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Abstract

The electron density profile is a key parameter that affects the performance and stabil-
ity of tokamak plasmas. To gain an understanding of turbulent particle transport many
fusion devices are fitted with diagnostics capable of high-fidelity electron density profile
measurements. For future fusion reactors such as DEMO, the design will be focused on
fusion performance. This limits the diagnostics available whilst also pushing the plasma
to the limits of its stability. It will be important to thoroughly make use of all avail-
able information for plasma control. Interferometry is a diagnostic that is planned to be
implemented within DEMO and is currently implemented within the WEST tokamak. A
Bayesian inference algorithm with a Gaussian process prior was developed to infer the elec-
tron density profile from WEST interferometry data. Both stationary and non-stationary
kernels are trialled. Hyperparameters are handled with optimisation methods and a full
Bayesian analysis; where the hyperparameters are marginalised. These methods are ap-
plied to synthetic interferometry data created from chosen ground truth electron density
profiles and to interferometry data from a west shot where they can be compared to NICE
[5]; an inference algorithm currently implemented on WEST data. The resulting inferences
show that each technique can accurately infer specific ground truth profiles yet perform
poorly on others. Further development is needed for a Bayesian inference method that
performs well regardless of the ground truth profile.
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Chapter 1

Introduction

Nuclear fusion, the process by which two light atomic nuclei combine to form a heav-
ier nucleus, holds the promise of revolutionizing the world’s energy landscape. With the
ever-increasing demand for sustainable, clean, and virtually limitless energy sources, nu-
clear fusion has emerged as a leading candidate. Nuclear fusion, in contrast to the fission
processes used in current nuclear power plants, presents a fundamentally safer and more
sustainable option. The primary fuel for fusion, isotopes of hydrogen, is abundant and
can be extracted from water sources. Fusion reactions produce no long-lived, highly ra-
dioactive waste, minimizing environmental hazards and long-term disposal issues. Recent
advancements have reignited interest in the field, with notable breakthroughs such as
the development of high-temperature superconducting magnets, which enable the efficient
confinement of high-energy plasma. An excellent example is the rare earth barium copper
oxide high-temperature superconducting magnets that are being deployed in the SPARC
experimental reactor [4]. In February 2022, the UK-based JET laboratory reported that it
had smashed its own world record for the amount of energy it could extract by squeezing
together two forms of hydrogen, deuterium and tritium. The experiments produced 59
megajoules of energy over five seconds (11 megawatts of power), which was more than
double what was achieved in similar tests back in 1997. Another breakthrough was an-
nounced in December 2022 by US scientists at the National Ignition Facility in California.
They confirmed that they had achieved ignition for the first time, by firing up to 192 giant
lasers into a peppercorn-sized fuel pellet and triggering a fusion reaction that released more
energy than was put in by the lasers [17].
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Figure 1.1: The vacuum vessel that holds magnetically confined plasma within the WEST
tokamak [1].

Tokamaks are a class of fusion devices with great potential to achieve commercial
fusion energy production. Tokamaks use magnetic fields to confine and heat plasma, a
state of matter where atoms are split into electrons and nuclei. The immense pressures
and temperatures created induce fusion reactions between light nuclei, such as hydrogen,
to produce energy. Tokamaks currently demonstrate long plasma confinement times, which
measure how well the plasma is isolated from the surrounding environment and affect the
efficiency of energy production and heat loss. Tokamaks have the most extensive scientific
and technological knowledge base, which has been accumulated over decades of research
and development. This leads to reliable and robust designs, advanced diagnostics and
control systems, and proven solutions for engineering challenges. These advantages make
tokamaks the most promising candidates for achieving commercial fusion energy in the near
future. Tokamaks have already shown impressive results in terms of fusion power output
and energy gain. They are expected to reach even higher levels of performance with
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the next generation of devices. Tokamaks are also supported by a strong international
collaboration and a clear roadmap for development. Therefore, tokamaks have a huge
potential to commercialise fusion before other methods: especially with ITER just around
the corner and plans for DEMO already underway. ITER and DEMO are complementary
projects that will advance fusion energy from the experimental stage to the commercial
stage. ITER will provide the scientific and technological basis for DEMO, which will be
the first fusion power plant to produce electricity and operate with a closed fuel cycle. The
construction of ITER is expected to be completed by 2025, and the first plasma operation
is planned for 2026. The full deuterium-tritium operation of ITER is scheduled for 2035,
which will coincide with the start of the construction of DEMO. The operation of DEMO
is foreseen to begin in the 2040s, and to demonstrate the viability of fusion energy for
commercial use.

The electron density profile is a key parameter that affects the performance and sta-
bility of tokamak plasmas. It affects the plasma current, the confinement time, the energy
transport, the magnetohydrodynamic (MHD) modes, and the coupling of external heating
and current drive sources. There are physical limits that constrain the maximum achievable
density in tokamak plasmas. One of the most well-known density limits is the Greenwald
limit, which states that the line-averaged density cannot exceed a value proportional to the
plasma current divided by the plasma cross-sectional area. This limit is empirically ob-
served in many tokamaks, and attempts to exceed it result in disruptions or edge localized
modes (ELMs). The physical mechanism behind the Greenwald limit is not fully under-
stood, but it may be related to the stability of the edge pedestal, the bootstrap current,
or the core particle transport. A lower electron density leads to runaway electrons. The
electrons are accelerated around the tokamak by a central solenoid and only collisions pre-
vent them from gaining enough energy to escape the magnetic confinement. A low density
can mean that collisions are not frequent enough to prevent escape and the electrons can
cause serious damage to the plasma facing wall. Thus it is not beneficial for the plasmas
electron density profile to be such as to have many electrons with a low density near the
edge.

One of the main challenges in measuring the electron density profile is to obtain high
spatial and temporal resolution over a wide radial range. Several diagnostic techniques
have been developed and applied to tokamaks, such as interferometry, reflectometry, Thom-
son scattering, and spectroscopy. Each technique has its own advantages and limitations
in terms of accuracy, reliability, coverage, and invasiveness. A combination of different
techniques is often used to obtain a comprehensive picture of the electron density profile
evolution.

Another worthy challenge is to maintain the electron density profile in a desired shape.
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The electron density profile is influenced by various factors, such as plasma geometry/magnetic
configuration, plasma current and pressure, impurity content, fueling and pumping meth-
ods, and external heating and current drive sources. Some of these factors can be manipu-
lated by the operators, others can be controlled in real time with sophisticated algorithms
and feedback loops; achieving a favourable electron density profile that enhances the plasma
performance and stability.

The electron density profile is an important parameter that determines many aspects of
tokamak plasmas. Measuring and controlling the electron density profile is a crucial task
for optimizing the tokamak operation and achieving fusion energy goals.

This thesis focuses on performing a Bayesian inference of the electron density profile
using the interferometry diagnostic and a Gaussian process prior. Bayesian inference with
a Gaussian process prior is a powerful technique for the nonparametric modelling of com-
plex phenomena. A Gaussian process is a collection of random variables, which have a
joint Gaussian distribution. A Gaussian process can be specified by a mean vector and a
covariance matrix. By applying Bayes’ rule, one can obtain the posterior distribution for
an unknown profile, given some observed data. The posterior can be used for prediction
and uncertainty quantification. Interferometry is a technique that uses the interference of
electromagnetic waves to measure the properties of a medium. The interferometer within
a tokamak consists of many laser beams penetrating the plasma at various angles. This
thesis uses the Tungsten (W) Environment in Steady-state Tokamak (WEST) tokamak’s
laser geometry which covers a span of the poloidal cross section. Although there is not
enough information to completely and accurately reconstruct the electron density profile
a best guess given the data can be inferred. For real data, it is difficult or impossible to
know how close any inferred profile is to the true profile.

Bayesian integrated analysis is often used to combine multiple diagnostics which mea-
sure the same or related physical parameters. This involves combining multiple diagnostics
with the Bayesian framework which provides a universal way to treat uncertainties of any
probability density function. R Fischer from the Max-Planck-Institut für Plasmaphysik
published a paper on using Bayesian integrated analysis with Thomson scattering, in-
terferometry and lithium beam diagnostics to combine their information on the electron
density profile [6]. They focused on obtaining a systematic and formalized error analy-
sis of all uncertainties involved in each diagnostic. These are then quantified within the
likelihood. Jiahong Chen published a paper on the development of a Bayesian integrated
analysis program developed for the HL-2A tokamak [2]. For the electron density profile, it
combines interferometry and reflectometry. It aims to infer a 2D profile whilst this thesis
focuses on a 1D profile. The program is a full Bayesian analysis from the raw data to
the results. This thesis also aims to go from raw interferometry data to results in a fully
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Bayesian way. GT von Nessi and MJ Hole also published a paper on the combination
of interferometry and Thomson scattering to infer the electron density and temperature
profile with Bayesian inference and Gaussian Processes [15]. Their work mainly focuses on
the Thomson scattering diagnostic. Interferometry is not used to determine the shape of
the profile but to contain the magnitude of the electron density given a profile shape. This
avoids the difficult calibration of the integrated Thomson beam energy.

There is a common rhythm to these papers that is also echoed in my thesis. The
problem is broken down with Bayes’ theorem and the form of the various distributions are
identified or defined. A forward model is defined that allows one to obtain an error free
version of the data given a defined ground truth of the physical quantity of interest. The
forward model is essential to computing the likelihood. The hyperparameters and their
priors are identified and optimised using the hyperparameter maximum a posteriori (MAP)
method or marginalisation. The posterior is computed with analytical expressions where
possible or Markov chain Monte Carlo (MCMC) techniques are used to sample from the
posterior. The posterior is presented as a probability distribution showing the most likely
values of the physical quantity of interest and its uncertainty. There are many caveats and
details that are specific to each implementation yet the overarching story remains intact.
This thesis does not aim to combine multiple diagnostics but focuses on interferometry.
The goal is to use raw interferometry data to infer the electron density profile with Bayesian
techniques.

The background theory chapter introduces the tokamak and some necessary physics
required to understand the assumptions made. The WEST tokamak has implemented
Newton direct and Inverse Computation for Equilibrium (NICE) code to reconstruct the
magnetic equilibrium and it also outputs the electron density profile as a byproduct. A
brief description of NICE’s method is provided for comparison to the techniques in this
thesis. Bayesian inference with Gaussian processes is introduced for a simple regression
problem. It is introduced in such a way that the step to inferring the electron density
profile from interferometry can be done simply by changing the forward model used. Some
more advanced alterations to the process are explained to include further assumptions of the
problem. Interferometry is explained in enough detail to understand how the density profile
information is present within the data. The procedures explained in the background theory
are then applied to synthetic interferometry data that was created with a ground truth
profile assumption. This allows for a precise quantification of the performance through the
mean square error. All of H mode, L mode and peaking are explored through synthetic
data. Real interferometry data is taken from the WEST tokamak and the resulting inferred
profiles can be compared to NICE.
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Chapter 2

Background Theory of Bayesian

Techniques and WEST

Interferometry

This chapter aims to equip the reader with the necessary background theory required to
reproduce this work and to understand the origin of the inferred electron density profiles
presented in the results. It first describes a tokamak fusion device and some relevant
physics concepts behind its function. It then describes in a high level manner the inference
carried out by Blaise Faugeras and team with their code known as NICE [5]. After, the
chapter outlines Bayesian inference and how a specific implementation can be used to solve
a simple regression problem. Interferometry is introduced in enough detail to understand
how the electron density profile could be inferred from its data. The Bayesian inference
method introduced for the simple regression problem is then altered to allow this inference.
Various options for advanced alterations are also explained here and explored in the results
section.
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2.1 The Tokamak

Figure 2.1: A tokamak and relevant magnetic fields that create the helical particle trajec-
tory [10].

Tokamak is a class of fusion devices whose name comes from the abbreviation of a Russian
phrase which means “toroidal chamber with magnetic coils”. It consists of a doughnut
shaped vacuum chamber surrounded by powerful magnets that aim to confine a high tem-
perature plasma that would otherwise damage the chamber. The plasma pressure and
temperature are fundamental parameters in the context of nuclear fusion because they
dictate the conditions required to overcome the electrostatic repulsion between positively
charged atomic nuclei and bring them close enough for the strong nuclear force to initiate
fusion reactions. In the core of stars like our Sun, the immense pressure and temperature
generated by the gravitational collapse create the conditions where hydrogen nuclei (pro-
tons) can overcome their natural repulsion and fuse into helium, releasing a tremendous
amount of energy in the process. To initiate fusion, hydrogen must be heated to tem-
peratures in the range of 150 million Kelvin. In a tokamak, this is mainly accomplished
with ohmic heating via a driving plasma current and neutral gas injection. This involves
accelerating hydrogen ions to high speeds with electric fields and neutralising them the
instant before they enter the chamber. The resulting plasma attains the required temper-
ature, allowing nuclei to collide with sufficient energy for fusion reactions to occur. Figure
2.1 shows the position of various magnetic field coils within the tokamak. The toroidal
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magnetic field exerts an inward force on the plasma thus raising its pressure. High pressure
is required to increase the frequency of collisions so that the energy output can exceed the
large heating energy input. The central solenoid induces a current in the plasma which
produces the majority of the poloidal magnetic field. This field is essential for confine-
ment but it also plays a key role in plasma stability. The outer poloidal field coils can be
controlled in real time to help mitigate instabilities. A real time inference of the electron
density profile would assist in identifying instabilities and informing the algorithm that
drives the control coils to mitigate them. In addition to high temperature and pressure,
the tokamak design seeks to maximize the confinement time of the plasma. This is essen-
tial to allow a sufficient number of fusion reactions to occur before the plasma cools down
or loses its stability. The magnetic fields in a tokamak are carefully optimized to prevent
rapid plasma loss and minimize heat loss through various mechanisms, including turbulent
transport. The shape of the density profile has a large effect on the confinement time.

The combination of the toroidal and poloidal fields shown in figure 2.1 creates a helical
magnetic field within the plasma. Electrons and ions are accelerated in opposite toroidal
directions by the central solenoid yet both follow a trajectory along the magnetic field
lines. This is because a charged particle moving across a magnetic field succumbs to a
force perpendicular to its motion. This causes them to gyrate around the magnetic field
lines and confines them to follow the magnetic field lines. This is an oversimplification
and in reality there are drift phenomina that cause the particles the deviate from following
the magnetic field lines exactly. Collisions also cause deviations. A detailed description of
particle motion within a magnetic field is not needed for this thesis. It is enough to know
that the particles in general follow the helical path of the magnetic field lines with a small
gyration around the field line. In many models used for data analysis the assumption that
particles follow the magnetic field lines is used, including within this thesis.

The magnetic field lines are confined to magnetic flux surfaces, figure 2.2. The toroidal
and poloidal flux is constant on magnetic flux surfaces, there is 0 flux across magnetic
flux surfaces. Since we assume that the particles follow the magnetic field lines which
are strictly bound to these surfaces, we also assume that the density is constant on these
surfaces. This allows the density of the entire cross-section to be expressed with a 1D
profile as a function of normalised radius Ä for example, see NICE’s profile, figure 2.3. The
normalised radius is constant at each flux surface. It is 0 at the magnetic axis and 1 at the
plasma boundary. The magnetic axis is the very center point of the core and is defined as
where the poloidal magnetic flux is minimum and the plasma boundary is the last closed
flux surface. Particles past the plasma boundary are no longer bound and may interact with
the plasma wall. The existence of nested magnetic flux surfaces shown in figure 2.2 rely on
the ideal magnetohydrodynamics (MHD) assumptions. Experiments frequently discover
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Figure 2.2: Magnetic flux surfaces [16].

magnetic islands which discredits the assumption of nested flux surfaces. The electron
density profiles inferred by NICE and this work make the nested flux surface assumption,
although for many applications such as real time control, a highly accurate inference is
often not required.

2.2 NICE

NICE is an equilibrium reconstruction code that is routinely deployed for the WEST toka-
mak. It is relevant because it computes an inference of the electron density profile that is
available for comparison to the profile inferred in this work, although NICE’s main objec-
tive is to infer the shape and position of the magnetic flux surfaces. NICE uses magnetic
diagnostics. At WEST these include 421 pickup coils, 36 flux loops and 12 Rogowski coils
[12]. Magnetic diagnostics provide the majority of the information. NICE also uses inter-
ferometry, polarimetry, motional stark effect and pressure measurements. Equation 2.14
and 2.15 further in the chapter, show how interferometry and polarimetry together can
provide information about the poloidal magnetic field, which directly affects the magnetic
flux and thus magnetic flux surfaces. NICE performs the inference by minimising a cost
function. The cost function determines how well a physical state of the system matches
the data received. A state is a specific position and shape of the magnetic flux surfaces
and electron density profile. This requires a forward model. The forward model takes a
state of the system and attempts to compute the signals that would be received by error
free diagnostics if that state was the ground truth. The forward model is a simplified
mathematical representation of the measurement process and can never be 100% accurate.
This introduces errors in the inference that need to be accounted for. The signals from
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the forward model can be compared to the actual signals received by the diagnostics to
compute the cost function. By minimising the cost function the state that best matches the
data is found. NICE uses Sequential Quadratic Programming (SQP) as the minimisation
algorithm. The optimal state of the system is then stored in the Integrated Modeling and
Analysis Suite (IMAS) database for WEST. This includes the 1D electron density profile
used as a comparison for the profile inferred in this work. NICE also imposes regularisation
terms on their cost function. These penalise the cost function when state properties have
features that disagree with prior knowledge. This includes smoothness. We expect the
magnetic flux surfaces and electron density profile, to be continuous and smooth. A state
inputted into the cost function that is not smooth triggers the regularisation term which
causes the cost function to be larger. Minimising the cost function now also leads to smooth
magnetic flux surfaces and electron density profile. This leads to a difficult question, how
smooth should it be? NICE also have a regularisation term to penalise the cost function if
the electron density profile is far from 0 at the last closed flux surface or plasma boundary.
It is prior knowledge that the electron density is near 0 at the plasma boundary. How close
to 0, and how strong should the regularisation be is still an open question. This work’s
approach has direct analogues to these regularisation terms. As explained later in more
detail the length scale controls smoothness and an artificial observation ensures the density
is close to zero at the plasma boundary. Figure 2.3 shows an example of a NICE inferred
electron density profile. It is modelled with a cubic spline function. It is the parameters of
the cubic spline that are inputted into the cost function. The errors are calculated using
a sensitivity method. In short, the error is deemed larger for the electron density of a
particular normalised radius if a large change in the density leads to a small change in the
cost function. In this case, we cannot be certain what density is better because many lead
to a similarly low cost function and thus match the data similarly well. To include some
more details, the SQP minimisation algorithm computes the hessian of the cost function
for minimisation, but this hessian can also be used to measure the sensitivity and thus the
errors. The diagonal of the hessian contains the second differential of the cost function for
each input parameter. This describes the curvature of the cost function in the direction of
each parameter. A smaller curvature means a smaller sensitivity and thus a larger error.

2.3 Bayesian Inference and the Simple Regression Prob-

lem

This work aims to use Bayesian inference to obtain the electron density profile. Bayesian
inference will be introduced generally and then it will be used to define a specific imple-
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Figure 2.3: Electron density profile inferred by NICE for an instance in time within the
WEST tokamak.
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mentation applied to a simple regression problem. The method introduced will later be
extended to solve the problem of inferring the electron density profile with interferometry
data. The inferative Bayes’ theorem for a physical quantity of interest q is expressed as,

P (q|D, I) =
P (D|q, I)P (q|I)

P (D|I)
, (2.1)

the posterior P (q|D, I) is the probability density distribution of q given the measured
data D and some prior information I. The q that maximises the posterior is the most
probable value of q given the data and prior information. The uncertainty of q can also
be obtained from the posterior. The likelihood P (D|q, I) is the probability density func-
tion that expresses the probability of the measured data given a fixed value of q and the
prior information. The likelihood is described by the experimental error for the data collec-
tion. The prior P (q|I) contains information assumed about q before the data is taken. The
marginal likelihood or evidence P (D|I) is simply the probability of the data given the prior
information only. For posterior computation, the marginal likelihood serves as a normali-
sation factor. Normalisation is often carried out with other means to simplify the posterior
computation. Although the marginal likelihood can be used to tune hyperparameters; as
will be shown later.

The version of Bayes’ theorem for a simple 1D regression problem is,

P (y⃗|d⃗, ϵ⃗, ¹) =
P (d⃗|y⃗, ϵ⃗)P (y⃗|¹)

P (d⃗|⃗ϵ, ¹)
, (2.2)

where y⃗ contains the values of a curve at regular x values. The goal is to find the most
likely y⃗ given the data and prior information. d⃗ contains curve measurements at known
x values with some experimental errors ϵ⃗. ¹ is a set of parameters related to the prior
form, explained more later. The likelihood and prior are going to be clearly defined as
multivariate Gaussians giving a multivariate Gaussian posterior which needs to somehow
model the curve y⃗. Figure 2.4 illustrates how a multivariate Gaussian can model a curve.
The functional form of a multivariate Gaussian is,

N (y⃗, µ⃗,Σ) =
1

√

(2Ã)
n

2 |Σ|
exp

[

−
1

2
(y⃗ − µ⃗)TΣ−1(y⃗ − µ⃗)

]

, (2.3)

the mean vector µ⃗ holds the y values of the curve at regular intervals along the x axis. The
diagonal of the covariance matrix holds the squared standard deviations of each Gaussian
within the multivariate. These will be used to represent of the uncertainty of the curve
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Figure 2.4: Illustrating how many Gaussians can model a curved line and its uncertainty.

inferred from the data. Figure 2.4 shows 10 Gaussians with each mean connected by a
straight line. In practice, many Gaussians are used in a small space so that even a linear
interpolation appears as a smooth curve. In our simple regression problem 101 Gaussians
are used, thus y⃗ has a length of 101.

For the simple 1D regression problem the posterior distribution is a multivariate Gaus-
sian that represents the most likely curve given the data and prior information, see figure
2.5 for a visualisation. It can be expressed as,

N (y⃗, µ⃗post,Σpost), (2.4)

where /vecµpost has a length of 101, the same as the unknown y values. To compute
µpost and Σpost we must define the likelihood and prior. If m measurements are taken the
likelihood is defined as,

P (d⃗|y⃗, ϵ⃗) = N (d⃗, µ⃗li = Ry⃗,Σli), Σli = ϵ⃗I =











ϵ1 0 . . . 0
0 ϵ2 . . . 0
...

...
. . . 0

0 0 0 ϵm











, (2.5)

where R is the response matrix. Given some curve y⃗ to be true, Ry⃗ is a vector that has

13



the same length as d⃗ and contains the values of the curve y⃗ at the same x values that
the data was collected at. The response matrix is an error free model of the measurement
process. In the likelihood of figure 2.5 the blue line is an example of a given y⃗ and if
this was the ground truth and we took an error free measurement at the same x points as
our original data then we would get the points indicated by the mean of each Gaussian.
These points are computed with Ry⃗ and provide the mean vector of the likelihood. The
likelihood represents the probability of getting the black data points given the blue line y⃗
is the ground truth. Regression is inherently an inverse problem and the response matrix
is a forward model.

Here is is worth noting what a Gaussian process is and how a multivariate Gaussian is
an approximation of it. A Gaussian process is a stochastic process that can be represented
by a multivariate Gaussian of infinate dimensions. For example the x variable in 2.5 is
continuous and thus has infinate values between 0 and 9. The curve that best fits the
data is made of an infinate number of points, each point with an uncertainty. This can
be modeled with an infinate number of Gaussians and thus the posterior can be said to
be a Gaussian process. Since infinate precision is not possible with a computer a many
dimension multivariate Gaussian is used, which is an approximation of the Gaussian pro-
cess. Regression carried out with Bayesian inference and a Gaussian process prior is often
referred to as Gaussian Process Regression; even when the finite dimension multivariate
Gaussian approximation is used. The prior for this simple regression problem is a multi-
variate Gaussian. Although, the method being introduced is more general than the typical
implementation of Gaussian Process Regression. This is so that it can easily be extended
later to allow regression in situations where the data resides in a different space. To avoid
confusion with the typical version of Gaussian Process Regression the term is not used for
this implementation. For an introduction to typical Gaussian Process Regression, I suggest
the textbook Gaussian Processes for Machine Learning [13]. The prior can be defined as,

N (y⃗, µ⃗pr = 0⃗, K), Kij = k(xi, xj) = Ã2 exp

[

(xi − xj)
2

2l2

]

, (2.6)

where 0⃗ is a vector of 101 zeros, the same length as y⃗. The zero vector is a commonly
used ‘non-informative’ prior mean vector. The covariance matrix K is constructed using
the kernel k(xi, xj). The main role of the amplitude, Ã, in the kernel is to set the prior
strength. A high amplitude means the inference has a low prior strength and the resultant
curve can be far from the prior mean µpr = 0⃗. See the prior in figure 2.5, the amplitude Ã
is the standard deviation of these Gaussians shown. For visualisation purposes only 5 prior
Gaussians are shown in figure 2.5, yet in reality there are 101, the same number as there
are unknown y values. The length scale, l sets the strength of the correlation between the
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Gaussians. A low length scale means that only Gaussians close in x are highly correlated.
Gaussians further in x would have a low correlation, meaning they can have a very different
mean value. A low length scale allows the fitted curve to have more complexity similar
to a high order polynomial and can lead to overfitting. A high length scale limits the
fit’s ability to curve sharply leading to a simple model, similar to a low order polynomial,
leading to underfitting. A very high length scale leads to an almost linear fit. This prior is
far from perfect. For instance, it is often known that the inferred values must be positive
as you cannot have a negative electron density. Since the prior mean vector is set to 0⃗, a
negative value is as likely to be inferred as a positive value. Since it is Gaussian, values
close to 0 are more likely to be inferred than values far from 0. To mitigate this a high
amplitude can be used to lower the prior strength and allow the data in the likelihood to
have more influence on the posterior result. The kernel k(xi, xj) in equation 2.6 is known
as the exponential square kernel. It is a very commonly used kernel but far from the
only choice. The single value of the length scale prevents the inference from having long
smooth regions with few features followed by regions of high variability. This can be an
issue when inferring H-mode tokamak plasmas that have a sharp drop-off in density at
the plasma edge. For these situations, a non-stationary kernel can be used that allows the
length scale to be a function of x which can then allow for posteriors of varying complexity.
Regardless of the kernel used, deciding the optimal values of its parameters for a problem
is not obvious and various options will be explored.
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Figure 2.5: A visualisation of the simple regression problem and the various distributions
involved in the Bayesian inference solution.

Figure 2.5 shows the simple regression problem, it then tries to show the Gaussians that
make up the likelihood and prior although it is not perfect. We assume the observations are
independent giving the likelihood a diagonal covariance matrix. So the multiple Gaussians
that make up the likelihood are not dependent on each other, thus representing them
individually provides all the information in the likelihood. The prior has a more complex
covariance matrix K, and figure 2.5 does not have a complete representation of the priors
form. Figure 2.5 also shows the 101 Gaussians that make up the posterior by plotting the
regularly spaced µ⃗post values in green with a green shadow showing the standard deviations
of each Gaussian that are found in the diagonal of Σpost. The posterior mean vector and
covariance matrix can be computed with the closed form expressions,

µ⃗post = µ⃗pr + (K−1 +R¦Σ−1

li R)−1R¦Σ−1

li (d⃗−Rµ⃗pr), (2.7)

Σpost =
(

R¦Σ−1

li R +K−1
)−1

, (2.8)
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which are derived in appendix A. The main steps include multiplying the functional forms
of the prior and likelihood, ignoring all scaling factors, simplifying until they form a single
unnormalised multivariate Gaussian and then comparing this with the posterior.

There is still the issue of deciding the values of the hyperparameters to place in K and
the experimental error to place within Σli. Often the experimental error is not precisely
known and can also be treated as a hyperparameter. To select the hyperparameters we
can perform a separate hyperparameter Bayesian inference,

P (¹, ϵ⃗|d⃗) =
P (d⃗|¹, ϵ⃗)P (¹, ϵ⃗)

P (d⃗)
, (2.9)

where the most probable hyperparameters given the same data can be found by max-
imising the hyperparameter posterior, P (¹, ϵ⃗|d⃗). This method is known as MAP. Notice the

likelihood P (d⃗|¹, ϵ⃗) is exactly the marginal likelihood from the inferative Bayesian formula
2.1. The prior P (¹, ϵ⃗) needs to accurately represent our prior knowledge of the hyperpa-
rameters. By maximising the numerator of Bayes theorem the posterior is also maximised.
The marginal likelihood from the hyperparameter Bayes theorem P (d⃗), can safely be ig-
nored as it is a normalisation constant. All further mentions of marginal likelihood refer
to the inferative distributions marginal likelihood P (d⃗|¹, ϵ⃗); as is the usual terminology for
this procedure. It can be computed by integrating the numerator of the inferative Bayesian
over the quantity of interest:

P (d⃗|⃗ϵ, ¹) =

∫

P (d⃗|y⃗, ϵ⃗)P (y⃗|¹) dy⃗

=
1

(2Ã)
m

2

√

|Σli +RKR¦|
exp

[

−
1

2
(d⃗−Rµ⃗pr)

¦(Σli +RKR¦)−1(d⃗−Rµ⃗pr)

]

.

(2.10)

The values of the marginal likelihood can become very large and troublesome to compute
with standard 64-bit float precision. For this reason, the logarithm is computed. It is the
convention when performing optimisation to define a loss function to be minimised, thus
the negative log marginal likelihood is used. Scaling constants do not affect the minimum
value and can be ignored. The negative log marginal likelihood used as a loss function for
hyper-parameters is then,

loss(⃗ϵ, ¹) = ln(|Σli +RKR¦|) + (d⃗−Rµ⃗pr)
¦(Σli +RKR¦)−1(d⃗−Rµ⃗pr), (2.11)
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the full derivation of this expression can be found in appendix B. To include a uniform prior
for the hyperparameters P (¹, ϵ⃗), the loss function can be programmed to return infinity
(or a very large number) when the proposed hyperparameters are outside their bounds.
Although some minimisation algorithms can avoid proposing values outside of determined
bounds.

An alternative solution is to perform a full Bayesian analysis where the hyperparameters
are marginalised out of the inferative posterior. This allows the inferative posterior to
become independent of the hyperparameters and allows for a more robust and flexible
inference. Marginalisation of the posterior can be written as,

P (y⃗|d⃗) =

∫ ∫

P (y⃗, ¹, ϵ⃗|d⃗) d¹ dϵ⃗, (2.12)

and with conditional probability rules,

P (y⃗|d⃗, ϵ⃗, ¹) =

∫ ∫

P (y⃗|¹, ϵ⃗, d⃗)P (¹, ϵ⃗|d⃗) d¹ dϵ⃗. (2.13)

Notice that P (y⃗|¹, ϵ⃗) is our original inferative posterior and P (¹, ϵ⃗|d⃗) is the hyper-

paramter posterior from earlier. Sampling y from the joint distribution P (y⃗|¹, ϵ⃗)P (¹, ϵ⃗|d⃗)

is equivalent to sampling from the posterior P (y⃗|d⃗), that does not depend on the hyperpa-
rameters. To accomplish this a first step is to use MCMC sampling techniques to sample
¹ and ϵ⃗ from the hyperparameter posterior. This only requires the ability to compute
the log of the hyperparameter likelihood and prior given a proposed set of hyperparame-
ters. The prior is defined by us and so must be computable and the likelihood is exactly
the inferative marginal likelihood and has an analytical form given previously in equation
2.10. MCMC sampling involves initalising at a random position in the parameter space
and using a stochastic proposal function to suggest a new position given the current po-
sition. If the new position satisfies the Metropolis Hastings criterion, it is accepted and
the values of the hyperparameters at the new position are collected as a sample. Other-
wise the sample is rejected and the proposal distribution suggests a new position. After
some number of iterations, the samples closely represent samples from the true posterior.
The first few samples are usually a poor representation of the posterior, especially if they
are initialised far from the posterior maximum. For this reason, the first few samples are
often discarded as a burn in. The final samples of ¹ and ϵ⃗ can be used to sample y⃗ from
the inferative posterior P (y⃗|¹, ϵ⃗); which is a multivariate Gaussian of mean and covariance
given by equations 2.7 and 2.8. Sampling from a known multivariate Gaussian can be
done with more simple sampling techniques that have zero possibility of sample rejection:
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MCMC sampling is not required. Remember that each sampled y⃗ is a curve where the
vector items correspond to y values of the curve at regularly spaced x intervals; as shown
in figure 2.5. Thus the most likely value of the curve is the mean or median of the posterior
samples at each x value. For uncertainty, the standard deviation of certain quantiles can
be computed.marginal likelihood

This thesis uses the Python package emcee for the MCMC sampling. This involves
initialising a group of ‘walkers’ at random parameter positions. They then explore the
space of the provided posterior distribution using a proposal function and the Metropolis-
Hastings criteria. The proposal function suggests a new position in the hyperparameter
space based on the current position.

An additional caveat of MCMC sampling is that the samples from a walker’s chain
are autocorrelated, yet a true sample from the posterior would not depend on the current
position of a walker. To reduce autocorrelation the chains are often thinned. Thinning by
a degree of three means removing every third sample. This reduces autocorrelation and the
samples more accurately represent samples from the posterior. Over-thinning limits the
number of samples obtainable with the given computation power and time limits, leading
to a loss of precision of the inference. To aid in deciding the thinning degree one can
compute the Integrated Autocorrelation Time (IAT). This is a measure of how many steps
it takes for a Markov chain to forget its initial state and become uncorrelated. Thinning
by a degree of the IAT will ensure there is almost no autocorrelation between the samples
but this is extreme and often means very long run times for a few samples that produce
much less precise results than if more samples are kept.

Another way to reduce autocorrelation is to tune the MCMC algorithms hyperparam-
eters. The proposal function often has tunable parameters. The choice of prior also plays
a major role.
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2.4 Interferometry and Polarimetry

Figure 2.6: Polodial cross section showing the geometry of interfero-polarimetry lasers at
WEST [7] and some example interferometry data.

Interferometry and Polarimetry are techniques that use the interference of electromagnetic
waves to measure the properties of a medium. Interfero-polarimetry lasers within a toka-
mak penetrate the plasma at various angles. The geometry at WEST is shown in figure
2.6. Each laser is split into two beams: one that passes through the plasma and one that
bypasses it. The two beams are then recombined and detected by a receiver. The phase
difference between the two beams depends on the difference in the optical path length,
which is affected by the electron density along the line of sight. Interferometry measures
the phase difference; allowing one to calculate the line integrated electron density of the
plasma

∫

ne dl,

∆ϕ =
¼e2

4Ãϵ0mec2

∫

ne dl [9]. (2.14)

The laser wavelength ¼, is combined with other common physical constants to ascertain
the constant of proportionality. WEST has stored the line integrated electron density as
raw interferometry data in the IMAS database. This is the data that will be used for this
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work. Although there is not enough information to completely and accurately reconstruct
the electron density profile a best guess given the data can be inferred.

Polarimetry measures the Faraday rotation angle of the lasers. The linearly polarised
lasers experience a rotation as the circularly polarised components travel through the
plasma at different speeds. This is due to the small gyration of the electrons around the
magnetic field. The Faraday rotation angle is proportional to the line integrated density
of neB|| along the line of sight of the lasers,

¹F =
¼2e3

8Ã2c3ϵ0m2
e

∫

neB|| dl [9], (2.15)

where B|| is the magnetic field strength parallel to the line of sight. Polarimetry has in-
formation about electron density and this work could be extended to become a Bayesian
integrated analysis which includes this information in the inference. Only interferometry
information is used in this thesis. Polarimetry can be used in combination with interfer-
ometry to gain information about the poloidal magnetic field and this is why NICE uses
it to determine the position of the magnetic flux surfaces.

2.5 Bayesian Inference for Interferometry

To infer the electron density profile with interferometry, the previously defined regression
process is altered. y⃗ becomes n⃗e, the 0⃗ prior mean can remain the same. The amplitude
Ã and length-scale l can be re-optimised by maximising the marginal likelihood. The data
is now in a different space and thus is the likelihood. The response matrix R must be
created so that it will transform a profile n⃗e into what would be measured by an error free
version of the WEST interferometry system given n⃗e is the true profile. The result of Rn⃗e

is a vector the same length as the data d⃗ where each element corresponds to a different
interferometry laser or channel.

The response matrix computation can be summarised in a few steps. NICE provides
the magnetic flux at a set of grid points on the tokamak poloidal cross-section. It also
provides the flux at a set of flux surfaces. The normalised radius Ä of each flux surface is
known. A simple 1D interpolation can be used to determine the normalised radius at each
grid point. Then using n⃗e another 1D interpolation can be done to determine the electron
density at each grid point. After the density at any point along a laser’s line of sight ne(li),
can be computed using triangular mesh interpolation. The density at the golden cross in
figure 2.7 can be computed as a weighted sum of the density at the three nearest grid
points {g1, g2, g3} that form the golden triangle,
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Figure 2.7: An example mesh grid to aid visualisation of the triangular mesh grid interpo-
lation used in the response matrix construction.
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ne(li) = ¼1ne(g1) + ¼2ne(g2) + ¼3ne(g3), (2.16)

where ¼ values can be computed using the (R1, z1), (R2, z2), (R3, z3) coordinates of the 3
known density points and the point of interest (R, z),

¼1 =
(z2 − z3)(R−R3) + (R3 −R2)(z − z3)

(z2 − z3)(R1 −R3) + (R3 −R2)(z1 − z3)
, (2.17)

¼2 =
(z3 − z1)(R−R3) + (R1 −R3)(z − z3)

(z2 − z3)(R1 −R3) + (R3 −R2)(z1 − z3)
, (2.18)

¼3 = 1− ¼1 − ¼2. (2.19)

These ¼ values are known as the barycentric coordinates of the point of interest. The line
integrated density can be approximated as a sum of electron densities at many points along
the line of sight, li, times the width of their separation ∆l,

∫

ne dl ≈
∑

i

ne(li)∆l. (2.20)

The contribution w(gi) of each grid point gi is a sum of all the mesh interpolation coeffi-
ciants ¼j used on that point,

∫

ne dl ≈ ∆l
∑

i

w(gi)ne(gi), w(gi) =
∑

j

¼j. (2.21)

Each point can be associated with the nearest flux surface fi equally spaced in Ä. This
way the contribution w(fi) of each flux surface is a sum of the contribution at each of its
associated grid points gj,

∫

ne dl ≈ ∆l
∑

i

w(fi)ne(fi), f =
∑

j

gj. (2.22)

All of these steps equate to a simple re-ordering of the original summation 2.20 to extract
the contribution of each flux surface on the final integrated density value. Equation 2.22
can be computed using a vector product,
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∫

ne dl ≈ ∆lw⃗¦n⃗e. (2.23)

The contribution vector applies to one line of sight. The computation for all lines of sight
can be performed by placing the ∆lw⃗ vector for each line of sight as a row in the response
matrix R. Thus, a vector of line integrated densities for the likelihood can be created,

µ⃗li = Rn⃗e. (2.24)

This responce matrix R can then be used in the closed form expressions 2.7 and 2.8, to
perfrom a 1D electron density profile inference.

Some further alterations to the inference method can be made to further increase relia-
bility. These include altering the kernel and adding artificial observations to include prior
knowledge. The kernel can be changed to a non-stationary kernel,

Kij = k(Äi, Äj) = Ã2

(

2l(Äi)l(Äj)

l(Äi)2 + l(Äj)2

)1/2

exp

(

−
(Äi − Äj)

2

l(Äi)2 + l(Äj)2

)

, (2.25)

this allows the length scale to change as a function of Ä. The length scale controls smooth-
ness, model complexity and curvature. If these are free to change for different regions of
the plasma then there is a greater range of possibilities for the final inference. A cubic
spline function can be used for significant flexability. This is where cubic functions are
fitted to a set of points known as knots so that the second derivative of each cubic matches
on each point. Chilenski used a hyperbolic tangent function,

l(Ä) =
lcore + ledge

2
+

lcore − ledge
2

tanh

(

Ä− Ästep center
Ästepwidth

)

[3], (2.26)

to form a smooth step down from a high length scale at the core to low at the edge, see
figure 2.8. The extra freedom at the edge allows the inference to accommodate for a large
sudden drop in electron density, which is a common feature for H-mode plasmas. H-mode
plasmas are known to have a longer confinement time and thus better fusion performance.
WEST does not operate in H-mode, although this method is tested with synthetic data
from a simple H-mode simulation.

24



Figure 2.8: Hyperbolic tangent smooth step function for length scale, equation 2.26. Used
to capture the drop at the edge of H-mode plasmas [3].

Traditionally prior information should be included in the prior distribution. However, in
practice this often makes the required inversion of the priors covariance matrix difficult or
impossible. This is either due to limited computational precision or because the covariance
matrix becomes non-positive definate. The inversion is required because the closed form
expressions for µ⃗post and Σpost involve inversions of both the likelihood and prior covariance
matrices. Although the likelihood covariance matrix Σli is diagonal and so is certainly
positive definite and inversion does not suffer from precision errors. This is not true for
the priors covariance matrix K. It is difficult to define a prior covariance matrix that
includes all the prior information, remains non-positive definite and does not suffer from
precision errors. For these reasons, it is often more convenient to place prior information
into the likelihood in the form of artificial observations. This method was also adopted by
Chilenski [3]. The density is known to be close to 0 at the plasma boundary, (Ä = 1). It is
also known that the density profile is smooth and symmetric meaning the gradient of the
profile on the magnetic axis must be close to 0. This information can be included in the
data, d⃗, with an artificial experimental error determining the strength of the information
included in ϵ⃗. Other parts of the method need to be altered to accommodate the new
information. The vector to be infered a⃗ is not only n⃗e but also includes ne(Ä = 1) and
n′
e(Ä = 0) concatenated onto the end. This allows the response matrix alteration to be

simple,
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Ralt =

[

Rm×n Om×2

O2×n I2×2

]

=















0 0

Rm×n
...

...
0 0

0 · · · 0 1 0
0 · · · 0 0 1















, (2.27)

where n is the number of unknown electron density values in n⃗e and m is the number of
interferometry lasers. The prior covariance matrix must also be altered. The covariance
between a gradient and non-gradient data point is simply the differential of the covariance
over the gradient data point. For two gradient data points, it is a differential over each
point.

K ′
ij = k′(Äi, Äj) =

∂k′(Ä′i, Äj)

∂Ä′i
[3], (2.28)

K ′′
ij = k′′(Ä′i, Ä

′
j) =

∂k′′(Ä′i, Ä
′
j)

∂Ä′i∂Ä
′
j

[3]. (2.29)

In this notation Ä′ indicates the position of a gradient data point. The alternate kernel is
then,

Kalt =

[

K K ′

K ′¦ K ′′

]

. (2.30)

The necessary adaptations to our defined Bayesian regression method to accommodate
interferometry data have been described. For reference, the various final distributions and
expressions after the adaptations are fully shown in appendix C.

2.6 Chapter Summary

The electron density profile is important as it plays a key role in determining the en-
ergy confinement time and informing real time control systems. With the assumption of
magnetic flux surfaces, one can express it as a 1D profile. NICE is an equilibrium recon-
struction code that also infers the electron density profile that can be used as a comparison
in this thesis. Bayesian inference with multivariate Gaussians describing the various dis-
tributions can be applied to interferometry data to infer the electron density profile. A
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non-stationary kernel can be used to allow the inference to have a model complexity that
varies with Ä. Hyperparameters can be tuned by minimising the negative log marginal
likelihood. Alternatively, the hyperparameters can be marginalised. Prior information can
be easily included in the likelihood with artificial observations. In the results section, these
methods will be deployed on synthetic data. The inference performance can be determined
by how closely it fits the ground truth profile. They will also be deployed on real WEST
data and the results will be compared to that obtained by NICE.
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Chapter 3

Experiment to Compare Various

Implimentations on Real and

Synthetic Data

This chapter outlines the exact procedures that are carried out in an experiment to deter-
mine the performance capabilities of Bayesian inference for electron density profile inference
within a tokamak.

The methodology goes through the values used for including prior information. It
describes the algorithms used to compute the hyperparameter MAP and sample for the
full Bayesian method.

The results systematically provide the inferences for each method on real and synthetic
data. It includes an analysis of the findings.

3.1 Methodology for hyperparameter MAP and full

Bayesian experiment

The previous section outlined the procedure for using Bayesian inference to solve a simple
regression problem. It then expanded the concept to inferring the electron density profile
with interferometry data. This included the possibility of placing prior information into the
likelihood through artificial observations. The density at the plasma boundary is artificially
observed to be 0 with an artificial Gaussian error of 0.5 · 1019m−3. The profile gradient
at the magnetic axis (Ä = 0) is artificially observed to be 0 with a Gaussian error of 0.01.
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MAP was introduced as a way to optimise the hyperparameters. The full Bayesian analysis
method is introduced as marginalisation over the hyperparameters. The results from both
methods will be presented. Both methods allow for hyperpriors to be included. A uniform
prior is used for all hyperparameters and the bounds were selected by carefully observing
how the parameters affect the resulting inference. The amplitude is constrained between 0
and 100 and is on the same scale as the electron density 1020. Each length scale is bounded
between 0 and 3 and is on the same scale as the normalised radius. This includes the
two non stationary kernel options: hyperbolic tangent length scale and cubic spline length
scale. 5 knots were used for the cubic spline. To reduce the dimensionality of the problem
the knots were evenly spaced across the normalised radius. Each interferometry channel is
given the same experimental error bounded between 0.03 and 0.3 ·1019m−2. WEST reports
a no plasma noise in the order of 0.03 · 10−19m−2.

Figure 3.1: Common tokamak profiles used to generate synthetic interferometry data.

The mean squared error between the inferred profiles and synthetically created ground
truth profiles will be computed. This allows precise performance comparisons between the
kernels and hyperparameter methods. There are a few main profile types of interest to
the scientific community. L mode or low confinement profiles are typically parabolic like
in shape. They are the bread and butter of tokamak operations. It is the easiest profile
to achieve and is often a stepping stone to achieving other profiles within a plasma shot.
This is the main profile used within the WEST tokamak. H mode or high confinement
mode is achieved by increasing external heating power from sources such as neutral beam
injection and electron cyclotron resonance heating. H mode profiles have a distinct sharp
drop in density near the plasma boundary. H mode profiles are well known for largely
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increasing the energy confinement time of the plasma which is a crucial factor for net
positive energy production; although H mode introduces extra instabilites known as ELMs.
Another interesting profile feature is known as peaking. This is when the electron density
in the core is increased, creating a peak or bell shaped profile. A peaked profile has been
observed in many tokamaks and is due to turbulance and particle transport. The machine
parameters that drive the peaking in the JET tokamak have been identified to be neutral
beam injection heating [14]. Since high electron densities are needed in the core for a high
fusion performance, peaked profiles need to be thurrowly understood. A peaked profile can
be achieved with both L mode and H mode. The profiles are defined as shown in figure
3.1, and converted into synthetic error free interferometry data via the response matrix.
The response matrix is created using real magnetic field lines inferred by NICE. A small
Gaussian experimental error is added with a standard deviation of 3 · 1017 m−2. This is
what WEST reports as the no plasma noise of the interferometer.

The hyperparameter MAP is found by minimising the loss function based on the
marginal likelihood, see equation 2.11. When any trialed parameters exceed their prior
bounds the loss returns infinity (or a very high number). ‘SciPy minimize’ and ‘PyTorch
SGD’ were both trialled and achieved similar results.

The full Bayesian approach involves using MCMC to sample from the hyperparameter
posterior. This thesis uses the emcee python package which is based on the affine-invariant
ensemble sampler proposed by Goodman and Weare [8]. This method uses many ‘walkers’
that explore the parameter space in parallel. They update their positions using the pro-
posal function and the position of another walker. The advantage of this method is that
it is invariant to affine transformations of the parameter space. Since a unique posterior
distribution can be analytically computed from a single set of hyperparameters, sampling
many sets of hyperparameters is equivalent to sampling many posterior distributions. Each
posterior is a multivariate Gaussian that best fits the data given the sampled hyperparam-
eters. This thesis uses the Scipy stats multivariate Gaussian random variable sampler, to
sample one profile n⃗e, from each posterior. Overall this is a way to sample n⃗e from the joint
distribution P (n⃗e|¹)P (¹|d⃗), which is equivalent to sampling from the posterior P (n⃗e|d⃗) that
does not depend on the hyperparameters, ¹. The mean density at each normalised radius
forms the full Bayesian inferred profile. The standard deviation is computed for uncer-
tainty. Using the mean and standard deviation allows for a direct comparison to the MAP
results. The distribution of ne at a point of the normalised radius is plotted to show it is
Gaussian like, see figure 3.2. The median and quantiles are also acceptable measures.
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Figure 3.2: An example distribution of ne for Ä = 0.54 from the full Bayesian sampling
method.

To minimise autocorrelation the emcee hyperparameters are tuned. The main hyper-
parameter is called ‘moves’, which is their term for the proposal function. It is possible
to pass multiple moves and weights when sampling. Emcee will randomly select a move
in proportion to the weights. This should make the next sample more random and less
correlated to the previous. Each move also has a single parameter. Optuna is a hyperpa-
rameter tuning framework for Python that proposes trials in an attempt to minimise the
objective function. By default, it uses the tree-structured Parzen estimator algorithm. In
this thesis four of the moves and their parameters are trialled with Optuna. Each trial
was allowed to take 500 samples and 100 trials were made for the stationary kernel. The
autocorrelation for each chain on each parameter is averaged. For each move, the trial
with the lowest average autocorrelation time is found. The moves parameter value for this
trial is recorded. The weights are calculated to allow the best performing move to be used
more frequently, see figure 3.3.
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Figure 3.3: The distribution from which emcee proposal functions (moves) are selected
based on performance in an Optuna evaluation.

Tuning the emcee moves was not repeated for each kernel to save on computation.
For each full Bayesian inference 6000 samples are collected using the tuned moves, 1000
are burned and the rest are thined by degree 10. An example chain of the remaining
500 samples has an integrated autocorrelation time of 23.6, see figure 3.4. This is still a
significant amount of autocorrelation that could affect the reliability of the results.
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Figure 3.4: A trace plot showing the amplitude samples left after a burn of 1000 and thin
of degree 10 are applied to 6000 samples collected with the tuned moves. The integrated
autocorrelation time and the effective sample size are shown as ‘iat’ and ‘ess’, respectively.

The same analysis is executed for real interferometry data from the WEST tokamak.
WEST operates in L mode and figure 3.5 shows a NICE inference for a typical set of
interferometry data and magnetic flux surfaces.

Figure 3.5: A typical set of magnetic flux surfaces and interferometry data from the WEST
tokamak. The electron density profile; inferred by the NICE algorithm.

As seen in the results section there are some unexpectedly poor inferences. To determine
if this is due to a limitation of the kernel, a manual adjustment of the stationary kernel is
performed. This is in general not a true inference as it involves knowing a reference profile
to approach.
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3.2 Resulting Desnity Profiles of each Implimentation

As expected the hyperbolic tangent was the most successful at inferring the H mode profile,
see figure 3.6. This is because the constant flat top requires a high length scale yet the
sharp drop requires a low length scale. A low length scale reduces the correlation between
neighbouring inferred electron densities which is required for the high gradient at the edge.
It is impressive how equally accurate and precise the three kernels are at inferring the L
mode profile. The stationary kernel performed poorly when faced with a more complex
shape such as the peaked L and H mode profiles. It appears close to parabolic and this
is likely due to the inferred length scale being too large. The cubic spline length scale
showcases its flexibility, allowing it to find some of the profile features although this appears
to come at a price of smoothness. The hyperbolic tangent was able to find the H mode
edge but not as closely as it was in the pure H mode profile. It still outperformed the other
kernels for the H mode peak. The hyperbolic tangent has the lowest mean ‘mean square
error’ over all the profiles at 0.053. Cubic splines are second with 0.076 and the stationary
kernel performed the worst with 0.129, see figure 3.6.
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Figure 3.6: Electron density inference using the hyperparameter MAP method on
synthetic interferometry data. The mean square error is shown as ‘mse’.
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For the H and L mode profiles the full Bayesian analysis performed similarly well
to the hyperparameter MAP method, see figure 3.7. The MAP method fits closer to
the ground truth with an average mean squared error of 0.06 over the L and H mode
profiles, compared to 0.13 for the full Bayesian method. Surprisingly the full Bayesian
method performed poorly when faced with peaked profiles. It seems unable to follow the
features of the profile and often conforms to a parabolic like shape. Both the MAP and
full Bayesian methods have this issue with peaked profiles but the full Bayesian amplified
the problems and caused it to occur for more of the profiles. Overall the inferences from
the hyperparameter MAP method have an average mean squared error of 0.09 compared
to 0.19 from the full Bayesian method.
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Figure 3.7: Electron density inference based on the full Bayesian method for synthetic
interferometry data. The mean square error is shown as ‘mse’.
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The same analysis is executed for real interferometry data from the WEST tokamak.
The inferences from the hyperparameter MAP method are shown in figure 3.8. The L
mode profile in WEST is often not close to a perfect parabola as used in the synthetic data
investigation. As NICE has found, it often has an almost linear region in between the core
and edge that flattens in the core and plunges to 0 near the edge. This happens with no
attempts of peaking or high confinement. Despite being L mode, these extra features have
caused the MAP method to struggle, see figure 3.8.

Figure 3.8: Electron density inference using the hyperparameter MAP method on real
interferometry data from the WEST tokamak. The mean square error is shown as ‘mse’.

By comparing figures 3.8 and 3.9 we see that the mean square error shows that the
MAP method is closer to NICE for both the cubic spline and hyperbolic tangent kernel.
The stationary kernel performed similarly in both methods. However, the full Bayesian
method with the hyperbolic tangent can find the small kink feature near the edge.
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Figure 3.9: Electron density inference using the full Bayesian method on real interferometry
data from the WEST tokamak. The mean square error is shown as ‘mse’.

The final method used to optimise the inference is manual intervention. For many
of the inferences with the stationary kernel, the length scale seems to be too large as the
inferred profile appears parabolic and fails to match the shape of the ground truth or NICE.
Lowering the length scale manually allows the inference to have more freedom and match
more features, see figure 3.10. This caused the mean ‘mean square error’ of the MAP
method’s stationary kernel to drop from 0.15 to 0.03 for the three inferences manually
adjusted. This indicates that the hyperparameter MAP method does not guarantee the
most accurate possible inference. This manual intervention is in general not a true inference
as it involves knowing a reference profile to approach. It was only performed to show that
the kernels themselves are not at complete fault for poor results.
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Figure 3.10: Electron density inference on real data using the stationary kernel with man-
ually adjusted parameters. The amplitudes are set to 100, with an experimental error of
0.03 and a length scale: 0.4, 0.6 and 0.75 from left to right. The mean square error is
shown as ‘mse’.

3.3 Chapter Summary

Each hyperparameter has been given a uniform prior with specific bounds. Artificial ob-
servations were included to ensure a density near 0 at the plasma boundary and a gradient
near 0 at the magnetic axis. Five profiles of scientific interest have been created and used
to generate synthetic interferometry data. Real data was collected for a typical shot from
the WEST tokamak. An alternative inference from NICE is available for the real data.
Optimisation techniques are used to determine the MAP of the hyperparameters. For the
full Bayesian approach the proposal function of the MCMC sampler is tuned with Op-
tuna. This was an attempt to reduce the autocorrelation. The autocorrelation remained
unacceptably high and potentially undermines the credibility of the full Bayesian results.
Profiles containing multiple features are difficult for any of the tested methods to approach.
A strong H mode profile can be well inferred using a hyperbolic tangent kernel with both
the MAP and full Bayesian approaches. A parabolic L mode profile can be well inferred
with any of the kernels and approaches. The peaked profiles contain the most features
and proved the most challenging to infer. From manually adjusting the stationary kernel a
profile was found that more closely matches the peaked profiles and the NICE profile. This
shows that the kernel is not the main component holding back the quality of the results. It
is more likely that the true MAP has not been found and the autocorrelation is preventing
the full Bayesian samples from representing the true posterior.
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Chapter 4

Conclusion

The tokamak is the most researched device that has the highest chance of becoming a viable
fusion reactor. Within the tokamak, it is vital to be able to measure the electron density
throughout the device to ensure safety limits are maintained and fusion performance goals
are met. The equilibrium of the tokamak plasma has toroidally symmetric flux surfaces on
which the electron density is constant. The flux surfaces allow a 1D electron density profile
to express the density throughout the tokamak. The flux surfaces are provided by the NICE
code which uses magnetic diagnostic data to determine the flux surfaces. There are multiple
diagnostics that can measure the electron density. This thesis focused on the interferometry
diagnostic within the WEST tokamak. Interferometry is a technique that uses the optical
path length difference of vacuum to plasma for multiple lasers fired through the plasma
to determine the line integrated electron density along the laser’s line of sight. This can
provide enough information to infer the electron density profile with Bayesian techniques.
Both real and synthetic data were used to test various Bayesian techniques. The various
techniques were different ways to deal with the hyperparameters that defined the prior.
Three different kernels were trialled that defined the functional form of the smoothness of
the final inferred profile. The parameters in the kernels were decided using a MAP of the
hyperparameter posterior or with a full Bayesian analysis which involves marginalising the
hyperparameters by sampling from a joint probability distribution of the electron density
profiles posterior and the hyperparameter posterior. Once the hyperparameters are known
then the posterior of the density profile can be computed analytically; although this process
requires matrix inversion. The prior information also included that we know the gradient
is close to 0 in the core and the density is close to 0 at the last closed flux surface. This
was included in the Bayesian analysis using artificial observations. NICE also provides
an electron density profile for real WEST shots and can be compared to the Bayesian
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methods.

Five synthetic profiles were defined and used to create synthetic interferometry data.
These included L-mode, H-mode, Peaked, L-mode Peaked and H-mode Peaked. They are
all scientifically relevant profile shapes. Real interferometry data from a typical WEST
shot was also used. The inferred profiles of the synthetic data could be compared to the
synthetic profiles and the inferred profiles from the real data could be compared to the
NICE profile. The full Bayesian approach involves MCMC sampling which was carried
out using the emcee python package. The emcee parameters are turned to minimise the
autocorrelation. There was still substantial autocorrelation that reduced the reliability of
the samples to be from the true hyperparameter posterior distribution. This reduces the
credibility of this implementation of the full Bayesian approach. The final inferences show
potential for the methods explored but are inconclusive as to which is the best method.
There was no combination of the kernels and hyperparameter method that was able to
perform well on all of the profiles of interest. A few of the inferences very well match
the synthetic or NICE profile; although for a real scenario, there is no comparison profile
to assess performance and the inference algorithm must be able to cope with any ground
truth profile.

For future investigation, more optimisation techniques could be deployed for finding
the MAP of the hyperparameter posterior of the various kernels. The cubic spline function
for the hyperbolic tangent was the most flexible function used which should allow it to be
the most effective for a wide variety of profiles, the number of spline knots and their prior
positions could be better tuned to improve performance. The amplitude hyperparameter
determines how far from the prior profile the inference can easily go. This is an intuitive
parameter that could potentially be manually selected to reduce the dimensionality of the
parameter space to be searched and increase the chance an optimal length-scale function
could be selected. WEST also collects polarimetry data and this also contains information
about the electron density profile. More work could be done to include this information in
the Bayesian inference. This would involve using the temperature profile to get the current
profile which could be used to get the poloidal magnetic field which could then separate
the electron density from the poloidal magnetic field in the polarimetry phase shift shown
in equation, 2.15. There is also information available about the amount of fuel injected
into the system and this is correlated to the electron density. This could be used to get
a more accurate prior for the electron density profile. Once the algorithm is stable and
consistently provides accurate inferences then the next step would be to test the real-time
capabilities. The slowest process is the hyperparameter optimisation and after that the
matrix inversion. Perhaps these could be replaced with reduced models or neural networks
to ensure real-time computation speeds.
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Appendix A

Deriving the Closed Form Posterior

Expressions

The inference begins with Bayes theorem,

P (y⃗|d⃗, ϵ⃗, ¹) =
P (d⃗|y⃗, ϵ⃗)P (y⃗|¹)

P (d⃗|⃗ϵ, ¹)
, (A.1)

where the likelihood can be written as,

P (d⃗|y⃗, ϵ⃗) =
1

(2Ã)
m

2

√

|Σli|
exp

[

−
1

2
(d⃗−Ry⃗)¦Σ−1

li (d⃗−Ry⃗)

]

, Σli = ϵ⃗I, (A.2)

the prior as,

P (y⃗|¹) =
1

(2Ã)
n

2

√

|K|
exp

[

−
1

2
(y⃗ − µ⃗pr)

¦K−1(y⃗ − µ⃗pr)

]

,

¹ → {Ã, l}, Kij = k(Äi, Äj) = Ã2 exp

[

(Äi − Äj)
2

2l2

]

,

(A.3)

and the posterior as,

P (y⃗|d⃗, ϵ⃗, ¹) =
1

(2Ã)
n

2

√

|Σpost|
exp

[

−
1

2
(y⃗ − µpost)

¦Σ−1

post(y⃗ − µ⃗post)

]

. (A.4)
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To derive µ⃗post and Σpost the likelihood and prior are multiplied together and re-arranged.
Only first and second order y⃗ terms are kept as the constants do not affect the shape of
the multivariate Gaussian and thus do not affect µ⃗post or Σpost. Then using the completing
the square formula for matrices they can be combined into a single multivariate Gaussian.
By comparing with the posterior we find the closed form expressions for µ⃗post and Σpost.
When the distributions are multiplied together the exponential powers are summed,

−
1

2

[

(d⃗−Ry⃗)¦Σ−1

li (d⃗−Ry⃗) + (y⃗ − µ⃗pr)
¦K−1(y⃗ − µ⃗pr)

]

,

ignoring the −1

2
for now and multiplying it out gets,

(

d⃗¦Σ−1

li d⃗− d⃗¦Σ−1

li Ry⃗ − (Ry⃗)¦Σ−1

li d⃗+ (Ry⃗)¦Σ−1

li Ry⃗
)

,

+
(

y⃗¦K−1y⃗ − y⃗¦K−1µ⃗pr − µ⃗¦
prK

−1y⃗ + µ⃗¦
prK

−1µ⃗pr

)

,

focusing on the 1st order terms and remembering that the transpose of a scalar is itself
and the transpose of a symmetric matrix (e.g. Σli) is itself, it can be shown that the first
order terms equate to

−d⃗¦Σ−1

li Ry⃗ − (Ry⃗)¦Σ−1

li d⃗− y⃗¦K−1µ⃗pr − µ⃗¦
prK

−1y⃗ = −2y⃗¦(R¦Σ−1

li d⃗+K−1µ⃗pr) = −2y⃗¦b⃗

in which a substitution was made to ease the use of the competing square formula,

b⃗ = R¦Σ−1

li d⃗+K−1µ⃗pr

switching the focus to the 2nd order terms,

(Ry⃗)¦Σ−1

li Ry⃗ + y⃗¦K−1y⃗ = y⃗¦(R¦Σ−1

li R +K−1)y⃗ = y⃗¦My⃗,

in which a substitution was made to ease the use of the completing square formula,

M = (R¦Σ−1

li R +K−1)

ignoring 0 order terms that do not affect the shape, the original exponential power takes
the form,
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−
1

2

[

y⃗¦My⃗ − y⃗¦b⃗
]

,

by completing the squares we obtain

y⃗¦My⃗ − y¦b⃗ = (y⃗ −M−1⃗b)¦M(y⃗ −M−1⃗b)− b⃗¦M−1⃗b.

We can ignore b⃗¦M−1⃗b as it doesn’t affect the shape of the Gaussian. Finally, for the
posterior we have

P (y⃗|d⃗, ϵ⃗, ¹) ∝ exp
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,

from comparison, it can be seen that,
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(A.5)

The posterior mean is often written in another form. This form can be found with the
following steps,

µ⃗post = (K−1 +R¦Σ−1

li R)−1(R¦Σ−1

li d⃗+K−1µ⃗pr)

= (K−1 +R¦Σ−1
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li Rµ⃗pr

= µ⃗pr + (K−1 +R¦Σ−1

li R)−1R¦Σ−1

li (d⃗−Rµ⃗pr).

The final closed form expression of the posterior mean and covariance is

µ⃗post = µ⃗pr + (K−1 +R¦Σ−1

li R)−1R¦Σ−1

li (d⃗−Rµ⃗pr) (A.6)

Σpost =
(

R¦Σ−1

li R +K−1
)−1

. (A.7)

The error of each value in µ⃗post can be found on the diagonal of Σpost.
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Appendix B

Deriving the Marginal Likelihood

and Loss Function Expression

The marginal likelihood is the denominator in Bayes theorem for the inference

P (y⃗|d⃗, ϵ⃗, ¹) =
P (d⃗|y⃗, ϵ⃗)P (y⃗|¹)

P (d⃗|⃗ϵ, ¹)
, (B.1)

since the marginal likelihood is a normalizing constant it can be expressed as

P (d⃗|⃗ϵ, ¹) =

∫
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and the prior is,
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(B.4)
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when multiplied together the exponential powers become

(

d⃗¦Σ−1
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)

,

the first order terms of y⃗ can be simplified,
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the second order terms of y⃗ can be simplified,
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all together, for the marginal likelihood we have
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|Σli|

1

(2Ã)
n

2

√

|K|
exp

[

−
1

2
(d⃗¦Σ−1

li d⃗+ µ⃗¦
prK

−1µ⃗pr)

]
∫

exp

[

−
1

2
y⃗¦My⃗ + y⃗¦b⃗

]

dy⃗,

(B.5)

performing a standard Gaussian integral we get that

∫

exp

[

−
1

2
y⃗¦My⃗ + y⃗¦b⃗

]

dy⃗ =
(2Ã)

n

2

√

|M |
exp

[

1

2
b⃗¦M−1⃗b

]

,

all together, for the marginal likelihood we have

P (d⃗|⃗ϵ, ¹) =

∫

P (d⃗|y⃗, ϵ⃗)P (y⃗|¹) dy⃗

=
(2Ã)

n

2

(2Ã)
m

2 (2Ã)
n

2

√

|Σli||K||M |
exp

[

−
1

2
(d⃗¦Σ−1

li d⃗+ µ⃗¦
prK

−1µ⃗pr − b⃗¦M−1⃗b)

]

,
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where b⃗ and M are substitutions made earlier

b⃗ = R¦Σ−1

li d⃗+K−1µ⃗pr

M = (R¦Σ−1

li R +K−1),

ignoring the −1

2
for now and reverting b⃗ and M to their original form the exponential

power becomes

µ⃗¦
prK

−1µ⃗pr + d⃗¦Σ−1

li d⃗− (R¦Σ−1

li d⃗+K−1µ⃗pr)
¦(K−1 +R¦Σ−1

li R)−1(R¦Σ−1

li d⃗+K−1µ⃗pr),

the next step requires the Woodbury identity [13],

(A+ UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1, (B.6)

the exponential power can thus be expanded to be

µ⃗¦
prK

−1µ⃗pr+d⃗¦Σ−1

li d⃗−(R¦Σ−1

li d⃗+K−1µ⃗pr)
¦
[

K −KR¦
(

Σli +RKR¦
)−1

RK
]

(R¦Σ−1

li d⃗+K−1µ⃗pr),

this can then be rearranged to be

d⃗¦
{

Σ−1

li − Σ−1

li R
[

K −KR¦
(

Σli +RKR¦
)−1

RK
]

R¦Σ−1

li

}

d⃗

− 2µ⃗¦K−1

[

K −KR¦
(

Σli +RKR¦
)−1

RK
]

R¦Σ−1

li d⃗

+ µ⃗¦
{

K−1 −K−1

[

K −KR¦
(

Σli +RKR¦
)−1

RK
]

K−1

}

µ⃗,

the second order term in d⃗ can be reduced

Σ−1

li − Σ−1

li R
[

K −KR¦
(

Σli +RKR¦
)−1

RK
]

R¦Σ−1

li

= Σ−1

li − Σ−1

li RKR¦Σ−1

li + Σ−1

li RKR¦
(

Σli +RKR¦
)−1

RKR¦Σ−1

li

= Σ−1

li − Σ−1

li RKR¦Σ−1

li + Σ−1

li

(

Σli +RKR¦ − Σli

) (

Σli +RKR¦
)−1

RKR¦Σ−1

li

= Σ−1

li −
(

Σli +RKR¦
)−1

RKR¦Σ−1

li

= Σ−1

li −
(

Σli +RKR¦
)−1 (

Σli +RKR¦ − Σli

)

Σ−1

li

=
(

Σli +RKR¦
)−1

,
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the first order term in d⃗ can be reduced

−2µ⃗¦K−1

[

K −KR¦
(

Σli +RKR¦
)−1

RK
]

R¦Σ−1

li

= −2µ⃗¦R¦Σ−1

li + 2µ⃗¦R¦
(

Σli +RKR¦
)−1

RKR¦Σ−1

li

= −2µ⃗¦R¦Σ−1

li + 2µ⃗¦R¦
(

Σli +RKR¦
)−1 (

Σli +RKR¦ − Σli

)

Σ−1

li

= −2µ⃗¦R¦Σ−1

li + 2µ⃗¦R¦Σ−1

li − 2µ⃗¦R¦
(

Σli +RKR¦
)−1

= −2µ⃗¦R¦
(

Σli +RKR¦
)−1

,

the zero order term in d⃗ can be reduced

K−1 −K−1

[

K −KR¦
(

Σli +RKR¦
)−1

RK
]

K−1 = R¦
(

Σli +RKR¦
)−1

R,

now the exponential is

d⃗¦Σ−1

li d⃗+ µ⃗¦
prK

−1µ⃗pr − b⃗¦M−1⃗b

= d⃗¦
(

Σli +RKR¦
)−1

d⃗− 2µ⃗¦R¦
(

Σli +RKR¦
)−1

+ µ⃗¦R¦
(

Σli +RKR¦
)−1

Rµ⃗

= (d⃗−Rµ⃗pr)
¦(Σli +RKR¦)−1(d⃗−Rµ⃗pr),

the scaling constant can be simplified using the matrix determinant lemma [13],

|A+ UCV | = |A| |C| |C−1 + V A−1U |, (B.7)

|Σli||K||M | = |Σli||K||R¦Σ−1

li R +K−1| = |Σli +RKR¦|,

this also helps avoid precision errors as there are fewer matrix inversions and determinants
to compute. The marginal likelihood becomes

P (d⃗|⃗ϵ, ¹) =

∫

P (d⃗|y⃗, ϵ⃗)P (y⃗|¹) dy⃗

=
1

(2Ã)
m

2

√

|Σli +RKR¦|
exp

[

−
1

2
(d⃗−Rµ⃗pr)

¦(Σli +RKR¦)−1(d⃗−Rµ⃗pr)

]

.

(B.8)
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The values of the marginal likelihood can become very large and troublesome to compute
with standard 64-bit float precision. For this reason, the logarithm is computed,

ln(P (d⃗|⃗ϵ, ¹)) = −
1

2

[

m ln(2Ã) + ln(|Σli +RKR¦|) + (d⃗−Rµ⃗pr)
¦(Σli +RKR¦)−1(d⃗−Rµ⃗pr)

]

.

(B.9)

It is convention for loss functions to be minimized so the negative log marginal likelihood
is used as the loss function for optimizing the hyper-parameters. When minimizing, the
constants do not play a major role, thus the loss function for the hyperparameters is
expressed as

loss(ϵ, ¹) = ln(|Σli +RKR¦|) + (d⃗−Rµ⃗pr)
¦(Σli +RKR¦)−1(d⃗−Rµ⃗pr) (B.10)
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Appendix C

Complete Set of Distributions and

Expressions for Reference

C.1 Gaussian Process Regression for Interferometry,

Discluding Artificial Observations

In section 2.3, Bayesian inference was introduced for a simple regression problem. In section
2.5 it was explained how to alter the method so that it could be applied to interferome-
try data to infer the electron density profile. Here are the mentioned distributions fully
described for reference. The likelihood is,

N (d⃗, µ⃗li = Rn⃗e,Σli) =
1

√

(2Ã)
n

2 |Σli|
exp

[

−
1

2
(d⃗−Rn⃗e)

¦Σ−1

li (d⃗−Rn⃗e)

]

,

Σli = ϵ⃗I =











ϵ1 0 · · · 0
0 ϵ2 · · · 0
...

...
. . . 0

0 0 0 ϵm











,

(C.1)

where R is a matrix composed of flux surface contribution row vectors, where each row
vector corresponds to a different line of sight and when multiplied with n⃗e produces the
line integrated density over that line of sight, see section 2.5 for more details. The prior is,
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N (n⃗e, µ⃗pr = 0⃗, K) =
1

√

(2Ã)
n

2 |K|
exp

[

−
1

2
n⃗e

¦K−1n⃗e

]

,

Kij = k(Äi, Äj) = Ã2

(

2l(Äi)l(Äj)

l(Äi)2 + l(Äj)2

)1/2

exp

(

(Äi − Äj)
2

l(Äi)2 + l(Äj)2

)

,

(C.2)

where l(Ä) can be a hyperbolic tangent function or otherwise. If l is not a function but a
constant, l(Ä) = l, then the kernel reverts back to the stationary kernel,

Kij = k(Äi, Äj) = Ã2 exp

[

(Äi − Äj)
2

2l2

]

, (C.3)

The goal is to compute the posterior,

N (n⃗e, µ⃗post,Σpost) =
1

√

(2Ã)
n

2 |Σpost|
exp

[

−
1

2
(n⃗e − µ⃗post)

¦Σ−1

post(n⃗e − µ⃗post)

]

, (C.4)

which can be done with the closed form expressions,

µ⃗post = µ⃗pr + (K−1 +R¦Σ−1

li R)−1R¦Σ−1

li (d⃗−Rµ⃗pr) (C.5)

Σpost =
(

R¦Σ−1

li R +K−1
)−1

, (C.6)

as derived in appendix A. Once known the density profile can be plotted with the µ⃗post

values at the same Ä values used in the kernel. The errors are the standard deviations held
in the diagonal of Σpost. This calculation is unlikely to be accurate until the hyperparame-
ters are optimised. The parameters in the length scale function l(Ä) are hyperparameters.
The experimental errors ϵ can also be hyperparameters if unknown. The optimal hyper-
parameters can be found by minimising the negative log marginal likelihood. It is derived
in appendix B to be,

loss(⃗ϵ, ¹) = ln(|Σli +RKR¦|) + (d⃗−Rµ⃗pr)
¦(Σli +RKR¦)−1(d⃗−Rµ⃗pr). (C.7)

There is no change in its form from the simple regression problem. The values of the
various matrices and vectors have changed.
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C.2 Gaussian Process Regression for Interferometry,

Including Artificial Observations

Artificial observations can be placed in the likelihood to include prior knowledge. This
circumvents precision issues when including this information in the prior. The process was
explained in section 2.5. Here are the full expressions for reference. The likelihood is,

N (d⃗alt, µ⃗li = Ralta⃗,Σli) =
1

√

(2Ã)
n

2 |Σalt
li |

exp

[

−
1

2
(d⃗alt −Ralta⃗)¦(Σalt

li )
−1(d⃗−Ralta⃗)

]

,

d⃗alt =





d⃗
ne(Ä = 1) = 0
n′
e(Ä = 0) = 0



 =



















lid1
lid2
...

lidm
ne(Ä = 1) = 0
n′
e(Ä = 0) = 0



















,

a⃗ =





n⃗e

ne(Ä = 1)
n′
e(Ä = 0)



 =



















ne(Ä1)
ne(Ä2)

...
ne(Än)

ne(Ä = 1)
n′
e(Ä = 0)



















,

Σalt
li = I





ϵ⃗
ϵedge
ϵ′core



 = I



















ϵ1
ϵ2
...
ϵm
ϵedge
ϵ′core



















=



















ϵ1 0 · · · 0 0 0
0 ϵ2 · · · 0 0 0
...

...
. . . 0 0 0

0 0 0 ϵm 0 0
0 0 0 0 ϵedge 0
0 0 0 0 0 ϵ′core



















,

Ralt =

[

Rm×n Om×2

O2×n I2×2

]

=















0 0

Rm×n
...

...
0 0

0 · · · 0 1 0
0 · · · 0 0 1















,

(C.8)
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where d⃗ has been altered to include the data from the artificial observations, lid1 is the line
integrated density from the 1st laser of m lasers. a⃗ is the vector to be inferred and is the
original electron density profile n⃗e with the additional artificial observations, ϵ⃗ contains the
experimental errors of the interferometry for each line of sight and ϵedge is the error of our
artificial observation for the electron density at the edge, it represents the strength of our
prior assumption. ϵ′core represents the error of the artificial observation that the density
gradient is 0 at the core, it also represents the strength of this prior assumption. R is the
original response matrix explained previously and Ralt is a small alteration to return the
artificial observations when applied to some a⃗. The prior is,

N (⃗a, µ⃗pr = 0⃗, Kalt) =
1

√

(2Ã)
n

2 |Kalt|
exp

[

−
1

2
a⃗¦(Kalt)−1a⃗

]

,

Kalt =

[

K K ′

K ′¦ K ′′

]

,

Kij = k(Äi, Äj) = Ã2

(

2l(Äi)l(Äj)

l(Äi)2 + l(Äj)2

)1/2

exp

(

(Äi − Äj)
2

l(Äi)2 + l(Äj)2

)

,

K ′
ij = k′(Ä′i, Äj) =

∂k(Ä′i, Äj)

∂Ä′i
,

K ′′
ij = k′′(Ä′i, Ä

′
j) =

∂k(Ä′i, Ä
′
j)

∂Ä′i∂Ä
′
j

,

(C.9)

where l(Ä) can be a hyperbolic tangent function or otherwise. If l(Ä) = l then this reverts
to the stationary kernel,

Kij = k(Äi, Äj) = Ã2 exp

[

(Äi − Äj)
2

2l2

]

. (C.10)

The K ′ and K ′′ are required to account for the fact that now there is gradient information
and the covariance for positions of gradient information Ä′ requires a differential of the
original covariance kernel k. The goal is to compute the posterior,

N (⃗a, µ⃗post,Σpost) =
1

√

(2Ã)
n

2 |Σpost|
exp

[

−
1

2
(⃗a− µ⃗post)

¦Σ−1

post(⃗a− µ⃗post)

]

, (C.11)

where since n⃗e has been extended to a⃗ the µ⃗post and Σpost have also been extended. The
careful choice of alterations allows us to use the same closed form expressions as before the
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artificial observations simply by inserting the alternate forms of the various matrices and
vectors. The marginal likelihood for optimization also holds its form. To get the density
profile one must remove the end terms of µ⃗post associated with the artificial observations
before plotting. The same applies to the diagonal of Σpost to obtain the errors.
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Glossary

IAT Integrated Autocorrelation Time (IAT) is a measure of how many steps it takes for
a Markov chain to forget its initial state and become uncorrelated. It is defined as
the sum of the normalized autocorrelations for all possible lags. It can be used to
estimate the effective sample size and the Monte Carlo error of a chain. 19

IMAS Integrated Modeling and Analysis Suite, is a framework and data management
system. It is designed to store, manage, and analyze experimental and simulation
data. IMAS provides a standardized platform for sharing and exchanging data among
researchers from different institutions and countries. IMAS supports the integration
of various fusion modeling codes and allows researchers to compare experimental data
with simulation results. 10, 20

MAP MAP stands for maximum a posteriori, which is a method of estimating an unknown
quantity based on observed data and prior knowledge. MAP is a Bayesian approach
that calculates the probability of a quantity given the data and the prior, and chooses
the quantity that maximizes this probability. MAP can be used to find the most likely
parameters of a probability distribution or a model that fits the data. 5, 17, 28–30,
36, 38–42

MCMC Markov chain Monte Carlo (MCMC) is a technique for sampling from complex
and high-dimensional probability distributions that are difficult to sample from di-
rectly. 5, 18, 19, 30, 40, 42

MHD MHD stands for magnetohydrodynamics. It is a model of electrically conducting
fluids that treats all interpenetrating particle species together as a single continuous
medium. It is primarily concerned with the low-frequency, large-scale, magnetic
behavior in plasmas and liquid metals. 8

NICE Newton direct and Inverse Computation for Equilibrium. A code developed by
Blaise Faugeras at the Centre national de la recherche scientifique (CNRS) to nu-
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merically solve several plasma free-boundary equilibrium problems within a tokamak
including the position of magnetic flux surfaces and the electron density profile. 5,
6, 8–10, 21, 26, 27, 30, 33, 38, 40–42

SQP Sequential Quadratic Programming is a numerical optimization technique used to
solve nonlinear constrained optimization problems. It is an iterative method that
seeks to find the optimal solution to a problem by iteratively approximating it with
a quadratic model and then solving this quadratic subproblem. The key idea is to
successively update the solution in a way that moves closer to the optimal solution
while satisfying the constraints. 10

WEST Tungsten (W) Environment in Steady-state Tokamak (WEST) is a French toka-
mak that aims to test and validate the ITER tungsten divertor components and
prepare their safe operation 4, 5, 9, 10, 20, 21, 24, 27, 29, 30, 33, 38, 40–42
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