all β such that
|β| ∈ {pµ + 1, pµ + 2, ..., pµ+1 − 1}, we have bβ,i ∈ mK for all i. We can then deduce from (3) that

pf(x) +

µ∑

ν=1

Cνf
σν (xp

ν
) ≡

∑

|β|≥pµ+1

bβx
β mod mK

≡
∑

|β|=pµ+1

bβx
β mod deg (pµ+1 + 1), mod mK (7).

Put βj = pµ+1εj , then from lemma 3.3.1 again we have

∑

|β|=pµ+1

bβx
β ≡

n∑

j=1

bβjx
βj mod mK

=

n∑

j=1

bβjx
pµ+1

j (8).
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Now from the observation we made just after establishing (6) replacing r by pµ+1 and in accordance
with lemma 3.3.1 we deduce that bβj ,i ∈ OK for all j, for all i.

n∑

j=1

bβjx
pµ+1

j =

n∑

j=1

(
bβj ,1x

pµ+1

j , ..., bβj ,nx
pµ+1

j

)

=




n∑

j=1

bβj ,1x
pµ+1

j , ...,
n∑

j=1

bβj ,nx
pµ+1

j




= Mxp
µ+1

(9),

where M =
(
bβj ,i

)T
1≤i,j≤n has coefficients in OK . Therefore (7), (8) and (9) imply that

pf(x) +

µ∑

ν=1

Cνf
σν (xp

ν
) ≡Mxp

µ+1
mod deg (pµ+1 + 1), mod mK (10).

Since f(x) ≡ x mod deg 2, then fσ
µ+1

(xµ+1) ≡ xµ+1 mod deg 2, therefore

Mfσ
µ+1

(xµ+1) ≡Mxµ+1 mod deg 2,

hence the congruence (10) becomes

pf(x) +

µ∑

ν=1

Cνf
σν (xp

ν
)−Mfσ

µ+1
(xµ+1) ≡ 0 mod deg (pµ+1 + 1), mod mK .

We take Cµ+1 = −M .

This leads us to u ∗ f ≡ 0 mod mK , where u =
∑
µ≥0

CµT
µ, and this ends the proof.

Results established in this section are going to be apllied in the sake of classification of commutative
formal groups in dimension 1. We can already say that thanks to proposition 2.2.16 every formal group
over OK is obtained from a special element of An.

2.3 Classification in the case of complete and non-ramified rings

We start this section by the following observations:

2.3.1 Remark. Let F and G be n-dimensional formal groups over OK , with transformers f and g
respectively, then from proposition 2.2.16 there are special elements u and v in An such that f and g
are respectively of type u and v.

1. Assume that F and G are strongly isomorphic, and call ϕ the strong isomorphism. From propo-
sition 2.1.17 there is C ∈ Mn(OK) such that ϕ(x) = g−1 ◦ (Cf)(x) ∈ OK [[x]]n0 . Since
ϕ(x) ≡ x mod deg 2 we deduce that C = In, therefore g−1 ◦ f(x) ∈ OK [[x]]n0 .

2. Conversely assume that ϕ(x) := g−1 ◦ f(x) ∈ OK [[x]]n0 ., then ϕ(x) ≡ x mod deg 2 and

ϕ ◦ F (x, y) = g−1(f(x) + f(y)) = g−1(g(ϕ(x)) + g(ϕ(y))) = G(ϕ(x), ϕ(y)).

Therefore ϕ is a strong isomorphism between F and G.
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It is important to note that in the above remark we could not just use lemma 2.2.7 to conclude that
g−1 ◦ (f)(x) ∈ OK [[x]]n0 as u and v might be different, which does not then fit with the assumption of
lemma 2.2.7.

In definition 2.1.7 we have talked about strong isomorphism of formal groups, which actually defines
an equivalence relation on formal groups. Put Cln,OK (F) the set of strong isomorphism classes of
n-dimensional formal groups over OK . We now give a definition that will later appear to be his
correspondant at some extend.

2.3.2 Definition. Let u and v in An, we say that v is left associated with u if there exists a unit t ∈ An
such that v = tu.

Left association obviously defines an equivalence relation on An. Put Cl(SAn) the subset of the quotient
set made of left associate classes of special elements of An.

2.3.3 Theorem. The strong isomorphism classes of n-dimensional formal groups over OK corre-
spond bijectively to the left associate classes of special elements of An. More precisely the map
Φ : Cln,OK (F) → Cl(SAn) is bijective, where Φ([F ]) = [u], u being a special element of An such
that the transformer of F is of type u.

Proof. We split the proof into three steps.

1. We first of all show that Φ is a well defined map, by first showing that the image of a class [F ]
does not depend on the chosen special element u attached to the transformer of F , and then by
showing that the image of a class [F ] again does not depend on the representative F .

i) Assume the transformer f of F is of type u, and of type v, where u and v are special
elements of An. Then v ∗f ≡ 0 mod mK , then from proposition 2.2.12 there is t ∈ An such
that v = tu, since u and v are invertible, so is t, therefore u and v are left associate, hence
[u] = [v].

Whence, the image of a class [F ] does not depend on the chosen special element u attached
to the transformer of F .

ii) Assume [F ] = [G] where F,G are n-dimensional formal groups over OK . Let u respectively
v be a special element of An such that the transformer of F respectively G is of type u
respectively v. By the equality [F ] = [G] we deduce that F and G are strongly isomorphic
over OK , then by remark 2.3.1 we have g−1 ◦f(x) ∈ OK [[x]]n0 , then from proposition 2.1.17
g−1 ◦ f(x) is a morphisme from F to G over OK , and from theorem 2.2.13 there exists
t ∈ An such that v = tu, then t must be invertible, hence [u] = [v]. Thus the image of a
class [F ] does not depend on the representative F .

2. We now show that Φ is injective. Assume Φ([F ]) = Φ([G]). Set as above u respectively v a
special element of An such that the transformer of F respectively G is of type u respectively v.
Then [u] = [v], which means that there exists t ∈ An such that v = tu, then from theorem 2.2.13
g−1 ◦ f is a morphism from F to G over OK , we also see that g−1 ◦ f is obviously a strong
isomorphism. Then F and G are strongly isomorphic over OK , which then means [F ] = [G].
Hence Φ is injective.
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3. We conclude the proof by the surjectivity of Φ. Let u be a special element of An, then we have
seen that f := (pu−1) ∗ i is of type u. Then the formal group F defined by

F (x, y) = f−1(f(x) + f(y))

as in theorem 2.2.10 is the preimage of [u].

Theorem 2.3.3 can be further reffined in the following way.

2.3.4 Corollary. Set M to be a complete system of representatives of OK/mK contenaing p as repre-
sentative for the zero class. Then the strong isomorphism classes of n-dimensional formal groups over
OK correspond bijectively to the special elements of An whose coefficients matrices have elements in
M .

Proof. Thanks to theorem 2.3.3 we just have to show that the left associate classes of special elements
of An correspond bijectively to the special elements of An whose coefficients matrices have elements
in M . Clearly speaking, it means that if u is a special element of An, then we can find one and only
one special element left associated to u and such that its matrices coefficients have elements in M . Let
then u =

∑
ν≥0

CνT
ν be a special element, meaning that C0 = pIn, we need to show that there is only

one unit t ∈ An such that tu has matrices with coefficients in M . We then need to construct matrices
Aν ∈Mn(OK) uniquely such that t =

∑
ν≥0

AνT
ν is a unit in An and tu is a special element of An such

that its matrices coefficients have elements in M . We are going to construct the sequence (Aν)ν by
induction on ν. tu must be equal to

∑
ν≥0

BνT
ν , where

Bν =
ν∑

µ=0

Aµσ
µ(Cν−µ),

we must also have A0 = In in order to comply with the fact that tu is a special element in An. This
means that we have just constructed A0 uniquely such that B0 = A0C0 = pIn has matrices coefficients
in M . Now let ν ≥ 0, assume we have constructed matrices A0, ..., Aν−1 uniquely such that B0, ..., Bν−1
have coefficients in M . The above equality is also equivalent to

Bν = Aνσ
ν(C0) +

ν−1∑

µ=0

Aµσ
µ(Cν−µ) = pAν +

ν−1∑

µ=0

Aµσ
µ(Cν−µ).

In the latter equality, we need to uniquely construct the matrix Aν such that Bν has coefficients in M .
Write

ν−1∑

µ=0

Aµσ
µ(Cν−µ) = (b

(ν)
ij )1≤i,j≤n.

By definition of M , we have that for all i, j ∈ {1, ..., n} there is a unique xij ∈M such that

b
(ν)
ij ≡ xij mod mK ,
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then by definition of the congruence, there is again a unique a
(ν)
ij ∈ OK such that

b
(ν)
ij − xij = pa

(ν)
ij .

We have just shown that for all i, j ∈ {1, ..., n} there is a unique a
(ν)
ij ∈ OK such that pa

(ν)
ij +b

(ν)
ij ∈M .

Define
Aν = (a

(ν)
ij )1≤i,j≤n,

then Aν is unique such that Bν has coefficients in M .

The following lemma sets the foundamental basis for the proof of the main result of this section, a result
for which we restrict from now on to the case n = 1.

2.3.5 Lemma. Let u = p+
∑
ν≥1

cνT
ν be a special element of A1.

1. If all the coefficients cν belong to mK , then there is a unit t ∈ A1 such that tu = p.

2. If c1, ..., ch−1 all belong to mK but ch 6∈ mK , then there is a unit t ∈ A1 such that

tu = p+
h∑

ν=1

bνT
ν ,

where b1, ..., bh−1 all belong to mK but bh 6∈ mK .

Proof. Assume all the coefficients cν belong to mK , and write cν = pc′ν , where c′ν ∈ OK for all ν ≥ 1,
then u = ps, where s = 1 +

∑
ν≥1

c′νT
ν is a unit in A1, finally tu = p with t = s−1. Now we assume that

c1, ..., ch−1 all belong to mK but ch 6∈ mK . We are firstly going to show by induction that for all i ≥ 1,

there are b
(i)
1 , ..., b

(i)
h ∈ OK and a unit ti ∈ A1 subject to the following three conditions

b(i+1)
ν ≡ b(i)ν mod mi

K , b(1)ν ≡ cν mod mK (1)

ti ≡ 1 mod deg 1, ti+1 ≡ ti mod mK (2)

tiu ≡ p+
h∑

ν=1

b(i)ν T
ν mod mi

K (3).

For i = 1, put b
(1)
1 = ... = b

(1)
h−1 = 0, b

(1)
h = ch and t1 = ch

(
∑
ν≥h

cνT
ν−h
)−1

, (1) is then obviously

satisfied, t1 ≡ 1 mod deg 1 is also true, then (2) is satisfied; now since ch is a unit we deduce in addition
that t1 as coefficients in OK .

t1u = ch


∑

ν≥h
cνT

ν−h



−1

u

= chT
h


∑

ν≥h
cνT

ν



−1

h−1∑

ν=0

cνT
ν +

∑

ν≥h
cνT

ν




≡ chT
h


∑

ν≥h
cνT

ν



−1
∑

ν≥h
cνT

ν mod mK , because c1, ..., ch−1 all belong to mK

= chT
h mod mK
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Then (3) is also satisfied. Now let i ≥ 1, suppose that for all j ≤ i we have constructed b
(j)
1 , ..., b

(j)
h ∈ OK

and a unit tj ∈ A1 subject to (1), (2) and (3). We are then constructing b
(i+1)
ν = b

(i)
ν + pid

(i)
ν and

ti+1 = ti + pivi for all ν ∈ {1, ..., h} where d
(i)
ν ∈ OK and vi ∈ A1 are such that

(ti + pivi)u ≡ p+
h∑

ν=1

(b(i)ν + pid(i)ν )T ν mod mi+1
K (4).

Since c1, ..., ch−1 all belong to mK , then u ≡ ∑
ν≥h

cνT
ν mod mK , therefore

piu ≡ pi
∑

ν≥h
cνT

ν mod mi+1
K .

From (3) we have wi := p−i[tiu − (p +
h∑
ν=1

b
(i)
ν T ν)] ∈ A1, also since tiu ≡ p mod deg 1, then wi has

zero constant term. Hence (4) is equivalent to

vi
∑

ν≥h
cνT

ν ≡
h∑

ν=1

d(i)ν T
ν − wi mod mK (5).

By definition, wi is known, so the only unknowns of the congruence (5) are vi and the d
(i)
ν ’s. Let us

take the unique choice of the d
(i)
ν ’s such that the right hand side of (5) has all its terms of degree ≤ h

cancelled. Now we just remains to give a solution for the congruence (5), with vi as the only unknown,
for this we write vi =

∑
ν≥0

VνT
ν , we need to construct the Vν ’s by induction. By construction of the

d
(i)
ν ’s, we must have V0 = 0. Let ν ≥ 0, assume V0, ..., Vν−1 have been constructed. Write

∑
ν≥h

XνT
ν

the term on the right hand side of the congruence (5). Then (5) becomes

∑

ν≥h




ν∑

µ=1

Vµσ
µ(cν−µ)


T ν ≡

∑

ν≥h
XνT

ν mod mK .

At the level of coefficients of T ν we conclude that pVν +
ν−1∑
µ=1

Vµσ
µ(cν−µ) = Xν + pxν , where xν ∈ OK .

Which means that Xν −
ν−1∑
µ=1

Vµσ
µ(cν−µ) ∈ mK , therefore Vν = xν + p−1

(
Xν −

ν−1∑
µ=1

Vµσ
µ(cν−µ)

)
is

well defined. This ends the construction of vi, and hence ends the proof of the fact that for all i ≥ 1,

there are b
(i)
1 , ..., b

(i)
h ∈ OK and a unit ti ∈ A1 subject to (1), (2) and (3). We remark that since vi

does not have a constant term, then we must have ti+1 ≡ 1 mod deg 1. The second congruence in (2)
shows that at any degree the sequence made of coefficients of the (ti)i is a Cauchy sequence, then by
the completeness hypothesis it converges. We then write t = lim

i→∞
ti where at each degree the coefficient

of t is just the limit of the sequence made of coefficients of the (ti)i at that degree. In the same spirit,

the first congruence in (1) enables us to define bν = lim
i→∞

b
(i)
ν for all ν.

In addition, let ν ≤ h− 1, since cν ∈ mK , then from (1), b
(i)
ν ∈ mK for all i, hence bν ∈ mK , because

mK is a closed subset of OK . Now for ν = h, ch 6∈ mK , then again from (1) we deduce that b
(i)
h 6∈ mK
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for all i. But since mK is a neighbourhood of 0, there exists i0 ∈ N such that for all i ∈ N, i ≥ i0
implies b

(i)
h −bh ∈ mK . Now if bh ∈ mK , then b

(i0)
h ∈ mK , which is a contradiction. Therefore bh 6∈ mK .

The congruence in (3) implies that lim
i→∞

[tiu − (p +
h∑
ν=1

b
(i)
ν T ν)] = 0, thus tu = p +

h∑
ν=1

bνT
ν . The last

equality says that the constant term of t must be 1, which means that t is a unit in A1.

2.3.6 Definition. Let F be a one-dimensional formal group over OK , we define the height of F to be
the height of F modulo mK .

The following lemma insures the compatibility of this definition with the strong isomorphism relation.

2.3.7 Lemma. Let F,G be strong isomorphic one-dimensional formal groups over OK , we have

height(F ) = height(G).

Proof. Put ϕ to be the strong isomorphism between F and G, and let m ≥ 0.

ϕ([m+ 1]Fx) = ϕ(F (x, [m]Fx)) = G(ϕ(x), ϕ([m]Fx)),

replacing x by ϕ−1(x) we get

ϕ([m+ 1]Fϕ
−1(x)) = G(x, ϕ([m]Fϕ

−1(x))),

We also have ϕ([0]Fϕ
−1(x)) = ϕ(0) = 0. Therefore we must have ϕ([m]Fϕ

−1(x)) = [m]Gx. For the
rest of the proof, the computations are done modulo mK . Assume [p]Fx ≡ 0 mod deg ph for some
h ≥ 0. Then using the two congruences

ϕ(x) ≡ x mod deg 2, and ϕ−1(x) ≡ x mod deg 2

we deduce that

[p]F (ϕ−1(x)) ≡ 0 mod deg ph, and ϕ
(
[p]F (ϕ−1(x))

)
≡ 0 mod deg ph.

Which just means that [p]Gx ≡ 0 mod deg ph. We can use the same argument to show that if
[p]Gx ≡ 0 mod deg ph for some h ≥ 0, then [p]Fx ≡ 0 mod deg ph. We deduce that F and G
have the same height.

Lemma 2.3 allows us to define height on Cln,OK (F).

From example 2.1.11, we see that height(F )=∞ where F (x, y) = x+ y.

The following proposition gives the expected classification of 1-dimensional commutative fromal groups
we aimed for.

2.3.8 Proposition. The strong isomorphism classes of 1-dimensional formal groups over OK , of height

h (where 1 ≤ h <∞) correspond bijectively to the special elements of the form u = p+
h∑
ν=1

bνT
ν where

b1, ..., bh−1 all belong to mK but bh 6∈ mK .



Section 2.3. Classification in the case of complete and non-ramified rings Page 32

Proof. We first point out that lemma 2.3 makes it legal to define height as stated in the proposition.
Here is the plan of the proof; We first of all show that any strong isomorphism class can indeed be
represented by such a special element u as stated in the proposition, and only by one such u, and lastly
we show that the degree of u is actually the height of the isomorphism class.

1. Let F be a representative of a class [F ], where F is a one-dimensional formal group over OK
with height as in the proposition, let f be the transformer of F , by proposition 2.2.16 there is a
special element u ∈ A1 such that f is of type u. Thanks to theorem 2.3.3, [F ] is identified with
[u]. If all the coefficients of u are in mK , then from lemma 2.3.5 there is a unit t ∈ A1 such that
v := tu = p.

v ∗ i = p ∗ i ≡ 0 mod mK ,

then i is of type v, but u and v are associate, therefore from theorem 2.3.3 the formal groups
biult from f and i are strongly isomorphic, this means F is isomorphic to the formal group

G(x, y) = x+ y,

now from lemma 2.3, height(F )=height(G), but we have seen that height(G)=∞; therefore
height(F )=∞, but this contradicts the hypothesis of the proposition. Hence we can assume that

u is of the form u = p+
h∑
ν=1

bνT
ν where b1, ..., bh−1 all belong to mK but bh 6∈ mK . Now assume

[F ] is also represented by another special element of the form u′ = p+
h∑
ν=1

b′νT
ν where b′1, ..., b

′
h−1

all belong to mK but b′h 6∈ mK , then u, u′ are associate, hence there is a unit t ∈ A1 such that
u = tu′, for the sake of degrees and from the fact that u and u′ have the same constant term,
we deduce that t = 1, then u = u′, and this end the first part of the proof.

2. Now take F a representative of a class [F ], where F is a one-dimensional formal group over
OK with height as in the proposition, let u be the unique special element as constructed above,

u = p +
h∑
ν=1

bνT
ν where b1, ..., bh−1 all belong to mK but bh 6∈ mK . We need to show that

height(F )=h. u = p

(
1 +

h−1∑
ν≥1

bνT
ν

)
+ bhT

h, put t := 1 +
h−1∑
ν≥1

bνT
ν a unit in A1, then

t−1u = p+ bhT
ht = p+ bhT

h + ( terms of degree > h).

We write it by u′ := p + bhT
h + .... Set l = (pu′−1) ∗ i, we know that l is of type u′, then by

theorem 2.2.10, L(x, y) = l−1(l(x) + l(y)) is a formal group over OK with transformer u′; we
also know that u and u′ are associate, then from theorem 2.3.3, the formal groups F and L are
strongly isomorphic. Hence height(F )=height(L). To complete our proof, we are left to show
that height(L)=h. For m ∈ N,

[m]Lx = L(x, [m− 1]Lx)

= l−1(l(x) + l([m− 1]Lx))

= l−1
(
l(x) + l ◦ l−1(l(x) + l([m− 2]Lx))

)
, we have applied the second equality

= l−1(2l(x) + l([m− 2]Lx))

We keep applying the same argument repeatedly, and we reach to

[m]Lx = l−1(ml(x) + l([0]Lx)) = l−1(ml(x)).
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In particular for m = p, [p]Lx = l−1(pl(x)). Then to complete the proof we just show that the
order of l−1(pl(x)) modulo mK is ph. Write u′−1 =

∑
ν≥0

aνT
ν , from the equation u′u′−1 = 1 we

deduce that

a0 = p−1, aν = 0 for all ν between 1 and h− 1, pah + bhσ(a0) = 0.

The last equation gives ah = −p−2bh. Hence pu′−1 = 1− p−1bhT h + ...

Then l(x) = ((pu′−1) ∗ i)(x) = x− p−1bhiσ
h
(xp

h
) + ... = x− p−1bhxp

h
+ ...

Now write l−1(x) =
∑
ν≥0

aνx
ν , then from the equation l(l−1(x)) = x, which is equivalent to

l−1(x)− p−1bh(l−1(x))p
h

+ ... = x we deduce that :

a0 = 0, a1 = 1, a2 = ... = aph−1 = 0, aph − p−1bha1 = 0,

the last equality gives aph = p−1bh. Therefore l−1(x) = x+ p−1bhxp
h

+ ..., Then

l−1(pl(x)) = pl(x)+p−1bh(pl(x))p
h

+ ... =
(
px− bhxp

h
+ ...

)
+p−1bh

(
px− bhxp

h
+ ...

)ph
+ ...

Therefore modulo mK , −bhxp
h

is the term with the least degree, this just means that the order
of l−1(pl(x)) modulo mK is ph.



3. p-adic periods : The one-dimensional case

In the previsous chapter, we have given a classification for one-dimensional commutative formal groups,
in the present chapter we give a construction of the p-adic period map. We start by giving a construction
for the Tate module attached to a one-dimensional formal group, for this part the main references used
are [9], [10] and [13]. Then we briefly review general results about the rings BdR and Bcris for which
we have used [12] and [2] for results about Witt vectors, and [8], [5], [6] for notions on the rings BdR
and Bcris. We conclude this chapter by giving a construction for the p-adic period map due to Colmez,
and for this we mainly use [7]. Unless otherwise specified, F is a commutative one-dimensional formal
group over OK of finite height h; K is a local field unramified over Qp, OK and mK are respectively
its ring of integers and its maximal ideal, we normalize the valuation on K, so that v(p) = 1. Cp is
the p-adic completion of Q̄p. Finally, σ is an endomorphism of K such that σ(x) ≡ xp mod mK for all
x ∈ OK .

3.1 The Tate module for a one-dimensional formal group

Let K̄ be an algebraic closure of K, write ŌK for the integral closure of OK over K̄. Put m = {x ∈
K̄, x is not invertible in ŌK}. 0 ∈ m. Let x, y ∈ m and a ∈ ŌK

• Then ax ∈ ŌK . Now if ax ∈ ŌKx
, then there is u ∈ ŌK such that uax = 1, therefore x ∈ ŌK ,

but this is a contradiction, then ax ∈ m

• Assume x + y 6∈ m, there is u ∈ ŌK such that u(x + y) = 1. Let L be a finite extension of K
containing x, y and u, they are then integers in L. Since Ox

L ⊂ ŌK
x
, then x and y do not belong

to Ox
L, hence they belong to mL. We still write v for the unique extension of v in L. We have

0 = v(1) = v(u(x+ y)) ≥ v(x+ y) ≥ 1

This is a contradiction, then x+ y ∈ m. Therefore ŌK is a local ring with maximal ideal m.

Let x, y in m, and L be a finite extension of K containing x and y, from the above we know that x and
y belong to mL, therefore if F is a formal group over OK , the series F (x, y) converges in OL. Since
the constant term of F is zero, then F (x, y) ∈ mL ⊂ m. This raises an internal operation on m, defined
by x+F y = F (x, y). The following proposition makes this internal operation into an group law.

3.1.1 Proposition. (Corollary 1.5 of [13]) Let F be a formal group over OK , there is a unique formal
power series iF (x) over OK such that F (x, iF (x)) = 0

The associativity and commutativity of +F come from that of F . By definition of F , 0 is the neutral
element. By proposition 3.1.1, the inverse of an element x ∈ m is just iF (x). Be aware that iF (x)
actually belongs to m, indeed from the fact that F (x, y) ≡ x+ y mod deg 2, we deduce that iF (x) has
a zero constant term. We write [n]x for x+F x+F ...+F x; x appearing exactly n times. And we will
denote this group structure by F (m) = (m,+F , 0).

3.1.2 Example. For F (x, y) = x+ y, we have [n]x ≡ nx mod deg 2, then the torsion subgroup is null,
and F (m) is just the usual addition on m.

34
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It is a result from the book of Froehlich ([9]) that for all a ∈ m the equation [p]x = a has ph solutions
in m.

3.1.3 Remark. For all n ∈ N we put F [n] to be the set of n-torsion elements of F (m). by commutativity
of F (m), we deduce that F [n] is a subgroup of F (m). The equation [p]x = 0 has ph solutions, which
means that |F [p]| = ph, hence from the structure theorem for finitely generated abelian groups we have
that F [p] is isomorphic to Z

pi1Z ⊕ . . .⊕
Z

pirZ , where i1 + . . . + ir = h and ij ≥ 1 for all j. Since every

element of F [p] is a p-torsiom element, then i1 = . . . = ir = 1, hence F [p] is isomorphic to
h⊕
i=1

Z
pZ .

3.1.4 Remark. We need to see by induction that F [pn] is isomorphic to
h⊕
i=1

Z
pnZ . For n = 1, it just

corresponds to the previous remark. Now let n ≥ 1, assume that F [pn] is isomorphic to
h⊕
i=1

Z
pnZ .

Since F [pn+1] is a finitely generated abelian group, we apply the structure theorem. Then F [pn+1] is
isomorphic to Z

pi1Z ⊕ . . .⊕
Z

pirZ , where i1 + . . .+ ir = h and ij ≥ 1 for all j, we also have that ij ≤ n+1

because elemts of F [pn+1] are pn+1−torsion.

0 −→ Kerϕn −→ F [pn+1]
ϕn−→ F [pn] −→ 0

is an exact sequence, where ϕn is the multiplication by p map. Kerϕn = F [p], then from

F [pn+1]
h⊕
i=1

Z
pZ

'
h⊕

i=1

Z
pnZ

we deduce that ij ≥ n+ 1 for all j, then F [pn+1] is isomorphic to
h⊕
i=1

Z
pn+1Z

3.1.5 Remark. Consider the absolute Galois group G = Gal(K̄/K) of K, take g ∈ G, then for all
x, y ∈ m, g(x +F y) = g(F (x, y)) = F (g(x), g(y)) = g(x) +F g(y), the second equality holds due to
the fact that F has coefficients in K, which is the fixed field of G. Hence the restriction of g in m
is an endomorphism of F (m), also for all n ∈ N, g([n]x) = [n]g(x). In particular for all x ∈ F [pn],
g(x) ∈ F [pn]. This therefore defines an action of the absolute Galois group of K on each of the F [pn].

We have now gathered enough tools to give the construction of the Tate module of F .

For all n ≥ 1, the maps F [pn+1]
ϕn−→ F [pn] as defined above give us an inverse system of abelian groups

(F [pn], ϕn)n≥1.

3.1.6 Definition. The Tate module Tp(F ) of F is defined to be the projective limit of the inverse
system (F [pn], ϕn)n≥1

Set theoritically, Tp(F ) = {u = (un)n≥1, for all n ≥ 1, [pn]un = 0, and [p]un+1 = un}. Since
F [p0] = {0}, then we can still view Tp(F ) as

Tp(F ) = {u = (un)n≥0, for all n ≥ 0, [pn]un = 0, and [p]un+1 = un}

of course we see that u0 = 0. From the universal property of the projective limit, we have canonical
maps πn : Tp(F ) −→ F [pn] defined by πn(u) = un, the n-th projection.
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For all n, the equality [p]un+1 = un translates the fact that πn = ϕn ◦ πn+1. The projective limit
functor is left exact and commutes with finite direct sums, then

Tp(F ) = lim
←−
F [pn] = lim

←−

h⊕

i=1

Z
pnZ

=

h⊕

i=1

lim
←−

Z
pnZ

=

h⊕

i=1

Zp

Then Tp(F ) is a free Zp-module of rank h. We have seen in the previous remark that Gal(K̄/K)
naturally acts on each F [pn], we can then extend this action to Tp(F ) by continuity. More precisely
for all g ∈ Gal(K̄/K), for all u ∈ Tp(F ), g(u) := (g(un))n. Therefore Tp(F ) is equipped with a
continuous Galois action.

3.2 General facts on the rings BdR, Bcris and the ring of Witt vectors
over a DVR

Before we can get to the construction of p-adic periods, we first have a quick glance on the ring W (R)
of Witt vectors over a DVR, by recalling general facts about it, a detailed exposition about this topic
can be found in [2]. We assume R is a DVR of characteristic p and perfect. Most of what we will
say here remains true for a non DVR ring. Set x = (x0, x1, . . .) be an indeterminate, also consider the

polynomial Φn(x) =
n∑
i=0
pixp

n−i
i for all n ≥ 0. Finally we consider the map

Φ : RN −→ RN

taking a = (a0, a1, . . .) to (Φ0(a)),Φ1(a), . . .).

By induction we see that

Φn+1(x) = Φn(xp) + pn+1xn+1, for all n ≥ 0,

where xp stands for (xp0, x
p
1, . . .). We also note that Φn(x) only depends on the n+ 1 first coordinates

of x, therefore we can write Φn(x0, x1, . . . , xn) instead of Φn(x). The main result is the following
proposition.

3.2.1 Proposition. [12] There are sequences of polynomials,

(Sn(x, y))n≥0, (Pn(x, y))n≥0 ∈ Z[x, y]N, and (In(x))n≥0 ∈ Z[x]N,

unique such that :

Sn(x, y) ∈ Z[x0, . . . , xn, y0, . . . , yn], and Φn(S0(x, y), . . . , Sn(x, y)) = Φn(x) + Φn(y) (1)

Pn(x, y) ∈ Z[x0, . . . , xn, y0, . . . , yn], and Φn(P0(x, y), . . . , Pn(x, y)) = Φn(x)Φn(y) (2)

In(x) ∈ Z[x0, . . . , xn], and Φn(I0(x), . . . , In(x)) = −Φn(x) (3)

3.2.2 Example. Replacing n by 0 in (1), (2) and (3), we get

S0(x, y) = x0 + y0, P0(x, y) = x0y0, I0(x) = −x0 (4)

Then by induction we compute the polynomials for all n.
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In the previous example, relation (4) inspires definitions of laws in RN by means of the polynomials
Sn, Pn and In. Then let a, b ∈ RN, put :

a+ b = (Sn(a, b))n≥0, ab = (Pn(a, b))n≥0, −a = (In(a))n≥0.

We have the following proposition from [12].

3.2.3 Proposition. RN endowed with the three operations previously defined is a commutative ring
with zero element (0, 0, . . .) and unity as (1, 0, 0, . . .), it is called the ring of Witt vectors over R and
denoted W (R). Furthermore the map Φ is a ring homomorphism from W (R) to RN, where RN is
equipped with his natural structure of ring.

We also recall that for all a ∈ R, [a] := (a, 0, 0, . . .) ∈ W (R) denotes the Teichmueller representative
of a. and for all b ∈ R, [ab] = [a][b].

For all n ≥ 0, put FilnW (R) = {a ∈ W (R), a0 = a1 = . . . = an−1 = 0} ⊂ W (R). This defines a
filtration on W (R), with Fil0W (R) = W (R).

Wn(R) = W (R)/FilnW (R) is the ring of Witt vectors of length n.

3.2.4 Remark. Consider the map f : R −→W1(R) defined by f(a) = [a]+Fil1W (R). f is mulplicative
due to the multiplicativity of the Teichmueller. Let a0, b0 ∈ R,

f(a0 + b0) = [a0 + b0] + Fil1W (R)

= (Sn([a0], [b0]))n≥0 + Fil1W (R), because (Sn([a0], [b0]))n≥0 − [a0 + b0] ∈ Fil1W (R)

= ([a0] + [b0]) + Fil1W (R)

= f(a0) + f(b0)

Therefore f is a ring homomorphism which is obviously surjective. Moreover, if f(a0) = 0, then
[a0] ∈ Fil1W (R), which just means that a0 = 0. Hence f is a injective. We conclude that W1(R) ' R.

We end this subsection on Witt vectors by recalling that any a = (a0, a1, . . .) ∈ W (R) can be written
as

a =
∑

n≥0
pn[ap

−n
n ].

We point out that since R is perfect then the element ap
−n
n exists.

For the rest of this chapter R will be the ring

R = {(x(n))n≥0, for all n ≥ 0, x(n) ∈ OCp , and
(
x(n+1)

)p
= x(n)}

where addition and multiplication are defined as follow : for all x = (x(n))n≥0 and y = (y(n))n≥0 in R,

(x+ y)(n) = lim
m−→∞

(
x(n+m) + y(n+m)

)pm
, and (xy)(n) = x(n)y(n).

We recall that R is perfect and that the map vR(x) = v(x(0)) endows R with a structure of a complete
valuation ring of characteristic p. Therefore R satisfies the hypothesis under which we have stated the
above results about Witt vectors.
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In the sequel we use the ring of Witt vectors W (R) with R stated as above, and we recall the construction
(due to Fontaine [8]), of the rings BdR and Bcris. Set θ : W (R) −→ OCp the surjective homomorphism
defined by

θ(x) =
∑

n≥0
pnx(n)n , where x = (x(n))n≥0,

for which the kernel is a principal ideal. We put Kerθ = ξ. We can extend θ to W (R)[p−1], by setting
θ(p−nx) = p−nθ(x) for all x ∈ W (R), for all n ∈ N. We still denote it by θ. This makes θ into
a surjective homomorphism from W (R)[p−1] to Cp, with a kernel the principal ideal of W (R)[p−1]
generated by ξ. Let I be a proper ideal of W (R)[p−1] such that (ξ) ⊂ I, then by surjectivity of θ we
have that θ(I) is an ideal of Cp. Hence θ(I) = 0 or Cp. But if θ(I) = Cp, then

W (R)[p−1] = θ−1(θ(I)) = I + (ξ) = I,

which is a contradiction, whence θ(I) = 0, this just means that I ⊂ (ξ). We conclude that (ξ) is a
maximal ideal of W (R)[p−1]. In addition, assume that ξn = 0, then Kerθ ⊂

√
(0). Since Cp is a

field, then
√

(0) ⊂ Kerθ. Then (ξ) =
√

(0) =
⋂

P prime
P . This means that (ξ) is the unique maximal

ideal. This is a contradiction because (0, 1, 0, 0, . . .) is not invertible, but it does not belong to Kerθ.
The conclusion is that ξ is not a nilpotent element. Put B+

dR = lim
←−
W (R)[p−1]/(ξn) the completion of

W (R)[p−1] with respect to the (ξ)−adic topology. We extend θ by continuity to B+
dR, which we still

denote by θ. Then B+
dR is a complete valuation ring, with maximal ideal Kerθ and whose residue field

is Cp. This gives a filtration FilnB+
dR = (Kerθ)n of B+

dR.

BdR is the fraction field of B+
dR. Since ξ ∈ Fil1B+

dR, then in particular BdR = B+
dR[ξ−1].

Since
⋂

(ξ)n = 0, then the canonical map from W (R)[p−1] to B+
dR is injective. Therefore W (R) and

W (R)[p−1] can be identified to subrings of B+
dR.

It therefore makes sense to consider the subring Ainf,K of B+
dR generated by W (R) and OK .

We also recall the subring Acris of B+
dR whose elements are the series

∑
n≥0

xn
ξn

n! where (xn)n converges

to 0 for the p-adic topology of W (R). We put B+
cris = Acris[p

−1], so that B+
cris ⊂ B+

dR.

Following the same idea, we put Acris,K to be the subring of B+
dR generated by Acris and OK . Since

K is unramified over Qp, then B+
cris = Acris,K [p−1].

3.3 Construction of the period map

In this section, we try to give a detailed exposition of the proof of ([7], proposition 3.1) due to Colmez.
We then split it into many steps.

We use ω = α(x)dx to denote a (closed) differential form over K, where x is an indeterminate and
α(x) ∈ K[[x]]. Since K is of characteristic 0, then from lemma 1.4 ([10]), there is a unique Fω ∈ K[[x]]
such that dFω = ω and Fω(0) = 0. Put F 2

ω for the formal power series defined by

F 2
ω(x, y) = Fω(F (x, y))− Fω(x)− Fω(y) ∈ K[[x, y]].

For the rest of our exposition, we will need to consider the following sets :

ΩF = {ω differential forms over K such that F 2
ω = 0}
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Ωex
F = {ω differential forms over K such that there exists r ∈ N, prFω has coefficients in OK}

Ω2
F = {ω differential forms over K such that there exists r ∈ N, prF 2

ω has coefficients in OK}.
By the linearity of the differential and the unicity of Fω, we deduce that if ω′ is another differential form
over K, and λ ∈ K, then Fλω+ω′ = λFω + Fω′ . In particular the sets ΩF , Ωex

F and Ω2
F are K-vector

spaces. It is also straight that both ΩF and Ωex
F are subspaces of Ω2

F . It then makes sense to consider
the quotient K-vector space D(F ) = Ω2

F /Ω
ex
F .

D(F ) is equipped with the action φ(ω) = ωσ(xp), where ωσ stands for the differential form over K
obtained from ω by applying σ at any of the coefficients of ω. φ(λω + ω′) = σ(λ)φ(ω) + φ(ω′). Then
the action is σ-linear.

There is a canonical Frobenius action on W (R) taking (xn)n to (xpn)n. Extending this by continuity we
have a Frobenius endomorphism ϕ of B+

cris.

If ω ∈ Ω2
F , then there exists r ∈ N such that prF 2

ω has coefficients in OK , therefore by definition of F 2
ω

there is an interger s ≥ r such that psω has coefficients in OK . Moreover we have the following lemma.

3.3.1 Lemma. [7]

1. Let x ∈ Ainf,K such that the p-adic norm of θ(x) is les than 1, then Fω([p]x)−pFω(x) ∈ p−sAinf,K .
Where [p]x stands for the multiplication by p with respect to the formal group F .

2. There is a fixed interger r0 such that for all y :

y − x ∈ Ainf,K ∩Kerθ implies Fω(y)− Fω(x) ∈ p−s−r0Acris,K
3.3.2 Lemma. For all ω ∈ Ω2

F , for all a ∈W (R), ϕ(Fω(a)) = Fφ(ω)(a)

Proof. Since ω ∈ Ω2
F , then by linearity we can assume without lost of generality that ω has coefficients

in OK .
d(Fφ(ω)(x)) = φ(ω)(x) = ωσ(xp) = d(F σω (xp)),

we also have
d(ϕ(Fω(x))) = d(Fϕω (ϕ(x))) = d(F pω(xp)),

the first equality comes from the fact that ϕ is an endomorphism, and the second equality comes from
the fact that Fω has coefficients in K. Finally ϕ(Fω(0))− Fφ(ω)(0) = 0

We recal that since W (R) can be identified with a subring of Acris, then Ainf,K is viewd as a subring
of Acris,K .

3.3.3 Proposition. Let ω ∈ Ω2
F , u = (un)n ∈ Tp(F ) with u0 = 0, by the surjectivity of θ, for all n ≥ 0,

write un = θ(ûn) where ûn ∈ Ainf,K . Then the sequence (−pnFω(ûn))n converges in B+
cris. And the

limit depends only on u and on the class of ω in D(F ).

Proof.

−pn+1Fω(ûn+1)− (−pnFω(ûn)) = −[pn(−pFω(ûn+1)− Fω([p]ûn+1)) + pn(Fω([p]ûn+1)− Fω(ûn))]

from lemma 3.3.1 :
−pFω(ûn+1)− Fω([p]ûn+1) ∈ pn−sAinf,K .
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Again from lemma 3.3.1 :
Fω([p]ûn+1)− Fω(ûn) ∈ pn−s−r0Acris,K ,

because θ([p]ûn+1) = [p]un+1 = un = θ(ûn). Then since Ainf,K ⊂ Acris,K we have that :

−pn+1Fω(ûn+1)− (−pnFω(ûn)) ∈ pn−s−r0Acris,K ⊂ pnB+
cris

therefore (−pnFω(ûn))n is a cauchy sequence in B+
cris for the p-adic topology.

• we show that the limit of (−pnFω(ûn))n does not depend on the chosen sequence (ûn)n. For all
n ≥ 0, let v̂n ∈ Ainf,K such that un = θ(v̂n). Then θ(ûn−v̂n) = 0, hence ûn−v̂n ∈ Ainf,K∩Kerθ,
then from lemma 3.3.1, Fω(ûn)−Fω(v̂n) ∈ p−s−r0Acris,K ⊂ B+

cris, hence pnFω(ûn)− pnFω(v̂n)
converges to 0 in B+

cris.

• Now we show that the limit of (−pnFω(ûn))n only depends on the class of ω in D(F ). This
amounts to showing that if ω ∈ Ωex

F , then (−pnFω(ûn))n converges to 0. Since ω ∈ Ωex
F , there

exists r integer such that prFω has coefficients in OK , then

−pnFω(ûn) = −pn−rprFω(ûn) ∈ pn−rAinf,K ⊂ pn−rAcris,K ⊂ pnB+
cris,

which shows that (−pnFω(ûn))n converges to 0.

Thanks to proposition 3.3.3, the limit of the sequence (−pnFω(ûn))n depends only on u and the class
of ω in D(F ), if we write

∫
u ω this limit, then this defines a map

P : D(F )xTp(F ) −→ B+
cris, by P (ω, u) =

∫

u
ω

P is called the period map.

3.3.4 Proposition. Let ω ∈ Ω2
F and u ∈ Tp(F )

1. The map P is bilinear

2. If ω ∈ ΩF then
∫
u ω ∈ Fil1B+

dR

3. For all g ∈ Gal(K̄/K), g(
∫
u ω) =

∫
g(u) ω.

Where g(u) is the result of the action of g on u. This says the map P commutes with the action
of the absolute Galois group.

Proof. We split the proof into three parts.

1. Since Fω+ω′ = Fω + Fω′ , then we get the linerity with respect to ω.

−pnFω(F (ûn, ûn
′))− (−pnFω(ûn))− (−pnFω(ûn

′)) = −pnF 2
ω(ûn), ûn)′) ∈ pn−rAcris,K ,

then this sequence tends to 0, the belonging relation is due to the fact that ω ∈ Ω2
F . Furthermore,

θ(F (ûn, ûn
′)) = F (u, u′). Therefore we deduce that

∫
F (u,u′) ω =

∫
u ω +

∫
u′ ω.
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2. If ω ∈ ΩF then for all n, we have by induction on m that Fω([m]un) = mFω(un). Hence

0 = Fω(0) = Fω([pn]un) = pnFω(un)

This says that Fω(un) = 0, then

θ(Fω(ûn)) = Fω(θ(ûn)) = 0.

This means that Fω(ûn) ∈ Kerθ. We deduce that −pnFω(ûn) ∈ Fil1B+
dR, which is closed, then∫

u ω ∈ Fil1B+
dR.

3. Since g ∈ Gal(K̄/K), then by definition of Ainf,K we have g(ûn) ∈ Ainf,K also

θ(g(ûn)) = g(θ(ûn)) = g(un);

which according to the action is the n-th component of g(u), then

lim
n
− pnFω(g(ûn)) =

∫

g(u)
ω.

g(Fω(ûn)) = Fω(g(ûn)), because Fω has coefficients in K which is the fixed field of Gal(K̄/K).
Since the action is continuous, then

g(lim
n
− pnFω(ûn)) = lim

n
− pnFω(g(ûn)).

This just means that g(
∫
u ω) =

∫
g(u) ω.

The next proposition shows that the period map is compatible with the Frobenius action.

3.3.5 Proposition. Let ω ∈ Ω2
F and u ∈ Tp(F ), then ϕ(

∫
u ω) =

∫
u φ(ω).

Proof. Take any yn ∈ R such that y
(0)
n = un, set :

ûn = [yn] ∈W (R) ⊂ Ainf,K

which is the Teichmueller representative of yn. Since only the first component of ûn is possibly nonzero,
then algebraic operations carried on ûn apply exactly as when they are carried on yn, whence Fω(ûn) ∈
Ainf,K , because ω ∈ Ω2

F . Now from lemma 3.3.2 ϕ(Fω(ûn)) = Fφ(ω)(ûn), hence

ϕ(−pnFω(ûn)) = −pnFφ(ω)(ûn).

Taking the limit, and considering the continuity of ϕ, we deduce that ϕ(
∫
u ω) =

∫
u φ(ω).

We recall that Tp(F ) is a free Zp-module of rank h, where h denotes the height of the formal group
F . Thanks to the finiteness of the subgroups F [pn]), Tp(F ) is a profinite group; we have even more,
Tp(F ) is a pro-p-group.

Since the height is an invariant of the strong isomorphism class, then if two formal groups F ang G are
strongly isomorphic, their respective Tate module are ismorphic.
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More precisely : If ψ is a strong isomorphism of formal groups from F to G over the integers, then for
all n ≥ 0, it induces an isomorphism

ψn : F [pn] −→ G[pn],

Then by the universal property of projective limit, this induces a canonical isomorphism

Tp(ψ) : Tp(F ) −→ Tp(G).

Tp(−) defines a functor from the category of commutative one-dimensional formal groups to the re-
strictive category of profinite groups.



4. Conclusion

The main purpose of this project was to study commutative one-dimensional formal groups over a p-
adic integer ring in order to understand p-adic periods attached to it. We have started by studying
n-dimensional commutative formal groups for a complete unramified field equipped with the Frobenius
action, we obtained exposed a technique for explicitely computing formal groups by the means of special
element and transformers, we have also characterized homomorphisms of formal groups, and deduce a
classification of commutative one-dimensional formal groups over a p-adic integer ring via the height,
which is an invariant of the strong isomorphism class for a formal group.

We recall that the construction of a formal group was as follow : if we consider a special element u,
that is u = p+

∑
ν≥0

cνT
ν , where cν are integer over our local field, and put

pu−1 =
∑

ν≥0
bνT

ν ,

then write
f(x) := ((pu−1) ∗ i)(x) =

∑

ν≥0
bνx

pν ,

finally put
F (x, y) = f−1(f(x) + f(y)).

Then F has integer coefficients, and it is a formal group over the integers.

as for the classification, we have seen that for a strong isomorphism class of a given height equal to h
(nonzero and finite), this isomorphism class can be identify with a unique special element of the form

u = p +
h∑
ν=1

bνT
ν where b1, . . . , bh−1 belong to the maximal ideal mK and bh is an invertible integer.

We have also recalled a precise method of constructing the Tate module attached to a one-dimensional
formal group, and noticed that this Tate module is actually attached to the strong isomorphism class
of the formal group.

Then the Tate module is another invariant for the strong isomorphism class of the formal group. There-
fore at some extend, the p-adic periods map computed for a given one-dimensional group is the same
as when computer for any other one-dimensional formal group in the same strong isomorphism class.
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